
Understanding Neural Network Sample Complexity and 
Interpretable Convergence-guaranteed Deep Learning with 

Polynomial Regression

by

Matt V. Emschwiller

Ingénieur diplômé de l’École polytechnique (B.S. 2017, M.S. 2018)

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c© 2020 Massachusetts Institute of Technology. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sloan School of Management

May 1st, 2020

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Prof. David Gamarnik

Nanyang Technological University Professor of Operations Research
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Prof. Patrick Jaillet

Dugald C. Jackson Professor, Department of Electrical Engineering and Computer Science
Co-Director, Operations Research Center

1



2



Understanding Neural Network Sample Complexity and
Interpretable Convergence-guaranteed Deep Learning with

Polynomial Regression

by

Matt V. Emschwiller

Submitted to the Sloan School of Management
on May 1st, 2020 in partial fulfillment of the

requirements for the degree of
Master of Science in Operations Research

Abstract

We first study the sample complexity of one-layer neural networks, namely the number of ex-
amples that are needed in the training set for such models to be able to learn meaningful
information out-of-sample. We empirically derive quantitative relationships between the sam-
ple complexity and the parameters of the network, such as its input dimension and its width.
Then, we introduce polynomial regression as a proxy for neural networks through a polynomial
approximation of their activation function. This method operates in the lifted space of tensor
products of input variables, and is trained by simply optimizing a standard least squares ob-
jective in this space. We study the scalability of polynomial regression, and are able to design
a bagging-type algorithm to successfully train it. The method achieves competitive accuracy
on simple image datasets while being more simple. We also demonstrate that it is more robust
and more interpretable that existing approaches. It also offers more convergence guarantees
during training. Finally, we empirically show that the widely-used Stochastic Gradient Descent
algorithm makes the weights of the trained neural networks converge to the optimal polynomial
regression weights.

Thesis Supervisor: Prof. David Gamarnik
Nanyang Technological University Professor of Operations Research

3



4



Contents

1 Introduction 9

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.2 Expressiveness power of neural networks . . . . . . . . . . . . . . . . . . . 11

1.1.3 Algorithmic considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.4 Gradient-based methods on the population loss function . . . . . . . . . . 14

1.1.5 Gradient-based methods on the empirical loss function . . . . . . . . . . . 15

1.1.6 Energy landscape of neural networks . . . . . . . . . . . . . . . . . . . . . 17

1.1.7 Neural networks robustness to noise . . . . . . . . . . . . . . . . . . . . . 23

1.1.8 Polynomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2 Organization of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Sample complexity of neural networks 27

2.1 General setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Algorithmic setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Recovery precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.3 Sample complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Polynomial regression 43

3.1 General setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Testing on synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Construction of the synthetic dataset . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Impact of d and m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5



CONTENTS

3.2.3 Sample complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.4 Approximating activation functions . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Testing on real data – setup and benchmarks . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 State-of-the-art models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.3 A deep learning inspired approach . . . . . . . . . . . . . . . . . . . . . . 50

3.3.4 A dimensionality reduction approach . . . . . . . . . . . . . . . . . . . . . 52

3.4 Fitting polynomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Challenges and scalability of the method . . . . . . . . . . . . . . . . . . . 57

3.4.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.3 Introduction of batched linear regression as a scalable fitting method . . . 59

3.4.4 Comparison to benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.5 Comparison to exact methods when tractable . . . . . . . . . . . . . . . . 63

3.5 Understanding gradient descent behavior . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6.1 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6.2 Robustness to noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Conclusion 81

6



List of Figures

1.1 Standard activation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Prediction landscape vs. first two input coordinates for a random one-layer neural

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Empirical loss landscape vs. first two weights for a random one-layer neural

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 One-layer neural network architecture (from [ZYWG18a]). . . . . . . . . . . . . . 27

2.2 Recovery R2 vs. input dimension, against network parameters. . . . . . . . . . . 33

2.3 Recovery R2 vs. hidden dimension, against network parameters. . . . . . . . . . 34

2.4 Recovery R2 vs. sample size, against network parameters. . . . . . . . . . . . . . 35

2.5 Sample complexity vs. input dimension and best linear fits, without dichotomy. . 35

2.6 Sample complexity vs. hidden dimension and best linear fits, without dichotomy. 36

2.7 Recovery probability vs. sample size, against network parameters. . . . . . . . . 37

2.8 Sample complexity trials vs. hidden dimension, with dichotomy. . . . . . . . . . . 39

2.9 Sample complexity trials vs. hidden dimension, best logarithmic linear fit, with

dichotomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.10 Sample complexity vs. input dimension, trials and best linear fit, with dichotomy. 41

3.1 Performance of polynomial regression for synthetic datasets vs. network param-

eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Generalization gap vs. ratio of dataset size to number of polynomial regression

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Example images from datasets used. . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 LeNet5 architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Out-of-sample accuracy of the CNN model during the training process, zoomed. . 52

7



LIST OF FIGURES

3.6 In-sample and out-of-sample accuracy of the polynomial regression model vs.

number of principal components. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Most important PCA components. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.8 Original image and DCT encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Thresholded DCT encoding and decoded image. . . . . . . . . . . . . . . . . . . 55

3.10 Probability that each pixel appears in the DCT-encoded and thresholded version

of an image, across the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.11 Out-of-sample accuracy of individual and cumulative batched linear regression

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.12 In-sample and out-of-sample accuracy of the cumulative batched linear regression

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.13 Polynomial approximation of ReLU activation. . . . . . . . . . . . . . . . . . . . 67

3.14 In-sample and out-of-sample comparison of student network and polynomial re-

gression output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.15 Neural network “equivalent” tensor weights vs. polynomial regression weights

with ReLU L2 polynomial approximation. . . . . . . . . . . . . . . . . . . . . . . 69

3.16 Neural network “equivalent” tensor weights vs. polynomial regression weights

with ReLU L∞ polynomial approximation. . . . . . . . . . . . . . . . . . . . . . 69

3.17 Polynomial approximation of ReLU activation (priors and posterior). . . . . . . . 71

3.18 Neural network “equivalent” tensor weights vs. polynomial regression weights

with ReLU posterior polynomial approximation. . . . . . . . . . . . . . . . . . . 71

3.19 Interpretation of degree 1 coefficients for polynomial regression. . . . . . . . . . . 73

3.20 Interpretation of degree 2 coefficients for polynomial regression. . . . . . . . . . . 75

3.21 Images after applying the global noise modification, for σ = 0.3. . . . . . . . . . . 76

3.22 Images after applying the local noise modification, for A = 100. . . . . . . . . . . 77

3.23 Accuracy and relative accuracy drop vs. noise standard deviation σ in the global

noise setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.24 Accuracy and relative accuracy drop vs. patch area A in the local noise setting. . 79

8



Chapter 1

Introduction

1.1 Background

1.1.1 Deep learning

For the past years, deep neural networks have shown state-of-the-art performance in tasks such

as image recognition ([KSH12]), speech classification ([HDY+12, MHN13, ZRM+13]), machine

translation ([BCB15]), and even complex games like Go ([SHM+16]). ReLU neural networks

([GBB11]), where the activation of each neuron is defined as σ(x) = max{x, 0}, have appeared

to be favored by most of the literature.

Figure 1.1: Standard activation functions.

These networks possess several attractive computational properties which are worth men-

tioning and analyzing, and which justify the choice of the representation studied here.

9



CHAPTER 1. INTRODUCTION

Vanishing gradient

Compared to networks that use sigmoid activation, ReLU neural networks are less affected

([GBB11]) by the vanishing gradient problem ([BSF94, Hoc98]). This phenomenon appears

when using an activation function such as the sigmoid function (σ(x) = 1
1+e−x ) or the hyperbolic

tangent (σ(x) = tanh(x)). These two functions have a gradient that shrinks towards 0 at both

x→ +∞ and x→ −∞. The gradient value vanishing causes the training process to effectively

come to a stop (the updates of the weights of the network become infinitesimal) after a certain

number of epochs. In ReLU networks, the gradient of the activation function is piecewise

constant, and doesn’t vanish at x → +∞. Moreover, as shown in [HN10], ReLU networks can

be seen as a representation of an exponential number of linear models that share parameters.

The only non-linearity comes from which paths are active from the first layer of the network

to the last one (a path of neurons is defined as “active” if all neurons along this path have a

non-zero ReLU activation). Once we know which paths are active, it is possible to reformulate

the function computed by the network as mentioned. Because of this linearity, gradients flow

well on the neurons paths that are active, which facilitates mathematical investigation.

Sparsity

ReLU neurons also encourage sparsity in the hidden layers ([GBB11]), which make the effective

number of parameters of the network go down, and pushes the network towards the path of

interpretability. With random initialization of the network weights, the proportion of hidden

units with zero activation will converge towards 50% as the network width increases, and this

percentage can be even further increased with a sparsity-inducing regularization. For example,

the Lasso regularization ([Tib96]) is one such sparsity-inducing regularization, since it adds

a term λ ‖W‖1 in the optimization program. Sparsity has more generally become a major

subject of interest for computational cognitive sciences and machine learning, as well as for

signal processing and statistics (see [CT05] for example).

Sparsity in neural networks can also allow the networks to control their effective dimension-

ality, by increasing or decreasing the number of active hidden units. Different inputs might

contain different levels of information and would thus need different treatment in terms of the

size of the architecture that tries to analyze it. According to [Ben09], an objective of machine

learning is to separate the factors explaining the variations in the data (similar to what a Prin-

cipal Component Analysis analysis would do, but in a more complex approach). Having dense

10



CHAPTER 1. INTRODUCTION

representations makes the problem very sensitive to any change in the input vector. If the

representation is sparse and robust to small changes in the input vector, the set of features that

are selected by the representation model will not change for reasonably small changes of the

input.

Finally, sparse representations are represented in a high-dimensional space, but their actual

dimension is much lower (depending on the level of sparsity). Hence, they are more likely to

be linearly separable, which makes the data learning problem easier. Of course, forcing the

sparsity to too high of a level might negatively impact the predictive performance of the model,

for a given number of neurons. In the following, we do not rely on any sparsity-regularization,

in order to simplify the analysis.

Computational efficiency

In ReLU networks, gradient back-propagation is efficient because of their piecewise linear nature.

[KSH12] reports that a Convolutional Neural Network (CNN) with ReLUs is six times faster

than an equivalent network with hyperbolic tangent neurons.

In terms of training, [GBB11] reports that computations are generally less costly because

there is no need to compute the exponential or hyperbolic tangent functions. One would expect

that the saturation at 0 of the activation function might make the optimization more chal-

lenging. However, [GBB11] experimentally finds that training with a smoothed version of the

ReLU activation (namely, the soft-plus activation, σ(x) = log [1 + ex], see Fig. 1.1) doesn’t

improve optimization efficiency, and also results in the loss of sparsity of the model. It is hence

hypothesized that zeroes help the supervised training procedure. This may be because the hard

non-linearities don’t impact the optimization program too much as long as the gradient descent

procedure can propagate along some paths, or equivalently that some hidden units in each layer

have a non-zero activation.

The literature also reports experimentally that ReLU networks generalize very well. The

typical block used in CNN training is nowadays composed of a convolution step followed by a

ReLU function, and finally a pooling layer. Batch normalization layers are also largely used.

1.1.2 Expressiveness power of neural networks

To understand why and how neural networks perform so well for many tasks, a large line of

research studied the expressiveness power of neural networks, or how big (in terms of depth

11



CHAPTER 1. INTRODUCTION

and width) a network needs to be in order to succeed in some task, as well as if it can achieve

a given task or not. This directly relates to universal approximation theory, which studies how

some classes of functions can be approximated by other classes of functions (or more simply

put, which classes of functions are dense in some sets). From a machine learning perspective,

universal approximation theory is only the first step: efficiency, or the size of the neural network

required to achieve the approximation, is also crucial. Let us first focus on the former.

It is well-known ([Cyb89]) that classes of functions similar to the one we consider in this

paper are rich enough to approximate “reasonable” functions arbitrarily well. Those classes of

function are what we call “one-layer” neural networks, namely neural networks with depth 1

(one hidden layer between the input and the output) and varying width.

Definition 1.1.1. A function σ : R 7→ R is said to be sigmoidal if σ(x) −−−−→
x→−∞

0 and

σ(x) −−−−→
x→+∞

1.

If σ is also continuous, and f is L2 with respect to the distribution of the inputs X (meaning

E
[
f(X)2

]
< ∞), then the following holds [Cyb89] (the original version actually states the

following for functions f defined on compact sets, not R, and without the L2 assumption on

f(X)):

∀ε > 0 ∃m ∈ N s.t. inf
W

E

[∣∣∣∣∣f(X)− 1

m

m∑
i=1

σ((W>X)i)

∣∣∣∣∣
]
≤ ε. (1.1)

This means that one hidden layer neural networks can approximate arbitrarily well any smooth

function, as long as the width is large enough. A key observation is that this theorem doesn’t

state how large m can become as ε decreases. In practice, it is often observed that m seems to get

too large to be computationally efficient, and that is why, in practice, people increase the depth

of the network instead of keeping only one hidden layer. However, theoretically, nothing says

at this point that one-layer neural networks with sigmoid and continuous activation functions

are too limited to approximate any reasonably shaped function well.

[Hor91] improved the result obtained in [Cyb89], proving that, as long as the activation func-

tion is bounded and non-constant, then any one-layer neural network with width large enough

can approximate arbitrarily well any function f such that E [f(X)p] < ∞ with respect to the

Lp norm. If the activation function is also continuous, then the network can approximate any

continuous function on compact subsets. Finally, if the activation function is unbounded and

non-constant, a similar density result on Lp functions is established. By removing the assump-

tions that the activation function had to be integrable, sigmoidal or monotone for example,

12



CHAPTER 1. INTRODUCTION

[Hor91] results facilitate the consideration of ReLU activations, which we do in most parts of

this report.

When it comes to the width required to achieve such approximation, [CSS16] proves that all

functions (up to a negligible set of them) that can be approximated by a deep (with more than

one layer) neural network of polynomial size require an exponential size in order to be approx-

imated by a one-layer neural network. This result obviously doesn’t contradict the universal

approximation result for one-layer neural networks, but shows that these simplistic networks

might not be best-fitted to approximate all functions efficiently. [Tel16] proves a similar result,

by showing that there exists neural networks of polynomial depth O(k3) and of width O(1) that

can’t be approximated by any network of linear depth O(k), unless their width grows expo-

nentially with k. This result is valid for a class of activation functions called “semi-algebraic

gates,” which includes ReLU activations and max-pooling activations (for CNNs).

To further study the impact of depth, [AGMR16, PLR+16, RPK+16] showed how the com-

plexity of the function computed by a deep neural network grows exponentially with the depth

of such a network. In particular, this provides a hint that sample complexity (the number of

training examples required to approximate the true function) should also grow very fast with

depth. We will however focus on one-layer neural networks, and avoid this exponential grow

(with depth) of the complexity of the class of networks considered.

[LPW+17] studied universal approximation results for width-bounded ReLU networks. They

show that these networks are also universal approximators (for a varying depth) as long as the

width of the networks is at least d+ 4 (with d the network’s input dimension). Also, it appears

that not all functions can be approximated by the same class of network with width equal to d.

A symmetric result (to the ones in [CSS16, Tel16]) shows that there exists classes of wide and

shallow networks that can’t be approximated by deep and narrow networks, as long as the depth

is no more than a polynomial bound. Experimentally, [LPW+17] finds that these networks can

however be approximated if depth is allowed to grow higher than this polynomial bound.

1.1.3 Algorithmic considerations

Studying the expressive power of neural networks is not enough to explain the empirical success

of deep learning. In fact, even if universal approximation theorems are available, one still

has to find, in practice, the actual network that is close to the observed data, which is an

algorithmic challenge. Although neural networks are successfully trained using simple gradient-

13



CHAPTER 1. INTRODUCTION

based methods (such as gradient descent or stochastic gradient descent), from a theoretical

perspective it is known that, in general, learning neural networks is hard in the worst-case.

[Sha16] establishes that even if the target function is “nice” (shallow ReLU networks for

example), there exist adversarially difficult input distributions to learn. There also exists “nice”

target function classes (of the form ψ(〈w, x〉) for example) that are difficult to learn even if the

input distribution is well-behaved. [SSSS17a] exhibits some of these target function classes for

which gradient-based methods fail, while [SSSS17b] argues that weight sharing is crucial for

successful optimization, presenting an interesting case for CNNs.

[ZLWJ17] studies the learnability of L1 bounded (where the weights for each layer have a

bounded L1 norm) neural networks, and shows that learning these network is polynomial in n

(the number of training examples) and d (the input dimension) but exponential in the error that

we want to achieve. This exponential dependence is shown to be avoidable in very simplistic

cases, for example when data-points are linearly separable.

Even for one-layer neural networks as considered here, it is argued in [AHW96] that the

number of local minima on the empirical loss function can grow exponentially with the dimen-

sion. However, this result doesn’t rule out the possibility that those local minima might achieve

a value very close to the one of the global minima.

Finally, NP-completeness of neural network training is shown to hold for 2− and 3−node

neural networks with a thresholding activation function (f(x) = 2 · 1〈w,x〉>0 − 1). The result

also holds for k hidden nodes, as long as k is bounded by some polynomial of the size of the

dataset, and the output is the product of the activations at every node.

Despite facing those theoretical difficulties, a large number of studies such as [SA14, KKSK11,

GKKT16, AGMR16, ZLWJ15, KS09, JSA15] have been trying to develop new algorithms able

to learn neural network with provable guarantees. However, none of these algorithms is similar

to a gradient-based method, the most widely used type of optimization in machine learning at

this point in time. Hence these papers don’t explain the apparent efficiency of gradient-based

methods to train neural networks.

1.1.4 Gradient-based methods on the population loss function

Even if the above-mentioned complexity results each have some specific assumptions that might

not apply to the case considered here, they hint at the fact that algorithmic questions are

interesting to consider. In fact, learning neural networks is proven to be hard theoretically, but

14



CHAPTER 1. INTRODUCTION

is successful in most cases in practice. Since the algorithms used in the real-world are gradient-

based, we choose to experimentally study the behavior of this type of algorithm, and how it

turns out to be successful at efficiently achieving a supposedly almost unachievable task. There

has been a lot of recent work on recovery guarantees with gradient-based methods, whether

based on the population or the empirical loss function.

Some progress has been achieved on these guarantees based on population loss function

(the expected risk, not the empirical risk). Among this work, many studies have focused on

CNNs, and how to learn convolutional filters. [DLT17a] showed that, for one-layer CNNs with

ReLU activation, when the labels in the dataset come from a teacher network of the same

type of architecture, the learner network can recover the wrong network (there exist spurious

local minima in the population loss function). However, it is argued that properly randomly

initialized gradient descent procedures still seem to recover the teacher network from which the

dataset was generated, and by restarting the procedure many times, the recovery probability

can be boosted to 1. This setup of recovering a teacher network is very similar to the one we

use in this report, albeit with some differences. [BG17] is very similar and reports a polynomial

rate of convergence for gradient descent procedures when the input distribution is Gaussian.

[DLT17b] reports the same kind of results, with fewer assumptions (in particular, the Gaussian

form of the input distribution is not needed) on the convergence of the Stochastic Gradient

Descent (SGD) procedure. Finally, [LY17] reports SGD convergence for one-layer ReLU neural

networks with identity mapping (adding the input X to the pre-activation output of the hidden

layer W>X) and for Gaussian input distributions.

1.1.5 Gradient-based methods on the empirical loss function

When using deep learning in practice, neural network training is largely based on the empirical

loss function, because there is obviously no access to the population one. Of course, as the

sample size grows, the former converges to the latter. Recent studies have been looking at

gradient-based methods to train neural networks, which employ empirical loss minimization.

While some of them apply to the case considered here, some of them don’t directly apply.

[ZSJ+17] provides conditions on the activation function (which are verified by the ReLU func-

tion) that lead to local strong convexity of the loss objective in the neighborhood of the true

parameters. For activation functions that are smooth (which is not the case for the ReLU func-

tion), a local linear convergence rate is proven, and the sample complexity and computational

15



CHAPTER 1. INTRODUCTION

complexity are shown to be linear in the input dimension d and logarithmic in the recovery

precision. Similarly, [FCL18] establishes that, if inputs are Gaussian, the empirical loss func-

tion is strongly convex and uniformly smooth in a local neighborhood of the true parameters.

Using the tensor method, gradient descent is initialized in this neighborhood and the conver-

gence rates are again shown to be linear. However, this analysis is only derived for the sigmoid

activation function, and does not apply to the ReLU activation function. [SJL17] studies a

similar problem in the over-parametrized regime (fewer observations than parameters), and de-

rives some interesting properties of the optimization landscape but with restrictive assumption

on the activation function (sometimes quadratic, sometimes differentiable). Within this set

of assumptions, a similar linear local convergence rate is established when gradient descent is

properly initialized.

Another set of studies looked at the case of deep linear networks, in which there is no

activation function. The formula defining the output of the network is then:

F (X) = Wk...W1X (1.2)

Fundamentally, minimizing a loss with this type of network is the same as doing a linear

regression to find the weight parameter W = Wk...W1. However, using gradient descent to

minimize the error is not equivalent to linear regression, since the training is done on all the

weights separately, whereas linear regression optimizes W directly. Understanding this case

might be helpful to understand the general case of activation functions other than identity.

[Sha18] claims that, for these networks, randomly initialized gradient descent procedures will

display a number of iterations growing exponentially with the depth of the network. Similarly,

[ACGH18] extends results found in [BHL18] and proves linear convergence rates of gradient-

descent procedures, but with some constraints on both the network (whose width has to be

larger than its input dimension) and the initialization procedure.

Some other studies actually apply to the ReLU activation function, which is more interesting

for the case studied here, and more widely used in practice. [Sol17] extends [SJL17] by studying

the same problem for the ReLU activation function in the over-parametrized case, and when the

weight vector is constrained to be in some closed set (which is supposed to be known using side

“oracle” information on the weights). The rates in terms of sample or computational complexity

are the same as in [ZSJ+17]. However, their gradient descent approach has a projection step on

16



CHAPTER 1. INTRODUCTION

this closed set, which depends on the true parameters, and is hence not doable in practice. That

makes the algorithm less useful in practice. [DZPS18] uses a less restrictive framework to analyze

convergence of gradient descent for ReLU networks. According to their study, no criterion on

gradient descent initialization is required (it is randomly done), and even the dataset doesn’t

need to come from a teacher network. The gradient descent procedure would converge, for any

dataset {(xi, yi)}i=1...n, even a dataset not generated from a network of a similar architecture,

which is surprising. One requirement, however, is that the network must be quite large, of

order Ω
(

n6

λ40δ
3

)
where n is the size of the dataset, λ0 the minimum eigenvalue of the stationary

limit of the matrix H(t) that determines the SGD optimization step at time t – i.e. dŷ(t)
dt =

H(t)(y(t)− ŷ(t)), where y is the target, and ŷ the prediction – and δ the recovery error. Based

on what is observed in practice, this result is not satisfactory because one can actually recover

a teacher network with a learner network of width much smaller than the bound derived here,

which means that the bound is very loose and thus not very useful. Finally, [ZYWG18b] extends

[FCL18] in the case of the ReLU activation function. A locally linear convergence rate is derived

when the initial position of the gradient descent procedure is close enough to the true parameter.

This initialization is done using, again, the tensor method, and the sample complexity is proven

to be of order d up to logarithmic factors, but of enormous order in terms of width (to the

ninth power), which is again not satisfactory empirically speaking. Most of these studies also

completely lack empirical verification of their theoretical study, or display empirical results that

are not very significant (not enough sampling, not enough experiments, etc.). To the best of our

knowledge, there haven’t been any extensive empirical studies on how easily gradient descent

recovers the true parameters of a teacher network, depending on the dimension and the width

of the networks. This is what we will focus on in the first part of the report.

1.1.6 Energy landscape of neural networks

Quite recently, nice results have been obtained on first-order optimization problems for solving

non-convex optimization programs efficiently. [JGN+17] introduces a modified form of gradient-

descent that can escape saddle-points at a minimal cost. At each step of the gradient-descent

procedure, noise (with a fine-tuned scale) is added to the current point, in order to move

away from it and hopefully escape the blocking situation in which the algorithm ended up.

Similarly, [GHJY15] analyzed the convergence of SGD on non-convex objective functions with

an exponential number of local minima and saddle points. Convergence (to a local minima

17



CHAPTER 1. INTRODUCTION

whose value is very close to the global minima) is shown to happen in a polynomial number of

iterations.

Following these results, a large portion of the research field started trying to understand

deep or shallow networks by giving characterizations of their energy landscapes, or equivalently

properties of the minima that are present in the loss functions at stake here. One of the earliest

work on the topic was done in [CHM+15] in 2015. The connection between the loss functions

seen in the training of deep fully-connected neural networks and the Hamiltonian of the spherical

spin-glass model were made clearer, however only under some extremely strong assumptions.

The first reformulation of the network, initially written as

f(X) = σ(W>Kσ(W>K−1...σ(W>1 X)))...), (1.3)

where σ is the activation function, was re-organized as a polynomial function of the weights of

the network, with an number of monomials equal to the number of paths from the input layer

to the output layer, and degree equal to the depth K:

f(X) =
d∑
i=1

γ∑
j=1

Xi,jAi,j

K∏
k=1

w
(k)
i,j , (1.4)

where d is the size of the input layer, γ the number of paths from one unit of the input layer

to the output layer, X a matrix of copies of the input vector, w(k) the weights in the kth

layer, and finally A a binary variable to index if a path (i, j) is active or not (i.e. if all of

the ReLU activations along the path are non-zero). Under strong assumptions such as the

independence between X and A, the authors were able to re-formulate this function as a spin-

glass Hamiltonian.

The key idea is that, once reformulated as a spin-glass model, previous studies like the ones

in [ABAC10, ABA13] that already analyzed the Hamiltonian of such systems can be used to

derive the properties of the landscape of the loss function. Based on the empirical observations

formulated by researchers in the late 1980s and early 1990s, according to which convergence

of small networks was very unstable, contrary to multi-layer networks whose convergence was

more stable (it still found local minima, but much closer to the global minima than for small

networks), a suggestion was made that, for multi-layer neural networks, local minima were

numerous and easy to find but also almost equivalent in performance on the test set to any

global optimum. Using past spin-glass studies, the authors were able to prove many interesting

18



CHAPTER 1. INTRODUCTION

facts:

• the energy landscape of large networks have many local minima that are roughly equivalent

to any global minima (have a similar loss).

• these local minima are likely to be heavily degenerate, with many eigenvalues of the

Hessian being close to 0.

• the probability of finding a local minimum with high test error increases as the network

becomes smaller.

Despite having very interesting conclusions, this study is challenging to use in practice be-

cause of its reliance on assumptions that are too strong and unrealistic, a limitation that was

acknowledged in the paper.

A few quick numerical experiments are enough to understand how difficult the task of

analyzing the energy landscape of neural networks is, even for one-layer networks. We looked

at the loss functions as well as the output of the network, as a function of the first two weights

in the hidden layer of a randomly selected neural network. We also looked at their dependency

on the first two coordinates of the input vector. We can either make all the weights vary at

the same time by sampling them for each step, or fix all weights except the first two, and make

those two vary randomly.

(a) first two input coordinates varying (b) all input coordinates varying

Figure 1.2: Prediction landscape vs. first two input coordinates for a random one-layer neural network.

The results are as expected. The output of the network is shown in Fig. 1.2, in which

we see that the network is indeed a convex function as a function of the first two coordinates

of the input, with the other ones fixed. However, as soon as other coordinates start varying

19



CHAPTER 1. INTRODUCTION

(a) first two weights varying (b) all weights varying

Figure 1.3: Empirical loss landscape vs. first two weights for a random one-layer neural network.

too, the correlation structure of the network (implied by the connection of the different input

coordinates with each other when aggregating the hidden-layer intermediary results to form

the final prediction) starts to kick-in and makes the function computed by the network highly

non-convex and non-concave. The same story goes for the loss (here, we used the quadratic

loss), as shown in Fig. 1.3. When restricting the loss as a function of the first two weights in

the hidden layer, it indeed becomes convex. That would make a case for training the network

only on two weights at a time. However, once more weights are added in the process, the

correlation between hidden units starts having an effect, and the loss becomes non-smooth. A

very simple idea would be to train the network two weights at a time in order to make sure

that each optimization process was convex. However, the end of this process would certainly

not yield the desired global optimum of the loss function, because this training process would

ignore the correlation structure that the networks imposes between the weights (the class of

networks trained this way would be clearly less expressive than the class of networks trained on

all weights simultaneously).

In [SS16], the quality of the optimization starting point is studied. Under certain conditions,

the training process benefits from a more favorable environment. These conditions include the

existence of a monotonically decreasing path from the starting point to a global minimum,

or having a high chance of initializing the process in an energy basin with a small minimum.

Such properties are shown to be more likely in over-specified networks (in terms of number of

parameters). However, these assumptions are extremely difficult to verify in practice, and hence

experimenting with these properties to gain insight is quite challenging.

[MMN18] takes an interesting approach to study the landscape of two-layer neural networks,

20



CHAPTER 1. INTRODUCTION

by focusing on the statistical physics aspect of the dynamics of the weights in the network during

training, when the number of units in the hidden-layer, denoted m, goes to infinity (“large-

width” networks). In this regime, called the mean-field regime, it is traditionally assumed that

we can replace the parameters of the network by a density ρ. It is also assumed that any averages

over the weights of the network can be replaced by the corresponding expectation under the

density ρ. This regime allows one to transform the function computed by the network, which

is re-written:

f̂(x; ρ) =

∫
σ∗(x; θ)ρ(dθ), (1.5)

where σ∗(x; θ) = σ(〈w, x〉 + b), with θ = (w, b). The authors focus on understanding the

convergence problem, or how the weights of the network move during training, as well as the

time (in terms of steps) it takes for the optimization algorithm (in this case, SGD) to converge.

Defining the objective function as the mean-squared loss, the loss function L can be re-written

in an infinite dimensional space, as a function of the density of the parameters, when the width

of the network goes to infinity:

L(ρ) = Cste +

∫
V (θ)ρ(dθ) +

∫
U(θ, θ′)ρ(dθ)ρ(dθ′), (1.6)

for some functions V and U . It is shown that instead of minimizing the risk with respect

to the parameters (θ1, ..., θm), it can be minimized in the space of distributions. Then, to

recover optimal parameters for the two-layer neural network, drawing independent values from

the optimal distribution ρ∗ (minimizing L) would be enough. The crucial aspect is that, since

U(·, ·) is positive semi-definite, it is easily obtained that L becomes convex in this mean-field

limit, which is key to understanding the energy landscape of the network.

In terms of convergence, it is shown that the distribution of the weights converges, when

the width of network grows, to a stationary distribution that is defined by some well-studied

PDE. This distribution is shown to verify an approximate regularization relationship with time,

where the regularization term is the L2-Wasserstein metric.

[MMN18] also shows that, roughly speaking, the energy landscape doesn’t change as the

width of the network grows, as long as the input dimension d stays small compared to it. Hence

if the above-mentioned PDE converges close to an optimum in time t, then this time might

depend on d, but not on m, which doesn’t appear in the PDE. Hence the out-of-sample loss

would be independent of m using a number of samples not growing as fast as m, although one

21



CHAPTER 1. INTRODUCTION

would usually assume that a bigger number of training examples would be required for bigger

networks. This is one of the effects we will study in this report. As [SS18] states, the neural

network converges, when m→∞, in probability, to a deterministic model, despite the fact that

it had been randomly initialized and trained on random sequence of data via SGD.

Other recent studies have focused on studying the behavior of simpler neural networks, for

which the activation of each neuron is simply the identity. Those networks are called “linear

neural networks.” Fundamentally, they target the same thing as a linear regression, but SGD

is used to train them. In a theoretical work, [Kaw16] proved that, for such deep linear neural

networks, and for any depth or width, the squared loss function is indeed, as expected, non-

convex and non-concave, but that every local minimum is also a global minimum. The only

problematic points are saddle points, and they exist only for networks with depth larger than 3.

[HM16] chose to take a more optimization-based point of view, by proving a stronger affirmation:

that the optimization landscape of such neural networks doesn’t have any “bad” critical points,

that is, points that pose a problem to traditional gradient-descent based methods. Several other

authors have worked on a similar problem, under more or less stringent assumptions, such as

[SC16], which proves that the training error of the network will be zero at any differentiable

local minimum.

[XLS17] answers the question of spurious local minima for one-layer ReLU networks (net-

works with a ReLU activation function), but under very strong conditions, while [NH17] con-

siders the case where the network is of a specific pyramidal shape, and when the number of

samples is at most the width of the network (which is not often the case in practice, depending

on the application). [YSJ17] chooses to take a two-step approach, first generalizing the work

done in [Kaw16] by categorizing global minima versus saddle points, and then obtains sufficient

but demanding conditions, similar to the ones derived in [HM16], for the absence of spurious

minima. In a similar fashion, [SJL17] chooses to study the case of shallow networks in the

over-parametrized regime (large-width networks), with quadratic activation functions. The op-

timization landscape is shown to have favorable characteristics that allow global optima to be

found efficiently using local search heuristics (some extension is also derived for differentiable

activation functions - which exclude the ReLU activation).

On the other hand, [SS17] proved that, even under all the conditions defined by the above-

mentioned papers, one-layer ReLU networks can still display spurious local minima for specific

network widths (i.e. small width). This fact, which is derived using computer assistance, is

22



CHAPTER 1. INTRODUCTION

linked to another observation: that the probability of hitting such a spurious local minimum

during the training procedure decreases if over-parametrization is introduced, contrary to what

one would intuitively think (the number of local minima should be dramatically high in the

case of over-parametrization, according to standard statistics). To address this issue, [GLM17]

proposes to modify the objective function (which was assumed to be the convex squared loss) for

such networks, and design one that doesn’t have spurious local minima, and that hence allows

gradient-based procedures to converge to a global minimum. However, sample size bounds

are quite loose, and some constraints are not easily enforced in practice, which makes it again

challenging to verify the results of those papers, and obtain even better bounds.

1.1.7 Neural networks robustness to noise

A variety of work in the literature has attempted to study the impact of noise on neural networks.

This impact can be two-fold: it can either be the impact of having noise as part of the training

dataset (which would therefore impact the training process of the network), or the impact of

adding noise into the inputs fed to the network after training. We focus on this second type of

noise in this report, and study how it changes the output of the network.

The well-known study presented in [SVS19] showed that a large portion of images in very

popular image datasets can be adversarially perturbed by only one pixel, so that usual computer-

vision methods (i.e. CNNs) would change their prediction to another class. However this

perturbation is image dependent, in the sense that a perturbation to an image is specifically

designed as the perturbation that will change the output the most, with a constraint on the

simplicity of the perturbation itself. Hence, these kind of perturbations would tend not to

happen very frequently in real-life applications where noise is mostly due to image or video

encoding, quality lowering or the precision of measuring instruments.

Some work has been done in order to try to understand why those perturbations have such

effects, and how to address it. [LLS+18] takes the approach of looking at paths of neurons that

are changed while processing an adversarial example. However those so-called “problematic-

datapaths” are ultimately extremely complex to obtain, and even more complex to understand

because of their size (such networks often contains millions of neurons). Instead, [ZSlG16]

designs a modified training algorithm that flattens the output of the neural network around

each one of the images, so that the output of the network doesn’t change if the image is

perturbed. This is done in the case of small input distortions that result from various types

23



CHAPTER 1. INTRODUCTION

of common image processing, such as compression, re-scaling, and cropping. However, it fails

to really explain the reason for the lack of robustness of neural networks, and also fails to

understand their robustness under different noise setups, such as global noise corruption of an

image. The method we introduce in this report, polynomial regression, will be shown to be more

robust than traditional deep learning methods, because of its simplicity. Moreover, because of

its simple form, explaining a posteriori the reason for a perturbation of the output will be much

easier.

1.1.8 Polynomial regression

The idea of approximating neural networks by polynomial regression, or more commonly either

tensor regression or kernel regression, has proven to be very popular recently. Methods using

tensor regression were initially developed by [JSA15], in the case where the data distribution

has a differentiable density to some order, which is not too constraining in practice, and is more

of a theoretical concern. For some of the results, it is also necessary for the network to have a

bounded width.

[GK17] uses a similar approximation of the network by polynomials, akin to the polynomial

regression used in [EGKZ20]. This approach is used to learn one-layer neural networks in

polynomial time and under some more general assumptions. It obtains a guarantee bound

similar to the one derived in [EGKZ20], for the specialized case of one-layer networks. However

these bounds on sample sizes needed to achieve good performance are often very loose, and only

useful conceptually, failing to explain in practice the low observed empirical sample complexities.

A fairly large part of the research community’s attention has been recently focused on the so-

called neural tangent kernel method, such as [JGH18], [ADH+19], or [LRZ19]. The motivation

was to understand the dynamics of algorithms of the gradient-descent type while trying to fit

neural networks, in the special case of infinitely wide networks, and initialized with Gaussian

distributions. In this case, the parameter space transforms to a function space that is analyzed

more easily. In particular, differential equations can be derived on the behavior of the network

during the training process, much like what was derived in [MMN18]. Those estimates are

similar to the ones obtained in [EGKZ20], with a theoretical sampling size of the form da

where d is the data dimension and a > 1. However, some constraints enforced in [LRZ19] are

unrealistic, such as the positivity of the first coefficients in the Taylor expansion of the network,

something that in practice does not hold for general neural networks.

24



CHAPTER 1. INTRODUCTION

1.2 Organization of the report

First, we design experiments to quantitatively measure the sample complexity of one-layer

neural networks, and how it depends on the various network parameters. Several experiments

are introduced, and different points of view are taken in order to minimize noise (coming from

the specific properties of each random network used in the experiment) in order to be able to

obtain statistically significant averages. We obtain interesting and unexpected dependencies of

the sample complexity as a function of the data dimension and width of the network (respectively

linear and logarithmic, which are both quite low order of magnitude).

Then, we introduce polynomial regression as a way to approximate neural networks. We

first show that this method is an equivalent of neural networks with polynomial activation,

before generalizing to other commonly used activation functions. We first test this method on

synthetic datasets in order to have a first idea of the tensor degree needed in order for the

method to have good performance. We also draw upon the conclusions of the neural network

sample complexity study, and confirm its results in practice with polynomial regression.

We test the method on real image datasets such as MNIST and Fashion-MNIST. An em-

phasis is made on scalability, and we design polynomial regression fitting algorithms that could

scale to larger datasets with more features. To this aim, we introduce batched linear regression

as a very promising way of balancing scalability and performance. We also carefully design

benchmarks in order to assess the performance of our method.

Polynomial regression allows us to retrospectively understand what neural network weights

converge to during their training process: exactly the polynomial regression weights. We demon-

strate this fact by defining “equivalent” tensor weights of the network and matching them to

the weights obtained by polynomial regression. This matching even allows us to retrospectively

find polynomial approximations of non-linear activation functions.

Finally, using the polynomial regression model trained with batched linear regression, we

study the advantages of using this method compared to usual deep learning based models. The

first advantage is the full interpretability of the method, and we show in practice how we should

interpret a model obtained through polynomial regression by visualizing tensor weights. The

second advantage that we present is the robustness of polynomial regression. We show that it is

not only more robust to the introduction of local and strong noise, but also to the introduction

of global and more weak noise, as compared to deep learning models.

25



THIS PAGE INTENTIONALLY LEFT BLANK

26



Chapter 2

Sample complexity of neural

networks

2.1 General setup

We place ourselves in the case of a teacher/student model where a teacher neural network is

used to generate a dataset and a student neural network is trained and tested on the generated

data, and tries to recover the parameters of the teacher network. The student network can

have the same architecture as the teacher network, or more generally a different one. We are

interested in how the quality of recovery (or the sample complexity) depend on the parameters

of the teacher network, such as its input dimension and its width.

In all the report, we consider one-layer networks (sometimes named “one-hidden-layer”

networks) of the form:

fmW (X) =
1√
m

m∑
j=1

max{(W>X)j , 0}, (2.1)

where m is the size of the hidden layer (a layer represented by the weights W ), and X ∈ Rd.

Figure 2.1: One-layer neural network architecture (from [ZYWG18a]).

27



CHAPTER 2. SAMPLE COMPLEXITY OF NEURAL NETWORKS

We define Fm = {fmW : Rd 7→ R, W ∈ Rd×m} the class of such networks.

These networks are initialized using W ∗ ∼ U
(
− 1√

d
, 1√

d

)
, the uniform distribution between

− 1√
d

and 1√
d

(called He initialization, introduced in [HZRS15]), so that the variance is stable

through forward propagation in the network.

The empirical loss function we use for model training throughout the report writes, for two

networks fmW ∗ ∈ Fm and fm
′

W ∈ Fm′ , and for a dataset of points {X1, ..., XN}:

L̂N (fmW ∗ , f
m′
W ) =

1

N

N∑
i=1

 1√
m

m∑
j=1

max{(W ∗>Xi)j , 0} −
1√
m′

m′∑
j=1

max{(W>Xi)j , 0}

2

, (2.2)

The loss used for evaluating the quality of a network output will simply be defined as 1
σ2 L̂N ,

where σ is the empirical standard deviation (where the randomness comes from X) of fmW ∗(X)

(in the following, the weights W ∗ will be fixed, so σ becomes a constant). Remark that, when

W is such that, for all i:

1√
m′

m′∑
j=1

max{(W>Xi)j , 0} =
1

N

N∑
i=1

 1√
m

m∑
j=1

max{(W ∗>Xi)j , 0}

 , (2.3)

meaning that the output of the student network is constant, then we have:

1

σ2
L̂N (fmW ∗ , f

m′
W ) = 1, (2.4)

by definition of the standard deviation of fmW ∗ , which is σ. This means that the loss is maximal

when the student network simply outputs a constant, which is a standard normalization. Hence

using this loss definition for our “quality of recovery” definition is simply appropriately re-scaling

the training loss function.

2.2 Experiments

For given values of N , m and d, we can simulate a random target network fmW ∗ , and use it

to generate two toy datasets of size N , with points {x1, ..., xN} ∼ N (0, Id) (the d-dimensional

standard normal distribution), and labels {y1, ..., yN} such that yi = fmW ∗(xi). These two

datasets will be the training and testing sets, generated by what we called earlier the teacher

network.

We check that the standard deviation of the labels does not depend on d, through this

28



CHAPTER 2. SAMPLE COMPLEXITY OF NEURAL NETWORKS

initialization. Indeed, we have:

V
[
(W>X)i

]
= V

 d∑
j=1

Wj,iXj

 =

d∑
j=1

V [Wj,i]V [Xj ] ∝
d∑
j=1

1

d
· 1 = 1, (2.5)

using the independence of X and W pre-training, and the unit-scaling of X. Similarly, the

standard deviations of the labels don’t depend on the width m:

V

 1√
m

m∑
j=1

max{(W>X)j , 0}

 ∝ 1

m

m∑
j=1

V
[
(W>X)j

]
∝ 1 (2.6)

Though not crucial in the analysis, it is always a good practice to keep a normalized scaling for

the output of the network.

For a given target network W ∗, we define for simplicity of notation L̂N (W ) = L̂N (fmW ∗ , f
m′
W ).

We will fix in the following m′ = m (the learner network has the same architecture as the teacher

network), hence we can drop the subscript. If we further define the labels (Yi)
N
i=1 as the forward

passes of the X’s through the target network, then we get:

L̂N (W ) =

N∑
i=1

Yi − 1

m

m∑
j=1

max{(W>Xi)j , 0}

2

. (2.7)

The loss of course implicitly depends on W ∗ through these labels.

Notice that the choice of evaluating the recovery performance using 1
σ2 L̂ is not innocent. In

fact, recall that, in the standard case of a model:

Y = f(X) + ε, (2.8)

then the coefficient of determination of the model, or R2, is given by, where Ŷ is our estimate

of Y and Ȳ the average value of Y :

1−R2 =

1
N

∑N
i=1

(
Yi − Ŷi

)2
1
N

∑N
i=1

(
Yi − Ȳ

)2 ∼ 1

σ2
· L̂ (2.9)

Hence our measure of error is similar to
(
1−R2

)
, and we can threshold it by a value between

0 and 1, depending on how precise we want the recovery to be. Note that if our estimate of the

true network is a constant equal to the expectation of this network, our loss measure will return

29



CHAPTER 2. SAMPLE COMPLEXITY OF NEURAL NETWORKS

a value of 1, which would give an R2 of 0 according to this formula. This is indeed what we

want, and what is usual in statistics: a linear model fitting only the mean of a dataset should

be assigned a performance of 0 out-of-sample.

2.3 Methods

We try to recover the target network fmW ∗ using a learning network f ∈ Fm (m′ = m), and to

experimentally recover the number of training examples needed to achieve a “small” loss. For

given values of N , d and m, our training algorithm runs as defined in Algorithm 1.

Algorithm 1 training procedure

Input: W ∗, N, d, m, B, η, E, T
Output: evaluations

evaluations← [·]
x1, ..., x2N

i.i.d.∼ N (0, Id)
train← {(x1, fW ∗(x1)), ..., (xN , fW ∗(xN ))}
test← {(xN+1, fW ∗(xN+1)), ..., (x2N , fW ∗(x2N ))}
for i = 1, ..., T do

Draw a random network fmW ∈ Fm
epoch← 0
while epoch < E do

Draw randomly
⌊
N
B

⌋
batches in train

for each batch do
W ←W − η∇W L̂batch(W )

end for
loss← 1

σ2 L̂test(W )
epoch← epoch + 1

end while
Append loss to evaluations

end for

Notice that we run stochastic gradient descent multiple times, namely T times, in order to

account for the fact that the final result of the gradient descent procedure could be very different

depending on its starting point. Algorithm 1 effectively runs multiple training procedures on

a random dataset generated by a teacher network W ∗. B corresponds to the batch size, η the

learning rate, E the number of epochs in the training process, T the number of SGD runs. In

the end, Algorithm 1 returns the final recovery losses for each of the training procedures, using

the re-scaled loss function (equivalent to statistical R2). Then, for given values of d and m, we

execute Algorithm 2 in order to find a sample complexity of learning.

P̂(·) represents the empirical probability of some event over an set of examples. Algorithm 2

then returns the lowest sample size for which we the probability of recovery of the true network

30



CHAPTER 2. SAMPLE COMPLEXITY OF NEURAL NETWORKS

Algorithm 2 sample complexity

Input: W ∗, d, m, B, η, E, L, T, precovery
Output: Nopt

N ← 1
while p̂ < precovery do

evaluations← training procedure(W ∗, N, d,m,B, η,E, T )
p̂← P̂ (evaluations < L)
N ← 2N

end while
Nopt ←

⌊
N
2

⌋
(defined by some threshold on the loss function) is higher than another threshold we fix on the

probability of recovery. Note that L in Algorithm 2 is a constant that determines if the student

network recovered or not the teacher network (when L → 0, we are more demanding in terms

of quality of recovery). In the following experiments, we denote by Nopt the sample complexity.

After careful analysis of the results provided by Algorithm 2, an improved algorithm (Algo-

rithm 4) is designed.

2.4 Results

2.4.1 Algorithmic setup

Defining the recovery of the teacher network Recovery has to be checked using the

functional form of the networks, and not directly their weights. Indeed, two networks could

represent exactly the same function but have very different weights, because of the many in-

variances that exist in this space of functions. For example, the ReLU activation is invariant

under positive scaling, meaning that:

∀a > 0,ReLU(ax) = aReLU(x) (2.10)

Using this fact, all the positive weights before a ReLU activation could be scaled up or

down by some positive number, and all the corresponding weights after the activation could

be symmetrically scaled up or down by the same factor, without changing the output of the

network for any input. Instead, using the R2 between the prediction and the true targets allows

us to know if the two networks are approximating the same function. On the in-sample dataset,

this does not mean that the two networks actually represent the same function, since many

non-equivalent networks could probably approximate the same function if they are expressive

31



CHAPTER 2. SAMPLE COMPLEXITY OF NEURAL NETWORKS

enough. However, checking the R2 between the prediction and the true targets on the out-of-

sample set allows us to know if those two functions are the same, which is the best we can do

to objectively decide if recovery of the teacher network happened or not.

Parameters For all the experiments, we used Algorithm 1 with full gradient descent, namely

B = N , a learning rate of η = 5× 10−3, a maximum number of epochs E = 300, and T = 100

iterations of gradient descent for every dataset.

For the sample complexity experiments, the threshold on the probability of recovery is fixed

to precovery = 0.5. The threshold on the quality of recovery is fixed to L = 0.95. Namely, a

student network is defined to be successful in the recovery of the teacher network if its out-

of-sample R2 is at least 95%. A set of different student networks is defined to have achieved

“global” recovery of a teacher network if at least half of them achieved it.

Because we study the dependence of the sample complexity on d and m, the scaling of the

parameters L and precovery in Algorithm 2 doesn’t matter much. It just re-scales the sample

complexity without changing its dependence on d or m (of course, if the level of recovery we

want to achieve increases, namely L decreases, the sample complexity will be higher). What

matters is that those parameters are the same for different values of d and m.

This set of values allows algorithms to scale much better when facing the noise of the

experiments. In particular, a value of precovery closer to 1 would make more sense, but our

experiments showed that the time scaling of Algorithm 2 was very bad in precovery. This is

explained by the fact that, even if the dataset is bigger than the required sample complexity,

some of the SGD training processes will still fail to recover the global optimum, simply because

this procedure is not guaranteed to converge on such non-convex objectives. Allowing a portion

of those training procedures to fail scales the algorithms on the order of hours instead of days.

2.4.2 Recovery precision

First, we use a slight modification of Algorithm 2 (Algorithm 3), which only looks at the quality

of the approximation of the teacher network by the student network, without defining the notion

of whether the student network was able to recover the teacher network or not.

Ê[1−evaluations] represents the empirical average of the out-of-sample R2 (obtained through

the re-scaled loss function) across all the training procedures. Instead of directly looking at the

sample complexity, which requires us to define some arbitrary criterion regarding whether the

32



CHAPTER 2. SAMPLE COMPLEXITY OF NEURAL NETWORKS

Algorithm 3 recovery r2

Input: W ∗, d, m, B, η, E, T
Output: R2

recovery

evaluations← training procedure(W ∗, N, d,m,B, η,E, T )
R2

recovery ← Ê[1− evaluations]

recovery of the target network happened or not (namely L in Algorithm 2), we instead consider

the average recovery quality, and see how this “recovery quality” behaves as a function of

network parameters. This enables us to examine the impact of the three main variables – the

input dimension d, the hidden dimension m, and the sample size N – on the difficulty of the

recovery task. By displaying the average recovery R2 as a function of these variables, for varying

values of a second variable of importance, we can clearly see how these three variables impact

the difficulty of the recovery task presented here. This provides insight as to how training neural

networks with SGD is impacted by the original complexity of the data. The dependence on the

input dimension is shown in Fig. 2.2.

(a) against N , m = 30 (b) against d, N = 200

Figure 2.2: Recovery R2 vs. input dimension, against network parameters.

On the left, we first check that, when the dimension is very small, a sample size of a few

hundreds is enough to recover (R2 ∼ 1) the target network, for different values of the hidden

dimension m. This is expected, since the recovery task would be very easy in this case. Then,

we observe that, on average, the recovery quality is better for lower m, which is also expected.

Indeed, for a fixed sample size, it is supposedly harder to recover a wider network than a thinner

one. However, note that this gap between the different curves seem to shrink as m increases,

which provides a hint that m would have a sub-linear impact on the difficulty of the recovery

33



CHAPTER 2. SAMPLE COMPLEXITY OF NEURAL NETWORKS

task. For a fixed hidden dimension, the recovery task becomes extremely hard if d becomes too

large, but is quite easy for small d, even for relatively small dataset sizes (N = 50 for example

is enough to have a good recovery quality for very low input dimensions). In both sub-figures,

we also observe that the recovery quality decreases at a close-to-linear rate as a function of the

input dimension d.

The dependence of the average recovery R2 on the hidden dimension m is shown in Fig. 2.3.

(a) against N , d = 30 (b) against d, N = 500

Figure 2.3: Recovery R2 vs. hidden dimension, against network parameters.

This time, the conclusions are quite different. Of course, the recovery task is still more

difficult for higher m and higher d. However, we also see that the gap between the different

curves (for different input dimensions d) does not seem to shrink as the input dimension grows.

Similarly, the decay of the recovery R2 as a function of the hidden dimension m seems to be sub-

linear, as we guessed with Fig. 2.2. For m large enough, the average recovery R2 stabilizes. We

also see that m almost doesn’t impact the recovery R2 above a certain threshold, for different

dataset sizes.

Finally, looking at the recovery quality as a function of the sample size shows how many

samples are needed to properly recover the target network, which gives a good idea of the

magnitude of the empirical sample complexity, as we will study below.

Those results are shown in Fig. 2.4. In both cases, the quality of the recovery of the target

network grows at a seemingly at least polynomial rate when growing the dataset size. Again, we

observe that the gap between the curves for different input dimensions is quite stable, whereas

this gap shrinks when growing the hidden dimension instead.

34



CHAPTER 2. SAMPLE COMPLEXITY OF NEURAL NETWORKS

(a) against m, d = 30 (b) against d, m = 30

Figure 2.4: Recovery R2 vs. sample size, against network parameters.

2.4.3 Sample complexity

When studying the dependence of the sample complexity on d, we fix m = 5. Similarly, when

studying the dependence of the sample complexity on m, we fix d = 5. This choice of relatively

small parameters is dictated by the computationally-heavy nature of those experiments, which

in general take on the order of tens of hours to run. This is due to the fact that the algorithms

presented above contain many nested loops, which are needed in order to eliminate the noise in

the experiments by as much as we can.

A first un-satisfactory approach

The dependence of the sample complexity on the input dimension obtained with Algorithm 2

is shown in Fig. 2.5.

Figure 2.5: Sample complexity vs. input dimension and best linear fits, without dichotomy.

35



CHAPTER 2. SAMPLE COMPLEXITY OF NEURAL NETWORKS

We also fit different parametrized models (polynomial, logarithmic-polynomial, and loga-

rithmic) on the curve obtained, and plot them in Fig. 2.5. Their forms with the corresponding

R2 are as follows: 
Nopt ∝ A · d1.1 R2 = 0.913

Nopt ∝ B · d0.7 log d R2 = 0.921

Nopt ∝ C · (log d)2.5 R2 = 0.901

(2.11)

The dependence on d is clearly positive, but the different parametrizations do not have a

perfectly satisfactory quality, as measured by their R2, or as seen on Fig. 2.5. One can see that

very different fits, such as O((log d)2.5) and O(d1.1), have similar scores, which in turn doesn’t

enable us to really establish the dependence of the sample complexity on the input dimension.

Because we can’t scale to very large input dimensions, we also lack a sufficient number of points

in order to eliminate the noise seen in Fig. 2.5, which seemingly makes sample complexity drop

sometimes, even when growing d (as seen on some points in the right part of the graph).

The dependence on m is even less clear, as shown in Fig. 2.6.

Figure 2.6: Sample complexity vs. hidden dimension and best linear fits, without dichotomy.

The corresponding parametrized fits are as follows:


Nopt ∝ A′ ·m−0.4 R2 = 0.114

Nopt ∝ B′ ·m−1.5(logm)3 R2 = 0.184

Nopt ∝ C ′ · (logm)−0.7 R2 = 0.068

(2.12)

With this approach, the fits can’t capture the effect of m, and it even seems that m doesn’t

quite have any impact on the sample complexity. The obtained points in blue are overall very

36



CHAPTER 2. SAMPLE COMPLEXITY OF NEURAL NETWORKS

noisy, and it is quite challenging to obtain any statistically significant relationship from this

result.

To understand why this might happen, instead of picking the smallest N for which the

recovery probability is higher than some threshold (a process which can be quite dependent on

the original target network, and hence noisy from experiment to experiment), we can also look

at, for different input or hidden dimensions, the dependence of the probability of recovery on

the sample size. Thresholding these graphs to some limiting recovery probability, above which

we decide that the target network has been successfully recovered, would allow to recover the

results displayed above. Looking at these dependencies produces results shown in Fig. 2.7.

(a) against d, m = 30 (b) against m, d = 30

Figure 2.7: Recovery probability vs. sample size, against network parameters.

Once again, noise prevents us to clearly establish the relationship between the sample com-

plexity and the network parameters. However, one can see that the probabilities of recovery

have very sharp transitions as a function of the dataset size. This is reassuring because it

means that if we choose recovery probability as a metric to determine sample complexity, then

we should be able to detect with good precision the real sample complexity (the smallest N

such that the jump in probability has happened). Also, choosing different thresholds precovery

shouldn’t have a big impact, because once again the transitions are quite sharp, both against d

and m.

37



CHAPTER 2. SAMPLE COMPLEXITY OF NEURAL NETWORKS

Computational issues and improvements

The sample complexity results obtained using Algorithm 2 are not very satisfying for multiple

reasons:

• The shapes of the sample complexity curves seem to be too noisy from experiment to

experiment (especially, hugely dependent on the target network used for each d or m).

• The empirical sample complexity curves display jumps of a factor 2, because the sample

complexity found using Algorithm 2 is multiplied or divided by 2.

• We are not able to fit a satisfying simple relationship between the empirical complexity,

and the input or hidden dimension.

Having to jump from N to 2N at each step in Algorithm 2 creates the second and third issues.

The second one is more problematic. It is due to the procedure introduced in Algorithm 2 that

creates an exponential spacing between the different possible sample complexities that we might

obtain. To remedy this problem, we design a variant of Algorithm 2, Algorithm 4.

Algorithm 4 sample complexity dichotomy

Input: W ∗, d,m,B, η,E, L, T, precovery, depth
Output: Nopt

Nhigh ← sample complexity(W ∗, d, m, B, η, E, L, T, precovery)

Nlow ←
⌊
Nlow
2

⌋
for i = 1, ...,depth do

N ←
⌊
Nlow+Nhigh

2

⌋
evaluations← training procedure(W ∗, N, d,m,B, η,E, L, T )
p̂← P̂ (evaluations < L)
if p̂ < precovery then
Nlow ← N

else
Nhigh ← N

end if
end for
Nopt ← Nhigh

This algorithm, after obtaining the final upper bound on the sample complexity, runs a

backwards dichotomy procedure to find a more precise estimation of the true sample complexity

between the original Nopt and
Nopt

2 . The dichotomy procedure is ran for some pre-specified depth

(here 4, which reduces the “jump” size in the empirical sample complexity by 24 = 16), to avoid

losing too much computational efficiency while still gaining much in terms of precision.

38



CHAPTER 2. SAMPLE COMPLEXITY OF NEURAL NETWORKS

Moreover, in order to reduce the noise in the experiments due to the choice of a particular

target network for each dimension d or hidden layer size m, we decide to run 10 independent

parallel computations, and average the empirical sample complexities found for each of the 10

target networks. For a fixed d or m, each of those computations operates on a different target

network, which averages out the noise in the empirical sample complexity found for each single

target network.

The results obtained using Algorithm 4 are much more satisfactory and can be seen in Fig.

2.8, for the dependence on m.

(a) various trials (different target networks) (b) median trial

Figure 2.8: Sample complexity trials vs. hidden dimension, with dichotomy.

The figure on the left shows the dependence of the sample complexity on log(m) across

the 10 different trials operating on different target networks. It is now clear that the previous

approach was suffering from running the experiment only once. Indeed, we see in the figure on

the left that the empirical sample complexity of the network is highly randomized around its

“true” value (because, for each curve, the target network is fixed and might have properties that

make it easier or more difficult to recover). For the same hidden dimension, empirical sample

complexities can extend or shrink by a factor at least 2, according to the experiments. In very

rare cases, it can even drop more than usual, because of the randomness in the choice of the

target network.

Taking the median of the empirical sample complexities across trials yields much cleaner

curves, as shown in the right plot of Fig. 2.8. We choose the median instead of the average

to be more robust to the many outliers that we observed in the left part of the figure, across

39



CHAPTER 2. SAMPLE COMPLEXITY OF NEURAL NETWORKS

different trials. It now becomes quite clear that there seems to be a logarithmic dependency of

the sample complexity on the width of the network. We verify this relationship by running a

linear regression of the empirical sample complexity on the averaged curve, versus the hidden

dimension. The best linear fit in logarithmic scale is shown in Fig. 2.9.

Figure 2.9: Sample complexity trials vs. hidden dimension, best logarithmic linear fit, with dichotomy.

The R2 score of this fit is 95%, which is highly satisfactory given the amount of noise that

we are facing when running these kind of experiments. This score is much higher than any score

of any fit that we obtained when using Algorithm 2. This model infers a dependency of the

sample complexity Nopt on the hidden dimension of the form:

Nopt ∼ A(d) log(m) (2.13)

Of course, the value of A(d) is itself dependent on the input dimension d, namely increasing

with it. The interesting thing is that we can find this dependency by running similar improved

experiments on the empirical sample complexity versus the input dimension, which is exactly

what we do in Fig. 2.10, the counterpart of Fig. 2.8, but against the input dimension d.

In this case, we see that the experiment noise seems to shrink between the 10 trials (10

different target networks), and outliers are less numerous. We also guess a linear dependency of

the sample complexity against the input dimension. By once again taking the median empirical

sample complexity across experiments, and finding the best linear fit, we obtain the right plot

in Fig. 2.10. This time, the best linear fit is of even higher quality, with a score of R2 = 99.8%.

Combining those two individual models, we get our final desired result on the dependence

of the sample complexity Nopt against the parameters of the network – the input dimension d

40



CHAPTER 2. SAMPLE COMPLEXITY OF NEURAL NETWORKS

(a) various trials (different target networks) (b) median trial and best linear fit

Figure 2.10: Sample complexity vs. input dimension, trials and best linear fit, with dichotomy.

and the hidden dimension m:

Nopt ∼ d · log(m) (2.14)

This result is quite remarkable, for different reasons:

• The dependence on d is linear, which goes against the existing belief that the sample

complexity should be a higher order polynomial of the data dimension.

• The logarithmic dependence on m can provide the start of an answer to a commonly

observed phenomenon in deep learning, namely that over-parametrizing neural networks

doesn’t hurt their performance. Our experiments show that, even when over-parametrizing

the network in width, the number of training examples needed to achieve good out-

of-sample performance grows very slowly with the width. Hence, one can extend the

network’s width exponentially while only having to grow the dataset size linearly.

• The overall dependence of the sample complexity on network parameters shows that neural

networks can in practice find very good local optima without having to be fed as many

data points as standard statistical knowledge would say.

Overall, we consider those empirical facts as a very strong hint towards understanding why

neural networks achieve very good performance even when over-parametrizing them by orders

of magnitude larger compared to the dataset sizes at hand.

41



THIS PAGE INTENTIONALLY LEFT BLANK

42



Chapter 3

Polynomial regression

3.1 General setup

We now introduce polynomial regression as a way to approximate neural networks while preserv-

ing their good performance, and adding interpretability of features and convergence guarantees

of the training process on top of this. Recall that a one-layer (of width m) neural network with

activation f writes (in the first chapter, we chose bi = 1√
m

constant):

Y =

m∑
i=1

bif([W>X]i) (3.1)

Now assume that f is polynomial of degree k, namely that there exists a0, ..., ak such that:

f(x) = a0 + a1x+ ...+ akx
k (3.2)

Then we can re-write the output of the network as:

Y =
m∑
i=1

bi

a0 + a1

 d∑
j=1

Wj,iXj

+ ...+ ak

 d∑
j=1

Wj,iXj

k
 (3.3)

This in turns re-writes as:

Y =

k∑
t=1

∑
α∈Nd∑d
i=1 αi=t

W̄ (t)
α1,...,αd

Xα1
1 ...Xαd

d (3.4)

43



CHAPTER 3. POLYNOMIAL REGRESSION

where W̄
(t)
α1,...,αd = at

∑m
i=1 biW

α1
1,i ...W

αd
d,i . In all the following, we call k the “tensor degree”. For

example, we have: 
W̄ (0) = a0

∑m
i=1 bi

W̄
(1)
j = a1

∑m
i=1 biWj,i

W̄
(2)
j,k = a2

∑m
i=1 biWj,iWk,i

(3.5)

where we slightly modify notation, by saying that:


W̄ (0) = W̄

(0)
0,...,0

W̄
(1)
j = W̄

(1)
0,...,1,...,0

W̄
(2)
j,k = W̄

(2)
0,...,1,...,1,...,0

(3.6)

where the ones are at the jth position for W̄ (1) and the jth and kth positions for W̄ (2).

This formulation leads to several interesting conclusions, that are at the core of the intro-

duction of polynomial regression:

• it shows that Y is a linear combination, with tensor weights W̄
(t)
α1,...,αd , of tensor products

Xα1
1 ...Xαd

d . Said otherwise, the neural network is itself a linear model in the lifted space

of tensor product features.

• this space of tensor products is, if the tensor degree k > 1, of much higher dimension than

the original data dimension d.

• in the space of tensor products, the neural network is a convex function, and it is even

linear. Hence, training on the tensor weights W̄ has the same convergence guarantees as

standard linear regression.

A polynomial regression model is trained using a standard least squares procedure, with the

equation Eq. 3.4, optimizing over the weights W̄ .

Now, we know that if the weights of the network W are initialized properly (namely, to

make sure that the order of magnitude of
∑d

j=1Wj,iXj stays O(1)), then the inputs [W>X]i

to the activation function will be O(1). Hence, under some regularity conditions on f , we can

approximate f by a polynomial of some degree over some compact set [−a, a], with a large

enough so that it contains all the inputs [W>X]i with high probability. In turn, we can expect

that the output of any such network (with the original activation function f) will be close

44



CHAPTER 3. POLYNOMIAL REGRESSION

in norm to the one obtained by the same network using the approximating polynomial of f .

Typically, if f is easily approximated by polynomials, we would hope that the output of those

two networks (the one with f , and the one with the polynomial approximation of f) become

very similar. Typically, ReLU activations are used nowadays in deep learning neural networks.

Approximating the ReLU function – over say [−3, 3] – by polynomials, should not be too difficult

of a task, and we hence hope that polynomial regression will be able to display similar good

performance as the one of non-linear multi-layer neural networks using the ReLU activation.

Of course, as the tensor degree grows towards infinity, polynomial regression should be able to

achieve perfect recovery of the initial teacher network, with some regularity conditions on the

activation function f of the teacher network. The main questions are:

• can we scale polynomial regression to high tensor degrees and large datasets?

• how large does the tensor degree k need to be in order to have good performance?

In the following, we focus on those two questions, and study the performance of polynomial

regression on synthetic and real data. We design algorithms that allow scalability and good

performance of the method at the same time.

3.2 Testing on synthetic data

3.2.1 Construction of the synthetic dataset

Our goal here is to take the point of view with which polynomial regression was designed.

Namely, that for polynomial neural networks (neural networks with an activation function that

is polynomial), unwrapping the function computed by the network provides the polynomial

regression formulation, which is a linear combination of tensor products. By definition, poly-

nomial regression can match perfectly the function produced by a polynomial neural network.

Here, we instead look into neural networks with more general activation functions, and see what

behavior polynomial regression exhibits in such cases.

Given a network activation function that can either be the sigmoid function f(x) = 1
1+e−x or

the ReLU function f(x) = max(x, 0), we draw random i.i.d. weights according to the Gaussian

distribution N (0, 1). For a given input dimension d and hidden dimension m, we draw dm of

those weights. We denote this d ×m matrix of weights W . As expected, xW will provide the

output of the hidden layer of the network before applying the activation function. Since we will

45



CHAPTER 3. POLYNOMIAL REGRESSION

use the polynomial regression method in the area of image recognition, we choose to make the

matrix W sparse such that, for each hidden unit in the hidden layer W , this unit only multiplies

at most s of the input vector coordinates (in a contiguous way). This makes the neural network

effectively operate like a CNN on the input data. Having chosen those various parameters, we

then draw N random Bernoulli variables of dimension d (and re-normalize them to {−1, 1}),

which will form the input dataset X. The targets of the synthetic dataset are obtained by

pushing X through the network using Eq. 3.1, with identical bi for all i = 1, ...,m.

This provides us with an (X,Y ) dataset generated by a neural network in a convolutional

way. Finally, we fit a polynomial regression model (by optimizing a standard least squares

objective) to this dataset, by choosing various degrees for the tensor products (namely 1, 2, 3

and 4). We vary d, m, N , and the activation function as well. With the limited resources of

a personal computer, we only experiment up to d ∼ 25 and s ∼ 16, for degree k = 4 tensor

products, for which the number of tensor products is already of order hundreds of thousands.

Experimenting on synthetic datasets allows to control the data dimension, which in turn makes

polynomial regression fully tractable for higher tensor degrees (compared to the degrees we can

use on real data).

3.2.2 Impact of d and m

We empirically recover the fact that for m large enough, the performance of polynomial regres-

sion does not depend (or depends very loosely) on m. We show in Fig. 3.1 the dependence of

the out-of-sample R2 against m, for d = 20, with a ReLU activation, and with a tensor degree

equal to 2. The number of samples is n = 2,000. Choosing the sigmoid activation or a higher

tensor degree does not change the fact that the curve does not vary with m, on average. Of

course there is a lot of noise involved in these experiments, since we have to re-generate the

dataset (because the teacher network is itself re-generated) for each value of m, which in turn

might yield easier-to-learn or more challenging datasets, depending on the random draw. The

sparsity parameter s is chosen as the minimum between d and 9.

Fig. 3.1 confirms the results of the previous section for which we found that the dependence

on m was very loose after a certain threshold. Similarly, when the input dimension d varies, the

performance shrinks linearly with d before hitting its minimum. These results are consistent

with the empirical findings of the previous chapter, with a linear drop of the out-of-sample

performance as a function of d.

46



CHAPTER 3. POLYNOMIAL REGRESSION

(a) vs. d, m = 20 (b) vs. m, d = 20

Figure 3.1: Performance of polynomial regression for synthetic datasets vs. network parameters.

3.2.3 Sample complexity

Now, we turn to the sample complexity measure, namely the dataset size for which the gener-

alization gap (the difference between the in-sample and out-of-sample R2) is small. Of course,

this gap depends on many of the parameters introduced here, like d or m, typically. However,

we can look at the ratio of the sample size to the number of polynomial regression features

(denoted p here) versus the in-sample/out-of-sample performance gap. In distribution, we see

in Fig. 3.2 that the accuracy gap presents an inflection point around N/p = O(1), which would

clue us into the fact that one would only need approximately as many training examples as

polynomial tensor products p. Even if this is for now a wild guess, we will see in the following

sections while doing experiments on real data that it actually holds in practice, and makes

polynomial regression more practical.

Figure 3.2: Generalization gap vs. ratio of dataset size to number of polynomial regression features.

47



CHAPTER 3. POLYNOMIAL REGRESSION

One thing worth noting is that, in the previous chapter, we empirically demonstrated that

the sample complexity grew linearly as a function of the dimension of the data. Here, since we

transform the data from a space of dimension d to a higher dimensional space by computing

tensor products, this linear dependency of the sample complexity on the dimension still holds,

but for the new data dimension in the space of tensorized feature products.

3.2.4 Approximating activation functions

To compare the difficulty of the recovery task in the case of a ReLU activation versus a sigmoid

activation function for the network generating the dataset, we look at the median out-of-sample

R2 per group of activation function (of the teacher network) and tensor degree. The results are

reported in Table 3.1

Activation Degree 2 Degree 3 Degree 4

ReLU 72.01% 72.1% 87.95%
Sigmoid 35.25% 78.4% 80.35%

Table 3.1: Median recovery R2 vs. activation function, for different tensor degrees.

It is immediate to see that each degree brings something different in terms of approximation

quality. Going to degree 2 for the tensor products in the polynomial regression is enough to

yield a good performance when fitting a dataset generated by a network with a ReLU activation,

while this degree is not sufficient in the case of a sigmoid activation. Going to degree 3 doesn’t

make much difference for the ReLU activation, but greatly improves the quality of recovery for

the sigmoid activation. This might be due to the properties of the ReLU function, which would

not have a third degree term in a polynomial approximation, whereas the sigmoid function

might have a greater need for this third degree term in its polynomial approximation. Going

to degree 4 improves again the quality of approximation in the case of ReLU, and not much in

the case of sigmoid, which confirms our intuition that odd degrees tend to improve more the

method for the sigmoid activation, while even degrees do the same for the ReLU approximation.

In the next sections, while experimenting on real data, we will see that polynomial regression

above tensor degree 2 is not yet tractable. Since most of the computer vision methods now use

ReLU activations in their deep neural networks, these results are promising because they show

that we might be able to use polynomial regression with a tensor degree as small as 2 and display

good performance on the tasks usually performed by deep CNNs with ReLU activations.

48



CHAPTER 3. POLYNOMIAL REGRESSION

3.3 Testing on real data – setup and benchmarks

3.3.1 Setup

We implemented our polynomial regression method on the MNIST [LeC98] and Fashion-MNIST

[XRV17] datasets, both of which are predominantly approached using neural networks and

serve as widely used testbeds for deep learning algorithms. Both datasets contains N = 60,000

training images, each consisting of 28 × 28 gray-scale pixels, that is, a dimension of d = 784.

We study both datasets as a classification task with 10 classes. Their corresponding test sets

contain 10,000 images. Because of the computational cost of polynomial regression, we are for

now limited to such datasets for which the number of pixels per image is not of order higher than

thousands. For MNIST, the 10 classes are the ten digits from 0 to 10, and an example image

is shown in Fig. 3.3. For Fashion-MNIST, the 10 classes represent different types of clothing,

namely: t-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag or ankle boot. It is

commonly accepted and seen in practice that the classification task on Fashion-MNIST is harder

than the one on MNIST, as shown below by the state-of-the-art accuracies on both datasets.

(a) MNIST (b) Fashion-MNIST

Figure 3.3: Example images from datasets used.

3.3.2 State-of-the-art models

During this study we will be using several benchmarks to compare the performance of our

polynomial regression method with that of existing models, either in the literature, or that

we create ourselves. To have a first idea of how the best-performing models in the literature

behave on those datasets, we can report the accuracy of some recent state-of-the-art models. On

MNIST, [WZZ+13] reports state-of-the-art out-of-sample accuracy, while for Fashion-MNIST,

[ZZK+17] does. We report those accuracy values in Table 3.2.

49



CHAPTER 3. POLYNOMIAL REGRESSION

Dataset Accuracy

MNIST 99.79%
Fashion-MNIST 96.35%

Table 3.2: Out-of-sample accuracy of state-of-the-art models.

Remark It is important to understand that those state-of-the-art models were obtained using

much more complex infrastructure and much longer computation time than any of the ones we

implemented. Typically, those models contain on order millions of parameters (compared to

roughly twenty thousand parameters for polynomial regression on MNIST and Fashion-MNIST,

as shown in the next sections), and are trained on highly optimized clusters of GPUs or TPUs

for computer-times of many days or months (the parallelization times the time spent on training

for each sub-process). We hence did not have at any point any hope of improving the state-of-

the-art models in terms of pure accuracy. We are rather aiming at introducing a new method

that displays several advantages that might be of very important use in applications where

accuracy is not the only thing that matters. For example, interpretability might be a critical

factor in medical or justice applications. One might even argue that some of the computer vision

applications, which we focus on here, should give more importance to interpretability, in order

to analyze a posteriori why a system chose an action that it chose to take. Other advantages,

which we will develop further below, include robustness, as well as more convergence guarantees

during the training process.

3.3.3 A deep learning inspired approach

In order to develop a more fair comparison between our polynomial regression method and

existing deep learning methods that are typically used on computer vision tasks, we designed

standard deep learning models of comparable size to the polynomial regression model presented

below, and also trained them for a similar computer-time.

We implemented a CNN model with 2 layers. Each layer is composed of a convolution, a

ReLU activation, and a batch normalization (a layer that learns the normalization of the data).

Then, there are two final fully connected layers that transform the data to dimension 10 for

prediction. The predicted class is then chosen according to the arg max of the output vector,

as is common practice. This is a standard architecture for document recognition, inspired from

the one of a widely used network for such tasks, namely LeNet-5 [LBBH98]. This network’s

50



CHAPTER 3. POLYNOMIAL REGRESSION

architecture is shown in Fig. 3.4.

Figure 3.4: LeNet5 architecture.

Our version is a very similar, and simplified version of this architecture. More precisely, the

architecture we use is as follows (the stride being the minimum filter movements):

• a convolutional filter of size 5 × 5, with 32 output channels, stride 1 and padding 2, a

ReLU activation and a max-pool operation of size 2× 2 and stride 2.

• a convolutional filter of size 5 × 5, with 64 output channels, stride 1 and padding 2, a

ReLU activation and a max-pool operation of size 2× 2 and stride 2.

• a dropout layer, a fully-connected layer with 1,000 outputs and a fully-connected layer

with 10 outputs (the final layer).

This architecture was trained for a similar amount of time (around 30 minutes) as our

polynomial regression model, using SGD for 10 epochs with batches of size 100. Making those

hyper-parameters vary didn’t change the accuracy much, and it is checked a posteriori that the

out-of-sample accuracy has been plateauing for many epochs at the end of the training process.

The out-of-sample accuracy during the training process against the number of batches seen

(each batch being of size 100) is shown on Fig. 3.5. By looking at the scale on the left of the

graphs, we see that the out-of-sample accuracy converged very quickly to its limit.

The final out-of-sample accuracies of the two models are shown in Table 3.3 (they differ

slightly from the last points on the graphs, because we only recorded the out-of-sample accuracy

during the training process once every 50 batches, not for every batch).

Those will be the points of comparison when measuring the quality of polynomial regres-

sion against deep learning models. Again, if we were able to run more large-scale polynomial

regression than what shown below, we would compare it to more complex networks trained for

longer. The point is that, for the networks trained here, the comparison is fair.

51



CHAPTER 3. POLYNOMIAL REGRESSION

(a) MNIST (b) Fashion-MNIST

Figure 3.5: Out-of-sample accuracy of the CNN model during the training process, zoomed.

Dataset Accuracy

MNIST 99.03%
Fashion-MNIST 90.80%

Table 3.3: Out-of-sample accuracy of CNN models after training.

3.3.4 A dimensionality reduction approach

Even if the size of the MNIST and Fashion-MNIST images is only 784 pixels, polynomial

regression remains intractable for tensor degrees of 2 or higher. An idea is then to first reduce

the dimensionality of such images before applying polynomial regression, while making sure to

preserve the information contained in each image.

Principal component analysis

Principal component analysis is a widely used statistical procedure that transforms a high-

dimensional dataset into a lower-dimensional one, by applying a transformation that converts

the set of possibly correlated features into a set of linearly uncorrelated variables (the principal

components). This transformation is such that the first component has the largest explained

variance in the data, and each succeeding component has in turn the highest possible explained

variance under the constraint that this new component is orthogonal to the other principal

components. By flattening the images into 784-dimensional vectors (hence losing the spatial

information in the images), we can apply this dimensionality reduction method easily. Then,

for reasonable PCA dimensions (the number of principal components), we apply polynomial

52



CHAPTER 3. POLYNOMIAL REGRESSION

regression with tensor degree equal to 2 (going to degree 3 is computationally challenging for

dimensions higher than roughly 30 on MNIST and Fashion-MNIST datasets, hence we do not

show it here). The polynomial regression model is fitted class-by-class, with the predicted class

being the arg max across dimensions of the 10 individual predictions, as usual.

We show in Fig. 3.6 the in-sample and out-of-sample accuracy of the polynomial regression

model applied on the PCA-transformed data, with a varying number of principal components

(up to 70, which creates a dimensionality of 4,900 for polynomial regression, without removing

the duplicate features, which is tractable on a personal computer), on both MNIST and Fashion-

MNIST. Of course, since the principal components contain less and less relevant information

about the data when their number is increased, the accuracy curve has a concave shape. We

could have pushed the number of principal components higher than 70, but only getting higher

accuracies is not the main desired goal of our approach.

(a) MNIST (b) Fashion-MNIST

Figure 3.6: In-sample and out-of-sample accuracy of the polynomial regression model vs. number of
principal components.

We see that the out-of-sample accuracy of the models starts to flatten when the number

of principal components increases above some threshold (of course, the in-sample one keeps

increasing). For MNIST, the out-of-sample accuracy flattens around 97%, while the one for

Fashion-MNIST flattens around 89%. This is on-par, though slightly lower, with the accuracies

obtained via the CNN models shown above. However, proceeding this way destroys the purpose

of polynomial regression before it can yield any of its advantages. Indeed, using the method on

the principal components of the data has several drawbacks:

• it doesn’t consider the spatial information of the data, which we know is paramount to

53



CHAPTER 3. POLYNOMIAL REGRESSION

understanding computer vision datasets.

• by transforming raw pixels into components, we lose the interpretability aspect of the

polynomial tensor method (it is only interpretable on the principal components, and not

on the raw images anymore).

• as shown in the following sections, by using the spatial component of the data, we can

dramatically reduce the complexity of the polynomial regression training procedure, and

hence use a higher number of principal components, as well as maybe a higher tensor

degree. This is not doable here.

One can check what the first principal components look like for each of the two datasets. We

show in Fig. 3.7 the first 9 PCA components for both datasets, as images (the most important

component being the one in the top left, and the 9th most important in the bottom right).

(a) MNIST (b) Fashion-MNIST

Figure 3.7: Most important PCA components.

As we can see, those components each behave as a mixture of the 10 different classes together,

such that it becomes difficult to interpret, for each individual image, how the encoding is done

in practice (one would have to consider a weighted linear sum of many more of those graphs to

understand the encoding of one image, which is a daunting task).

54



CHAPTER 3. POLYNOMIAL REGRESSION

Orthogonal basis encoding

Another way of encoding the data into a lower-dimensional space is to use compression al-

gorithms, such as Discrete Cosine Transform (DCT). In a very similar way as the Fourier

transform, DCT projects the data onto cosine functions of different frequencies, a set of func-

tions that are orthogonal to each other and form a basis. After encoding each image with

DCT, and obtaining a new vector (or equivalently an image) of size 784, we hope that this

new vector would exhibit some sparsity that would allow us to only consider a small subset of

those 784 coordinates (typically, we would consider the coefficients that have the highest mag-

nitudes, and would apply a thresholding function to obtain the sparse-encoded vectors from the

DCT-transformed vectors). Images and their encoding can be seen in Fig. 3.8.

(a) MNIST (b) Fashion-MNIST

Figure 3.8: Original image and DCT encoding.

Before applying any further processing to the DCT-encoded images, it can be seen that at

this point, sparsity was not changed much. A lot of the coefficients on the DCT-encoded images

are still non-zero. Empirically, thresholding those DCT coefficients such that only approximately

10% of them are not transformed to 0 gives good recovery results. We show in Fig. 3.9 the

DCT-compressed images after thresholding, and the decoded images using the final encoding

shown on the left. By comparing these to the original images, it can be seen that the recovery

quality is quite good even if we only keep a small subset of the DCT coefficients non-zero.

(a) MNIST (b) Fashion-MNIST

Figure 3.9: Thresholded DCT encoding and decoded image.

55



CHAPTER 3. POLYNOMIAL REGRESSION

This encoding transforms an image represented by 784 coefficients (Xi,j)i,j∈{1,...,28}, into

a vector of dimension roughly 80 (10% of 784), denoted (Xi,j)(i,j)∈SX
, with SX the set of

coordinates that were kept non-zero during the thresholding phase of the encoding.

The key thing is that, if all SX for different images X do not intersect for the most part,

then the classification algorithm won’t be able to use the encoding to produce relevant output.

We must indeed verify that the coordinates that are non-zero in the encoded images are similar

across different images, which is not always the case. Equivalently, we need to know that:

∣∣∣∣∣⋃
X

SX

∣∣∣∣∣� 784 (3.7)

This means that the sparse subset of coordinates is consistent across different images. We

can’t expect that this exact union of those sets will be of much smaller cardinality than 784.

Indeed, if one pixel is present in only one encoded image across all the dataset, this would

increase the left-side quantity by one, but wouldn’t impact very much the encoded data. Instead,

we mostly want to approximate the above relation, by checking that the number of pixels that

appear (are non-zero) in a relevant number of encoded images, is of small cardinality. We

can design a proxy to check this. For each images X and each pixel (i, j), we check whether

(i, j) ∈ SX . By doing this for every image X and every pixel (i, j), we can compute the average

number of times that (i, j) is in SX , namely 1
N

∑
X 1(i,j)∈SX

, N being the cardinality of the

dataset. This allows us to obtain a mapping that shows which pixels are very often non-zero

(white pixels) compared to other pixels which might not be non-zero often in encoded images

(black pixels). Those mappings are shown in Fig. 3.10 for MNIST and Fashion-MNIST.

To avoid being too conservative, we then proceed to measure the proportion of coordinates

that appear in at least p = 5% of the encoded images (taking p = 0% would be to check exactly

the condition shown in Eq. 3.7). Those proportions (called encoding factors – that is by how

much we can shrink the image dimensions) are shown in Table 3.4.

Dataset Encoding factor

MNIST 37.3%
Fashion-MNIST 45.6%

Table 3.4: Encoding shrinkage factor of DCT.

The sizes of the compressed images are respectively 293 for MNIST and 358 for Fashion-

56



CHAPTER 3. POLYNOMIAL REGRESSION

(a) MNIST (b) Fashion-MNIST

Figure 3.10: Probability that each pixel appears in the DCT-encoded and thresholded version of an
image, across the dataset.

MNIST. These sorts of dimensions would lead to tens of thousands of features for polynomial

regression of tensor degree 2, and we are not really able to enjoy the benefits of the data

compression, because the its encoding rate is too low. Had it been closer to 5% or 10%, we

would have been able to leverage this encoding by using third degree tensors and hope to

improve the model accuracy, while keeping the method tractable. With these rates, we would

need to keep only degree 2 tensors. At the same time, we would lose some information through

the encoding, and kill the interpretability of the method. Hence, we choose another approach

(presented below) to fit polynomial regression on the uncompressed images.

3.4 Fitting polynomial regression

3.4.1 Challenges and scalability of the method

A main issue of the implementation of polynomial regression is its scalability to larger datasets.

Indeed, considering all tensor products up to degree k generally leads to around

p = d+

(
d

2

)
+ ...+

(
d

k

)
∼ dk

k!
(3.8)

tensor features, with d the data dimension, and for k � d. The dependence in the tensor degree

is polynomial, and for large d this becomes worrying as soon as k becomes 2 or 3, both in terms

of scalability of the methods and number of examples needed in the datasets to achieve good

generalization of the models.

57



CHAPTER 3. POLYNOMIAL REGRESSION

Moreover, recall that standard linear regression computes the optimal coefficients as:

β =
(
XTX

)−1
XTY (3.9)

where X ∈ Rn×p is the data and Y ∈ Rn×K are the (maybe multi-dimensional) labels, with

K the number of classes. Multiplying two matrices A ∈ Ra×b and B ∈ Rb×c requires O(abc)

operations. Inverting a matrix of size n with standard solvers generally requires O(n2.4) for the

best solvers. Hence, for n examples of dimension p, linear regression is solved with a complexity

of:

O
(
np2 + p2.4 + min{np2 + npK, npK + p2K}

)
(3.10)

Typically, K � n, p, hence the complexity becomes approximately:

O
(
np2 + p2.4

)
(3.11)

Overall, solving polynomial regression hence has a time complexity of:

O

(
n

[
dk

k!

]2
+

[
dk

k!

]2.4)
(3.12)

where d is the original data dimension (784 in our case), and k the tensor degree. Memory is

also an issue, because the X matrix is very large (because of the high number of tensor features).

This makes polynomial regression difficult to fit perfectly in practice, and is why we resort in

the following parts to designing scalable heuristics that allow us to find a good quality solution

that generalizes well on the out-of-sample data.

3.4.2 Setup

Clearly, given the number of features in those datasets, we can’t, for now, scale to degree 3 tensor

products. We are then restricted to using at most degree 2 only tensor products. Moreover,

considering all degree 2 tensor products still creates way too many features (307,720) compared

to the size of the dataset, and also makes it challenging to fit the model.

Hence, we resort to a “convolutional” version of the regression, in a similar fashion to what

is done with CNNs in deep learning. More specifically, among all degree 2 products of the

form XiXj where i, j ∈ {1, ..., 28}2, we only consider those for which the two pixels i and j can

be covered simultaneously by a square filter of size 3 × 3. Otherwise said, we restrict the L1

58



CHAPTER 3. POLYNOMIAL REGRESSION

distance between i and j to be smaller or equal to 4 (which happens if the two pixels are covered

by opposite angles of the filter). This step drops the number of features to 18,740 (including

degree 1 “products”).

Our target function hence becomes:

min
β

∥∥∥∥∥∥∥∥Y − β0 −
∑
i

βiXi −
∑
i,j

L1(i,j)≤4

βi,jXiXj

∥∥∥∥∥∥∥∥
2

2

(3.13)

where we slightly tweak notation once again, and where i, j are 2-dimensional vectors with

each coordinate in {1, ..., 28} (i and j are pixel coordinates). In the following, we include the

intercept as part of the Xβ term by introducing a constant column in X.

Our prediction model is constructed by stacking 10 different polynomial regression models,

one per class, according to Eq. 3.13. In particular, the choice of coefficients of for each class is

made independently. The regression model then outputs, for any test data, a Ŷ ∈ R10 where Ŷi

is the predicted value for the class corresponding to index i. Finally, we predict the final class

based on the rule arg max16i610 Ŷi, namely the class that has the highest polynomial regression

output.

3.4.3 Introduction of batched linear regression as a scalable fitting method

In the regression problem minβ ‖Y −Xβ‖22, we are generally unable for polynomial regression

to compute in a scalable way the optimal solution β∗ =
(
XTX

)−1
XTY over the whole dataset.

As seen in the following section, we are luckily still able to find this exact solution in the case

of MNIST and Fashion-MNIST, but this would not be doable for larger and more complex

datasets, hence we need to introduce another method.

We now introduce batched linear regression as a way to scale this process. Call B a batch

size, and NB a number of batches. We denote by Xi
B a random subset of rows of X of size

B, where i denotes the numbering of the draws (we will draw randomly multiple times). We

similarly define Y i
B. In the following, each i = 1, ..., NB corresponds to a different random

sample of those rows. Now define βi to be the least-squares solution over the dataset restricted

to these rows, namely:

βi = arg min
β

∥∥Y i
B −Xi

Bβ
∥∥2
2

(3.14)

This βi is hence obtained from a subset of examples present in the dataset. As long as βi has an

59



CHAPTER 3. POLYNOMIAL REGRESSION

out-of-sample performance higher than that of a random model, then every individual model

should be useful, and hopefully encode different (or at least not linearly dependent) information

about the data. We run this process NB times, and then build the final polynomial regression

model denoted by β̂ as an average of those models:

β̂ =
1

NB

NB∑
i=1

βi (3.15)

Otherwise said, our strategy is to make each of the (sub-)linear regressions run on the sub-

sampled dataset tractable both in time and in memory, hoping that each “imperfect” (and

noisy) βi will contain relevant out-of-sample information. In the end, by averaging all those

noisy linear regressions, we are hoping to make use of the power of averaging to cancel out the

noise and obtain a satisfactory final model β̂ without much noise in it. Of course, if B is chosen

to be too small, each βi will be pure noise and the final β̂ will be close to 0. However, we observe

that, contrary to expectations, relatively small values of B (much smaller than the number of

tensor features) and NB can lead to very good performances. Note that this method is very

similar to methods using bootstrap aggregation (bagging), which typically train sub-models

on part of a dataset, and reconciliate the sub-models at the end of the training process (by

averaging them, or with another heuristic, such as voting in the case of random forests).

The results of the aforementioned heuristic batch training process for MNIST and Fashion-

MNIST datasets are reported in Figure 3.11. We have chosen NB = 60 and B = 2,000. Since

the datasets are of size 60,000, this will make us cover between once and twice the whole

dataset on average through all the (sub-)linear regressions. The rationale behind this choice is

to ensure that the maximal number B × NB of samples we have used throughout the process

is comparable with the size of the whole dataset (in practice, the effective number of samples

seen will be lower than B × NB). The accuracy we plot is evaluated on a random sample of

size 2,000 of the out-of-sample set (representing 20% of the out-of-sample dataset), for speed

purposes. The blue curve corresponds to the out-of-sample accuracy of each individual model

βi, for different i (fitted on different batches b of data). Now, for the orange curve, let us define:

β̂avgb =
1

b

b∑
i=1

βi (3.16)

such that β̂ = β̂avgNB
. The orange curve corresponds to the out-of-sample accuracy of β̂avgb , as a

60



CHAPTER 3. POLYNOMIAL REGRESSION

function of b. When b increases, this partial model β̂avgb tends towards the final model β̂.

(a) MNIST (b) Fashion-MNIST

Figure 3.11: Out-of-sample accuracy of individual and cumulative batched linear regression models.

We see in Fig. 3.11 that, even though each sub-linear regression is trained on a very small

subset (of 2,000 examples, and 18,740 features), each individual model βi is still able to achieve

a good out-of-sample accuracy: around 90% for MNIST and around 74% for Fashion-MNIST.

It is in averaging across the different βi that the power of this method lies. The out-of-sample

accuracy of the cumulative model, as shown by the orange curve, is able to climb very quickly

to much higher heights than any individual model.

Something very interesting happens when looking at in-sample versus out-of-sample accu-

racy. We show in Fig. 3.12 the in-sample and out-of-sample accuracies of the partial cumulative

model β̂avgb as a function of b.

(a) MNIST (b) Fashion-MNIST

Figure 3.12: In-sample and out-of-sample accuracy of the cumulative batched linear regression model.

61



CHAPTER 3. POLYNOMIAL REGRESSION

When averaging only a few models together (low b), we indeed have over-fitting, in the

sense that the in-sample accuracy is very close to 100% and the out-of-sample accuracy is much

lower. This is expected because each individual linear regression represented by βi is fitted

on a set of 2,000 samples, and 18,740 features, which can probably be perfectly interpolated

by such a model. But after averaging enough βi’s together, the in-sample accuracy starts to

drop while the out-of-sample accuracy starts to catch up to it. The batched linear regression

method is fundamentally in the class of methods that leverage boostrap aggregating (bagging)

to produce their output. We conjecture that the effect observed in Fig. 3.12 is typical of such

bagging-type models. At the end of the training process, the generalization gaps (difference

between in-sample and out-of-sample accuracy) are very low: about 0.5% for MNIST and 2%

for Fashion-MNIST. As we will see in the next section when implementing “standard” linear

regression, an exact method leads to much higher generalization gap (of about 3% for MNIST

and 6.5% for Fashion-MNIST, see Table 3.6).

This shows another advantage of our method, namely that we can be very confident that it

will have very good generalization out-of-sample. An interesting and surprising fact is that the

highest out-of-sample accuracy is achieved whenever the in-sample accuracy is the lowest!

3.4.4 Comparison to benchmarks

The final out-of-sample accuracies of the two models (on each dataset), trained with batched

linear regression, on the whole out-of-sample datasets are reported in Table 3.5. We also report

in this table the accuracies obtained using our previously introduced CNN architecture, as well

as the accuracies of the state-of-the-art models.

Dataset Poly. reg. Conv. Net. State-of-the-art

MNIST 96.51% 99.03% 99.79%
Fashion-MNIST 87.32% 90.80% 96.35%

Table 3.5: Out-of-sample accuracy comparison between methods.

Despite having an accuracy lower than that of state-of-the-art models, which was of course

expected (because those models have many more parameters and are trained using orders of

magnitude higher computer times), our method is comparable with sophisticated deep network

architectures while being conceptually much more simple. In areas where interpretability and

convergence guarantees during training matters more than getting 2 or 3% more accuracy,

62



CHAPTER 3. POLYNOMIAL REGRESSION

polynomial regression is to be considered as a viable alternative to deep learning methods.

3.4.5 Comparison to exact methods when tractable

In the case of datasets such as MNIST and Fashion-MNIST, for which the number of samples is

60,000 and the dimension of samples is 784, we were able, using powerful clusters, to fully scale

the method to be able to fit the linear regression objective without using the batched version

presented in the last section (which is able to run on much smaller infrastructures).

This procedure being both memory and time intensive for the specifications of these datasets,

we resorted to using clusters of machines with high-memory allowance, in order to be able to

compute the optimal linear regression weights. The fitting procedure takes of order hours and

uses tens of gigabytes of memory, which is not supported on standard personal computers.

In any case, this “exact” procedure should probably not be sought after too much, because

it becomes non-scalable on more complex datasets, for which the number of features would

be more typically of order thousands, and for which the tensor degree and filter size required

would be higher (creating in the end hundreds of thousands, if not millions, of polynomial

regression features). Moreover, for those more complex datasets, a huge number of samples

would be required to be able to obtain a satisfactory fit with some confidence on the out-

of-sample performance (typically a number of samples of order at least the number of tensor

features).

The “exact” linear regression surprisingly produces very similar results compared to the

batched linear regression presented above. The in-sample and out-of-sample accuracies on both

datasets are shown in Table 3.6.

Dataset In-sample Out-of-sample

MNIST 98.66% 95.81%
Fashion-MNIST 94.39% 87.88%

Table 3.6: Performance of polynomial regression with “exact” linear regression fit.

Out-of-sample, the linear regression fit displays very similar accuracy to the batched lin-

ear regression fit. Standard linear regression performs slightly better on Fashion-MNIST and

slightly worse on MNIST, but overall the accuracies are very similar. However, raw coefficients

of the two methods are very different, especially in terms of scale. Let us define the L1 and L2

(which is the usual standard deviation) scaling functions as follow, where N is the dimension

63



CHAPTER 3. POLYNOMIAL REGRESSION

of x:

L1(x) =
1

N

∑
i

|xi −median(x)| (3.17)

L2(x) =

√
1

N

∑
i

(xi −mean(x))2 (3.18)

Applying those two measures on the vectors of linear regression coefficients (grouped together

across all classes) reveals the order of magnitude of those coefficients (giving more or less weight,

with L2 or L1 respectively, to extreme coefficients). The results are displayed in Table 3.7.

Dataset Batched regression L1 L2

MNIST No 1.9× 109 1.6× 1010

MNIST Yes 5.7× 10−3 9.6× 10−3

Fashion-MNIST No 1.4× 107 6.9× 107

Fashion-MNIST Yes 8.4× 10−3 1.3× 10−2

Table 3.7: Magnitude of model coefficients for linear regression and batched linear regression.

The difference in the magnitude of the coefficients for the two methods (batched or standard

linear regression) is enormous, of order 1012 for MNIST and 109 for Fashion-MNIST. What

happens is that, on the edges of the images, pixels are black most of the time, with a value of 0.

Hence, having very large coefficients on the edges won’t impact the accuracy on most images.

Those coefficients are basically determined using the very few samples that don’t have only

black pixels in those extreme locations. On every single iteration of batched linear regression,

the same thing happens. However, because the coefficients are averaged over many batches,

this has the effect of shrinking down the magnitude of the coefficients on the edges.

This difference in the coefficients’ magnitude is worth mentioning, because it shows that

the standard linear regression method will be much less robust to the introduction of global

noise (see 3.6.2). Indeed, a very small perturbation in the digits of the image will produce an

very large change in the output of the model, leading to very poor performances under even

very small amounts of noise. That is one of the reasons why we decided to move forward with

the model fitted using our batched linear regression process. The batched linear regression

algorithm is much more scalable, and can be applied on problems involving much larger and

more complex datasets.

64



CHAPTER 3. POLYNOMIAL REGRESSION

3.5 Understanding gradient descent behavior

In fully-tractable cases (i.e. when the dimension of the data d is low), polynomial regression

allows us to obtain a good approximation of the functions computed by neural networks with

ReLU activation. In the case where the neural network has a polynomial activation, we even

showed that the approximation could be equality, by construction of the polynomial regression

method.

For a neural network defined by W , as defined in Eq. 3.1, we once again define the “equiv-

alent” tensor weights as the ones defined in Eq. 3.4. This allows us to transform the neural

network weights W into tensor weights W̄ , as long as we have an polynomial approximation

(a0, ..., ak) of the activation function of the neural network. In the following, we will adopt the

same notations as above, and tensor weights of degree l will be denoted W̄
(d)
a1,...,al .

Being able to fit a linear model through polynomial regression grants more convergence

guarantees during training than fitting a non-convex function with heuristic procedures such as

SGD, which a widely used standard in the deep learning community. The problem of finding

what neural network weights converge to during this training process has proven to be a daunting

task, as mentioned in the section on previous work. Indeed, analyzing the dynamics of such

non-convex, non-linear, and random processes is not an easy task. However, in tractable cases,

we know that polynomial regression will converge to the global optimum, provided that the

number of samples is high enough (which is a very typical constraint for linear regression).

In this section, we adopt a reverse point of view in which we generate a random dataset using

a non-linear ReLU-activated neural network, and fit this dataset using polynomial regression.

We also train another neural network with ReLU activation on this dataset (this network should

be able – in theory – to perfectly recover the teacher network). Then, we compare the weights

obtained by the polynomial regression model to the equivalent tensor weights of the weights

in the trained student neural network. We are hoping to show that, for synthetic datasets,

the neural network weights correspond to nothing else but the optimal tensor weights obtained

through polynomial regression.

The synthetic datasets that we generate are created with a neural network with independent

normally distributed weights with standard deviation 1/
√
d (where d is the data dimension),

and bi = 1 for all i, to produce an output as defined in Eq. 3.1. The data X is generated

according to a standard normal distribution, with independent components. It is then passed

65



CHAPTER 3. POLYNOMIAL REGRESSION

through the random network to produce targets Y . This process is run twice to produce an

in-sample dataset and an out-of-sample dataset.

The final polynomial regression model is obtained by solving to optimum the standard least

squares objective, and we make sure that the sample size is high enough to obtain a unique

solution. The training process of the neural network is run using SGD (similarly to Algorithm

1, with T = 1), with a batch size of 100.

The dimension of the data generated is chosen as d = 20, and the neural networks have

a hidden layer of size m = 100. Choosing different architectures for the dataset-generating

network and for the student network doesn’t change the conclusion of this section.

Matching weights with a polynomial ReLU approximation prior

In order to be able to define equivalent tensor weights of the weights of the trained neural

network, we need to know a polynomial approximation of the ReLU function, which is the

activation function of the trained neural network. In order to obtain this approximation, recall

that because of the normalization of the weights, the following fact holds:

[W>X]i = O(1) (3.19)

Because the activation function is applied to this exact quantity, we can restrict our search of an

approximation of the ReLU function to the compact set [−3, 3] (because W and X are standard

normal, most values of [W>X]i will fall in this range).

We choose to use degree 3 tensors, because it is tractable in this low-dimensional data

setting. We then run a brute force (i.e. grid search) procedure over all polynomials of the form:

a0 + a1x+ a2x
2 + a3x

3 (3.20)

with bounded coefficients |ai| ≤ 3. These coefficients are discretized on the [−3, 3]4 grid with

150 steps per dimension.

We then take the approximation (i.e. the set of polynomial coefficients) that leads to the

best (smallest) weighted L2 or L∞ distance between the ReLU function and the polynomial

approximation. The weights in the distance function are defined as the values of the PDF of

the normal distribution over the chosen interval of approximation, [−3, 3]. This means that we

give more weight to our approximation in the center of the interval, because most of the outputs

66



CHAPTER 3. POLYNOMIAL REGRESSION

[W>X]i will be in this area ([W>X]i follows the standard normal distribution N (0, 1), because

of the scaling of W and the independence of W and X). We repeat this loop twice, using a

tighter grid centered around the set of optimal polynomial coefficients found in the previous

step, when running a new loop. The two approximations we obtain are shown in Fig. 3.13.

Figure 3.13: Polynomial approximation of ReLU activation.

Because of the weighting, the approximations are indeed more precise around the center of

the interval. We also observe that the two approximations both have a positive bias around the

edges of the interval. The coefficients of the two polynomial approximations PL2 and PL∞ are:

PL2(x) = 0.188 + 0.5x+ 0.21x2 + 1.39× 10−17 · x3 (3.21)

for the L2 distance approximation, and:

PL∞(x) = 0.096 + 0.5x+ 0.3x2 − 2.77× 10−17 · x3 (3.22)

for the L∞ distance approximation. We see that the degree 3 coefficient is very small. This

makes sense considering the dependence of the median recovery R2 on the tensor degree, as we

showed in Table 3.1. Going from tensor degree 2 to tensor degree 3 in polynomial regression

did not bring much value when working with ReLU activation. That means the weights corre-

sponding to degree 3 tensors in the polynomial regression must have been very small. Since, as

shown in the definition of tensor weights W̄ (3), a3 appears in front of all of them, that means

a3 must be small, which is what we find to be the case, using this brute force approach.

Here, with dimension d = 20 and degree 3 tensors, the number of features is 1,770. We

generate N = 50,000 examples in the training set, to make sure that our polynomial regression

model uses a number of samples higher than the sample complexity (which is usually equal to

67



CHAPTER 3. POLYNOMIAL REGRESSION

the number of features in case of independence of the features, but which is here much higher

given the high level of interactions between tensor features).

In this setup, our polynomial regression model achieves (on the dataset generated by the

teacher network) an R2 of 97.9% in-sample and of 97.5% out-of-sample. The training process

of the student network is ran until convergence (20 epochs). The student network achieves an

in-sample R2 of 96.8% and out-of-sample R2 of 96.7%. The lower performance of the student

network (which can theoretically reach a perfect R2 of 100% since both it has the same archi-

tecture as the teacher network) might be due to non-convexity of the objective function, which

makes attaining the global optimum more difficult (contrary to polynomial regression which can

reach it easily), a problem often encountered when using deep learning methods.

We plot in Fig. 3.14 the output of the student neural network (Y network) against the output

of the polynomial regression model (Y polyreg), in-sample and out-of-sample.

Figure 3.14: In-sample and out-of-sample comparison of student network and polynomial regression
output.

They are very correlated, since both models are trained on the same dataset.

For any polynomial approximation of the ReLU function, we can compute the corresponding

“equivalent” tensor weights using the definition of W̄
(t)
α1,...,αd . We define as W̄ polyreg and W̄ network

the corresponding tensor weights outputted by the regression and equivalent tensor weights of

the network. We show the relationship between W̄ polyreg and W̄ network by plotting one against

the other, split by tensor degree (1, 2, and 3 here). The similarity of the regression weights

and the network weights is then measured as the R2 coefficient of W̄ polyreg against W̄ network. A

coefficient of 1 indicates equality of all the weights.

68



CHAPTER 3. POLYNOMIAL REGRESSION

The weights obtained with the network using the L2 approximation of the ReLU function

are used in Fig. 3.15, while the weights obtained with the network using the L∞ approximation

of the ReLU function are used in Fig. 3.16. The red line corresponds to a perfect matching

between the weights.

Figure 3.15: Neural network “equivalent” tensor weights vs. polynomial regression weights with ReLU
L2 polynomial approximation.

Figure 3.16: Neural network “equivalent” tensor weights vs. polynomial regression weights with ReLU
L∞ polynomial approximation.

The corresponding R2 (similarity between the network and regression weights) are shown in

Table 3.8.

Approximation type Degree 1 Degree 2 Degree 3

L2 99.83% 81.5% 0.26%
L∞ 99.84% 96.5% 0.26%

Table 3.8: Similarity (R2) between polynomial regression weights and neural network “equivalent” tensor
weights with various polynomial approximations of the ReLU activation.

As seen in this table, there is an almost perfect matching between the degree 1 weights.

With degree 2 weights, the matching is good but not as perfect. It is improved a lot by using

the L∞ polynomial approximation of the ReLU activation instead of the L2 one, which might

provide a hint that the L∞ norm might be a better representation, in our problem, of how the

69



CHAPTER 3. POLYNOMIAL REGRESSION

ReLU activation should be approximated by a polynomial. Notice though that the matching

is not perfect for the degree 2 weights, even using the L∞ approximation. For the degree 3

weights, recall that our grid search approximation of the ReLU yielded a very small degree 3

coefficient a3. Using the definition of W̄ (3), that implies that W̄ (3) is also very small. As seen

in both Fig. 3.15 and Fig. 3.16, the degree 3 equivalent tensor weights of the network are

indeed all very close to 0. The problem is that the grid search approach fundamentally misses

many points (because it is a grid), and hence many polynomial coefficients are not considered.

Because the optimal a3 coefficient is probably very close to 0, it is likely that the grid search

approach would have a hard time finding this optimum.

Matching weights using a posterior inferred polynomial ReLU approximation

Computing the right prior polynomial approximation of the ReLU function is a hard task.

Indeed, we don’t really know which kind of objective function we should be minimizing (such as

the L2 norm or the L∞ norm) between the ReLU function and the approximating polynomial.

Instead, recall the definition of tensor weights:

W̄ (t)
α1,...,αd

= at

m∑
i=1

Wα1
1,i ...W

αd
d,i (3.23)

Since all the quantities except at in this equation are known (W are the weights of the network,

and m the hidden dimension is also known), what we can do is infer a posteriori the value of

at that brings the polynomial regression weights and “equivalent” tensor weights of the neural

network the closest to each other. Namely, what we seek to optimize is:

min
a

∑
α1,...,αd∑

i αi=t

∥∥∥∥∥W reg,(t)
α1,...,αd

− a
m∑
i=1

Wα1
1,i ...W

αd
d,i

∥∥∥∥∥
2

2

(3.24)

where W
reg,(t)
α1,...,αd are the polynomial regression weights. This is a one-dimensional regression and

the optimal coefficient a is the beta of the regression weights over the network weights (or more

precisely their tensor equivalents), where:

β(x, y) =

∑
i xiyi∑
i x

2
i

(3.25)

70



CHAPTER 3. POLYNOMIAL REGRESSION

Running this program for each degree t = 1, 2, 3 (as well as using the intercept of the model as

the coefficient a0) yields a polynomial ReLU approximation of the form:

Pposterior(x) = 0.114 + 0.498x+ 0.352x2 − 1.1× 10−3 · x3 (3.26)

This polynomial is indeed more similar to the L∞ approximation. That confirms why the this

approximation performed better when using a prior of the ReLU function. A plot of those three

approximations is shown in Fig. 3.17.

Figure 3.17: Polynomial approximation of ReLU activation (priors and posterior).

One can see that the red and orange curves are indeed similar to each other. However, the

use of a posterior approximation of the ReLU activation allows us to improve the matching of

the weights, as shown in Fig. 3.18.

Figure 3.18: Neural network “equivalent” tensor weights vs. polynomial regression weights with ReLU
posterior polynomial approximation.

This time, the weights at degree 2 match almost perfectly. Table 3.9 recapitulates the

similarities of the weights at each degree for the posterior approximation.

These results confirm that the degree 3 tensor weights must not matter very much in the

case of a neural network with ReLU activation. Running the same process for dimension d = 5,

71



CHAPTER 3. POLYNOMIAL REGRESSION

Approximation type Degree 1 Degree 2 Degree 3

Posterior 99.84% 98.53% 0.31%

Table 3.9: Similarity (R2) between polynomial regression weights and neural network “equivalent” tensor
weights with using a posterior approximation of the ReLU activation.

for which a tensor degree of 4 is easily tractable, confirms this fact. In this case, the similarity

of tensor weights of degree 4 reaches almost 78%, while the one at degree 3 stays very low.

This supports the conjecture that the degree 3 coefficient in a polynomial approximation of the

ReLU activation should be very close to 0.

This section demonstrates that the SGD algorithm makes the weights of the neural network

converge towards the optimal polynomial regression tensor weights. Recall that, by construction,

polynomial regression is more powerful than any neural network with any smooth activation

function as soon as the tensor degree used is high enough (because then we can get better

and better polynomial approximations of the activation function). Hence, by converging to the

optimal polynomial regression weights, the SGD algorithm gets closer to a more powerful class

of function, and hence brings the performance of the neural network higher. This might be one

of the reasons for the good performance in practice of an algorithm such as SGD.

3.6 Advantages

3.6.1 Interpretability

A first and paramount advantage of our polynomial regression method is the fact that it is

fully and easily interpretable, by cleverly designing some heuristics to visualize the polynomial

regression coefficients.

In the following, we will index all the polynomial regression coefficients by quantities in R2.

For example, βi will denote the coefficient of the pixel i = (a, b), that is, the pixel located at

coordinates (a, b) in the image. We will refer to βi as a degree 1 coefficient, because it involves

only one pixel. Similarly, we denote Xi the ith pixel of image X. Hence, in a degree 2 polynomial

regression model as presented above, the output Y of the regression model writes (ignoring the

intercept):

Y =
∑
i

βiXi +
∑
i,j

βi,jXiXj (3.27)

For degree 2 terms, in the models using batched linear regression as mentioned in the previous

72



CHAPTER 3. POLYNOMIAL REGRESSION

section, we used only products of pixels that could be covered by a square filter of size 3 by

3, hence most βi,j were 0 (for i and j such that the L1 distance between the two is greater or

equal to 5, βi,j = 0).

Degree 1 coefficients

It is straight-forward to interpret the degree 1 coefficients, because there are exactly 784 coef-

ficients of the form βi, which is the same size as the images in the dataset. We can then plot,

for each class, the β coefficients in a 28 × 28 grid, where the position in the grid matches the

index of the coefficient. We show, for the models obtained via batched linear regression, on

both datasets, the results in Fig. 3.19.

(a) MNIST (b) Fashion-MNIST

Figure 3.19: Interpretation of degree 1 coefficients for polynomial regression.

Red coefficients are positives ones, while blue ones are negative. A red coefficient in some

73



CHAPTER 3. POLYNOMIAL REGRESSION

position means that, if a white pixel was at this position, this pixel would increase the likelihood

of the image being classified in this class by the polynomial regression model.

Obviously, since classes intersect each other (only having white pixels in a given area doesn’t

imply that an image belongs to a certain class), red pixels don’t cover all the shape of the object

represented by a class. The positive coefficients rather point out the specificity of each class, by

indicating which pixels should be found in a class, and should only be found in such class. This

can be seen in the Fashion-MNIST sneaker example, where pixels on the heel are much more

important than anywhere else on the sneaker. Similarly, for the digit 8 of MNIST for example,

only the two holes in the 8 shape are highlighted and denoted as important features of such a

digit. Several other similar interpretations can be done on other classes.

Degree 2 coefficients

Let us now turn to the interpretation of degree 2 coefficients βi,j . Without considering the

filtering that we applied to these coefficients, that made most of them 0, there would be 7842 =

614,656 of them (all pairs of pixels). Showing those coefficients directly in a 784 × 784 grid

would break the geometry, since coefficients corresponding to two pairs of pixels close to each

other could be shown very far apart on such grid. Moreover, in practice we only have 17,956

(= 18,740−784) of those coefficients that are non-zero. On such a grid, only a very thin diagonal

part would be shown as non-zero.

To remedy those issues, we design a heuristic that allows us to transform the degree 2

coefficients βi,j to be able to plot them in another 28×28 grid, like we did for degree 1 coefficients.

More explicitly, take a coefficient βi,j corresponding to pixels Xi and Xj . Denote i = (a, b) and

j = (c, d) the coordinates of those pixels, with a, b, c, d ∈ {1, ..., 28}, in the original image. Now

define the coordinates k =
(
ba+c2 c, b

b+d
2 c
)

= f(i, j), where f is the function that “averages” two

pixels coordinates. Now, for each m,n ∈ {1, ..., 28}, define, with k = (m,n):

B(m,n) =
∑

i,j s.t.f(i,j)=k

βi,j (3.28)

which means that B is now a 28 × 28 matrix. Each of its entries contain the sum of all the

betas that correspond to a pair of pixels whose center of gravity is the entry itself. Because

only close-by pairs of pixels are considered, we are assured that B(k) cannot contain any term

βi,j with i or j very far from k. It is also guaranteed that we are not breaking the geometry

74



CHAPTER 3. POLYNOMIAL REGRESSION

of the coefficients. This local grouping allows to transform the 784× 784 matrix of coefficients

into a 28× 28 one. We show in Fig. 3.20 such grid B for each class, and both datasets.

(a) MNIST (b) Fashion-MNIST

Figure 3.20: Interpretation of degree 2 coefficients for polynomial regression.

Those figures become much more noisy, because of the heuristic and the task itself (fitting

degree 2 coefficients is harder, and degree 2 tensors also bring less value to the model than degree

1 ones). The interpretation is the following: red pixels correspond to areas where, if nearby

pixels have the same color (all black or all white), then it impacts positively the probability

that the image is in the class. Blue pixels do the same, but for areas where nearby pixels have

very different values. Hence, borders of the objects should be represented by blue pixels, while

dense white areas should be represented by red areas. In Fashion MNIST, for the sneaker class,

we can see how the blue border draws the shape of the sneaker, and similarly in the pullover or

trouser class. Deciphering the results is more challenging for the MNIST dataset in this case.

75



CHAPTER 3. POLYNOMIAL REGRESSION

3.6.2 Robustness to noise

Another advantage of polynomial regression over commonly used deep learning models is its

robustness to noise. The intuition is that simpler models might be less sensitive to the intro-

duction of noise in the out-of-sample data. One reason for this is that the gradients of the

model against any input coordinate would be lower in the case of polynomial regression (those

gradients are the coefficients of the linear regression model) compared to deep learning models,

which can display local gradient explosion. Here, models are still trained on noiseless data. We

do not expect results to change for the worse for polynomial regression if the training was done

on noisy data as well (deep learning models get very challenging to train in noisy environments).

To measure the robustness of models, we modify the images in two different ways. The two

image modifications that we apply are either to change every pixel by a “small” amount (global

noise), or change the pixels only in a smaller region, where each pixel is allowed to change

by a “large” amount (local noise). These modifications are in line with existing literature on

adversarial examples (see [SSRD19]).

Global noise

In the global noise setting, we perturb each image by adding, to each pixel, a random noise

drawn i.i.d. from the Gaussian distribution with mean zero and standard deviation σ. We then

truncate the result for each pixel to [0, 1], to ensure that the resulting image is still gray-scale.

An example of images after applying this global noise can be seen in Fig. 3.21, for σ = 0.3.

(a) MNIST (b) Fashion-MNIST

Figure 3.21: Images after applying the global noise modification, for σ = 0.3.

76



CHAPTER 3. POLYNOMIAL REGRESSION

Local noise

In the local noise setting, we add a rectangular black patch to the image. More specifically, for

a given patch area A, we first choose a random pixel location (i, j) uniformly around the center

of the image (6 6 i, j 6 22), and an aspect ratio D, uniformly distributed on (12 , 2). We then

create a patch centered at (i, j), of width w = bD
√
Ac and height h = b

√
A/Dc. For each pixel

covered by the patch, we set its value to 0 (i.e. make it black). An example of images after

applying this local noise can be seen in Fig. 3.22, for A = 100.

(a) MNIST (b) Fashion-MNIST

Figure 3.22: Images after applying the local noise modification, for A = 100.

Note that, because there is some rounding while choosing the patch, its area can slightly

differ from A. The rationale for restricting the center position of patch to is to ensure that, on

average, a patch does not cover the dark background region of the images, but covers the region

with more informative content, e.g. the center of the image.

Measuring robustness

How to measure the robustness of a model is not obvious. One thing that is clear is that

models with a constant output should be considered as the most robust ones (because their

output doesn’t change in any condition). However, a constant model on the MNIST or Fashion-

MNIST would only achieve on average 10% accuracy. Looking at the accuracy of a model under

various noise levels is therefore not enough to evaluate its robustness. Instead, we also consider

the relative drop in accuracy as a function of the noise level. Namely, for a model with accuracy

77



CHAPTER 3. POLYNOMIAL REGRESSION

A(0) in a noiseless environment, and accuracy of A(n) in an environment with a noise-level of

n, we consider the quantity A(0)−A(n)
A(0) . This quantity should be negative (adding noise shouldn’t

improve the accuracy of a model). It is also 0 for constant models (because A(0) = A(n) for any

n for those models). The interpretation is that a more robust model could have always lower

accuracy than another model, but with an unchanged accuracy when increasing the noise level

(for example a constant model against a deep learning model).

(a) MNIST - accuracy (b) MNIST - accuracy drop

(c) Fashion MNIST - accuracy (d) Fashion MNIST - accuracy drop

Figure 3.23: Accuracy and relative accuracy drop vs. noise standard deviation σ in the global noise
setting.

We plot in Fig. 3.23 and Fig. 3.24 both the accuracy as a function of the noise level, and,

what should be looked at more closely, the relative accuracy drop as a function of the noise,

as defined above. For the global noise, we plot those quantities against σ, while for the local

“patching” noise, we plot them against the area A of the path. In both cases, the higher the

curve, the better the model.

Our results show essentially the following facts:

• while the CNN architecture still achieves a higher prediction accuracy when the noise level

78



CHAPTER 3. POLYNOMIAL REGRESSION

(a) MNIST - accuracy (b) MNIST - accuracy drop

(c) Fashion MNIST - accuracy (d) Fashion MNIST - accuracy drop

Figure 3.24: Accuracy and relative accuracy drop vs. patch area A in the local noise setting.

is small (which is because of an obvious reason, namely that the deep learning model starts

with higher accuracy in the noiseless setting, hence it keeps its higher accuracy for small

noise levels), polynomial regression method starts outperforming the CNN architectures

once the noise level is increased beyond a certain level.

• when looking at robustness (i.e. relative accuracy drop instead of pure accuracy), the

polynomial regression model always achieves a higher robustness than the deep learning

CNN model.

• the results are consistent across both datasets and both noise-adding methods. The dif-

ference in robustness between the two models is even higher in the case of Fashion-MNIST

for the global noise setting.

• looking at accuracy or relative accuracy drop doesn’t matter much in the case of MNIST,

because the two models have very high and very similar accuracies in the noiseless set-

79



CHAPTER 3. POLYNOMIAL REGRESSION

ting. However, for the Fashion-MNIST dataset, the CNN model starts with an edge over

the polynomial regression model. In the case of patching (local noise), as seen in Fig.

3.24 graph (c), the CNN model is able to keep its edge in accuracy over the polyno-

mial regression model. However, the pace at which its accuracy decreases is faster than

for the polynomial regression model, which translates into a higher curve for polynomial

regression when looking at relative accuracy drop in graph (d).

• in terms of pure accuracy, the CNN model starts performing worse than the polynomial

regression model when, in the global noise setting, σ is increased beyond 0.3, and in the

local noise setting, when A is larger than 55 (which corresponds to roughly 7% of the

image being covered by a black patch, on average).

We believe that the aforementioned findings are a consequence of the simplicity of the

polynomial regression algorithm (which is a linear regression in high dimension), in contrast to

CNN architectures (which contain many non-linearities).

80



Chapter 4

Conclusion

In this report, we were able to derive a very simple order of magnitude formula for the sample

complexity of neural networks with one hidden layer. It is found to be linear in the input dimen-

sion and logarithmic in the width of the network. This is a first hint as to why neural networks

are still able to achieve good out-of-sample performance even in an over-parametrization setting

– namely because the number of examples needed to train the network in those setting grows

exponentially slower than the number of parameters.

Then, we introduced polynomial regression as a way to approximate neural networks through

the approximation of their activation function by a polynomial. The main challenge of this

method is its scalability, and we are able to design a heuristic that allows us to find approximate

tensor weights that are shown to have similar out-of-sample performance as the optimal ones,

and is competitive with deep learning architecture on MNIST datasets. Many advantages of

this method, advantages that usual deep learning methods lack, were studied. First, polynomial

regression has a very simple training objective, which is a linear function is the lifted space of

tensor products, and is equivalent to a linear regression in this space. Second, this method is

more robust than usual deep learning architectures to both local noise and global noise. Finally,

a polynomial regression model is shown to be very easy to interpret – separately for each tensor

degree – through direct representation of the weights or via heuristics.

Future work is still required on the main challenge of polynomial regression: its scalability.

In this report, we were able to scale training algorithms to very simple image datasets. However,

on more complex datasets such as ImageNet, those methods will probably have to be even more

optimized in order to scale to images containing tens of thousands of pixels (instead of less

than a thousand for the datasets considered here). A generalization would be to extend the

81



CHAPTER 4. CONCLUSION

polynomial regression approach to approximate multi-layer neural networks as well. It would be

fundamentally the same idea, except that the lifted space of tensor products would be a tensor

product of two spaces of simpler tensor products (in the case of a neural network with two

hidden layers). Apart from scalability, the whole analysis and its conclusions should generally

remain the same in this setup. Overall, tensor products seem to capture a lot of meaningful out-

of-sample information on quite challenging datasets, and, because of the numerous advantages

of polynomial regression, this method should be given more consideration in future directions

of research in the area of deep learning.

82



Bibliography

[ABA13] A. Auffinger and G. Ben Arous. Complexity of random smooth functions on the

high-dimensional sphere. arXiv:1110.5872, 2013.

[ABAC10] A. Auffinger, G. Ben Arous, and J. Cerny. Random matrices and complexity of

spin glasses. arXiv:1003.1129, 2010.

[ACGH18] S. Arora, N. Cohen, N. Golowich, and W. Hu. A convergence analysis of gradient

descent for deep linear neural networks. arXiv:1810.02281, 2018.

[ADH+19] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and

Ruosong Wang. On exact computation with an infinitely wide neural net. In

Advances in Neural Information Processing Systems, pages 8139–8148, 2019.

[AGMR16] S. Arora, R. Ge, T. Ma, and A. Risteski. Provable learning of noisy-or networks.

arXiv:1612.08795, 2016.

[AHW96] P. Auer, M. Herbster, and M. K. Warmuth. Exponentially many local minima for

single neurons. Advances in neural information processing systems, 1996.

[BCB15] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. Proceedings of the International Conference on

Learning Representations, 2015.

[Ben09] Y. Bengio. Learning deep architectures for ait. Foundations and Trends in Machine

Learning, 2(1):1–127, 2009.

[BG17] A. Brutzkus and A. Globerson. Globally optimal gradient descent for a convnet

with gaussian inputs. arXiv:1702.07966, 2017.

83



BIBLIOGRAPHY

[BHL18] Peter Bartlett, Dave Helmbold, and Phil Long. Gradient descent with identity ini-

tialization efficiently learns positive definite linear transformations. International

Conference on Machine Learning, pages 520–529, 2018.

[BSF94] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–

166, 1994.

[CHM+15] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss

surfaces of multilayer networks. Artificial Intelligence and Statistics, 2015.

[CSS16] N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning:

A tensor analysis. Conference on Learning Theory, 2016.

[CT05] E. Candes and T. Tao. Decoding by linear programming. IEEE Transactions on

Information Theory, 51(12):4203–4215, 2005.

[Cyb89] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-

matics of control, signals and systems, 2(4):303–314, 1989.

[DLT17a] S. S. Du, J. D. Lee, and Y. Tian. Gradient descent learns one-hidden-layer cnn:

Don’t be afraid of spurious local minima. arXiv:1712.00779, 2017.

[DLT17b] S. S. Du, J. D. Lee, and Y. Tian. When is a convolutional filter easy to learn?

arXiv:1709.06129, 2017.

[DZPS18] S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes

over-parameterized neural networks. arXiv:1810.02054, 2018.

[EGKZ20] M. Emschwiller, D. Gamarnik, E. Kizildag, and I. Zadik. Neural networks

and polynomial regression. demystifying the overparametrization phenomena.

arXiv:2003.10523, 2020.

[FCL18] H. Fu, Y. Chi, and Y. Liang. Local geometry of one-hidden-layer neural networks

for logistic regression. arXiv:1802.06463, 2018.

[GBB11] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. Pro-

ceedings of the 14th International Conference on Artificial Intelligence and Statis-

tics, 2011.

84



BIBLIOGRAPHY

[GHJY15] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points - online

stochastic gradient for tensor decomposition. Conference on Learning Theory,

2015.

[GK17] Surbhi Goel and Adam Klivans. Learning neural networks with two nonlinear

layers in polynomial time. arXiv preprint arXiv:1709.06010, 2017.

[GKKT16] S. Goel, V. Kanade, A. Klivans, and J. Thaler. Reliably learning the relu in

polynomial time. arXiv:1611.10258, 2016.

[GLM17] R. Ge, J. D. Lee, and T. Ma. Learning one-hidden-layer neural networks with

landscape design. arXiv:1711.00501, 2017.

[HDY+12] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath, and et al. Deep neural networks for

acoustic modeling in speech recognition: The shared views of four research groups.

IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[HM16] M. Hardt and T. Ma. Identity matters in deep learning. arXiv:1611.04231, 2016.

[HN10] G. Hinton and V. Nair. Rectified linear units improve restricted boltzmann ma-

chines. Proceedings of the 27th International Conference on Machine Learning,

2010.

[Hoc98] S. Hochreiter. The vanishing gradient problem during learning recurrent neural

nets and problem solutions. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 6(2):107–116, 1998.

[Hor91] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural

networks, 4:251–257, 1991.

[HZRS15] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. ICCV, 2015.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-

vergence and generalization in neural networks. In Advances in neural information

processing systems, pages 8571–8580, 2018.

85



BIBLIOGRAPHY

[JGN+17] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan. How to escape

saddle points efficiently. arXiv:1703.00887, 2017.

[JSA15] M. Janzamin, H. Sedghi, and A. Anandkumar. Beating the perils of non-convexity:

Guaranteed training of neural networks using tensor methods. arXiv:1506.08473,

2015.

[Kaw16] K. Kawaguchi. Deep learning without poor local minima. Advances in Neural

Information Processing Systems, 2016.

[KKSK11] S. M. Kakade, V. Kanade, O. Shamir, and A. Kalai. Efficient learning of general-

ized linear and single index models with isotonic regression. Advances in Neural

Information Processing Systems, 2011.

[KS09] A. T. Kalai and R. Sastry. The isotron algorithm: High-dimensional isotonic

regression. COLT, 2009.

[KSH12] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep con-

volutional neural networks. Advances in Neural Information Processing Systems,

25:1097–1105, 2012.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. In Proceedings of the IEEE, pages 2278–

2324, 1998.

[LeC98] Yann LeCun. The mnist database of handwritten digits.

http://yann.lecun.com/exdb/mnist/, 1998.

[LLS+18] M. Liu, S. Liu, H. Su, K. Cao, and J. Zhu. Analyzing the noise robustness of deep

neural networks. IEEE Conference on Visual Analytics Science and Technology,

pages 60–71, 2018.

[LPW+17] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural

networks: A view from the width. arXiv:1709.02540, 2017.

[LRZ19] Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. On the risk of minimum-

norm interpolants and restricted lower isometry of kernels. arXiv preprint

arXiv:1908.10292, 2019.

86



BIBLIOGRAPHY

[LY17] Y. Li and Y. Yuan. Convergence analysis of two-layer neural networks with relu

activation. arXiv:1705.09886, 2017.

[MHN13] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities

improve neural network acoustic models. ICML Workshop on Deep Learning for

Audio, Speech and Language Processing, 2013.

[MMN18] S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape

of two-layers neural networks. Proceedings of the National Academy of Sciences,

2018.

[NH17] Q. Nguyen and M. Hein. The loss surface of deep and wide neural networks.

arXiv:1704.08045, 2017.

[PLR+16] B. Poole, S. Lahiri, M. Raghu, Sohl-Dickstein J., and S. Ganguli. Exponential

expressivity in deep neural networks through transient chaos. Advances In Neural

Information Processing Systems, 2016.

[RPK+16] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. On the

expressive power of deep neural networks. arXiv:1606.05336, 2016.

[SA14] H. Sedghi and A. Anandkumar. Provable methods for training neural networks

with sparse connectivity. arXiv:1412.2693, 2014.

[SC16] D. Soudry and Y. Carmon. No bad local minima: Data independent training error

guarantees for multilayer neural networks. arXiv:1605.08361, 2016.

[Sha16] O. Shamir. Distribution-specific hardness of learning neural networks.

arXiv:1609.01037, 2016.

[Sha18] O. Shamir. Exponential convergence time of gradient descent for one-dimensional

deep linear neural networks. arXiv:1809.08587, 2018.

[SHM+16] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, and S. Dieleman.

Mastering the game of go with deep neural networks and tree search. Nature,

529(7587), 2016.

87



BIBLIOGRAPHY

[SJL17] M. Soltanolkotabi, A. Javanmard, and J. D. Lee. Theoretical insights into

the optimization landscape of over-parameterized shallow neural networks.

arXiv:1707.04926, 2017.

[Sol17] M. Soltanolkotabi. Learning relus via gradient descent. arXiv:1705.04591, 2017.

[SS16] I. Safran and O. Shamir. On the quality of the initial basin in over-specified neural

networks. International Conference on Machine Learning, 2016.

[SS17] I. Safran and O. Shamir. Spurious local minima are common in two-layer relu

neural networks. arXiv:1712.08968, 2017.

[SS18] Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural

networks. arXiv:1805.01053, 2018.

[SSRD19] Adi Shamir, Itay Safran, Eyal Ronen, and Orr Dunkelman. A simple explanation

for the existence of adversarial examples with small hamming distance. arXiv

preprint arXiv:1901.10861, 2019.

[SSSS17a] Shalev-Shwartz, O. S., Shamir, and S. Shammah. Failures of gradient-based deep

learning. International Conference on Machine Learning, 2017.

[SSSS17b] Shalev-Shwartz, O. S., Shamir, and S. Shammah. Weight sharing is crucial to

succesful optimization. arXiv:1706.00687, 2017.

[SVS19] J. Su, D. V. Vargas, and K. Sakurai. One pixel attack for fooling deep neural

networks. IEEE Transactions on Evolutionary Computation, 23(5):828–841, 2019.

[Tel16] M. Telgarsky. Benefits of depth in neural networks. arXiv:1602.04485, 2016.

[Tib96] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B, 58(1):267–288, 1996.

[WZZ+13] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regulariza-

tion of neural networks using dropconnect. In Proceedings of the 30th International

Conference on Machine Learning, volume 28:3 of Proceedings of Machine Learning

Research, pages 1058–1066, Jun 2013.

[XLS17] B. Xie, Y. Liang, and L. Song. Diverse neural network learns true target functions.

Artificial Intelligence and Statistics, 2017.

88



BIBLIOGRAPHY

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel im-

age dataset for benchmarking machine learning algorithms. arXiv preprint

arXiv:1708.07747, 2017.

[YSJ17] C. Yun, S. Sra, and A. Jadbabaie. Global optimality conditions for deep neural

networks. arXiv:1707.02444, 2017.

[ZLWJ15] Y. Zhang, J. D. Lee, M. J. Wainwright, and M. I. Jordan. Learning halfspaces and

neural networks with random initialization. arXiv:1511.07948, 2015.

[ZLWJ17] Y. Zhang, J. Lee, M. Wainwright, and M. Jordan. On the learnability of fully

connected neural networks. Artificial Intelligence and Statistics, 2017.

[ZRM+13] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le, P. Nguyen,

A. Senior, V. Vanhoucke, J. Dean, and G. Hinton. On rectified linear units for

speech processing. IEEE International Conference on Acoustics, Speech and Signal

Processing, 2013.

[ZSJ+17] K. Zhong, Z. Song, P. Jain, P. L. Bartlett, and I. S. Dhillon. Recovery guarantees

for one-hidden-layer neural networks. arXiv:1706.03175, 2017.

[ZSlG16] S. Zheng, Y. Song, T. leung, and I. Goodfellow. Improving the robustness of deep

neural networks via stability training. IEEE Conference on Computer Vision and

Pattern Recognition, pages 4480–4488, 2016.

[ZYWG18a] X. Zhang, Y. Yu, L. Wang, and Q. Gu. Learning one-hidden-layer relu networks

via gradient descent. arXiv:1806.07808, 2018.

[ZYWG18b] X. Zhang, Y. Yu, L. Wang, and Q. Gu. Learning one hidden-layer relu networks

via gradient descent. arXiv:1806.07808, 2018.

[ZZK+17] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random

Erasing Data Augmentation. arXiv e-prints, page arXiv:1708.04896, Aug 2017.

89


	Introduction
	Background
	Deep learning
	Expressiveness power of neural networks
	Algorithmic considerations
	Gradient-based methods on the population loss function
	Gradient-based methods on the empirical loss function
	Energy landscape of neural networks
	Neural networks robustness to noise
	Polynomial regression

	Organization of the report

	Sample complexity of neural networks
	General setup
	Experiments
	Methods
	Results
	Algorithmic setup
	Recovery precision
	Sample complexity


	Polynomial regression
	General setup
	Testing on synthetic data
	Construction of the synthetic dataset
	Impact of d and m
	Sample complexity
	Approximating activation functions

	Testing on real data – setup and benchmarks
	Setup
	State-of-the-art models
	A deep learning inspired approach
	A dimensionality reduction approach

	Fitting polynomial regression
	Challenges and scalability of the method
	Setup
	Introduction of batched linear regression as a scalable fitting method
	Comparison to benchmarks
	Comparison to exact methods when tractable

	Understanding gradient descent behavior
	Advantages
	Interpretability
	Robustness to noise


	Conclusion

