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Abstract

An equitable and flexible mechanism for assigning students to schools is a major concern for
many school districts. The school a student attends dramatically impacts the quality of educa-
tion, access to resources, family and neighborhood cohesion, and transportation costs. Facing
this intricate optimization problem, school districts often utilize to stable-matching techniques
which only produce stable matchings that do not incorporate these different objectives; this
can be expensive and inequitable. We present a new optimization model for the Stable Match-
ing (SM) school choice problem which relies on an algorithm we call Price-Costs-Flexibility-
and-Fairness (PCF2). Our model leverages techniques to balance competing objectives using
mixed-integer optimization methods. We explore the trade-offs between stability, costs, and
preferences and show that, surprisingly, there are stable solutions that decrease transportation
costs by 8-17% over the Gale-Shapley solution.
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Chapter 1

Introduction

From educating an increasingly diverse student body to adapting to technological change, school

districts across the country are confronted with challenges on a daily basis. Among the most

difficult challenges, perhaps, is an assignment system of students to schools. School choice

problems are some of the most widely discussed topics in the educational field. President Trump

deems it an issue of importance, calling to extend equitable school choice mechanisms to millions

more children across the US [28]. On a more local level in Boston, officials have considered this

problem closely since the mid-90’s, adopting a deferred acceptance algorithm in 2003, and

eventually iterating to the currently used HomeBased Assignment Plan in 2013. Advocates of a

school choice mechanism - over the commonplace neighborhood districting system - also argue

that it is another way to inject competition into the public school marketplace by encouraging

competitive pressure. However, it is a very difficult problem given the social and political

challenges of creating an equitable assignment mechanism. Given the unquestionable racial and

economic impact school choice has, it is clearly a politically charged problem. The process must

prioritize the preferences of both students and schools, while simultaneously ensuring equal

access to quality schools across all demographics. Implementation of the most cost effective

solutions present a challenge, especially when the mechanism requires students to change schools

from year to year.

In a classical school choice problem, there are students who need to be assigned a seat at a

school. Schools have maximum capacities, as well as a set of diversity quotas that must be met.

Each student has preferences over schools, and each school has priorities for different students.

Traditionally, students are assigned to schools according to where they live. However, in an

effort to give families more input in where their children attend school, deferred-acceptance

(DA) mechanisms based on preferences are used. Usually, the current solution to the school

choice problem is some variation of the Gale-Shapley [13] matching algorithm (a version of DA)

, which has a number of desirable outcomes:

1. Stability - no student-school pair (i, j) exists such that student i prefers school j to their

current assignment and student i has a higher priority at school j. This reflects a notion of

procedural fairness in how pairs are formed, as well as outcome fairness because it always

yields matchings that are in the best interest of the students.

2. Incentive Compatibility - Students have no motive to try and manipulate the assignment
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SCHOOL CHOICE

system because truthful preference revelation is the dominant and preferred strategy.

Despite these properties, it is far from obvious that the Gale-Shapley algorithm effectively

captures and implements the priorities of school districts. Complaints of a stable-matching

system include a high transportation burden and low community cohesion, among others. For

example, Boston Public Schools (BPS) increased their transportation spending to $123 million

in 2018, over 10% of the entire budget. BPS transportation costs are the second highest in the

nation, more than five times larger than the average of the largest 200 school districts [20]. It is

clear that school districts must improve their mechanisms in order to control budget concerns.

The goal of this work is to improve upon school choice matching algorithms through techniques

of modern linear and robust optimization.

1.1 Literature Review

The two-sided stable matching (SM) problem arises when there are a set of i students {p1, . . . , pn}
and m schools {s1, . . . , sm} with each having an ordered list of preferences for their preferred

matching. The stable matching problem asks for a matching of the students and schools that

exhibits the following stability property: there does not exist a student i and school m who are

not matched under the current assignment, but prefer each other to their current assignment.

These pairings are known as blocking pairs.

Generalizations of the SM problem exist in which the preference lists of the students and

schools are allowed to contain ties, and the preference lists are bounded. Such restrictions

arise naturally in practical applications such as school choice, hospital-doctor matching, and

kidney donations [3]. When complete enumeration of all student preferences list without ties

is unavailable, the problem is called stable matching with ties and incompleteness (SMTI). A

stable matching always exists for SMTI and can be easily obtained by arbitrarily breaking ties,

but the stable matching for one instance may have a different number of matches than another.

More specifically applied to our context, one solution could result in more students receiving

their preferences than another solution that is still stable in the solution space, but not optimal

in the sense that the most students are awarded the choice they prefer. In this context, various

definitions of stability exist, namely weak, strong, and super stability. Weak stability is our

original definition of stability, occurring when no blocking pairs exist. This will be referred to

as simply ”stability” moving forward, as it is the strictest and most appropriate definition.

The way in which ties are broken yield matchings of various cardinalities. It is desirable to

find the maximum SM (MAX SMTI) where the maximum amount of families are awarded their

preferences, but this is well known to be an NP-hard problem [14].

There is existing literature on heuristics to solve these types of problems. State-of-the-art

methods have been shown to achieve a best known performance guarantee approximation of

3/2 with respect to the matching objective. Delorme et. al. [11] reduce computation time to

under one hour by using preprocessing techniques and introducing dummy variables to reduce

the number of non-zero entries.

Adaptive Search (AS) methods have become the most used meta-heuristic for solving larger

instances of SMTI. AS takes advantage of the model in terms of constraints and variables in
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order to guide the search more precisely than a traditional cost function. AS starts with a

random solution configuration, and iteratively improves it one variable at a time. Podhradsky

perform a thorough experimental study of eight AS algorithms on data sets with sizes up to

733 students and 43 schools [22].

In their Nobel prize work, Gale & Shapley [13] prove the existence of a stable marriage

arrangement for any pattern of preferences. In research more specific to our work, Abdulka-

diroglu & Sonmez [5] offer two solutions for the school choice problem: Gale-Shapley matching

and a top trading cycles mechanism. Later, Abdulkadiroglu [6] realizes the shortcomings of

these deferred acceptance mechanisms and expands upon his work by allowing for students to

communicate their preference intensities to influence how they are treated in ties. Within a set

of Gale-Shapley assignment outcomes, Bodo-Creed [10] evaluates the tension between student

welfare, encouraging neighborhood schools, and diversity within schools. Lastly, Shi [27] uses

correlation optimization techniques to improve neighbors’ chances of going to the same school

from the output of a deferred-acceptance algorithm.

However, these improvements to school choice models do not incorporate transportation

costs when assigning students. Belford & Ratliff [7] are the first to offer a theoretical procedure

for assigning students that takes cost into account in 1971 through a minimum-cost network flow

formulation. [30] proposes one of the first linear optimization formulations for a stable-matching

problem, but without regard to cost or fairness. One reason for relatively sparse literature

in the area is due to the difficulty in computing a stable matching problem to optimality.

Optimization solvers are not able to solve real-world problems even in hours. Delorme et. al.

apply pre-processing techniques and alternative stability constraint formulations as heuristics

for the stable matching problem, and achieve fast formulations at the expense of losing provable

optimality on a medium-sized problem.

1.2 Contributions

1. We formulate the multi-objective problem of balancing stability, preferences and (racial,

gender and income) diversity as a binary optimization model.

2. We present a computationally tractable method to solve large scale matching linear opti-

mization problems.

3. We offer a framework for decision makers to identify the range of achievable outcomes and

the inherent trade-offs between competing objectives.

4. We implement a supervisor-worker parallel coordination scheme to speedup the time for

querying multiple instances of the school choice model.

5. Applied to Boston Public Schools, we show a decrease in transportation costs by 8-17%

over the Gale-Shapley solution, significant savings for the school district.

1.3 Structure

The structure of the paper is as follows:

10



SCHOOL CHOICE

1. In Chapter 2, we introduce an integer optimization approach to solving a version of SMTI.

The objective function and constraints of the model are discussed in detail. Section 2.1

describes our methodology for computing solutions tractably, while Section 2.2 details

multi-objective trade-off assessments. From these developments, we present results applied

to a real-world school choice problem with BPS in Section 2.3.

2. Such a large problem instance like the model presented in Chapter 2 is difficult to tractably

solve. In Chapter 3, we implement a supervisor-worker parallel coordination scheme after

taking careful consideration for important metrics such as Amdahl’s law. A speedup by

over a factor of three is achieved by parallelizing the optimization algorithm.

3. In Chapter 4, we conclude and propose future avenues for research.

11



Chapter 2

A Binary Optimization Model

In this chapter, we formulate a binary optimization problem that assigns students to schools

that balances preferences, costs as well as achieving racial, gender and income diversity. Let

[p] = {1, 2, . . . , p} the set of schools and [n] = {1, 2, . . . , n} the set of students. We introduce

the following data the problem uses:

(a) Each student i has a ranked list of schools, denoted by rij the rank of school j by student

i. We let Fi be the set of schools included in student i’s rankings. Student i can only be

assigned to one of these schools in the set Fi. We use the notation rij < rik to denote

that student i prefers school j over school k.

(b) School priorities are determined by two factors: the proximity of a student to a school

(with the closest distance taking priority), and family considerations (i.e., siblings should

be given priority for the same school). We let qij the priority of student i by school j

(smaller values correspond to higher priority). We let Ej is the set of students eligible

to be assigned to school j. We use the notation qij < qkj to denote that school j prefers

student i over student k.

(c) Each school j has capacity Ci, i.e., school j can be assigned to at most Cj students.

(d) We define the cost of assigning student i to school j as cij . For simplicity, we use the

Euclidean distance as a proxy for the transportation cost for student i to school j. Trans-

portation costs are normalized onto the same scale as the preference vectors for fairness

and equal weighting in the objective function.

(e) We let Dk, k = 1, . . . , 6 the set of students of race k with k = 1: Hispanic, k = 2: Black,

k = 3: White, k = 4: Asian, k = 5: male, and k = 6 low-income students.

(f) We let Ljk be the absolute number of students in school j of race k that violates the

minimum race requirement. Ujk is likewise defined for the maximum diversity percentage.

(g) As the problem is multi-objective, we use parameters λn, and n = 1, . . . , 5 to control the

significance of cost, student and school preferences, and diversity goals.

12
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We define the following decision variables:

xij =

1, if student i is matched to school j

0, otherwise

The problem of optimizing cost and preferences is formulated next. We use the name

Preferences-Costs-Flexibility-and-Fairness Model PCF2:

min
∑

i∈[n]
∑

j∈Fi

∑
k∈D[4]

λ1cijxij + λ2rijxij + λ3qijxij + λ4Ljk + λ5Ujk (2.1)

s.t.
∑

j∈Fi
xij = 1, ∀i ∈ [n], (2.2)∑

i∈[n] xij ≤ Cj , ∀j ∈ [p], (2.3)

xij +
∑

k:rij<rik
xik +

∑
k:qij<qkj

xkj ≤ 1, ∀i ∈ [n], ∀j ∈ Fi, (2.4)

αk
∑

i∈[n] xij −
∑

i∈Dk
xij ≤ Ljk ∀j ∈ [p], ∀k ∈ [6], (2.5)∑

i∈Dk
xij − βk

∑
i∈[n] xij ≤ Ujk ∀j ∈ [p], ∀k ∈ [6], (2.6)

xij ∈ {0, 1}.

The objective (2.1) balances cost, student preferences, school preferences, and diversity

objectives. Constraint (2.2) ensures that each student is assigned to exactly one school while

Constraint (2.3) ensures school capacity limits are not exceeded. Constraint (2.4) ensures

stability of the assignment. We note that the first summation means student i preferring

school j over school k, while the second summation represents school j preferring student i

to student k. If xij = 0, then not both
∑

k:rij<rik
xik and

∑
k:qij<qkj

xkj can be equal to one,

since in this case student i and school j are matched to less favorable pairings than each other,

and therefore the matching is not stable. Moreover, if xij = 1, then both sums are zero. In

both cases, the constraint is a valid formulation for the assignment to be stable. The particular

constraint for ensuring stability is from [29] and [12]. Constraints (2.5) and (2.6) place lower

and upper bounds on all the diversity sets, respectively. School metrics on the proportion of

African-American, White, Asian, Hispanic, gender, and low-income students must fall within a

certain range in an effort to maintain a sense of social fairness. These bounds can be adjusted

based on the goals of the school district.

We note that Problem (2.1) is integral, see [29] and [12].

2.1 Solution Methodology

Formulation (2.1) has np binary variables, O(np) constraints. Given that our target is to solve

problems with n = 22, 420 and p = 129, the number of students and schools for Boston Public

Schools, formulation (2.1) is not directly solvable by state of the art integer optimization solvers.

To overcome this, we first define xij only for those pairs that are feasible for both students and

schools to encode sparse decision variables.

13
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2.1.1 Generating Constraints

The classical large-scale optimization cutting planes, or delayed constraint generation method is

critical for findings optimal solutions in a tractable manner. The key bottleneck of the problem

is the large number of stability constraints (2.4) of which only a small subset is binding. Cutting

planes methods allow us to solve (2.1) by solving a sequence of linear optimization problems.

Instead of dealing with all of the stability constraints, we consider a subset I, relax the

integrality requirements, and form the relaxed problem with these conditions. Initially, we

begin with zero constraints in the subset I and find an optimal feasible solution x∗ to the

relaxed problem. Two possibilities arise:

1. Suppose x∗ is feasible for the full original problem, then x∗ is optimal and we terminate

the algorithm.

2. If x∗ is infeasible for the original problem, we find a violated constraint, add it in to the

set I, and continue.

2.1.2 Randomized Rounding

Our relaxation means that some xij decision variables in the optimal solution are fractional.

However, we use randomized rounding methods in our algorithm to guarantee an integral and

optimal solution [12]. Let F be in set of stable matchings, i.e. all integer vectors satisfying

PCF2, and let PSM be in the polyhedron describing the linear relaxation for our formulation.

We can show that PSM = conv(F ). Under the proposition that x is a feasible solution to the

polyhedron, then constraint (2.4)

xij +
∑

k:sk<pisj

xik +
∑

k:pk<sj pi

xkj = 1

The proof can be found in [12], Chapter 4. From this proposition and using the geometry of

the solutions to PSM seen in Figure 2.1, we apply the following randomized rounding algorithm

to express a fractional solution as a convex combination of integral stable matchings.

1. Generate a random number U uniformly over [0,1].

2. Construct a matching in the following way: Match student i to school j if xij > 0 and

in the row corresponding to student i, and U lies in the interval spanned by xij in [0,1].

Match school j to student i if in the row corresponding to school j, and U lies in the

interval spanned by xij in [0,1].

14
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Figure 2.1: Geometry of the solutions to a randomized rounding formulation.

In this way, student i is matched to school j if and only if school j is matched to student i.

Furthermore, there are no double matchings, so constraint (2.2) is not violated. Hence, it gives

rise to a perfect stable matching.

2.2 Trade-Off Assessments

Even with state-of-the-art solvers and computation power, one instance of the Price-Costs-

Flexibility-Fairness algorithm under full stable matching conditions requires nearly 24 hours

to solve. However, we need qualitative assessments of trade-offs in multiple objectives (cost,

family preferences, school preferences, and diversity quotas) to fully explore the solution space,

which necessitates an understanding of the full range of achievable outcomes. This is especially

challenging in the case where the decision maker does not coincide with the optimization expert,

as is the case with our school choice problem. In this section, we address this challenge by

introducing a setting where BPS decision makers can work directly and intuitively from a

set of desirable outcomes, back to the design decisions that achieve them. Importantly, our

framework is designed to allow for quick iteration as the decision maker’s understanding of

what is achievable and the inherent trade-offs therein changes.

2.2.1 Parameter Search Methodology

Our PCF2 model contains parameters that weigh multiple objectives. A different set of param-

eters leads to different objective outcomes, and the ”optimal” parameters are difficult to find.

Querying the PCF2 model iteratively is computationally expensive, so rather than attempting

to tune parameters through a grid search approach, we move directly from objective outcomes

back to the parameters in a lookup-table fashion. This framework offers a tool for efficient

iteration and refinement of proposed policies by working directly with their desired outcomes.

First, since the domain of our BPS data is in the form of a four dimensional hyper-rectangle

(λ1, λ2, λ3 and λ4 with λ5 = 0), we use latin-hypercube sampling as an efficient method for

15
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generating representative design points, more diverse than uniform sampling when N is rela-

tively small. This ensures our parameter points are not all sampled from too small of a space.

We use many nodes on MIT Supercloud’s TX-GAIA Supercomputer, to query PCF2 N ≈ 1000

samples.

This produces an set of achievable outcomes in the form of an efficient frontier (visualizations

found in Section 2.3). The key idea is that as our understanding of trade-offs and the range

of achievable outcomes develops, we provide solutions anywhere along the efficient frontier of

outcomes.

2.3 Results

The overall goal of the work is to reduce transportation costs via the student assignment mech-

anism in an effort to save BPS money which they could reinvest back into the students. The

results are encouraging: 8%− 17% savings in cost.

2.3.1 Data

We use a combination of data supplied by BPS and simulated data to apply our problem

formulation. Student location, school locations and the student’s current school assignment are

available through BPS. Race and incomes are generated according to the BPS Demographic

data from the table below [2]. For preference rankings, families are given the option to rank up

to 20 schools on the menu of options, and these preferences are generated in such a way that

a student chooses a nearby school 65% of the time and a random school the other 35% of the

time. School preferences for students are solely determined by the proximity of a student to a

school, with the closest distance having highest priority.

Figure 2.2

16



SCHOOL CHOICE

2.3.2 Complexity

The BPS problem is a very large instance of the SMTI problem. There are 22,420 students

requiring matchings to 129 schools across the district. Each family is allowed to rank up to 20

schools, with seven of them required to be nearby. The problem calls for over 3.3 million integer

decision variables, 1,290 capacity and diversity constraints, and 448,400 stability constraints.

Our sparsity pre-processing reduces the number of decision variables by a factor of 10 down to

448,400. Still, the current state-of-the-art literature has experienced difficulty solving problems

of this scale to optimality, but our methods allow us to accomplish the task.

Figure 2.3: Map showing the BPS school district with blue circles representing schools, and black dots
representing student locations. The complexity of the problem is large [9].

2.3.3 Application to BPS

Table 2.1 shows the comparisons between model formulations when family preferences are max-

imized. The Gale-Shapley assignment model is the option currently used by many school dis-

tricts, where transportation costs are not a factor in the model. In our PCF2 formulation, we

see an 8.0% decrease in the cost with a negligible loss in family preferences. We represent the

cost of student-school assignments with a proxy for the transportation cost. Here, we use the

city-block distance metric as a cost estimate.

Current BPS PCF2 Algorithm

Cost Improvement - 8.0%
Family Top 3 Choices 87.7 86.2
School Top 3 Choices 71.0 72.8

Table 2.1
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Current BPS PCF2 Algorithm

Cost Improvement - 17.2%
Family Top 3 Choices 57.2 53.1
School Top 3 Choices 98.1 98.1

Table 2.2

Table 2.2 shows a similar comparison between model formulations, but this time we optimize

the model to maximize school priorities. In this setting, we see a 17.0% decrease in the total

cost, once again with a negligible loss in family preferences.

Next, the price of awarding families their top preferences is illustrated. All of the points in

the charts below are stable matchings, and the red point represents the cost and percentage of

families who receive their top three school listings under BPS’s current Gale-Shapley matching

method. In the top figure, as the points become a lighter shade of blue, the algorithm places

more emphasis on reducing cost rather than preferences. It is clear that as more families are

given their top choices, the cost of the solution also increases to form a clean efficient frontier.

A major benefit of the PCF2 model is the ability to offer multiple solutions. Boston Public

School’s officials can determine a cost level and preference level, and this figure depicts if the

solution is feasible and optimal. The bottom figure represents the same trade-off, but with

school priorities.
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Figure 2.4: Top: Trade-off between cost and family preferences. Bottom: Trade-off between cost and
school preferences. The figures also show the cost savings over stable solutions that don’t account for
cost.
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Chapter 3

Parallelizing Large-Scale

Optimization

In order to achieve the results in Chapter 2, we must employ parallelization strategies to solve

for solutions quickly. This chapter details our method of parllelizing the PCF2 model.

Mixed-integer and discrete optimization (MIP) methods at its core is finding the root of

a linear function over linear constraints subject to restrictions on some of the variables in the

model. Sequential algorithms for MIPs have improved substantially in the last decade and are

now efficiently solved by state of the art solvers such as Gurobi. Parallel processes for these

types of problems have not seen the same level of improvement, however [24]. In some ways,

progress on sequential solutions has been detrimental to parallelization ease and efforts.

Solutions to these classes of problems represent a complete enumeration of the solution space

in the form of a branching tree. A branch and bound (BnB) algorithm very naturally lends

itself to be implemented on multiple processes in parallel since we may distribute sub-trees to

different compute cores [24]. The partitioning into smaller sub-problems narrows the feasible

region until the optimal solution is found. The power of BnB comes from the bounds used to

truncate the search.

The literature on parallelizing BnB methods is robust. Work first began in the 1970’s, and

better performance techniques have continued to be introduced. As an example of some recent

work, Bergman et. al. address the problem of search schemes during the sub-problem phase [8].

BnB relies heavily on the upper and lower bounds of the search, which presents a challenge when

solving many sub-problems in parallel. Either the workers must communicate often, or much of

the work will be a redundant effort. Bergman uses decision diagrams in order to approximate

bounds of tree sub-problems to make parallelization more efficient. Linderoth [17] proposes a

parallel algorithm that focuses on generating cutting planes near the top of the BnB tree to

flexibly solve MIPs. He uses the algorithm to solve a large instance of the Set Partitioning

Problem in a reasonable amount of computing time.

The limits to scalability for solving MIPs are well understood, and much has been overcome

by the existing approaches in the literature. For this reason, we will use Gurobi’s excellent

automatic internal BnB parallelization scheme and focus our efforts on a coarser parallelization

strategy.
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3.1 Optimizing Serial Code

Before this program is run in parallel, it is important to understand that at the center of any

fast parallel code is fast serial code. Since parallelism is a performance multiplier, beginning

from a poor position is a recipe for slow and unexpected performance. It is addressed in our

work by improvements in introducing non-allocating functions, and taking advantage of Julia’s

type-stability features. For the remainder of this section, performance increases are measured

against a naive working example with no optimizations. First though, to start optimizing code,

it is important to understand the memory model of your computer.

3.1.1 Memory

Modern computers have multiple CPU’s, and each CPU has multiple cores. At a high level, a

CPU’s core memory accesses different levels of cache memory as seen in Figure 3.1. Optimized

code has the ability to use things in a closer cache so data is queried less often.

Figure 3.1: Memory hierarchy in modern computers.

Moving down to a lower-level view of memory, each box in Figure 3.1 is composed of a stack

and a heap. The stack is ordered and is accessed very fast, but the size of variables must be

known at compile time. The heap exists because this is not always possible, so it is composed

a a series of pointers to data in main memory, but it is very costly as it requires allocations to

pull data up the cache chain to be accessed.

3.1.2 Avoiding Heap Allocations

Heap allocations must locate and prepare a space in memory, so we want to avoid heap alloca-

tions if at all possible. Several times in our PCF2 Algorithm, information must be written into

a data structure (either an array or JuMP.Containers.SparseAxisArray, JuMP’s version of a

two dimensional sparse array). Usually writing into an array involves heap allocations, but if

mutation is used (changing the values of an already existing array), then no heap allocations

occur. In our program, instead of creating an array each time, we utilize a cached array.

Slicing in Julia also produces copies of the data structure, thus allocating to a new output.

The @view command avoids heap allocating by asking for a view of the data rather than a copy.
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3.1.3 Julia’s Type Inference and Function Specialization

Julia is the ideal programming language because of core design features such as multiple dis-

patch, type inference and function specializations.

When the compiler executes a computation, it will ask for the type of the object in order

to know how to do the computation correctly. When the type is not known, there is overhead

run-time and memory costs as the variables could be changing in size and value, causing a

heap-allocation. Julia, however, runs a type inference algorithm to discover the types of objects

just before compilation, making the code fast.

Much of the speed improvement in our program can be pointed towards type specialization

in functions. Even if the type of a function is not manifested at compile time, Julia’s generic

function feature interprets a function over all possible methods, where each method’s type is

known. To take advantage of this, we split our single naive function into multiple functions

that become inputs to each other. In this way, type specialization speeds up code and reduces

allocations.

Finally, multiple dispatch in Julia allows the programmer to tell functions how to compute

based on different type assertions on the input values. Our functions all have the most strict

version of the type defined on the inputs. This is what makes code much faster than our

naive implementation (or anything in Python): the program is specializing on its types on each

function, and those functions infer type outputs, which can be used by the compiler to generate

the most efficient function [23].

Automatic bounds checking is disabled as one final small code optimization. All of these

features are covered in depth in the Julia documentation [1].

3.1.4 Results of Serial Code Optimizations

After all of these program modifications, our PCF2 program exhibits a drastic performance

increase in serial. These results are run on only a subset of the BPS data set for the sake of

speed, but extrapolate according to the complexity schemes from Chapter 1. The original naive

implementation–how a MIP formulation would normally be coded–is described in Table 3.1 in

relation to new MIP codes. We see 35% fewer allocations, 41% less memory used, and speedup

by a factor of 2.5.

Naive MIP Code One-time Model Build Optimized Code Total Optimized Speedup Imp

Allocations 67,849,436 9,699,783 34,746,147 44,445,930 34.5%
Memory (GB) 2.330 0.737 0.641 1.378 40.9%
Mean Runtime (s) 47.86 6.34 12.96 19.30 2.48 x

Table 3.1: Comparison of naive vs. optimized model formulations. There is a dramatic performance in-
crease from implementing serial code optimizations like non-allocating functions, function specialization,
and multiple dispatch.

Profiling the code through Profile.jl reveals the bottlenecks of the program. Approxi-

mately 97% of the clock-cycles are due to building the optimization model in JuMP. An intuitive

visualization of the run-time is a flame graph as seen in Figure 3.2. The horizontal length rep-

resents the amount of time spent on that function. Because the main driver of the run-time

involves model building, the new code splits the algorithm into two functions: one to build the
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model and another to optimize it. This structure means there is only a one-time cost involved to

building the model where the majority of time is spent, and the parallel portion of the algorithm

will not need to invoke the build for every solve.

Figure 3.2: Flame graph produced through Profile.jl. The graph is a visual depiction of the number
of clock-cycles per process in the program. The most time consuming computations all deal with building
the model: creating variables, and adding them into the model.

3.2 Network Analysis

The challenge of parallel MIP algorithm architectural design comes primarily from balancing

the workload across the nodes, and limiting the amount of communications between nodes. A

complete parallel algorithm can be viewed as a collection of mechanisms that can be split into

two groups: governors of the parallelization strategy (i.e. data movement) and programs that

determine what each worker should be doing [19]. The core issue that must be addressed is to

how to handle the globally useful information for the algorithm I/O. We want to move as little

information between processors as possible, but enough to avoid losing valuable computational

efficiency.

A parallel programming model (PPM) describes how the software is going to implement

the the program in parallel. Three common PPM’s are used: threading, message passing, and

global arrays [16]. We will focus on the messaging PPM. This type of model requires that all

processors be able to send and receive messages to each other. In the computing community,

Message Passing Interface (MPI) is the standard infrastructure, so we implement MPI.jl in our

work. MPI is composed of an interface standard and a set of associated libraries for allowing

separate processes running on separate cores to communicate with each other via shared memory

or over a communication network [26].

As a note: in this shared-memory architecture, the issue of memory contention and lock

schemes present themselves, but we do not address these ideas, instead relying on MPI.jl’s

internal implementations.
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3.2.1 Amdahl’s Law

An important parallelization measure is speedup. The speedup measures how much faster the

parallel algorithm performs relative to the sequential algorithm. One of the most important

design concepts in parallel implementations in managing the overhead introduced by a message

passing network. The total work that a program must compute can be broken into a part that

can be done in parallel, and a part that must be done on one processor (the supervisor) [16].

Wtotal = W|| +Wserial

Assuming this equation, then the execution time scales with T (NP ) =
W||
NP

+ Wserial which

translates to a speedup of

S(NP ) =
Wtotal

W||
NP

+Wserial

In the theoretical case when the number of processors is very large, the maximum possible

speedup of a single program as a result of parallelization, known as Amdahl’s Law, is

Smax =
Wtotal

Wserial

3.2.2 Communication Network

The underlying communication network in a parallel model has several important characteris-

tics: namely latency and bandwidth.

Latency is a measure of how long it takes for data to travel between processors in the network.

Bandwidth, typically measured in bytes per second, is the maximum rate at which data can

flow over a network [16]. The computing cluster we use is the MIT Lincoln Laboratory’s TX-

GAIA Supercomputer [4]. It is composed of 52 nodes with 1348 cores and 873 TB of storage

space. The charts below show the latency and bandwidth curves for the Intel Xeon E5-2650

cores that we use for parallelizing the MIP. The inverse bandwidth plot is even more helpful to

provide a guide on how many operations that need to be performed on an object to amortize

the cost of communicating that value [16]. To calculate this, the processor speed (measured in

floating point operations per second FLOPS) is divided by the bandwidth to yield the number

of FLOPS that can be performed in the time it takes to send a message of a given size.
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Figure 3.3: Latency, bandwidth, and inverse bandwidth as a function of message size for the MIT
Supercloud High Performance Computing system.

3.2.3 Coordination Scheme

We choose a supervisor-worker coordination scheme to orchestrate the parallelism. The idea of

this model is that the supervisor processor’s function is to coordinate the workload through a

distributed load balancing scheme. An important decision in the parallelization strategy is the
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distribution of a set of programs that can be solved in parallel. In our application, we know a

priori the difficulty of each problem being distributed, allowing us to easily balance the loads to

each of the processes so that they are doing similar amounts of work in a round-robin fashion.

Our computation will be distributing the same program with different parameter values

to each worker. Therefore, it can be divided into independent parts, executed by separate

processes that requires a very small amount of communication. This architecture is known

as an embarrassingly parallel computation and requires almost no interaction between workers

[31].

3.3 Parallel Implementation

After all the above discussion, it is time to test the results of how our program runs in parallel.

The first metric to compute is the overhead cost of the additional MPI code and executing the

program on the Supercloud computer. The time to compute one instance of the serial MIP is

25.59 seconds, while the time to execute the same exact computation, but this time including the

MPI overhead, is 44.82 seconds. The indicates that the cost of parallelization is very expensive

in our case.

Each process (worker) in the network is computing the one-time model build, then optimizing

the MIP for each of the parameter values it is distributed by the round-robin technique. In total,

we are solving for eight parameter values (i.e. optimizing the model eight times). Table 3.2 shows

the scaling analysis for various number of workers and nodes. Note that when parallelizing a

MIP, Gurobi requires two full cores to operate regardless of the problem size. Figure 3.4 provides

a visualization of how the program is running on multiple nodes. The coordination scheme is

working nicely, as all the computations are occurring on nodes physically close to each other on

the network.

Figure 3.4: Visual representation of where work is being on on the Supercloud nodes. Notice all the
computation work is clustered around nodes 25, 26, and 27, which are physically near each other on the
processing chip.

Using eight processes across four nodes results in the best performance, closely followed by

eight processes across a single node. Each worker in these two cases computes one build of the

model, and optimizes it for two different parameter values. This illustrates that the time to

communicate across nodes is expensive and we must have enough operations to amortize this

cost to gain any improvement in speed. There is still a speedup by over a factor of 3 due to the

parallelization, showing superior performance to a serial implementation. Note that for the full

scale of the problem, the number of workers and nodes will need to be scaled according to the
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Number of Nodes

# of Workers 1 2 4

1 149.84 s - -
2 97.35 s 96.35 s -
4 64.75 s 59.16 s 69.53 s
8 49.75 s 50.95 s 46.49 s

Table 3.2: Execution time for eight MIP’s given various numbers of works across various numbers of
nodes.

problem size. These experiments show that parallelization is a good idea for performance and

help us understand what to expect when we scale to larger problem sizes.
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Chapter 4

Conclusion

We described a discrete optimization algorithm for instances of the SMTI problem in the con-

text of school choice. This resulted in significant improvements upon current state-of-the-art

methods in terms of performance and tractability. We introduce a new optization model for

SMTI, the first of its kind to balance cost as an objective. Using sparse arrays, cutting planes,

integer relaxations, Julia code optimizations, and trade-off assessments, we are able to solve

large scale instances of these types of problems as demonstrated in the computational experi-

ment with BPS. Using a detailed parallelization strategy, we show strong performance increase

that benefits from multiple processors.

We are able to show significant cost improvements over Boston Public School’s current

Gale-Shapely stability style assignment mechanism. This 8-17% improvement in cost does not

sacrifice the preferences of students.

4.1 Future Research

Future work not considered in this paper is the concept of robustness. Boston Public Schools

is a large district with many schools of varying strengths and weaknesses, so families may have

a difficult time of correctly developing a full list of preferences. Families are given a large menu

of school options and are asked to rank them accurately. Given the large number of covariates

they must consider in making their decisions, Kahneman and Tversky [15] tell us that students

may not be confident and correct in their rankings. Their experiments in prospect theory

reveal that individuals do not do a satisfactory job communicating their true preferences, and

oftentimes express conflicting preferences. There is also evidence that shows the presentation

of the information on schools effects which schools families determine to be ”quality”.

One of the objectives of Robust Optimization (RO) aims to address problems under uncer-

tainty, such as this instance. Instead of using probability theory to describe uncertainty, RO uses

uncertainty sets to transform the underlying stochastic optimization problem to a deterministic

one. The PCF2 model improves when we robustify it against sources of potential uncertainty, so

in the future we could address preference uncertainty based on behavioral economics literature.

To do this, we must first define an uncertainty set on the data over which the solution is

protected. This means that the true value of the family’s preference may fall within a range

of the nominal value, where the range is determined by the architecture of the uncertainty set.
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We want to make a trade-off between ”full” robustness and the size of the uncertainty set: the

choice of a large set results in a value never being too extreme for the optimization, but there

is only a small chance that the parameter takes the worse case (i.e. preference #1 under no

uncertainty is actually preference #20). A good uncertainty set choice would be similar to an

ellipsoidal uncertainty set seen below that is convex in V . Then, student rankings could be

robustified through a shuffling mechanism rij = r̄ij + vij where

Vε =
{
vij : vij ∈ {0, 1}, ‖v‖ ≤

√
2 ln(ε)n

}
(4.1)

The mechanism works in such a way that if a student ranks a school first, that school is allowed

to take on a ranking of 2 or 3, while a school ranked second can become a 1 or a 3. Here, ε can

be though of as a risk-level parameter that increases or decreases the amount of students that

have their preferences shuffled. An ε = 0.1 means that 10% of students are shuffled.

Also not considered in this paper is to include a concept of neighborhood cohesion within

the model framework. In the model presented, students living in the same neighborhood could

very well be assigned to different schools. Crime rates have been shown to decrease when there

is a sense of cohesion in the neighborhood, so we may want to encourage neighbors to attend

the same school. If this model is to be implemented, it will require serious change on behalf

of BPS officials. As we saw with the Boston Public Schools School Bus Routing algorithms,

implementation of such a big change can be challenging. To overcome this, in future models

we can limit the number of families who would be assigned to a school other than their current

assignment. In this way, change can be incrementally increased until the full benefits of our

PCF2 model can be implemented.
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Appendix A

BPS Budget

Figure A.1: Share of BPS budget going to transportation costs [2].
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Appendix B

Additional Results

Figure B.1: Trade-off between school and family preferences.
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