
Simplifying Multiple-Statement Reductions with the
Polyhedral Model

by

Jianqiao (Cambridge) Yang

B.S., University of California (2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 13, 2020

Certified by. .
Michael Carbin

Assistant Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Simplifying Multiple-Statement Reductions with the

Polyhedral Model

by

Jianqiao (Cambridge) Yang

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract
Reduction – an accumulation over a set of values, using an associative and commuta-
tive operator – is a common computation in many numerical computations, including
scientific computations, machine learning, computer vision, and financial analytics.

Contemporary polyhedral-based techniques make it possible to optimize reduc-
tions, such as prefix sum, in which each component of reduction’s output potentially
shares computation with another component in the reduction. Therefore an optimiz-
ing compiler can identify the computation shared between multiple components and
generate code that computes the shared computation only once.

These techniques, however, do not support reductions that – when phrased in the
language of the polyhedral model – span multiple statements. In such cases, existing
approaches can generate incorrect code that violates the data dependencies of the
original, unoptimized program.

In this work, we identify and formalize the multiple-statement reduction problem
as a bilinear optimization problem. We present a heuristic optimization algorithm
for these reductions, and we demonstrate that the algorithm provides optimal com-
plexity for a set of benchmark programs from the literature on probabilistic inference
algorithms, whose performance critically rely on simplifying these reductions. Specif-
ically, the complexities for 10 of the 11 programs evaluated improve siginifcantly by
factors at least of the sizes of the input data, which are in the range of 104 to 106 for
typical real application inputs. We also confirm the significance of the improvement
by showing that the speedups in wall-clock time ranges from 30x to over 108x.

Thesis Supervisor: Michael Carbin
Title: Assistant Professor of Electrical Engineering and Computer Science

3

4

Contents

1 Introduction 11

2 Example 17

2.1 Walk Through . 17

2.2 Motivating Example . 21

3 Background: Polyhedral Model 27

3.1 Polyhedral Set Representation . 27

3.2 Polyhedral Representation of Program 29

3.2.1 IR Semantics . 30

3.3 Polyhedral Model Scheduling . 31

3.3.1 Scheduling Function . 31

3.3.2 Dependence Relation . 32

3.3.3 ILP formulation of scheduling 32

4 Background: Simplifying Reduction Framework 35

4.1 Simplification Transformation . 35

4.2 Configuration of Simplification Transformation 38

4.3 Recursive ST . 40

5 Multiple-Statement SR Problem 41

5.1 Problem Statement . 42

5.1.1 Per-face ST application . 43

5.2 Integer Bilinear Program Formulation 45

5

5.2.1 Variables . 46

5.2.2 Constraints . 46

5.2.3 Objective: complexity . 47

5.3 Discussion . 48

6 MSSR Heuristic Algorithm 49

6.1 Insights . 50

6.2 Algorithm . 51

6.3 Algorithm Analysis . 52

7 Implementation 55

8 Evaluation 57

8.1 Runtime Validation . 60

9 Related Work 63

10 Conclusion 65

A Extra Listings 67

B Simplifying Reduction 69

B.1 Simplifying Reduction in Polyhedral Model 69

B.2 Configuration of Simplifying Reduction 72

B.3 Choosing a reuse vector . 72

C Enabling Transformations 75

6

List of Figures

2-1 Naive prefix sum (Equation (1.4)) . 18

2-2 Incorrect optimization of prefix sum with multiple statement dependency 20

2-3 Correct optimization of prefix sum with multiple statement dependency 20

3-1 Plot of example polyhedral relation 28

4-1 Visualization of algorithm on prefix sum example 37

6-1 SSSR heuristic algorithm . 52

B-1 Simplifying Reduction in the Polyhedral Model 69

7

8

List of Tables

8.1 Benchmarks Table . 58

8.2 Runtime evaluations . 60

9

10

Chapter 1

Introduction

A reduction – an accumulation over a set of values, using an associative and commuta-

tive operator – is a common computation in many numerical computations, including

scientific computations, machine learning, computer vision, and financial analytics.

For example, consider the prefix sum (PS) defined mathematically by Equa-

tion (1.1): the value at each index 𝑖 of the array 𝐵 is the summation of values

at indices 𝑗 before and up to 𝑖 of array 𝐴. Listing 1.1 presents a direct translation of

Equation (1.1) to an imperative language with loops. The complexity of Listing 1.1

is 𝒪(𝑁2): 𝒪(𝑁) for iterating over "∀𝑖", and 𝒪(𝑁) for the summation over 𝑗.

𝐵[𝑖] =

𝑗≤𝑖∑︁
𝑗=0

𝐴[𝑗] ∀𝑖, 0 ≤ 𝑖 < 𝑁 (1.1)

1 // B is array of ints initialized to all 0

2 for(i = 0; i < N; i++)

3 for(j = 0; j<=i; j++)

4 B[i] += A[j]

Listing 1.1: Naive PS

B[0] = A[0]

for(i = 1; i < N; i++)

B[i] = B[i−1] + A[i]

Listing 1.2: Optimized PS

Optimized Reductions. Listing 1.2 presents a more efficient computation imple-

mentation of PS. The complexity of the implementation in Listing 1.2 is 𝒪(𝑁), which

11

is a linear speedup over the naive implementation Listing 1.1. The implementation

achieves this speedup by exploiting the fact that consecutive iterations of the loop

overlap in their computations. Specifically, for any pair of consecutive iterations, the

latter iteration includes the entirety of the former iteration’s computation. Therefore,

that shared computation only needs to be computed once.

Gautam and Rajopadhye [2006] in the polyhedral model community formalized

the above optimizing transformation under array equational language which supports

reductions as a first class operation [Yuki et al., 2013], and proposed a set of tech-

niques called Simplifying Reductions (SR). The core of SR is called Simplification

Transformation (ST). At a high level, ST is a transformation in array equational

language. ST takes in pointer to a statement with reduction (e.g. Equation (1.1)),

and a directed vector along which the reduction’s body (e.g. 𝐴[𝑗]) presents reuse

as inputs: here reuse means that the reduction’s body evaluates to the same value

along the direction of the vector. Given the inputs, ST transforms the statement in

consideration into a set of statements that together is semantically equivalent to the

original statement, but exploits the reuse vector to reduce complexity. For example,

given Equation (1.1) and a reuse vector [1, 0]𝑇 , which satisfies that changing 𝑖 to

𝑖 + 1 and 𝑗 to 𝑗 + 0 (i.e. not changing 𝑗) does not change the evaluation of 𝐴[𝑗], ST

outputs Equation (1.2). Translating from Equation (1.2) to an imperative language

with loops then produces Listing 1.2.

𝐵[0] = 𝐴[0] (1.2a)

𝐵[𝑖] = 𝐵[𝑖− 1] + 𝐴[𝑖] ∀𝑖, 1 ≤ 𝑖 < 𝑁 (1.2b)

Note that for one application of ST there are usually infinitely many choices for

directions that present reuse. For instance, any vector [𝑐, 0]𝑇 with constant 𝑐 is a valid

choice for reuse vector for Equation (1.1), since they all satisfy that changing from 𝑖 to

𝑖+𝑐 and not changing 𝑗 does not change the evaluation of 𝐴[𝑗]. As a concrete example,

applying ST to Equation (1.1) with direction [−1, 0]𝑇 produces Equation (1.3). In

Equation (1.3), instead of initializing 𝐵[0] and computing 𝐵[𝑖]s from lower indices to

12

higher indices (i.e. left to right) as in Equation (1.2), Equation (1.3) initializes 𝐵[𝑁−

1] and computes 𝐵[𝑖]s from higher to lower indices (i.e. right to left). Complexity of

the translation of Equation (1.3) to an imperative language with loops (Listing A.1

in Appendix A) is also 𝒪(𝑁).

𝐵[𝑁 − 1] =

𝑗<𝑁∑︁
𝑗=0

𝐴[𝑗] (1.3a)

𝐵[𝑖] = 𝐵[𝑖 + 1]− 𝐴[𝑖] ∀𝑖, 0 ≤ 𝑖 < 𝑁 − 1 (1.3b)

Multiple Statement Reductions. However, the SR framework, including ST,

proposed by Gautam and Rajopadhye [2006] is restricted to optimizing one single

reduction at a time, and it does not consider multiple inter-dependent statements.

This is problematic because 1) ST application introduces new dependencies, and 2)

the new dependencies introduced by STs together with existing dependencies of the

input program may form dependency cycle(s) in the resultant program. To see 1),

Equation (1.2b) introduces the dependency from 𝐵[𝑖] to 𝐵[𝑖 − 1], i.e., 𝐵[𝑖] must be

computed after the 𝐵[𝑖 − 1] for any 𝑖 ∈ [1, 𝑁). To see 2), consider Equation (1.4):

here we extended Equation (1.4a) (same as Equation (1.1)) by Equation (1.4b) and

obtained a program with multiple statements. If we apply ST to Equation (1.4a)

with the reuse vector [−1, 0]𝑇 , we will get the program consisting of three statements:

Equations (1.3a), (1.3b) and (1.4b), which contains dependency cycles. For example,

using “ eq−→” to mean a dependency induced by statement eq, we note that the path

𝐵[𝑁 − 1]
𝑒𝑞. (1.3a)−→ 𝐴[𝑁 − 1]

𝑒𝑞. (1.4b)−→ 𝐵[𝑁 − 2]
𝑒𝑞. (1.3b)−→ 𝐵[𝑁 − 1] forms a cycle.

𝐵[𝑖] =

𝑗≤𝑖∑︁
𝑗=0

𝐴[𝑗] ∀𝑖, 0 ≤ 𝑖 < 𝑁 (1.4a)

𝐴[𝑖 + 1] = 𝑓(𝐵[𝑖]) ∀𝑖, 0 ≤ 𝑖 < 𝑁 − 1 (1.4b)

On the other hand, if we apply ST to Equation (1.4a) with reuse vector [1, 0]𝑇 , we will

get the program consisting of three statements: Equations (1.2a), (1.2b) and (1.4b),

which is a valid program without dependency cycle. Listing 1.3 presents a translation

13

of this program to an imperative language with loops, and it correctly computes array

𝐴 and 𝐵 with complexity 𝒪(𝑁).

1 B[0] = A[0]

2 for(i=1; i < N; i++)

3 B[i] = B[i−1] + A[i]

4 A[i+1] = f (B[i])

Listing 1.3: Optimized PS with multiple statements

In summary to the above observations, the key challenge of optimizing multiple

inter-dependent statements with reductions is to consolidate ST with dependency

satisfaction.

Contributions. In this work, we term the pattern in Equation (1.4) a multiple-

statement reduction. We present a new technique to automatically optimize multiple-

statement reductions while soundly handling potentially inter-statements dependen-

cies and therefore can automatically generate the code in Listing 1.3. The key idea

behind our approach is that our heuristic algorithm uses the original program’s affine

schedule as a guide to choose among the multiple choices that can be made during

the optimization process. One of our key results is that we show that even though

the algorithm does not consider other viable choices during optimization, given an

affine schedule of the original program and all left-hand-side arrays of reductions, the

algorithm is still optimal for reductions with operators that have inverses. To that

end, in this work, we present the following contributions:

∙ We identify multiple-statement reductions, which were not addressed in the Sim-

plifying Reduction [Gautam and Rajopadhye, 2006] where only a single statement

was considered.

∙ We formalize the task of optimizing a multiple statement reduction by combin-

ing the insights of the Simplifying Reduction framework with insights from ILP

scheduling Pouchet et al. [2011]. We formulate a specification of the problem as a

integer bilinear program.

14

∙ We propose a heuristic algorithm to solve the above optimization problem.

∙ We evaluate our proposed method on benchmark suites consisting of standard prob-

abilistic inference algorithms and probabilistic models. Our results show that our

approach reduces the complexity of the reductions in our programs to their optimal

complexity for all of the 11 programs evaluated. In each 10 out of the 11 programs,

the complexity improves by a (multiplicative) factor of at least 𝑁 , where 𝑁 is the

size of the input data 1. This is significant because for typical real appplication

inputs of the programs in consideration, 𝑁 is in the range of 104 to 106 – a factor

that subsumes other potential constant factor improvements. We also confirm this

significance by showing that the speedups in wall-clock time ranges from 30x to

over 108x. We also outline the limits of the optimality of our approach, noting that

our technique is not optimal if a reduction operator lacks an inverse operation.

In summary, multiple-statement reduction is a key ingredient of probabilistic infer-

ence algorithms, which are driving an emerging class of new programming languages

and systems Gelman et al. [2015], Daniel Huang [2017], Goodman and Stuhlmüller

[2014], Bingham et al. [2018], Cusumano-Towner et al. [2019], Narayanan et al. [2016],

Mansingkha et al. [2018], Tran et al. [2017] designed to streamline science and enable

new applications. Optimizing these algorithms has historically either been done by

hand or has been baked in as a domain/algorithmic-specification optimization for a

single problem model Holmes et al. [2012], Liu [1994]. To the best of our knowledge,

our results are the first to identify and formulate multiple-statement reductions as a

general program pattern, detail their challenges, and propose a technique to optimize

their performance.

Road Map. In Chapter 2, We illustrate a heuristic algorithm to address the multiple-

statement reduction described in Chapter 1. In addition, to further motivate the

problem in the context of existing well-known algorithms, we present another moti-

vating example which will be used for evaluation later in the paper. In Chapters 3
1For programs we consider, for example, this is usually the number of data points or the number

of words of a text corpus. We include a more detailed review of input sizes for each benchmark in
Section 8.1

15

and 4, we review backgrounds on polyhedral model and SR, respectively. In Chapter 5

we formalize our problem as a integer bilinear program. In Chapter 6 we introduce

the proposed heuristic algorithm. In Chapters 7 and 8 we discuss the implementation

of our proposed algorithm and its evaluation. In Chapters 9 and 10 we summarize

some related work with concluding remarks.

16

Chapter 2

Example

2.1 Walk Through

In this section, we use the example of Equation (1.4) to 1) illustrate the steps of ST

applications given reuse directions, 2) illustrate the valid ST application that leads to

dependency cycles, and compare it to the valid ST application, using the algorithm

proposed in Gautam and Rajopadhye [2006], and 3) describe the mechanism of our

proposed heuristic algorithm, following the intuition we get from the comparison in

2).

Naive Prefix Sum. For ease of comparison and better visualization, we present

the input in Equation (1.4) with Figure 2-1, a visual, polyhedral interpretation

of the naive prefix sum program in Equation (1.4). In Figure 2-1, the top poly-

hedron with red dots represents the iteration domain of the reduction statement,

𝐵[𝑖]+ = 𝐴[𝑗], with each red dot denoting an iteration instance of the statement.

The bottom polyhedron with blue squares represents the iteration domain for the

statement 𝐴[𝑖 + 1] = 𝑓(𝐵[𝑖]). The middle polyhedron with orange diamonds is an

additional polyhedron that our technique inserts into the program’s polyhedral rep-

resentation to denote the completion of each reduction B[i].

17

Figure 2-1: Naive prefix sum (Equation (1.4))

Data Dependencies. Each arrow in Figure 2-1 represents a data dependence be-

tween iteration instances. An arrow from iteration instance 𝑎 to instance 𝑏 represents

a data dependence from 𝑎 to 𝑏. The implication is that 𝑎 needs to execute before 𝑏.

There are three sources of data dependencies:

∙ Reduction. Each point in the middle polyhedron depends on all the points in

the respective column of the top polyhedron. These dependencies are those of

the reduction.

∙ Use. Each point in the bottom polyhedron depends on the point in the respec-

tive column of the middle polyhedron. These dependencies are those from the

use of the results of the reduction.

∙ Update. Points in each row of the top polyhedron depend on the point in the

bottom polyhedron that is one to the left of the leftmost point of the row. These

dependencies are those induced by the update to 𝐴[𝑖 + 1] in Equation (1.4b)

18

and use by Equation (1.4a).

Incorrect Optimization. Figure 2-2 presents two diagrams that illustrate an in-

correct application of ST using Gautam and Rajopadhye [2006] ignoring the depen-

dencies due to multiple-statement reduction.

Instead of using the correct reuse vector [1, 0]𝑇 , this application uses the vector

[−1, 0]𝑇 . This vector maps iteration instances [𝑖, 𝑗] to instances [𝑖− 1, 𝑗]. The organi-

zation of the diagram Figure 2-2a shows a mapping from the red shaded polyhedron

the green shaded polyhedron, with each solid blue arrow represents the mapping be-

tween instances of the corresponding polyhedron. The green polygons outlined in

red circles are the intersection of the two polyhedrons. Note that because the reuse

vector has property that the evaluation of reduction body 𝐴[𝑗] are the same for any

two points in the same row, the evaluation of a reduction over any column col in

this intersection triangle must have the same value as the evaluation of a reduction

over the column to the left of col. Therefore the intersection part of the domain

will be eliminated eliminated by ST, by reusing previously computed reductions (i.e.

compute 𝐵[𝑖] from 𝐵[𝑖− 1] by incrementalizing using points not in the intersection).

Figure 2-2b shows the pruned digram from Figure 2-2a. The top polyhedron now has

the red circles at the rightmost column and green polygon dots along the hypotenuse

of the shifted domain 1.

Point 𝑑 and the red circles column in the top polyhedron in Figure 2-2b correspond

to the reduction that initializes B[N-1] in Equation (1.3a). All points in the middle

polyhedron except 𝑑 then correspond to Equation (1.3b), i.e., each B[i] is computed

by subtracting the successor point B[i+1] by A[i]. Dependencies in Figure 2-2b are

preserved from Figure 2-2a, with the newly introduced dependency along the reuse

vector in the middle polyhedron, which is represented by solid orange arrows pointing

to the left. However, as mentioned in Chapter 1, Figure 2-2b’s dependencies form

cycles; for instance, points 𝑎, 𝑏, 𝑐, 𝑑 forms a cycle. Therefore, the transformed program

in Figure 2-2b does not have a valid schedule, and consequently the application of
1hypotenuse limited to the domain of projected domain of the reduction (i.e. does not include

point (−1, 0))

19

(a) After shift (b) After transformation

Figure 2-2: Incorrect optimization of prefix sum with multiple statement dependency

(a) After shift (b) After transformation

Figure 2-3: Correct optimization of prefix sum with multiple statement dependency

ST along the reuse vector with mapping [𝑖, 𝑗] → [𝑖 − 1, 𝑗] produces an incorrect

optimization.

Correct Optimization. Figure 2-3 presents two diagrams, corresponding to the

two steps to correctly applying ST in Gautam and Rajopadhye [2006], respectively.

Figure 2-3a illustrates the first step of the algorithm, where the algorithm chooses a

reuse vector and shifts the reduction statement’s iteration domain along the vector.

That is, Figure 2-3a illustrates the shift along the reuse vector, [1, 0]𝑇 , which maps

iteration instances [𝑖, 𝑗] to instances [𝑖+1, 𝑗]. As shown in this figure, this corresponds

to the mapping of top polyhedron, colored in red, to its shifted counterpart, colored

in green. Each solid blue arrow represents the mapping from an instance in the red

20

polyhedron to its counterpart in the green polyhedron. The green polygons outlined

in red circles are again the points in the intersection of the two polyhedrons, which,

same as the previous example of incorrect ST application, will be eliminated by ST.

Figure 2-3b corresponds to the resulting polyhedron and dependence structure

after ST eliminates redundant computations, by applying the correct ST with reuse

vector [1, 0]𝑇 to Equation (1.4) (Equations (1.2a), (1.2b) and (1.4b)). Each instance

in the intersection of the two polyhedrons has been eliminated, along with its induced

dependencies. The middle polyhedron also has new dependence edges: an edge has

been added between reduction instances along the direction of the reuse vector. This

polyhedron denotes the iteration domain of Line 3 in Listing 1.3. Each new depen-

dence edge therefore reflects that each B[i] is computed from B[i - 1].

Heuristic for choosing a valid direction. As we have seen from the previous

illustration, it is important to choose a valid reuse vector with multiple-statement

reductions. In this work, we propose a heuristic algorithm for choosing a valid reuse

vector. Notably, one key difference between Figures 2-2 and 2-3 is the dependencies

drawn on the middle polyhedron. Specifically, in the middle polyhedron of Figure 2-3,

the drawn dependencies on B[𝑖] respects the scheduled computation order of B[𝑖] of the

original program in Figure 2-1, whereas that of Figure 2-2 disobeys that scheduled

order. This observation has inspired the heuristic algorithm that always chooses the

reuse vector that is consistent with the scheduled computation order of the LHS of

the reduction. We show that the reuse vector chosen with this algorithm is 1) always

sound, and 2) guarantees optimality if each reduction operator in the target program

has an inverse.

2.2 Motivating Example

Specification and Implementation. Consider the following specification of Gibbs

Sampling [Geman and Geman, 1984] on a two-cluster Gaussian Mixture Model [see

for example, Murphy, 2012] (GS-2GMM). The input to GS-2GMM is a float array

21

Obs that represents the observations. Informatively, the two-cluster Gaussian Mixture

Model (GMM) assumes that each single observation belongs to one of the two clusters,

and that each cluster follows a Gaussian distribution. The goal of GS-2GMM is

to sample the the array Z that represents the cluster membership of each of the

given the observations, following the desired GMM distribution. It achieves this

goal by iteratively taking in an old cluster assignment for each observation in turn,

and samples a new one by updating the assignments of the remaining observations.

This process will produce a stream of Zs which will respect the distribution of cluster

assignments. The mathematical specification of GS-2GMM is given in Equation (2.1).

1 int[N] C0L, C1L, C0R, C1R = {0...} // Zero initialize

2 float[N] S0L, S1L, S0R, S1R = {0...} // Zero initialize

3 for(i = 1; i < N; i++)

4 C0R[0] += (Z[i] == 0 ? 1 : 0)

5 C1R[0] += (Z[i] == 1 ? 1 : 0)

6 S0R[0] += (Z[i] == 0 ? Obs[i] : 0)

7 S1R[0] += (Z[i] == 1 ? Obs[i] : 0)

8 for(i = 0; i < N; i++)

9 // Sample according to Equations (2.1d) to (2.1f)

10 Z’[i] = sample(C0L[i] + C0R[i], C1L[i] + C1R[i],

11 S0L[i] + S0R[i], S1L[i] + S1R[i])

12 // Incremental updates

13 C0L[i] = C0L[i−1] + (Z’[i] == 0 ? 1 : 0)

14 C1L[i] = C1L[i−1] + (Z’[i] == 1 ? 1 : 0)

15 S0L[i] = S0L[i−1] + (Z’[i] == 0 ? 1 : 0)

16 S1L[i] = S1L[i−1] + (Z’[i] == 1 ? 1 : 0)

17 C0R[i] = C0R[i−1] − (Z[i] == 0 ? 1 : 0)

18 C1R[i] = C1R[i−1] − (Z[i] == 1 ? 1 : 0)

19 S0R[i] = S0R[i−1] − (Z[i] == 0 ? Obs[i] : 0)

20 S1R[i] = S1R[i−1] − (Z[i] == 1 ? Obs[i] : 0)

22

Listing 2.1: Correct optimized GS-2GMM with multiple-statement dependency

𝑃𝑜(𝑧, 𝑖)
abbrev.
= 𝑃 (obs𝑖|obs∖𝑖, 𝑍∖𝑖, 𝑍𝑖 = 𝑧) (2.1a)

𝐶𝑧𝑖 =
∑︁

∀𝑗 𝑠.𝑡.𝑗 ̸=𝑖∧𝑍𝑗=𝑧

1 ,∀𝑧, 𝑖 (2.1b)

𝑆𝑧𝑖 =
∑︁

∀𝑗 𝑠.𝑡.𝑗 ̸=𝑖∧𝑍𝑗=𝑧

obs𝑖 , ∀𝑧, 𝑖 (2.1c)

𝑃𝑜(𝑧, 𝑖) = 𝒩 (
𝑆𝑧𝑖

𝐶𝑧𝑖
, (1 + 𝐶𝑧𝑖)

−1 + 1) (2.1d)

𝑃 (𝑍𝑖 = 0|𝑍∖𝑖, obs) =
𝑃𝑜(0, 𝑖)

𝑃𝑜(0, 𝑖) + 𝑃𝑜(1, 𝑖)
(2.1e)

𝑍𝑖 ∼ 𝑃 (𝑍𝑖|𝑍∖𝑖, obs) ∀𝑖 ∈ [1, 𝑁] (2.1f)

In Equations (2.1b) and (2.1c), 𝐶0𝑖 and 𝑆0𝑖 represent the counts and sums, respec-

tively, of all the observations except the one with index 𝑖, for which the current old

assignment of cluster membership is 0 (and similarly for 𝐶1𝑖, 𝑆1𝑖, with membership of

1). Then a distribution 𝑃 (𝑍𝑖|𝑍∖𝑖, obs) is defined by Equations (2.1d) and (2.1e). In

this example, the distribution is simply tuple of two floats representing the weights

of assiging 𝑍𝑖 to cluster zero or one, respectively. Note that the exact computation

required to produce this tuple is not important for understanding the example. The

key information is that they are produced by a deterministic pure function that de-

pends only on the counts and sums defined above. Lastly, Equation (2.1f) samples

each 𝑍𝑖 in order from this distribution.

Our Approach. Our approach helps to automate the translation from Equation (2.1)

to Listing 2.1. For conciseness of presentation, we take the variable 𝑆𝑧𝑖 and fix 𝑧 = 0

as an example. In this case Equation (2.1c) can be rewritten as sum of two variables

𝑆0𝑖 = S0L[𝑖] + S0R[𝑖], where S0L, S0R are given by Equations (2.2a) and (2.2b), re-

spectively. The step of rewriting in terms of S0L and S0R is standard in polyhedral

model compilation: the original domain with constraint 𝑗 ̸= 𝑖 is non-convex and it’s

23

standard to break it into two convex polyhedrons with constraints 𝑗 < 𝑖 and 𝑗 > 𝑖.

Further, we make the non-affine constraint 𝑍𝑗 = 𝑧 into an simple if-then-else ex-

pression guarding the reduction’s body – this is standard and same as the approach

proposed by Benabderrahmane et al. [2010] to model non-affine constraints as control

predicates.

S0L[𝑖] =

𝑗<𝑖∑︁
𝑗=0

(Z[𝑗] == 0 ? Obs[𝑗] : 0) (2.2a)

S0R[𝑖] =

𝑗<𝑁∑︁
𝑗=𝑖+1

(Z[𝑗] == 0 ? Obs[𝑗] : 0) (2.2b)

... Other equations...

Z’[𝑖] = sample(S0L[𝑖] + S0R[𝑖], ...) (2.2c)

Note that Equations (2.2a) and (2.2c) exactly correspond to Equations (1.4a) and (1.4b)

respectively. Therefore the technique walked through in Section 2.1 also applies to

Equations (2.2a) and (2.2c) for producing efficient complexity specification. Further,

our technique is general in that it handles any multiple-statement reduction, includ-

ing Equation (2.2b) which has constraints 𝑖 + 1 ≤ 𝑗 < 𝑁 . Lastly, the same analysis

can be applied to all cases of 𝐶𝑧𝑖 and 𝑆𝑧𝑖 with either 𝑧 = 0 or 𝑧 = 1. The analyses in

total produces eight variables, namely C0L, C1L, C0R, C1R, S0L, S1L, S0R, S1R, which

applying our technique and after compiling to exectuable code, produces Listing 2.1.

Discussion. The mathematical formulations in Equation (2.1) are commonly found

in fields such as statistics, scientific computing, machine learning, computer vision,

molecular biology, and financial analytics 2. A specification like Equation (2.1) is com-

monly implemented as an executable program, for example in Listing 2.1. Although

Equation (2.1)’s mathematical formulation allows for easier reasoning for humans

(e.g. researchers in the above mentioned fields), its executable implementation in

Listing 2.1 is very different. Therefore one important and practical research problem

2Equation (2.1) is transcribed from Murphy [2012, Section 24.2.4.1], by assuming a simplified
version of GMM with only two clusters.

24

is how do we translate from the mathematical formulations such as Equation (2.1)

to executable implementations such as Listing 2.1 automatically. With this goal of

automatic translation achieved, researchers in the above fields will only need to spec-

ify algorithms in a conceptual high-level DSL similar to Equation (2.1), and then a

compiler will automatically generate efficient implementation with complexity compa-

rable to that of a manual implementation. This has many potential benefits including

implementation correctness gaurantee and faster iteration of algorithm design. In-

deed, many existing and ongoing work in the probabilistic programming community

[Goodman et al., 2008, Daniel Huang, 2017, Goodman and Stuhlmüller, 2014, Bing-

ham et al., 2018, Plummer, 2015, Narayanan et al., 2016, Mansingkha et al., 2018,

Atkinson et al., 2018] allow the user to code in high level DSLs. Though the details of

these systems is out of scope of discussion in this work, one motivation from a prac-

tical perspective is the potential of our method to be integrated into these systems

for generating efficient complexity code.

25

26

Chapter 3

Background: Polyhedral Model

For completeness, we review terminologies in the polyhedral model that we use in

this work.

3.1 Polyhedral Set Representation

We use the following definition and notation for a polyhedral set; the notation is

consistent with integer set library (isl) [Verdoolaege, 2010]’s notation.

Definition 1 (System of affine inequalities). A system of affine inequalities is defined

as 𝐴 · [𝑥⃗, 1]𝑇 ≥ 0⃗: 𝐴 is an 𝑚× (𝑛+1) constant integer matrix and 𝑥⃗ is length 𝑛 vector

of integer unknowns.

Remark 1. We may also express a system of affine inequalities by conjunction of sim-

ple affine inequalities. For example, the system

⎡⎣1 0 0

1 −1 1

⎤⎦ ·
⎡⎢⎢⎢⎣
𝑥

𝑁

1

⎤⎥⎥⎥⎦ ≥ 0⃗ is equivalent

to (𝑥 ≥ 0) ∧ (𝑥 ≥ 𝑁 − 1) — or simply the short hand 0 ≤ 𝑥 < 𝑁 . A simple equality

𝑥 = 0 is short hand for the conjunction of two inequalities (𝑥 ≥ 0) ∧ (−𝑥 ≥ 0).

Definition 2 (Polyhedral set). A polyhedral set 𝒫 , defined as [𝑝] → {[𝑥⃗] : 𝐴 ·

[𝑥⃗, 𝑝, 1]𝑇 ≥ 0}, contains a tuple of parameters [𝑝], a tuple template [𝑥⃗] and a sys-

tem of affine inequalities 𝐴 · [𝑥⃗, 𝑝, 1]𝑇 ≥ 0⃗, where 𝐴 is a matrix of coefficients. We say

[𝑝]→ {[𝑥⃗]} is the space of 𝒫 .

27

Figure 3-1: Plot of example polyhedral relation

For example, [𝑁]→ {[𝑖] : 0 ≤ 𝑖 < 𝑁} denotes the set of integers from 0 to 𝑁 − 1.

The space of this set is [𝑁]→ {[𝑖]}.

Definition 3 (Polyhedral relation). A polyhedral relation [𝑝] → {[𝑥1] → [𝑥2] : 𝐴 ·

[𝑥1, 𝑥2, 𝑝, 1]𝑇 ≥ 0⃗} contains a tuple of parameters [𝑝], tuple templates [𝑥1], [𝑥2] and a

system of affine inequalities 𝐴 · [𝑥1, 𝑥2, 𝑝, 1]𝑇 ≥ 0⃗.

For example, [𝑁]→ {[𝑖, 𝑗]→ [𝑖+1, 𝑗] : 0 ≤ 𝑖 < 𝑁, 0 ≤ 𝑗 < 𝑁} denotes the relation

that maps every integer tuple [𝑖, 𝑗] to [𝑖 + 1, 𝑗] within an 𝑁 -by-𝑁 grid. Figure 3-1

visualizes this relation with 𝑁 = 5: the blue arrows map points corresponding to

integer tuples to their right successors.

Semantically, the polyhedral set provides an intensional description for a set of

tuples, templated by [𝑥⃗], so that all tuples in the set satisfy the system of affine

inequalities. The set is optionally parametric to [𝑝], if [𝑝] is not empty.

Similarly, a polyhedral relation describes a set of binary relations mapping from

[𝑥1] to [𝑥2], for every [𝑥1]-[𝑥2] pair that satisfies the system of affine inequalities; a

polyhedral relation can also be parametric to [𝑝].

For aesthetic reason, we omit parameter [𝑝] when it is clear from the context which

identifiers are parameters.

28

Definition 4 (Face of polyhedral set). Let polyhedral set 𝒫 = [𝑝]→ {[𝑥⃗] : 𝐴·[𝑥⃗, 𝑝, 1] ≥

0⃗}. Let 𝑀𝑖 be the 𝑖-th row of matrix 𝑀 . A face of 𝒫 is defined as ℱ = 𝒫 ∩ ℬ where

ℬ = [𝑝]→ {[𝑥⃗] : 𝐵 · [𝑥⃗, 𝑝, 1] = 0⃗} and ∀𝑖∃𝑗, 𝐴𝑖 = 𝐵𝑗.

In words, a face of 𝒫 is 𝒫 with some subset of (potentially empty or all) inequalities

of 𝒫 changed to equality.

3.2 Polyhedral Representation of Program

The polyhedral model represents a program by a set of statements, and for each state-

ment, an associating polyhedral set known as the statement’s domain. Each point in

a polyhedral set correspond to one concrete execution instance of the statement.

IR. Following formalization by the original SR work [Gautam and Rajopadhye,

2006, Yuki et al., 2013], we use an equation based representation of program in this

work, presented in grammar by Listing 3.1.

1 <prog> := <stmt>+

2 <stmt> := LHS[<afflist>] (= | ⊕=) <expr> : 𝒫

3 <expr> := <expr>? ⊕ <expr> | ARR[<afflist>] | CONST

4 <afflist> := (<aff> ,)* <aff>

Listing 3.1: IR Grammar

We explain each component in turn:

∙ prog a program consists of multiple statements.

∙ stmt a statement is left hand side (i.e. LHS<aff>), middle assignment operator (i.e.

= or ⊕=) , a right hand side expression (i.e. <expr>), and its domain (i.e. 𝒫). A

statement is a normal assignment statement when the middle assignment operator

is plain =; a statement is a reduction when the middle assignment operator is ⊕=.

∙ expr an expression is either an unary or binary operator applied on expression(s),

or an array reference (i.e. ARR[<aff>]).

29

∙ aff an affine expression is a kind of expression that applies affine transformation

to variables and produces a scalar. It references only variables in 𝑥⃗ or 𝑝, where

[𝑝]→ {[𝑥⃗]} is the space of 𝒫 .

∙ afflist a list of affine expressions. Array references (i.e. LHS[<afflist>] and ARR[

<afflist>]) must have indices that are an affine expressions. An <afflist> of length

𝑛 can be expressed mathematically as an affine transformation 𝐴 · [𝑥⃗, 𝑝, 1]𝑇 , where

𝐴 is a constant 𝑛× (|𝑥⃗|+ |𝑝|+ 1) integer matrix and 𝑥⃗, 𝑝 defined same as those for

<aff>.

∙ 𝒫 a polyhedral set representing the statement’s domain; since each point in the

domain corresponds to one concrete execution instance of the statement, if 𝒫 is

[𝑝] → {[𝑡] : 𝑒}, then 𝑝 correspond to parameters of the program, 𝑡 correspond the

set of loop variables of the statement.

3.2.1 IR Semantics

Access Relation. An access relation is a polyhedral relation mapping from the

space of a statement’s domain to the space of an accessed array. An access relation

can either b a write access relation (in case of LHS<afflist>), or a read access relation

(in case of RHS<afflist>). Let ARR[<afflist>] be an array reference for a statement

with space [𝑝] → {[𝑥⃗]} and <afflist> expressed as 𝐴 · [𝑥⃗, 𝑝, 1], the access relation for

this array access is [𝑝]→ {[𝑥⃗]→ [𝑦⃗] : 𝐴 · [𝑥⃗, 𝑝, 1] = 𝑦⃗}.

Reduction projection. If a statement is a reduction, we define the projection of

the reduction proj as the write access relation of LHS array reference of the reduction.

SSA. Following Gautam and Rajopadhye [2006], our IR requires the program to

be in array static-single-assignment (Array SSA) form[Feautrier, 1988]; that is, each

array element is never written twice during program execution. To our IR, this means

for each unique LHS array, and the statements S0...S𝑘 that writes to it,
⋂︀

𝑖𝒲S𝑖
= ∅,

where 𝒲S𝑖
is the write access relation for S𝑖.

30

Semantics. We use usual semantics from array languages [Yuki et al., 2013] for our

IR. Specifically, a statement is evaluated under each point of its domain 𝒫 . An ex-

pression is evaluated under a point by substituting the free variables of the expression

with the instantiated values of those variables under that point. For example, A[N -

i + 1] evaluates to the value of 𝐴[9] at point [𝑁] → {[𝑖] : 𝑁 = 10 ∧ 𝑖 = 2}. If the

statement is a normal assignment, for each point in 𝒫 the right hand side expression

is evaluated and assigned to the left hand side array. If the statement is a reduction,

for each point 𝑝 ∈ 𝒫 the right hand side expression is evaluated, and its value is

accumulated into LHS at point 𝑝′ = 𝑝𝑟𝑜𝑗(𝑝) using the operator ⊕ where proj is the

projection of the reduction as defined previously.

3.3 Polyhedral Model Scheduling

Scheduling is a step in polyhedral model where a scheduling function assigns each

point in a statement’s domain a timestamp, denoting the order of all execution in-

stances. This step is essential for multiple-statement programs because the times-

tamps are assigned to respect the inter-statement and intra-statement dependencies.

3.3.1 Scheduling Function

Definition 5 (Schedule Timestamp). A schedule timestamp is an 𝑚-dimensional

vector, where 𝑚 is the upper bound on the dimension of the schedule. For two

timestamps 𝑇1 and 𝑇2, 𝑇1 < 𝑇2 (𝑇1 happens before 𝑇2) iff 𝑇1[𝑖] < 𝑇2[𝑖] where 𝑖 is the

first non-equal index between 𝑇1, 𝑇2.

A schedule Θ for a program is a collection of scheduling functions, one for each

statement. The scheduling function for a statement S is an affine transformation, rep-

resented by the matrix Θ𝑆, that maps statement S’s domain to its schedule timestamp.

For a statement S with domain in space [𝑝]→ {[𝑥⃗]}, its 𝑚 dimensional timestamp 𝑇S

31

is given by the 𝑚× (|𝑥⃗|+ |𝑝|+ 1) scheduling function Θ𝑆:

𝑇S = ΘS ·

⎡⎢⎢⎢⎣
𝑥⃗

𝑝

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝜃1,1 ... 𝜃1,|𝑥⃗|+|𝑝|+1

... ...
...

𝜃𝑚,1 ... 𝜃𝑚,|𝑥⃗|+|𝑝|+1

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣
𝑥⃗

𝑝

1

⎤⎥⎥⎥⎦ (3.1)

3.3.2 Dependence Relation

Any two statements S,T must satisfy a dependence relation represented by a poly-

hedral relation 𝒟S,T = [𝑝] → {[𝑥𝑠] → [𝑥𝑡] : 𝐷S,T ·
[︁
𝑥𝑠, 𝑥𝑡, 𝑝, 1

]︁𝑇
≥ 0⃗}, and 𝐷S,T is

the dependency matrix. The dependence relation 𝒟S,T describes the happens before

relation between iterations of S and T. For a pair of statements S,T, let S writes to

LHS and T’s RHS expression reads elements of LHS. The dependence relation 𝒟S,T

is equal to ℛ−1 ∘ 𝒲 , where ℛ,𝒲 are the read and write access relations for LHS

of the two statements respectively, ℛ−1 denotes the inverse of the polyhedral rela-

tion ℛ, and ∘ denotes composition. Previous work [Collard et al., 1995, Verdoolaege

et al., 2013] and textbook [Verdoolaege, 2016] contains a detailed introduction to

dependence analysis techniques, which we refer to the reader for a deeper exposure.

3.3.3 ILP formulation of scheduling

The task of scheduling a program in polyhedral model is to find a schedule Θ for the

program such that the schedule timestamps for all statements instances satisfy the

dependence relations of the program. Pouchet et al. [2011] formalized the scheduling

32

problem for obtaining 𝑚-dimensional schedule as the following convex problem:

∀𝒟𝑆,𝑇 ,∀𝑘, 𝛿
𝒟𝑆,𝑇

𝑘 ∈ {0, 1} (3.2a)

∀𝒟𝑆,𝑇 ,
𝑚∑︁
𝑖=1

𝛿
𝒟𝑆,𝑇

𝑘 = 1 (3.2b)

∀𝒟𝑆,𝑇 ,∀𝑘 ∈ [1,𝑚],∀[𝑥⃗𝑆, 𝑥⃗𝑇 , 𝑝] ∈ 𝒟𝑆,𝑇 (3.2c)

Θ𝑘
𝑆 ·

⎡⎢⎢⎢⎣
𝑥⃗𝑆

𝑝

1

⎤⎥⎥⎥⎦−Θ𝑘
𝑇 ·

⎡⎢⎢⎢⎣
𝑥⃗𝑇

𝑝

1

⎤⎥⎥⎥⎦ ≥ −
𝑘−1∑︁
𝑖=1

𝛿
𝒟𝑆,𝑇

𝑖 (𝐾𝑝 + 𝐾) + 𝛿
𝒟𝑆,𝑇

𝑘 (3.2d)

In words, the formulation creates a binary variable 𝛿
𝒫𝑆,𝑇

𝑘 for each 𝑘 ∈ [1,𝑚] di-

mensions, and each pair of dependence relation in the program. The binary variable

is used to model entry by entry comparison of an 𝑚 dimensional timestamp. Con-

straint c) finally encodes that the schedule function Θ𝑆 and Θ𝑇 must satisfy that 𝑥⃗𝑆

is schedule before 𝑥⃗𝑇 , if the dependence 𝑥⃗𝑆 → 𝑦⃗𝑇 exists — that is, [𝑥⃗𝑆, 𝑥⃗𝑇 , 𝑝]𝑇 ∈ 𝒟𝑆,𝑇 .

The variable 𝐾 is a known constant obtainable from the original program, and is an

upper bound modeling technique to make the problem convex. Pouchet et al. [2011]

shows that this problem is equivalent to an ILP thanks to Farkas’ Lemma [Schrijver,

1986], solving which produces the desired schedule coefficients Θ in Section 3.3.1

33

34

Chapter 4

Background: Simplifying Reduction

Framework

Previous work Gautam and Rajopadhye [2006] introduced a core transformation

called simplification transformation (ST) that can potentially transform a single state-

ment specified in Listing 3.1 to lower its complexity, along with a set of enabling

transformations: reduction decomposition, same operator transformation, distributiv-

ity transformation and higher order operator transformation. For the core transfor-

mation, we will use an example from Chapter 1 to illustrate the transformation. For

the enabling transformations, we will include a brief description for each transforma-

tion. Finally, Gautam and Rajopadhye [2006] combines all the transformations to

provide a dynamic programming algorithm to efficiently choose from an infinite set

of configurations and orders for the transformations, a sequence of transformations

that lead to optimal complexity reduction.

4.1 Simplification Transformation

Here we use take the example from Section 2.1 to illustrate the core simplification

transformation that reduces complexity of a reduction. The full specification of ST

can be found in Appendix B and Gautam and Rajopadhye [2006].

Listing 4.1 illustrates the example of applying ST (Section 3.2) to Equation (1.4)

35

S1 : BTmp[𝑖] += A[𝑗] : {[𝑖, 𝑗] : 0 ≤ 𝑖 < 𝑁 ∧ 0 ≤ 𝑗 ≤ 𝑖}
S1Fin : B[𝑖] = BTmp[𝑖] : {[𝑖] : 0 ≤ 𝑖 < 𝑁}
S2 : A[𝑖 + 1] = B[𝑖] : {[𝑖] : 0 ≤ 𝑖 < 𝑁}
⇓
S1Add : BTmpAdd[𝑖] += A[𝑗] : {[𝑖, 𝑗] : 0 ≤ 𝑖 < 𝑁 ∧ 𝑖 = 𝑗}
S1AddOnly : BTmp[𝑖] = BTmpAdd[𝑖] : {[𝑖] : 𝑖 = 0}
S1AddReuse : BTmp[𝑖] = BTmp[𝑖− 1] + BTmpAdd[𝑖] : {[𝑖] : 1 ≤ 𝑖 < 𝑁}
S1Fin : B[𝑖] = BTmp[𝑖] : {[𝑖] : 0 ≤ 𝑖 < 𝑁}
S2 : A[𝑖 + 1] = B[𝑖] : {[𝑖] : 0 ≤ 𝑖 < 𝑁}

Listing 4.1: ST in polyhedral IR for the example in Chapter 1 (Equation (1.4)),
given a correct reuse vector [1, 0]𝑇

and producing the optimized version (Equations (1.2a), (1.2b) and (1.4b)) in our IR.

As we mentioned before, core ST operates on single statement only, and produces

correct result for multiple statements if a correct reuse vector is given.

Original Reduction. Specifically, Listing 4.1 presents the reduction in Equation (1.4a)

in the polyhedral IR as the statement S1 with domain 𝒫 = [𝑁] → {[𝑖, 𝑗] : 0 ≤ 𝑖 <

𝑁 ∧ 0 ≤ 𝑗 ≤ 𝑖} in Listing 4.1. The right hand side expression is A[𝑗], and 𝑖 is not a

bound variable – this means given a fixed 𝑗, the right hand side’s values are the same

for different values of 𝑖.

Optimized Reduction. The optimized prefix sum is symmetric to that in code,

with the addition of a statement S1Add, which provides the contents of BTmpAdd.

Specifically, S1Add is a polyhedral over the full space of 𝑖 that sets BTmpAdd[i] to

equal A[i]. TAddOnly next initializes BTmp[0] (as on Line 1 of Listing 1.3) and

S1AddReuse incrementally computes the remaniningg values of BTmp (as on Line 3 of

Listing 1.3).

Algorithm (Reuse Vector). To identify this optimization opportunity and gen-

erate the optimized code, the Simplifying Reduction transformation identifies a reuse

vector by which shifting the original, unoptimized polyhedral (𝒫) makes plain that

consecutive iterations of the polyhedral overlap and can therefore be incrementalized.

Consider the reuse vector 𝑟⃗ = [1, 0]𝑇 , that shifts all points [𝑖, 𝑗] to [𝑖 + 1, 𝑗]; 𝑟⃗ can

36

also be represented by the polyhedral relation {[𝑖, 𝑗]→ [𝑖 + 1, 𝑗] : ∀𝑖, 𝑗}. The arrows

in Figure 4-1 visualizes 𝑟⃗ over the domain of the original reduction (red dots in the

shaded red triangle).

Figure 4-1: Visualization of algorithm on prefix sum example

Given this reuse vector, STthe Simplifying Reduction transformation performs the

following steps:

∙ Shift. The transformation first shifts T’s polyhedral along the direction of the

reuse vector, transforming {[𝑖, 𝑗] : 0 ≤ 𝑖 < 𝑁 ∧0 ≤ 𝑗 ≤ 𝑖} (red dots in Figure 4-

1) into {[𝑖, 𝑗] : 1 ≤ 𝑖 < 𝑁 + 1 ∧ 0 ≤ 𝑗 ≤ 𝑖 − 1} (green hexagon points in the

shaded green triangle in Figure 4-1) .

∙ Intersect. The transformation next computes the intersection of the shifted

polyhedral with its original polyhedral, yielding {[𝑖, 𝑗] : 1 ≤ 𝑖 < 𝑁 ∧ 0 ≤ 𝑗 ≤

𝑖 − 1} (overlapped points in the shaded purple triangle in Figure 4-1). This

polyhedral denotes the subset of points of the original domain 𝒫 , whose value

can be reused from the predecessor points as indicated by the reuse vector.

∙ Project. Finally, the transformation projects the result onto the space of

polyhedral that represents the indices of left hand side array S. Concretely, the

37

transformation applies the projection represented by the polyhedral relation

{[𝑖, 𝑗]→ [𝑖] : ∀𝑖, 𝑗}), yielding the polyhedral {[𝑖] : 1 ≤ 𝑖 < 𝑁}.

This final polyhedral is exactly the domain of elements of S that exhibits reuse

along the reuse vector 𝑟⃗. For this example, this means that instead of computing S[𝑖]

with the original accumulation S[𝑖] += A[𝑖], the transformation computes S[𝑖] with

S[𝑖] = S[𝑖− 1] + A[𝑖] on the final polyhedral domain {[𝑖] : 1 ≤ 𝑖 < 𝑁}.

Completion. The polyhedral {[𝑖] : 1 ≤ 𝑖 < 𝑁} does not cover the full domain of

the original reduction. Specifically, it is missing S[𝑖] on the domain {[𝑖] : 𝑖 = 0} –

that is, exactly when 𝑖 = 0. The value of S[0] should be equal to A[0]. Therefore, we

should expect two IR statements: one statement for initializing S[0] to A[0], and one

statement incrementing while reusing a previous value of S[𝑖− 1].

The transformed code in Listing 4.1 captures this intuition: T-add-only for initial-

ization and T-add-reuse for incrementing and reusing; however, instead of directly

using A[𝑗], the transformation uses an auxiliary array S_ADD, which is useful for gen-

eralizing to cases where initialization or incrementalization requires more than one

value from the right hand side expression (i.e. A).

4.2 Configuration of Simplification Transformation

A fully automated optimizing compiler should automatically identify a reuse direction

𝑟⃗ and apply ST. There are several considerations when comes to choosing 𝑟⃗.

∙ Complexity: performing ST along 𝑟⃗ reduces the complexity of the computa-

tion.

∙ Inverse: if ⊕ does not have an inverse, performing ST along 𝑟⃗ should not

require an inverse operator.

∙ Sharing: RHS expression presents sharing (defined below) along 𝑟⃗.

Each of the requirement prescribes a set, potentially an infinite set, of vectors 𝑟⃗,

which we explain below:

38

Complexity. We require that applying ST along reuse vector 𝑟⃗ reduces the com-

plexity of the program. The complexity of a program will not increase after applying

ST for any 𝑟⃗; however, the complexity can stay the same if 𝑟⃗ is chosen along a di-

rection where the original polyhedral domain 𝒫 has constant thickness – that is, the

extent of 𝒫 is bounded by some constant not parameterized by the input parameters

of the program. For example, consider an extreme case of the prefix sum example

(Listing 1.1, Listing 1.2) but with the input parameter 𝑁 fixed to some constant –

say 𝑁 = 4. The complexities before and after ST will be the same – 𝒪(1) – since

both programs will perform a fixed number of computations. For a statement S with

domain 𝒫 , we use ℒ(𝒫) to denote the set of vectors 𝑟⃗ that satisfies the complexity

condition.

Inverse. If ⊕ does not have an inverse, we require that applying ST along a vector

𝑟⃗ will not introduce statements that requires the inverse operator of ⊕. For example,

if ⊕ is min() or max(), it does not have an inverse; in such cases, Gautam and

Rajopadhye [2006] introduces the concept of Boundary Constraints – which in short

is the set of constraints of the domain 𝒫 that are orthogonal to the projection proj –

and require that 𝑟⃗ must be pointing out of (instead of pointing into) the boundaries

of 𝒫 corresponding to the Boundary Constraints. For a statement S, we use ℐ(S) to

denote the set of vectors 𝑟⃗ that satisfies the inverse condition.

Sharing. We require that applying ST along a vector 𝑟⃗ where the right hand side

expression of the considered reduction presents sharing along 𝑟⃗. For example in

Section 4.1, we analyzed that the prefix sum example has sharing along direction of 𝑖.

Gautam and Rajopadhye [2006] introduced an algorithm to determine the share space,

the space formed by all reuse directions, given an equationally specified reduction.

For a statement S, we use 𝒮(S) to denote the set of vectors 𝑟⃗ that satisfies the inverse

condition.

In general, for a statement S, denote its domain as S.domain; we would like to

find the intersection ℛ(S) = ℒ(S.domain) ∩ ℐ(S) ∩ 𝒮(S), so that any 𝑟⃗ ∈ ℛ(S) is a

39

valid reuse vector to perform ST.

4.3 Recursive ST

Notice in Listing 4.1 that statement Tadd still contains a reduction. Although for this

example Tadd does not have further ST opportunities, in general, the residual reduc-

tion might still have available ST opportunities so that ST can be applied recursively

to all introduced reductions 1.

1In general, ST can also introduce more than one reduction; we include a full description of ST
in Appendix B.

40

Chapter 5

Multiple-Statement SR Problem

In this section, we state the Multiple-Statement Simplifying Reduction (MSSR) prob-

lem. In particular, we focus on the core of the Simplifying Reduction approach – the

Simplification Transformation in Section 4.1 – and do not consider the Simplifying

Reduction framework’s additional enabling transformations. These transformations

increase available simplification opportunities; we briefly touch on enabling transfor-

mations in Section 5.3.

41

5.1 Problem Statement

Ideally we’d formulate the Multiple Statement Simplifying Reduction (MSSR) as

follows:

minimize complexity(prog′) (5.1a)

subject to

prog1 = prog, prog′ = prog𝑛 (5.1b)

∀𝑖 ∈ [2, 𝑛] : prog𝑖 = STS𝑖,𝑟⃗𝑖(prog
𝑖−1) (5.1c)

𝑟⃗𝑖 ∈ ℒ (S𝑖.domain) ∩ ℐ (S𝑖) ∩ 𝒮 (S𝑖) (5.1d)

∃ schedule Θ of prog𝑛, (5.1e)

s.t. Θ satisfies dependence(prog𝑛) (5.1f)

given prog, dependence(𝑝𝑟𝑜𝑔) (5.1g)

variables S1, S2, ..., S𝑛, 𝑟1, 𝑟2, ..., 𝑟𝑛 (5.1h)

This states that given a program 𝑝𝑟𝑜𝑔, and all pairwise dependencies between those

statements, dependence (prog), apply a sequence of 𝑛 ST transformations, STS1,𝑟⃗1 , ...

, STS𝑛,𝑟⃗𝑛 that minimizes the complexity of the resulting program, prog′. Here we use

STS,𝑟⃗(prog) to denote an ST that is applied on a statement S in prog along the reuse

vector 𝑟⃗. Further, Equation (5.1d) requires each 𝑟𝑖 to satisfy the constraints (i.e.

complexity, inverse and sharing, denoted by ℒ(.), ℐ(.),𝒮(.) respectively) as stated in

Section 4.2.

Unfortunately, Equation (5.1) has three issues: 1) it is not a well-defined formula-

tion due to the unknown 𝑛 2) it has infinite space for 𝑟⃗𝑖 3) it has impractically large

space for S𝑖.

First, it is not a well-defined formulation: to define its variables, the problem relies

on an oracle to produce 𝑛, the total number of ST applications – even though there

is no readily apparent bound on that number. To elaborate, each ST application

removes one statement, and introduces zero to two reductions that are potentially

applicable for further ST applications – thus one needs justification that recursively

applying ST always terminates in order to bound 𝑛.

42

Secondly, even if we assume that 𝑛 is given and bounded, the formulation does not

readily translate to an executable algorithm. Specifically, enumeratively searching all

possible 𝑟⃗𝑖 combinations is not feasible: each 𝑟⃗𝑖 alone is chosen from an infinite set of

vectors, and the entire search space is also infinite; therefore the search space of 𝑟⃗𝑖s

is impossible to navigate with enumerative search.

Thirdly, also assuming 𝑛 is given and bounded, the program relies on a sequence

of S𝑖s, to specify on which statement in prog𝑖 to perform ST. Although, unlike the

case of 𝑟⃗𝑖, the number choices for each S𝑖 is finitely bounded (i.e. by the number of ST

applicable reductions in the program), the combinations of all possible (S1, ...S𝑛) has

at least |S1|! possibilities: assuming the best case scenario where each ST applications

removes one reduction and introduces zero reductions that are potentially applicable

for further ST applications, which imples the 𝑖th ST application has 𝑛−𝑖+1 remaining

alterantive choices of S𝑖 (i.e. |S𝑖| = 𝑛− 𝑖+ 1). Therefore the search space of S𝑖 is also

not practical to navigate with enumerative search.

We will resolve these issues with a correct formalization in the rest of Chapter 5.

Specifically, we show, for a program, an one-to-one correspondance between all its po-

tential ST applications and all faces of its reductions’ domains. This correspondance

resolves the first issue by bounding the number of ST applications to the number

of faces of the program. This correspondance also allows a construction of an In-

teger Bilinear Programming (IBP) formulation to MSSR, which avoids the explicit

enumerative search in the second and third issue.

5.1.1 Per-face ST application

We first make the following observation of ST on single statement S with domain

𝒫 : if we apply ST on S, we can then recursively apply ST on the newly introduced

reductions, as in Section 4.3, and this is exactly the root problem of the incorrect

formulation Equation (5.1): this recursion appears non-terminating. We will solve

this issue by stating and proving Lemma 2 — to this end, we first recall Lemma 1

from Gautam and Rajopadhye [2006] that we will use in our proof. We then state

Lemma 2 and give a proof.

43

Lemma 1 (Local Face Correspondance [Gautam and Rajopadhye, 2006, Theorem

3]). Let 𝒫 ′ be the translation of an 𝑛-dimensional 𝒫 along 𝑟⃗, then 𝒫−𝒫 ′ = ⊎𝒫𝑖, and

there exist an one-to-one map such that each 𝒫𝑖 correspond uniquely to a (𝑛 − 1)-

dimensional face of 𝒫 .

Lemma 2 (Global Face Correspondance). Each recursive application of ST is on a

subset (a polyhedral set) of 𝒫 , and all subsets correspond exactly one-to-one to all

faces of 𝒫 .

Proof. Given a statement S with domain 𝒫 , ST performs a shift of 𝒫 along a given

reuse vector to 𝒫 ′; new reduction statements are introduced over domains 𝒫 − 𝒫 ′

and 𝒫 ′ − 𝒫 . Note that these two domains are non-convex half shells around the

original domain 𝒫 , and together form a full shell around 𝒫 . The two shells are both

non-convex, however by Lemma 1, they decompose into convex polyhedral domains,

each corresponding to a unique (𝑛− 1)-dimensional face of the 𝑛-dimensional 𝒫 .

Since ST is applied recursively on these decomposed (𝑛−1)-dimensional faces and

then on the sequence of (𝑛− 𝑖)-dimensional faces until the recursion hits the vertices

of 𝒫 . The entire recursion is therefore a procedure that enumerates through all faces

of a statement S’s full domain 𝒫 and assigns a reuse vector to each face.

With Lemma 2, the recursive ST application always terminates since the number

of faces of 𝒫 is finite. Further, this introduces a per-face application view of ST —

under this view, the algorithm first chooses a reuse vector for each face of 𝒫 up-front;

it then uses the same recursive ST application starting at 𝒫 same as before; however,

for each sub-domain’s ST application, it uses the reuse vector assigned for the face

corresponding to that sub-domain. Lastly, note that the reuse vector assigned to

each face is parallel to the face because the residual domain corresponding to the face

already has constant thickness orthogonal to that face – therefore shifts not parallel

to the face does not change complexity and disobeys the rule stated for Complexity

in Section 4.2.

44

5.2 Integer Bilinear Program Formulation

With the per-face application view of ST in Section 5.1.1, we are now ready to give the

correct formulation of MSSR. The basic idea behind this formulation is to combine

previous work on SR for a single statement [Gautam and Rajopadhye, 2006], previous

work on integer linear program formulation of polyhedral model scheduling Pouchet

et al. [2011, 2007, 2008] and the per-face application view of ST presented in Sec-

tion 5.1.1. We first revisit Equation (5.1) and give the correct high level formulation

as follows:

minimize complexity(prog′) (5.2a)

subject to

prog′ = (ST𝑓1,𝑟⃗1 ∘ ... ∘ ST𝑓𝑛,𝑟⃗𝑛)(prog) (5.2b)

∀𝑖 ∈ [1, 𝑛] : 𝑟⃗𝑖 ∈ ℒ (𝑓𝑖) ∩ ℐ (𝑓𝑖.stmt) ∩ 𝒮 (𝑓𝑖.stmt) (5.2c)

∃ schedule Θ of prog’, (5.2d)

s.t. Θ satisfy dependence(𝑝𝑟𝑜𝑔′) (5.2e)

given prog, dependence(𝑝𝑟𝑜𝑔) (5.2f)

variables 𝑟1, 𝑟2, ..., 𝑟𝑛 (5.2g)

For Equation (5.2), {𝑓1...𝑓𝑛} denotes the set of all faces of domains of all statements

in prog. Following the per-face view of ST in Section 5.1.1, the function composition

ST𝑓1,𝑟⃗1 ∘ ... ∘ ST𝑓𝑛,𝑟⃗𝑛 denotes applying per-face ST with the assigned reuse directions

𝑟⃗1...𝑟⃗𝑛 (for all faces 𝑓1...𝑓𝑛). We use 𝑓.stmt to denote a face 𝑓 ’s corresponding state-

ment (i.e. the statement which has the domain 𝑓).

This high level formulation is similar to Equation (5.1), except that now 1) each

reuse vector 𝑟⃗𝑖 is in one-to-one correspondence with a face 𝑓𝑖 — we thus have a

bounded number of unknown variables for reuse vectors 2) the variables S𝑖 are elimi-

nated, as the new formulation uses the per-face ST view, instead of the recursive ST

application view. Lastly, each reuse vector is still constrained to satisfy the validity

constraints (i.e. Equation (5.2c)).

45

5.2.1 Variables

As we mention above, the unknown variables contains reuse vectors 𝑟⃗1...𝑟⃗𝑛. Note

that, moreover, the existential quantification over Θ (Equation (5.2d)) implies that Θ

is also an unknown. As in Section 3.3.1, Θ is a collection of scheduling functions ΘS,

one for each statement S in the final program prog′; each ΘS is an 𝑚 × 𝑛 dimension

matrix of integer unknowns, where 𝑚 is the schedule dimension, and 𝑛 is one plus

the sum of the number of dimension of S.domain and the number of parameters of

the program.

5.2.2 Constraints

Equation (5.2) contains two main categories of constraints: reuse constraints in Equa-

tion (5.2c) and dependency constraints in Equation (5.2f).

Reuse constraints. The reuse constraints enforces that each 𝑟⃗𝑖 is chosen from

ℒ (𝑓𝑖) ∩ ℐ (𝑓𝑖.stmt) ∩ 𝒮 (𝑓𝑖.stmt) — this later set is a union of polyhedral sets com-

putable from 𝑓𝑖. Since it’s a union of polyhedral sets, we use disjunction to constrain

𝑟⃗𝑖 to belong to one of the polyhedral sets. For each the polyhedral set, encoding that

𝑟⃗𝑖 belongs to the polyhedral set is then just a simple affine inequality constraint.

Dependency constraints. The dependency constraints enforces that Θ satisfies

the dependency of prog′. Specifically, it requires that for each pair of statements S

and T that potentially occur in prog′, their scheduling functions ΘS,ΘT satisfy the

dependence relation 𝒟S, T. On the high level, we set up the constraints just the same

as in Equation (3.2). However, the dependence matrix 𝐷S, T now contains entrie(s)

with (linear) terms with unknowns from 𝑟⃗1...𝑟⃗𝑛. An informative argument for why

𝐷S, T contains these unknown entries is: if we look from the recursive ST view, each

application of ST introduces a reuse direction unknown 𝑟⃗, and the algorithm recurses

down to the residual reductions – for the next recursive application, we can think

of it as taking in a program with both the original program’s parameters, and also

46

the reuse vector unknowns introduced by the previoys ST application. The residual

reductions’ domains then have space extended by 𝑟⃗. not finished

5.2.3 Objective: complexity

Since we would like to minimize the overall complexity, we need to express our integer

bilinear program’s objective as the complexity of the transformed program. We can

compute complexity of each face by counting the cardinality of each face’s domain

Verdoolaege et al. [2007]. The cardinality of a face is an Ehrhart polynomial Ehrhardt

[2009] in terms of the program parameters.

Encoding. If the program only has one parameter, then the degree of the polyno-

mial is a natural choice of a scalar that represents the complexity of the program.

If the program has multiple parameters, then one needs to be careful about com-

paring complexities: it is necessary to be able to compare between 𝒪(𝑀2𝑁) and

𝒪(𝑀𝑁2)in order to minimize complexity. To this end, we assume that a total or-

dering is given for all possible polynomial terms of global parameters as a sequence

of increasing scalars. For example, with two global parameters 𝑀,𝑁 , and maximum

possible complexity 𝒪(𝑀2𝑁2), a total ordering such as 𝒪(1) < 𝒪(𝑀) < 𝒪(𝑁) <

𝒪(𝑀𝑁) < 𝒪(𝑀2𝑁) < 𝒪(𝑀𝑁2) < 𝒪(𝑀2𝑁2) is given, and integers 0...6 are assigned

to each big-O term in the previous sequence.

Summing scalar encodings. Either the program has a single global parameter

or has multiple global parameters, we have a mapping from complexities, which are

polynomials in terms of global parameters, to their scalar encodings. Since the final

objective is the total complexity of the full transformed program, we need to sum

the scalar encoding of complexities for all statements, without losing the ability to

compare the resultants’ degrees. To that end, we propose to use a simple base-|𝑆|

encoding method where |𝑆| is the maximum number of statements in the program:

for a complexity encoded as scalar 𝑐, we use |𝑆|𝑐 as a term in the final objective. As

an example, to sum two complexities represented in scalar 𝑐1 and 𝑐2, we compute

47

|𝑆|𝑐1 + |𝑆|𝑐2 . We define the base-|𝑆| sum of 𝑐𝑖 as
∑︀
|𝑆|𝑐𝑖 .

Indicator variable. In the formulation, we require indicator variables to indicate if

ST is disabled along a certain face – in which case no complexity reduction should be

applied for the corresponding domain. We can use the big-M method, a well-known

ILP modeling trick, to encode an indicator variable 𝑦 ∈ {0, 1} for the constraint 𝑥 = 0

so that 𝑦 = 1 iff 𝑥 = 0.

5.3 Discussion

The above formulation is an integer objective bilinear constrained program. The ob-

jective is linear because it is an affine combination of the indicator variables. The

problem is bilinear constrained because: in the original ILP formulation schedul-

ing, the dependence matrix (defined in Section 3.3.2) is multiplied by a vector of

unknowns to form a linear constraint; however by introducing the unknown reuse

vectors 𝑟⃗𝑖, the dependence matrix contains entries that depends on 𝑟⃗𝑖, thereby mak-

ing the constraints bilinear.

Enabling transformations. The enabling transformations presented in the orig-

inal SR paper [Gautam and Rajopadhye, 2006] can be incorporated into our for-

mulation by the use of binary decision variables and technique of encoding logical

constraints as integer linear constraints.

48

Chapter 6

MSSR Heuristic Algorithm

The problem formulation we present in Section 5.2 is a full characterization of the

MSSR problem. In this work we consider this formulation only as a specification in-

stead of a complete solution — solving an integer linear objective bilinear constrained

program is NP-hard. As far as we know, none of well-known solvers can solve this

problem out of the box, though it is possible to reformulate such problem into mixed

integer linear programming (MILP) [Gupte et al., 2013]. However, the size of the

formulation(i.e. total number of constraints and number of variables) in Section 5.2

is portional to the number of statements, number of faces per statement and the

maximal complexity of the program – either one of which could potentially lead to

exponential blow up in the size of the formulation. Further, our formulation on depen-

dency resolution is based on ILP formulation of multidimensional scheduling, which

by itself already introduces a tractability challenge as pointed out in Pouchet et al.

[2011].

For these reasons, we propose here a sound heuristic solution to MSSR. The key

idea behind our heuristic approach is that for a program with an affine schedule, we

can leverage the schedule itself to choose a reuse vector for each ST that we apply to

the program. Specifically, for any reuse vector that is valid for a given face (according

the constraints that we specify in Section 5.2), our algorithm chooses either the reuse

vector itself or its negation as the reuse vector for the ST. This algorithm – though

simple – is still optimal for reductions that have inverses – which spans a broad class

49

of programs – and always preserves the original dependencies of the program.

6.1 Insights

The key insights that guide our algorithm are that 1) choosing any valid reuse vector

for a given ST results in the same final algorithmic complexity for the program and 2)

for any valid reuse vector, the direction itself or its negation adheres to the program’s

original affine schedule of the LHS of the reduction. We demonstrate these two

insights with the following lemmas.

Lemma 3. For any application of ST, the complexity decrease is always the same

regardless of the actual choice of reuse vector.

Proof. For any ST application, the reduction’s 𝑛-dimensional domain 𝒫 is reduced

to the two half shells 𝒫 −𝒫 ′ and 𝒫 ′ −𝒫 . The two half shells decompose into convex

polyhedral sets corresponding to all (𝑛− 1)-dimensional faces of 𝒫 . Further, for each

decomposed convex polyhedral set, the thickness of the set, which is defined as the

spanned width of the set orthogonal to its corresponding face, is a constant dependent

solely on the ST’s reuse vector and the face’s orientation. Therefore, the cardinality

of each decomposed polyhedral set is just the cardinality of the face multiplied by

some constant. It then follows that for any two STs with two non-zero reuse vectors,

their resultant residual reductions’ complexities are always the same, and equal the

sum of the cardinalities of all the faces of 𝒫 multiplied by some constant.

Before introducing the next lemma, we first introduce an extended definition of

scheduling functions. Recall that the scheduling function of a reduction statement

is an affine function from the reduction’s domain to the timestamp. We extend the

context of scheduling function from a reduction statement to the LHS of a reduction

in a given program as follows. First the program is augmented by adding to the

program a new redirect statement A[𝑥⃗] = A′[𝑥⃗] with the same domain as the domain

of A, where A′ is a fresh symbol which replaces the LHS array A of the program.

Then the scheduling function of the LHS of the reduction is simply the scheduling

50

function of the newly introduced redirect statement of the LHS in the schedule of the

augmented program.

Lemma 4. Given the affine schedule for the augmented program, then for any ST

application on a reduction whose operator has an inverse and for any valid reuse

vector 𝑟⃗, either 𝑟⃗ or −𝑟⃗ agrees with the schedule of the original program and does

not introduce a dependency cycle.

Proof. Consider a reduction statement S with projection proj and LHS array A. Sup-

pose A has an affine schedule ΘA then we have ΘA · [𝑥⃗, 𝑝, 1]𝑇 is the schedule time for

A[𝑥⃗]. Let vector 𝑟⃗ be in same space of the domain of S, and we shift the domain of S

along 𝑟⃗; let the projected vector of 𝑟⃗ onto the domain of A be 𝑟A = proj(𝑟⃗). Consider 𝑥⃗

and 𝑥⃗+ 𝑟A. Their scheduled timestamps are ΘA · [𝑥⃗, 𝑝, 1]𝑇 and ΘA · [𝑥⃗+ 𝑟A, 𝑝, 1]𝑇 . Since

ΘA · [𝑥⃗+ 𝑟A, 𝑝, 1]𝑇 −ΘA · [𝑥⃗, 𝑝, 1]𝑇 = ΘA · [𝑟A, 0⃗, 0]𝑇 is a constant not dependent on 𝑥⃗, it

must be the case that for all 𝑥⃗, either A[𝑥⃗] is always scheduled before A[𝑥⃗+ 𝑟A], or vice

versa. Specifically, if the first non-zero entry (in accordance with the timestamp com-

parison in Definition 5) of ΘA · [𝑟A, 0⃗, 0] is positive, then A[𝑥⃗] is always schedule before

A[𝑥⃗+ 𝑟A], otherwise, A[𝑥⃗] is always schedule after A[𝑥⃗+ 𝑟A]. If A[𝑥⃗] is scheduled before

A[𝑥⃗ + 𝑟A], then applying ST with reuse vector 𝑟⃗ will not introduce any dependence

cycle, since the newly introduced dependency is always consistent with the original

schedule; on the other hand, if A[𝑥⃗] is scheduled after A[𝑥⃗+ 𝑟⃗], then applying ST with

reuse vector −𝑟⃗ will not introduce any dependence cycle.

Further, since 𝑟⃗ chosen this way is always consistent with the original schedule, a

previous application of ST will not affect a later application of ST — intuitively, a

previously applied ST introduces a dependency that can be subsumed by an enforced

dependency according to the original program’s schedule; thus later a application of

ST, as long as it is also consistent with original schedule, will not be affected.

6.2 Algorithm

With justification in Section 6.1, we now introduce the heuristic algorithm in Figure 6-

1.

51

1. Schedule the augmented program to obtain an initial schedule Θ for all
statements and LHS of reductions

2. Apply ST to all faces of all reduction statement’s domains; choose the di-
rection that is consistent with Θ by:

(a) First pick any valid reuse vector 𝑟⃗ from the candidate set.

(b) Test if 𝑟⃗ is consistent with Θ, if not consistent, set 𝑟⃗ ← −𝑟⃗, if −𝑟⃗ is
also a valid reuse vector; otherwise, do not apply the current ST.

Figure 6-1: SSSR heuristic algorithm

To test if 𝑟⃗ is consistent with Θ, one can compute ΘA · 𝑟A (with ΘA, 𝑟A defined as in

Lemma 4) and test if the first non-zero entry is positive. Alternatively, a naive way is

just to attempt to reschedule the original program with the introduced dependency

along 𝑟⃗ and test if the program is schedulable.

6.3 Algorithm Analysis

Heuristic scheduling. One advantage of the heuristic algorithm in Figure 6-1 is

that the schedule Θ does not need to be obtained from forming and solving the ILP

formulation as in Section 3.3, and one is free to choose any scheduling algorithm in

the polyhedral literature such as Gupta et al. [2007], Feautrier [1992a,b], Bondhugula

et al. [2008]. Most of these algorithms, such as the PLUTO scheduler [Bondhugula

et al., 2008] provides scalable solution to the polyhedral scheduling problem and thus

algorithm in Figure 6-1 does not present bottleneck due to scheduling.

Optimality Guarantee. The algorithm is optimal for the MSSR problem if all

reduction operators have inverses. This is because the algorithm considers a basis

direction of reuse, and picks the direction along that basis that is consistent with

the original schedule. As long as all reduction operators have inverses, the heuristic

algorithm will assign a non-zero reuse vector to each face that has valid reuse oppor-

tunities — in other words, the heuristic algorithm maximizes the total number ST

52

applications among all faces, if all reduce operators have inverses. For any application

of ST along a face, the complexity decrease is always the same regardless of the actual

choice of reuse vector, therefore, maximizing the number of ST applications among

all faces minimizes the total complexity.

Lastly, if a reduction operator does not have an inverse, thereby restricting the

candidate set of directions, then its possible for our algorithm produces a non-optimal

solution. Specifically, if an operator does not have an inverse, the valid reuse vector

for that operator will be restricted to a one sided direction (since ST requires the reuse

direction to point out of certain boundaries of the polyhedral domain if the operator

does not have an inverse), instead of both directions of the basis. It is possible that

the original program does not have an unique valid schedule. Consider the following

scenario: one schedule is consistent with 𝑟⃗, while another schedule is consistent with

−𝑟⃗; since the operator does not have an inverse, only the positive direction 𝑟⃗ is valid.

Therefore, the initial schedule will affect whether this ST is applied or not – which

in turn leads to the suboptimality of the algorithm.

53

54

Chapter 7

Implementation

We implemented our IR as in Section 3.2 and the heuristic algorithm as in Chapter 6

using Python. We use Integer Set Library (ISL) [Verdoolaege, 2010] for manipulation

of polyhedral set and relations.

For obtaining the original program schedule, we use a PLUTO-like scheduler built-

in of ISL. To test if a reuse vector is consistent with the original schedule, we simply

attempt to introduce a new dependency along the reuse vector and perform a full

scheduling — note that this is not necessary, and can be potentially eliminated by

the method of computing ΘS · 𝑟⃗ following Section 6.2. However, in our case simply at-

tempting to reschedule the program is easier to implement and the method is agnostic

to the underlying scheduling algorithm.

55

56

Chapter 8

Evaluation

The algorithm presented in this work is particularly effective at optimizing straightfor-

ward, unoptimized implementations of probabilistic inference procedures into efficient

implementations. The inference procedures have mathematical specifications that

naturally translate to our IR. The inference procedures are also iterative. In this

section, we evaluate our heuristic algorithm’s effectiveness to improve the asymptotic

complexity of benchmarks consisting of such inference algorithms.

Methodology. We evaluate our implementation in Chapter 7 using unoptimized

implementations of probabilistic inference procedures. We present their algorithmic

complexities, before and after optimization using our heuristic implementation from

Chapter 7, and the optimal complexities achievable with transformations in this work,

by potentially solving the problem formulation in Section 5.2 exactly. We also report

complexities of manual implementations with possible transformations not in this

work.

We collect the complexities before and after by counting the cardinality of the

resultant polyhedral domains using library implementations in Verdoolaege et al.

[2007]. We collect the optimal complexity by inspecting the benchmarks and deriving

the optimal complexities manually. We collect complexities of manual implementa-

tions by either finding an existing implementation of the algorithm if one exists in

the literature or, otherwise, by manually deriving the best known.

57

Model Original Optimized MSSR-Optimal Manual #IR #SR

GMM-GS 𝒪(𝑁2𝐾2) 𝒪(𝑁𝐾) 𝒪(𝑁𝐾) 𝒪(𝑁𝐾) 16 24
GMM-MH 𝒪(𝑁(𝑁 + 𝐾)) 𝒪(𝑁) 𝒪(𝑁) 𝒪(𝑁) 16 24
GMM-LW 𝒪(𝑁(𝑁 + 𝐾)) 𝒪(𝑁) 𝒪(𝑁) 𝒪(𝑁) 5 7
LDA-GS 𝒪(𝑊 2𝐾2) 𝒪(𝑊𝐾) 𝒪(𝑊𝐾) 𝒪(𝑊𝐾) 20 28
LDA-MH 𝒪(𝑊 2𝐾) 𝒪(𝑊𝐾) 𝒪(𝑊𝐾) 𝒪(𝑊𝐾) 42 65
LDA-LW 𝒪(𝑊 2𝐾) 𝒪(𝑊) 𝒪(𝑊) 𝒪(𝑊) 7 11
DMM-GS 𝒪(𝑊𝐴𝐷𝐾2 + 𝐷2𝐾2) 𝒪((𝑊 + 𝐴)𝐾𝐷) 𝒪((𝑊 + 𝐴)𝐾𝐷) 𝒪(𝐴𝐾𝐷) 40 46
DMM-MH 𝒪(𝐷2𝐾2 + 𝐷(𝑊 + 𝐴)) 𝒪((𝐾 + 𝑊 + 𝐴)𝐷) 𝒪((𝐾 + 𝑊 + 𝐴)𝐷) 𝒪((𝐾 + 𝐿 + 𝐴)𝐷) 82 142
DMM-LW 𝒪((𝑊𝐴 + 𝐾)𝐷) 𝒪((𝐾 + 𝑊 + 𝐴)𝐷) 𝒪((𝐾 + 𝑊 + 𝐴)𝐷) 𝒪((𝐾 + 𝐿 + 𝐴)𝐷) 10 12
LBP 𝒪(𝑁2𝐾2𝐷2) 𝒪(𝑁2𝐾2𝐷) 𝒪(𝑁2𝐾2𝐷) 𝒪(𝑁2𝐾2𝐷) 3 1
CoxPh 𝒪(𝐾2𝑁2) 𝒪(𝐾2𝑁) 𝒪(𝐾2𝑁) 𝒪(𝐾2𝑁) 6 5

Table 8.1: Benchmarks Table

Benchmarks. A subset of the benchmark algorithms we consider are identified as

a "model-algorithm" pair, where the model refers to a generative probabilistic model,

and the algorithm refers to a class of algorithm to perform inference on the model.

For models, we consider the Gaussian Mixture Model (GMM) Murphy [2012], La-

tent Dirichlet Allocation (LDA) Blei et al. [2003] and Dirichlet Multinomial Mixture

(DMM) Holmes et al. [2012]. For algorithms, we consider Gibbs Sampling (GS) Ge-

man and Geman [1984], Metropolis Hasting (MH) Metropolis et al. [1953], Hastings

[1970] and Likelihood Weighting (LW) Fung and Chang [1989]. Thus we have a total

of 9 benchmark algorithms of this kind.

The models for LDA [Blei et al., 2003, Griffiths and Steyvers, 2004] and DMM

[Holmes et al., 2012] are popular for existing data science problems. In addition, the

models for GMM [Daniel Huang, 2017, Walia et al., 2018], LDA [Daniel Huang, 2017,

Walia et al., 2018], and DMM [Walia et al., 2018] have been used as benchmarks for

probabilistic inference systems.We chose Gibbs sampling [Geman and Geman, 1984],

Metropolis-Hastings [Metropolis et al., 1953, Hastings, 1970], and Likihood Weight-

ing [Fung and Chang, 1989] because they are all common inference algorithms from

the literature. LDA and DMM are particularly valuable benchmarks because there

are published Gibbs sampling algorithms that researchers have manually optimized

(Griffiths and Steyvers [2004] and Resnik and Hardisty [2010], respectively).

We also include another two benchmarks: Loopy Belief Propagation on a grid

Ising model (LBP-Ising) and the Cox proportional hazards model (CoxPh) [Therneau,

58

2013, Cox, 1972]. Loopy Belief Propagation Bishop [2006] is an iterative approximate

inference algorithm, and its instantiation on the Ising model has applications in fields

such as vision [Grauer-Gray and Cavazos, 2011] and physics Kikuchi [1951]. CoxPh

is a well known statistical model, which is typically combined with Newton’s method,

an iterative optimization algorithm, for optimization. CoxPh is commonly found

in medical applications [Collett, 1993, White et al., 2016], and mechanical systems

[Susto et al., 2015].

The benchmarks all have the common feature that they are iterative methods

specialized to a generative probabilistic model.

At these scales, the asymptotic complexity outweighs constant factor improve-

ments such as memory accesses and loop order, and thus suitable to analyze the

asymptotic performance.

Results. Table 8.1 summarizes the results of our approach. Each symbol in the

complexity columns corresponds to a parameter of the benchmark.

The column "Original" gives the complexity of the original program for the bench-

marks. The column "Optimized" gives the complexity of the transformed program

using the heuristic implementation in Chapter 7. The column "MSSR-Optimal" gives

the complexity of the transformed program by potentially solving the problem for-

mulation in Section 5.2 exactly; this is the optimal complexity one can get using

techniques presented in this work. The column "Manual" gives the complexity of

a potential optimized manual implementation written by a diligent developer; this

means that the complexity reduction potentially comes from transformations not

present in this work.

The column "#IR" counts the number of IR statements for the benchmark; the

column "#SR" counts the simplifying reductions attempted.

Comparing the "Original" and "Optimized" columns, we can see that our ap-

proach can reduce the complexity for all benchmarks. Comparing the "Optimized"

and "MSSR-Optimal" columns, our approach can generate algorithms that have the

same complexity as that of optimal implementation for all benchmarks. Optimality

59

Model Original Optimized Speedup

GMM-GS 1.8× 102 ms 1.3 ms 138x
GMM-MH 6× 101 ms 1.7× 10−1 ms 353x
GMM-LW 23 s 7.5× 10−1 s 30x
LDA-GS timeout 6.1× 10−3 s > 7× 106x
LDA-MH timeout 1.1× 10−1 ms > 3× 108x
LDA-LW timeout 45.3 s > 953x
DMM-GS 2.1× 102 s 1.1 s 191x
DMM-MH 3.5× 101 s 6.8× 10−1 s 51x
DMM-LW timeout 30 s > 1440x

Table 8.2: Runtime evaluations

is defined regarding programs realizable through transformations presented in this

work. Comparing the "Optimized" and "Manual" columns, our approach can gen-

erate algorithms with complexities the same as manual implementations for 8 out of

11 benchmarks. We identified that the 3 benchmarks related to DMM require addi-

tional data layout modifications which we do not consider in this work, and lies in

the direction of future research.

8.1 Runtime Validation

So far we have evaluated our heuristic algorithm using algorithmic complexity as

the primary factor, which ignores constant factors. In this section, we validate our

hypothesis that asymptotic complexity dominates potential constant factors for the

parameters of these benchmarks by timing a subset of our benchmarks and comparing

the runtimes of naive implementations with optimized implementations.

Parameter sizes. We collect the typical instantiated values for global parameters

from the corresponding literature. For GMM we use Daniel Huang [2017], for LDA we

use Newman [2008], for DMM we use Turnbaugh et al. [2008], for LBP-Ising we use

Grauer-Gray and Cavazos [2011] and for CoxPh we use INVESTIGATORS [1989].

Based on these prior works, we collected the following parameters for each model:

GMM 𝑁 = 10000, 𝐾 = 10

60

LDA 𝑊 = 466, 000, 𝐾 = 50

DMM 𝑊 = 570, 000, 𝐾 = 4, 𝐷 = 278, 𝐴 = 129, 𝐿 = 3202

LBP-Ising 𝑁 = 168750, 𝐾 = 64, 𝐷 = 4

CoxPH 𝑁 = 15792, 𝐾 = 6

Results. Due to limitations on time, we evaluate only on the 9 benchmarks in

Table 8.2. We use Python implementations that match the naive and optimized

complexity that we report in Table 8.1. We ran these implementations and report

timeouts for benchmarks that ran for longer than 12 hours.

It’s evident from Table 8.2 that all 9 benchmarks have non-trivial speedups, which

supports our previous hypothesis that for these benchmarks and our technique, com-

plexity dominates constant-factor concerns.

61

62

Chapter 9

Related Work

Simplifying Reductions. Previous works on simplifying reduction are Liu et al.

[2005] and Gautam and Rajopadhye [2006]. Liu et al. [2005] proposed a loop based

transformation algorithm for reducing complexities on loop programs. The algorithm

uses the Omega calculator [Padua, 2011] for analysis on contributing set. The method

is general in that any set calculation method, potentially methods that work for

even non-polyhedral sets, can be used. Method in Liu et al. [2005] uses only the

direction of loop increment to decrease the complexity. Gautam and Rajopadhye

[2006] generalized the method in Liu et al. [2005]; one of the advances was that it

formalized the notion of reuse space and proposed to use directions in the reuse space

to decrease complexity.

Incrementalization in Probabilistic Programming. The problem of incremen-

talization occurs in probabilistic programming system (PPS), and is known as incre-

mental inference. Existing work such as Kiselyov [2016], Ritchie et al. [2016], Wu

et al. [2016], Nori et al. [2015], Yang et al. [2014], Zhang and Xue [2019] attempt

to address the problem of incremental inference inc PPS. However, these techniques

are variants/combinations of 1) tracing JITs, 2) specialization and caching/memo-

ization, 3) dynamic dependence analysis, 4) dynamic program slicing, or 5) runtime

symbolic analysis – in summary, dynamic optimizations. These techniques introduce

significant runtime overhead for storing dependency graph/traces (which is of size

63

proportional to the number of the executed statement instances) and/or perform-

ing analysis on those graphs/traces dynamically. Our technique can be applied to

PPS to solve the incremental inference problem; however, our technique is a static

compilation techinique which do not suffer from runtime overhead.

Reductions. Previous work [Doerfert et al., 2015, Ginsbach and O’Boyle, 2017]

proposed techiniques to detect reductions from loop based code; these techniques can

be used as front-ends to our technique for conversion into our reduction based IR.

Previous work [Rauchwerger and Padua, 1999, Doerfert et al., 2015, Reddy et al.,

2016, Ginsbach and O’Boyle, 2017] optimize reductions in the polyhedral model for

considerations such as privatization and parallelization. They do not optimize reduc-

tions’ complexities; however, they can be used as optimizing backend for generating

efficient code for reduction after applying our method.

ILP scheduling. Previous work [Pouchet et al., 2011, 2007, 2008] give ILP for-

mulation of the scheduling problem. Specifically, Pouchet et al. [2011] shows how to

construct constraints for a convex ILP problem to find an 𝑚-dimensional schedule

for a program. Moreover, this formulation of constraints allows one to incorporate a

desired objective to be optimized — in this work, we used the complexity of the final

transformed program as the objective and we showed how to encode such objective

as a affine expression in Section 5.2.3.

Heuristic scheduling. There are also other scheduling methods such as the ones

in Feautrier [1992a,b], Bondhugula et al. [2008] that use heuristics to schedule a

program. These methods are usually more scalable than an ILP formulation. In this

work, we use ideas from the ILP formulation to formulate the MSSR problem, while

our provided heuristic algorithm does not depend on using the ILP formulation for

scheduling, and we also resort to the PLUTO [Verdoolaege, 2010, Bondhugula et al.,

2008] heuristic scheduling algorithm in our implementation.

64

Chapter 10

Conclusion

In this work, we introduce the multiple-statement reduction problem and provide a

heuristic algorithm that is optimal for reduction operators that have inverses. These

reductions have otherwise only appeared as domain/algorithm-specific optimizations

as described in the published description of standard probabilistic inference algo-

rithms. Our hope is that this work formally outlines a key general-purpose optimiza-

tion opportunity that can be delegated to the compiler, rather than being a significant

piece of manual implementation that stands between the elaboration of a new prob-

abilistic inference algorithm and its high performance implementation. Our results

hold the promise that emerging language and systems for probabilistic programming

could see significant performance improvements by incorporating our techniques.

65

66

Appendix A

Extra Listings

1 for(i = 0; i < N; i++)

2 B[N− 1] += A[i]

3 for(i = N−2; i >= 0; i−−)

4 B[i] = B[i+1] − A[i]

Listing A.1: Alternative optimized PS (right-to-left)

67

68

Appendix B

Simplifying Reduction

A key opportunity that we’ve identified is the integration of the histogram trans-

formation with the Simplifying Reduction transformation [Gautam and Rajopadhye,

2006].

B.1 Simplifying Reduction in Polyhedral Model

Consider an IR statement for which the set of non-affine equality predicates Q is

empty:

label: LHS[u] ⊕= expr : ∅ & 𝒫

Simplifying reduction (SR) transforms this statement into an equivalent form as

in Figure B-1. The transformation takes in one parameter, a nonzero constant vector

𝑟⃗, representing the direction of reuse, which we will explain shortly.

We first define some notations:

l-add-only: LHS[u] = ADD[u] : 𝒫u
add − 𝒫u

int
l-reuse-only: LHS[u] = LHS[𝑇u

𝑟 (u)] : 𝒫u
int − (𝒫u

add ∪ 𝒫u
sub)

l-add-reuse: LHS[u] = ADD[u]⊕ LHS[𝑇u
𝑟 (u)] : 𝒫u

add ∩ (𝒫u
int − 𝒫u

sub)
l-reuse-sub: LHS[u] = LHS[𝑇u

𝑟 (u)]⊖ SUB[u] : 𝒫u
sub ∩ (𝒫u

int − 𝒫u
add)

l-add-reuse-sub: LHS[u] = ADD[u]⊕ LHS[𝑇u
𝑟 (u)]⊖ SUB[u] : 𝒫u

sub ∩ 𝒫u
int ∩ 𝒫u

add
ladd: ADD[u] ⊕= expr : 𝒫add

lsub: SUB[u] ⊕= subst(expr, 𝑇𝑟(freevars(expr))) : (𝒫u
int)

s ∩ 𝒫sub

Figure B-1: Simplifying Reduction in the Polyhedral Model

69

∙ we use 𝑝a to denote projecting 𝑝 onto space a; the superscript acts effectively

as an projection function; 𝑝 can either be a point, an affine transformation or a

polyhedral set of points.

∙ 𝑇𝑟(𝑥) is an affine translation transformation (under homogeneous coordinates).

That is, if 𝑥 is a vector 𝑥⃗ representing a point, 𝑇𝑟 shifts 𝑥⃗ to 𝑥⃗ + 𝑟⃗. If 𝑥 is a

polyhedron 𝒫 , 𝑇𝑟 shifts all points in 𝒫 by +𝑟⃗.

Then, let 𝒫 ′ = 𝑇−𝑟(𝒫), i.e. 𝒫 ′ is 𝒫 shifted by −𝑟⃗, we define the following symbols

in Figure B-1:

𝒫add = 𝒫 − 𝒫 ′ 𝒫sub = 𝒫 ′ − 𝒫 𝒫int = 𝒫 ∩ 𝒫 ′

Explanation. The core intuition behind ST is to realize reuse of the RHS expr.

Specifically, we require a choice of 𝑟⃗ so that it presents sharing for the RHS expression,

that is:

Jsubst(expr, 𝑇𝑟(freevars(expr))) = exprK

. In other words, the value of expr is the same for any point v and its shifted

counterpart 𝑇𝑟(v). This way, we can avoid evaluation of expr by simply copying

from subst(expr, 𝑇𝑟(freevars(expr))), whenever possible. The first five statements

l-add-only through l-add-reuse-sub computes LHS this way and reuse subst(expr, 𝑇𝑟(

freevars(expr))) along 𝑟⃗. The domains of the five statements prescribe the set of points

according to each statement’s semantics.

To make this concrete, first notice the following:

∙ 𝒫u
add is the set of indices that receives 𝑒𝑥𝑝𝑟’s values evaluated in 𝒫add

∙ 𝒫u
sub is the set of indices that receives 𝑒𝑥𝑝𝑟’s values evaluated in 𝒫sub

∙ 𝒫u
int is the set of indices that receives 𝑒𝑥𝑝𝑟’s values evaluated in 𝒫int. Receiving

value from the intersection means that it is possible to reuse from the index

point shifted by 𝑟⃗.

We then explain each of the first five statements in turn:

70

Reuse only. Consider the domain of l-reuse-only, 𝒫u
int−(𝒫u

add∪𝒫u
sub), can be read

as: the set of indices that receive value from intersection, but does not receive from

ADD or SUB, and this is precisely the set of points that can be directly copied along

𝑟⃗. Thus, l-reuse-only performs just this copy operation: LHS[u] = LHS[𝑇u
𝑟 (u)].

Add Only. l-add-only’s domain 𝒫u
add−𝒫u

int can be read as: the set of indices that

receive value from ADD, but does not recieve value from intersection. One can verify

that 𝒫u
add−𝒫u

int = 𝒫u
add−𝒫u

int−𝒫u
sub this also implies that the set also does not recieve

value from SUB. Therefore, the statement just copies from ADD

Add and Reuse. l-add-reuse’s domain, 𝒫u
add ∩ (𝒫u

int−𝒫u
sub), can be read as: the

set of indices that receive value from ADD and the intersection, but does not receive

value from SUB. Therefore the statement reuses value along 𝑟⃗, and increments with

value calculated from ADD.

Sub and Reuse. l-reuse-sub’s domain, 𝒫u
sub ∩ (𝒫u

int −𝒫u
add), can be read as: the

set of indices that recieves value from SUB and the intersection, but does not receive

value from ADD. Therefore the statement reuses value along 𝑟⃗, and decrements with

value calculated from SUB.

Add, Reuse and Sub. l-add-reuse-sub’s domain, 𝒫u
sub∩𝒫u

int∩𝒫u
add. can be read

as: the set of indices that receive value from both ADD, the intersection and SUB.

Therefore, the statement reuse along 𝑟⃗, increments with ADD and decrements with

SUB.

Residual Reductions. The statements ladd and lsub are themselves reductions,

and we will call them residual reductions after SR transformation. They compute

additional values that are requested by the top five statements. The residual reduc-

tion accumulates the same right-side expression as the original reduction, but with

domains that are subsets of the original domain.

71

B.2 Configuration of Simplifying Reduction

As mentioned in Section 4.2, we need to consider three constraints – complexity,

sharing and dependence – when choosing the reuse vector 𝑟⃗. Here we discuss the

constraints in more detail.

Complexity. A program’s complexity is a function over its input parameters.

The complexity after one SR transformation is equal to the total sum of all car-

dinalities of domain sizes of the statements after the transformation. The complexity

of the first five statements combined together is equivalent to iterating points of LHS

array, and therefore it will always remain unchanged, since we will always need to

compute answer for each point of the LHS. As shown in Gautam and Rajopadhye

[2006], in order for one step of SR to be meaningful, in the sense that it decreases the

complexity, we need that |𝒫add|+ |(𝒫u
int)

s ∩ 𝒫sub| < |𝒫|.

Sharing. Fully determining all possible 𝑟⃗ that presents sharing for the right-hand

side expression is not decidable: for an arbitrary RHS expression 𝑒𝑥𝑝𝑟 as an uninter-

preted function: we can encode the problem as ∃𝑟⃗∀v.JexprK = Jsubst(expr, 𝑇𝑟(freevars(expr)))K,

and this is not decidable in general. However, we can still heuristically deduce valid

reuse vectors, if we know the internals structure of 𝑒𝑥𝑝𝑟. Gautam and Rajopadhye

[2006] proposed a heuristical approach by computing a polyhedral set 𝒮2 called share

space, which is the intersection of the nullspaces of the dependence functions of all

the subexpressions of 𝑒𝑥𝑝𝑟, and selecting any vector 𝑟 ∈ 𝒮2.

B.3 Choosing a reuse vector

Complexity reduction. We chose 𝑟⃗ to be in the linealty space ℒ𝒫 , that is defined

informally as the subspace of 𝒫 where 𝒫 extends infinitely as the sizes the parameters

of 𝒫 tends to infinity. Intuitively, this means that we only want to reuse computation

along directions of 𝒫 that can grow asymptotically with the parameters, instead of

directions that are bounded by fixed constants.

72

Sharing. We use a simple yet effective heuristic in our implementation: find the

set of variables fv in the left hand side u that is not bound in the right hand side

v: i.e. fv = s − v (recall that s is the space of the statement’s domain 𝒫). For

any variable 𝑥 ∈ fv, we can find its constant unit vector 𝑟⃗𝑥 (a vector under space

s that is 1 only along direction 𝑥), we must have 𝑟⃗𝑥 satisfying the above criterion:

∀v.expr = expr(𝑇𝑟𝑥(v)). In fact, any linear scaling of 𝑟⃗𝑥 is a valid choice. In summary,

for one IR statement, there can be |fv| dimensions of reuse, in the sense that each

𝑟⃗𝑥∀𝑥 ∈ fv are orthogonal to each other and thus forms different dimensions; for each

dimension, there can be infinitely many valid reuse vectors, that are the different

scalings of the unit direction for that dimension.

Dependence. Applying SR can introduce new dependencies along the reuse vector

that was not in the original program. For example, in Listing 4.1, the transformed

statement T-add-reuse introduces a new dependence that now S[𝑖] depends on S[𝑖−1].

We require that applying SR along a vector r does not introduce any dependency cycle

in transformed program so that it remains valid.

73

74

Appendix C

Enabling Transformations

In this section we briefly review the enabling transformations introduced in Gautam

and Rajopadhye [2006]. Since these transformations are important to fully utilize ST

for a single reduction, we encourage readers to find more details of these transforma-

tions in Gautam and Rajopadhye [2006].

Reduction Decomposition. For reduction with projection function proj, we can

potentially decompose proj = proj1 ∘ proj2, where ∘ denotes function composition.

It is possible to break the reduction into two statements: the first statement with

projection proj2 produces an intermediate output, followed by a reduction with pro-

jection proj1 that returns the original output. The first statement could lead to a

larger share space than the original reduction, and therefore RD enables enable ST.

Same Operator Transformation. It’s possible to lift inner expressions out of

reductions to increase share space.

Distributivity Transformation. It’s possible to utilizie distributivity of an oper-

ator to lift inner expression out of reductions to increase share space.

Higher Order Operator Transformation. It’s possible to collapse along the

entire reuse space, if the reduce operator ⊕ has an higher order operator ⊗.

75

76

Bibliography

Eric Atkinson, Cambridge Yang, and Michael Carbin. Verifying handcoded proba-
bilistic inference procedures. In arXiv e-prints, 2018.

Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cé-
dric Bastoul. The polyhedral model is more widely applicable than you
think. In Proceedings of the 19th Joint European Conference on Theory
and Practice of Software, International Conference on Compiler Construction,
CC’10/ETAPS’10, pages 283–303, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN
3-642-11969-7, 978-3-642-11969-9. doi: 10.1007/978-3-642-11970-5_16. URL
http://dx.doi.org/10.1007/978-3-642-11970-5_16.

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Prad-
han, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D
Goodman. Pyro: Deep universal probabilistic programming. arXiv preprint
arXiv:1810.09538, 2018.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. In
JMLR, volume 3, 2003.

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral parallelizer and locality optimizer. In Proceed-
ings of the 29th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’08, pages 101–113, New York, NY, USA,
2008. ACM. ISBN 978-1-59593-860-2. doi: 10.1145/1375581.1375595. URL
http://doi.acm.org/10.1145/1375581.1375595.

Jean-François Collard, Denis Barthou, and Paul Feautrier. Fuzzy array dataflow
analysis. In Proceedings of the Fifth ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPOPP ’95, page 92–101, New York,
NY, USA, 1995. Association for Computing Machinery. ISBN 0897917006. doi:
10.1145/209936.209947. URL https://doi.org/10.1145/209936.209947.

D Collett. Modelling Survival Data in Medical Research. New York: Chapman and
Hall/CRC. 1993.

77

D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society:
Series B (Methodological), 34(2):187–202, 1972. ISSN 0035-9246.

Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and Vikash K Mans-
inghka. Gen: a general-purpose probabilistic programming system with pro-
grammable inference. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 221–236. ACM, 2019.

Greg Morisett Daniel Huang, Jean-Baptiste Tristan. Compiling markov chain monte
carlo algorithms for probabilistic modeling. In PLDI, 2017.

Johannes Doerfert, Kevin Streit, Sebastian Hack, and Zino Benaissa. Polly’s poly-
hedral scheduling in the presence of reductions. In International Workshop on
Polyhedral Compilation Techniques, Amsterdam, Netherlands, Jan 2015.

E Ehrhardt. Sur un problème de géométrie diophantienne linéaire. ii. Journal für die
reine und angewandte Mathematik, 1967, 12 2009. doi: 10.1515/crll.1967.227.25.

P. Feautrier. Array expansion. In Proceedings of the 2Nd International
Conference on Supercomputing, ICS ’88, pages 429–441, New York, NY,
USA, 1988. ACM. ISBN 0-89791-272-1. doi: 10.1145/55364.55406. URL
http://doi.acm.org/10.1145/55364.55406.

Paul Feautrier. Some efficient solutions to the affine scheduling problem. i.
one-dimensional time. International Journal of Parallel Programming, 21(5):
313–347, Oct 1992a. ISSN 1573-7640. doi: 10.1007/BF01407835. URL
https://doi.org/10.1007/BF01407835.

Paul Feautrier. Some efficient solutions to the affine scheduling problem. part
ii. multidimensional time. International Journal of Parallel Programming, 21
(6):389–420, Dec 1992b. ISSN 1573-7640. doi: 10.1007/BF01379404. URL
https://doi.org/10.1007/BF01379404.

Robert M. Fung and Kuo-Chu Chang. Weighing and integrating evidence for stochas-
tic simulation on bayesian networks. In UAI, 1989.

Gautam and S. Rajopadhye. Simplifying reductions. In Conference Record
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’06, pages 30–41, New York, NY, USA, 2006.
ACM. ISBN 1-59593-027-2. doi: 10.1145/1111037.1111041. URL
http://doi.acm.org/10.1145/1111037.1111041.

Andrew Gelman, Daniel Lee, and Jiqiang Guo. Stan: A probabilistic programming
language for bayesian inference and optimization. Journal of Educational and Be-
havioral Statistics, 40(5):530–543, 2015.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and
the bayesian restoration of images. In IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1984.

78

Philip Ginsbach and Michael F. P. O’Boyle. Discovery and exploitation of general
reductions: A constraint based approach. In Proceedings of the 2017 International
Symposium on Code Generation and Optimization, CGO ’17, page 269–280. IEEE
Press, 2017. ISBN 9781509049318.

Noah D Goodman and Andreas Stuhlmüller. The Design and Implementation of
Probabilistic Programming Languages. 2014. Accessed: 2016-10-7.

Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and
Joshua B. Tenenbaum. Church: A language for generative models. In UAI, 2008.

Scott Grauer-Gray and John Cavazos. Optimizing and auto-tuning belief propagation
on the gpu. In Keith Cooper, John Mellor-Crummey, and Vivek Sarkar, editors,
Languages and Compilers for Parallel Computing, pages 121–135, Berlin, Heidel-
berg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-19595-2.

T. Griffiths and M. Steyvers. Finding scientific topics. In PNAS, volume 101, 2004.

Gautam Gupta, Kim Daegon, and Sanjay Rajopadhye. Scheduling in the z-polyhedral
model. pages 1–10, 01 2007. doi: 10.1109/IPDPS.2007.370229.

Akshay Gupte, Shabbir Ahmed, Myun Cheon, and Santanu Dey. Solving mixed
integer bilinear problems using milp formulations. SIAM Journal on Optimization,
23, 04 2013. doi: 10.1137/110836183.

W. K. Hastings. Monte carlo sampling methods using markov chains and their ap-
plications. In Biometrika, volume 57, 1970.

Ian Holmes, Keith Harris, and Christopher Quince. Dirichlet multinomial mixtures:
Generative models for microbial metagenomics. In PLOS One, 2012.

THE ARIC INVESTIGATORS. THE ATHEROSCLEROSIS RISK
IN COMMUNIT (ARIC) STUDY: DESIGN AND OBJECTIVES.
American Journal of Epidemiology, 129(4):687–702, 04 1989.
ISSN 0002-9262. doi: 10.1093/oxfordjournals.aje.a115184. URL
https://doi.org/10.1093/oxfordjournals.aje.a115184.

Ryoichi Kikuchi. A theory of cooperative phenomena. Phys. Rev.,
81:988–1003, Mar 1951. doi: 10.1103/PhysRev.81.988. URL
https://link.aps.org/doi/10.1103/PhysRev.81.988.

Oleg Kiselyov. Probabilistic programming language and its incremental evaluation.
pages 357–376, 11 2016. ISBN 978-3-319-47957-6. doi: 10.1007/978-3-319-47958-
3_19.

Jun S. Liu. The collapsed gibbs sampler in bayesian computations with applications
to a gene regulation problem. In Journal of the American Statistical Association,
volume 89, 1994.

79

Yanhong A. Liu, Scott D. Stoller, Ning Li, and Tom Rothamel. Optimizing ag-
gregate array computations in loops. ACM Trans. Program. Lang. Syst., 27(1):
91–125, January 2005. ISSN 0164-0925. doi: 10.1145/1053468.1053471. URL
http://doi.acm.org/10.1145/1053468.1053471.

Vikash Mansingkha, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen,
and Martin Rinard. Probabilistic programming with programmable inference. In
PLDI, 2018.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of State Calculations by Fast Computing Machines. In Journal of Chem-
ical Physics, volume 21, 1953.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, Cam-
bridge, Massachusets, 2012.

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert
Zinkov. Probabilistic inference by program transformation in hakaru (system de-
scription). In FLOPS, 2016.

David Newman. Bag of words dataset. In UCI Machine Learning Respository, 2008.

Aditya V. Nori, Sherjil Ozair, Sriram K. Rajamani, and Deepak Vijaykeerthy. Ef-
ficient synthesis of probabilistic programs. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’15, page 208–217, New York, NY, USA, 2015. Association for Comput-
ing Machinery. ISBN 9781450334686. doi: 10.1145/2737924.2737982. URL
https://doi.org/10.1145/2737924.2737982.

David Padua, editor. Omega Calculator, pages 1355–1355. Springer US, Boston,
MA, 2011. ISBN 978-0-387-09766-4. doi: 10.1007/978-0-387-09766-4_2303. URL
https://doi.org/10.1007/978-0-387-09766-4_2303.

Martyn Plummer. JAGS Version 4.0.0 user manual. Addison-Wesley, Reading, Mas-
sachusetts, 2015.

Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and Nicolas Vasilache. Iterative
optimization in the polyhedral model: Part I, one-dimensional time. In IEEE/ACM
Fifth International Symposium on Code Generation and Optimization (CGO’07),
pages 144–156, San Jose, California, March 2007. IEEE Computer Society press.

Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos. Itera-
tive optimization in the polyhedral model: Part II, multidimensional time. In
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI’08), pages 90–100, Tucson, Arizona, June 2008. ACM Press.

80

Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanu-
jam, Ponnuswamy Sadayappan, and Nicolas Vasilache. Loop transformations: Con-
vexity, pruning and optimization. ACM SIGPLAN Notices, 46:549–562, 05 2011.
doi: 10.1145/1925844.1926449.

L. Rauchwerger and D. A. Padua. The lrpd test: speculative run-time parallelization
of loops with privatization and reduction parallelization. IEEE Transactions on
Parallel and Distributed Systems, 10(2):160–180, Feb 1999. ISSN 2161-9883. doi:
10.1109/71.752782.

C. Reddy, M. Kruse, and A. Cohen. Reduction drawing: Language constructs and
polyhedral compilation for reductions on gpus. In 2016 International Conference
on Parallel Architecture and Compilation Techniques (PACT), pages 87–97, Sept
2016. doi: 10.1145/2967938.2967950.

Philip Resnik and Eric Hardisty. Gibbs sampling for the uninitiated. In UMIACS
Technical Report, June 2010.

Daniel Ritchie, Andreas Stuhlmüller, and Noah Goodman. C3: Lightweight incremen-
talized mcmc for probabilistic programs using continuations and callsite caching. In
Arthur Gretton and Christian C. Robert, editors, Proceedings of the 19th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings
of Machine Learning Research, pages 28–37, Cadiz, Spain, 09–11 May 2016. PMLR.
URL http://proceedings.mlr.press/v51/ritchie16.html.

Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
Inc., New York, NY, USA, 1986. ISBN 0-471-90854-1.

G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi. Machine learn-
ing for predictive maintenance: A multiple classifier approach. IEEE Transac-
tions on Industrial Informatics, 11(3):812–820, June 2015. ISSN 1941-0050. doi:
10.1109/TII.2014.2349359.

Patricia M Therneau, Terry M.;Grambsch. Modeling Survival Data: Extending the
Cox Model. Springer, New York, 2013. ISBN 9780387987842.

Dustin Tran, Matthew D Hoffman, Rif A Saurous, Eugene Brevdo, Kevin Mur-
phy, and David M Blei. Deep probabilistic programming. arXiv preprint
arXiv:1701.03757, 2017.

Peter Turnbaugh, Micah Hamady, Tanya Yatsunenko, Brandi Cantarel, Alexis Dun-
can, Ruth Ley, Mitchell Sogin, Joe Jones, Bruce A Roe, Jason Affourtit, Michael
Egholm, Bernard Henrissat, Andrew C Heath, Rob Knight, and Jeffrey I Gordon.
A core gut microbiome in obese and lean twins. 457:480–4, 12 2008.

Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Komei
Fukuda, Joris van der Hoeven, Michael Joswig, and Nobuki Takayama, editors,
Mathematical Software – ICMS 2010, pages 299–302, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg. ISBN 978-3-642-15582-6.

81

Sven Verdoolaege. Presburger formulas and polyhedral compilation, 01 2016.

Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and
Maurice Bruynooghe. Counting integer points in parametric poly-
topes using barvinok’s rational functions. Algorithmica, 48(1):37–66,
May 2007. ISSN 1432-0541. doi: 10.1007/s00453-006-1231-0. URL
https://doi.org/10.1007/s00453-006-1231-0.

Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov. On demand parametric array
dataflow analysis. 01 2013. doi: 10.13140/RG.2.1.4737.7441.

Rajan Walia, Jacques Carette, Praveen Narayanan, Chung-chieh Shan, and Sam
Tobin-Hochstadt. Efficient compilation of array probabilistic programs. In arXiv
e-prints, 2018.

Nicola White, Fiona Reid, Adam Harris, Priscilla Harries, and Patrick Stone. A sys-
tematic review of predictions of survival in palliative care: How accurate are clini-
cians and who are the experts? PLOS ONE, 11(8):1–20, 08 2016. doi: 10.1371/jour-
nal.pone.0161407. URL https://doi.org/10.1371/journal.pone.0161407.

Yi Wu, Lei Li, Stuart Russell, and Rastislav Bodik. In IJCAI, 2016.

Lingfeng Yang, Patrick Hanrahan, and Noah Goodman. Generating Efficient MCMC
Kernels from Probabilistic Programs. In Samuel Kaski and Jukka Corander,
editors, Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, volume 33 of Proceedings of Machine Learning Re-
search, pages 1068–1076, Reykjavik, Iceland, 22–25 Apr 2014. PMLR. URL
http://proceedings.mlr.press/v33/yang14d.html.

Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan, and Sanjay Ra-
jopadhye. Alphaz: A system for design space exploration in the polyhedral model.
In Hironori Kasahara and Keiji Kimura, editors, Languages and Compilers for Par-
allel Computing, pages 17–31, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
ISBN 978-3-642-37658-0.

Jieyuan Zhang and Jingling Xue. Incremental precision-preserving symbolic in-
ference for probabilistic programs. In Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2019, page 237–252, New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450367127. doi: 10.1145/3314221.3314623. URL
https://doi.org/10.1145/3314221.3314623.

82

