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Abstract

Bitcoin is the first fully-decentralized permissionless blockchain protocol to achieve a
high level of security: the ledger it maintains has guaranteed liveness and consistency
properties as long as the adversary has less compute power than the honest nodes.
However, its throughput is only 7 transactions per second and the confirmation
latency can be up to hours. Prism is a new blockchain protocol that is designed to
achieve a natural scaling of Bitcoin’s performance while maintaining its full security
guarantees. In prior work, Prism’s security and performance properties have been
analyzed theoretically, but the analysis relies on a simple network model and specifies
performance bounds up to large constants. Hence, the results cannot predict the
protocol’s real-world performance.

In this thesis, we present a Bitcoin-like payment system based on the Prism protocol
and evaluate it on a network of up to 1000 EC2 virtual machines. Our system achieves
a throughput of over 70, 000 transactions per second and a confirmation latency of tens
of seconds, validating the prior theoretical results. We introduce several optimizations
that allow the system to scale linearly up to 8 CPU cores, and a new algorithm to
confirm transactions that is faster and more practical than the original protocol. We
also evaluate practical security concerns like the censorship attack, the balancing
attack, and spamming, and propose a simple solution that reduces spam traffic by
80% while only adding 5 seconds to the confirmation latency.

Thesis Supervisor: Mohammad Alizadeh
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In 2008, Satoshi Nakamoto invented Bitcoin and the concept of blockchains [28].

Since then, blockchains have attracted considerable interest for their applications in

cross-border payments [19, 20], digital contracts [10, 39, 31] and more. At the heart

of Bitcoin and many other blockchain projects is the Nakamoto longest chain protocol.

It enables an open (permissionless) network of nodes to reach consensus on an ordered

log of transactions and is tolerant to Byzantine adversarial attacks with no more than

50% of the compute power in the network. To achieve this high level of security,

however, the longest chain protocol severely limits transaction throughput and latency

(§3). Bitcoin, for example, supports 3–7 transactions per second and can take hours

to confirm a transaction with a high level of reliability [28].

The limitations of the longest chain protocol have led to a flurry of work in recent

years on more scalable blockchain consensus protocols (§2 discusses related work).

However, until recently, no protocol has been shown to guarantee Bitcoin-level security

(up to 50% adversarial power) as well as high throughput and low latency. Prism [6] is

the first such protocol. Prism is a Proof-of-Work (PoW) blockchain consensus protocol

that is (1) secure against 50% adversarial compute power, (2) can achieve optimal

throughput (up to the network communication bandwidth), and (3) can achieve

near-optimal confirmation latency (on the order of the network’s propagation delay).

Prism removes the throughput and latency limitations of the longest chain protocol

by systematically decoupling security and throughput in the blockchain (§4). A recent
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theoretical paper described the core protocol and analyzed its security properties [6].

While these theoretical results are promising, it is not clear how well they can

translate into real-world performance. First, the Prism consensus protocol is much

more complex than the longest chain protocol: clients must maintain over 1000 distinct

blockchains, which refer to each other to create an intricate directed acyclic graph

(DAG) structure, and they must process blocks at very high rates (e.g., 100-1000s of

blocks per second at 100s of Mbps) to update these blockchains and confirm transac-

tions. Second, Prism’s theoretical analysis relies on several simplifying assumptions

(e.g., round-based synchronous communication and a simple network model that ig-

nores queuing delay), and to make the analysis tractable, the performance bounds are

specified up to large constants that may not be indicative of real-world performance.

Third, Prism’s theory focuses on the network as the primary performance bottleneck,

but a real high-throughput blockchain system must overcome other potential perfor-

mance bottlenecks. For example, in addition to achieving consensus on a transaction

order, clients must also execute transactions and maintain the state of the ledger to

confirm transaction. Though some academic prototypes ignore transaction execution

(e.g., [3, 24]), in practice, it often turns out to be the bottleneck due to its high I/O

overhead, c.f., [33], §7.3. Finally, Prism could be vulnerable to spamming, a practical

security concern that has not been fully analyzed.

In this thesis, we present the design (§5) and implementation (§6) of a Bitcoin-like

system based on the Prism consensus protocol. Our implementation features payments

as multi-input-multi-output transactions (payments) similar to pay-to-public-key

(P2PK) in Bitcoin and Algorand [17, 1]. We evaluate our system on a testbed of up

to 1000 EC2 Virtual Machines connected via an emulated wide area network. Figure

1-1 summarizes the results. Prism consistently achieves a throughput of over 70,000

tps for a range of security levels β denoting the fraction of adversarial compute power.

To guarantee a reversal probability of less than 10−9, Prism’s latency ranges from 13

seconds against an adversary of power β = 20%, to 296 seconds for β = 44%. To our

knowledge, this makes our system the fastest implementation of a blockchain system

with Bitcoin-level security guarantees. Compared to the longest chain protocol, Prism

14
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Figure 1-1: Throughput and confirmation latency of Prism, Algorand, Bitcoin-NG, and
the longest chain protocol on the same testbed. Note that the axes are on log scales. For
Algorand and the longest chain protocol, parameters are tuned to span an optimized
tradeoff between throughput and latency at a given security level. For Bitcoin-NG
and Prism, throughput and latency are decoupled so one can simultaneously optimize
both at one operating point for a given security level. However, the throughput of
Bitcoin-NG drops to that of the longest chain protocol under attack, while that of
Prism remains high. More details in §2 and §7.1.

provides about 10,000× higher throughput and 1,000× lower latency. Compared

to Algorand [17], the state-of-the-art proof-of-stake system, Prism achieves 70× the

throughput with about 10 seconds higher latency, and can provide a higher level of

security (up to β = 50% vs. β = 33% for Algorand).

We make the following contributions:

• We implement a Prism client in roughly 10,000 lines of Rust code, and quantify

its performance in extensive experiments on EC2. Our results validate Prism’s

theoretical results by showing that it can scale both throughput and latency of

the longest chain protocol (without compromising security) in a practical setting.

Our code is available here [5].

• We propose a new algorithm to confirm transactions that is faster and more

practical to implement than the one proposed in the original protocol [6] (see

§5.3 and Appendix B).
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• Our implementation highlights several performance optimizations, e.g., asyn-

chronous ledger updates, and a scoreboarding technique that enables parallel

transaction execution without race conditions (see §6.2). We show that with

these careful optimizations, it is possible to alleviate CPU performance bot-

tlenecks and provide linear CPU scaling up to at least 8 cores. At this point,

the primary bottleneck for our implementation is the underlying database

(RocksDB [4] and I/O to the SSD persistent storage). This suggests that future

research on databases optimized for blockchain-specific access patterns could

further improve performance.

• We evaluate practical security concerns like censorship attack, balancing attack,

and spamming (see §7.4). Additionally, we propose a simple solution to the

spamming problem that reduces spam traffic by 80% while only adding 5 seconds

to the confirmation delay. Our implementation illustrates that Prism performs

well even under these attacks, and makes a stronger case for the practical viability

of the system.

The rest of the thesis is organized as follows. In §2 we discuss different scaling

approaches taken in blockchains. In §3 we discuss the longest chain protocol and

its limitations to motivate the design of the Prism protocol in §4 and §5. We

discuss the details of the client implementation with an interface enabling pay-to-

public-key transactions in §6. Evaluations are presented in §7 to assess the impact

of network resources (bandwidth, topology, propagation delay) and computation

resources (memory, CPU) on the overall performance. §8 concludes the thesis.
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Chapter 2

Related Work

There are broadly three different approaches to scale the performance of blockchains.

First, on-chain scaling aims to design consensus protocols with inherently high through-

put and low latency. Protocols such as Bitcoin-NG [14], GHOST [36], Algorand [17],

OHIE [41] are examples of this approach. Second, in off-chain scaling, users establish

cryptographically-locked agreements called “payment channels” [13] and send most of

the transactions off-chain on those channels. Lightning [32] and Eltoo [12] are examples

of this approach. Third, sharding approaches conceptually maintain multiple “slow”

blockchains that achieve high performance in aggregate. Omniledger [21], Ethereum

2.0 [8], and Monoxide [38] are examples of this approach. These three approaches are

orthogonal and can be combined to aggregate their individual performance gains.

Since Prism is an on-chain scaling solution, we compare it with other on-chain

solutions. We explicitly exclude protocols with different trust and security assumptions,

like Tendermint [22], HotStuff [40], HoneyBadgerBFT [27], SBFT [18], Stellar [25],

and Ripple[9], which require clients to pre-configure a set of trusted nodes. These

protocols target “permissioned” settings, and they generally scale to significantly fewer

number of nodes than the above mentioned permisionless protocols.

Among protocols with similar security assumptions to ours, Bitcoin-NG [14] mines

blocks at a low rate similar to the longest chain protocol. In addition, each block’s

miner continuously adds transactions to the ledger until the next block is mined. This

utilizes the capacity of the network between the infrequent mining events, thereby
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improving throughput, but latency remains the same as that of the longest-chain

protocol. Furthermore, an adversary that adaptively corrupts miners can reduce

its throughput to that of the longest chain protocol by censoring the addition of

transactions [15]. Prism adopts the idea of decoupling the addition of transactions

from the election into the main chain but avoids this adaptive attack. We compare to

Bitcoin-NG in §7.1.

DAG-based solutions like GHOST [36], Inclusive [23], and Conflux [24] were

designed to operate at high mining rates, and their blocks form a directed acyclic

graph (DAG). However, these protocols were later shown to be insecure because they

don’t guarantee liveness, i.e. the ledger stops to grow, under certain balancing attacks

[29]. Spectre[34] and Phantom [35] protocols were built along the ideas in GHOST

and Inclusive to defend against the balancing attack, however, they don’t provide any

formal guarantees. Also, Spectre doesn’t give a total ordering and Phantom has a

liveness attack [24]. To the best of our knowledge, the GHOST, Inclusive, Spectre

and Phantom protocols have no publicly available implementation, and hence we were

not able to compare these protocols with Prism in our performance evaluation.

The blockchain structure maintained by Prism is also a DAG, but a structured

one with a clear separation of blocks into different types with different functionalities

(Figure 4-1). OHIE [41] and Parallel Chains [15] build on these lessons by running

many slow, secure longest chains in parallel, which gives high aggregate throughput at

the same latency as the longest-chain protocol. To our knowledge, Parallel Chains has

not been implemented. In OHIE’s latest implementation [3], clients do not maintain

the UTXO state of the blockchain and transactions are signed messages without any

context, so it is hard to compare with OHIE in our experiments, where all nodes

maintain the full UTXO state.

Algorand [17] takes a different approach by adopting a proof of stake consensus

protocol and tuning various parameters to maximize the performance. We compare to

Algorand in §7.1. Importantly, none of the above protocols simultaneously achieve

both high throughput and low latency. Their reported throughputs are all lower than

Prism’s, and their latencies are all higher than Prism’s, except for Algorand which
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has a lower latency.
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Chapter 3

The Longest Chain Protocol

The most basic blockchain consensus protocol is Nakamoto’s longest chain protocol,

used in many systems including Bitcoin and Ethereum. The basic object is a block,

consisting of transactions and a reference link to another block. As transactions arrive

into the system, a set of nodes, called miners, construct blocks and broadcast them to

other nodes. The goal of the protocol is for all nodes to reach consensus on an ordered

log of blocks (and the transactions therein), referred to as the ledger.

Starting with the genesis block as the root, each new block mined by a miner is

added to create an evolving blocktree. In the longest chain protocol, honest miners

append each block to the leaf block of the longest chain1 in the current blocktree, and

the transactions in that block are added to the transaction ledger maintained by the

blocks in the longest chain. A miner earns the right to append a block after solving

a cryptographic puzzle, which requires finding a solution to a hash inequality. The

miner includes the solution in the block as a proof of work (PoW), which other nodes

can verify. The time to solve the puzzle is random and exponentially distributed, with

a mining rate f that can be tuned by adjusting the difficulty of the puzzle. How fast

an individual miner can solve the puzzle and mine the block is proportional to its

hashing power, i.e. how fast it can compute hashes.

A block is confirmed to be in the ledger when it is k-deep in the ledger, i.e. the

block is on the longest chain and a chain of k − 1 blocks have been appended to it. It

1In case of variable proof of work, honest miners mine on the “heaviest chain”.
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is proven that as long as the adversary has less than 50% hashing power, the ledger

has consistency and liveness properties [16]: blocks that are deep enough in the longest

chain will remain in the longest chain with high probability, and honest miners will

be able to enter a non-zero fraction of blocks into the ledger.

3.1 Latency Limitation

A critical attack on the longest chain protocol is the private double-spend attack

[28], as shown in Figure 3-1(a). Here, an adversary is trying to revert a block after

it is confirmed, by mining a chain in private and broadcasting it when it is longer

than the public chain. If the hashing power of the adversary is greater than that of

aggregate of the honest nodes, this attack can be easily executed no matter what k

is, since the adversary can mine blocks faster on the average than the honest nodes

and will eventually overtake the public chain. On the other hand, when the adversary

has less than half the power, the probability of success of this attack can be made

exponentially small by choosing the confirmation depth k to be large [28]. The price

to pay for choosing k large is increased latency in confirmation. For example, to

achieve a reversal probability of 0.001, a depth of 24 blocks is needed if the adversary

has β = 30% of the total hashing power [28]. Figure 3-2 shows the tradeoff between

confirmation depth (and therefore latency) and reliability.

3.2 Throughput Limitation

If B is the block size in number of transactions, then the throughput of the longest

chain protocol is at most fB transactions per second (tps). However, the mining

rate f and the block size B are constrained by the security requirement. Increasing

the mining rate increases the amount of forking of the blockchain due to multiple

blocks being mined on the same leaf block by multiple miners within the network

delay ∆. Forking reduces throughput since it reduces the growth rate of the longest

chain; recall that only blocks on the longest chain contribute to the ledger. More
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Figure 3-1: Depth of confirmation: longest chain vs. Prism. (a) The longest chain
protocol requires a block Ho to be many blocks deep for reliable confirmation, so that
an adversary mining in private cannot create a longer chain to reverse block Ho. (b)
Prism allows each voter block to be very shallow but relies on many voter chains to
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Figure 3-2: Reliability as a function of confirmation depth. The reversal probability of
Prism has a factor m improvement over the longest chain protocol in the exponential
rate of decrease, where m is the number of voter chains (introduced in §4).
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importantly, forking hurts the security of the protocol because the adversary requires

less compute power to overtake the longest chain. In fact, the adversarial power that

can be tolerated by the longest chain protocol goes from 50% to 0% as the mining

rate f increases [16]. Similarly, increasing the block size B also increases the amount

of forking since the network delay ∆ increases with the block size [11].

A back-of-the-envelope calculation of the impact of the forking can be done based

on a simple model of the network delay:

∆ =
hB

C
+D,

where h is the average number of hops for a block to travel, C is the communication

bandwidth per link in transactions per second, and D is the end-to-end propagation

delay. This model is consistent with the linear relation between the network delay

and the block size as measured empirically by [11]. Hence, the utilization, i.e. the

throughput as a fraction of the communication bandwidth, is upper bounded by

fB

C
<
f∆

h
,

where f∆ is the average number of blocks “in flight” at any given time, and reflects

the amount of forking in the block tree. In the longest chain protocol, to be secure

against an adversary with β < 50% of hash power, this parameter should satisfy [16]

f∆ <
1− 2β

β
.

For example, to achieve security against an adversary with β = 45% of the total

hashing power, one needs f∆ ≈ 0.2. With h = 5, this translates to a utilization of

at most 4%. The above bound holds regardless of block size; the utilization of the

longest chain protocol cannot exceed 4% for β = 45% and h = 5. In summary, to not

compromise on security, f∆ must be kept much smaller than 1. Hence, the security

requirement (as well as the number of hops) limits the bandwidth utilization.
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Chapter 4

Overview of Prism

The selection of a main chain in a blockchain protocol can be viewed as electing a

leader block among all the blocks at each level of the blocktree. In this light, the

blocks in the longest chain protocol can be viewed as serving three distinct roles: they

stand for election to be leaders; they add transactions to the main chain; they vote

for ancestor blocks through parent link relationships. The latency and throughput

limitations of the longest chain protocol are due to the coupling of the roles carried

by the blocks. Prism removes these limitations by factorizing the blocks into three

types of blocks: proposer blocks, transaction blocks and voter blocks. (Figure 4-1).

Each block mined by a miner is randomly sortitioned into one of the three types of

blocks, and if it is a voter block, it will be further sortitioned into one of the voter

trees. (Mining is described in detail in §5.2).

The proposer blocktree anchors the Prism blockchain. Each proposer block contains

a list of reference links to transaction blocks, which contains transactions, as well as a

single reference to a parent proposer block. Honest nodes mine proposer blocks on

the longest chain in the proposer tree, but the longest chain does not determine the

final confirmed sequence of proposer blocks, known as the leader sequence. We define

the level of a proposer block as its distance from the genesis proposer block, and the

height of the proposer tree as the maximum level that contains any proposer blocks.

The leader sequence of proposer blocks contains one block at every level up to the

height of the proposer tree, and is determined by the voter chains.
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Figure 4-1: Prism: Factorizing the blocks into three types of blocks: proposer blocks,
transaction blocks and voter blocks.

There are m voter chains, where m� 1 is a fixed parameter chosen by the system

designer. For example, we choose m = 1000 in our experiments. The ith voter chain is

comprised of voter blocks that are mined on the longest chain of the ith voter trees. A

voter block votes for a proposer block by containing a reference link to that proposer

block, with the requirements that: 1) a vote is valid only if the voter block is in the

longest chain of its voter tree; 2) each voter chain votes for one and only one proposer

block at each level. The leader block at each level is the one which has the highest

number of votes among all the proposer blocks at the same level (tie broken by hash

of the proposer blocks.) The elected leader blocks then provide a unique ordering

of the transaction blocks to form the final ledger. (Ledger formation is explained in

detail in §5.3.)

4.1 Security and Latency

The votes from the voter trees secure each leader proposer block, because changing

an elected leader requires reversing enough votes to give them to a different proposer

block in that level. Each vote is in turn secured by the longest chain protocol in its

voter tree. If the adversary has less than 50% hash power, and the mining rate in each

of the voter trees is kept small to minimize forking, then the consistency and liveness

of each voter tree guarantee the consistency and liveness of the ledger maintained by

the leader proposer blocks. However, this would appear to require a long latency to
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wait for each voter block to get sufficiently deep in its chain. What is interesting is

that when there are many voter chains, the same guarantee can be achieved without

requiring each and every vote to have a very low reversal probability, thus drastically

improving over the latency of the longest chain protocol.

To get some intuition, consider the natural analog of the private double-spend

attack on the longest chain protocol in Prism. Figure 3-1(b) shows the scenario. An

honest proposer block Ho at a particular level has collected votes from the voter

chains. Over time, each of these votes will become deeper in its voter chain. An attack

by the adversary is to mine a private proposer block A at the same level, and on each

of the voter trees, fork off and mine a private alternate chain and send its vote to

block A. After leader block Ho is confirmed, the adversary continues to mine on each

of the alternate voter chains to attempt to overtake the public longest chain and shift

the vote from Ho to A. If the adversary can thereby get more votes on A than on

Ho, then its attack is successful. The question is how deep do we have to wait for

each vote to be in its voter chain in order to confirm the proposer block Ho?

Nakamoto’s calculations will help us answer this question. As an example, at

tolerable adversary power β = 30%, the reversal probability in a single chain is 0.45

when a block is 2-deep [28]. With m = 1000 voter chains and each vote being 2-deep,

the expected number of chains that can be reversed by the adversary is 450. The

probability that the adversary can get lucky and reverse more than half the votes, i.e.

500, is about 0.001. Hence to achieve a reversal probability, ε = 0.001, we only need to

wait for the votes to be 2-deep, as opposed to the 24 block depth needed in the longest

chain protocol (§3.1). This reduction in latency comes without sacrificing security:

each voter chain can operate at a slow enough mining rate to tolerate β adversarial

hash power. Furthermore, increasing the number of voter chains can further improve

the confirmation reliability without sacrificing latency; for example, doubling the

number of voter chains from 1000 to 2000 can reduce the reversal probability from

0.001 to 10−6.

We have discussed one specific attack, focusing on the case when there is a single

public proposer block on a given level. Another possible attack is when there are two
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or more such proposer blocks and the adversary tries to balance the votes between

them to delay confirmation. It turns out that the attack space is quite huge and these

are formally analyzed in [6] to obtain the following guarantee on the confirmation

latency, regardless of the attack:

Theorem 1 (Latency, Thm. 4.8 [6]). For an adversary with β < 50% of hash power,

network propagation delay D, Prism with m chains confirms honest1 transactions at

reversal probability ε guarantee with latency upper bounded by

Dc1(β) +
Dc2(β)

m
log

1

ε
seconds, (4.1)

where c1(β) and c2(β) are β dependent constants.

For large number of voter chains m, the first term dominates the above equation

and therefore Prism achieves near optimal latency, i.e. proportional to the propagation

delay D and independent of the reversal probability. Figure 3-2 compares the latency-

reliability tradeoffs of Prism and the longest chain protocol. Note that (4.1) is a

worst-case latency bound that holds for all attacks. In §7.4, we will evaluate the

latency of our system under the balancing attack.

4.2 Throughput

To keep Prism secure, the mining rate and the size of the voter blocks have to be

chosen such that each voter chain has little forking. The mining rate and the size of

the proposer blocks have to be also chosen such that there is very little forking in the

proposer tree. Otherwise, the adversary can propose a block at each level, breaking

the liveness of the system. Hence, the throughput of Prism would be as low as the

longest chain protocol if transactions were carried by the proposer blocks directly.

To decouple security from throughput, transactions are instead carried by separate

transaction blocks. Each proposer block when it is mined refers to the transaction

1Honest transactions are ones which have no conflicting double-spent transactions broadcast in
public.
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blocks that have not been referred to by previous proposer blocks. This design allows

throughput to be increased by increasing the mining rate of the transaction blocks,

without affecting the security of the system. The throughput is only limited by

the computing or communication bandwidth limit C of each node, thus potentially

achieving 100% utilization. In contrast, as we discussed in §3.2, the throughput of

the longest chain protocol is security-limited, resulting in low network utilization. [6]

formally proves that Prism achieves near optimal throughput:

Theorem 2 (Throughput, Thm. 4.4[6] ). For an adversary with β < 50% fraction

of hash power and network capacity C, Prism can achieve (1− β)C throughput and

maintain liveness in the ledger.

Remark on security model: The Prism theory paper [6] analyzed the protocol in

a synchronous round-based network model under standard assumptions about the

adversary. In particular, the delay for a block of size B was assumed to be equal to

∆ = B
C

+D, where B/C is the processing delay and D is the propagation delay, and

the protocol was assumed to run in rounds where each round is of duration equal to

the delay (∆) corresponding to the largest sized block. The adversarial nodes do not

have to follow protocol - they can mine new blocks with any content and anywhere on

the blockchain, and unlike honest users, they can keep their mined blocks in private

and release them at anytime in the future. However, the adversary cannot modify

the content of blocks mined by honest nodes or withhold blocks mined by an honest

node from reaching other honest nodes. Refer to §2 of [6] for the full specification of

the model. This model does not capture the impact of artifacts like queuing delay

or asynchronous communication on performance. Nevertheless our implementation

shows that the overall performance characteristics predicted by the theory hold in a

practical setting.
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Chapter 5

Design

5.1 Notation

Each block B = (H,C) is a tuple containting a header H and content C. As discussed

in §4, there are three types of blocks: transaction blocks, proposer blocks, and voter

blocks. In all three types, the header H = (P, n,D) is a tuple containing: (1) the

hash P of the parent block, (2) a valid PoW nonce n, and (3) a content digest

D = Digest(C). We add a superscript to the above notations to denote the type of

block being referred. For example, we refer to proposer blocks by BP , transaction

blocks by BT , and voter blocks by BV .

5.2 Mining

Miners should not be able to choose a priori which type of block they are mining; this is

essential for the security of the scheme, since otherwise the adversary could concentrate

all of its power on a subset of block trees and overpower them. Cryptographic sortition

is used to ensure that miners cannot choose which type of block they mine. Nodes

simultaneously mine one transaction block, one proposer block, and m voter blocks

(one for each tree). Only after a valid proof of work is found does the miner learn if

the mined block is a transaction, proposer, or voter block. The mining process has

three steps (four including validation):
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(1) Superblock generation. When a miner starts mining, it creates a superblock

that simultaneously contains the parents and contents for all m+ 2 possible sub-blocks

(1 transaction sub-block, 1 proposer, and m voter sub-blocks). The parents and

contents differ for each type of block. This superblock is updated whenever the miner

receives a new network message that changes either the header or the content of any

of the sub-blocks.

Transaction sub-block BT : Transaction blocks do not need a parent block, so

P T = ∅. The content of a transaction block, CT , is an ordered list of transactions,

drawn from a data structure similar to the Bitcoin mempool, except in Bitcoin, mempool

stores all transactions that have not yet been included in the main chain; in Prism, once

a transaction is included in a valid transaction block, it is permanently removed from

the mempool. This is because the transaction block (hence its contained transactions),

is guaranteed to eventually be included in the ledger (§5.3). Upon receiving a new

transaction block over the network, the miner should remove the transactions in the

new block from its own mempool and transaction block content.

Proposer sub-block BP : Proposer tree is built in a longest-chain fashion; proposer

blocks choose as their parent P P the tip of the longest chain in the proposer tree.

Each proposer block’s content, CP := (CP
1 , C

P
2 ), is an ordered list of references to

other proposer and transaction blocks, where CP
1 is an ordered list of proposer blocks

that are neither referenced nor among content of BP ’s ancestor block1, and CP
2 is an

ordered list of transaction blocks that are not referenced (directly or indirectly) by any

of BP ’s ancestors or by any of the proposer blocks in CP
1 . A miner updates content

CP upon receiving a new transaction block or a new proposer block.

Voter sub-block BVi in the ith voter tree: Voter trees are also built in a longest-chain

fashion; the parent of voter block BVi , P Vi , is the tip of the longest chain in the ith

voter tree. The content, CVi , is a list of references to proposer blocks, or votes. Each

voter tree’s longest chain is allowed to vote at most one proposer block on any level2

of the proposer tree. Let h denote the last level in the proposer blocktree and `B

1Ancestor blocks are computed by following the chain of links from BP in the prop. tree.
2Level of a proposer block is its distance from the genesis block.
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denote the last level voted by BVi
’s ancestors. Then the content of the voter block BVi

is CV := [BP
`′B+1, . . . , B

P
h ], list of proposer blocks where with some abuse of notation,

BP
` denotes a vote for (pointer to) a proposer block at level `. In words, the voter

block contains a list of one vote per unvoted level in the block’s ancestors.

By default, nodes will vote for the first proposer block they see at a given level.

Notice that the content CVi is updated if the miner receives either a new proposer block

at a previously-unseen level or a new voter block for the ith tree that changes the longest

chain of that voter tree. In the former case, the miner adds a vote for that level. In the

latter case, the miner updates its parent block P Vi so as to extend the longest chain

and also updates the content CVi . All the contents and parent links are concatenated

into a superblock B = (H,C) with header H = (P := [P T , P P , P V1 , . . . , P Vm ], n,D)

and content C := [CT , CP , CV1 , . . . , CVm ]. The content digest D is explained next.

(2) PoW and sortition. Once the superblock is formed, the miner mines by searching

for a nonce n such that Hash(H) ≤ q, where Hash(·) denotes a hash function, and

q denotes a difficulty threshold. For a one-way hash function, the miner can do no

better than brute-force search, so it cycles through difference values of nonces n until

finding one such that Hash(H) ≤ q. Upon finding a valid nonce, sortition occurs. We

divide the numbers from 0 to q into regions corresponding to different block types.

For example, [0, qT ] denotes a transaction block, [qT + 1, qP ] denotes a proposer block,

and [qP + 1, q] denotes voter blocks, split evenly into m regions, one per voter tree.

The output region of Hash(H) determines the block type.

(3) Block pruning. Passing around a large superblock after mining would waste

unnecessary bandwidth. Hence, to improve space efficiency, instead of using the full

concatenated parent block and content lists, only the relevant content is retained

after mining and the type of the block is known. For example, a mined proposer

block would contain only the proposer parent reference , P P , and proposer content,

CP ; it would not store transactions or votes. However, if we do this naively, block

validators would not be able to tell if the cryptographic sortition was correctly

executed. To address this, we alter our header to contain the following: H =

(MerkleRoot(P ), n,D := MerkleRoot(C)), where MerkleRoot(·) denotes the Merkle root
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of a Merkle tree [26] generated from the contained array. In addition to the pruned

content and header, we include sortition proofs, Merkle proofs attesting to the fact that

the block was mined correctly. In our proposer block example, the Merkle proof would

include the sibling node for every node in the path from the proposer content CP to the

root MerkleRoot(C) in the Merkle tree. Hence MerkleProof(C) (resp. MerkleProof(P ))

is an array of size log2(m) – a primary source of storage overhead in Prism blocks.

(4) Block validation. Upon receiving a mined Prism block B = (H,C), a validator

checks two things. First, it checks that Hash(H) ≤ q and that the cryptographic

sortition is correct (i.e., that the hash maps to the correct region for the block type).

Next, it checks the sortition proof. To do this, it takes content C (resp. parent) in the

block, and ensures that the Merkle proof validation gives the content (resp. parent)

digest in the header [26].

5.3 Ledger Formation

Prism achieves high throughput in part by mining multiple transaction blocks simulta-

neously and allowing all of them to contribute to the final ledger. A key consequence is

that blocks mined concurrently may contain redundant or conflicting transactions. If

Prism were to discard blocks that contain inconsistent transactions, it would needlessly

reduce throughput by not confirming the transactions that are consistent. To prevent

this, Prism separates the process of confirming blocks and forming a ledger. This is a

key difference between Prism and many other blockchain protocols. The formation of

a ledger in Prism occurs in three steps, as shown in Figure 5-1.

(1) Proposer block confirmation. First, we must confirm a contiguous sequence

of leader proposer blocks at each level. Recall that the proposer block with the most

votes on level ` is defined as the leader block at level `, and the sequence of leader

blocks for each level of the proposer tree is defined as the leader sequence. Once we

can guarantee that this leader sequence is permanent for all levels up to some level

` with probability at least 1 − ε, where ε is the target reversal probability, we can

confirm a leader block sequence. This process is described in more detail below.
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Figure 5-1: Ledger formation has three parts: (1) confirming a leader sequence of
proposer blocks; (2) creating a list of transactions; and (3) sanitizing the transaction
list for conflicts. In this figure, each transaction block has only one transaction;
suppose transactions (c) and (d) are inconsistent (e.g., a double spend). A proposer
block’s black reference link denotes a parent link. Blue links denote reference links; a
proposer block can include reference links to transaction blocks as well as proposer
blocks.

(2) Transaction ordering. Given a proposer block leader sequence, we iterate over

the sequence and list the referred transaction blocks in the order they are referred.

We use Li to denote the leader at level i. In Figure 5-1, we start with the leader at

level 1 L1, the left proposer block. L1 refers to only one transaction block containing

transaction a, so our ledger starts with a. Next, we consider L2. It starts by referring

to its parent, the right proposer block at level 1. Since that proposer block has not

yet been included in the ledger, we include its referred transactions—namely, a and

b. L2 then adds L1, followed by transaction blocks containing d and c, in that order.

Since L1 was already added to our ledger, we ignore it, but add d and c. This process

continues until we reach the end of our leader sequence.

(3) Ledger sanitization. In the previous step, we may have added redundant or

conflicting transactions. Hence, we now execute the transaction list in the previously-

specified order. Any duplicate or invalid transactions are discarded. In Figure 5-1,

we discard the second instance of a (since it’s a duplicate), and we discard c (since it

conflicts with d).

The key to the above confirmation process is leader proposer block confirmation

(step 1). The leader block at a given level ` can initially fluctuate when the voter trees
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start voting on level `. However, as the voter trees grow, votes on level ` are embedded

deeper into their respective voter trees, which (probabilistically) prevents the votes

from being reverted. Hence, we can confirm the leader block when: (1) a plurality of

voter trees have voted for it, and (2) that plurality is guaranteed not to change with

probability at least 1− ε, where ε is a user-selected target reversal probability.

Our confirmation procedure calculates this probability by computing a (1 − ε)-

confidence interval over the number of votes on each leader block, as well as a

hypothetical “private” block that has not yet been released by a hypothetical adversary

that controls a fraction β of the hash power. Once the leader block’s confidence

interval is strictly larger than any of the other candidates’ confidence intervals, we

can be sure (with probability at least 1− ε) that the current leader will remain the

leader for all time, so we confirm that proposer block. The details of this confidence

interval calculation as well as a brief comparison with the confirmation rule proposed

in the original protocol [6] are included in Appendix B.

5.4 Spam Mitigation

In Prism, miners do not validate transactions before including them in blocks. This

introduces the possibility of spamming, where an adversary could generate a large

number of conflicting transactions and send them to different nodes across the network.

The nodes would then mine all of these transactions into blocks, causing miners and

validators to waste storage and computational resources.3 Notice that protocols like

the longest chain are not susceptible to this attack because transactions are validated

prior to block creation. We propose a simple mechanism to mitigate spamming. Miners

validate transactions with respect to their latest ledger state and other unconfirmed

transactions, giving the adversary only a small window of network delay to spam the

system. This then allows miners to mitigate spamming attacks by adding a random

3While a discussion of incentives is beyond the scope of this thesis, it is important to note that
fees alone cannot prevent such spamming. Assuming nodes only pay for transactions that make it to
into the ledger, the adversary would not be charged for conflicting transactions that get removed
during sanitization.

36



timing jitter prior to mining transactions, thus increasing the chance that a miner can

detect that a conflicting transaction is already present in a transaction block, in which

case it will choose to not include that transaction. We evaluate the effectiveness of

this method in §7.4.
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Chapter 6

Implementation

We have implemented a Prism client in about 10,000 lines of Rust code and can be

found at [5]. We describe the architecture of our implementation and highlight several

design decisions that are key to its high performance.

6.1 Architecture

Our implementation is based on the unspent transaction output (UTXO) model, similar

to that used by Bitcoin. UTXOs are generated by transactions. A transaction takes a

list of UTXOs (inputs) and defines a list of new UTXOs (outputs). Each UTXO is only

allowed to be spent once, and the state of the ledger, i.e., the state that results from

applying the transactions that have been confirmed up to that point in the ledger, can

be represented as a set of UTXOs. Our implementation features a simplified version of

Bitcoin’s scripting language, processing only pay-to-public-key (P2PK) transactions,

similar to that implemented in Algorand [17, 1]. We use Ed25519 [7] for cryptographic

signatures and SHA-256 [30] as the hashing algorithm.

The system architecture is illustrated in Figure 6-1. Functionally it can be divided

into the following three modules:

1. Block Structure Manager, which maintains the clients’ view of the blockchain,

and communicates with peers to exchange new blocks.
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Figure 6-1: Architecture of our Prism client implementation.

2. Ledger Manager, which updates the ledger based on the latest blockchain state,

executes transactions, and maintains the UTXO set.

3. Miner, which assembles new blocks.

The ultimate goal of the Prism client is to maintain up-to-date information of the

blockchain and the ledger. To this end, it maintains the following four data structures:

1. Block Structure Database, residing in persistent storage, stores the graph structure

of the blockchain (i.e., the voter blocktrees, proposer blocktree, and transac-

tions blocks referenced) as well as the latest confirmed order of proposer and

transaction blocks.

2. Block Database, residing in persistent storage, stores every block a client has

learned about so far.

3. UTXO Database, residing in persistent storage, stores the list of all UTXOs, as

well as their value and owner.

4. Memory Pool, residing in memory, stores the set of transactions that have not

been mined in any block.

At the core of the Block Structure Manager are an event loop which sends

and receives network messages to/from peers, and a worker thread pool which handles

those messages. When a new block arrives, the worker thread first checks its proof of

work and sortition, according to the rules specified in §5.2, and stores the new block
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in the Block Database. 1 It then proceeds to relay the block to peers that have not

received it. Next, the worker thread checks whether all blocks referred to by the new

block, e.g. its parent, are already present in the database. If not, it buffers the block

in an in-memory data structure and defers further processing until all the block’s

references have been received. Once a block’s references have all arrived, the worker

performs further validation (e.g., verifying transaction signatures), and finally, the new

block is inserted into the Block Structure Database. If the block is a transaction block,

the Block Structure Manager also checks the Memory Pool against the transactions

included in this new block, and removes any duplicates or conflicting ones.

The Ledger Manager is a two-stage pipeline and runs asynchronously with

respect to the Block Structure Manager. Its first stage, the transaction sequencer,

runs in a loop to continuously poll the Block Structure Database and try to confirm

new transactions. It starts by updating the list of votes cast on each proposer block.

To avoid doing wasteful work, it caches the vote counts and the tips of the voter

chains, and on each invocation, it only scans through the new voter blocks. Then, it

tries to confirm a leader for each level in the proposer block tree as new votes are

cast, according to the rules specified in §5.3. In the case where a leader is selected, it

queries the Block Database to retrieve the transaction blocks confirmed by the new

leader, and assembles a list of confirmed transactions. The list is passed on to the

second stage of the pipeline, the ledger sanitizer. This stage maintains a pool of worker

threads that executes the confirmed transactions in parallel. Specifically, a worker

thread queries the UTXO Database to confirm that all inputs of the transaction are

present; their owners match the signatures of the transaction; and the total value of

the inputs is no less than that of the outputs. If execution succeeds, the outputs of

the transaction are inserted into the UTXO Database, and the inputs are removed.

The Miner module assembles new blocks according to the mining procedure

described in §5.2. It is implemented as a busy-spinning loop. At the start of each

round, it polls the Block Structure Database and the Memory Pool to update the

block it is mining. It also implements the spam mitigation mechanism described in

1Checking proof of work at the earliest opportunity reduces the risk of DDoS attacks.

41



§5.4. Like other academic implementations of PoW systems [41, 24], our miner does

not actually compute hashes for the proof of work, and instead simulates mining by

waiting for an exponentially-distributed random delay. Solving the PoW puzzle in

our experiments would waste energy for no reason, and in practice, PoW will happen

primarily on dedicated hardware, e.g., application-specific integrated circuits (ASICs).

So the cost of mining will not contribute to the computational bottlenecks of the

consensus protocol.

The three databases residing in the persistent storage are all built on RocksDB [4],

a high-performance key-value storage engine. We tuned the following RocksDB

parameters to optimize its performance: replacing B-trees with hash tables as the

index; adding bloom filters; adding a 512 MB LRU cache; and increasing the size of

the write buffer to 32 MB to sustain temporary large writes.

6.2 Performance Optimizations

The key challenge to implementing the Prism client is to handle its high throughput.

The client must process blocks at a rate of hundreds of blocks per second, or a

throughput of hundreds of Mbps, and confirm transactions at a high rate, exceeding

70,000 tps in our implementation. To handle the high throughput, our implementation

exploits opportunities for parallelism in the protocol and carefully manages race

conditions to achieve high concurrency. We now discuss several key performance

optimizations.

Asynchronous Ledger Updates. In traditional blockchains like Bitcoin, blocks are

mined at a low rate and clients update the ledger each time they receive a new block.

However in Prism, blocks are mined at a very high rate and a only a small fraction of

these blocks — those that change the proposer block leader sequence — lead to changes

in the ledger. Therefore trying to update the ledger synchronously for each new block

is wasteful and can become a CPU performance bottleneck.

Fortunately, Prism does not require synchronous ledger updates to process blocks.

Since Prism allows conflicting or duplicate transactions to appear in the ledger and
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performs sanitization later (§5.3), the client need not update the ledger for each new

block. Therefore, in our implementation, the Ledger Manager runs asynchronously

with respect to the Block Structure Manager, to periodically update the ledger.

Most blockchain protocols (e.g., Bitcoin, Algorand, and Bitcoin-NG) require that

miners validate a block against the current ledger prior to mining it, and therefore

cannot benefit from asynchronous ledger updates. For example, in Bitcoin’s current

specification, when a miner mines a block B, it implicitly also certifies a ledger L

formed by tracing the blockchain from the genesis block to block B. A Bitcoin client

must therefore verify that a block B that it receives does not contain transactions

conflicting with the ledger L, and hence must update the ledger synchronously for each

block. In principle, Bitcoin could perform post hoc sanitization like Prism; however,

due to long block times relative to transaction verification, doing so would not improve

performance.

Parallel Transaction Execution. Executing a transaction involves multiple reads

and writes to the UTXO Database to (1) verify the validity of the input coins, (2)

delete the input coins, and (3) insert the output coins. If handled sequentially,

transaction execution can quickly become the bottleneck of the whole system. Our

implementation therefore uses a pool of threads in the Ledger Manager to execute

transactions in parallel.2 However, naively executing all transactions in parallel is

problematic, because semantically the transactions in the ledger form an order, and

must be executed strictly in this order to get to the correct final state (i.e., UTXO

set). For example, suppose transactions T and T’ both use UTXO u as input, and T

appears first in the ledger. In this case, T’ should fail, since it tries to reuse u when

it has already been spent by T. However, if T and T’ are executed in parallel, race

condition could happen where the inputs of T’ are checked before T deletes u from

the UTXO Database, allowing T’ to execute.

To solve this problem, we borrow the scoreboarding [37] technique long used in

processor design. A CPU employing this method schedules multiple instructions to

be executed out-of-order, if doing so will not cause conflicts such as writing to the

2Despite parallelism, the UTXO database is the bottleneck for the entire system (§7.3).
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same register. Transactions and CPU instructions are alike, in the sense that they

both need to be executed in the correct order to produce correct results, only that

transactions read and write UTXOs while CPU instructions read and write CPU

registers. In the Ledger Manager, a batch of transactions are first passed through

a controller thread before being dispatched to one of the idle workers in the thread

pool for execution. The controller thread keeps track of the inputs and outputs of

the transactions in the batch on the scoreboard (an in-memory hash table). Before

scheduling a new transaction for execution, it checks that none of its inputs or outputs

are present on the scoreboard. In this way, all worker threads are able to execute in

parallel without any synchronization.

Functional-Style Design Pattern. Our system must maintain shared state between

several modules across both databases and in-memory data structures, creating

potential for race conditions. Further, since this state is split between the memory and

the database, concurrency primitives provided by RocksDB cannot solve the problem

completely. For example, to update the ledger, the Ledger Manager needs to fetch

the tips of the voter chains from the memory and the votes from the Block Structure

Database, and they must be in sync. Locking both states with a global mutex is a

straightforward solution; however, such coarse locks significantly hurt performance.

We adopt a functional-style design pattern to define the interfaces for modules

and data structures. Specifically, we abstract each module into a function that owns

no shared state. Instead, state is passed explicitly between modules as inputs and

outputs. For example, the functionality of the Ledger Manager can be abstracted

as UpdateLedger(V, V ′)→ ∆T , where V and V ′ are the previous and current voter

chain tips, and ∆T are the transactions confirmed by votes between V and V ′. Then,

we design the database schema to support such functions. For example, the Block

Structure Database supports the query VoteDiff(V, V ′) → ∆Votes, where ∆Votes

are the added and removed votes when the voter chains evolve from V to V ′. In this

way, function UpdateLedger can invoke VoteDiff to update the votes and confirm

new transactions with no need for explicit synchronization, because each function

guarantees the correctness of its output with respect to its input. Functional-style
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design has broader benefits than enabling global-lock-free concurrency. One example

is it facilitates bootstrapping (discussed in §8), where a client needs the ledger formed

by leader blocks until a certain level. Another example is reverting to a previous

version of the ledgers. Such queries are easily supported in our model by calling the

above update ledger function.

No Transaction Broadcasting. In most traditional blockchains, clients exchange

pending transactions in their memory pools with peers. This incurs extra network

usage, because each transaction will be broadcast twice: first as a pending transaction,

and then again as part of a block. At the throughput in which Prism operates, such

overhead becomes even more significant.

Our implementation does not broadcast pending transactions, because it is un-

necessary in Prism. In traditional blockchains like Bitcoin and Ethereum, the whole

network mines a block every tens of seconds or even few minutes. Since we cannot

predict who will mine the next block, exchanging pending transactions is necessary,

so that they get included in the next block regardless of who ends up mining it. In

contrast, Prism generates hundreds of transaction blocks every second. This elevated

block rate means that any individual miner is likely to mine a transaction block in time

comparable to the delay associated with broadcasting a transaction to the rest of the

network (i.e., seconds). Hence, unlike other blockchain protocols, there is little benefit

for a Prism client to broadcast its transactions. Non-mining clients can transmit their

transactions to one or more miners for redundancy; however, those miners do not need

to relay those transactions to peers.
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Chapter 7

Evaluation

Our evaluation answers the following questions:

• What is the performance of Prism in terms of transaction throughput and

confirmation latency, and how does it compare with other protocols? (§7.1)

• How well does Prism scale to larger numbers of users? (§7.2)

• How does Prism perform with limited resource, and how efficient does it utilize

resource? (§7.3)

• How does Prism perform when under attack? (§7.4)

Schemes compared: We compare Prism with Algorand, Bitcoin-NG, and the longest

chain protocol. For Bitcoin-NG and the longest chain protocol, we modify and use

our Prism codebase to enable a fair comparison of the protocols. For Algorand, we

use the official open-source implementation [1] written in Golang. Note that this

implementation is different from the one evaluated in [17]. Therefore, we do not expect

to reproduce the results in [17].

Testbed: We deploy our Prism implementation on Amazon EC2’s c5d.4xlarge

instances with 16 CPU cores, 16 GB of RAM, 400 GB of NVMe SSD, and a 10 Gbps

network interface. Each instance hosts one Prism client. By default, we use 100

instances and connect them into a random 4-regular graph topology. To emulate a
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wide-area network, we introduce a propagation delay of 120 ms on each link to match

the typical delay between two distant cities [2], and a rate limiter of 400 Mbps for

ingress and egress traffic respectively on each instance. We also evaluate several other

network topologies (with up 1000 instances) and per-instance bandwidth limits. More

details on the testbed are in §A

To generate workloads for those experiments, we add a transaction generator in

our testbed which continuously creates transactions at an adjustable rate. In our

Prism implementation, the main bottleneck is RocksDB and the I/O performance

of the underlying SSD, which limits the throughput to about 80, 000 tps. We cap

transaction generation rate to 75,000 tps to avoid hitting this bottleneck.

Performance tuning and security: All protocols in the experiments have design

parameters, and we tried our best to tune these parameters for performance and

security. For Prism, we calculate the optimal mining rate f for proposer and voter

blocks to achieve the best confirmation latency, given the adversarial ratio β and

desired confirmation confidence ε. We cap the size of transaction blocks to be 40

KB, and set the mining rate for transaction blocks such that they support 80, 000

tps. Unless otherwise stated, we turn off the spam mitigation mechanism in Prism

(we evaluate its effectiveness in §7.4). To ensure security, we calculate the expected

forking rate α, i.e. fraction of blocks not on the main chain, given f and the block

propagation delay ∆. We compare α against the forking rate actually measured in

each experiment, to ensure that the system has met the target security level. We

follow the same process for Bitcoin-NG and the longest chain protocol. For Algorand,

we adopt the default security parameters set in its production implementation. Then

we hand-tune its latency parameters λ and Λ. Specifically, we reduce λ and Λ until a

round times out, and use the settings that yield the best confirmation latency. For

Prism, we target a confirmation confidence, ε, in the order of 10−9. For Bitcoin-NG

and the longest chain protocol, we target ε in the order of 10−5. For Algorand, the

blockchain halts with a probability in the order of 10−9.
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7.1 Throughput and Latency

In this experiment, we measure the transaction throughput and confirmation latency

of Prism at different adversarial ratio β, and compare that with Algorand, Bitcoin-NG

and the longest chain protocol. For Algorand, we use its default setting of security

parameters, which targets β = 20%.1 For Bitcoin-NG and the longest chain protocol,

we experiment with two adversarial ratios: β = 20% and β = 33%. In both Algorand

and the longest chain protocol, there is tradeoff between throughput and confirmation

latency by choosing different block sizes. We explore this tradeoff and present it in a

curve. For Algorand, we try block sizes between 300 KB to 32 MB. For the longest

chain protocol, we try block sizes between 1.7 KB to 33.6 MB. The parameters used

in this experiment are available in Appendix C. All four protocols are deployed on the

same hardware and network topology as described above. We run each experiment for

a minimum of 10 minutes and report the average transaction throughput and latency.

The results are shown in Figure 7-1.

Throughput: As shown in Fig. 7-1, Prism is able to maintain the same transaction

throughput of around 75, 000 tps regardless of the β chosen. This is because Prism

decouples throughput from security by using transaction blocks. In this way, Prism

is able to maintain the mining rate for transaction blocks to sustain a constant

throughput, while changing the mining rate for other types of blocks to achieve the

desired β. Bitcoin-NG offers a similar decoupling by entitling the miner of the latest

key block to frequently produce micro blocks containing transactions. Algorand and

the longest chain protocol do not offer such decoupling, so one must increase the block

size in order to achieve a higher throughput. In such case, the confirmation latency

increases, as demonstrated by the tradeoff curves in Figure 7-1, to accommodate for

the higher block propagation delay induced by larger blocks. For the longest chain

protocol, its throughput limit has been discussed in §3.2. For Algorand, we observe

its throughput increases marginally with block size, but does not exceed 1300 tps.

The reason is that Algorand only commits one block every round. So at any moment,

1The maximum possible security level for Algorand is β = 33%, but its latency is expected to
increase substantially as β approaches 33% [17].
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unlike Prism, Algorand only has one block propagating in the network, causing low

bandwidth utilization. For Bitcoin-NG, we observed a peak throughput of 21,530

tps. The reason is that, unlike Prism, in Bitcoin-NG only a single node (the leader)

commits transactions at a time. This results in the network becoming a bottleneck;

once throughput exceeds about 20,000 tps, we observed that the block propagation

delay increases significantly for Bitcoin-NG.2

Is Consensus the Throughput Bottleneck? A blockchain client has two roles:

(1) it participates in the consensus protocol (the Block Structure Manager and the

Miner in our implementation); (2) it executes transactions confirmed by the consensus

protocol and updates the ledger (the Ledger Manager in our implementation). The

throughput can be bottlenecked by either of these stages and therefore we ask: Is

the throughput limited by the consensus protocol, or the ledger updates? To answer

this question, we measure the maximal throughput when no consensus protocol is

involved, i.e. we start one client of each protocol and test how fast each client can

execute transactions and update the ledger. For our Prism, Bitcoin-NG and longest

chain client, the limit is around 80, 000 tps. For Algorand, the limit is around 4, 800

tps. From Fig. 7-1 we see that Bitcoin, Bitcoin-NG, and Algorand have throughput

much lower than these limits, and thus are bottlenecked by the consensus protocols.

However, in case of Prism, its throughput is very close to the limit, and hence it is

bottlenecked by the ledger updates.

Confirmation Latency: The confirmation latency of Prism stays below one minute

for β ≤ 40%. At β = 20%, Prism achieves a latency of 13 seconds, and for similar

security guarantees Algorand achieves latency of 2 seconds. Compared to the longest

chain protocol, Prism uses multiple voter chains in parallel (1000 chains in our

experiments) to provide security instead of relying on a single chain. So Prism requires

each vote to be less deep in order to provide the same security guarantee. As a result,

Prism achieves a substantially lower confirmation latency. For example, for β = 33%,

the confirmation latency for Prism is 23 seconds, compared to 639 seconds at the

2Note also that Bitcoin-NG is susceptible to an adaptive attack that censors the chosen leader
and can reduce throughput substantially [15].
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Figure 7-1: Throughput and confirmation latency of Prism, Algorand, Bitcoin-NG, and
the longest chain protocol on the same testbed. Note that the axes are on log scales. For
Algorand and the longest chain protocol, parameters are tuned to span an optimized
tradeoff between throughput and latency at a given security level. For Bitcoin-NG
and Prism, throughput and latency are decoupled so one can simultaneously optimize
both at one operating point for a given security level. However, the throughput of
Bitcoin-NG drops to that of the longest chain protocol under attack, while that of
Prism remains high.

lowest throughput point for the longest chain protocol. As we increase the block size

for the longest chain protocol, its confirmation latency increases to 1956 seconds at

a throughput of 282 tps. The gap between Prism and the longest chain protocol

increases for higher β. For example, for Prism the confirmation latency increases

from 13 seconds to 23 seconds as β increases from 20% to 33%. For the longest

chain protocol, the same change in β causes the latency to increase by more than

800 seconds. Bitcoin-NG exhibits similar confirmation latency as the longest chain

protocol for the same value of β, since it applies the same k-deep rule as the longest

chain protocol for key blocks to confirm transactions, and key blocks must be mined

slowly to avoid frequent leader changes.

51



7.2 Scalability

In this experiment, we evaluate Prism’s ability to scale to a large number of users.

For each client, we use the same network and hardware configuration as in other

experiments, and target an adversarial ratio β = 40%. The results are shown in

Table 7.1.

First, we increase the number of clients while keeping the topology a random 4-

regular graph, i.e., each client always connects to four random peers. In this case, the

network diameter grows as the topology becomes larger, causing the block propagation

delay to increase and the confirmation latency to increase correspondingly. Note

that the transaction throughput is not affected3 because in Prism the mining rate

for transaction blocks is decoupled from that of the other types of blocks. Then, we

explore the case where clients connect to more peers as the topology grows larger,

so that the diameter of the network stays the same. As shown in the results, both

confirmation latency and throughput are constant as the number of clients increases

from 100 to 1000.

In all cases, the forking rate stays stable and is under 0.13, proving that the system

is secure for β = 40%. This suggests that Prism is able to scale to a large number

of users, as long as the underlying peer-to-peer network provides a reasonable block

propagation delay. We also provide the distributions of block propagation delay in

each topology in Appendix D.

7.3 Resource Utilization

In this experiment, we evaluate the resource utilization of our Prism implementation,

and how it performs with limited network bandwidth and CPU resources.

Network Bandwidth: Figure 7-2 shows the throughput and confirmation latency of

Prism as we throttle the bandwidth at each client. Results show that the confirmation

3In the results, the throughput increases as we increase the network size. This is because of an
artifact in our testbed which causes slightly more transactions to be generated when there are more
nodes in the network.
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Table 7.1: Performance of Prism with different network topologies.

Property #Nodes 100 300 1000

Degree = 4

Diameter 5 7 9
Throughput (tps) 7.2× 104 7.4× 104 7.4× 104

Latency (s) 40 58 67
Forking 0.119 0.117 0.112

Diameter = 5

Degree 4 6 8
Throughput (tps) 7.2× 104 7.9× 104 7.9× 104

Latency (s) 40 44 37
Forking 0.119 0.119 0.127
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Figure 7-2: Performance of Prism with different network bandwidth at each client.
The in-memory size of a transaction is 168 bytes.

latency is stable, and the throughput scales proportionally to the available bandwidth.

The throughput stops to grow when the bandwidth is higher than 200 Mbps, because

the transaction generation rate is capped at 75,000 tps, which is near the bottleneck

caused by RocksDB.

Table 7.2 provides a breakdown of bandwidth usage. Our implementation is able

to process transaction data at a throughput about 50% of the available bandwidth.

Further improvements could be made by using more efficient data serialization schemes

and optimizing the underlying P2P network.

CPU: Figure 7-3 shows the throughput of Prism as we change the number of CPU

cores for each client. The throughput scales proportionally to the number of cores,

and stops to grow after 7 cores because the transaction generation rate is capped.

This shows that our implementation handles more than 10,000 tps per CPU core, and
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Table 7.2: Network bandwidth usage breakdown of Prism measured on a 200 Mbps
interface. Network Headroom is the unused bandwidth necessary for the block
propagation delay to stay stable. Serialization overhead is wasted space when serializing
in-memory objects for network transmission. Messaging stands for non-block messages.

Usage %Bandwidth

Received Deserialized

Proposer Block 0.05%
Voter Block 0.21%

Transaction Block 50.43%
Messaging 0.43%

Serialization Overhead 25.80%
Network Headroom 23.08%
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Figure 7-3: Performance of Prism with different number of CPU cores at each client.

the parallelization techniques discussed in §6 are effective.

Table 7.3 provides a breakdown of CPU usage across different components. More

than half of CPU cycles are taken by RocksDB for which we only perform basic tuning.

Less than 15% are spent on overhead operations, such as inter-thread communication,

synchronization, etc. (categorized as “Miscellaneous” in the table). This suggests that

our implementation uses CPU resources efficiently, and further improvements could

be made primarily by optimizing the database.

While we chose mid-end AWS EC2 instances for experiments, our results show

that Prism does not inherently require powerful machines or waste resources.4 On

the contrary, its high resource efficiency and scalability that we demonstrate in this

experiment makes Prism suitable for applications with different requirements.

4For example, a laptop with 8 cores, 16 GB RAM, and 400 GB of NVMe-based SSD would cost
under $3,000 today and could easily run Prism.
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Table 7.3: CPU usage breakdown of our Prism implementation.

Operation %CPU

Ledger
RocksDB Read/Write 49.5%

(De)serialization 3.1%
Miscellaneous 8.9%

Blockchain

Signature Check 21.7%
(De)serialization 3.8%

RocksDB Read/Write 3.9%
Network I/O 0.6%
Miscellaneous 5.5%

Block Assembly 1.5%
Transaction Generation 0.7%

Miscellaneous 0.8%

7.4 Performance Under Active Attack

In the following experiments, we evaluate how Prism performs in the presence of

active attacks. Specifically, we consider three types of attacks: spamming, censorship,

and balancing attacks. Spamming and censorship attacks aim to reduce network

throughput, while balancing attacks aim to increase confirmation latency. In these

experiments we configure Prism to tolerate a maximum adversarial ratio β = 40%.

Spamming Attack. Recall that in a spamming attack, attackers send conflicting

transactions to different nodes across the network. As described in §5.4, miners can

mitigate such attack by adding a random timing jitter to each transaction. In this

experiment, we set up 100 miners as victims and connect them according to the same

topology as in other experiments. Then for each miner we start a local process that

generates a transaction every 100 ms. We synchronize those processes across the

network so that each miner receives the same transaction at the same time, with a

time synchronization error of several ms due to the Network Time Protocol. To defend

against the attack, miners add a uniform random delay before including a transaction

into the next transaction block. We let each attack to last for 50 seconds, and measure

the fraction of spam transactions that end up in transaction blocks. Fig. 7-4 shows

that adding a random jitter of at most 5 seconds can reduce the spam traffic by about

80%. We point out that miners can extend this method by monitoring the reputation

55



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

S
p
a
m

 (
N
o
rm
a
liz
e
d
)

Max. Added Jitter (s)

Figure 7-4: Effectiveness of random jitter in defending against spam attack. Jitters
follow uniform distributions and we report the maximum jitter that we add. Spam
traffic amount is normalized to the case when no jitter is added.

of clients by IP address and public key, and penalizing clients with high spam rate

with longer jitter.

Censorship Attack. In a censorship attack, malicious clients mine and broadcast

empty transaction blocks and proposer blocks. Censorship attack does not threaten

the security of Prism, but it reduces the system throughput because a portion of

blocks are now “useless” since they do not contain any data. As Figure 7-5 shows,

during a censorship attack, the transaction throughput reduces proportionally to the

percentage of adversarial users. Theoretically, censorship attack could also affect

the confirmation latency, because it could take longer for a transaction block to be

referred to if some proposer blocks are empty. However, since a proposer block is

mined roughly every 10 seconds, the impact on latency is nominal. Our results shows

that the confirmation latency stays stable as we increase the adversarial ratio from

0% to 25%.

Balancing Attack. In a balancing attack, attackers try to increase the confirmation

latency of the system by waiting for the event when multiple proposer blocks appear

on the same level, and then balancing the votes among them. Normally, when multiple

proposer blocks appear on one level, every client votes for the proposer block with the

most votes, so the system quickly converges with the vast majority of voter chains

voting for one proposer block. During a balancing attack, however, the attacker votes

on the proposer blocks with second most votes to slow down such convergence, causing
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Figure 7-5: Performance of Prism under censorship attack.
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Figure 7-6: Performance of Prism under balancing attack. We also mark the confir-
mation latency of the longest chain protocol with the same security guarantee.

votes to be more evenly distributed among competing proposer blocks. In this case,

clients need to wait for votes to grow deeper in order to confirm a proposer leader,

resulting in longer confirmation latency. Figure 7-6 shows that the confirmation

latency grows as the active adversarial fraction increases. But even when 25% clients

are malicious, the confirmation latency is still more than 10× better than the longest

chain protocol. Meanwhile, the throughput stays stable, because such attack only

targets voter blocks.
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Chapter 8

Conclusion

This thesis presented the implementation and evaluation of a Bitcoin-like system

based on the Prism consensus protocol. Our implementation supports over 70,000

transactions per second at a confirmation latency of tens of seconds with Bitcoin-level

security. Our results validate the theoretical analysis of the Prism protocol, and

highlight the importance of optimizing transaction execution and the databases for

high throughput. We also demonstrated experimentally that Prism is robust to several

active attacks, and showed that a simple jittering approach is effective at mitigating

spamming.

There are several avenues for future work. Our current implementation uses a

UTXO-based scripting layer, and extending it to a more complex scripting layer for

smart contracts is of interest. As described in §6.2, parallelizing transaction execution

(via scoreboarding) was vital in achieving high throughput. The ability to parallelize

transaction execution for smart contracts will be key to exploiting the high throughput

provided by Prism consensus. Other extensions include methods to bootstrap new

users and support light clients who only download the block headers (but not full

blocks). Efficient bootstrapping is particularly important in a protocol like Prism that

operates near network capacity, since expecting a new user to download and process

all the old blocks is not practical.
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Appendix A

Testbed Design

In this appendix, we provide the design details of our testbed that enables us to

evaluate Prism on up to 1000 EC2 virtual machines. The testbed consists of a script

written in 1000 lines of Bash that manages the EC2 cluster, and a tool written in

1200 lines of Golang that collects experimental data.

A.1 Working with an EC2 Cluster

The testbed runs on Amazon EC2’s c5d.4xlarge instances. This type of instance has

16 vCPUs, 16 GB of RAM, 400 GB of NVMe SSD, and a 10 Gbps network interface.

Before starting an experiment, our Bash script calls the API of AWS to start the

required instances. We noticed that sometimes the AWS datacenter (US East, Ohio)

may run out of capacity and was unable to provide the instances. The situation

usually resolves within a few minutes as the datacenter auto-provisions more instances

of the type, and our script is written to handle this issue.

After the instances are started, the script queries the IP addresses of the in-

stances through AWS API and writes to the local SSH config file to enable pubkey-

authenticated login. It then generates a payload for each instance, including the binary

of the Prism client and the full command that starts the client. To deploy the payload,

instead of sending to individual servers through scp, it first uploads the payload to

AWS S3 and controls each VM to download the payload from S3, avoiding sending

65



the large binary files through the internet multiple times. It then mounts the NVMe

storage on each VM, and configures the network bandwidth limiter and sets up an

artificial delay to mimic the real internet. Specifically, we limit the total egress and

ingress bandwidth respectively. While it is straightforward to shape the egress traffic

by setting up qdisc, Linux does not allow traffic shaping of ingress traffic directly.

As a solution, we forward all ingress traffic to an ifb device, and set up qdisc on

this device. Finally, we tune the TCP send and receive buffer sizes to make sure the

bandwidth is fully utilized.

In addition to provisioning EC2 VMs, the Bash script also has a few features to

help us debug the testbed. Specifically, we found that being able to easily profile the

program using Flamegraph is very useful for performance debugging and encourages

us to fine-tune the program, especially since our local development machine alone does

not have the hardware resource to achieve a high transaction throughput and forbids

us to reproduce performance issues locally. Also, we added a function to remotely

check the correctness of the system, e.g. whether all instances reach consensus and

agree on the same UTXO set. This feature allowed us to capture many obscure race

conditions.

A.2 Monitoring the performance

To monitor the experiment, we wrote a tool in Golang that communicates with

the HTTP API of our Prism client. It periodically queries the clients and displays

the following performance metrics: generated transactions, confirmed transactions,

deconfirmed transactions, local network queue length, mined blocks, local block

propagation delay, received blocks, confirmation latency, and forking. It also stores

the time-series data in a local round-robin database and plots the data in real-time.

We found that having the ability to monitor many metrics of the system is very useful

for debugging, especially when the cluster involves hundreds of VMs. For example, we

discovered a performance bug due to bad usage of Mutex when we noticed unusual

spikes of network queuing latency. Also, collecting time-series data in real-time allows
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us to display the results in a Grafana dashboard during presentations and demos.
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Appendix B

Confirmation Rule

In this appendix we give the detailed calculation of the confidence intervals of the

votes a proposer block receives. It is used when confirming a leader proposer block, as

mentioned in §5.3.

Consider the scenario where there are n proposer blocks at level l, and let P =

{BP
1 , B

P
2 , . . . , B

P
n } denote the set of proposer blocks at level l. Now we want to count

the number of votes each block will get with confidence 1− ε.

Suppose BP
i gets vi votes. Here a vote stands for a voter block which is on the

longest chain of its voter tree and votes for BP
i . Let Vi = {BV

i1
, BV

i2
, . . . , BV

ivi
} denote

the set of votes that BP
i has. For every vote BV

ij
, let dij denote its depth, which is the

number of blocks appended to voter block BV
ij

in the longest chain, plus one.

Now, for each vote BV
ij

with depth dij , we want to calculate the probability Pij of

it being permanent. To do so, we consider a potential private double-spend attack,

assuming an adversarial party is trying to overturn the voting results to elect a different

proposer block BP
A as the leader block of level l. Note that BP

A could either be a

block in P , i.e. publicly known, or a block the adversary has privately mined but not

released. To elect BP
A as the leader block of level l, the adversarial party would need

to mine its own voter chains to overturn some existing votes to vote for BP
A .

We want to compute the probability of this happening. However, we do not know

when the adversary started mining voter blocks for BP
A . Notice that the adversary has

no incentive to mine voter blocks for BP
A until BP

i has been mined and released. Since
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the honest nodes are always releasing blocks, we can use the average depth of the votes

for BP
i in the public voter trees to estimate the time passed since BP

i was released,

hence bounding the expected number of votes the adversary could have accumulated

on their private fork in the same amount of time. That is, since block inter-arrivals are

exponentially distributed, the number of blocks mined since block BP
i was proposed is

a Poisson random variable, with rate equal to its mean. This quantity can be related

to the time elapsed since BP
i was released via the block mining rate.

More precisely, as an honest node, we assume the fraction of adversarial hashing

power is β, and we can empirically estimate the average depth of existing public votes

as d̄ =
∑

ij dij/
∑

i vi and the forking rate α 1 of public voter chains. Since there are

many voter chains, these estimates converge quickly to their true means. Then, we

calculate the estimated average depth of a private voter chain, denoted as d̄A, to be

d̄A =
βd̄

(1− α)(1− β)
.

Here the 1/(1− α) term accounts for forking in public voter chains and assumes that

the malicious private voter chains do not fork. The β/(1− β) term accounts for the

ratio of hashing power between the honest users (1− β) and the malicious users (β).

This expected depth d̄A can be used as an estimate of the rate of the Poisson random

variable of the number of blocks in the adversary’s private chain.

Since each voter chain follows the longest-chain rule, the calculation for Pij is the

same as in Bitcoin

Pij = FPois(dij ; d̄A)−
dij∑
k=0

fPois(k; d̄A)
β

1− β

dij+1−k
.

Here FPois(x;λ) is the cumulative distribution function and fPois(x;λ) is the probability

mass function of Poisson distribution with rate parameter λ. In this expression, the

first term is the probability that the adversary has mined fewer than dij + 1 blocks, in

which case it cannot currently overtake the main chain. The second term computes,

1The fraction of blocks not on the longest chain out of all blocks.
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for each possible length of the adversary’s chain, the probability that the adversary

overtakes the public voter chain in the future by mining faster.

Given Pij , we can now calculate the confidence interval of votes on each proposer

block. For proposer block BP
i and each of its votes BV

ij
, let Ṽij be the random variable

where

Ṽij =

1, if vote BV
ij

is secure forever (permanent)

0, if vote BV
ij

will be overturned
.

With some abuse of notation, let vi be the random variable equal to the number of

secure votes of BP
i . We have

vi =
∑
j

BV
ij
.

Note that Ṽij ∼ Bernoulli(Pij). Then the lower confidence bound of votes on BP
i

(denoted as bvic) can be obtained by calculating the ε-quantile of random variable vi.

In real-world implementations, given the complexity of such computation, its

closed-form approximation may be used. We can approximate vi using a Gaussian

distribution N (µi, σ
2
i ) where

µi =
∑
j

Pij .

σ2
i =

∑
j

Pij(1− Pij).

Using the closed-form approximation of the quantile function of normal distribution,

we have

bvic ≈ µi − σi

√
ln

1

ε2
− ln ln

1

ε2
− ln (2π).

Now, we consider the upper confidence bound of votes on BP
i (denoted as dvie).

Here, we want to defend against the worst case where for each BP
i , only bvic votes are

retained, and the adversarial party controls the remaining votes (we let dvAe denote

the number of such votes). Recall that each voter chain can only vote for each proposer

level once. For a system with m voter chains, we have

dvAe = m−
∑
i

bvic .
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The adversarial party will use those votes to vote for BP
A . Since BP

A could be any

block in P , we have

dvie = bvic+ dvAe .

BP
A could also be a block which the adversarial party mines but has not released. In

such case, the upper bound of votes on BP
A is just dvAe. Finally, to select the leader

of level l, we search for the block BP
L ∈ P satisfying bvLc > dvie for every i 6= L and

bvLc > dvAe. In words, we select the block whose lower bound of votes is higher than

the upper bound of any other known or unknown proposer block in the same level.

Compared to the one proposed in the original Prism protocol (§4.5.1 of [6]), this

new confirmation rule differs in how it calculates the confidence interval of the number

of votes a proposer block ultimately receives given the current depth of each vote.

The original protocol sets different thresholds for the vote depth and counts the votes

that are deeper than the threshold. Then it deducts the number of votes that may be

reversed by an attacker w.r.t. the chosen depth threshold from the previous count and

gets the number of secured votes. It then picks the maximal number of secured votes

given different depth thresholds as the lower bound for the proposer block. Here, any

vote that is not deeper than the threshold are considered unsettled and hence does

not contribute towards confirmation. In our new confirmation rule, however, every

vote contributes towards confirmation regardless of its depth. Each vote BV
ij

is treated

as a Bernoulli random variable with parameter Pij (1− Pij being the probability that

the attacker reverses the vote) and we calculate the number of votes that the attacker

can flip at the same time given the required confirmation error probability ε. As a

result, even if Pij is very low for a particular vote, it is still counted towards the lower

bound of settled votes.

This new confirmation rule provides three main benefits. First, it provides a

lower confirmation latency than the original protocol because every vote contributes

regardless of its depth, as explained above. Second, it allows flexible selection of the

confirmation error probability ε. We can change ε easily by setting the confidence

level to be 1− ε while calculating the confidence interval of vi. As a comparison, the
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original protocol defines ε only w.r.t. β, the number of voter chains m, and a finite

execution horizon assuming the protocol only executes for a finite duration. Hence,

the original protocol does not provide a way to select ε on each individual client.

Third, the new confirmation rule is more practical to implement than the original one.

This is because the original protocol requires multiple scans of the votes assuming

different depth thresholds. Such operation can be hard to implement considering that

the depth of votes continuouly changes. As a comparison, the new confirmation rule

only scans the votes once, and allows approximations to speed up the calculation.

73



74



Appendix C

Parameters Used in the Evaluation

Here we present the parameters used in the experiment in §7.1 for Prism (Table C.1,

Table C.2), Algorand (Table C.3), Bitcoin-NG (Table C.4), and the longest chain

protocol (Table C.5).
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Table C.1: Parameters of Prism.

Parameter Value

Transaction Block Size 228 transactions
Voter Block Size 1000 votes

Proposer Block Size 7000 references
Voter Chains (m) 1000

Transaction Mining Rate 350 Blocks/s
Voter Mining Rate Table C.2

Proposer Mining Rate Table C.2

Table C.2: Mining rate f of proposer and voter blocks for different β in Prism. The
unit is Blocks/s.

β Mining Rate (f)

0.20 0.535
0.33 0.185
0.40 0.097
0.42 0.081
0.43 0.069
0.44 0.054

Table C.3: Parameters of Algorand. Block Size: number of transactions in a block.
Assembly Time: maximum time spent on assembling a block (this limit was never hit
in the experiment). λ: expected time to reach consensus on block hash. Λ: expected
time to reach consensus on the actual block. Detailed definition in [17].

Block Size Assembly Time (s) λ (s) Λ (s)

1287 0.5 0.6 1.6
4366 0.8 1.2 3.0
8733 1.6 1.9 6.5

13100 1.6 1.9 10.0
17294 1.6 2.0 13.0
21504 1.9 2.3 16.0
42334 3.5 3.9 38.0
64614 5.0 5.4 56.0
85513 7.0 7.4 73.0
85836 7.0 7.4 68.0

103004 8.4 8.8 84.0
116580 9.5 9.9 99.0
133766 11.0 11.4 110.0
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Table C.4: Parameters of Bitcoin-NG.

Parameter Value

Key Block Mining Rate 0.10 Block/s
Micro Block Interval 15000 µs

Block Size 500 transactions

Table C.5: Mining rate f for different β and block sizes in the longest chain protocol.
Here block sizes are in terms of transactions.

β Block Size Mining Rate (f)

0.20

10 0.404
260 0.262

1000 0.221
4000 0.144

10000 0.110
20000 0.079
60000 0.064

200000 0.027

0.33

10 0.168
260 0.117

1000 0.119
4000 0.065
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Appendix D

Block Propagation Delay Distribution

Here we present the distribution plots of the block propagation delay (∆) in topologies

tested in our scalability experiment (§7.2). The data are shown in Figures D-1a, D-1b,

D-1c, D-1d, D-1e. In each plot, the concrete lines mark the mean of the propagation

delay of that type of blocks, and the dashed lines mark the 25% and 75% quantiles.

Comparing Figures D-1a, D-1c, D-1e we observe that as long as the network diameter

is kept constant, the block propagation delay is barely affected by the increase of

clients.
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(a) Nodes= 100, Degree= 4, Diameter= 5
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(b) Nodes= 300, Degree= 4, Diameter= 7
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(d) Nodes= 1000, Degree= 4, Diameter= 9
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Figure D-1: Block propagation delay in the testbed.
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