
On Exploiting Structures for Deep Learning

Algorithms with Matrix Estimation

by

Yuzhe Yang

B.S., Peking University (2018)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c© Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 15, 2020

Certified by. .
Dina Katabi

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

On Exploiting Structures for Deep Learning Algorithms with

Matrix Estimation

by

Yuzhe Yang

Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Despite recent breakthroughs of deep learning, the intrinsic structures within tasks
have not yet been fully explored and exploited for better performance. This thesis
proposes to harness the structured properties of deep learning tasks using matrix
estimation (ME). Motivated by the theoretical guarantees and appealing results, we
apply ME to study the following two important learning problems:

1. Adversarial robustness. Deep neural networks are vulnerable to adversarial attacks.
This thesis proposes ME-Net, a defense method that leverages ME. In ME-Net,
images are preprocessed using two steps: first pixels are randomly dropped from
the image; then, the image is reconstructed using ME. We show that this process
destroys the adversarial structure of the noise, while re-enforcing the global structure
in the original image. Comparing ME-Net with state-of-the-art defense mechanisms
shows that ME-Net consistently outperforms prior techniques, improving robustness
against both black-box and white-box attacks.

2. Value-based planning and deep reinforcement learning (RL). This thesis proposes
to exploit the underlying low-rank structures of the state-action value function,
i.e., Q function. We verify empirically the existence of low-rank Q functions in
the context of control and deep RL tasks. As our key contribution, by leveraging
ME, we propose a generic framework to exploit the underlying low-rank structure
in Q functions. This leads to a more efficient planning procedure for classical
control, and additionally, a simple scheme that can be applied to any value-based
RL techniques to consistently achieve better performance on “low-rank” tasks.

The results of this thesis demonstrate the value of using matrix estimation to
capture the internal structures of deep learning tasks, and highlight the benefits of
leveraging structure for analyzing and improving modern learning algorithms.

Thesis Supervisor: Dina Katabi
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisor,

Professor Dina Katabi, for her unstinting support and invaluable guidance. I feel

fortunate to work with Dina. She is an extremely insightful researcher, influencing

me the way to do research. Dina constantly inspired me with her passion for finding

answers to the unknowns and doing research with real impact. I thank her for her

patience to spend a huge amount of time brainstorming with me, listening to my ideas,

reading my drafts/presentations and teaching me how to structure and improve them.

I could not ask for a better advisor. I am truly grateful.

This thesis would not have been possible without my collaborators’ wisdom and

efforts. Zhi brings me to the field of matrix estimation; Discussing and brainstorming

with Zhi has always been fruitful (together we have come up with so many crazy

ideas!). Without his help and guidance, this thesis would not have been possible. Hao

Wang managed to be a mentor, a friend, and an older brother; He not only showed

me the ropes of doing research but also taught me the way to become a successful

graduate student. I am also very fortunate to have learnt from my other co-authors,

Shichao and Guo, who were fantastic collaborators.

I am really grateful for being a part of NETMIT and CSAIL, and working with

amazing colleagues/friends. I owe my thanks to Deepak, Zach, Chen-Yu, Mingmin,

Hao He, Lijie, Tianhong, Yuan, Abbas, Aniruddh, Colin, and Yingcheng, for their

friendship and insightful discussions on various research topics. I also want to thank

Jie, Zeyuan, Wenbo, Lei, Hongzi, and all other friends for their warm companionship

when I was lost and frustrated.

Last but not least, I would like to thank my parents, my girlfriend Luxin Zhang,

and my family, for their unconditional love, guidance, encouragement, and unwavering

support of all my decisions over the years. Thank you.

5

Previously Published Material

Parts of this thesis are based on previously published materials and were done in

collaboration with other authors. My contributions to these works centered around

proposing and refining the ideas, implementation and empirical evaluation of the

proposed algorithms. We collaborated closely in the brainstorming, algorithmic design

and writing of the papers.

Chapter 2 revises a previous publication [1]: Yuzhe Yang, Guo Zhang, Dina Katabi, and

Zhi Xu. ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation.

ICML, 2019.

Chapter 3 revises a previous publication [2]: Yuzhe Yang, Guo Zhang, Zhi Xu, and

Dina Katabi. Harnessing Structures for Value-Based Planning and Reinforcement

Learning. ICLR, 2020.

6

Contents

1 Introduction 21

1.1 Adversarial Robustness . 22

1.2 Planning & Deep Reinforcement Learning 23

1.3 Design Overview: Structured Framework with Matrix Estimation . . 24

1.4 Thesis Structure . 26

2 ME-Net: Towards Effective Adversarial Robustness with Matrix Es-

timation 29

2.1 Problem & Motivation . 29

2.1.1 Contributions . 31

2.2 ME-Net . 31

2.2.1 Our Design . 31

2.2.2 Matrix Estimation Pipeline 33

2.2.3 Model . 35

2.3 Evaluation . 36

2.3.1 Black-box Attacks . 38

2.3.2 White-box Attacks . 41

2.3.3 Evaluation with Different Datasets 43

2.3.4 Evaluation against Adaptive Attacks 45

2.3.5 Adversarial Robustness vs. Generalization 45

2.3.6 Comparison of Different ME Methods 46

2.3.7 Improving Generalization . 47

2.4 Related Work . 48

2.5 Summary & Discussion . 49

7

3 Harnessing Structures for Value-Based Planning and Reinforcement

Learning 51

3.1 Problem & Motivation . 51

3.1.1 Contributions . 53

3.2 Warm-up: A Toy Example . 53

3.3 Structured Value-based Planning . 56

3.3.1 Matrix Estimation . 56

3.3.2 Our Approach: Structured Value-based Planning 57

3.3.3 Empirical Evaluation on Stochastic Control Tasks 58

3.4 Structured Value-based Deep Reinforcement Learning 59

3.4.1 Evidence of Structured Q-value Function 60

3.4.2 Our Approach: Structured Value-based RL 61

3.4.3 Empirical Evaluation with Various Value-based Methods . . . 63

3.5 Diagnose and Interpret Performance in Deep RL 64

3.6 Related Work . 66

3.7 Summary & Discussion . 67

4 Conclusions and Future Work 69

A Supplementary Materials for Chapter 2 73

A.1 Training Details . 73

A.2 Additional Results on CIFAR-10 . 74

A.2.1 Black-box Attacks . 74

A.2.2 White-box Attacks . 75

A.3 Additional Results on MNIST . 77

A.3.1 Black-box Attacks . 77

A.3.2 White-box Attacks . 79

A.4 Additional Results on SVHN . 80

A.4.1 Black-box Attacks . 80

A.4.2 White-box Attacks . 81

A.5 Additional Results on Tiny-ImageNet 81

A.5.1 Black-box Attacks . 82

A.5.2 White-box Attacks . 83

8

A.6 Additional Results of Different ME Methods 83

A.6.1 Black-box Attacks . 83

A.6.2 White-box Attacks . 84

A.7 Additional Studies of Attack Parameters 84

A.8 Additional Benefits by Majority Voting 86

A.9 Hyper-Parameters Study . 87

A.9.1 Observation Probability p . 87

A.9.2 Number of Selected Masks . 87

A.10 Additional Visualization Results . 88

B Supplementary Materials for Chapter 3 91

B.1 Pseudo Code and Discussions for Structured Value-based Planning (SVP) 91

B.2 Experimental Setups for Stochastic Control Tasks 92

B.3 Additional Results for SVP . 95

B.3.1 Inverted Pendulum . 95

B.3.2 Mountain Car . 97

B.3.3 Double Integrator . 98

B.3.4 Cart-Pole . 99

B.4 Training Details of Structured Value-based RL (SV-RL) 101

B.5 Additional Results for SV-RL . 102

B.6 Additional Empirical Study . 109

B.6.1 Discretization Scale on Control Tasks 109

B.6.2 Batch Size on Deep RL Tasks 110

9

10

List of Figures

2-1 The approximate rank of different datasets. We plot the his-

togram (in red) and the empirical CDF (in blue) of the approximate

rank for images in each dataset. 34

2-2 An example of how ME affects the input images. We apply

different masks and show the reconstructed images by ME. 35

2-3 An illustration of ME-Net training and inference process. 36

2-4 Class separation under black-box adversarial attack. The vec-

tors right before the softmax layer are projected to a 2D plane using

t-SNE [3]. 39

2-5 The empirical CDF of the distance within and among classes.

We quantitatively show the intra-class and inter-class distances between

vanilla model and ME-Net on clean data and under black-box adversarial

attacks. 40

2-6 White-box attack results on different datasets. We compare

ME-Net with [4] under PGD or BPDA attack with different attack

steps up to 1000. We show both the pure ME-Net without adversarial

training, and ME-Net with adversarial training. For Tiny-ImageNet,

we report the Top-1 adversarial robustness. 43

2-7 The trade-off between adversarial robustness and standard

generalization on different datasets. We use pure ME-Net during

training, and apply 7 steps white-box BPDA attack for the adversarial

accuracy. For Tiny-ImageNet we only report the Top-1 accuracy. The

results verify the consistent trade-off across different datasets. 46

11

3-1 The approximate rank and MSE of Q(t) during value iteration. (a) &

(b) use vanilla value iteration; (c) & (d) use online reconstruction with

only 50% observed data each iteration. 54

3-2 An illustration of the proposed SVP algorithm for leveraging low-rank

structures. 57

3-3 Performance comparison between optimal policy and the proposed SVP

policy. 59

3-4 Approximate rank of different Atari games: histogram (red) and empir-

ical CDF (blue) of the approximate rank of 10,000 randomly sampled

data batch for the trained DQN. 60

3-5 An illustration of the proposed SV-RL scheme, compared to the original

value-based RL. 61

3-6 Results of SV-RL on various value-based deep RL techniques. First

row: results on DQN. Second row: results on double DQN. Third

row: results on dueling DQN. 64

3-7 Interpretation of deep RL results. We plot games where the SV-based

method performs differently. More structured games (with lower rank)

can achieve better performance with SV-RL. 65

A-1 CIFAR-10 white-box attack results of pure ME-Net with dif-

ferent perturbation ε. We report ME-Net results with different

training settings under various attack steps. 76

A-2 Visualization of ME result with different observation prob-

ability p. First row: Images after applying masks with different

observation probabilities. Second row: The recovered images by ap-

plying ME. We can observe that the global structure of the image is

maintained even when p is small. 87

12

A-3 Visualization of ME-Net applied to clean images, adversarial

images, and their differences on Tiny-ImageNet. First column

from top to bottom: the clean image, the adversarial example gener-

ated by PGD attacks, the difference between them (i.e., the adversarial

noises). Second column from top to bottom: the reconstructed clean

image by ME-Net, the reconstructed adversarial example by ME-Net

after performing PGD attacks, the difference between them (i.e., the

redistributed noises). Underlying each image is the predicted class

and its probability. We multiply the difference images by a constant

scaling factor to increase the visibility. The differences between the

reconstructed clean image by ME-Net and the reconstructed adversar-

ial example by ME-Net after performing PGD attacks, i.e., the new

adversarial noises, are redistributed to the global structure. 89

B-1 Performance comparison between optimal policy and the reconstructed

“low-rank” policy, on the Inverted Pendulum task. 96

B-2 Comparison of the policy trajectories and the input torques between

the two schemes, on the Inverted Pendulum task. 96

B-3 The policy trajectories and the input torques of the proposed SVP

scheme, on the Inverted Pendulum task. 96

B-4 Performance comparison between optimal policy and the reconstructed

“low-rank” policy, on the Mountain Car task. 97

B-5 Comparison of the policy trajectories and the input changes between

the two schemes, on the Mountain Car task. 97

B-6 Performance of the proposed SVP policy, with different amount of

observed data, on the Mountain Car task. 98

B-7 The policy trajectories and the input changes of the proposed SVP

scheme, on the Mountain Car task. 98

B-8 Performance comparison between optimal policy and the reconstructed

“low-rank” policy, on the Double Integrator task. 99

B-9 Comparison of the policy trajectories and the input changes between

the two schemes, on the Double Integrator task. 99

13

B-10 Performance of the proposed SVP policy, with different amount of

observed data, on the Double Integrator task. 99

B-11 The policy trajectories and the input changes of the proposed SVP

scheme, on the Double Integrator task. 100

B-12 Performance comparison between optimal policy and the reconstructed

“low-rank” policy, on the Cart-Pole task. 100

B-13 Comparison of the policy trajectories and the input changes between

the two schemes, on the Cart-Pole task. 101

B-14 Performance of the proposed SVP policy, with different amount of

observed data, on the Cart-Pole task. 101

B-15 The policy trajectories and the input changes of the proposed SVP

scheme, on the Cart-Pole task. 101

B-16 Additional results of SV-RL on DQN (Part A). 103

B-17 Additional results of SV-RL on DQN (Part B). 104

B-18 Additional results of SV-RL on DQN (Part C). 105

B-19 Additional results of SV-RL on DQN (Part D). 106

B-20 Additional results of SV-RL on double DQN. 107

B-21 Additional results of SV-RL on dueling DQN. 108

B-22 Additional study on discretization scale. We choose three differ-

ent discretization value on the Inverted Pendulum task, i.e. 400 (states,

20 each dimension) × 100 (actions), 2500 (states, 50 each dimension) ×
1000 (actions), and 10000 (states, 100 each dimension) × 4000 (actions).

First row reports the optimal policy, second row reports the SVP policy

with 20% observation probability. 110

B-23 Additional study on batch size. We select two games for illus-

tration, one with a small rank (Frostbite) and one with a high rank

(Seaquest). We vary the batch size with 32, 64, and 128, and report

the performance with and without SV-RL. 111

14

List of Tables

2.1 CIFAR-10 black-box results under transfer-based attacks. We

compare ME-Net with state-of-the-art defense methods under both

SGD and adversarial training. 39

2.2 CIFAR-10 extensive black-box results. We show significant ad-

versarial robustness of ME-Net under different strong black-box attacks. 40

2.3 White-box attack against pure preprocessing schemes. We use

PGD or BPDA attacks in white-box setting. Compared to other pure

preprocessing methods, ME-Net can increase robustness by a significant

margin. *Data from [5]. 42

2.4 White-box attack results for adversarial training. We use 1000

steps PGD or BPDA attacks in white-box setting to ensure the results

are convergent. ME-Net achieves state-of-the-art white-box robustness

when combined with adversarial training. 42

2.5 Results of ME-Net against adaptive white-box attacks on

CIFAR-10. We use 1000 steps PGD-based BPDA for the two newly

proposed attacks, and report the accuracy of ME-Net. 45

2.6 Comparisons between different ME methods. We report the

generalization and adversarial robustness of three ME-Net models using

different ME methods on CIFAR-10. We apply transfer-based 40 steps

PGD attack as black-box adversary, and 1000 steps PGD-based BPDA

as white-box adversary. 47

15

2.7 Generalization performance on clean data. For each dataset, we

use the same network for all the schemes. ME-Net improves general-

ization for both adversarial and non-adversarial training. For Tiny-

ImageNet, we report the Top-1 accuracy. 48

A.1 Training details of ME-Net on different datasets. Learning rate

is decreased at selected epochs with a step factor of 0.1. 73

A.2 CIFAR-10 extensive black-box attack results. Different kinds of

strong black-box attacks are used, including transfer-, decision-, and

score-based attacks. 75

A.3 CIFAR-10 additional black-box attack results where adver-

sary has limited access to the trained network. We provide the

architecture and weights of our trained model to the black-box adversary

to make it stronger. 75

A.4 CIFAR-10 extensive white-box attack results with pure ME-

Net. We use the strongest PGD or BPDA attacks in white-box setting

with different attack steps. We compare ME-Net with other pure prepro-

cessing methods [6–8]. We show that ME-Net is the first preprocessing

method to be effective under white-box attacks. *Data from [5]. . . . 76

A.5 CIFAR-10 additional white-box attack results where the white-

box adversary does not attack the preprocessing layer. We

remain the same attack setups as in the white-box BPDA attack, while

only attacking the network part after the preprocessing layer of ME-Net. 77

A.6 CIFAR-10 extensive white-box attack results. We apply up to

1000 steps PGD or BPDA attacks in white-box setting to ensure the

results are convergent. We use the released models in [4, 5] but change

the attack steps up to 1000 for comparison. ME-Net shows significant

advanced results by consistently outperforming the current state-of-the-

art defense method [4]. 78

A.7 MNIST extensive black-box attack results. Different kinds of

strong black-box attacks are used, including transfer-, decision-, and

score-based attacks. 78

16

A.8 MNIST additional black-box attack results where adversary

has limited access to the trained network. We provide the archi-

tecture and weights of our trained model to the black-box adversary to

make it stronger. 79

A.9 MNIST extensive white-box attack results. We apply up to 1000

steps PGD or BPDA attacks in white-box setting to ensure the results

are convergent. We use the released models in [4] but change the attack

steps up to 1000 for comparison. We show both pure ME-Net results

and the results when combining with adversarial training. 79

A.10 SVHN extensive black-box attack results. Different kinds of

strong black-box attacks are used, including transfer-, decision-, and

score-based attacks. 80

A.11 SVHN additional black-box attack results where adversary

has limited access to the trained network. We provide the archi-

tecture and weights of our trained model to the black-box adversary to

make it stronger. 80

A.12 SVHN extensive white-box attack results. We apply up to 1000

steps PGD or BPDA attacks in white-box setting to ensure the results

are convergent. We show results of both pure ME-Net and adversarially

trained ones. ME-Net shows significantly better results as it consistently

outperforms [4] by a certain margin. 81

A.13 Tiny-ImageNet extensive black-box attack results. Different

kinds of strong black-box attacks are used, including transfer-, decision-

, and score-based attacks. 82

A.14 Tiny-ImageNet additional black-box attack results where ad-

versary has limited access to the trained network. We provide

the architecture and weights of our trained model to the black-box

adversary to make it stronger. 82

17

A.15 Tiny-ImageNet extensive white-box attack results. We apply

up to 1000 steps PGD or BPDA attacks in white-box setting to ensure

the results are convergent. We select [4] as the baseline and keep the

training process the same for both [4] and ME-Net. We show both Top-1

and Top-5 adversarial accuracy under different attack steps. ME-Net

shows advanced results by outperforming [4] consistently in both Top-1

and Top-5 adversarial accuracy. 83

A.16 Comparison between different ME methods against black-box

attacks. We report the generalization and adversarial robustness of

three ME-Net models using different ME methods on CIFAR-10. We

apply transfer-based black-box attacks as the adversary. 84

A.17 Comparison between different ME methods against white-box

attacks. We adversarially trained three ME-Net models using different

ME methods on CIFAR-10, and compare the results with [4]. We apply

up to 1000 steps PGD or BPDA white-box attacks as adversary. . . . 84

A.18 Results of white-box attacks with different random restarts

and step sizes on CIFAR-10. We compare ME-Net with [4] using

three different step sizes and random restart values. We apply 100 steps

PGD or BPDA white-box attacks as adversary. 85

A.19 Comparison between majority vote and standard inference.

For each image, we apply 10 masks with same p used during training,

and the model outputs a majority vote over predicted labels. The

standard inference only uses one mask with the mean probability of

those during training. We use 40, 100 and 1000 steps white-box BPDA

attack and report the results on each dataset. 86

A.20 Comparisons between different number of masked images used

for each input image. We report the generalization and adversarial

robustness of ME-Net models trained with different number of masks on

CIFAR-10. We apply transfer-based 40 steps PGD attack as black-box

adversary, and 1000 steps PGD-based BPDA as white-box adversary. 88

18

B.1 Additional study on discretization scale. We choose three differ-

ent discretization value on the Inverted Pendulum task, i.e. 400 (states,

20 each dimension) × 100 (actions), 2500 (states, 50 each dimension) ×
1000 (actions), and 10000 (states, 100 each dimension) × 4000 (actions).

We report the approximate rank of the final Q matrix, as well as the

performance metric (i.e., the average angular deviation) on the three

different discretization scales. 109

19

20

Chapter 1

Introduction

Recent breakthroughs in deep learning, especially by using deep neural networks

(DNNs), have achieved impressive accuracy and wide adoption in the field of com-

puter vision [9–13], natural language processing [14], control and planning [15–18],

reinforcement learning (RL) [19–22], and countless applications on real systems in the

physical world [23–27]. Yet, many real-world problems can exhibit intrinsic structures.

Stochastic control often needs to control complex systems. While the state space could

be high-dimensional, the dynamics are likely to possess some structured forms, such

as being governed by physical laws, or partial differential equations. In addition, for

deep reinforcement learning (DRL), while the dimension of images is quite large, it is

likely that only a few latent features are actually informative, and hence sufficient for

learning useful representations. Furthermore, for intelligent agents such as playing go,

while the input, the board configuration, is complex, there are often cases or patterns

where people have developed particular tactics. In those scenarios, there are only

few if not many good moves. Overall, because of the structured dynamics or latent

low-dimensional features, it is fairly reasonable to expect that, certain underlying

structures will be imposed on different deep learning tasks. The key of this thesis is

to study meaningful structure that naturally arises in deep learning problems, and

design corresponding algorithms to our benefit.

In what follows, two case studies are performed under such structural viewpoint.

We take a close look at two prevailing yet important deep learning problems: (1)

adversarial robustness, which aims to enhance the robustness of modern DNNs against

21

small perturbations to the input; and (2) deep reinforcement learning, which introduces

deep learning (architectures) to RL principles to create efficient algorithms.

1.1 Adversarial Robustness

Deep neural networks (NNs) are shown to be vulnerable to adversarial attacks, where

the natural data is perturbed with human-imperceptible, carefully crafted noises [10].

By adding such small, indistinguishable perturbation to the inputs, an adversary

can fool neural networks to produce incorrect outputs with high probabilities. This

phenomena raises increasing concerns for safety-critical scenarios such as the self-

driving cars where NNs are widely deployed.

Images contain noise: even the “clean” images taken from a camera contain small

white noise from the environment. Such small, unstructured noise seems to be tolerable

for modern deep neural networks, which achieve human-level performance. However,

the story is completely different for carefully constructed noise. Structured, adversarial

noise (i.e., adversarial examples) can easily corrupt the results, leading to incorrect

prediction from human’s perspective. This posts a natural conjecture: if one could

somehow “revert” the noisy images back to some common, underlying global structure,

then training and inference should be more robust. After all, images are structured

data, and it is such global structures that make human perception stable.

As adversarial perturbations are carefully generated structured noise, a natural

conjecture for defending against them is to destroy, or denoise such structured,

adversarial noise. The most naive approach is to randomly mask some pixels: with

probability p, independently for each pixel, one keeps the original value; otherwise,

drop it (e.g., set the value to 0). While such method can eliminate the adversarial

structure within the noise through random information drop, it is almost certain to fail

since it equally destroys the information of the original image, making NN inference

even worse.

While sub-optimal, random masking does possess some nice features as mentioned

before, it leads to an interesting suggestion: perhaps completely eliminating adversarial

noise is too ambitious and impossible; instead, we could try to reconstruct the images

from the masked ones in an attempt to reduce the overall adversarial noise. After

22

all, images contain some internal structures. An image classified as cat should have

at least a cat as its main body. If both training and testing are performed under

the same underlying structures (i.e., there is no distributional shift in training and

testing), we should hope the network to be generalizable and robust. In addition, if

the reconstruction in terms of maintaining the underlying structure is satisfactory, the

randomness in this pipeline (masking and reconstruction) is likely to redistribute the

carefully constructed, originally adversarial noise into some other non-adversarially

designed noise which are less likely to invalidate the predictions.

1.2 Planning & Deep Reinforcement Learning

Value-based methods are widely used in control, planning and reinforcement learning

tasks [16,18,22,28]. To solve a Markov Decision Process (MDP), one common method

is to use value iteration, which finds the optimal value function and the optimal policy.

This process can be done by iteratively computing and updating the state-action value

function, represented by Q(s, a) (i.e., the Q-value function). In simple cases with small

state and action spaces, value iteration can be ideal for efficient and accurate planning.

However, for modern MDPs, the data that encodes the value function usually lies in

thousands or millions of dimensions [16, 17], let alone continuous state space, such as

images in deep reinforcement learning [22,29]. These practical constraints significantly

hamper the efficiency and applicability of the vanilla value iteration.

However, the Q-value function is intrinsically induced by the underlying system

dynamics. These dynamics are likely to possess some structured forms in various

settings, such as being governed by partial differential equations. It is also possible

that states and actions may contain latent features (e.g., similar states could have

similar optimal actions). Thus, in those scenarios, it is reasonable to expect the

structured dynamic to impose certain global structure on the Q-value. Since the Q

function can be treated as a giant matrix, with rows as states and columns as actions,

a structured Q function naturally translates to a structured Q matrix.

To begin with, we take a linear algebraic view by treating the Q function as a

giant matrix, where each row represents a state, each column represents an action,

and its ij-th entry represents the Q value of the corresponding state-action pair.

23

One of the fundamental global structures in studying matrices, is the rank of the

matrix. Subsequently, we propose to explore the global low-rank structure of the

Q matrix. Low-rank structure has been widely observed and exploited in modern

big data (matrix) analysis [30]. As can be demonstrated empirically, the majority of

the benchmarking Atari games, as well as many stochastic control tasks all exhibit

low-rank Q matrices. This leads us to a natural question: How do we leverage the

low-rank structure in Q matrices to allow value-based techniques to achieve better

performance on “low-rank” tasks? In short, when the underlying tasks contain certain

desired structures, a framework that is able to exploit such structured information to

improve both planning and deep RL methods would be much desired.

1.3 Design Overview: Structured Framework with

Matrix Estimation

Having set up the stage, we are now ready to introduce our structured framework for

deep learning tasks. Specifically, we employ Matrix Estimation (ME) as our oracle to

help harnessing the underlying structures in algorithms. ME is a fairly mature topic

with strong theoretical guarantees and appealing practical performance. In the sequel,

we will briefly describe the basic problem formulation, and then importantly, connect

it with our setup to see why this technique should be a natural and effective method.

Matrix estimation is concerned with recovering a data matrix from noisy and

incomplete observations of its entries. Consider a true, unknown data matrix M ∈
Rn×m. Often, we have access to a subset Ω of entries from a noisy matrix X ∈ Rn×m

such that E[X] = M . For example, in recommendation system, there are true,

unknown ratings for each product from each user. One often observes a subset of

noisy ratings if the user actually rates the product online. Technically, it is often

assumed that each entry of X, Xij, is a random variable independent of the others,

which is observed with probability p ∈ (0, 1] (i.e., missing with probability 1 − p).
The theoretical question is then formulated as finding an estimator M̂ , given noisy,

incomplete observation matrix X, such that M̂ is “close” to M . The closeness is

typically measured by some matrix norm, ||M̂ −M ||, such as the Frobenius norm.

24

Over the years, extensive algorithms have been proposed. They range from simple

spectral method such as universal singular value thresholding (USVT) [31], which

performs SVD on the observation matrix X and discards small singular values (and

corresponding singular vectors), to convex optimization based methods, which minimize

the nuclear norm [32], i.e.:

min
M̂∈Rn×m

||M̂ ||∗ s.t. M̂ij ≈ Xij, ∀ (i, j) ∈ Ω, (1.1)

where ||M̂ ||∗ is the nuclear norm of the matrix (i.e., sum of the singular values). To

speed up the computation, the Soft-Impute algorithm [33] reformulates the optimiza-

tion using a regularization parameter λ ≥ 0:

min
M̂∈Rn×m

1

2

∑
(i,j)∈Ω

(
M̂ij −Xij

)2

+ λ||M̂ ||∗. (1.2)

In this thesis, we view ME as a principled oracle to effectively exploit the low-rank

structures.

The key message in the field of ME is: if the true data matrix M has some global

structures, exact or approximate recovery of M can be theoretically guaranteed [31,

32,34]. In the literature, the most studied global structure is low rank. This strong

theoretical guarantee serves as the foundation for employing ME to exploit structures

across different deep learning tasks.

Adversarial Robustness. As we treat the input images as matrices, to destroy

the structure of adversarial noises while enforcing the structure of the original image,

we can employ a masking-and-reconstruction pipeline, where ME is applied for re-

construction of the masked version. This process, as performed before sending the

inputs into the DNNs, can redistribute the carefully constructed adversarial noises to

non-adversarial structures.

In this thesis, we propose to leverage matrix estimation (ME) as our reconstruction

scheme. We view a masked adversarial image as a noisy and incomplete realization of

the underlying clean image, and propose ME-Net, a preprocessing-based defense that

reverts a noisy incomplete image into a denoised version that maintains the underlying

global structures in the clean image. ME-Net realizes adversarial robustness by using

25

such denoised global-structure preserving representations.

We note that the ME-Net pipeline can be combined with different training proce-

dures. In particular, we show that ME-Net can be combined with standard stochastic

gradient descent (SGD) or adversarial training, and in both cases improves adversarial

robustness. This is in contrast with many preprocessing techniques which cannot

leverage the benefits of adversarial training [6–8], and end up failing under the recent

strong white-box attack [5].

Planning and Deep Reinforcement Learning. Following the intuitions from

enforcing the structures in Q function, we propose a generic framework that leverages

matrix estimation to exploit the low-rank structure in both classical planning and

modern deep RL tasks. In particular, for classical control tasks, we propose Structured

Value-based Planning (SVP). For the Q matrix of dimension |S| × |A|, at each value

iteration, SVP randomly updates a small portion of the Q(s, a) and employs ME to

reconstruct the remaining elements. We show that planning problems can greatly

benefit from such a scheme, where much fewer samples (only sample around 20% of

(s, a) pairs at each iteration) can achieve almost the same performance as the optimal

policy.

For more advanced deep RL tasks, we extend our intuition and propose Structured

Value-based Deep RL (SV-RL), applicable for deep Q-value based methods such

as DQN [22]. Here, instead of the full Q matrix, SV-RL naturally focuses on the

“sub-matrix”, corresponding to the sampled batch of states at the current iteration.

For each sampled Q matrix, we again apply ME to represent the deep Q learning

target in a structured way, which poses a low rank regularization on this “sub-matrix”

throughout the training process, and hence eventually the Q-network’s predictions.

Intuitively, as learning a deep RL policy is often noisy with high variance, if the task

possesses a low-rank property, this scheme will give a clear guidance on the learning

space during training, after which a better policy can be anticipated.

1.4 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 introduces the ME-Net

model and studies how one can improve adversarial robustness of DNNs using the

26

intrinsic global structure. Chapter 3 introduces the structured viewpoint of both

classical control and modern deep RL tasks, and proposes corresponding algorithms for

exploiting the low-rank structures. In both chapters, we demonstrate the effectiveness

of the proposed structured solutions through rich experiments. The missing details

as well as supporting results in Chapters 2 and 3 can be found in Appendices A and

B, respectively. Finally, we conclude this thesis in Chapter 4 and point out some

interesting future directions.

27

28

Chapter 2

ME-Net: Towards Effective

Adversarial Robustness with

Matrix Estimation

2.1 Problem & Motivation

State-of-the-art deep neural networks (NNs) are vulnerable to adversarial examples [10].

However, by adding small human-indistinguishable perturbation to the inputs, an

adversary can fool neural networks to produce incorrect outputs with high probabilities.

This phenomena raises increasing concerns for safety-critical scenarios such as the

self-driving cars where NNs are widely deployed.

An increasing body of research has been aiming to either generate effective per-

turbations, or construct NNs that are robust enough to defend against such attacks.

Currently, many effective algorithms exist to craft these adversarial examples, but

defense techniques seem to be lagging behind. For instance, the state-of-the-art defense

can only achieve less than 50% adversarial accuracy for `∞ perturbations on datasets

such as CIFAR-10 [4]. Under recent strong attacks, most defense methods have shown

to break down to nearly 0% accuracy [5].

As adversarial perturbations are carefully generated structured noise, a natural

conjecture for defending against them is to destroy their structure. A naive approach

for doing so would randomly mask (i.e., zero out) pixels in the image. While such

29

method can eliminate the adversarial structure within the noise through random

information drop, it is almost certain to fail since it equally destroys the information

of the original image, making NN inference even worse.

However, this naive starting point raises an interesting suggestion: instead of

simply applying a random mask to the images, a preferable method should also

reconstruct the images from their masked versions. In this case, the random masking

destroys the crafted structures, but the reconstruction recovers the global structures

that characterize the objects in the images. Images contain some global structures.

An image classified as cat should have at least a cat as its main body. Humans

use such global structure to classify images. In contrast the structure in adversarial

perturbation is more local and defies the human eye. If both training and testing are

performed under the same underlying global structures (i.e., there is no distributional

shift in training and testing), the network should be generalizable and robust. If the

reconstruction can successfully maintain the underlying global structure, the masking-

and-reconstruction pipeline can redistribute the carefully constructed adversarial

noises to non-adversarial structures.

In this work, we leverage matrix estimation (ME) as our reconstruction scheme. ME

is concerned with recovering a data matrix from noisy and incomplete observations of

its entries, where exact or approximate recovery of a matrix is theoretically guaranteed

if the true data matrix has some global structures (e.g., low rank). We view a masked

adversarial image as a noisy and incomplete realization of the underlying clean image,

and propose ME-Net, a preprocessing-based defense that reverts a noisy incomplete

image into a denoised version that maintains the underlying global structures in

the clean image. ME-Net realizes adversarial robustness by using such denoised

global-structure preserving representations.

We note that the ME-Net pipeline can be combined with different training proce-

dures. In particular, we show that ME-Net can be combined with standard stochastic

gradient descent (SGD) or adversarial training, and in both cases improves adversarial

robustness. This is in contrast with many preprocessing techniques which cannot

leverage the benefits of adversarial training [6–8], and end up failing under the recent

strong white-box attack [5].

We provide extensive experimental validation of ME-Net under the strongest

30

black-box and white-box attacks on established benchmarks such as MNIST, CIFAR-

10, SVHN, and Tiny-ImageNet, where ME-Net outperforms state-of-the-art defense

techniques. Our implementation is available at: https://github.com/YyzHarry/ME-Net.

2.1.1 Contributions

This thesis makes the following contributions in this chapter:

• We are the first to leverage matrix estimation as a general pipeline for image

classification and defending against adversarial attacks.

• We show empirically that ME-Net improves the robustness of neural networks

under various `∞ attacks:

1. ME-Net alone significantly improves the state-of-the-art results on black-box

attacks;

2. Adversarially trained ME-Net consistently outperforms the state-of-the-art

defense techniques on white-box attacks, including the strong attacks that

counter gradient obfuscation [5].

Such superior performance is maintained across various datasets: CIFAR-10,

MNIST, SVHN, and Tiny-ImageNet.

• We show additional benefits of ME-Net such as improving generalization (i.e.,

performance on clean images).

2.2 ME-Net

We first describe the motivation and high level idea underlying our design. We then

provide the formal algorithm.

2.2.1 Our Design

Images contain noise: even “clean” images taken from a camera contain white noise

from the environment. Such small, unstructured noise seems to be tolerable for

modern deep NNs, which achieve human-level performance. However, the story is

31

https://github.com/YyzHarry/ME-Net

different for carefully constructed noise. Structured, adversarial noise (i.e., adversarial

examples) can easily corrupt the NN results, leading to incorrect prediction from

human’s perspective. This means that to achieve robustness to adversarial noise, we

need to eliminate/reduce the crafted adversarial structure. Of course, while doing so,

we need to maintain the intrinsic structures in the image that allow a human to make

correct classifications.

We can model the problem as follows: An image is a superposition of: 1) intrinsic

true structures of the data in the scene, 2) adversarial carefully-structured noise, and 3)

non-adversarial noise. Our approach is first to destroy much of the crafted structure of

the adversarial noise by randomly masking (zeroing out) pixels in the image. Of course,

this process also increases the overall noise in the image (i.e., the non-adversarial noise)

and also negatively affects the underlying intrinsic structures of the scene. Luckily

however there is a well-established theory for recovering the underlying intrinsic

structure of data from noisy and incomplete (i.e., masked) observations. Specifically,

if we think of an image as a matrix, then we can leverage a well-founded literature

on matrix estimation (ME) which allows us to recover the true data in a matrix

from noisy and incomplete observations [31,32,35]. Further, ME provides provable

guarantees of exact or approximate recovery of the true matrix if the true data has

some global structures (e.g., low rank) [34, 36]. Since images naturally have global

structures (e.g., an image of a cat, has a cat as a main structure), ME is guaranteed

to restore the intrinsic structures of the clean image.

Another motivation for our method comes from adversarial training, where an NN

is trained with adversarial examples. Adversarial training is widely adopted to increase

the robustness of neural networks. However, recent theoretical work formally argues

that adversarial training requires substantially more data to achieve robustness [37].

The natural question is then how to automatically obtain more data, with the purpose

of creating samples that can help robustness. Our masking-then-reconstruction pipeline

provides exactly one such automatic solutions. By using different random masks, we

can create variations on each image, where all such variations maintain the image’s

underlying true global structures. We will see later in our results that this indeed

provides significant gain in robustness.

32

2.2.2 Matrix Estimation Pipeline

Having described the intuition underlying ME-Net, we next provide a formal description

of matrix estimation (ME), which constitutes the reconstruction step in our pipeline.

Matrix Estimation. Matrix estimation is concerned with recovering a data

matrix from noisy and incomplete observations of its entries. Consider a true, unknown

data matrix M ∈ Rn×m. Often, we have access to a subset Ω of entries from a noisy

matrix X ∈ Rn×m such that E[X] = M . For example, in recommendation system,

there are true, unknown ratings for each product from each user. One often observes

a subset of noisy ratings if the user actually rates the product online. Technically,

it is often assumed that each entry of X, Xij, is a random variable independent of

the others, which is observed with probability p ∈ (0, 1] (i.e., missing with probability

1− p). The theoretical question is then formulated as finding an estimator M̂ , given

noisy, incomplete observation matrix X, such that M̂ is “close” to M . The closeness

is typically measured by some matrix norm, ||M̂ −M ||, such as the Frobenius norm.

Over the years, extensive algorithms have been proposed. They range from simple

spectral method such as universal singular value thresholding (USVT) [31], which

performs SVD on the observation matrix X and discards small singular values (and

corresponding singular vectors), to convex optimization based methods, which minimize

the nuclear norm [32], i.e.:

min
M̂∈Rn×m

||M̂ ||∗ s.t. M̂ij ≈ Xij, ∀ (i, j) ∈ Ω, (2.1)

where ||M̂ ||∗ is the nuclear norm of the matrix (i.e., sum of the singular values). To

speed up the computation, the Soft-Impute algorithm [33] reformulates the optimiza-

tion using a regularization parameter λ ≥ 0:

min
M̂∈Rn×m

1

2

∑
(i,j)∈Ω

(
M̂ij −Xij

)2

+ λ||M̂ ||∗. (2.2)

In this work, we view ME as a reconstruction oracle from masked images, rather than

focusing on specific algorithms.

The key message in the field of ME is: if the true data matrix M has some global

structures, exact or approximate recovery of M can be theoretically guaranteed [31,32,

33

0 5 10 15 20 25
rank

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

MNIST

(a) MNIST

0 5 10 15 20 25 30
rank

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

CIFAR-10

(b) CIFAR-10

0 5 10 15 20 25 30
rank

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

SVHN

(c) SVHN

0 10 20 30 40 50 60
rank

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Tiny-ImageNet

(d) Tiny-ImageNet

Figure 2-1: The approximate rank of different datasets. We plot the his-
togram (in red) and the empirical CDF (in blue) of the approximate rank for images
in each dataset.

34]. This strong theoretical guarantee serves as the foundation for employing ME to

reconstruct structures in images. In the literature, the most studied global structure is

low rank. Latent variable models, where each row i and each column j are associated

with some features ui ∈ Rr and vj ∈ Rr and Mij = f(ui, vj) for some function f , have

also been investigated [31,38]. To some extent, both could be good models for images.

Empirical Results. Before closing, we empirically show that images have

strong global structures (i.e., low rank). We consider four datasets: MNIST, CIFAR-

10, SVHN, and Tiny-ImageNet. We perform SVD on each image and compute its

approximate rank, which is defined as the minimum number of singular values necessary

to capture at least 90% of the energy in the image. Fig. 2-1 plots the histogram and

the empirical CDF of the approximate ranks for each dataset. As expected, images in

all datasets are relatively low rank. Specifically, the vast majority of images in MNIST,

CIFAR-10, and SVHN have a rank less than 5. The rank of images in Tiny-ImageNet

is larger but still significantly less than the image dimension (∼10 vs. 64). This result

shows that images tend to be low-rank, which implies the validity of using ME as our

reconstruction oracle to find global structures.

34

Input image

Add masks

ME

Figure 2-2: An example of how ME affects the input images. We apply different
masks and show the reconstructed images by ME.

Next, we show in Fig. 2-2 the results of ME-based reconstruction for different

masks. Evidently, the global structure (the gate in the image) has been maintained

even when p, the probability of observing the true pixel, is as low as 0.3. This shows

that despite random masking we should be able to reconstruct the intrinsic global

image structure from the masked adversarial images. Our intuition is that humans

use such underlying global structures for image classification, and if we can maintain

such global structures while weakening other potentially adversarial structures, we

can force both training and testing to focus on human recognizable structures and

increase robustness to adversarial attacks.

2.2.3 Model

We are now ready to formally describe our technique, which we refer as ME-Net. The

method is illustrated in Fig. 2-3 and summarized as follows:

• ME-Net Training: Define a mask as an image transform in which each pixel

is preserved with probability p and set to zero with probability 1 − p. For

each training image X, we apply n masks with probabilities {p1, p2, . . . , pn},
and obtain n masked images {X(1), X(2), . . . , X(n)}. An ME algorithm is then

applied to obtain reconstructed images {X̂(1), X̂(2), . . . , X̂(n)}. We train the

network on the reconstructed images {X̂(1), X̂(2), . . . , X̂(n)} as usual via SGD.

Alternatively, adversarial training can also be readily applied in our framework.

35

Labels

Prediction

Neural Nets

Neural Nets

Different

Masks

Preprocessing

Average

Mask

Preprocessing

Matrix

Estimation

Matrix

Estimation

ME-Net Training

ME-Net Inference

Figure 2-3: An illustration of ME-Net training and inference process.

• ME-Net Inference: For each test image X, we randomly sample a mask with

probability p = 1
n

∑n
i=1 pi, i.e., the average of the masking probabilities during

training. The masked image is then processed by the same ME algorithm used

in training to obtain X̂. Finally, X̂ is fed to the network for prediction.

Note that we could either operate on the three RGB channels separately as

independent matrices or jointly by concatenating them into one matrix. In this work,

we take the latter approach as their structures are closely related. The pseudo code

for ME-Net is provided in Algorithm 1. We provide additional details of ME-Net in

Appendix A.1.

2.3 Evaluation

We evaluate ME-Net empirically under `∞-bounded attacks and compare it with

state-of-the-art defense techniques.

Experimental Setup: We implement ME-Net as described in Section 2.2.3.

During training, for each image we randomly sample 10 masks with different p values

and apply matrix estimation for each masked image to construct the training set.

During testing, we sample a single mask with p set to the average of the values used

during training, apply the ME-Net pipeline, and test on the reconstructed image.

36

Algorithm 1: ME-Net training & inference

/* ME-Net Training */

Input: training set S = {(Xi, yi)}Mi=1, prescribed masking probability
p = {p1, p2, . . . , pn}, network N
for all Xi ∈ S do

Randomly sample n masks with probability {p1, p2, . . . , pn}
Generate n masked images {X(1)

i , X
(2)
i , . . . , X

(n)
i }

Apply ME to obtain reconstructed images {X̂(1)
i , X̂

(2)
i , . . . , X̂

(n)
i }

Add {X̂(1)
i , X̂

(2)
i , . . . , X̂

(n)
i } into new training set S ′

end for
Randomly initialize network N
for number of training iterations do

Sample a mini-batch B = {(X̂i, yi)}mi=1 from S ′

Do one training step of network N using mini-batch B
end for

/* ME-Net Inference */

Input: test image X, masking probability p = {p1, p2, . . . , pn} used during
training
Output: predicted label y
Randomly sample one mask with probability p = 1

n

∑n
i=1 pi

Generate masked image and apply ME to reconstruct X̂
Input X̂ to the trained network N to get the predicted label y

Unless otherwise specified, we use the Nuclear Norm minimization method [32] for

matrix estimation.

We experiment with two versions of ME-Net: the first version uses standard

stochastic gradient descent (SGD) to train the network, and the second version uses

adversarial training, where the model is trained with adversarial examples.

For each attack type, we compare ME-Net with state-of-the-art defense techniques

for the attack under consideration. For each technique, we report accuracy as the

percentage of adversarial examples that are correctly classified.1 As common in

prior work [4, 6, 7], we focus on robustness against `∞-bounded attacks, and generate

adversarial examples using standard methods such as the CW attack [39], Fast Gradient

Sign Method (FGSM) [9], and Projected Gradient Descent (PGD) which is a more

powerful adversary that performs a multi-step variant of FGSM [4].

1To be consistent with literature, we generate adversarial examples from the whole dataset and
use all of them to report accuracy.

37

Organization: We first perform an extensive study on CIFAR-10 to validate the

effectiveness of ME-Net against black-box and white-box attacks. We then extend the

results to other datasets such as MNIST, SVHN, and Tiny-ImageNet. We also provide

additional supporting results in Appendix A.2, A.3, A.4, A.5, and A.8. Additional

hyper-parameter studies, such as random restarts and different number of masks, can

be found in Appendix A.7, A.6 and A.9.

2.3.1 Black-box Attacks

In black-box attacks, the attacker has no access to the network model; it only observes

the inputs and outputs. We evaluate ME-Net against three kinds of black-box attacks:

• Transfer-based attack: A copy of the victim network is trained with the same

training settings. We apply CW, FGSM and PGD attacks on the copy network

to generate black-box adversarial examples. We use the same attack parameters

as in [4]: total perturbation ε of 8/255 (0.031), step size of 2/255 (0.01). For

PGD attacks, we use 7, 20 and 40 steps. Note that we only consider the strongest

transfer-based attacks, i.e., we use white-box attacks on the independently trained

copy to generate black-box examples.

• Decision-based attack: We apply the newly proposed Boundary attack [40]

which achieves better performance than transfer-based attacks. We apply 1000

attack steps to ensure convergence.

• Score-based attack: We also apply the state-of-the-art SPSA attack [41] which

is strong enough to bring the accuracy of several defenses to near zero. We use a

batch-size of 2048 to make the SPSA strong, and leave other hyper-parameters

unchanged.

As in past work that evaluates robustness on CIFAR-10 [4,6], we use the standard

ResNet-18 model in [11]. In training ME-Net, we experiment with different settings

for p. We report the results for p ∈ [0.8, 1] below, and refer the reader to the Appendix

for the results with other p values.

Since most defenses experimented only with transfer-based attacks, we first compare

ME-Net to past defenses under transfer-based attacks. For comparison, we select a

38

Method Training CW FGSM PGD (7 steps)

Vanilla SGD 8.9% 24.8% 7.6%

Madry Adv. train 78.7% 67.0% 64.2%

Thermometer SGD − − 53.5%

Thermometer Adv. train − − 77.7%

ME-Net SGD 93.6% 92.2% 91.8%

Table 2.1: CIFAR-10 black-box results under transfer-based attacks. We com-
pare ME-Net with state-of-the-art defense methods under both SGD and adversarial
training.

state-of-the-art adversarial training defense [4] and a preprocessing method [6]. We

compare these schemes against ME-Net with standard SGD training. The results are

shown in Table 2.1. They reveal that even without adversarial training, ME-Net is

much more robust than prior work to black-box attacks, and can improve accuracy by

13% to 25%, depending on the attack.

(a) Vanilla under adv. attack. (b) ME-Net under adv. attack.

Figure 2-4: Class separation under black-box adversarial attack. The vectors
right before the softmax layer are projected to a 2D plane using t-SNE [3].

To gain additional insight, we look at the separation between different classes

under black-box transfer-based attack, for the vanilla network and ME-Net. Fig. 2-4(a)

and 2-4(b) show the 2D projection of the vectors right before the output layer (i.e.,

softmax layer), for the test data in the vanilla model and ME-Net. The figures show

that when the vanilla model is under attack, it loses its ability to separate different

classes. In contrast, ME-Net can sustain clear separation between classes even in the

presence of black-box attack.

39

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Normalized distance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Vanilla, inter-class
ME-Net, inter-class

Vanilla, intra-class
ME-Net, intra-class

(a) Clean data.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Normalized distance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Vanilla, inter-class
ME-Net, inter-class

Vanilla, intra-class
ME-Net, intra-class

(b) Black-box adv. attack.

Figure 2-5: The empirical CDF of the distance within and among classes.
We quantitatively show the intra-class and inter-class distances between vanilla model
and ME-Net on clean data and under black-box adversarial attacks.

Attacks CW FGSM
PGD

Boundary SPSA
7 steps 20 steps 40 steps

Vanilla 8.9% 24.8% 7.6% 1.8% 0.0% 3.5% 1.4%

ME-Net 93.6% 92.2% 91.8% 91.8% 91.3% 87.4% 93.0%

Table 2.2: CIFAR-10 extensive black-box results. We show significant adversarial
robustness of ME-Net under different strong black-box attacks.

To further understand this point, we compute the Euclidean distance between

classes and within each class. Fig. 2-5 plots the empirical CDFs of the intra-class and

inter-class distance between the vectors before the output layer, for both the vanilla

classifier and ME-Net. The figure shows results for both clean data and adversarial

examples. Comparing ME-Net (in red) with the vanilla classifier (in blue), we see

that ME-Net both reduces the distance within each class, and improves the separation

between classes; further this result applies to both clean and adversarial examples.

Overall, these visualizations offer strong evidence supporting the improved robustness

of ME-Net.

Finally, we also evaluate ME-Net under other strong black-box attacks. Table 2.2

summarizes these results demonstrating that ME-Net consistently achieves high

robustness under different black-box attacks.

40

2.3.2 White-box Attacks

In white-box attacks, the attacker has full information about the neural network

model (architecture and weights) and defense methods. To evaluate robustness

against such white-box attacks, we use the BPDA attack proposed in [5], which has

successfully circumvented a number of previously effective defenses, bringing them to

near 0 accuracy. Specifically, most defense techniques rely on preprocessing methods

which can cause gradient masking for gradient-based attacks, either because the

preprocessing is not differentiable or the gradient is useless. BPDA addresses this

issue by using a “differentiable approximation” for the backward pass. As such, until

now no preprocessing method is effective under white-box attacks. In ME-Net, the

backward pass is not differentiable, which makes BPDA the strongest white-box attack.

We use PGD-based BPDA and experiment with different number of attack steps.

For white box attacks, we distinguish two cases: defenses that use only preprocessing

(without adversarial training), and defenses that incorporate adversarial training. All

defenses that incorporate adversarial training, including ME-Net, are trained with

PGD with 7 steps.

Table 2.3 shows a comparison of the performance of various preprocessing methods

against the BPDA white-box attack. We compare ME-Net with three preprocessing

defenses, i.e., the PixelDefend method [7], the Thermometer method [6], and the total

variation (TV) minimization method [8]. The results in the table for [6, 7] are directly

taken from [5]. Since the TV minimization method is not tested on CIFAR-10, we

implement this method using the same setting used with ME-Net. The table shows

that preprocessing alone is vulnerable to the BPDA white-box attack, as all schemes

perform poorly under such attack. Interestingly however, the table also shows that

ME-Net’s preprocessing is significantly more robust to BPDA than other preprocessing

methods. We attribute this difference to that ME-Net’s preprocessing step focuses on

protecting the global structures in images.

Next we report the results of white-box attacks on schemes that use adversarial

training. One key characteristic of ME-Net is its orthogonality with adversarial training.

Note that many preprocessing methods propose combining adversarial training, but

the combination actually performs worse than adversarial training alone [5]. Since

ME-Net’s preprocessing already has a decent accuracy under the strong white-box

41

Method Type Steps Accuracy

Thermometer Prep. 40 0.0%*

PixelDefend Prep. 100 9.0%*

TV Minimization Prep. 100 0.4%

ME-Net Prep. 1000 40.8%

Table 2.3: White-box attack against pure preprocessing schemes. We use
PGD or BPDA attacks in white-box setting. Compared to other pure preprocessing
methods, ME-Net can increase robustness by a significant margin. *Data from [5].

Network Method Type Steps Accuracy

ResNet-18
Madry Adv. train 1000 45.0%

ME-Net Prep. + Adv. train 1000 52.8%

WideResNet

Madry Adv. train 1000 46.8%

Thermometer Prep. + Adv. train 1000 12.3%

ME-Net Prep. + Adv. train 1000 55.1%

Table 2.4: White-box attack results for adversarial training. We use 1000
steps PGD or BPDA attacks in white-box setting to ensure the results are convergent.
ME-Net achieves state-of-the-art white-box robustness when combined with adversarial
training.

attacks, we envision a further improvement when combining with adversarial training.

We compare ME-Net against two baselines: we compare against [4], which is the

state-of-the-art in defenses against white-box attacks. We also compare with the

Thermometer technique in [6], which like ME-Net, combines a preprocessing step

with adversarial training. For all compared defenses, adversarial training is done

using PGD with 7 steps. We also use BPDA to approximate the gradients during the

backward pass. For our comparison we use ResNet-18 and its wide version since they

were used in past work on robustness with adversarial training. As for the attacker, we

allow it to use the strongest possible attack, i.e., it uses BPDA with 1000 PGD attack

steps to ensure the results are convergent. Note that previous defenses (including the

state-of-the-art) only consider up to 40 steps.

Table 2.4 summarizes the results. As shown in the table, ME-Net combined with

adversarial training outperforms the state-of-the-art results under white-box attacks,

achieving a 52.8% accuracy with ResNet and a 55.1% accuracy with WideResNet.

42

7 20 40 100 1000
of steps

40

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

CIFAR-10 white-box attacks
Madry (adv. train)
ME-Net (pure)
ME-Net (adv. train)

(a) CIFAR-10

40 100 1000
of steps

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

MNIST white-box attacks

Madry (adv. train)
ME-Net (pure)
ME-Net (adv. train)

(b) MNIST

7 20 40 100 1000
of steps

50

60

70

80

Ac
cu

ra
cy

 (%
)

SVHN white-box attacks
Madry (adv. train)
ME-Net (pure)
ME-Net (adv. train)

(c) SVHN

7 20 40 100 1000
of steps

20

25

30

35

Ac
cu

ra
cy

 (%
)

Tiny-ImageNet white-box attacks
Madry (adv. train)
ME-Net (pure)
ME-Net (adv. train)

(d) Tiny-ImageNet

Figure 2-6: White-box attack results on different datasets. We compare ME-
Net with [4] under PGD or BPDA attack with different attack steps up to 1000. We
show both the pure ME-Net without adversarial training, and ME-Net with adversarial
training. For Tiny-ImageNet, we report the Top-1 adversarial robustness.

In contrast, the Thermometer method that also uses preprocessing plus adversarial

training cannot survive the strong white-box adversary.

2.3.3 Evaluation with Different Datasets

We evaluate ME-Net on MNIST, SVHN, CIFAR-10, and Tiny-ImageNet and compare

its performance across these datasets. For space limitations, we present only the results

for the white-box attacks. We provide results for black-box attacks and additional

attacks in Appendix A.2, A.3, A.4, and A.5.

For each dataset, we use the network architecture and parameters commonly used

in past work on adversarial robustness to help in comparing our results to past work.

For MNIST, we use the LeNet model with two convolutional layers as in [4]. We also

43

use the same attack parameters as total perturbation scale of 76.5/255 (0.3), and step

size 2.55/255 (0.01). Besides using 40 and 100 total attack steps, we also increase to

1000 steps to further strengthen the adversary. For ME-Net with adversarial training,

we follow their settings to use 40 steps PGD during training. We use standard ResNet-

18 for SVHN and CIFAR-10, and DenseNet-121 for Tiny-ImageNet, and set attack

parameters as follows: total perturbation of 8/255 (0.031), step size of 2/255 (0.01),

and with up to 1000 total attack steps. Since in [4] the authors did not examine on

SVHN and Tiny-ImageNet, we follow their methods to retrain their model on these

datasets. We use 7 steps PGD for adversarial training. We keep all the training

hyper-parameters the same for ME-Net and [4].

Fig. 2-6 shows the performance of ME-Net on the four datasets and compares it

with [4], a state-of-the-art defense against white-box attacks. We plot both the result of

a pure version of ME-Net, and ME-Net with adversarial training. The figure reveals the

following results. First, it shows that ME-Net with adversarial training outperforms

the state-of-the-art defense against white-box attacks. Interestingly however, the

gains differ from one dataset to another. Specifically, ME-Net is comparable to [4] on

MNIST, provides about 8% gain on CIFAR-10 and Tiny-ImageNet, and yields 23%

gain on SVHN.

We attribute the differences in accuracy gains across datasets to differences in their

properties. MNIST is too simple (single channel with small 28×28 pixels), and hence

ME-Net and [4] both achieve over 90% accuracy. The other datasets are all more

complex and have 3 RGB channels and bigger images. More importantly, Fig. 2-1

shows that the vast majority of images in SVHN have a very low rank, and hence

very strong global structure, which is a property that ME-Net leverages to yield an

accuracy gain of 23%. CIFAR-10 and Tiny-ImageNet both have relatively low rank

images but not as low as SVHN. The CDF shows that 90% of the images in CIFAR

have a rank lower than 5, whereas 90% of the images in Tiny-ImageNet have a rank

below 10. When taking into account that the dimension of Tiny-ImageNet is twice as

CIFAR (64×64 vs. 32×32), one would expect ME-Net’s gain on these datasets to be

comparable, which is compatible with the empirical results.

44

Method Training Steps Approx. Input Projected BPDA

ME-Net
Pure 1000 41.5% 64.9%

Adversarial 1000 62.5% 74.7%

Table 2.5: Results of ME-Net against adaptive white-box attacks on CIFAR-
10. We use 1000 steps PGD-based BPDA for the two newly proposed attacks, and
report the accuracy of ME-Net.

2.3.4 Evaluation against Adaptive Attacks

Since ME-Net provides a new preprocessing method, we examine customized attacks

where the adversary takes advantage of knowing the details of ME-Net’s pipeline. We

propose two kinds of white-box attacks: 1) Approximate input attack : since ME-Net

would preprocess the image, this adversary attacks not the original image, but uses

the exact preprocess method to approximate/reconstruct an input, and attacks the

newly constructed image using the BPDA procedure [5]. 2) Projected BPDA attack :

since ME-Net focuses on the global structure of an image, this adversary aims to

attack directly the main structural space of the image. Specifically, it uses BPDA

to approximate the gradient, and then projects the gradient to the low-rank space

of the image iteratively, i.e., it projects on the space constructed by the top few

singular vectors of the original image, to construct the adversarial noise. Note that

these two attacks are based on the BPDA white-box attack which has shown most

effective against preprocessing. Table 2.5 shows the results of these attacks, which

demonstrates that ME-Net is robust to these adaptive white-box attacks.

2.3.5 Adversarial Robustness vs. Generalization

In this section, we briefly discuss the trade-off between standard generalization and

adversarial robustness, which can be affected by training ME-Net with different hyper-

parameters. When the masks are generated with higher observing probability p, the

recovered images will contain more details and are more similar to the original ones.

In this case, the generalization ability will be similar to the vanilla network (or even

be enhanced). However, the network will be sensible to the adversarial noises, as

the adversarial structure in the noise is only destroyed a bit, and thus induces low

45

robustness. On the other hand, when given lower observing probability p, much of the

adversarial structure in the noise will be eliminated, which can greatly increase the

adversarial robustness. Nevertheless, the generalization on clean data can decrease as

it becomes harder to reconstruct the images and the input images may not be similar

to the original ones. In summary, there exists an inherent trade-off between standard

generalization and adversarial robustness. The trade-off should be further studied to

acquire a better understanding and performance of ME-Net.

We provide results of the inherent trade-off between adversarial robustness and

standard generalization on different datasets. As shown in Fig. 2-7, we change the

observing probability p of the masks to train different ME-Net models, and apply 7

steps white-box BPDA attack to each of them. As p decreases, the generalization

ability becomes lower, while the adversarial robustness grows rapidly. We show the

consistent trade-off phenomena on different datasets.

0.9 0.7 0.5 0.3
p

92

94

96

98

100

Te
st

 A
cc

ur
ac

y
(%

)

20

40

60

80

100

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y

(%
)Trade-off

(a) MNIST

0.9 0.8 0.7 0.6 0.5
p

87

89

91

93

95

Te
st

 A
cc

ur
ac

y
(%

)

40

45

50

55

60

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y

(%
)Trade-off

(b) CIFAR-10

0.9 0.7 0.5 0.3
p

80

85

90

95

100

Te
st

 A
cc

ur
ac

y
(%

)

40

50

60

70

80

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y

(%
)Trade-off

(c) SVHN

0.9 0.7 0.5
p

50

55

60

65

70

Te
st

 A
cc

ur
ac

y
(%

)

20

25

30

35

40

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y

(%
)Trade-off

(d) Tiny-ImageNet

Figure 2-7: The trade-off between adversarial robustness and standard gen-
eralization on different datasets. We use pure ME-Net during training, and apply
7 steps white-box BPDA attack for the adversarial accuracy. For Tiny-ImageNet we
only report the Top-1 accuracy. The results verify the consistent trade-off across
different datasets.

2.3.6 Comparison of Different ME Methods

Matrix estimation (ME) is a well studied topic with several established ME tech-

niques. The results in the other sections are with the Nuclear Norm minimization

algorithm [32]. Here we compare the performance of three ME methods: the Nuclear

Norm minimization algorithm, the Soft-Impute algorithm [33], and the universal

singular value thresholding (USVT) approach [31].

We train ME-Net models using different ME methods on CIFAR-10 with ResNet-

46

Method Complexity Clean Black-box White-box

Vanilla − 93.4% 0.0% 0.0%

ME-Net - USVT Low 94.8% 89.4% 51.9%

ME-Net - Soft-Imp. Medium 94.9% 91.3% 52.3%

ME-Net - Nuc. Norm High 94.8% 91.0% 52.8%

Table 2.6: Comparisons between different ME methods. We report the gen-
eralization and adversarial robustness of three ME-Net models using different ME
methods on CIFAR-10. We apply transfer-based 40 steps PGD attack as black-box
adversary, and 1000 steps PGD-based BPDA as white-box adversary.

18. We apply transfer-based PGD black-box attacks with 40 attack steps, as well

as white-box BPDA attack with 1000 attack steps. We compare the complexity,

generalization and adversarial robustness of these methods. More details can be found

in Appendix A.6.

Table 2.6 shows the results of our comparison. The table shows that all the three

ME methods are able to improve the original standard generalization, and achieve

almost the same test accuracy. The nuclear norm minimization algorithm takes much

longer time and more computation power. The Soft-Impute algorithm simplifies the

process but still requires certain computation resources, while the USVT approach

is much simpler and faster. The performance of different ME methods is slightly

different, as more complex algorithms may gain better performances.

2.3.7 Improving Generalization

As a preprocessing method, ME-Net also serves as a data augmentation technique

during training. We show that besides adversarial robustness, ME-Net can also

improve generalization (i.e., the test accuracy) on clean data. We distinguish between

two training procedures: 1) non-adversarial training, where the model is trained only

with clean data, and 2) adversarial training where the model is trained with adversarial

examples. For each case we compare ME-Net with the best performing model for

that training type. We show results for different datasets, where each dataset is

trained with the typical model in past work as stated in Section 2.3.3. Table 2.7 shows

the results, which demonstrate the benefit of ME-Net as a method for improving

47

Method Training MNIST CIFAR-10 SVHN Tiny-ImageNet

Vanilla Pure 98.8% 93.4% 95.0% 66.4%

ME-Net Pure 99.2% 94.9% 96.0% 67.7%

Madry Adversarial 98.5% 79.4% 87.4% 45.6%

ME-Net Adversarial 98.8% 85.5% 93.5% 57.0%

Table 2.7: Generalization performance on clean data. For each dataset, we
use the same network for all the schemes. ME-Net improves generalization for both
adversarial and non-adversarial training. For Tiny-ImageNet, we report the Top-1
accuracy.

generalization under both adversarial and non-adversarial training.

2.4 Related Work

Due to the large body of work on adversarial robustness, we focus on methods that

are most directly related to our work, and refer readers to the survey [42] for a more

comprehensive and broad literature review.

Adversarial Training. Currently, the most effective way to defend against

adversarial attacks is adversarial training, which trains the model on adversarial

examples generated by different kinds of attacks [4, 9, 10,43]. Authors of [4] showed

that training on adversarial examples generated by PGD with a random start can

achieve state-of-the-art performance on MNIST and CIFAR-10 under `∞ constraint.

One major difficulty of adversarial training is that it tends to overfit to the adversarial

examples. Authors in [37] thus demonstrated and proved that much more data is

needed to achieve good generalization under adversarial training. ME-Net can leverage

adversarial training for increased robustness. Further its data augmentation capability

helps improving generalization.

Preprocessing. Many defenses preprocess the images with a transformation prior

to classification. Typical preprocessing includes image re-scaling [44], discretization [45],

thermometer encoding [6], feature squeezing [46], image quilting [8], and neural-based

transformations [7,47]. These defenses can cause gradient masking when using gradient-

based attacks. However, as shown in [5], by applying the Backward Pass Differentiable

48

Approximation (BPDA) attacks designed for obfuscated gradients, the accuracy of

all of these methods can be brought to near zero. ME-Net is the first preprocessing

method that remains effective under the strongest BPDA attack, which could be

attributed to its ability to leverage adversarial training.

Matrix Estimation. Matrix estimation recovers a data matrix from noisy and

incomplete samples of its entries. A classical application is recommendation systems,

such as the Netflix problem [48], but it also has richer connections to other learning

challenges such as graphon estimation [38, 49], community detection [50, 51], and

recently even in deep reinforcement learning [2]. Many efficient algorithms exist such

as the universal singular value thresholding approach [31], the convex nuclear norm

minimization formulation [32] and even non-convex methods [52–54]. The key promise

is that as long as there are some structures underlying the data matrix, such as being

low-rank, then exact or approximate recovery can be guaranteed. As such, ME is an

ideal reconstruction scheme for recovering global structures.

2.5 Summary & Discussion

In this chapter, we introduced ME-Net, which leverages matrix estimation to improve

the robustness to adversarial attacks. Extensive experiments under strong black-box

and white-box attacks demonstrated the significance of ME-Net, where it consistently

improves the state-of-the-art robustness in different benchmark datasets. Furthermore,

ME-Net can easily be embedded into existing networks, and can also bring additional

benefits such as improving standard generalization.

49

50

Chapter 3

Harnessing Structures for

Value-Based Planning and

Reinforcement Learning

3.1 Problem & Motivation

Value-based methods are widely used in control, planning, and reinforcement learning

[16, 18, 22]. To solve a Markov Decision Process (MDP), one common method is

value iteration, which finds the optimal value function. This process can be done by

iteratively computing and updating the state-action value function, represented by

Q(s, a) (i.e., the Q-value function). In simple cases with small state and action spaces,

value iteration can be ideal for efficient and accurate planning. However, for modern

MDPs, the data that encodes the value function usually lies in thousands or millions

of dimensions [16, 17], including images in deep reinforcement learning [22, 29]. These

practical constraints significantly hamper the efficiency and applicability of the vanilla

value iteration.

Yet, theQ-value function is intrinsically induced by the underlying system dynamics.

These dynamics are likely to possess some structured forms in various settings, such as

being governed by partial differential equations. In addition, states and actions may

also contain latent features (e.g., similar states could have similar optimal actions).

Thus, it is reasonable to expect the structured dynamic to impose a structure on the

51

Q-value. Since the Q function can be treated as a giant matrix, with rows as states

and columns as actions, a structured Q function naturally translates to a structured

Q matrix.

In this work, we explore the low-rank structures. To check whether low-rank Q

matrices are common, we examine the benchmark Atari games, as well as 4 classical

stochastic control tasks. As we demonstrate in Sections 3.3 and 3.4, more than 40 out

of 57 Atari games and all 4 control tasks exhibit low-rank Q matrices. This leads us

to a natural question: How do we leverage the low-rank structure in Q matrices to

allow value-based techniques to achieve better performance on “low-rank” tasks?

We propose a generic framework that allows for exploiting the low-rank structure in

both classical planning and modern deep RL. Our scheme leverages Matrix Estimation

(ME), a theoretically guaranteed framework for recovering low-rank matrices from

noisy or incomplete measurements [34]. In particular, for classical control tasks, we

propose Structured Value-based Planning (SVP). For the Q matrix of dimension

|S|× |A|, at each value iteration, SVP randomly updates a small portion of the Q(s, a)

and employs ME to reconstruct the remaining elements. We show that planning

problems can greatly benefit from such a scheme, where fewer samples (only sample

around 20% of (s, a) pairs at each iteration) can achieve almost the same performance

as the optimal policy.

For more advanced deep RL tasks, we extend our intuition and propose Structured

Value-based Deep RL (SV-RL), applicable for deep Q-value based methods such

as DQN [22]. Here, instead of the full Q matrix, SV-RL naturally focuses on the

“sub-matrix”, corresponding to the sampled batch of states at the current iteration.

For each sampled Q matrix, we again apply ME to represent the deep Q learning

target in a structured way, which poses a low rank regularization on this “sub-matrix”

throughout the training process, and hence eventually the Q-network’s predictions.

Intuitively, as learning a deep RL policy is often noisy with high variance, if the task

possesses a low-rank property, this scheme will give a clear guidance on the learning

space during training, after which a better policy can be anticipated. We confirm

that SV-RL indeed can improve the performance of various value-based methods on

“low-rank” Atari games: SV-RL consistently achieves higher scores on those games.

Interestingly, for complex, “high-rank” games, SV-RL performs comparably. ME

52

naturally seeks solutions that balance low rank and a small reconstruction error (cf.

Section 3.3.1). Such a balance on reconstruction error helps to maintain or only

slightly degrade the performance for “high-rank” situation1.

3.1.1 Contributions

This thesis makes the following contributions in this chapter:

• We are the first to propose a framework that leverages matrix estimation as

a general scheme to exploit the low-rank structures, from planning to deep

reinforcement learning.

• We demonstrate the effectiveness of our approach on classical stochastic con-

trol tasks, where the low-rank structure allows for efficient planning with less

computation.

• We extend our scheme to deep RL, which is naturally applicable for value-based

techniques. Across a variety of methods, such as DQN, double DQN, and dueling

DQN, experimental results on all Atari games show that SV-RL can consistently

improve the performance of value-based methods, achieving higher scores for

tasks when low-rank structures are confirmed to exist.

3.2 Warm-up: A Toy Example

To motivate our method, let us first investigate a toy example which helps to understand

the structure within the Q-value function. We consider a simple deterministic MDP,

with 1000 states, 100 actions and a deterministic state transition for each action.

The reward r(s, a) is randomly generated first for each (s, a) pair, and then fixed

throughout. A discount factor γ = 0.95 is used. The deterministic nature imposes a

strong relationship among connected states. In this case, our goal is to explore: (1)

what kind of structures the Q function may contain; and (2) how to effectively exploit

such structures.

1Code is available at: https://github.com/YyzHarry/SV-RL

53

https://github.com/YyzHarry/SV-RL

0 20 40 60 80 100
iteration

0

20

40

60

80

100

ra
nk

Approximate rank of Q matrix

(a) Vanilla value iteration

0 20 40 60 80 100
iteration

0.0

0.2

0.4

0.6

0.8

lo
ss

1e1 Mean Squared Error

(b) Vanilla value iteration

0 20 40 60 80 100
iteration

0

20

40

60

80

ra
nk

Approximate rank of Q matrix

(c) Online reconstruction

0 20 40 60 80 100
iteration

0.0

0.2

0.4

0.6

0.8

lo
ss

1e1 Mean Squared Error

(d) Online reconstruction

Figure 3-1: The approximate rank and MSE of Q(t) during value iteration. (a) & (b)
use vanilla value iteration; (c) & (d) use online reconstruction with only 50% observed
data each iteration.

The Low-rank Structure Under this setting, Q-value could be viewed as a

1000× 100 matrix. To probe the structure of the Q-value function, we perform the

standard Q-value iteration as follows:

Q(t+1)(s, a) =
∑
s′∈S

P (s′|s, a)
[
r(s, a) + γmax

a′∈A
Q(t)(s′, a′)

]
, ∀ (s, a) ∈ S ×A, (3.1)

where s′ denotes the next state after taking action a at state s. We randomly

initialize Q(0). In Fig. 3-1, we show the approximate rank of Q(t) and the mean-square

error (MSE) between Q(t) and the optimal Q∗, during each value iteration. Here,

the approximate rank is defined as the first k singular values (denoted by σ) that

capture more than 99% variance of all singular values, i.e.,
∑k

i=1 σ
2
i /
∑

j σ
2
j ≥ 0.99. As

illustrated in Fig. 3-1(a) and 3-1(b), the standard theory guarantees the convergence

to Q∗; more interestingly, the converged Q∗ is of low rank, and the approximate rank

of Q(t) drops fast. These observations give a strong evidence for the intrinsic low

dimensionality of this toy MDP. Naturally, an algorithm that leverages such structures

54

would be much desired.

Efficient Planning via Online Reconstruction with Matrix Estimation

The previous results motivate us to exploit the structure in value function for efficient

planning. The idea is simple:

If the eventual matrix is low-rank,

why not enforcing such a structure throughout the iterations?

In other words, with the existence of a global structure, we should be capable of

exploiting it during intermediate updates and possibly also regularizing the results to

be in the same low-rank space. In particular, at each iteration, instead of every (s, a)

pair (i.e., Eq. (3.1)), we would like to only calculate Q(t+1) for some (s, a) pairs and

then exploit the low-rank structure to recover the whole Q(t+1) matrix. We choose

matrix estimation (ME) as our reconstruction oracle. The reconstructed matrix is

often with low rank, and hence regularizing the Q matrix to be low-rank as well. We

validate this framework in Fig. 3-1(c) and 3-1(d), where for each iteration, we only

randomly sample 50% of the (s, a) pairs, calculate their corresponding Q(t+1) and

reconstruct the whole Q(t+1) matrix with ME. As we enforce the low-rank structure at

each iteration, the approximate rank reduces much faster as expected. Clearly, around

40 iterations, we obtain comparable results to the vanilla value iteration. Importantly,

this comparable performance only needs to directly compute 50% of the whole Q

matrix at each iteration. It is not hard to see that in general, each vanilla value

iteration incurs a computation cost of O(|S|2|A|2). The complexity of our method

however only scales as O(p|S|2|A|2) + OME, where p is the percentage of pairs we

sample and OME is the complexity of ME. In general, many ME methods employ

SVD as a subroutine, whose complexity is bounded by O(min{|S|2|A|, |S||A|2}) [55].

For low-rank matrices, faster methods can have a complexity of order linear in the

dimensions [33]. In other words, our approach improves computational efficiency,

especially for modern high-dimensional applications. This overall framework thus

appears to be a successful technique: it exploits the low-rank behavior effectively and

efficiently when the underlying task indeed possesses such a structure.

55

3.3 Structured Value-based Planning

Having developed the intuition underlying our methodology, we next provide a formal

description in Sections 3.3.1 and 3.3.2. One natural question is whether such structures

and our method are general in more realistic control tasks. Towards this end, we

provide further empirical support in Section 3.3.3.

3.3.1 Matrix Estimation

ME considers about recovering a full data matrix, based on potentially incomplete

and noisy observations of its elements. Formally, consider an unknown data matrix

X ∈ Rn×m and a set of observed entries Ω. If the observations are incomplete, it

is often assumed that each entry of X is observed independently with probability

p ∈ (0, 1]. In addition, the observation could be noisy, where the noise is assumed

to be mean zero. Given such an observed set Ω, the goal of ME is to produce an

estimator M̂ so that ||M̂ −X|| ≈ 0, under an appropriate matrix norm such as the

Frobenius norm.

The algorithms in this field are rich. In the past years, there has been a tremendous

effort in advancing the theories and algorithms of matrix estimation within the

community. Theoretically, the essential message is: exact or approximate recovery

of the data matrix X is guaranteed if X contains some global structure [31, 32, 34].

In the literature, most attention has been focusing on the low-rank structure of a

matrix. Correspondingly, there are many provable, practical algorithms to achieve the

desired recovery. Early convex optimization methods [32] seek to minimize the nuclear

norm, ||M̂ ||∗, of the estimator. For example, fast algorithms, such as the Soft-Impute

algorithm [33] solves the following minimization problem:

min
M̂∈Rn×m

1

2

∑
(i,j)∈Ω

(
M̂ij −Xij

)2

+ λ||M̂ ||∗. (3.2)

Since the nuclear norm || · ||∗ is a convex relaxation of the rank, the convex opti-

mization approaches favor solutions that are with small reconstruction errors and

in the meantime being relatively low-rank, which are desirable for our applications.

Apart from convex optimization, there are also spectral methods and even non-convex

56

Q(t)

State-action
value	function

Compute

Incomplete	observation Reconstructed
value	function

Q(t+1)Q̂
Ω

Reconstruct

Sample

Next	iteration

Figure 3-2: An illustration of the proposed SVP algorithm for leveraging low-rank
structures.

optimization approaches [31, 53,54]. In this thesis, we view ME as a principled recon-

struction oracle to effectively exploit the low-rank structure. For faster computation,

we mainly employ the Soft-Impute algorithm.

3.3.2 Our Approach: Structured Value-based Planning

We now formally describe our approach, which we refer as structured value-based

planning (SVP). Fig. 3-2 illustrates our overall approach for solving MDP with a

known model. The approach is based on the Q-value iteration. At the t-th iteration,

instead of a full pass over all state-action pairs:

1. SVP first randomly selects a subset Ω of the state-action pairs. In particular,

each state-action pair in S ×A is observed (i.e., included in Ω) independently

with probability p.

2. For each selected (s, a), the intermediate Q̂(s, a) is computed based on the

Q-value iteration:

Q̂(s, a)←
∑
s′

P (s′|s, a)
(
r(s, a) + γmax

a′
Q(t)(s′, a′)

)
, ∀ (s, a) ∈ Ω.

3. The current iteration then ends by reconstructing the full Q matrix with

matrix estimation, from the set of observations in Ω. That is, Q(t+1) =

ME
(
{Q̂(s, a)}(s,a)∈Ω

)
.

Overall, each iteration reduces the computation cost by roughly 1−p (cf. discussions

in Section 3.2). In Appendix B.1, we provide the pseudo-code and additionally, a

57

short discussion on the technical difficulty for theoretical analysis. Nevertheless, we

believe that the consistent empirical benefits, as will be demonstrated, offer a sound

foundation for future analysis.

3.3.3 Empirical Evaluation on Stochastic Control Tasks

We empirically evaluate our approach on several classical stochastic control tasks,

including the Inverted Pendulum, the Mountain Car, the Double Integrator, and the

Cart-Pole. Our objective is to demonstrate, as in the toy example, that if the optimal

Q∗ has a low-rank structure, then the proposed SVP algorithm should be able to

exploit the structure for efficient planning. We present the evaluation on Inverted

Pendulum, and leave additional results on other planning tasks in Appendix B.2 and

B.3.

Inverted Pendulum In this classical continuous task, our goal is to balance an

inverted pendulum to its upright position, and the performance metric is the average

angular deviation. The dynamics is described by the angle and the angular speed, i.e.,

s = (θ, θ̇), and the action a is the torque applied. A reward function that penalizes

control effort while favoring an upright pendulum is used. We discretize the task

to have 2500 states and 1000 actions, leading to a 2500× 1000 Q-value matrix. We

follow [56] to handle the policy of continuous states by modelling their transitions

using multi-linear interpolation. For different discretization scales, we provide further

results in Appendix B.6.1.

The Low-rank Structure We first verify that the optimal Q∗ indeed contains the

desired low-rank structure. We run the vanilla value iteration until it converges. The

converged Q matrix is found to have an approximate rank of 7. For further evidence,

in Appendix B.3, we construct “low-rank” policies directly from the converged Q

matrix, and show that the policies maintain the desired performance.

The SVP Policy Having verified the structure, we would expect our approach

to be effective. To this end, we apply SVP with different observation probability

p and fix the overall number of iterations to be the same as the vanilla Q-value

iteration. Fig. 3-3 confirms the success of our approach. Fig. 3-3(a), 3-3(b) and 3-3(c)

show the comparison between optimal policy and the final policy based on SVP. We

further illustrate the performance metric, the average angular deviation, in Fig. 3-3(d).

58

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

Optimal policy

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

SVP policy (60% observed)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

SVP policy (20% observed)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c)

20 40 60 80 100
Percentage (%)

0

1

2

3

4

5

6

Av
er

ag
e

de
vi

at
io

n
(d

eg
re

e) Inverted Pendulum
Optimal policy
SVP policy

(d)

Figure 3-3: Performance comparison between optimal policy and the proposed SVP
policy.

Overall, much fewer samples are needed for SVP to achieve a comparable performance

to the optimal one.

3.4 Structured Value-based Deep Reinforcement

Learning

So far, our focus has been on tabular MDPs where value iteration can be applied

straightforwardly. However, the idea of exploiting structure is much more powerful:

we propose a natural extension of our approach to deep RL. Our scheme again intends

to exploit and regularize structures in the Q-value function with ME. As such, it can

be seamlessly incorporated into value-based RL techniques that include a Q-network.

We demonstrate this on Atari games, across various value-based RL techniques.

59

0 5 10 15
rank

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Defender

0 5 10 15
rank

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Krull

0 5 10 15
rank

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Riverraid

0 5 10 15
rank

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Zaxxon

Figure 3-4: Approximate rank of different Atari games: histogram (red) and empirical
CDF (blue) of the approximate rank of 10,000 randomly sampled data batch for the
trained DQN.

3.4.1 Evidence of Structured Q-value Function

Before diving into deep RL, let us step back and review the process we took to develop

our intuition. Previously, we start by treating the Q-value as a matrix. To exploit the

structure, we first verify that certain MDPs have essentially a low-rank Q∗. We argue

that if this is indeed the case, then enforcing the low-rank structures throughout the

iterations, by leveraging ME, should lead to better algorithms.

A naive extension of the above reasoning to deep RL immediately fails. In particular,

with images as states, the state space is effectively infinitely large, leading to a tall Q

matrix with numerous number of rows (states). Verifying the low-rank structure for

deep RL hence seems intractable. However, by definition, if a large matrix is low-rank,

then almost any row is a linear combination of some other rows. That is, if we sample

a small batch of the rows, the resulting matrix is most likely low-rank as well. To

probe the structure of the deep Q function, it is, therefore, natural to understand the

rank of a randomly sampled batch of states. In deep RL, our target for exploring

60

Sample Reconstruct
SV-RL

Original	value-
based	RL

(, )Q̂ B Q̂
Ω (, )Q† B


S
(1)
t+1

S
(2)
t+1 Target

= + γ (,)y(i) r
(i)
t

maxa
′ Q† s

(i)

t+1
a′

SGD	with	loss

(− Q(, ; θ)∑B

i=1 y(i) s
(i)
t a

(i)
t)

2

...

(, )Q̂ B

Target

= + γ (,)y(i) r
(i)
t

maxa
′ Q̂ s

(i)

t+1
a′

SGD	with	loss

(− Q(, ; θ)∑B

i=1 y(i) s
(i)
t a

(i)
t)

2

(a) Original value-based RL

Sample Reconstruct
SV-RL

Original	value-
based	RL

(, )Q̂ B Q̂
Ω (, )Q† B


S
(1)
t+1

S
(2)
t+1 Target

= + γ (,)y(i) r
(i)
t

maxa
′ Q† s

(i)

t+1
a′

SGD	with	loss

(− Q(, ; θ)∑B

i=1 y(i) s
(i)
t a

(i)
t)

2

...

(, )Q̂ B

Target

= + γ (,)y(i) r
(i)
t

maxa
′ Q̂ s

(i)

t+1
a′

SGD	with	loss

(− Q(, ; θ)∑B

i=1 y(i) s
(i)
t a

(i)
t)

2

(b) SV-RL

Figure 3-5: An illustration of the proposed SV-RL scheme, compared to the original
value-based RL.

structures is no longer the optimal Q∗, which is never available. In fact, like SVP, the

natural objective should be the converged values of the underlying algorithm, which

in “deep” scenarios, are the eventually learned Q function.

With the above discussions, we now provide evidence for the low-rank structure

of learned Q function on some Atari games. We train standard DQN on 4 games,

with a batch size of 32. To be consistent, the 4 games all have 18 actions. After the

training process, we randomly sample a batch of 32 states, evaluate with the learned

Q network and finally synthesize them into a matrix. That is, a 32× 18 data matrix

with rows the batch of states, the columns the actions, and the entries the values

from the learned Q network. Note that the rank of such a matrix is at most 18. The

above process is repeated for 10,000 times, and the histogram and empirical CDF of

the approximate rank is plotted in Fig. 3-4. Apparently, there is a strong evidence

supporting a highly structured low-rank Q function for those games – the approximate

ranks are uniformly small; in most cases, they are around or smaller than 3.

3.4.2 Our Approach: Structured Value-based RL

Having demonstrated the low-rank structure within some deep RL tasks, we naturally

seek approaches that exploit the structure during the training process. We extend

the same intuitions here: if eventually, the learned Q function is of low rank, then

enforcing/regularizing the low rank structure for each iteration of the learning process

should similarly lead to efficient learning and potentially better performance. In deep

61

RL, each iteration of the learning process is naturally the SGD step where one would

update the Q network. Correspondingly, this suggests us to harness the structure

within the batch of states. Following our previous success, we leverage ME to achieve

this task.

We now formally describe our approach, referred as structured value-based RL

(SV-RL). It exploits the structure for the sampled batch at each SGD step, and can be

easily incorporated into any Q-value based RL methods that update the Q network via

a similar step as in Q-learning. In particular, Q-value based methods have a common

model update step via SGD, and we only exploit structure of the sampled batch at

this step – the other details pertained to each specific method are left intact.

Precisely, when updating the model via SGD, Q-value based methods first sample

a batch of B transitions, {(s(i)
t , r

(i)
t , a

(i)
t , s

(i)
t+1)}Bi=1, and form the following updating

targets:

y(i) = r
(i)
t + γmax

a′
Q̂(s

(i)
t+1, a

′). (3.3)

For example, in DQN, Q̂ is the target network. The Q network is then updated by

taking a gradient step for the loss function
∑B

i=1

(
y(i) −Q(s

(i)
t , a

(i)
t ; θ)

)2
, with respect

to the parameter θ.

To exploit the structure, we then consider reconstructing a matrix Q† from Q̂, via

ME. The reconstructed Q† will replace the role of Q̂ in Eq. (3.3) to form the targets y(i)

for the gradient step. In particular, the matrix Q† has a dimension of B × |A|, where

the rows represent the “next states” {s(i)
t+1}Bi=1 in the batch, the columns represent

actions, and the entries are reconstructed values. Let SB , {s(i)
t+1}Bi=1. The SV-RL

alters the SGD update step as illustrated in Algorithm 2 and Fig. 3-5.

Note the resemblance of the above procedure to that of SVP in Section 3.3.2.

When the full Q matrix is available, in Section 3.3.2, we sub-sample the Q matrix and

then reconstruct the entire matrix. When only a subset of the states (i.e., the batch)

is available, naturally, we look at the corresponding sub-matrix of the entire Q matrix,

and seek to exploit its structure.

62

Algorithm 2: Structured Value-based RL (SV-RL)

1: follow the chosen value-based RL method (e.g., DQN) as usual.
2: except that for model updates with gradient descent, do

3: /* exploit structure via matrix estimation*/

4: sample a set Ω of state-action pairs from SB ×A. In particular, each
state-action pair in SB ×A is observed (i.e., included in Ω) with
probability p, independently.

5: evaluate every state-action pair in Ω via Q̂, where Q̂ is the network that
would be used to form the targets {y(i)}Bi=1 in the original value-based
methods (cf. Eq. (3.3)).

6: based on the evaluated values, reconstruct a matrix Q† with ME, i.e.,

Q† = ME
(
{Q̂(s, a)}(s,a)∈Ω

)
.

7: /* new targets with reconstructed Q† for the gradient step*/

8: replace Q̂ in Eq. (3.3) with Q† to evaluate the targets {y(i)}Bi=1, i.e.,

SV-RL Targets: y(i) = r
(i)
t + γmax

a′
Q†(s

(i)
t+1, a

′). (3.4)

9: update the Q network with the original targets replaced by the SV-RL
targets.

3.4.3 Empirical Evaluation with Various Value-based Meth-

ods

Experimental Setup We conduct extensive experiments on Atari 2600. We apply

SV-RL on three representative value-based RL techniques, i.e., DQN, double DQN

and dueling DQN. We fix the total number of training iterations and set all the hyper-

parameters to be the same. For each experiment, averaged results across multiple

runs are reported. Additional details are provided in Appendix B.4.

Consistent Benefits for “Structured” Games We present representative re-

sults of SV-RL applied to the three value-based deep RL techniques in Fig. 3-6. These

games are verified by method mentioned in Section 3.4.1 to be low-rank. Additional

results on all Atari games are provided in Appendix B.5. The figure reveals the fol-

lowing results. First, games that possess structures indeed benefit from our approach,

earning mean rewards that are strictly higher than the vanilla algorithms across time.

More importantly, we observe consistent improvements across different value-based RL

63

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

100

200

300

400

Av
er

ag
e

sc
or

e

Breakout
DQN
DQN+SV

0.2 0.4 0.6 0.8 1.0
Time step 1e7

100

200

300

400

500

Av
er

ag
e

sc
or

e

Frostbite
DQN
DQN+SV

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e

sc
or

e

Krull
DQN
DQN+SV

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

2000

4000

6000

8000

Av
er

ag
e

sc
or

e

Zaxxon
DQN
DQN+SV

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

100

200

300

400

Av
er

ag
e

sc
or

e

Breakout
Double DQN
Double DQN+SV

0.2 0.4 0.6 0.8 1.0
Time step 1e7

200

400

600

800

1000

Av
er

ag
e

sc
or

e

Frostbite
Double DQN
Double DQN+SV

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e

sc
or

e

Krull
Double DQN
Double DQN+SV

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

2000

4000

6000

8000

Av
er

ag
e

sc
or

e

Zaxxon
Double DQN
Double DQN+SV

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

100

200

300

400

Av
er

ag
e

sc
or

e

Breakout
Dueling DQN
Dueling DQN+SV

0.2 0.4 0.6 0.8 1.0
Time step 1e7

200

400

600

800

Av
er

ag
e

sc
or

e

Frostbite
Dueling DQN
Dueling DQN+SV

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

1000

2000

3000

4000

5000

6000

7000

8000

Av
er

ag
e

sc
or

e

Krull
Dueling DQN
Dueling DQN+SV

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

2000

4000

6000

8000

Av
er

ag
e

sc
or

e

Zaxxon
Dueling DQN
Dueling DQN+SV

Figure 3-6: Results of SV-RL on various value-based deep RL techniques. First
row: results on DQN. Second row: results on double DQN. Third row: results on
dueling DQN.

techniques. This highlights the important role of the intrinsic structures, which are

independent of the specific techniques, and justifies the effectiveness of our approach

in consistently exploiting such structures.

Further Observations Interestingly however, the performance gains vary from

games to games. Specifically, the majority of the games can have benefits, with few

games performing similarly or slightly worse. Such observation motivates us to further

diagnose SV-RL in the next section.

3.5 Diagnose and Interpret Performance in Deep

RL

So far, we have demonstrated that games which possess structured Q-value functions

can consistently benefit from SV-RL. Obviously however, not all tasks in deep RL

would possess such structures. As such, we seek to diagnose and further interpret our

64

2 Homework 1 Luxin Zhang

0.2 0.4 0.6 0.8 1.0
Time step 1e7

100

200

300

400

500
DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Frostbite

(a) Frostbite (better)

3 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

1000

2000

3000

4000

5000

6000

7000 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Krull

(b) Krull (better)

Homework 1 Visual Learning and Recognition 16-824, Spring 2019
Luxin Zhang

luxinz@andrew.cmu.edu

Homework 1

Luxin Zhang
luxinz@andrew.cmu.edu

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

500

1000

1500

2000 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Alien

(c) Alien (slightly better)

4 Homework 1 Luxin Zhang

0

1000

2000

3000

4000
DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

(d) Seaquest (worse)

Figure 3-7: Interpretation of deep RL results. We plot games where the SV-based
method performs differently. More structured games (with lower rank) can achieve
better performance with SV-RL.

approach at scale.

Diagnosis We select 4 representative examples (with 18 actions) from all tested

games, in which SV-RL performs better on two tasks (i.e., Frostbite and Krull),

slightly better on one task (i.e., Alien), and slightly worse on the other (i.e.,

Seaquest). The intuitions we developed in Section 3.4 incentivize us to further check

the approximate rank of each game. As shown in Fig. 3-7, in the two better cases,

both games are verified to be approximately low-rank (∼ 2), while the approximate

rank in Alien is moderately high (∼ 5), and even higher in Seaquest (∼ 10). Note

that all these games have an action space of size 18, thus the rank is at most 18.

Consistent Interpretations As our approach is designed to exploit structures, we

would expect to attribute the differences in performance across games to the “strength”

of their structured properties. Games with strong low-rank structures tend to have

larger improvements with SV-RL (Fig. 3-7(a) and 3-7(b)), while moderate approximate

rank tends to induce small improvements (Fig. 3-7(c)), and high approximate rank

may induce similar or slightly worse performances (Fig. 3-7(d)). The empirical results

are well aligned with our arguments: if the Q-function for the task contains low-rank

structure, SV-RL can exploit such structure for better efficiency and performance; if

not, SV-RL may introduce slight or no improvements over the vanilla algorithms. As

mentioned, the ME solutions balance being low rank and having small reconstruction

error, which helps to ensure a reasonable or only slightly degraded performance, even

65

for “high rank” games. We further observe consistent results on ranks vs. improvement

across different games and RL techniques in Appendix B.5, verifying our arguments.

3.6 Related Work

Structures in Value Function Recent work in the control community starts to

explore the structure of value function in control/planning tasks [15, 16, 18, 57]. These

work focuses on decomposing the value function and subsequently operating on the

reduced-order space. In spirit, we also explore the low-rank structure in value function.

The central difference is that instead of decomposition, we focus on “completion”.

We seek to efficiently operate on the original space by looking at few elements and

then leveraging the structure to infer the rest, which allows us to extend our approach

to modern deep RL. In addition, while there are few attempts for basis function

learning in high dimensional RL [58], functions are hard to generate in many cases

and approaches based on basis functions typically do not get the same performance as

DQN, and do not generalize well. In contrast, we provide a principled and systematic

method, which can be applied to any framework that employs value-based methods or

sub-modules. Finally, we remark that at a higher level, there are studies exploiting

different structures within a task to design effective algorithms, such as exploring the

low-dimensional system dynamics in predictive state representation [59] or exploring

the so called low “Bellman rank” property [60].

Value-based Deep RL Deep RL has emerged as a promising technique, high-

lighted by key successes such as solving Atari games via deep Q-learning [22] and

combining with Monte Carlo tree search [61,62] to achieve superhuman performance

in mastering Go, Chess and Shogi [19, 20]. Methods based on learning value functions

are fundamental components in deep RL, exemplified by the deep Q-network [21,22].

Over the years, there has been a large body of literature on its variants, such as double

DQN [63], dueling DQN [28], IQN [64] and other techniques that aim to improve

exploration [65, 66]. Our approach focuses on general value-based RL methods, rather

than specific algorithms. As long as the method has a similar model update step as

in Q-learning, our approach can leverage the structure to help with the task. We

empirically demonstrate that deep RL tasks that have structured value functions

66

indeed benefit from our scheme.

Matrix Estimation ME is the primary tool we leverage to exploit the low-

rank structure in value functions. Early work in the field is primarily motivated by

recommendation systems. Since then, the techniques have been widely studied and

applied to different domains [38,51], and recently even in robust deep learning [1]. The

field is relatively mature, with extensive algorithms and provable recovery guarantees

for structured matrix [34, 36]. Because of the strong promise, we view ME as a

principled reconstruction oracle to exploit the low-rank structures within matrices.

3.7 Summary & Discussion

In this chapter, we investigated the structures in value function, and proposed a

complete framework to understand, validate, and leverage such structures in various

tasks, from planning to deep reinforcement learning. The proposed SVP and SV-

RL algorithms harness the strong low-rank structures in the Q function, showing

consistent benefits for both planning tasks and value-based deep reinforcement learning

techniques. Extensive experiments validated the significance of the proposed schemes,

which can be easily embedded into existing planning and RL frameworks for further

improvements.

67

68

Chapter 4

Conclusions and Future Work

Deep learning algorithms have recently been shown a great success, and adopted by

many vision, speech and language applications. However, many real-world problems

can exhibit intrinsic structure within tasks. The overall objective of this thesis is to

study the intrinsic and meaningful structures that naturally arise in deep learning

tasks, and propose corresponding algorithms to improve the performance by leveraging

such structured properties. At a higher level, this investigation is motivated by

the underlying system dynamics within learning tasks that intrinsically induces the

learning properties, and the possibility to improve the learning performance given the

structured representations. To this end, we have taken a close look and investigated

two important deep learning algorithms, the adversarial robustness and the value-based

planning and deep reinforcement learning. First, we study the problem as how to

enhance the robustness of deep neural networks against adversarial attacks, through a

structured (matrix) view of real-world images. Second, we investigate the problem as

how to boost the efficiency and performance of value-based stochastic control and deep

RL algorithms, when highly structured Q-value functions have been demonstrated

across tasks.

In this thesis, we try to tackle these challenges by leveraging the Matrix Estimation

(ME) technique. For each specific deep learning problem, we first verify the existence of

strong low-rank structures in the learning objectives (e.g., images or Q-value functions).

Motivated by the theoretical guarantees and appealing results in the ME field, we

integrate ME into a generic framework for each learning task, with the aim to harness

69

the strong low-rank structures through the learning process. First, we propose ME-Net,

an adversarial defense method that leverages ME to enforce the global structure in

the images. ME-Net preprocesses images using a mask-and-reconstructed via ME,

which destroys the adversarial structure of the noise while re-enforcing the global

structure in the original images. We conduct comprehensive experiments on prevailing

benchmarks such as MNIST, CIFAR-10, SVHN, and Tiny-ImageNet. We show that

ME-Net consistently outperforms prior techniques when comparing ME-Net with

state-of-the-art defense mechanisms, improving robustness against both black-box and

white-box attacks. Second, we propose SVP and SV-RL, applicable for any value-

based classical stochastic control and deep RL tasks, respectively. We demonstrate the

effectiveness of SVP on several planning problems, where the low-rank structure allows

for efficient planning with less computation. Furthermore, we extend our scheme

to deep RL, which is naturally applicable for value-based techniques such as DQN,

double DQN, and dueling DQN. Experimental results on all Atari games verify that

SV-RL can consistently improve the performance of value-based methods, achieving

higher scores for tasks when low-rank structures are confirmed to exist.

This thesis opens the door for several interesting extensions. For adversarial

robustness, a meaningful line of variations can be considering more the intrinsic

structures within images (or adversarial noises) when designing defense methods.

Despite we focusing on the low-rank structures, other nice properties of natural images

can also be explored, such as the frequency information. Analogously, in the context

of control and deep RL tasks, we have exploited the low-rank structures in value-based

methods (specifically, the Q-value matrix). What about policy-based algorithms?

Can similar structured frameworks be derived also for various techniques that directly

optimize policies? Overall, if the intrinsic structure does exist in RL problems, such

desired pipeline for policy-based methods should be anticipated.

In addition, this thesis extends the applications of matrix estimation, and poten-

tially serves as the first attempt on incorporating ME methods with deep learning

framework. For matrix estimation / matrix completion community, over the years,

the vast majority of applications have been focusing on the classical settings, such as

recommendation systems, graphon estimation, community detection, time series, and

so on. The results of this thesis connect the nice theory with modern applications,

70

e.g., deep neural networks. An interesting line of future work in ME applications can

be the extension for other problems with (highly) structured properties that emerge

in the deep learning era.

For future work on the application side of deep learning, our results demonstrate

the possibility of leveraging theory-inspired approaches in deep learning. Throughout

the thesis, we mainly focus on the low-rank structure; yet, there should be many

other meaningful structures that naturally evolve in different learning tasks. Such

new framework as combining theory models with deep learning algorithms can bring

new insights for the audience and broadly benefit practitioners. Major challenges as

well as opportunities mainly lie in the context of proper theory-inspired models that

can be easily incorporated into the modern deep learning pipelines and frameworks

for real-world applications. That is, for each specific problem, the potential of using

well-studied theory models for deriving more intuitive and interpretable deep learning

algorithms.

71

72

Appendix A

Supplementary Materials for

Chapter 2

A.1 Training Details

Training settings. We summarize our training hyper-parameters in Table A.1. We

follow the standard data augmentation scheme as in [11] to do zero-padding with

4 pixels on each side, and then random crop back to the original image size. We

then randomly flip the images horizontally and normalize them into [0, 1]. Note that

ME-Net’s preprocessing is performed before the training process as in Algorithm 1.

Dataset Model Data Aug. Optimizer Momentum Epochs LR LR decay

CIFAR-10
ResNet-18

Wide-ResNet

√
SGD 0.9 200 0.1 step (100, 150)

MNIST LeNet × SGD 0.9 200 0.01 step (100, 150)

SVHN ResNet-18
√

SGD 0.9 200 0.01 step (100, 150)

Tiny-ImageNet DenseNet-121
√

SGD 0.9 90 0.1 step (30, 60)

Table A.1: Training details of ME-Net on different datasets. Learning rate is
decreased at selected epochs with a step factor of 0.1.

ME-Net details. As was mentioned in Section 2.2.3, one could either operate on

the three RGB channels separately as independent matrices or jointly by concatenating

them into one wide matrix. For the former approach, given an image, we can apply

the same mask to each channel and then separately run ME to recover the matrix.

For the latter approach, the RGB channels are first concatenated along the column

73

dimension to produce a wide matrix, i.e., if each channel is of size 32× 32, then the

concatenated matrix, [RGB], is of size 32× 96. A mask is applied to the wide matrix

and the whole matrix is then recovered. This approach is a common, simple method

for estimating tensor data. Since this work focuses on structures of the image and

channels within an image are closely related, we adopt the latter approach in this

thesis.

In our experiments, we use the following method to generate masks with different

observing probability: for each image, we select n masks in total with observing

probability p ranging from a→ b. We use n = 10 for most experiments. To provide

an example, “p : 0.6→ 0.8” indicates that we select 10 masks in total with observing

probability from 0.6 to 0.8 with an equal interval of 0.02, i.e., 0.6, 0.62, 0.64, Note

that we only use this simple selection scheme for mask generation. We believe further

improvement can be achieved with better designed selection schemes, potentially

tailored to each image.

A.2 Additional Results on CIFAR-10

A.2.1 Black-box Attacks

We provide additional results of ME-Net against different black-box attacks on CIFAR-

10. We first show the complete results using different kinds of black-box attacks, i.e.,

transfer-based (FGSM, PGD, CW), decision-based (Boundary) and score-based (SPSA)

attacks. For CW attack, we follow the settings in [4] to use different confidence values

κ. We report ME-Net results with different training settings on Table A.2. Here we

use pure ME-Net as a preprocessing method without adversarial training. As shown,

previous defenses only consider limited kinds of black-box attacks. We by contrast

show extensive and also advanced experimental results.

Further, we define and apply another stronger black-box attack, where we provide

the architecture and weights of our trained model to the black-box adversary to make

it stronger. This kind of attack is also referred as “semi-black-box” or “gray-box”

attack in some instances, while we still view it as a black-box one. This time the

adversary is not aware of the preprocessing layer but has full access to the trained

74

Method Clean FGSM
PGD CW

Boundary SPSA
7 steps 20 steps 40 steps κ = 20 κ = 50

Vanilla 93.4% 24.8% 7.6% 1.8% 0.0% 9.3% 8.9% 3.5% 1.4%

Madry 79.4% 67.0% 64.2% − − 78.7% − − −
Thermometer 87.5% − 77.7% − − − − − −

ME-Net

p : 0.8→ 1 94.9% 92.2% 91.8% 91.8% 91.3% 93.6% 93.6% 87.4% 93.0%

p : 0.6→ 0.8 92.1% 85.1% 84.5% 83.4% 81.8% 89.2% 89.0% 81.8% 90.9%

p : 0.4→ 0.6 89.2% 75.7% 74.9% 73.0% 70.9% 82.0% 82.0% 77.5% 87.1%

Table A.2: CIFAR-10 extensive black-box attack results. Different kinds of
strong black-box attacks are used, including transfer-, decision-, and score-based
attacks.

network, and directly performs white-box attacks to the network. We show the results

in Table A.3.

Method FGSM
PGD CW

7 steps 20 steps 40 steps κ = 20 κ = 50

ME-Net

p : 0.8→ 1 85.1% 84.9% 84.0% 82.9% 75.8% 75.2%

p : 0.6→ 0.8 83.2% 82.8% 81.7% 79.6% 81.5% 76.8%

p : 0.4→ 0.6 80.5% 80.2% 79.2% 76.4% 84.0% 77.1%

Table A.3: CIFAR-10 additional black-box attack results where adversary
has limited access to the trained network. We provide the architecture and
weights of our trained model to the black-box adversary to make it stronger.

A.2.2 White-box Attacks

Pure ME-Net

We first show the extensive white-box attack results with pure ME-Net in Table A.4.

We use strongest white-box BPDA attack [5] with different attack steps. We select

three preprocessing methods [6–8] as competitors. We re-implement the total variation

minimization approach [8] and apply the same training settings as ME-Net on CIFAR-

10. The experiments are performed under total perturbation ε of 8/255 (0.031). By

comparison, ME-Net is demonstrated to be the first preprocessing method that is

effective under strongest white-box attacks.

Further, we study the performance of ME-Net under different ε in Fig. A-1. Besides

75

Method Type
Attack Steps

7 20 40 100

Vanilla − 0.0% 0.0% 0.0% 0.0%

Thermometer Prep. − − 0.0%* 0.0%*

PixelDefend Prep. − − − 9.0%*

TV Minimization Prep. 14.7% 5.1% 2.7% 0.4%

ME-Net

p : 0.8→ 1 Prep. 46.2% 33.2% 26.8% 23.5%

p : 0.7→ 0.9 Prep. 50.3% 40.4% 33.7% 29.5%

p : 0.6→ 0.8 Prep. 53.0% 45.6% 37.8% 35.1%

p : 0.5→ 0.7 Prep. 55.7% 47.3% 38.6% 35.9%

p : 0.4→ 0.6 Prep. 59.8% 52.6% 45.5% 41.6%

Table A.4: CIFAR-10 extensive white-box attack results with pure ME-Net.
We use the strongest PGD or BPDA attacks in white-box setting with different attack
steps. We compare ME-Net with other pure preprocessing methods [6–8]. We show
that ME-Net is the first preprocessing method to be effective under white-box attacks.
*Data from [5].

using ε = 8 which is commonly used in CIFAR-10 attack settings [4], we additionally

provide more results including ε = 2 and 4 to study the performance of pure ME-Net

under strongest BPDA white-box attacks.

20 40 100
of steps

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Ac
cu

ra
cy

 (%
)

= 2

p: 0.8 - 1
p: 0.7 - 0.9
p: 0.6 - 0.8
p: 0.5 - 0.7
p: 0.4 - 0.6

20 40 100
of steps

40

45

50

55

60

Ac
cu

ra
cy

 (%
)

= 4
p: 0.8 - 1
p: 0.7 - 0.9
p: 0.6 - 0.8
p: 0.5 - 0.7
p: 0.4 - 0.6

20 40 100
of steps

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

= 8
p: 0.8 - 1
p: 0.7 - 0.9
p: 0.6 - 0.8
p: 0.5 - 0.7
p: 0.4 - 0.6

Figure A-1: CIFAR-10 white-box attack results of pure ME-Net with dif-
ferent perturbation ε. We report ME-Net results with different training settings
under various attack steps.

Besides the strongest BPDA attack, we also design and apply another white-

box attack to further study the effect of the preprocessing layer. We assume the

adversary is aware of the preprocessing layer, but not use the backward gradient

76

approximation. Instead, it performs iterative attacks only for the network part after

the preprocessing layer. This attack helps study how the preprocessing affects the

network robustness against white-box adversary. The results in Table A.5 shows that

pure ME-Net provides sufficient robustness if the white-box adversary does not attack

the preprocessing layer.

Method FGSM
PGD CW

7 steps 20 steps 40 steps κ = 20 κ = 50

ME-Net

p : 0.8→ 1 84.3% 83.7% 83.1% 82.5% 77.0% 75.9%

p : 0.6→ 0.8 82.6% 82.1% 81.5% 80.3% 76.9% 76.4%

p : 0.4→ 0.6 79.1% 79.0% 78.3% 77.4% 77.5% 77.2%

Table A.5: CIFAR-10 additional white-box attack results where the white-
box adversary does not attack the preprocessing layer. We remain the same
attack setups as in the white-box BPDA attack, while only attacking the network
part after the preprocessing layer of ME-Net.

Combining with Adversarial Training

We provide more advanced and extensive results of ME-Net when combining with

adversarial training in Table A.6. As shown, preprocessing methods are not necessarily

compatible with adversarial training, as they can perform worse than adversarial train-

ing alone [6]. Compared to current state-of-the-art [4], ME-Net achieves consistently

better results under strongest white-box attacks.

A.3 Additional Results on MNIST

A.3.1 Black-box Attacks

In Table A.7, we report extensive results of ME-Net under different strong black-box

attacks on MNIST. We follow [4] to use the same LeNet model and the same attack

parameters with a total perturbation scale of 76.5/255 (0.3). We use a step size

of 2.55/255 (0.01) for PGD attacks. We use the same settings as in CIFAR-10 for

Boundary and SPSA attacks (i.e., 1000 steps for Boundary attack, and a batch size of

2048 for SPSA attack) to make them stronger. Note that we only use the strongest

77

Network Method Type Clean
Attack Steps

7 20 40 100 1000

ResNet-18

Madry Adv. train 79.4% 47.2% 45.6% 45.2% 45.1% 45.0%

ME-Net p : 0.8→ 1 Prep. + Adv. train 85.5% 57.4% 51.5% 49.3% 48.1% 47.4%

ME-Net p : 0.6→ 0.8 Prep. + Adv. train 84.8% 62.1% 53.0% 51.2% 50.0% 49.6%

ME-Net p : 0.4→ 0.6 Prep. + Adv. train 84.0% 68.2% 57.5% 55.4% 53.5% 52.8%

Wide-ResNet

Madry Adv. train 87.3% 50.0% 47.1% 47.0% 46.9% 46.8%

Thermometer Prep. + Adv. train 89.9% 59.4% 34.9% 26.0% 18.4% 12.3%

ME-Net p : 0.6→ 0.8 Prep. + Adv. train 91.0% 69.7% 58.0% 54.9% 53.4% 52.9%

ME-Net p : 0.4→ 0.6 Prep. + Adv. train 88.7% 74.1% 61.6% 57.4% 55.9% 55.1%

Table A.6: CIFAR-10 extensive white-box attack results. We apply up to 1000
steps PGD or BPDA attacks in white-box setting to ensure the results are convergent.
We use the released models in [4, 5] but change the attack steps up to 1000 for
comparison. ME-Net shows significant advanced results by consistently outperforming
the current state-of-the-art defense method [4].

transfer-based attacks, i.e., we use white-box attacks on the independently trained

copy to generate black-box examples. As shown, ME-Net shows significantly more

effective results against different strongest black-box attacks.

Method Clean FGSM
PGD CW

Boundary SPSA
40 steps 100 steps κ = 20 κ = 50

Vanilla 98.8% 28.2% 0.1% 0.0% 14.1% 12.6% 3.7% 6.2%

Madry 98.5% 96.8% 96.0% 95.7% 96.4% 97.0% − −
Thermometer 99.0% − 41.1% − − − − −

ME-Net

p : 0.8→ 1 99.2% 77.4% 73.9% 73.6% 98.8% 98.7% 89.3% 98.1%

p : 0.6→ 0.8 99.0% 87.1% 85.1% 84.9% 98.6% 98.4% 88.6% 97.5%

p : 0.4→ 0.6 98.4% 91.1% 90.7% 88.9% 98.4% 98.3% 88.0% 97.0%

p : 0.2→ 0.4 96.8% 93.2% 92.8% 92.2% 96.6% 96.5% 88.1% 96.1%

Table A.7: MNIST extensive black-box attack results. Different kinds of strong
black-box attacks are used, including transfer-, decision-, and score-based attacks.

We further provide the architecture and weights of our trained model to the black-

box adversary to make it stronger, and provide the results in Table A.8. As shown,

ME-Net can still maintain high adversarial robustness against stronger black-box

adversary under this setting.

78

Method FGSM
PGD CW

40 steps 100 steps κ = 20 κ = 50

ME-Net

p : 0.8→ 1 93.0% 91.9% 85.5% 98.8% 98.7%

p : 0.6→ 0.8 95.0% 94.2% 93.7% 98.3% 98.2%

p : 0.4→ 0.6 96.2% 95.9% 95.3% 98.3% 98.0%

p : 0.2→ 0.4 94.5% 94.2% 93.4% 96.5% 96.5%

Table A.8: MNIST additional black-box attack results where adversary has
limited access to the trained network. We provide the architecture and weights
of our trained model to the black-box adversary to make it stronger.

A.3.2 White-box Attacks

Table A.9 shows the extensive white-box attack results on MNIST. As discussed,

we follow [4] to use 40 steps PGD during training when combining ME-Net with

adversarial training. We apply up to 1000 steps strong BPDA-based PGD attack to

ensure the results are convergent. For the competitor, we use the released model in [4],

but change the attack steps to 1000 for comparison.

Method Type Clean
Attack Steps

40 100 1000

Madry Adv. train 98.5% 93.2% 91.8% 91.6%

ME-Net

p : 0.8→ 1 Prep. 99.2% 22.9% 21.8% 18.9%

p : 0.6→ 0.8 Prep. 99.0% 47.6% 42.4% 40.8%

p : 0.4→ 0.6 Prep. 98.4% 65.2% 62.1% 60.6%

p : 0.2→ 0.4 Prep. 96.8% 86.5% 83.1% 82.6%

ME-Net

p : 0.8→ 1 Prep. + Adv. train 97.6% 87.8% 81.7% 78.0%

p : 0.6→ 0.8 Prep. + Adv. train 97.7% 90.5% 88.1% 86.5%

p : 0.4→ 0.6 Prep. + Adv. train 98.8% 92.1% 89.4% 88.2%

p : 0.2→ 0.4 Prep. + Adv. train 97.4% 94.0% 91.8% 91.0%

Table A.9: MNIST extensive white-box attack results. We apply up to 1000
steps PGD or BPDA attacks in white-box setting to ensure the results are convergent.
We use the released models in [4] but change the attack steps up to 1000 for comparison.
We show both pure ME-Net results and the results when combining with adversarial
training.

79

A.4 Additional Results on SVHN

A.4.1 Black-box Attacks

Table A.10 shows extensive black-box attack results of ME-Net on SVHN. We use

standard ResNet-18 as the network, and use a total perturbation of ε = 8/255 (0.031).

We use the same strong black-box attacks as previously used (i.e., transfer-, decision-,

and score-based attacks), and follow the same attack settings and parameters. As

there are few results on SVHN dataset, we compare only with the vanilla model which

uses the same network and training process as ME-Net. As shown, ME-Net provides

significant adversarial robustness against various black-box attacks.

Method Clean FGSM
PGD CW

Boundary SPSA
7 steps 20 steps 40 steps κ = 20 κ = 50

Vanilla 95.0% 31.2% 8.5% 1.8% 0.0% 20.4% 7.6% 4.5% 3.7%

ME-Net

p : 0.8→ 1 96.0% 91.8% 91.1% 90.9% 89.8% 95.5% 95.2% 79.2% 95.5%

p : 0.6→ 0.8 95.5% 88.9% 88.7% 86.4% 86.2% 95.1% 94.9% 80.6% 94.6%

p : 0.4→ 0.6 94.0% 87.0% 86.4% 85.8% 84.4% 93.6% 93.4% 85.3% 93.8%

p : 0.2→ 0.4 88.3% 80.7% 76.4% 75.3% 74.2% 87.4% 87.4% 83.3% 87.6%

Table A.10: SVHN extensive black-box attack results. Different kinds of strong
black-box attacks are used, including transfer-, decision-, and score-based attacks.

Again, we strengthen the black-box adversary by providing the network architecture

and weights of our trained model. We then apply various attacks and report the

results in Table A.11. ME-Net can still maintain high adversarial robustness under

this setting.

Method FGSM
PGD CW

7 steps 20 steps 40 steps κ = 20 κ = 50

ME-Net

p : 0.8→ 1 83.8% 83.3% 81.3% 78.6% 95.2% 95.0%

p : 0.6→ 0.8 85.8% 85.7% 84.0% 82.1% 94.9% 94.8%

p : 0.4→ 0.6 88.8% 88.6% 87.4% 86.8% 93.5% 93.3%

p : 0.2→ 0.4 86.6% 86.3% 85.7% 85.5% 88.2% 88.2%

Table A.11: SVHN additional black-box attack results where adversary has
limited access to the trained network. We provide the architecture and weights
of our trained model to the black-box adversary to make it stronger.

80

A.4.2 White-box Attacks

For white-box attacks, we set attack parameters the same as in CIFAR-10, and

use strongest white-box BPDA attack with different attack steps (up to 1000 for

convergence). We show results of both pure ME-Net and adversarially trained one.

We use 7 steps for adversarial training. Since in [4] the authors did not provide results

on SVHN, we follow their methods to retrain a model. The training process and

hyper-parameters are kept identical to ME-Net.

Table A.12 shows the extensive results under white-box attacks. ME-Net achieves

significant adversarial robustness against the strongest white-box adversary, as it can

consistently outperform [4] by a certain margin.

Method Type Clean
Attack Steps

7 20 40 100 1000

Madry Adv. train 87.4% 52.5% 48.4% 47.9% 47.5% 47.1%

ME-Net

p : 0.8→ 1 Prep. 96.0% 42.1% 27.2% 14.2% 8.0% 7.2%

p : 0.6→ 0.8 Prep. 95.5% 52.4% 39.6% 28.2% 17.1% 15.9%

p : 0.4→ 0.6 Prep. 94.0% 60.3% 48.7% 40.1% 27.4% 25.8%

p : 0.2→ 0.4 Prep. 88.3% 74.7% 61.4% 52.7% 44.0% 43.4%

ME-Net

p : 0.8→ 1 Prep. + Adv. train 93.5% 62.2% 41.4% 37.5% 35.5% 34.3%

p : 0.6→ 0.8 Prep. + Adv. train 92.6% 72.1% 57.1% 49.6% 47.8% 46.5%

p : 0.4→ 0.6 Prep. + Adv. train 91.2% 79.9% 69.1% 64.2% 62.3% 61.7%

p : 0.2→ 0.4 Prep. + Adv. train 87.6% 83.5% 75.8% 71.9% 69.8% 69.4%

Table A.12: SVHN extensive white-box attack results. We apply up to 1000
steps PGD or BPDA attacks in white-box setting to ensure the results are convergent.
We show results of both pure ME-Net and adversarially trained ones. ME-Net shows
significantly better results as it consistently outperforms [4] by a certain margin.

A.5 Additional Results on Tiny-ImageNet

In this section, we extend our experiments to evaluate ME-Net on a larger and more

complex dataset. We use Tiny-ImageNet, which is a subset of ImageNet and contains

200 classes. Each class has 500 images for training and 50 for testing. All images are

64×64 colored ones. Since ME-Net requires to train the model from scratch, due to

the limited computing resources, we do not provide results on even larger dataset such

81

as ImageNet. However, we envision ME-Net to perform better on such larger datasets

as it can leverage the global structures of those larger images.

A.5.1 Black-box Attacks

For black-box attacks on Tiny-ImageNet, we only report the Top-1 adversarial accuracy.

We use standard DenseNet-121 [12] as our network, and set the attack parameters as

having a total perturbation ε = 8/255 (0.031). We use the same black-box attacks

as before and follow the same attack settings. The extensive results are shown in

Table A.13.

Method Clean FGSM
PGD CW

Boundary SPSA
7 steps 20 steps 40 steps κ = 20 κ = 50

Vanilla 66.4% 15.2% 1.3% 0.0% 0.0% 8.0% 7.7% 2.6% 1.2%

ME-Net

p : 0.8→ 1 67.7% 67.1% 66.3% 66.0% 65.8% 67.6% 67.4% 62.4% 67.4%

p : 0.6→ 0.8 64.1% 63.6% 63.1% 63.1% 62.4% 63.8% 63.6% 61.9% 63.8%

p : 0.4→ 0.6 58.9% 54.8% 51.7% 51.6% 50.4% 58.2% 58.2% 58.9% 58.1%

Table A.13: Tiny-ImageNet extensive black-box attack results. Different kinds
of strong black-box attacks are used, including transfer-, decision-, and score-based
attacks.

Further, additional black-box attack results are provided in Table A.14, where the

black-box adversary has limited access to ME-Net. The results again demonstrate the

effectiveness of the preprocessing layer.

Method FGSM
PGD CW

7 steps 20 steps 40 steps κ = 20 κ = 50

ME-Net

p : 0.8→ 1 66.5% 64.0% 62.6% 59.1% 55.8% 56.0%

p : 0.6→ 0.8 61.1% 60.9% 60.7% 59.2% 57.6% 57.6%

p : 0.4→ 0.6 58.8% 58.2% 57.5% 56.9% 58.3% 58.2%

Table A.14: Tiny-ImageNet additional black-box attack results where ad-
versary has limited access to the trained network. We provide the architecture
and weights of our trained model to the black-box adversary to make it stronger.

82

A.5.2 White-box Attacks

In white-box settings, we set the attack hyper-parameters as follows: a total pertur-

bation of 8/255 (0.031), a step size of 2/255 (0.01), and 7 steps PGD for adversarial

training. We still use strongest BPDA attack with different attack steps up to 1000.

We re-implement [4] to be the baseline, and keep all training process the same for

ME-Net and [4]. Finally, we report both Top-1 and Top-5 adversarial accuracy in

Table A.15, which demonstrates the significant adversarial robustness of ME-Net.

Metrics Method Type Clean
Attack Steps

7 20 40 100 1000

Top-1

Madry Adv. train 45.6% 23.3% 22.4% 22.4% 22.3% 22.1%

ME-Net p : 0.8→ 1 Prep. + Adv. train 53.9% 28.1% 25.7% 25.3% 25.0% 24.5%

ME-Net p : 0.6→ 0.8 Prep. + Adv. train 57.0% 33.7% 28.4% 27.3% 26.8% 26.3%

ME-Net p : 0.4→ 0.6 Prep. + Adv. train 55.6% 38.8% 30.6% 29.4% 29.0% 28.5%

Top-5

Madry Adv. train 71.4% 47.5% 46.0% 45.9% 45.8% 45.0%

ME-Net p : 0.8→ 1 Prep. + Adv. train 77.4% 54.8% 52.2% 51.9% 51.2% 50.6%

ME-Net p : 0.6→ 0.8 Prep. + Adv. train 80.3% 62.1% 57.1% 56.7% 56.4% 55.1%

ME-Net p : 0.4→ 0.6 Prep. + Adv. train 78.8% 66.7% 59.5% 58.5% 58.0% 56.9%

Table A.15: Tiny-ImageNet extensive white-box attack results. We apply up
to 1000 steps PGD or BPDA attacks in white-box setting to ensure the results are
convergent. We select [4] as the baseline and keep the training process the same
for both [4] and ME-Net. We show both Top-1 and Top-5 adversarial accuracy
under different attack steps. ME-Net shows advanced results by outperforming [4]
consistently in both Top-1 and Top-5 adversarial accuracy.

A.6 Additional Results of Different ME Methods

A.6.1 Black-box Attacks

We first provide additional experimental results using different ME methods against

black-box attacks. We train different ME-Net models on CIFAR-10 using three ME

methods, including the USVT approach, the Soft-Impute algorithm and the Nuclear

Norm minimization algorithm. The training processes are identical for all models. For

the black-box adversary, we use different transfer-based attacks and report the results

in Table A.16.

83

PGD CW
Method Complexity Type Clean FGSM

7 steps 20 steps 40 steps κ = 20 κ = 50

Vanilla − − 93.4% 24.8% 7.6% 1.8% 0.0% 9.3% 8.9%

ME-Net - USVT Low Prep. 94.8% 90.5% 90.3% 89.4% 88.9% 93.6% 93.6%

ME-Net - Soft-Imp. Medium Prep. 94.9% 92.2% 91.8% 91.8% 91.3% 93.6% 93.5%

ME-Net - Nuc. Norm High Prep. 94.8% 92.0% 91.7% 91.4% 91.0% 93.3% 93.4%

Table A.16: Comparison between different ME methods against black-box
attacks. We report the generalization and adversarial robustness of three ME-Net
models using different ME methods on CIFAR-10. We apply transfer-based black-box
attacks as the adversary.

A.6.2 White-box Attacks

We further report the white-box attack results of different ME-Net models in Table A.17.

We use 7 steps PGD to adversarially train all ME-Net models with different ME

methods on CIFAR-10. We apply up to 1000 steps strongest white-box BPDA attacks

as the adversary. Compared to the previous state-of-the-art [4] on CIFAR-10, all

the three ME-Net models can outperform them by a certain margin, while also

achieving higher generalizations. The performance of different ME-Net models may

vary slightly, where we can observe that more complex methods can lead to slightly

better performance.

Method Complexity Type Clean
Attack Steps

7 20 40 100 1000

Madry − Adv. train 79.4% 47.2% 45.6% 45.2% 45.1% 45.0%

ME-Net - USVT Low Prep. + Adv. train 85.5% 67.3% 55.8% 53.7% 52.6% 51.9%

ME-Net - Soft-Imp. Medium Prep. + Adv. train 85.5% 67.5% 56.5% 54.8% 53.0% 52.3%

ME-Net - Nuc. Norm High Prep. + Adv. train 85.0% 68.2% 57.5% 55.4% 53.5% 52.8%

Table A.17: Comparison between different ME methods against white-box
attacks. We adversarially trained three ME-Net models using different ME methods
on CIFAR-10, and compare the results with [4]. We apply up to 1000 steps PGD or
BPDA white-box attacks as adversary.

A.7 Additional Studies of Attack Parameters

We present additional studies of attack parameters, including different random restarts

and step sizes for further evaluations of ME-Net. Authors in [67] show that using

84

multiple random restarts and different step sizes can drastically affect the performance

of PGD adversaries. We consider the same white-box BPDA-based PGD adversary as

in Table 2.4, and report the results on CIFAR-10. Note that with n random restarts,

given an image, we consider a classifier successful only if it was not fooled by any

of these n attacks. In addition, this also significantly increases the computational

overhead. We hence fix the number of attack steps as 100 (results are almost flattened;

see for example Fig. 2-6), and select three step sizes and restart values. We again

compare ME-Net with [4].

Method Step sizes
Random restarts

10 20 50

Madry

2/255 43.4% 42.7% 41.7%

4/255 43.8% 43.3% 41.9%

8/255 44.0% 43.3% 41.9%

ME-Net

2/255 48.7% 47.2% 44.8%

4/255 49.7% 48.4% 45.2%

8/255 50.8% 49.8% 46.0%

Table A.18: Results of white-box attacks with different random restarts and
step sizes on CIFAR-10. We compare ME-Net with [4] using three different step
sizes and random restart values. We apply 100 steps PGD or BPDA white-box attacks
as adversary.

As shown in Table A.18, with different step sizes, the performance of ME-Net

varies slightly. Specifically, the smaller the step size (e.g., 2/255) is, the stronger the

adversary becomes for both ME-Net and [4]. This is as expected, since a smaller step

size enables a finer search for the adversarial perturbation.

ME-Net leverages randomness through masking, and it would be helpful to under-

stand how random restarts, with a hard success criterion, affect the overall pipeline.

As observed in Table A.18, more restarts can reduce the robust accuracy by a few

percent. However, we note that ME-Net can still outperform [4] by a certain margin

across different attack parameters. We remark that arguably, one could potentially

always handle such drawbacks by introducing restarts during training as well, so as to

maximally match the training and testing conditions. This introduces in unnecessary

85

overhead that might be less meaningful. We hence focus on other parameters such as

the number of attack steps in the main chapter.

A.8 Additional Benefits by Majority Voting

It is common to apply an ensemble or vote scheme during the prediction stage to

further improve accuracy. ME-Net naturally provides a majority voting scheme. As

we apply masks with different observation probability p during training, an intuitive

method is to also use multiple masks with the same p (rather than only one p) for

each image during inference, and output a majority vote over predicted labels. One

can even use more masks with different p within the training range. By such, the

training procedure and model can remain unchanged while the inference overhead

only gets increased by a small factor.

Attack
Steps

Method MNIST CIFAR-10 SVHN
Tiny-ImageNet

Top-1 Top-5

40
Standard 94.0% 55.4% 71.9% 29.4% 58.5%

Vote 95.9% 59.3% 76.0% 33.8% 68.9%

100
Standard 91.8% 53.5% 69.8% 29.0% 58.0%

Vote 94.2% 56.2% 73.1% 31.2% 65.4%

1000
Standard 91.0% 52.8% 69.4% 28.5% 56.9%

Vote 92.6% 54.2% 71.4% 29.8% 59.5%

Table A.19: Comparison between majority vote and standard inference. For
each image, we apply 10 masks with same p used during training, and the model
outputs a majority vote over predicted labels. The standard inference only uses one
mask with the mean probability of those during training. We use 40, 100 and 1000
steps white-box BPDA attack and report the results on each dataset.

In Table A.19, we report the majority voting result of ME-Net on different datasets,

where voting can consistently improve the adversarial robustness of the standard one

by a certain margin. This is especially helpful in real-world settings where the defender

can get more robust output without highly increasing the computational overhead.

Note that by using majority vote, we can further improve the state-of-the-art white-box

robustness.

86

A.9 Hyper-Parameters Study

A.9.1 Observation Probability p

As studied previously, by applying different masks with different observation probability

p, the performance of ME-Net can change differently. We have already reported

extensive quantitative results of different ME-Net models trained with different p.

Here we present the qualitative results by visualizing the effect of different p on the

original images. As illustrated in Fig. A-2, the first row shows the masked image with

different p, and the second row shows the recovered image by ME. It can be observed

that the global structure of the image is maintained even when p is small.

Masked

images

ME

Figure A-2: Visualization of ME result with different observation probability
p. First row: Images after applying masks with different observation probabilities.
Second row: The recovered images by applying ME. We can observe that the global
structure of the image is maintained even when p is small.

A.9.2 Number of Selected Masks

Another hyper-parameter of ME-Net is the number of selected masked images for each

input image. In the main chapter, all experiments are carried out using 10 masks.

We here provide the hyper-parameter study on how the number of masks affects

the performance of ME-Net. We train ME-Net models on CIFAR-10 using different

number of masks and keep other settings the same. In Table A.20, we show the results

of both standard generalization and adversarial robustness. We use transfer-based

40 steps PGD as black-box adversary, and 1000 steps BPDA as white-box adversary.

As expected, using more masks can lead to better performances. Due to the limited

computation resources, we only try a maximum of 10 masks for each image. However,

we expect ME-Net to perform even better with more sampled masks and better-tuned

87

hyper-parameters.

of Masks Method Clean Black-box White-box

− Vanilla 93.4% 0.0% 0.0%

p : 0.9 92.7% 82.3% 44.1%
1 ME-Net

p : 0.5 79.8% 59.7% 47.4%

p : 0.8→ 1 94.1% 87.8% 46.5%
5 ME-Net

p : 0.4→ 0.6 86.3% 68.5% 49.3%

p : 0.8→ 1 94.9% 91.3% 47.4%
10 ME-Net

p : 0.4→ 0.6 89.2% 70.9% 52.8%

Table A.20: Comparisons between different number of masked images used
for each input image. We report the generalization and adversarial robustness
of ME-Net models trained with different number of masks on CIFAR-10. We apply
transfer-based 40 steps PGD attack as black-box adversary, and 1000 steps PGD-based
BPDA as white-box adversary.

A.10 Additional Visualization Results

We finally provide more visualization results of ME-Net applied to clean images,

adversarial images, and their differences. We choose Tiny-ImageNet since it has a higher

resolution. As shown in Fig. A-3, for vanilla model, the highly structured adversarial

noises are distributed over the entire image, containing human imperceptible adversarial

structure that is very likely to fool the network. In contrast, the redistributed noises

in the reconstructed images from ME-Net mainly focus on the global structure of

the images, which is well aligned with human perception. As such, we would expect

ME-Net to be more robust against adversarial attacks.

88

Vanilla VanillaME-Net ME-Net

[barn]

[viaduct]: 0.902

[barn]: 0.891

[barn]: 0.850

C
le

a
n

A
d
v
er

sa
ri

a
l

D
if

fe
re

n
ce

[nail] [nail]: 0.721

[nail]: 0.652[syringe]: 0.933

Vanilla ME-Net

[sock] [sock]: 0.819

[sock]: 0.685[sandal]: 0.950

Vanilla ME-Net

Vanilla VanillaME-Net ME-Net

C
le

a
n

A
d
v
er

sa
ri

a
l

D
if

fe
re

n
ce

[espresso] [espresso]: 0.999

[espresso]: 0.999[sea slug]: 0.914 [bell pepper]: 0.926

Vanilla ME-Net

[water jug]: 0.991

Vanilla ME-NetVanilla

[Chihuahua] [Chihuahua]: 0.594

[Chihuahua]: 0.538[Alsatian]: 0.918

Vanilla VanillaME-Net ME-Net

[fly]

[bee]: 0.943

[fly]: 0.999

[fly]: 0.984

C
le

a
n

A
d
v
er

sa
ri

a
l

D
if

fe
re

n
ce

[flagpole] [flagpole]: 0.999

[flagpole]: 0.999[lobster]: 0.951

[syringe] [syringe]: 0.994

[syringe]: 0.745[oboe]: 0.820

Vanilla ME-Net

[beacon] [beacon]: 0.999

[beacon]: 0.999[projectile]: 0.937

Vanilla ME-Net

[bathtub] [bathtub]: 0.769

[bathtub]: 0.704[turnstile]: 0.901

[mantis] [mantis]: 0.999

[mantis]: 0.998

[water tower] [water tower]: 0.999

[water tower]: 0.999

Figure A-3: Visualization of ME-Net applied to clean images, adversarial
images, and their differences on Tiny-ImageNet. First column from top to
bottom: the clean image, the adversarial example generated by PGD attacks, the
difference between them (i.e., the adversarial noises). Second column from top to
bottom: the reconstructed clean image by ME-Net, the reconstructed adversarial
example by ME-Net after performing PGD attacks, the difference between them (i.e.,
the redistributed noises). Underlying each image is the predicted class and its proba-
bility. We multiply the difference images by a constant scaling factor to increase the
visibility. The differences between the reconstructed clean image by ME-Net and the
reconstructed adversarial example by ME-Net after performing PGD attacks, i.e., the
new adversarial noises, are redistributed to the global structure.

89

90

Appendix B

Supplementary Materials for

Chapter 3

B.1 Pseudo Code and Discussions for Structured

Value-based Planning (SVP)

Algorithm 3: Structured Value-based Planning (SVP)

1: Input: initialized value function Q(0)(s, a);
prescribed observing probability p.

2: for t = 1, 2, 3, . . . do
3: randomly sample a set Ω of observed entries from S ×A, each with

probability p
4: /* update the randomly selected state-action pairs*/

5: for each state-action pair (s, a) ∈ Ω do
6:

Q̂(s, a)←
∑
s′

P (s′|s, a)
(
r(s, a) + γmax

a′
Q(t)(s′, a′)

)
7: end for
8: /* reconstruct the Q matrix via matrix estimation*/

9: apply ME to the observed values {Q̂(s, a)}(s,a)∈Ω to reconstruct Q(t+1):

Q(t+1) ← ME
(
{Q̂(s, a)}(s,a)∈Ω

)
10: end for

While based on classical value iteration, we remark that a theoretical analysis,

91

even in the tabular case, is quite complex. (1) Although the field of ME is somewhat

mature, the analysis has been largely focused on the “one-shot” problem: recover a

static data matrix given one incomplete observation. Under the iterative scenario

considered here, standard assumptions are easily broken and the analysis warrants

potentially new machinery. (2) Furthermore, much of the effort in the ME community

has been devoted to the Frobenius norm guarantees rather than the infinite norm as in

value iteration. Non-trivial infinite norm bound has received less attention and often

requires special techniques [68, 69]. Resolving the above burdens would be important

future avenues in its own right for the ME community. Henceforth, this thesis focuses

on empirical analysis and more importantly, generalizing the framework successfully to

modern deep RL contexts. As we will demonstrate, the consistent empirical benefits

offer a sounding foundation for future analysis.

B.2 Experimental Setups for Stochastic Control

Tasks

Inverted Pendulum As stated earlier in Sec. 3.3.3, the goal is to balance the

inverted pendulum on the upright equilibrium position. The physical dynamics of the

system is described by the angle and the angular speed, i.e., (θ, θ̇). Denote τ as the

time interval between decisions, u as the torque input on the pendulum, the dynamics

can be written as [24,57]:

θ := θ + θ̇ τ, (B.1)

θ̇ := θ̇ +
(

sin θ − θ̇ + u
)
τ. (B.2)

A reward function that penalizes control effort while favoring an upright pendulum is

used:

r(θ, u) = −0.1u2 + exp (cos θ − 1). (B.3)

In the simulation, the state space is (−π, π] for θ and [−10, 10] for θ̇. We limit the

input torque in [−1, 1] and set τ = 0.3. We discretize each dimension of the state space

into 50 values, and action space into 1000 values, which forms an Q-value function a

92

matrix of dimension 2500× 1000. We follow [56] to handle the policy of continuous

states by modelling their transitions using multi-linear interpolation.

Mountain Car We select another classical control problem, i.e., the Mountain

Car [24], for further evaluations. In this problem, an under-powered car aims to

drive up a steep hill [24]. The physical dynamics of the system is described by the

position and the velocity, i.e., (x, ẋ). Denote u as the acceleration input on the car,

the dynamics can be written as

x := x+ ẋ, (B.4)

ẋ := ẋ− 0.0025 cos (3x) + 0.001u. (B.5)

The reward function is defined to encourage the car to get onto the top of the mountain

at x0 = 0.5:

r(x) =

 10, x ≥ x0,

−1, else.
(B.6)

We follow standard settings to restrict the state space as [−0.07, 0.07] for x and

[−1.2, 0.6] for ẋ, and limit the input u ∈ [−1, 1]. Similarly, the whole state space is

discretized into 2500 values, and the action space is discretized into 1000 values. The

evaluation metric we are concerned about is the total time it takes to reach the top of

the mountain, given a randomly and uniformly generated initial state.

Double Integrator We consider the Double Integrator system [70], as another

classical control problem for evaluation. In this problem, a unit mass brick moving

along the x-axis on a frictionless surface, with a control input which provides a

horizontal force, u [26]. The task is to design a control system to regulate this brick

to x = [0, 0]T . The physical dynamics of the system is described by the position and

the velocity (i.e., (x, ẋ)), and can be derived as

x := x+ ẋ τ, (B.7)

ẋ := ẋ+ u τ. (B.8)

93

Follow [26], we use the quadratic cost formulation to define the reward function, which

regulates the brick to x = [0, 0]T :

r(x, ẋ) = −1

2

(
x2 + ẋ2

)
. (B.9)

We follow standard settings to restrict the state space as [−3, 3] for both x and ẋ, limit

the input u ∈ [−1, 1] and set τ = 0.1. The whole state space is discretized into 2500

values, and the action space is discretized into 1000 values. Similarly, we define the

evaluation metric as the total time it takes to reach to x = [0, 0]T , given a randomly

and uniformly generated initial state.

Cart-Pole Finally, we choose the Cart-Pole problem [71], a harder control problem

with 4-dimensional state space. The problem consists a pole attached to a cart moving

on a frictionless track. The cart can be controlled by means of a limited force within

10N that is possible to apply both to the left or to the right of the cart. The goal is

to keep the pole on the upright equilibrium position. The physical dynamics of the

system is described by the angle and the angular speed of the pole, and the position

and the speed of the cart, i.e., (θ, θ̇, x, ẋ). Denote τ as the time interval between

decisions, u as the force input on the cart, the dynamics can be written as

θ̈ :=
g sin θ − u+mlθ̇2 sin θ

mc+m
cos θ

l
(

4
3
− m cos2 θ

mc+m

) , (B.10)

ẍ :=
u+ml

(
θ̇2 sin θ − θ̈ cos θ

)
mc +m

, (B.11)

θ := θ + θ̇ τ, (B.12)

θ̇ := θ̇ + θ̈ τ, (B.13)

x := x+ ẋ τ, (B.14)

ẋ := ẋ+ ẍ τ, (B.15)

where g = 9.8m/s2 corresponds to the gravity acceleration, mc = 1kg denotes the

mass of the cart, m = 0.1kg denotes the mass of the pole, l = 0.5m is half of the

pole length, and u corresponds to the force applied to the cart, which is limited by

94

u ∈ [−10, 10].

A reward function that favors the pole in an upright position, i.e., characterized

by keeping the pole in vertical position between |θ| ≤ 12π
180

, is expressed as

r(θ) = cos4 (15θ). (B.16)

In the simulation, the state space is [−π
2
, π

2
] for θ, [−3, 3] for θ̇, [−2.4, 2.4] for x and

[−3.5, 3.5] for ẋ. We limit the input force in [−10, 10] and set τ = 0.1. We discretize

each dimension of the state space into 10 values, and action space into 1000 values,

which forms an Q-value function a matrix of dimension 10000× 1000.

B.3 Additional Results for SVP

B.3.1 Inverted Pendulum

We further verify that the optimal Q∗ indeed contains the desired low-rank structure.

To this end, we construct “low-rank” policies directly from the converged Q matrix.

In particular, for the converged Q matrix, we sub-sample a certain percentage of its

entries, reconstruct the whole matrix via ME, and finally construct a corresponding

policy. Fig. B-1 illustrates the results, where the policy heatmap as well as the

performance (i.e., the angular error) of the “low-rank” policy is essentially identical to

the optimal one. The results reveal the intrinsic strong low-rank structures lie in the

Q-value function.

We provide additional results for the inverted pendulum problem. We show the

policy trajectory (i.e., how the angle of the pendulum changes with time) and the

input changes (i.e., how the input torque changes with time), for each policy.

In Fig. B-2, we first show the comparison between the optimal policy and a “low-

rank” policy. Recall that the low-rank policies are directly reconstructed from the

converged Q matrix, with limited observation of a certain percentage of the entries in

the converged Q matrix. As shown, the “low-rank” policy performs nearly identical to

the optimal one, in terms of both the policy trajectory and the input torque changes.

This again verifies the strong low-rank structure lies in the Q function.

Further, we show the policy trajectory and the input torque changes of the SVP

95

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

Optimal policy

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

“Low-rank” policy (50% observed)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

20 40 60 80 100
Percentage (%)

0

1

2

3

4

5

Av
er

ag
e

de
vi

at
io

n
(d

eg
re

e) Inverted Pendulum
Optimal policy
"Low-rank" policy

(c)

Figure B-1: Performance comparison between optimal policy and the reconstructed
“low-rank” policy, on the Inverted Pendulum task.

0 20 40 60 80 100 120 140 160 180 200

−0.5

−0.4

−0.3

−0.2

−0.1

0

time

an
gl
e
(d
eg
)

Optimal trajectory

0 20 40 60 80 100 120 140 160 180 200

−0.2

0

0.2

0.4

0.6

0.8

1

time

in
p
u
t

Optimal input

(a) Optimal policy

0 20 40 60 80 100 120 140 160 180 200

−30

−25

−20

−15

−10

−5

0

time

an
gl
e
(d
eg
)

“Low-rank” trajectory (50%)

0 20 40 60 80 100 120 140 160 180 200

−0.2

0

0.2

0.4

0.6

0.8

1

time

in
p
u
t

“Low-rank” input (50%)

(b) “Low-rank” policy with 50% observed data

Figure B-2: Comparison of the policy trajectories and the input torques between the
two schemes, on the Inverted Pendulum task.

0 20 40 60 80 100 120 140 160 180 200

−30

−25

−20

−15

−10

−5

0

time

an
gl
e
(d
eg
)

SVP trajectory (60%)

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

time

in
p
u
t

SVP input (60%)

(a) SVP policy with 60% observed data

0 20 40 60 80 100 120 140 160 180 200

−30

−25

−20

−15

−10

−5

0

5

time

an
gl
e
(d
eg
)

SVP trajectory (20%)

0 20 40 60 80 100 120 140 160 180 200

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

in
p
u
t

SVP input (20%)

(b) SVP policy with 20% observed data

Figure B-3: The policy trajectories and the input torques of the proposed SVP scheme,
on the Inverted Pendulum task.

policy. We vary the percentage of observed data for SVP, and present the policies

with 20% and 60% for demonstration. As reported in Fig. B-3, the SVP policies are

essentially identical to the optimal one. Interestingly, when we further decrease the

observing percentage to 20%, the policy trajectory vibrates a little bit, but can still

stabilize in the upright position with a small average angular deviation ≤ 5◦.

96

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

·10−2

position

sp
ee
d

Optimal policy

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

·10−2

position

sp
ee
d

“Low-rank” policy (50% observed)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

20 40 60 80 100
Percentage (%)

40

45

50

55

60

65

70

Av
er

ag
e

tim
e

to
 g

oa
l (

s)

Mountain Car
Optimal policy
"Low-rank" policy

(c)

Figure B-4: Performance comparison between optimal policy and the reconstructed
“low-rank” policy, on the Mountain Car task.

0 20 40 60 80 100 120 140 160 180

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time

p
os
it
io
n

Optimal trajectory

0 20 40 60 80 100 120 140 160 180
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time

ac
ce
le
ra
ti
on

Optimal input

(a) Optimal policy

0 20 40 60 80 100 120 140 160 180

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time

p
os
it
io
n

“Low-rank” trajectory (50%)

0 20 40 60 80 100 120 140 160 180
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time

ac
ce
le
ra
ti
on

“Low-rank” input (50%)

(b) “Low-rank” policy with 50% observed data

Figure B-5: Comparison of the policy trajectories and the input changes between the
two schemes, on the Mountain Car task.

B.3.2 Mountain Car

Similarly, we first verify the optimal Q∗ contains the desired low-rank structure.

We use the same approach to generate a “low-rank” policy based on the converged

optimal value function. Fig. B-4(a) and B-4(b) show the policy heatmaps, where

the reconstructed “low-rank” policy maintains visually identical to the optimal one.

In Fig. B-4(c) and B-5, we quantitatively show the average time-to-goal, the policy

trajectory and the input changes between the two schemes. Compared to the optimal

one, even with limited sampled data, the reconstructed policy can maintain almost

identical performance.

We further show the results of the SVP policy with different amount of observed

data (i.e., 20% and 60%) in Fig. B-6 and B-7. Again, the SVP policies show consistently

comparable results to the optimal policy, over various evaluation metrics. Interestingly,

the converged Q matrix of vanilla value iteration is found to have an approximate

97

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

·10−2

position

sp
ee
d

SVP policy (60% observed)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

·10−2

position

sp
ee
d

SVP policy (20% observed)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

20 40 60 80 100
Percentage (%)

40

45

50

55

60

65

70

Av
er

ag
e

tim
e

to
 g

oa
l (

s)

Mountain Car
Optimal policy
SVP policy

(c)

Figure B-6: Performance of the proposed SVP policy, with different amount of observed
data, on the Mountain Car task.

0 20 40 60 80 100 120 140 160 180

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time

p
os
it
io
n

SVP trajectory (60%)

0 20 40 60 80 100 120 140 160 180
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time

ac
ce
le
ra
ti
on

SVP input (60%)

(a) SVP policy with 60% observed data

0 20 40 60 80 100 120 140 160 180

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time

p
os
it
io
n

SVP trajectory (20%)

0 20 40 60 80 100 120 140 160 180
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time

ac
ce
le
ra
ti
on

SVP input (20%)

(b) SVP policy with 20% observed data

Figure B-7: The policy trajectories and the input changes of the proposed SVP scheme,
on the Mountain Car task.

rank of 4 (the whole matrix is 2500× 1000), thus the SVP can harness such strong

low-rank structure for perfect recovery even with only 20% observed data.

B.3.3 Double Integrator

For the Double Integrator, We first use the same approach to generate a “low-rank”

policy. Fig. B-8(a) and B-8(b) show that the reconstructed “low-rank” policy is

visually identical to the optimal one. In Fig. B-8(c) and B-9, we quantitatively show

the average time-to-goal, the policy trajectory and the input changes between the two

schemes, where the reconstructed policy can achieve the same performance.

Further, we show the results of the SVP policy with different amount of observed

data (i.e., 20% and 60%) in Fig. B-10 and B-11. As shown, the SVP policies show

consistently decent results, which demonstrates that SVP can harness such strong

low-rank structure even with only 20% observed data.

98

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

position

sp
ee
d

Optimal policy

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

position

sp
ee
d

“Low-rank” policy (50% observed)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

20 40 60 80 100
Percentage (%)

196

198

200

202

204

Av
er

ag
e

tim
e

to
 g

oa
l (

s) Double Integrator
Optimal policy
"Low-rank" policy

(c)

Figure B-8: Performance comparison between optimal policy and the reconstructed
“low-rank” policy, on the Double Integrator task.

0 20 40 60 80 100 120 140 160 180 200

−0.5

−0.4

−0.3

−0.2

−0.1

0

time

p
os
it
io
n

Optimal trajectory

0 20 40 60 80 100 120 140 160 180 200
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time

ac
ce
le
ra
ti
on

Optimal input

(a) Optimal policy

0 20 40 60 80 100 120 140 160 180 200

−0.5

−0.4

−0.3

−0.2

−0.1

0

time

p
os
it
io
n

“Low-rank” trajectory (50%)

0 20 40 60 80 100 120 140 160 180 200
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

ac
ce
le
ra
ti
on

“Low-rank” input (50%)

(b) “Low-rank” policy with 50% observed data

Figure B-9: Comparison of the policy trajectories and the input changes between the
two schemes, on the Double Integrator task.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

position

sp
ee
d

SVP policy (60% observed)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

position

sp
ee
d

SVP policy (20% observed)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

20 40 60 80 100
Percentage (%)

196

198

200

202

204

Av
er

ag
e

tim
e

to
 g

oa
l (

s) Double Integrator
Optimal policy
SVP policy

(c)

Figure B-10: Performance of the proposed SVP policy, with different amount of
observed data, on the Double Integrator task.

B.3.4 Cart-Pole

Finally, we evaluate SVP on the Cart-Pole system. Note that since the state space has

a dimension of 4, the policy heatmap should contain 4 dims, but is hard to visualize.

Since the metric we care is the angle deviation, we here only plot the first two dims

(i.e., the (θ, θ̇) tuple) with fixed x and ẋ, to visualize the policy heatmaps. We first use

99

0 20 40 60 80 100 120 140 160 180 200

−0.5

−0.4

−0.3

−0.2

−0.1

0

time

p
os
it
io
n

SVP trajectory (60%)

0 20 40 60 80 100 120 140 160 180 200

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

ac
ce
le
ra
ti
on

SVP input (60%)

(a) SVP policy with 60% observed data

0 20 40 60 80 100 120 140 160 180 200

−0.5

−0.4

−0.3

−0.2

−0.1

0

time

p
os
it
io
n

SVP trajectory (20%)

0 20 40 60 80 100 120 140 160 180 200

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

ac
ce
le
ra
ti
on

SVP input (20%)

(b) SVP policy with 20% observed data

Figure B-11: The policy trajectories and the input changes of the proposed SVP
scheme, on the Double Integrator task.

−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

angle

an
gu
la
r
sp
ee
d

Optimal policy

−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)

−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

angle

an
gu
la
r
sp
ee
d

“Low-rank” policy (50% observed)

−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)

20 40 60 80 100
Percentage (%)

6
8

10
12
14

Av
er

ag
e

de
vi

at
io

n
(d

eg
re

e) Cart-Pole
Optimal policy
"Low-rank" policy

(c)

Figure B-12: Performance comparison between optimal policy and the reconstructed
“low-rank” policy, on the Cart-Pole task.

the same approach to generate a “low-rank” policy. Fig. B-12(a) and B-12(b) show

the policy heatmaps, where the reconstructed “low-rank” policy is visually identical

to the optimal one. In Fig. B-12(c) and B-13, we quantitatively show the average

time-to-goal, the policy trajectory and the input changes between the two schemes.

As demonstrated, the reconstructed policy can maintain almost identical performance

with only small amount of sampled data.

We finally show the results of the SVP policy with different amount of observed

data (i.e., 20% and 60%) in Fig. B-14 and B-15. Even for harder control tasks with

higher dimensional state space, the SVP policies are still essentially identical to the

optimal one. Across various stochastic control tasks, we demonstrate that SVP can

consistently leverage strong low-rank structures for efficient planning.

100

0 20 40 60 80 100 120 140 160 180 200

−30

−25

−20

−15

−10

−5

0

5

time

an
gl
e
(d
eg
)

Optimal trajectory

0 20 40 60 80 100 120 140 160 180 200

−10

−8

−6

−4

−2

0

2

4

time

in
p
u
t

Optimal input

(a) Optimal policy

0 20 40 60 80 100 120 140 160 180 200

−30

−25

−20

−15

−10

−5

0

5

time

an
gl
e
(d
eg
)

“Low-rank” trajectory (50%)

0 20 40 60 80 100 120 140 160 180 200

−10

−8

−6

−4

−2

0

2

4

time

in
p
u
t

“Low-rank” input (50%)

(b) “Low-rank” policy with 50% observed data

Figure B-13: Comparison of the policy trajectories and the input changes between
the two schemes, on the Cart-Pole task.

−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

angle

an
gu
la
r
sp
ee
d

SVP policy (60% observed)

−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)

−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

angle

an
gu
la
r
sp
ee
d

SVP policy (20% observed)

−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)

20 40 60 80 100
Percentage (%)

6
8

10
12
14

Av
er

ag
e

de
vi

at
io

n
(d

eg
re

e) Cart-Pole
Optimal policy
SVP policy

(c)

Figure B-14: Performance of the proposed SVP policy, with different amount of
observed data, on the Cart-Pole task.

0 20 40 60 80 100 120 140 160 180 200

−30

−25

−20

−15

−10

−5

0

time

an
gl
e
(d
eg
)

SVP trajectory (60%)

0 20 40 60 80 100 120 140 160 180 200

−10

−8

−6

−4

−2

0

2

4

time

in
p
u
t

SVP input (60%)

(a) SVP policy with 60% observed data

0 20 40 60 80 100 120 140 160 180 200

−30

−25

−20

−15

−10

−5

0

5

time

an
gl
e
(d
eg
)

SVP trajectory (20%)

0 20 40 60 80 100 120 140 160 180 200

−10

−8

−6

−4

−2

0

2

4

6

time

in
p
u
t

SVP input (20%)

(b) SVP policy with 20% observed data

Figure B-15: The policy trajectories and the input changes of the proposed SVP
scheme, on the Cart-Pole task.

B.4 Training Details of Structured Value-based RL

(SV-RL)

Training Details and Hyper-parameters The network architectures of DQN

and dueling DQN used in our experiment are exactly the same as in the original

101

papers [21, 28, 63]. We train the network using the Adam optimizer [72]. In all

experiments, we set the hyper-parameters as follows: learning rate α = 1e−5, discount

coefficient γ = 0.99, and a minibatch size of 32. The number of steps between target

network updates is set to 10, 000. We use a simple exploration policy as the ε-greedy

policy with the ε decreasing linearly from 1 to 0.01 over 3e5 steps. For each experiment,

we perform at least 3 independent runs and report the averaged results.

SV-RL Details To reconstruct the matrix Q† formed by the current batch of

states, we mainly employ the Soft-Impute algorithm [33] throughout our experiments.

We set the sub-sample rate to p = 0.9 of the Q matrix, and use a linear scheduler to

increase the sampling rate every 2e6 steps.

B.5 Additional Results for SV-RL

Experiments across Various Value-based RL We show more results across DQN,

double DQN and dueling DQN in Fig. B-16, B-17, B-18, B-19, B-20 and B-21,

respectively. For DQN, we complete all 57 Atari games using the proposed SV-RL,

and verify that the majority of tasks contain low-rank structures (43 out of 57), where

we can obtain consistent benefits from SV-RL. For each experiment, we associate the

performance on the Atari game with its approximate rank. As mentioned in the main

text, majority of the games benefit consistently from SV-RL. We note that roughly

only 4 games, which have a significantly large rank, perform slightly worse than the

vanilla DQN.

Consistency and Interpretation Across all the experiments we have done, we

observe that when the game possesses structures (i.e., being approximately low-rank),

SV-RL can consistently improve the performance of various value-based RL techniques.

The superior performance is maintained through most of the experiments, verifying

the ability of the proposed SV-RL to harness the structures for better efficiency and

performance in value-based deep RL tasks. In the meantime, when the approximate

rank is relatively higher (e.g., Seaquest), the performance of SV-RL can be similar

or worse than the vanilla scheme, which also aligns well with our intuitions. Note that

the majority of the games have an action space of size 18 (i.e., rank is at most 18),

while some (e.g., Pong) only have 6 or less (i.e., rank is at most 6).

102

Homework 1 Visual Learning and Recognition 16-824, Spring 2019
Luxin Zhang

luxinz@andrew.cmu.edu

Homework 1

Luxin Zhang
luxinz@andrew.cmu.edu

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

500

1000

1500

2000 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Alien

(a) Alien (better)

2 Homework 1 Luxin Zhang

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time step 1e7

0

200

400

600

800 DQN
DQN+SV

0 2 4 6 8 10
rank

0

20

40

60

80

100
Amidar

(b) Amidar (better)

2 Homework 1 Luxin Zhang

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time step 1e7

1000

2000

3000

4000
DQN
DQN+SV

0 2 4 6
rank

0

20

40

60

80

100
Assault

(c) Assault (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time step 1e7

0

1000

2000

3000

4000

5000 DQN
DQN+SV

0 2 4 6 8
rank

0

20

40

60

80

100
Asterix

(d) Asterix (better)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

400

500

600

700

800

900

1000 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Asteroids

(e) Asteroids (better)

2 Homework 1 Luxin Zhang

0.0 0.5 1.0 1.5 2.0 2.5
Time step 1e7

0

250000

500000

750000

1000000

1250000

1500000
DQN
DQN+SV

0 1 2 3 4
rank

0

20

40

60

80

100
Atlantis

(f) Atlantis (better)

2 Homework 1 Luxin Zhang

0.0 0.5 1.0 1.5 2.0 2.5
Time step 1e7

0

200

400

600

800
DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
BankHeist

(g) Bank Heist (similar)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

5000

10000

15000

20000

25000

30000 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
BattleZone

(h) Battle Zone (better)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

1000

2000

3000

4000

5000 DQN
DQN+SV

0 2 4 6 8
rank

0

20

40

60

80

100
BeamRider

(i) Beam Rider (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

100

200

300

400

500

600

700

800

DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Berzerk

(j) Berzerk (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

10

20

30

40 DQN
DQN+SV

0 2 4 6
rank

0

20

40

60

80

100
Bowling

(k) Bowling (similar)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

−20

0

20

40

60

80

100

DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Boxing

(l) Boxing (similar)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

100

200

300

400
DQN
DQN+SV

0 1 2 3 4
rank

0

20

40

60

80

100
Breakout

(m) Breakout (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

2500

3000

3500

4000

4500

5000 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Centipede

(n) Centipede (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

500

1000

1500

2000

2500

3000

0 5 10 15
rank

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

ChopperCommand

CherCommand
DQN
DQN+SV

(o) Chopper (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time step 1e7

0

20000

40000

60000

80000

100000 DQN
DQN+SV

0 2 4 6 8
rank

0

20

40

60

80

100
CrazyClimber

(p) Crazy Cli. (better)

Figure B-16: Additional results of SV-RL on DQN (Part A).

103

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

300000

400000

500000

600000

DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Defender

(a) Defender (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

5000

10000

15000

20000 DQN
DQN+SV

0 2 4 6
rank

0

20

40

60

80

100
DemonAttack

(b) Demon Att. (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time step 1e7

−22

−21

−20

−19

−18

−17 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
DoubleDunk

(c) Double Dunk (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time step 1e7

0

200

400

600

800

1000

1200

1400
DQN
DQN+SV

0 2 4 6 8
rank

0

20

40

60

80

100
Enduro

(d) Enduro (similar)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time step 1e7

−100

−80

−60

−40

−20

0

20 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
FishingDerby

(e) Fish Derby (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time step 1e7

0

5

10

15

20

25

30

35

DQN
DQN+SV

0 1 2 3
rank

0

20

40

60

80

100
Freeway

(f) Freeway (similar)

2 Homework 1 Luxin Zhang

0.2 0.4 0.6 0.8 1.0
Time step 1e7

100

200

300

400

500
DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Frostbite

(g) Frostbite (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

2000

4000

6000

8000

10000 DQN
DQN+SV

0 2 4 6 8
rank

0

20

40

60

80

100
Gopher

(h) Gopher (better)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

100

200

300

400

500 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Gravitar

(i) Gravitar (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

1000

2000

3000

4000

5000

6000 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Hero

(j) Hero (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

−16

−14

−12

−10

−8

−6

−4 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
IceHockey

(k) IceHockey (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

100

200

300

400

500

600 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Jamesbond

(l) Jamesbond (similar)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

2000

4000

6000

8000

10000

12000 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Kangaroo

(m) Kangaroo (worse)

3 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

1000

2000

3000

4000

5000

6000

7000 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Krull

(n) Krull (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time step 1e7

0

5000

10000

15000

20000

25000

30000

35000
DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
KungFuMaster

(o) KungFu (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
MontezumaRevenge

(p) Montezuma (better)

Figure B-17: Additional results of SV-RL on DQN (Part B).

104

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

500

1000

1500

2000
DQN
DQN+SV

0 2 4 6 8
rank

0

20

40

60

80

100
MsPacman

(a) MsPacman (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

2000

4000

6000

8000

DQN
DQN+SV

0 2 4 6
rank

0

20

40

60

80

100
NameThisGame

(b) NameThisG. (worse)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

1000

2000

3000

4000

5000

6000

7000
DQN
DQN+SV

0 2 4 6 8
rank

0

20

40

60

80

100
Phoenix

(c) Phoenix (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

−300

−200

−100

0

DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Pitfall

(d) Pitfall (better)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

−20

−10

0

10

20 DQN
DQN+SV

0 2 4 6
rank

0

20

40

60

80

100
Pong

(e) Pong (slightly better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time step 1e7

0

500

1000

1500

2000

2500
DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
PrivateEye

(f) PrivateEye (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

1000

2000

3000

DQN
DQN+SV

0 2 4 6
rank

0

20

40

60

80

100
Qbert

(g) Qbert (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

2000

4000

6000

8000
Riverraid

DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Riverraid

(h) Riverraid (better)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

10000

20000

30000

DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
RoadRunner

(i) Road Run. (similar)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

5

10

15

20

25

30

35 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Robotank

(j) Robotank (better)

4 Homework 1 Luxin Zhang

0

1000

2000

3000

4000
DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

(k) Seaquest (worse)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time step 1e7

−32000

−30000

−28000

−26000

−24000

−22000

−20000

−18000 DQN
DQN+SV

0 1 2 3
rank

0

20

40

60

80

100
Skiing

(l) Skiing (similar)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time step 1e7

1000

1500

2000

2500 DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Solaris

(m) Solaris (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

200

300

400

500

600

700

800

900
DQN
DQN+SV

0 2 4 6
rank

0

20

40

60

80

100
SpaceInvaders

(n) SpaceInv. (similar)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

5000

10000

15000

20000

25000

30000

35000
DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
StarGunner

(o) Star Gunner (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time step 1e7

−24

−22

−20

−18

−16
DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Tennis

(p) Tennis (better)

Figure B-18: Additional results of SV-RL on DQN (Part C).

105

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

1000

2000

3000

4000

5000 DQN
DQN+SV

0 2 4 6 8 10
rank

0

20

40

60

80

100
TimePilot

(a) Time Pilot (similar)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time step 1e7

0

50

100

150

200 DQN
DQN+SV

0 2 4 6 8
rank

0

20

40

60

80

100
Tutankham

(b) Tutankham (similar)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

2500

5000

7500

10000

12500

15000 DQN
DQN+SV

0 2 4 6
rank

0

20

40

60

80

100
UpNDown

(c) UpNDown (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

200

400

600

800

1000

Venture
DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Venture

(d) Venture (worse)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

10000

20000

30000

40000

50000
DQN
DQN+SV

0 2 4 6 8
rank

0

20

40

60

80

100
VideoPinball

(e) Video Pin. (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

1000

2000

3000

4000
DQN
DQN+SV

0 2 4 6 8 10
rank

0

20

40

60

80

100
WizardOfWor

(f) WizardOW. (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

4000

6000

8000

10000

12000

14000
DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
YarsRevenge

(g) YarsRevenge (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

2000

4000

6000

8000

Zaxxon
DQN
DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Zaxxon

(h) Zaxxon (better)

Figure B-19: Additional results of SV-RL on DQN (Part D).

106

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

250

500

750

1000

1250

1500

1750
Double DQN
Double DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Alien

(a) Alien (slightly better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

200

300

400

500

600

700

800

Double DQN
Double DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Berzerk

(b) Berzerk (similar)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

10

20

30

40
Double DQN
Double DQN+SV

0 2 4 6
rank

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Bowling

(c) Bowling (similar)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

100

200

300

400
Breakout

Double DQN
Double DQN+SV

0 1 2 3 4
rank

0

20

40

60

80

100
Breakout

(d) Breakout (better)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

300000

400000

500000

600000

700000

Double DQN
Double DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Defender

(e) Defender (better)

2 Homework 1 Luxin Zhang

0.2 0.4 0.6 0.8 1.0
Time step 1e7

200

400

600

800

1000 Double DQN
Double DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Frostbite

(f) Frostbite (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

1000

2000

3000

4000

5000
Double DQN
Double DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Hero

(g) Hero (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

−16

−14

−12

−10

−8

−6

−4

Double DQN
Double DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
IceHockey

(h) IceHockey (better)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

1000

2000

3000

4000

5000

6000

0 5 10 15
rank

0

20

40

60

80

100
Kangaroo

Kanaroo
Double DQN
Double DQN+SV

(i) Kangaroo (worse)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

1000

2000

3000

4000

5000

6000

7000
Double DQN
Double DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Krull

(j) Krull (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

5

10

15

20

0 5 10 15
rank

0

20

40

60

80

100
MontezumaRevenge

MontezumaRevene
Double DQN
Double DQN+SV

(k) Montezuma (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

−20

−10

0

10

20

Double DQN
Double DQN+SV

0 2 4 6
rank

0

20

40

60

80

100
Pong

(l) Pong (slightly better)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

2000

4000

6000

8000
Riverraid

Double DQN
Double DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Riverraid

(m) Riverraid (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15
rank

0

20

40

60

80

100
Seaquest

Seauest
Double DQN
Double DQN+SV

(n) Seaquest (worse)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

200

400

600

800

1000

1200 Double DQN
Double DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Venture

(o) Venture (worse)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

2000

4000

6000

8000

Zaxxon
Double DQN
Double DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Zaxxon

(p) Zaxxon (better)

Figure B-20: Additional results of SV-RL on double DQN.

107

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

250

500

750

1000

1250

1500

1750

2000
Dueling DQN
Dueling DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Alien

(a) Alien (slightly better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

200

400

600

800

Berzerk
Dueling DQN
Dueling DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Berzerk

(b) Berzerk (similar)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

10

20

30

40

50 Dueling DQN
Dueling DQN+SV

0 2 4 6
rank

0

20

40

60

80

100
Bowling

(c) Bowling (similar)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

100

200

300

400
Breakout

Dueling DQN
Dueling DQN+SV

0 1 2 3 4
rank

0

20

40

60

80

100
Breakout

(d) Breakout (better)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

300000

400000

500000

600000

Dueling DQN
Dueling DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Defender

(e) Defender (better)

2 Homework 1 Luxin Zhang

0.2 0.4 0.6 0.8 1.0
Time step 1e7

200

400

600

800

Frostbite
Dueling DQN
Dueling DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Frostbite

(f) Frostbite (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

1000

2000

3000

4000

5000 Dueling DQN
Dueling DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Pe

rc
en

ta
ge

 (%
)

Hero

(g) Hero (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

−16

−14

−12

−10

−8

−6

−4

Dueling DQN
Dueling DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
IceHockey

(h) IceHockey (better)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

2000

4000

6000

8000

10000

0 5 10 15
rank

0

20

40

60

80

100
Kangaroo

Kanaroo
Dueling DQN
Dueling DQN+SV

(i) Kangaroo (worse)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

1000

2000

3000

4000

5000

6000

7000

8000
Dueling DQN
Dueling DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Krull

(j) Krull (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

5

10

15

20

25

30

35

0 5 10 15
rank

0

20

40

60

80

100
MontezumaRevenge

MontezumaRevene
Dueling DQN
Dueling DQN+SV

(k) Montezuma (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

−20

−10

0

10

20

Dueling DQN
Dueling DQN+SV

0 2 4 6
rank

0

20

40

60

80

100
Pong

(l) Pong (slightly better)2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

2000

4000

6000

8000
Riverraid

Dueling DQN
Dueling DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Riverraid

(m) Riverraid (better)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

1000

2000

3000

4000

5000

0 5 10 15
rank

0

20

40

60

80

100
Seaquest

Seauest
Dueling DQN
Dueling DQN+SV

(n) Seaquest (worse)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

200

400

600

800

1000

1200
Venture

Dueling DQN
Dueling DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Venture

(o) Venture (worse)

2 Homework 1 Luxin Zhang

0.00 0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

2000

4000

6000

8000

Zaxxon
Dueling DQN
Dueling DQN+SV

0 5 10 15
rank

0

20

40

60

80

100
Zaxxon

(p) Zaxxon (better)

Figure B-21: Additional results of SV-RL on dueling DQN.

108

B.6 Additional Empirical Study

B.6.1 Discretization Scale on Control Tasks

We provide an additional study on the Inverted Pendulum problem with respect to

the discretization scale. As described in Sec. 3.3, the dynamics is described by the

angle and the angular speed as s = (θ, θ̇), and the action a is the torque applied. To

solve the task with value iteration, the state and action spaces need to be discretized

into fine-grids. Previously, the two-dimensional state space was discretized into 50

equally spaced points for each dimension and the one-dimensional action space was

evenly discretized into 1000 actions, leading to a 2500× 1000 Q-value matrix. Here

we choose three different discretization values for state-action pairs: (1) 400× 100, (2)

2500 × 1000, and (3) 10000 × 4000, to provide different orders of discretization for

both state and action values.

As Table B.1 reports, the approximate rank is consistently low when discretization

varies, demonstrating the intrinsic low-rank property of the task. Fig. B-22 and

Table B.1 further demonstrates the effectiveness of SVP: it can achieve almost the

same policy as the optimal one even with only 20% observations. The results reveal

that as long as the discretization is fine enough to represent the optimal policy for the

task, we would expect the final Q matrix after value iteration to have similar rank.

Discretization Scale Approximate Rank
Average deviation (degree)

Optimal Policy SVP Policy

400× 100 4 1.49 2.07

2500× 1000 7 0.53 1.92

10000× 4000 8 0.18 0.96

Table B.1: Additional study on discretization scale. We choose three different
discretization value on the Inverted Pendulum task, i.e. 400 (states, 20 each dimension)
× 100 (actions), 2500 (states, 50 each dimension) × 1000 (actions), and 10000 (states,
100 each dimension) × 4000 (actions). We report the approximate rank of the final Q
matrix, as well as the performance metric (i.e., the average angular deviation) on the
three different discretization scales.

109

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

Optimal policy

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Optimal Policy (400× 100)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

Optimal policy

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Optimal Policy (2500× 1000)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

Optimal policy

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) Optimal Policy (10000×4000)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

SVP policy (20% observed)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) SVP Policy (400× 100)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

SVP policy (20% observed)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e) SVP Policy (2500× 1000)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

SVP policy (20% observed)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(f) SVP Policy (10000× 4000)

Figure B-22: Additional study on discretization scale. We choose three different
discretization value on the Inverted Pendulum task, i.e. 400 (states, 20 each dimension)
× 100 (actions), 2500 (states, 50 each dimension) × 1000 (actions), and 10000 (states,
100 each dimension) × 4000 (actions). First row reports the optimal policy, second
row reports the SVP policy with 20% observation probability.

B.6.2 Batch Size on Deep RL Tasks

To further understand our approach, we provide another study on batch size for games

of different rank properties. Two games from Fig. 3-7 are investigated; one with a

small rank (Frostbite) and one with a high rank (Seaquest). Different batch sizes, 32,

64, and 128, are explored and we show the results in Fig. B-23.

Intuitively, for a learning task, the more complex the learning task is, the more data

it would need to fully learn the characteristics. For a complex game with higher rank,

a small batch size may not be sufficient to capture the game, leading the recovered

matrix via ME to impose a structure that deviates from the original, more complex

structure of the game. In contrast, with more data, i.e., a larger batch size, the ME

oracle attempts to find the best rank structure that would effectively describe the rich

110

0.2 0.4 0.6 0.8 1.0
Time step 1e7

100

200

300

400

500
Av

er
ag

e
sc

or
e

Frostbite, bs=32
DQN
DQN+SV

(a) Frostbite (batchsize = 32)

0.2 0.4 0.6 0.8 1.0
Time step 1e7

100

200

300

400

500

600

700

Av
er

ag
e

sc
or

e

Frostbite, bs=64
DQN
DQN+SV

(b) Frostbite (batchsize = 64)

0.2 0.4 0.6 0.8 1.0
Time step 1e7

100

200

300

400

500

Av
er

ag
e

sc
or

e

Frostbite, bs=128
DQN
DQN+SV

(c) Frostbite (batchsize = 128)

0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

1000

2000

3000

4000

Av
er

ag
e

sc
or

e

DQN
DQN+SV

(d) Seaquest (batchsize = 32)

0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e

sc
or

e

DQN
DQN+SV

(e) Seaquest (batchsize = 64)

0.25 0.50 0.75 1.00 1.25
Time step 1e7

0

2000

4000

6000

8000

10000

Av
er

ag
e

sc
or

e

DQN
DQN+SV

(f) Seaquest (batchsize = 128)

Figure B-23: Additional study on batch size. We select two games for illustration,
one with a small rank (Frostbite) and one with a high rank (Seaquest). We vary the
batch size with 32, 64, and 128, and report the performance with and without SV-RL.

observations and at the same time, balance the reconstruction error. Such a structure

is more likely to be aligned with the underlying complex task. Indeed, this is what

we observe in Fig. B-23. As expected, for Seaquest (high rank), the performance is

worse than the vanilla DQN when the batch size is small. However, as the batch size

increases, the performance gap becomes smaller, and eventually, the performance of

SV-RL is the same when the batch size becomes 128. On the other hand, for games

with low rank, one would expect that a small batch size would be enough to explore

the underlying structure. Of course, a large batch size would not hurt since the game is

intrinsically low-rank. In other words, our intuition would suggest SV-RL to perform

better across different batch sizes. Again, we observe this phenomenon as expected in

Fig. B-23. For Frostbite (low rank), under different batch sizes, vanilla DQN with

SV-RL consistently outperforms vanilla DQN by a certain margin.

111

112

Bibliography

[1] Yuzhe Yang, Guo Zhang, Dina Katabi, and Zhi Xu. ME-Net: Towards effec-
tive adversarial robustness with matrix estimation. In Proceedings of the 36th
International Conference on Machine Learning (ICML), 2019.

[2] Yuzhe Yang, Guo Zhang, Zhi Xu, and Dina Katabi. Harnessing structures for
value-based planning and reinforcement learning. In International Conference on
Learning Representations (ICLR), 2020.

[3] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579–2605, 2008.

[4] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083, 2017.

[5] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial examples. In
International Conference on Machine Learning (ICML), 2018.

[6] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer
encoding: One hot way to resist adversarial examples. 2018.

[7] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman.
Pixeldefend: Leveraging generative models to understand and defend against
adversarial examples. In International Conference on Learning Representations,
2018.

[8] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten.
Countering adversarial images using input transformations. arXiv preprint
arXiv:1711.00117, 2017.

[9] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. In International Conference on Learning Represen-
tations, 2015.

[10] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199, 2013.

113

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[12] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

[13] Yuzhe Yang, Zhiwen Hu, Kaigui Bian, and Lingyang Song. ImgSensingNet: Uav
vision guided aerial-ground air quality sensing system. In IEEE International
Conference on Computer Communications (INFOCOM), 2019.

[14] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the
25th international conference on Machine learning, pages 160–167, 2008.

[15] Alex A Gorodetsky, Sertac Karaman, and Youssef M Marzouk. Efficient high-
dimensional stochastic optimal motion control using tensor-train decomposition.
In Robotics: Science and Systems, 2015.

[16] Alex Gorodetsky, Sertac Karaman, and Youssef Marzouk. High-dimensional
stochastic optimal control using continuous tensor decompositions. The Interna-
tional Journal of Robotics Research, 37(2-3):340–377, 2018.

[17] Alex Gorodetsky, Sertac Karaman, and Youssef Marzouk. A continuous analogue
of the tensor-train decomposition. Computer Methods in Applied Mechanics and
Engineering, 347:59–84, 2019.

[18] John Irvin Alora, Alex Gorodetsky, Sertac Karaman, Youssef Marzouk, and
Nathan Lowry. Automated synthesis of low-rank control systems from sc-ltl
specifications using tensor-train decompositions. In 2016 IEEE 55th Conference
on Decision and Control (CDC), pages 1131–1138. IEEE, 2016.

[19] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. Mastering the game of go without human knowledge. Nature, 550(7676):354–
359, 2017.

[20] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

114

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

[23] Yuzhe Yang, Zijie Zheng, Kaigui Bian, Lingyang Song, and Zhu Han. Real-time
profiling of fine-grained air quality index distribution using uav sensing. IEEE
Internet of Things Journal, 5(1):186–198, 2018.

[24] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[25] Yuzhe Yang, Zixuan Bai, Zhiwen Hu, Zijie Zheng, Kaigui Bian, and Lingyang
Song. AQNet: Fine-grained 3d spatio-temporal air quality monitoring by aerial-
ground wsn. In IEEE International Conference on Computer Communications
(INFOCOM). IEEE, 2018.

[26] Russ Tedrake. Underactuated robotics: Algorithms for walking, running, swim-
ming, flying, and manipulation. Course Notes for MIT 6.832, 2019.

[27] Shichao Yue, Yuzhe Yang, Hao Wang, Hariharan Rahul, and Dina Katabi. Body-
compass: Monitoring sleep posture with wireless signals. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(2), 2020.

[28] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and
Nando De Freitas. Dueling network architectures for deep reinforcement learning.
arXiv preprint arXiv:1511.06581, 2015.

[29] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las
Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al.
Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[30] Madeleine Udell and Alex Townsend. Why are big data matrices approximately
low rank? SIAM Journal on Mathematics of Data Science, 1(1):144–160, 2019.

[31] Sourav Chatterjee et al. Matrix estimation by universal singular value thresholding.
The Annals of Statistics, 43(1):177–214, 2015.

[32] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex
optimization. Foundations of Computational mathematics, 9(6):717, 2009.

[33] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization
algorithms for learning large incomplete matrices. Journal of machine learning
research, 11(Aug):2287–2322, 2010.

[34] Yudong Chen and Yuejie Chi. Harnessing structures in big data via guaranteed
low-rank matrix estimation. arXiv preprint arXiv:1802.08397, 2018.

115

[35] Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix comple-
tion from noisy entries. Journal of Machine Learning Research, 2010.

[36] Mark A Davenport and Justin Romberg. An overview of low-rank matrix recovery
from incomplete observations. arXiv preprint arXiv:1601.06422, 2016.

[37] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Alek-
sander Madry. Adversarially robust generalization requires more data. NIPS,
2018.

[38] Christian Borgs, Jennifer Chayes, Christina E Lee, and Devavrat Shah. Thy
friend is my friend: Iterative collaborative filtering for sparse matrix estimation.
In Advances in Neural Information Processing Systems, pages 4715–4726, 2017.

[39] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39–57.
IEEE, 2017.

[40] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models. arXiv
preprint arXiv:1712.04248, 2017.

[41] Jonathan Uesato, Brendan O’Donoghue, Aaron van den Oord, and Pushmeet
Kohli. Adversarial risk and the dangers of evaluating against weak attacks. arXiv
preprint arXiv:1802.05666, 2018.

[42] Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning
in computer vision: A survey. arXiv preprint arXiv:1801.00553, 2018.

[43] Minghao Guo, Yuzhe Yang, Rui Xu, Ziwei Liu, and Dahua Lin. When NAS meets
robustness: In search of robust architectures against adversarial attacks. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[44] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigat-
ing adversarial effects through randomization. In International Conference on
Learning Representations, 2018.

[45] Jiefeng Chen, Xi Wu, Yingyu Liang, and Somesh Jha. Improving adversarial
robustness by data-specific discretization. CoRR, abs/1805.07816, 2018.

[46] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial
examples in deep neural networks. arXiv preprint arXiv:1704.01155, 2017.

[47] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting
classifiers against adversarial attacks using generative models. In International
Conference on Learning Representations, 2018.

[48] Robert M. Bell and Yehuda Koren. Lessons from the netflix prize challenge.
SIGKDD Explor. Newsl., 9(2):75–79, December 2007.

116

[49] Edo M Airoldi, Thiago B Costa, and Stanley H Chan. Stochastic blockmodel
approximation of a graphon: Theory and consistent estimation. In Advances in
Neural Information Processing Systems, pages 692–700, 2013.

[50] Emmanuel Abbe and Colin Sandon. Recovering communities in the general
stochastic block model without knowing the parameters. In Advances in neural
information processing systems, pages 676–684, 2015.

[51] Emmanuel Abbe and Colin Sandon. Community detection in general stochastic
block models: Fundamental limits and efficient algorithms for recovery. In
Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium
on, pages 670–688. IEEE, 2015.

[52] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix com-
pletion using alternating minimization. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pages 665–674. ACM, 2013.

[53] Yudong Chen and Martin J Wainwright. Fast low-rank estimation by projected
gradient descent: General statistical and algorithmic guarantees. arXiv preprint
arXiv:1509.03025, 2015.

[54] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious
local minimum. In Advances in Neural Information Processing Systems, pages
2973–2981, 2016.

[55] Lloyd N Trefethen and III David Bau. Numerical linear algebra. Society for
Industrial and Applied Mathematics (SIAM), 1997.

[56] Simon J Julier and Jeffrey K Uhlmann. Unscented filtering and nonlinear
estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[57] Hao Yi Ong. Value function approximation via low-rank models. arXiv preprint
arXiv:1509.00061, 2015.

[58] Yitao Liang, Marlos C Machado, Erik Talvitie, and Michael Bowling. State of the
art control of atari games using shallow reinforcement learning. In Proceedings of
the 2016 International Conference on Autonomous Agents & Multiagent Systems,
pages 485–493. International Foundation for Autonomous Agents and Multiagent
Systems, 2016.

[59] Satinder Singh, Michael James, and Matthew Rudary. Predictive state rep-
resentations: A new theory for modeling dynamical systems. arXiv preprint
arXiv:1207.4167, 2012.

[60] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E
Schapire. Contextual decision processes with low bellman rank are pac-learnable.
In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 1704–1713, 2017.

117

[61] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in games, 4(1):1–43, 2012.

[62] Devavrat Shah, Qiaomin Xie, and Zhi Xu. On reinforcement learning using
monte carlo tree search with supervised learning: Non-asymptotic analysis. arXiv
preprint arXiv:1902.05213, 2019.

[63] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning. In Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[64] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit
quantile networks for distributional reinforcement learning. arXiv preprint
arXiv:1806.06923, 2018.

[65] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep
exploration via bootstrapped dqn. In Advances in neural information processing
systems, pages 4026–4034, 2016.

[66] Georg Ostrovski, Marc G Bellemare, Aäron van den Oord, and Rémi Munos.
Count-based exploration with neural density models. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 2721–2730.
JMLR. org, 2017.

[67] Marius Mosbach, Maksym Andriushchenko, Thomas Trost, Matthias Hein, and
Dietrich Klakow. Logit pairing methods can fool gradient-based attacks. 2018.

[68] Lijun Ding and Yudong Chen. The leave-one-out approach for matrix completion:
Primal and dual analysis. arXiv preprint arXiv:1803.07554, 2018.

[69] Jianqing Fan, Weichen Wang, and Yiqiao Zhong. An `∞ eigenvector perturba-
tion bound and its application to robust covariance estimation. arXiv preprint
arXiv:1603.03516, 2016.

[70] Wei Ren and Randal W Beard. Consensus algorithms for double-integrator
dynamics. Distributed Consensus in Multi-vehicle Cooperative Control: Theory
and Applications, pages 77–104, 2008.

[71] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE transactions on
systems, man, and cybernetics, pages 834–846, 1983.

[72] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

118

	Introduction
	Adversarial Robustness
	Planning & Deep Reinforcement Learning
	Design Overview: Structured Framework with Matrix Estimation
	Thesis Structure

	ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation
	Problem & Motivation
	Contributions

	ME-Net
	Our Design
	Matrix Estimation Pipeline
	Model

	Evaluation
	Black-box Attacks
	White-box Attacks
	Evaluation with Different Datasets
	Evaluation against Adaptive Attacks
	Adversarial Robustness vs. Generalization
	Comparison of Different ME Methods
	Improving Generalization

	Related Work
	Summary & Discussion

	Harnessing Structures for Value-Based Planning and Reinforcement Learning
	Problem & Motivation
	Contributions

	Warm-up: A Toy Example
	Structured Value-based Planning
	Matrix Estimation
	Our Approach: Structured Value-based Planning
	Empirical Evaluation on Stochastic Control Tasks

	Structured Value-based Deep Reinforcement Learning
	Evidence of Structured Q-value Function
	Our Approach: Structured Value-based RL
	Empirical Evaluation with Various Value-based Methods

	Diagnose and Interpret Performance in Deep RL
	Related Work
	Summary & Discussion

	Conclusions and Future Work
	Supplementary Materials for Chapter 2
	Training Details
	Additional Results on CIFAR-10
	Black-box Attacks
	White-box Attacks

	Additional Results on MNIST
	Black-box Attacks
	White-box Attacks

	Additional Results on SVHN
	Black-box Attacks
	White-box Attacks

	Additional Results on Tiny-ImageNet
	Black-box Attacks
	White-box Attacks

	Additional Results of Different ME Methods
	Black-box Attacks
	White-box Attacks

	Additional Studies of Attack Parameters
	Additional Benefits by Majority Voting
	Hyper-Parameters Study
	Observation Probability p
	Number of Selected Masks

	Additional Visualization Results

	Supplementary Materials for Chapter 3
	Pseudo Code and Discussions for Structured Value-based Planning (SVP)
	Experimental Setups for Stochastic Control Tasks
	Additional Results for SVP
	Inverted Pendulum
	Mountain Car
	Double Integrator
	Cart-Pole

	Training Details of Structured Value-based RL (SV-RL)
	Additional Results for SV-RL
	Additional Empirical Study
	Discretization Scale on Control Tasks
	Batch Size on Deep RL Tasks

