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Abstract

Data is increasingly important for firms, regulators, and researchers to develop accu-
rate models for decision-making. Since data sets often need to be externally acquired,
a systematic way to value and trade data is necessary. Moreover, buyers of data often
interact with each other downstream, such as firms competing in a market. In this
setting, an allocation of data may not only benefit the buying firm, but also impose
negative externalities on the firm’s competitors. The way data is allocated and sold
should thus depend on the particulars of its downstream usage and the interaction
between data buyers.

We capture the problem of valuing and selling data sets to buyers who interact
downstream within the general framework of auctions of digital, or freely replicable,
goods. We study the resulting single-item and multi-item mechanism design prob-
lems in the presence of additively separable, negative allocative externalities among
bidders. Two settings of bidders’ private types are considered, in which bidders either
know the externalities that others exert on them or know the externalities that they
exert on others. We obtain forms of the welfare-maximizing (efficient) and revenue-
maximizing (optimal) auctions of single digital goods in both settings and highlight
how the information structure affects the resulting mechanisms. We find that in all
cases, the resulting allocation rules are deterministic single thresholding functions for
each bidder. For auctions of multiple digital goods, we assume that bidders have inde-
pendent, additive valuations over items and study the first setting of privately known
incoming externalities. We show that the welfare-maximizing mechanism decomposes
into multiple efficient single-item auctions using the Vickrey-Clarke-Groves mecha-
nism. Under revenue-maximization, we show that selling items separately via optimal
single-item auctions yields a guaranteed fraction of the optimal multi-item auction
revenue. This allows us to construct approximately revenue-maximizing multi-item
mechanisms using the aforementioned optimal single-item mechanisms.

Thesis Supervisor: Munther A. Dahleh
Title: William A. Coolidge Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation

Propelled by the digitization of services and the Internet of Things, a wide range

of data has become increasingly crucial for firms and regulators to develop accurate

models for production and planning decisions. As machine learning algorithms grow

more standardized, the bottleneck for real-time modeling and decision-making lies

largely in obtaining useful and up-to-date data sets. Such data frequently needs to

be acquired from specialized external sources (e.g., information about consumers,

satellite images, weather forecasts), which has led to the proliferation of data services

selling such information. Moreover, buyers of data often interact with each other

downstream, such as with firms competing in a market. In this case, an allocation

of data may not only benefit the buying firm, but also impose negative externalities

on the firm’s competitors. The way data is allocated and sold should thus depend on

the particulars of its downstream usage and the interaction between data buyers.

Meanwhile, the goal of data sellers is often either to maximize their revenue or to

maximize social welfare, in the latter case ensuring the most efficient allocation of data

amongst the buyers. To achieve either goal, one needs to be able to price collections

of data sets, and to this end, to parameterize the value that data buyers have for an

allocation of data. This task is shaped by two properties of data: (1) as a digital

good, it is freely replicable and so there is no inherent scarcity of it, and (2) its value
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is intrinsically combinatorial, i.e., different data sets, such as training features for

a machine learning model, often contain correlated information. Without additional

structure, a buyer’s valuation over a collection of data sets may require a prohibitively

large number of parameters to express. However, under certain assumptions on the

usage of data, we can reduce such combinatorial valuations to functions of a scalar

allocation variable. (See Section 2.1.)

We are then led to the overarching question: how should a data seller allocate and

price data sets to data buyers who may compete with each other downstream, in such

a way that maximizes social welfare or the seller’s expected revenue? We motivate the

central model and mechanism design approach through which this thesis addresses

this question with the following example.

1.1.1 Example: Allocative Externalities Arising from Compe-

tition Among Data Buyers

Overview. Consider the setting depicted in Figure 1-1, in which a monopolistic

data seller sells data sets to firms who subsequently use them to train models for

prediction tasks, and then use these models to make decisions, such as inventory

management or task scheduling, in a downstream market.
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Figure 1-1: A monopolistic data seller sells data sets to firms who subsequently use

them to train models for prediction tasks, and use these models to make decisions in

a downstream market. These firms are in competition with each other downstream,

so one firm’s increase in prediction accuracy may hurt another’s utility in the market.

Concretely, suppose several firms producing substitute goods are engaging in

Cournot competition, and can purchase data from a third party. The usage of such

data has the ultimate effect of increasing the buying firm’s production efficiency, so

more goods are produced for a given input investment. We assume there is a mono-

tone increasing relationship between the quality or quantity of data purchased and

the resulting increase in production efficiency.

By buying data, all else fixed, a firm will realize an increase in its equilibrium

profit. However, since the firms are in competition with each other, a firm that

implements data-driven improvements will also cause a negative externality on other

firms’ equilibrium profits. A higher degree of substitutability between two firms’

products will magnify the negative effect of one firm’s competitive advantage on the

other.

The competitive interaction between data buyers can be modeled with varying

levels of detail and complexity. We can start by considering first-order interactions

between bidder’s allocations, such that each bidder’s utility is linear in the allocations

to all bidders. That is, firm 𝑖 always suffers a constant decrease in utility whenever

another firm 𝑗 is allocated the good (here, data sets), no matter what the allocations
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to other firms besides 𝑖 and 𝑗 are. More realistically, the negative externality a firm

suffers may depend on more than just whether or not each competitor gets data,

but also on which groups of other bidders get data, or on some nonlinear function

of the number of other bidders who get data. However, under suitable conditions,

a linear approximation of additively separable externalities may suffice, and such

a model already demonstrates key ways in which externalities affect efficient and

optimal mechanism design.

Formal Model. Consider two firms, indexed by 𝑖 ∈ {1, 2}, producing perfect

substitute goods. The firms each decide on a production input quantity 𝑞𝑖 ∈ [0,∞).

Each firm 𝑖’s unit production cost is 𝑐𝑖 ∈ [0,∞), such that the production cost

incurred by each firm is 𝑐𝑖𝑞𝑖. Meanwhile, firm 𝑖’s production output, or yield, is given

by 𝛼𝑖𝑞𝑖, where 𝛼𝑖 ∈ [0,∞) is called firm 𝑖’s production efficiency.

Let 𝑀 ∈ R≥0 be the market demand parameter, such that given the production

input decisions 𝑞1, 𝑞2 and production efficiencies 𝛼1, 𝛼2 of the firms, the market price

of the good is

𝜌(𝑞1, 𝑞2;𝛼1, 𝛼2) = 𝑀 − (𝛼1 · 𝑞1 + 𝛼2 · 𝑞2).

Each firm 𝑖 realizes market profits

𝜋𝑖(𝑞1, 𝑞2;𝛼1, 𝛼2, 𝑐1, 𝑐2) = 𝜌(𝑞1, 𝑞2;𝛼1, 𝛼2) · 𝛼𝑖 · 𝑞𝑖 − 𝑐𝑖 · 𝑞𝑖 (1.1.1)

Cournot Market Subgame. Let us gather all the market relevant parameters

into the variable 𝜉 = (𝛼1, 𝛼2, 𝑐1, 𝑐2,𝑀). Both firms choose their production inputs

𝑞𝑖 in order to maximize their market profits 𝜋𝑖(𝑞1, 𝑞2; 𝜉). We find the equilibrium

production decisions 𝑞*𝑖 (𝜉) and profits 𝜋*𝑖 (𝜉) by simultaneously solving the firms’ best

response functions 𝜕𝜋𝑖/𝜕𝑞𝑖 = 0. We make assumptions on the parameters (mostly

that the market demand 𝑀 is large enough) so the ensuing equilibrium is an interior

solution.
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Thus the equilibrium production decision of firm 1 is

𝑞*1(𝜉) =
𝛼1𝑐2 − 2𝛼2𝑐1 + 𝑀𝛼1𝛼2

3𝛼1
2𝛼2

,

and the equilibrium profit is given by

𝜋*1(𝜉) =
(𝛼1𝑐2 − 2𝛼2𝑐1 + 𝑀𝛼1𝛼2)

2

9𝛼1
2𝛼2

2
= (𝛼1𝑞

*
1)2.

By symmetry, we obtain similar expressions for firm 2, with the indices 1 and 2

swapped above.

Comparative Statics and Linearized Model. We Taylor expand the equilib-

rium profit functions around some initial parameter values 𝜉0 = (𝛼1,0, 𝛼2,0, 𝑐1, 𝑐2). In

our model, we are only interested in how changing the production efficiency 𝛼𝑖 affects

profits, so we do not account for perturbations in the parameter 𝑐𝑖.

𝜋*𝑖 (𝜉) − 𝜋*𝑖 (𝜉0) =
2∑︁

𝑗=1

𝜕𝜋*𝑖
𝜕𝛼𝑗

(𝜉0) · (𝛼𝑗 − 𝛼𝑗,0)⏟  ⏞  
=:Δ𝛼𝑗

+
1

2!

2∑︁
𝑗,𝑘=1

𝜕𝜋*𝑖
𝜕𝛼𝑗𝛼𝑘

(𝜉0) · (𝛼𝑗 − 𝛼𝑗,0)(𝛼𝑘 − 𝛼𝑘,0) + ...

The coefficients of the first order deviations give us comparative statics that show

how changes in each firm’s production parameters, with all other parameters held

constant, affect the firms’ equilibrium profits. In particular, for firm 1 they take the

forms:

𝜕𝜋*1
𝜕𝛼1

(𝜉) =
4𝑐1 (𝛼1𝑐2 − 2𝛼2𝑐1 + 𝑀𝛼1𝛼2)

9𝛼1
3𝛼2

=
4𝑐1
3𝛼1

𝑞*1

𝜕𝜋*1
𝜕𝛼2

(𝜉) = −2𝑐2 (𝛼1𝑐2 − 2𝛼2𝑐1 + 𝑀𝛼1𝛼2)

9𝛼1𝛼2
3

= −2𝛼1𝑐2
3𝛼2

2
𝑞*1
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Furthermore, the coefficients of the second order terms take the form:

𝜕2𝜋*1
𝜕𝛼2

1

= −8𝑐1 (𝛼1𝑐2 − 3𝛼2𝑐1 + 𝑀𝛼1𝛼2)

9𝛼1
4𝛼2

𝜕2𝜋*1
𝜕𝛼1𝛼2

=
𝜕2𝜋*1
𝜕𝛼2𝛼1

= − 4𝑐1𝑐2
9𝛼1

2𝛼2
2

𝜕2𝜋*1
𝜕𝛼2

2

=
2𝑐2 (3𝛼1𝑐2 − 4𝛼2𝑐1 + 2𝑀𝛼1𝛼2)

9𝛼1𝛼2
4

Depending on the magnitude of these higher order terms evaluated at 𝜉0, a linear

approximation to the equilibrium profit function may or may not be reasonable in

the regime of values considered. Again, by symmetry, we obtain similar expressions

for firm 2 by swapping the indices 1 and 2 above.

Restricting our attention to the first order Taylor approximation, we obtain the

linear model of equilibrium profit for firm 𝑖 ∈ {1, 2} and 𝑗 ̸= 𝑖:

𝜋*𝑖 (𝜉) − 𝜋*𝑖 (𝜉0) ≈
4𝑐𝑖

3𝛼𝑖,0

𝑞*𝑖 (𝜉0) · ∆𝛼𝑖 −
2𝛼𝑖,0𝑐𝑗
3𝛼𝑗,0

2
𝑞*𝑖 (𝜉0) · ∆𝛼𝑗

Labeling the coefficients

𝑣𝑖 :=
4𝑐𝑖

3𝛼𝑖,0

𝑞*𝑖 (𝜉0) , 𝜂𝑖←𝑗 :=
2𝛼𝑖,0𝑐𝑗
3𝛼𝑗,0

2
𝑞*𝑖 (𝜉0) (1.1.2)

and the changes in production efficiency 𝑥𝑖 := ∆𝛼𝑖, we can re-express firm 𝑖’s change

in equilibrium profit as

∆𝜋*𝑖 (𝑥1, 𝑥2) := 𝜋*𝑖 (𝜉) − 𝜋*𝑖 (𝜉0) ≈ 𝑣𝑖 · 𝑥𝑖 − 𝜂𝑖←𝑗 · 𝑥𝑗. (1.1.3)

Note that 𝑣𝑖 and 𝜂𝑖←𝑗 take nonnegative values. We can interpret 𝑣𝑖 to be the value

that firm 𝑖 gets from an allocation of data that leads to an increase 𝑥𝑖 of its production

efficiency, while 𝜂𝑖←𝑗 is the negative externality caused by an allocation of data to

firm 𝑗 on firm 𝑖’s market profits, which arises due to the Cournot competition between

the firms.
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Additively Separable Negative Externalities Now suppose there are 𝑛 firms

(𝑁 = {1, ..., 𝑛}) engaging in Cournot competition. Again, a third party offers data for

sale which the firms can use to improve their production efficiency by an amount 𝑥𝑖

which is monotonically increasing in the quality or quantity of the data allocated. We

generalize the preceding derivation by Taylor expanding each firm’s equilibrium profits

with respect to the changes 𝑥𝑖. Keeping only the first-order terms in the expansion

and ignoring higher-order effects, we get that each firm’s change in equilibrium profit

due to a given allocation of data inducing (𝑥1, ..., 𝑥𝑛) can be approximated as

∆𝜋*𝑖 (𝑥1, ..., 𝑥𝑛) ≈ 𝑣𝑖 · 𝑥𝑖 −
∑︁
𝑗∈𝑁∖𝑖

𝜂𝑖←𝑗𝑥𝑗

where 𝑣𝑖 and 𝜂𝑖←𝑗 are appropriately defined nonnegative quantities.

Private values. Consider once more the case of 2 firms in Cournot competition.

Suppose each firm privately knows its production cost 𝑐𝑖, while it shares a common

prior (known to all firms and the data seller) on the distribution of all other firms’

production costs. Further, suppose all initial production efficiencies 𝛼𝑖,0 are common

knowledge, as well as the initial equilibrium production decisions 𝑞*𝑖 (𝜉0), which could

have been observed in a previous season. Then the parameters 𝑣𝑖 and (𝜂𝑖←𝑗)𝑗∈𝑁∖𝑖, in

(1.1.2) are privately known to bidder 𝑖. We then let 𝑡𝑖 = 𝑣𝑖𝑒𝑖 −
∑︀

𝑗∈𝑁∖𝑖 𝜂𝑖←𝑗𝑒𝑗 be the

vector in R𝑛 denoting firm 𝑖’s private type, where 𝑒𝑖 denotes the 𝑖th unit vector.

Auction Framework Though 𝑥 = (𝑥1, ..., 𝑥𝑛) captures the effects of an allocation

of data among the 𝑛 firms on their production efficiencies, we will also refer to 𝑥 as

the allocation itself. Let 𝑝 = (𝑝1, ..., 𝑝𝑛) be the vector of payments from the firms to

the data seller. Each firm 𝑖 ∈ 𝑁 then has utility function

𝑢𝑖(𝑥, 𝑝𝑖; 𝑡𝑖) = 𝑡𝑖 · 𝑥− 𝑝𝑖 = 𝑣𝑖𝑥𝑖 −
∑︁
𝑗∈𝑁∖𝑖

𝜂𝑖←𝑗𝑥𝑗 − 𝑝𝑖

with private type 𝑡𝑖.

Given this structure of utilities, how should the data seller allocate (i.e., choose

12



which firms get data and at what level of quality) and price a collection of data sets

to these 𝑛 competing firms, in order to

(1) maximize social welfare,
∑︀

𝑖∈𝑁 𝑡𝑖 · 𝑥, or

(2) maximize the data seller’s expected revenue E[
∑︀

𝑖∈𝑁 𝑝𝑖], where the expectation

is taken with respect to the common prior on bidders’ private types?

In this thesis, we answer these and related problems in an auction design frame-

work.

1.2 Related Work

1.2.1 Single-Item Auctions

Both efficient, i.e., welfare-maximizing, and optimal, i.e., revenue-maximizing, auc-

tions of a single nondivisible good to multiple bidders have been well characterized.

The Vickrey-Clark-Groves (VCG) mechanism gives a family of payment rules for the

welfare-maximizing allocation that satisfy incentive compatibility and individual ra-

tionality [37, 15, 20]. Optimal single-item auctions were studied in the seminal paper

of [32], where the problem of maximizing revenue was essentially reduced to one of

welfare maximization after transforming bidders’ valuations into virtual valuations.

This solution which relies on the assumption that the auction designer knows the

prior distribution of bidders’ valuations. A key result of this early work is that the

efficient single-item auction with 𝑛 bidders can be implemented as a second-price auc-

tion, while the corresponding optimal auction is a second-price auction with reserve

prices determined by the bidders’ distributions to extract more revenue. [29] provides

a comprehensive introduction to auction theory.

The most relevant line of work in this field studies the question of designing auc-

tions in the presence of externalities. Optimal single-item auctions with additive

allocative externalities among bidders were studied in [27, 28]. They consider the

same multidimensional, interdependent valuation setting as the one presented here,

and in Chapter 3, we extend their results to the setting of digital goods auctions and
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additionally provide an optimal mechanism without the restriction to one-dimensional

bids imposed in [28]. The survey [26] provides a useful reference. Many papers con-

sider a similar additive model, but often assume that externality parameters are public

[7, 12] or do not depend on the identity of the competitor [9], essentially reducing the

auction to the single dimensional setting. Closest to our work is [18] which extended

the setting of [27] to the situation where 𝐾 copies of the same indivisible item are

being sold. However, their focus was on quantifying the effect of changing the param-

eter 𝐾. Finally, we mention [21, 38] which consider single-dimensional non-additive

models of externalities yielding tractable auctions.

1.2.2 Multi-Item Auctions

The welfare-maximizing auction for selling multiple items to multiple bidders can

be derived using VCG mechanism. However, without additional assumptions, this

method requires bidders to communicate their valuations on all subsets of items and

must optimize the welfare over all possible allocations, which requires a exponentially

large communication and computational complexity in the number of items.

Meanwhile, finding the optimal multi-item auction is difficult due to not only pos-

sibly combinatorial valuations, but also the vastly more complex structure of optimal

auctions themselves. The non-intuitive properties of multi-item auctions, such as the

nonmonotonicity of optimal revenue with respect to the distribution of bidders’ valua-

tions, are illustrated in [24]. Even in the setting of selling two goods to a single bidder,

there is no simple characterization of incentive compatible optimal mechanisms– de-

pending on the bidder’s distributions of valuations, the optimal mechanism requires

randomization or even an infinitely large menu, i.e., partition of the bidder type space

based on allocation and payment rules [23].

In general, there are two lines of work regarding multi-item auctions, given the

hardness [17] of finding the optimal such auction, and the generally unrealistic as-

sumption that bidders’ valuation distributions are common knowledge. The first

line uses a duality-based framework to characterize the optimal auction, or find spe-

cial conditions on the bidder distributions under which simple auctions are optimal
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[14, 30, 16]. The second line of approach tries to approximate the optimal auction

using simpler auctions, such as selling all the items separately, with guarantees on

the fraction of optimal revenue that such simpler auctions achieve [22], [8]. [8] show

that for a single buyer with additive and independent valuations over a set of items,

the mechanism that chooses the more profitable of selling items individually or all

together in a grand bundle, will recover a constant fraction (1/6) of the revenue of

the optimal auction, which itself may be very complicated.

1.2.3 Sale of Information Goods

A key aspect of the problems we consider is the fact that buyers of goods or infor-

mation may interact downstream, for example, through Cournot competition, which

affects their valuation of the overall allocation of the goods. [33, 39] considered the re-

lated problem of sharing market-relevant information among competing oligopolists,

and showed that the effect of such information sharing on the overall welfare of the

firms depends on the type of competition in which they are engaged (e.g. Bertrand

or Cournot competition), and the type of market-relevant parameters they are shar-

ing (e.g. firms’ individual production cost estimates or a common market demand

parameter). In some cases it is not optimal for any firm to share information with

the others, due to the overwhelming negative effects of increased competition on

their downstream profit. These findings motivate the study of how different forms

of interdependent valuation functions may affect the welfare-maximizing or revenue-

maximizing allocation of data.

More recently, there has been a range of works modeling the sale of information,

usually some noisy signal of a market-relevant parameter, to competing firms [11,

4]. Here, the information seller may add noise to the signal being sold, where such

versioning is a unique feature of selling an information good, as well as restrict the set

of firms who are offered the information. [11] shows how the optimal selling strategy

depends on the form of downstream competition between the firms, but assumes

that the competition structure and firms’ resulting utility functions are known to the

information seller.
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In reality, data buyers may have private informational priors and valuations on

data set allocations, which calls for the integration of an auction framework that

incentivizes participation and truthful bidding by the buyers. A line of work studies

mechanism design for the sale of data, in which the value of data is derived from its

informativeness in a learning task. For procurement auctions, [19] consider a setting in

which the buyer wishes to estimate a population statistic while the sellers experience

a cost due to privacy loss. In [35], the authors consider a similar problem but assume

a known prior on the sellers’ costs. A budget-feasible regression problem is considered

in [25] and [1] consider an online learning setting. [6] develops a two-sided market for

selling and buying data, capturing the value of data through increases in prediction

accuracy for buyer-specific machine learning models. In our work, we build on this

model of valuation and study auctions of data in the presence of externalities.

Other recent works look specifically at the sale of consumer data to firms. [10, 36]

study settings in which firms may use consumer data to set personalized prices. [2]

study a form of externalities between data sellers who value their privacy. In their

model, correlations between consumer signals yield equilibria where consumers sell

their data for very cheap prices despite having high values for privacy. [3] provide a

comprehensive review on the economic implications of collecting, using, and selling

consumer data.

1.3 Contributions and Outline

In this thesis, we study welfare-maximizing and revenue-maximizing mechanisms for

auctions of single digital goods and auctions of multiple heterogenous digital goods in

the presence of additively separable, negative allocative externalities among bidders.

Two scenarios are of interest: Setting 1 of privately known incoming externalities,

and Setting 2 of privately known outgoing externalities. In the former, bidders pri-

vately observe their value(s) for the item(s) and the externalities that allocations to

the other bidders would exert on them, and in the latter, bidders observe their item

values and the externalities that they exert on other bidders. Building on characteri-
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zations of truthfulness and participation constraints from the literature, we solve for

the efficient and optimal single-item auctions in both private type settings. Under

revenue-maximization, we extend the results of [27] and [28] to the digital goods set-

ting, and in the setting of privately known incoming externalities, provide an optimal

mechanism with multidimensional bids under an independence assumption.

For auctions of multiple digital goods, we assume that bidders have additive valu-

ations over the goods and study the setting of privately known incoming externalities.

We obtain the form of the welfare-maximizing auctions using the VCG mechanism.

For revenue-maximization, we prove that selling items separately via optimal single-

item auctions yields a guaranteed fraction of the optimal multi-item auction revenue.

To do this, we nontrivially extend the approximation technique of [22] to the current

setting of interdependent valuations with endogenous participation constraints.

Organization of Thesis. The remainder of this thesis is organized as follows.

Chapter 2 presents the model of digital goods auctions with externalities studied in

this thesis, as well as a key motivating reduction of the problem of selling an arbitrary

number of data sets used for 𝑔 different prediction tasks to the problem of selling 𝑔

digital goods. Chapter 3 studies welfare-maximizing and revenue-maximizing mech-

anisms for single digital goods with externalities in both settings of bidders’ private

types. Chapter 4 studies welfare-maximizing and revenue-maximizing mechanisms

for multiple digital goods with externalities in the Setting 1 of private types. Finally,

we conclude and discuss future work in Chapter 5.
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Chapter 2

Model

In this chapter, we present the central model of digital goods auctions with exter-

nalities studied in this thesis. In Section 2.1, we capture the motivating problem

of valuing and selling data sets for prediction tasks within the general framework of

digital goods auctions. To do so, we reduce the task of selling an arbitrary number of

data sets used for 𝑔 different prediction tasks to one of selling 𝑔 digital goods. Section

2.2 presents the formal model, including the form of bidder utilities, bidders’ private

types, the auction design problem, and definitions of truthfulness and participation

constraints that are central to mechanism design.

2.1 Selling Data Sets through Digital Goods Auc-

tions

At first glance, it seems natural to model the problem of selling data sets as one of

selling multiple digital goods, with each good representing one data set. However,

different data sets, e.g., training features for a machine learning model, often contain

correlated information, so the value of data is inherently combinatorial. Without

additional structural assumptions, multi-item auctions for data sets would have pro-

hibitively large communication and computational requirements. Buyers may need

to report their valuation for each possible subset of items (data sets) that can be
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allocated, which requires an exponentially large, in the number of items, set of pa-

rameters. Further, optimizing for social welfare or the seller’s revenue could entail

an intractable combinatorial optimization problem. However, this complexity can be

bypassed if one assumes that data is only useful when it is actually used. That is, we

assume that a buyer’s valuation for data does not come from the specific data sets

on sale, but rather from an increase in prediction accuracy of a quantity of interest.

Specifically, building on the model introduced in [6], we assume that buyers of data

sets are interested in using the data to train machine learning models for prediction

tasks, and that they derive an increase in utility from increases in prediction accuracy

from the downstream use of their models. For example, a firm may want to predict

consumer demand for a given product, and a more accurate prediction may increase

the firm’s net profit through better production decisions. Suppose 𝒮 is the set of all

available data sets, which could comprise |𝒮| training features for a given machine

learning task. Let 𝐺 be the function mapping subsets of 𝒮 to some quantity measuring

the increase in prediction accuracy (e.g., based on the root-mean-squared error) that

training on the subset provides. Assuming that the gain in prediction accuracy is

monotone in the subsets of data sets used, let 𝐺(𝒮) be the maximal increase in

prediction accuracy that a firm 𝑖 can gain from the data seller. Letting 𝑥𝑖(𝒰) =

𝐺(𝒰)/𝐺(𝒮) ∈ [0, 1] be the fraction of this maximal prediction accuracy increase for

subsets 𝒰 ⊆ 𝒮, we can then represent a given allocation of data sets to a firm 𝑖 with

a single scalar value, 𝑥𝑖 ∈ [0, 1]. This reduction allows us to address the problem

of optimally allocating and pricing data sets to the auction of a single digital, i.e.,

freely replicable, good, with allocation 𝑥𝑖 to bidder 𝑖. Fractional values of 𝑥𝑖 could

be mapped back to allocations of subsets of the collection of all available data sets or

simply interpreted as a fractional probability of getting allocated the entire collection

of data, or some interpolation between the two.

Note that implicit in 𝐺 are the particulars of the machine learning model used

and the prediction task at hand. If data buyers seek to buy data for multiple, say 𝑔,

different prediction tasks, we can model data sets for different contexts as 𝑔 separate

digital goods. For example, firms may be active in multiple countries, and thus seek
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relevant data sets for each market. Using the formulation above, we can reduce the

sale of a collection of an arbitrary number of data sets used for 𝑔 different prediction

tasks to the sale of 𝑔 heterogenous digital goods.

2.2 Model

We now present a general model of a digital goods auction with negative, additively

separable externalities among bidders. The digital goods may represent allocations of

data sets or other freely replicable goods. For simplicity, we introduce here the model

of a single digital good for sale, and present the generalization to 𝑔 digital goods in

Chapter 4.

Let 𝑁 = [𝑛] be the set of bidders interested in buying the digital good from the

seller, or auctioneer. Let 𝑥𝑖 ∈ [0, 1] denote the probability of allocating the good to

bidder 𝑖 ∈ 𝑁 . Then for a given allocation vector 𝑥 = (𝑥1, ..., 𝑥𝑛), each bidder 𝑖 has

the valuation

𝜈𝑖(𝑥) = 𝑣𝑖𝑥𝑖 −
∑︁
𝑗∈𝑁∖𝑖

𝜂𝑖←𝑗𝑥𝑗 . (2.2.1)

Here, 𝑣𝑖 ∈ R≥0 is the value that bidder 𝑖 derives from the good, and 𝜂𝑖←𝑗 ∈ R≥0 is the

magnitude of the negative externality that an allocation to bidder 𝑗 has on bidder 𝑖’s

utility.

2.2.1 Private Types of Bidders

Note from (2.2.1) that each bidder 𝑖’s valuation is a function of 𝑣𝑖 and (𝜂𝑖←𝑗)𝑗∈𝑁∖𝑖.

However in reality, depending on the particulars of the competition structure the

bidders engage in, the private information a bidder has might differ. We call this

private information the bidder’s “type”. We consider two natural settings:

Setting 1: Knowledge of Incoming Externalities. Bidder 𝑖’s private type

parameters are 𝑣𝑖 and (𝜂𝑖←𝑗)𝑗∈𝑁∖𝑖. In this case, bidder 𝑖 has knowledge of the

externalities that other bidders cause on it.

20



Setting 2: Knowledge of Externalities Outgoing Externalities. Bidder

𝑖’s private type parameters are 𝑣𝑖 and (𝜂𝑗←𝑖)𝑗∈𝑁∖𝑖. In this case, bidder 𝑖 has

knowledge of the externalities that it causes on other bidders.

The difference in what defines the private type of a bidder, though subtle, crucially

affects the form of the optimal allocation and payment functions.

Bidder Type Spaces and Bid Spaces. Let 𝑡𝑖 ∈ Θ𝑖 denote bidder 𝑖’s private

type vector, where Θ𝑖 denotes the type space of bidder 𝑖. In Setting 1, we have

𝑡𝑖 := 𝑣𝑖𝑒𝑖 −
∑︀

𝑗∈𝑁∖𝑖 𝜂𝑖←𝑗𝑒𝑗 = 𝑣𝑖𝑒𝑖 − 𝜂𝑖←, where 𝑒𝑖 denotes the 𝑖th unit vector and

𝜂𝑖← := −
∑︀

𝑗∈𝑁∖𝑖 𝜂𝑖←𝑗𝑒𝑗 is the vector of externalities imposed on bidder 𝑖. Similarly,

in Setting 2, bidder 𝑖’s type vector is 𝑡𝑖 := 𝑣𝑖𝑒𝑖 −
∑︀

𝑗∈𝑁∖𝑖 𝜂𝑗←𝑖𝑒𝑗 = 𝑣𝑖𝑒𝑖 − 𝜂←𝑖, where

𝜂←𝑖 := −
∑︀

𝑗∈𝑁∖𝑖 𝜂𝑗←𝑖𝑒𝑗 is the vector of externalities exerted by bidder 𝑖. With abuse

of notation, we let 𝑡𝑖 refer to both kinds of private types as its relevant definition

will be clear from context. We further assume the type parameters lie in bounded

ranges: 𝑣𝑖 ∈ [𝑣
¯𝑖, 𝑣𝑖] and 𝜂𝑖𝑗 ∈ [𝜂

¯𝑖𝑗
, 𝜂𝑖𝑗] for 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁∖𝑖. The overall type space

is Θ :=
∏︀

𝑖∈𝑁 Θ𝑖. The collection of all the bidders’ type vectors is denoted by 𝑡 =

(𝑡1, ..., 𝑡𝑛) ∈ Θ. 𝑡−𝑖 denotes the collection of type vectors of all bidders except bidder

𝑖.

We assume bidders are rational, selfish agents who act to maximize their utilities in

a given auction setting. It is possible that participating in the auction, i.e., submitting

a valid bid, receiving an allocation, and making a payment, may leave bidders worse

off than simply not participating. To give bidders the option of non-participation, we

define the bid spaces 𝐵𝑖 := Θ𝑖 ∪{∅} and 𝐵 := Π𝑖∈𝑁𝐵𝑖. Then a bidder can report any

type in Θ𝑖, but can also choose to not participate in the auction by reporting ∅.

Throughout, we use the convention that a “hat” letter denotes a quantity reported

by the bidders, as opposed to the “true” realization of the same quantity. For example,

𝑡𝑖 denotes the (true) type of bidder 𝑖 while 𝑡𝑖 denotes its bid (i.e. reported type).

Similarly, 𝑡−𝑖 and 𝑡−𝑖 denote respectively the true types and reported types of all

bidders but bidder 𝑖.
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Prior Distribution of Bidder Types. In certain settings we consider, making a

distributional assumption on the private types of bidders will be necessary. For those

settings, we let the bidders’ private types 𝑡𝑖 be drawn independently from commonly

known distributions 𝐹𝑖 on Θ𝑖. Let 𝑓𝑖 be the corresponding density functions for 𝐹𝑖,

𝑓 =
∏︀

𝑖∈𝑁 𝑓𝑖, and 𝐹 =
∏︀

𝑖∈𝑁 𝐹𝑖 be the joint distribution function of 𝑡 on Θ, likewise for

the individual parameters 𝑣𝑖 and 𝜂𝑖←𝑗, we denote the corresponding marginal density

and distribution functions by 𝑓𝑣𝑖 , 𝑓𝜂𝑖←𝑗
, and 𝐹𝑣𝑖 , 𝐹𝜂𝑖←𝑗

, respectively.

2.2.2 Auction Design Setup

The auction design problem consists of designing the following two functions to max-

imize social welfare or the seller’s revenue:

∙ an allocation function 𝑥 : 𝐵 → [0, 1]𝑛;

∙ a payment function 𝑝 : 𝐵 → (R≥0)𝑛.

In short, given a vector of bids 𝑡 ∈ 𝐵 from the bidders, 𝑥(𝑡) is the resulting vector

of allocations and 𝑝(𝑡) is the vector of payments required of the bidders. We abuse

notation and let 𝑥 denote both the vector of allocations and the function, which maps

bids to this allocation vector. We similarly abuse notation for 𝑝.

We assume bidders have quasilinear net utility from participating in the auction.

That is, given allocation and payment vectors 𝑥 and 𝑝, respectively, and true types

𝑡 ∈ Θ, bidder 𝑖’s utility is

𝑢𝑖(𝑥, 𝑝; 𝑡) := 𝜈𝑖(𝑥) − 𝑝𝑖 = 𝑣𝑖𝑥𝑖 −
∑︁
𝑗∈𝑁∖𝑖

𝜂𝑖←𝑗𝑥𝑗 − 𝑝𝑖 .

Remark 2.2.1 (Key Difference From Standard Auction Set-Ups). The key difference

from standard single-item auction setups is that for digital goods, such as data, there

is no feasibility constraint on the allocation function 𝑥(·). In particular, we do not

require that the sum of the allocations (
∑︀𝑛

𝑖=1 𝑥𝑖), is less than or equal to one. The

absence of this feasibility constraint is key in obtaining a simple structure for the
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optimal auctions despite it being a multi-dimensional mechanism design problem

(i.e., each bidder is parameterized by a 𝑛-dimensional vector).

Outside Option. When a bidder chooses not to participate in the auction, the

auctioneer cannot charge the bidder any payment nor “dump” any goods on the bidder.

That is, we have the restriction that 𝑥𝑖(𝑡) = 0 and 𝑝𝑖(𝑡) = 0 whenever 𝑡𝑖 = ∅. Note

that even if a given bidder chooses not to participate in the auction, allocations to the

other, participating bidders can still affect its utility through negative externalities.

Bidder 𝑖’s utility when it does not participate and all remaining bidders 𝑁∖𝑖 do

participate depends only on others’ bids and the true underlying types, and is called

bidder 𝑖’s “outside option”. In standard auctions without externalities, the utility

of the outside option is a constant usually set to 0, but in the present setting, it

is endogenously determined by the mechanism’s allocation rule and bidders’ types.

Explicitly, given a type vector 𝑡 ∈ Θ and a vector of bids 𝑡−𝑖 from other bidders, the

utility of bidder 𝑖 in its outside option is given by

𝑢𝑖

(︀
𝑥(𝑡𝑖 = ∅, 𝑡−𝑖), 𝑝(𝑡𝑖 = ∅, 𝑡−𝑖); 𝑡

)︀
= −

∑︁
𝑗∈𝑁∖𝑖

𝜂𝑖←𝑗𝑥𝑗(𝑡𝑖 = ∅, 𝑡−𝑖) . (2.2.2)

In general, fully specifying a mechanism involves defining 𝑥(𝑡) and 𝑝(𝑡) when

any subset of bidders bids ∅ to not participate. However, since we are interested

in designing Nash equilibria where all bidders participate (and bid truthfully), it

suffices for us to only explicitly define the mechanism under single-bidder deviations

from equilibrium and the equilibrium itself. That is, we seek allocation and payment

rules 𝑥(𝑡) and 𝑝(𝑡) defined over all 𝑡 ∈ 𝐵 with at most one bid of ∅.

2.2.3 Truthfulness and Participation Constraints

A fundamental result in mechanism design known as the Revelation Principle [32]

states that any dominant strategy or Bayes-Nash equilibrium outcome of an arbitrary

mechanism can be implemented by a dominant strategy or Bayes-Nash, respectively,

incentive compatible direct mechanism. In the present context, this implies that
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we can without loss of generality restrict our search for efficient and optimal auction

mechanisms to be over incentive compatible (IC) and individually rational (IR) direct

mechanisms where all bidders are incentivized to truthfully bid their true types.

Suitable characterizations of IC conditions, which express “truthfulness constraints”,

and IR conditions, which express “participation constraints” allow one to express the

efficient and optimal auction design problems as constrained optimization problems

with objectives linear in the decision functions.

We now define ex-post and interim incentive compatibility and individual ratio-

nality conditions.

Ex-Post Constraints. We first consider ex-post truthfulness and participation

constraints.

Definition 2.2.2 (Dominant Strategy Incentive Compatibility). A mechanism (𝑥, 𝑝)

is Dominant Strategy Incentive Compatible (DSIC) if for all type vectors 𝑡, 𝑡 ∈ Θ and

bidders 𝑖 ∈ 𝑁

𝑢𝑖

(︀
𝑥(𝑡𝑖, 𝑡−𝑖), 𝑝𝑖(𝑡𝑖, 𝑡−𝑖); 𝑡

)︀
≥ 𝑢𝑖

(︀
𝑥(𝑡), 𝑝𝑖(𝑡); 𝑡

)︀
.

Definition 2.2.3 (Ex-Post Individual Rationality). A mechanism (𝑥, 𝑝) is ex-post

Individually Rational (ex-post IR) if for every type vector 𝑡 ∈ Θ and bidders 𝑖 ∈ 𝑁

𝑢𝑖

(︀
𝑥(𝑡), 𝑝𝑖(𝑡); 𝑡

)︀
≥ 𝑢𝑖

(︀
𝑥(∅, 𝑡−𝑖), 𝑝𝑖(∅, 𝑡−𝑖); 𝑡

)︀
.

Dominant strategy incentive compatibility expresses that no matter what the true

types are and what other players bid, a bidder cannot strictly increase its net utility

by bidding untruthfully. Ex-post individual rationality expresses that no matter what

the true types are, in a situation where all other bidders participate and bid truthfully,

it is better for each bidder to report truthfully than to not participate. These two

properties combined imply that participating and reporting truthfully is a dominant

strategy equilibrium of the game induced by the mechanism.
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Interim Constraints. In situations where types are drawn from a known prior

distribution and bidders reason in expectation over other bidders’ private types, con-

ditioned on their own observed types, we consider interim relaxations of the IC and

IR definitions.

To this end, define 𝑉𝑖(𝑡𝑖; 𝑡𝑖) := E
[︀
𝑢𝑖

(︀
𝑥(𝑡𝑖, 𝑡−𝑖), 𝑝𝑖(𝑡𝑖, 𝑡−𝑖

)︀
; 𝑡)
⃒⃒
𝑡𝑖
]︀

to be the interim

expected utility of bidder 𝑖 ∈ 𝑁 if it bids 𝑡𝑖 ∈ 𝐵𝑖 while having a true type 𝑡𝑖 ∈ Θ𝑖,

and all other bidders bid their types truthfully. Note that the expectation is taken

over a random realization 𝑡 ∼ 𝐹 conditioned on the event that bidder’s 𝑖 type is 𝑡𝑖.

Definition 2.2.4 (Bayes–Nash Incentive Compatibility). A mechanism (𝑥, 𝑝) is Bayes–

Nash Incentive Compatible (BNIC) if for all types 𝑡𝑖, 𝑡𝑖 ∈ Θ𝑖 and bidders 𝑖 ∈ 𝑁 ,

𝑉𝑖(𝑡𝑖; 𝑡𝑖) ≥ 𝑉𝑖(𝑡𝑖; 𝑡𝑖).

Definition 2.2.5 (Interim Individual Rationality). A mechanism (𝑥, 𝑝) satisfies in-

terim Individual Rationality (interim IR) if for every type 𝑡𝑖 ∈ Θ𝑖 and bidders 𝑖 ∈ 𝑁 ,

𝑉𝑖(𝑡𝑖; 𝑡𝑖) ≥ 𝑉𝑖(∅; 𝑡𝑖).

Given the setup here introduced, we derive and study welfare-maximizing and

revenue-maximizing auction mechanisms in the subsequent chapters.
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Chapter 3

Auctions of a Single Digital Good

with Externalities

In this chapter, we study welfare-maximizing and revenue-maximizing mechanisms for

single digital goods with externalities. We consider two scenarios of interest, which

will be formalized below: Setting 1 of privately known incoming externalities, and

Setting 2 of privately known outgoing externalities.

We build on characterizations of incentive compatible (IC) and individually ratio-

nal (IR) mechanisms presented in [27] and [28], which in turn specialize more general

characterization results [34] for mechanisms where bidders have utilities linear in

their types. These results allow us to express the efficient and optimal auction design

problems as constrained optimization problems with objectives linear in the decision

functions. The appropriate characterizations and constraints depend on the form of

bidders’ private types, and we study Setting 1 and Setting 2 separately.

Section 3.1 presents relevant characterizations of truthfulness and participation

constraints. Section 3.2 studies welfare-maximizing mechanisms, Section 3.3 studies

revenue-maximizing mechanisms, and Section 3.4 provides a comparative discussion

of the results.
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3.1 Characterizations of IC and IR Mechanisms

An important step towards elucidating the solution structure of the welfare-maximizing

and revenue-maximizing mechanisms is to obtain a characterization of the IC and IR

constraints defined in 2.2.3. Since the present model of utilities has the same form as

the one in [27, 28], we rely on the characterizations found in these papers, and state

them below for completeness. These characterizations depend on the form of bidders’

private types and thus are organized by private type setting.

3.1.1 Characterizations in Setting 1

We first consider the setting where private types are of the form 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂𝑖←. For

ease of notation, we define the overall interim expected allocation function 𝑦(𝑖)(𝑡𝑖) :=

E[𝑥(𝑡𝑖, 𝑡−𝑖) | 𝑡𝑖] = E𝑡−𝑖
[𝑥(𝑡𝑖, 𝑡−𝑖)] and the interim expected payment 𝑞𝑖(𝑡𝑖) := E[𝑝𝑖(𝑡𝑖, 𝑡−𝑖) |

𝑡𝑖] = E𝑡−𝑖
[𝑝𝑖(𝑡𝑖, 𝑡−𝑖)] for each bidder 𝑖 ∈ 𝑁 , when 𝑖 bids 𝑡𝑖 ∈ 𝐵𝑖 with true type 𝑡𝑖 ∈ Θ𝑖.

Note that, under the given assumption of independent bidder types, the interim ex-

pected allocation and payment functions do not depend on bidder 𝑖’s true type 𝑡𝑖.

Also note that 𝑦(𝑖) is a vector field mapping 𝐵𝑖 to [0, 1]𝑛. Under these definitions, we

have that

𝑉𝑖(𝑡𝑖; 𝑡𝑖) = 𝑡𝑖 · 𝑦(𝑖)(𝑡𝑖) − 𝑞𝑖(𝑡𝑖).

Finally, for each 𝑖 ∈ 𝑁 , we define the critical type �̊�𝑖 = 𝑣
¯𝑖𝑒𝑖 − 𝜂

¯𝑖←, where 𝜂
¯𝑖← :=∑︀

𝑗∈𝑁∖𝑖 𝜂
¯𝑖←𝑗

. �̊�𝑖 is the vector in Θ𝑖 closest to the origin and will feature in the following

IC and IR characterizations.

Proposition 3.1.1 ([28, Proposition 1]). Suppose bidders’ private types are of the

form 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂𝑖← for each bidder 𝑖 ∈ 𝑁 . Then the mechanism (𝑥, 𝑝) is BNIC if

and only if for each bidder 𝑖 ∈ 𝑁 :

(i) 𝑦(𝑖) is conservative.

(ii) 𝑦(𝑖) is monotone, that is
⟨︀
𝑠𝑖 − 𝑡𝑖, 𝑦

(𝑖)(𝑠𝑖) − 𝑦(𝑖)(𝑡𝑖)
⟩︀
≥ 0 for all 𝑠𝑖, 𝑡𝑖 ∈ Θ𝑖.
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(iii) for each type 𝑡𝑖 ∈ Θ𝑖, the interim payment is given by

𝑞𝑖(𝑡𝑖) =
⟨︀
𝑦(𝑖)(𝑡𝑖), 𝑡𝑖

⟩︀
−
∫︁ 𝑡𝑖

�̊�𝑖

𝑦(𝑖)(𝑠𝑖) · 𝑑𝑠𝑖 − 𝐶𝑖 , (3.1.1)

where 𝐶𝑖 is an arbitrary integration constant whose value sets 𝑉𝑖(̊𝑡𝑖; �̊�𝑖), the in-

terim utility of bidder 𝑖 when its type is �̊�𝑖 = 𝑣
¯ 𝑖𝑒𝑖 − 𝜂

¯ 𝑖←.

We also provide the following characterization of interim IR for BNIC mechanisms

that maximize revenue.

Proposition 3.1.2 (Adapted from [28, Proposition 3]). Suppose private types are of

the form 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂𝑖← for each bidder 𝑖 ∈ 𝑁 . Then a revenue-maximizing BNIC

mechanism satisfies the interim IR constraint 𝑉𝑖(𝑡𝑖; 𝑡𝑖) ≥ 𝑉𝑖(∅; 𝑡𝑖) if and only if this

condition is satisfied for the critical type �̊�𝑖 = 𝑣
¯ 𝑖𝑒𝑖 − 𝜂

¯ 𝑖←.

Proof. We first show that the optimal outside option when bidder 𝑖 does not par-

ticipate allocates the digital good to all remaining participants 𝑁∖𝑖. We then show

that it suffices to check that interim IR is satisfied for the type �̊�𝑖, and finally find the

optimal value of the integration constant 𝑉𝑖(̊𝑡𝑖; �̊�𝑖).

Optimal Outside Option. The interim IR constraint is essentially a constraint

on the values that the constant 𝐶𝑖 = 𝑉𝑖(̊𝑡𝑖; �̊�𝑖) can take. That is, after plugging in the

form of the payment rule (3.1.1), interim IR can be expressed as: for all 𝑖 ∈ 𝑁 and

𝑡𝑖 ∈ Θ𝑖,

𝑉𝑖(̊𝑡𝑖; �̊�𝑖) +

∫︁ 𝑡𝑖

�̊�𝑖

𝑦(𝑖)(𝑠𝑖) · 𝑑𝑠𝑖 ≥ 𝑉𝑖(∅; 𝑡𝑖).

Maximizing revenue corresponds to maximizing the expected sum of the interim

payments 𝑞𝑖(𝑡𝑖) and thus of minimizing 𝑉𝑖(̊𝑡𝑖; �̊�𝑖). Since for all 𝑡𝑖 ∈ Θ𝑖, 𝑉𝑖(∅; 𝑡𝑖) ≥

−
∑︀

𝑗∈𝑁∖𝑖 𝜂𝑖←𝑗, we can maximize the feasible region for IR payments by setting

𝑉𝑖(∅; 𝑡𝑖) = −
∑︀

𝑗∈𝑁∖𝑖 𝜂𝑖←𝑗 with an outside option that allocates to all 𝑗 ∈ 𝑁∖𝑖 when 𝑖

does not participate. That is, we set 𝑥𝑗(𝑡𝑖 = ∅, 𝑡−𝑖) = 1{𝑖 ̸= 𝑗} for all 𝑖, 𝑗 ∈ 𝑁 and

𝑡−𝑖 ∈ Θ−𝑖.
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Sufficiency of Checking Interim IR for Type �̊�𝑖 If the interim IR constraint

holds for all types 𝑡𝑖, then it clearly holds for the critical type �̊�𝑖. Now suppose that

𝑉𝑖(̊𝑡𝑖; �̊�𝑖) ≥ 𝑉𝑖(∅; �̊�𝑖). Note that given the optimal outside option of allocating to all

remaining bidders, we have that for every 𝑡𝑖 ∈ Θ𝑖,

𝑉𝑖(∅; 𝑡𝑖) = −
∑︁
𝑗∈𝑁∖𝑖

𝜂𝑖←𝑗. (3.1.2)

Then for every 𝑡𝑖 ∈ Θ𝑖

𝑉𝑖(𝑡𝑖; 𝑡𝑖) = 𝑉𝑖(̊𝑡𝑖; �̊�𝑖) +

∫︁ 𝑡𝑖

�̊�𝑖

𝑦(𝑖)(𝑠𝑖) · 𝑑𝑠𝑖

≥ 𝑉𝑖(̊𝑡𝑖; �̊�𝑖) +
∑︁
𝑗∈𝑁∖𝑖

(−𝜂𝑖←𝑗 − (−𝜂
¯𝑖←𝑗

))

= 𝑉𝑖(̊𝑡𝑖; �̊�𝑖) + 𝑉𝑖(∅; 𝑡𝑖) − 𝑉𝑖(∅; �̊�𝑖)

≥ 𝑉𝑖(∅; 𝑡𝑖)

where for the first inequality we used that 𝑡𝑖,𝑖 = 𝑣𝑖 ≥ 𝑣
¯𝑖, 𝑡𝑖,𝑗 = −𝜂𝑖←𝑗 ≤ −𝜂

¯𝑖←𝑗
and

𝑦𝑖 ≥ 0 as an allocation vector, the second equality follows from (3.1.2), and the last

inequality follows from our assumption that 𝑉𝑖(̊𝑡𝑖; �̊�𝑖) − 𝑉𝑖(∅; �̊�𝑖) ≥ 0.

3.1.2 Characterizations in Setting 2

We now consider the case where the private types are of the form 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂←𝑖 for

each bidder 𝑖 ∈ 𝑁 . Note that in this setting, bidder 𝑖’s expected outside option utility

𝑉𝑖(∅; 𝑡𝑖) does not depend on 𝑡𝑖. For ease of notation, we define the interim expected

allocation of each bidder 𝑖 bidding 𝑡𝑖 ∈ 𝐵𝑖 with true type 𝑡𝑖 ∈ Θ𝑖 to be 𝑦𝑖(𝑡𝑖) :=

E[𝑥𝑖(𝑡𝑖, 𝑡−𝑖) | 𝑡𝑖] = E𝑡−𝑖
[𝑥𝑖(𝑡𝑖, 𝑡−𝑖)] and recall the definition of the interim expected

payment 𝑞𝑖(𝑡𝑖) = E𝑡−𝑖
[𝑝𝑖(𝑡𝑖, 𝑡−𝑖)]. Again, note that under the given assumption of

independent bidder types, the interim functions do not depend on bidder 𝑖’s true
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type 𝑡𝑖. Under these definitions,

𝑉𝑖(𝑡𝑖, 𝑡𝑖) = 𝑣𝑖𝑦𝑖(𝑡𝑖) −
∑︁
𝑗∈𝑁∖𝑖

E𝑡−𝑖
[𝜂𝑖←𝑗𝑥𝑗(𝑡𝑖, 𝑡−𝑖)] − 𝑞𝑖(𝑡𝑖).

Proposition 3.1.3 ([27, Proposition 2]). Assume that private types are of the form

𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂←𝑖 for each bidder 𝑖 ∈ 𝑁 . The mechanism (𝑥, 𝑝) is BNIC if and only if

for each bidder 𝑖 ∈ 𝑁 :

(i) there exists a non-decreasing function ̃︀𝑦𝑖 : [𝑣
¯ 𝑖, 𝑣𝑖] → [0, 1] such that the interim

allocation satisfies 𝑦𝑖(𝑣𝑖𝑒𝑖 − 𝜂←𝑖) = ̃︀𝑦𝑖(𝑣𝑖) for almost all 𝑣𝑖 and for all 𝜂←𝑖 ∈∏︀
𝑗∈𝑁∖𝑖[𝜂

¯ 𝑗←𝑖
, 𝜂𝑗←𝑖].

(ii) the interim payment 𝑞𝑖(𝑡𝑖) for each type 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂←𝑖 ∈ Θ𝑖 is given by

𝑞𝑖(𝑡𝑖) = 𝑣𝑖̃︀𝑦𝑖(𝑣𝑖) − ∫︁ 𝑣𝑖

𝑣
¯ 𝑖

̃︀𝑦𝑖(𝑣)𝑑𝑣 −
∑︁
𝑗∈𝑁∖𝑖

E[𝜂𝑖←𝑗𝑥𝑗(𝑡𝑖, 𝑡−𝑖) | 𝑡𝑖] − 𝐶𝑖 , (3.1.3)

where 𝐶𝑖 is an arbitrary integration constant.

Furthermore, if these conditions are satisfied, then 𝑉𝑖(𝑡𝑖; 𝑡𝑖) is constant with respect

to 𝜂←𝑖 for almost every 𝑣𝑖 ∈ [𝑣
¯ 𝑖, 𝑣𝑖], and 𝐶𝑖 = 𝑉𝑖(𝑣¯ 𝑖𝑒𝑖 − 𝜂←𝑖; 𝑣¯ 𝑖𝑒𝑖 − 𝜂←𝑖) for all 𝜂←𝑖 ∈∏︀

𝑗∈𝑁∖𝑖[𝜂
¯ 𝑗←𝑖

, 𝜂𝑗←𝑖].

We provide the following alternative (and arguably simpler) proof of this propo-

sition.

Proof. We first show the necessary implications of IC. Writing Definition 2.2.4 for

𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂←𝑖 as the true type and 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂←𝑖 as the reported type, and then

vise versa, i.e.

𝑉𝑖(𝑡𝑖; 𝑡𝑖) ≥ 𝑉𝑖(𝑡𝑖; 𝑡𝑖) (3.1.4)

𝑉𝑖(𝑡𝑖; 𝑡𝑖) ≥ 𝑉𝑖(𝑡𝑖; 𝑡𝑖).

30



Combining the two inequalities yields

𝑦𝑖(𝑡𝑖)(𝑣𝑖 − 𝑣𝑖) ≥ 𝑦𝑖(𝑡𝑖)(𝑣𝑖 − 𝑣𝑖).

By Lemma 3.1.4 below, this implies condition (1).

Note also that the inequality (3.1.4), by adding and subtracting the term 𝑣𝑖𝑦𝑖(𝑡𝑖)

on the right hand side and regrouping terms, can be written equivalently as

𝑉𝑖(𝑡𝑖; 𝑡𝑖) ≥ 𝑉𝑖(𝑡𝑖; 𝑡𝑖) + (𝑣𝑖 − 𝑣𝑖)𝑥𝑖(𝑣𝑖). (3.1.5)

for all 𝑡𝑖, 𝑡𝑖 ∈ Θ𝑖. Then plugging in 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂←𝑖 and 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂←𝑖 into the

preceding inequality yields 𝑉𝑖(𝑡𝑖; 𝑡𝑖) ≥ 𝑉𝑖(𝑡𝑖; 𝑡𝑖). Swapping the roles of 𝑡𝑖 and 𝑡𝑖 yields

the inequality in the opposite direction, and we have that 𝑉𝑖(𝑡𝑖; 𝑡𝑖) is independent of

𝜂←𝑖:

∀𝑣𝑖,∀𝜂←𝑖,∀𝜂←𝑖, 𝑉𝑖(𝑣𝑖𝑒𝑖 − 𝜂←𝑖) = 𝑉𝑖(𝑣𝑖𝑒𝑖 − 𝜂←𝑖).

We henceforth write 𝑉𝑖(𝑣𝑖) to denote 𝑉𝑖(𝑣𝑖𝑒𝑖−𝜂←𝑖; 𝑣𝑖𝑒𝑖−𝜂←𝑖) for any 𝜂←𝑖, and likewise

let 𝑦𝑖(𝑣𝑖) := 𝑦𝑖(𝑣𝑖𝑒𝑖 − 𝜂←𝑖).

To prove (3), we first note that 𝑉𝑖(𝑡𝑖; 𝑡𝑖) is convex in 𝑣𝑖. (3.1.4) implies that

𝑉𝑖(𝑡𝑖; 𝑡𝑖) = max
𝑡𝑖∈Θ𝑖

𝑦𝑖(𝑡𝑖)𝑣𝑖 −
∑︁
𝑗∈𝑁∖𝑖

E
[︀
𝜂𝑖←𝑗𝑥𝑗(𝑡𝑖, 𝑡−𝑖)

⃒⃒
𝑡𝑖
]︀
− 𝑞𝑖(𝑡𝑖).

Thus, 𝑉𝑖(𝑡𝑖; 𝑡𝑖) is the maximum of a family of linear functions of 𝑣𝑖 and is thus convex

in 𝑣𝑖. (3.1.5) implies that 𝑦𝑖(𝑡𝑖) is a subderivative of 𝑉𝑖(𝑣𝑖). In fact, since 𝑉𝑖 is convex

in 𝑣𝑖, it is differentiable almost everywhere and

𝑦𝑖(𝑣𝑖) =
𝜕𝑉𝑖(𝑡𝑖; 𝑡𝑖)

𝜕𝑣𝑖
a.e.
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Further, this implies that

𝑉𝑖(𝑣𝑖𝑒𝑖 − 𝜂←𝑖; 𝑣𝑖𝑒𝑖 − 𝜂←𝑖) =

∫︁ 𝑣𝑖

𝑣
¯𝑖

𝑦𝑖(𝑣)𝑑𝑣 + 𝑉𝑖(𝑣¯𝑖) (3.1.6)

where for the last term we used the fact that 𝑉𝑖(𝑣¯𝑖𝑒𝑖 − 𝜂←𝑖; 𝑣¯𝑖𝑒𝑖 − 𝜂←𝑖) = 𝑉𝑖(𝑣¯𝑖) and

is independent of 𝜂←𝑖. Now plugging in the following expression for 𝑉𝑖,

𝑉𝑖(𝑡𝑖; 𝑡𝑖) = 𝑣𝑖𝑦𝑖(𝑡𝑖) −
∑︁
𝑗∈𝑁∖𝑖

E
[︀
𝜂𝑖←𝑗𝑥𝑗(𝑡𝑖, 𝑡−𝑖)

⃒⃒
𝑡𝑖
]︀
− 𝑞𝑖(𝑡𝑖) .

and solving for 𝑞𝑖(𝑡𝑖), we get

𝑞𝑖(𝑡𝑖) = 𝑣𝑖𝑦𝑖(𝑣𝑖) −
∫︁ 𝑣𝑖

𝑣
¯𝑖

𝑦𝑖(𝑣)𝑑𝑣 −
∑︁
𝑗∈𝑁∖𝑖

E[𝜂𝑖←𝑗𝑥𝑗(𝑡𝑖, 𝑡−𝑖) | 𝑡𝑖] − 𝑉𝑖(𝑣¯𝑖). (3.1.7)

We next show the sufficiency of conditions (i) and (ii) for BNIC, by proving the

equivalent condition for BNIC, (3.1.5). We have that for all 𝑖 ∈ 𝑁, 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂←𝑖

and 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂←𝑖,

𝑉𝑖(𝑡𝑖; 𝑡𝑖) − 𝑉𝑖(𝑡𝑖; 𝑡𝑖) =

∫︁ 𝑣𝑖

𝑣𝑖

𝑦𝑖(𝑣)𝑑𝑣

≥ 𝑦𝑖(𝑣𝑖)(𝑣𝑖 − 𝑣𝑖)

where the first equality follows from (3.1.6) and the inequality follows from condition

(i) that 𝑦𝑖(𝑣𝑖) is increasing in 𝑣𝑖.

Lemma 3.1.4. For 𝑑 ≥ 1, let 𝑓 : R× R𝑑 → R be a bounded function such that

𝑓(𝑥2, 𝑦2)(𝑥2 − 𝑥1) ≥ 𝑓(𝑥1, 𝑦1)(𝑥2 − 𝑥1), (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ R× R𝑑 .

Then, there exists a non-decreasing function 𝑓 : R → R such that 𝑓(𝑥, 𝑦) = 𝑓(𝑥) for

all 𝑦 ∈ R𝑑 and for all but at most countably many values of 𝑥 ∈ R.

Proof. By a rescaling and shifting of 𝑓 we assume without loss of generality that

the range of 𝑓 is contained in [0, 1]. Let us now define 𝑆 := {𝑥 ∈ R : ∃𝑦1, 𝑦2 ∈
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R𝑑 s.t. 𝑓(𝑥, 𝑦2) ̸= 𝑓(𝑥, 𝑦1)} and for 𝑛 ≥ 1, 𝑆𝑛 := {𝑥 ∈ R : ∃𝑦1, 𝑦2 ∈ R𝑑 s.t. 𝑓(𝑥, 𝑦2) −

𝑓(𝑥, 𝑦1) ≥ 1/𝑛} and observe that 𝑆 = ∪𝑛≥1𝑆𝑛.

We now prove that |𝑆𝑛| ≤ 𝑛. Indeed, consider 𝑥1 < · · · < 𝑥𝑚, 𝑚 distinct points

in 𝑆𝑛, and for each 𝑘 ∈ [𝑚], 𝑦1𝑘, 𝑦2𝑘 such that 𝑓(𝑥𝑘, 𝑦
2
𝑘) − 𝑓(𝑥𝑘, 𝑦

1
𝑘) ≥ 1/𝑛. Then

𝑚

𝑛
≤

𝑚∑︁
𝑘=1

[︀
𝑓(𝑥𝑘, 𝑦

2
𝑘) − 𝑓(𝑥𝑘, 𝑦

1
𝑘)
]︀

= 𝑓(𝑥𝑚, 𝑦
2
𝑚) −

𝑚∑︁
𝑘=2

[𝑓(𝑥𝑘, 𝑦
1
𝑘) − 𝑓(𝑥𝑘−1, 𝑦

2
𝑘−1)] − 𝑓(𝑥1, 𝑦

1
1)

≤ 𝑓(𝑥𝑚, 𝑦
2
𝑚) − 𝑓(𝑥1, 𝑦

1
1) ≤ 1 ,

where the first inequality uses the definition of 𝑆𝑛, the equality is summation by parts,

the second inequality uses our assumption on 𝑓 and the last inequality uses that the

range of 𝑓 is contained in [0, 1]. It then follows that 𝑚 ≤ 𝑛, i.e. that |𝑆𝑛| ≤ 𝑛, which

in turn implies that 𝑆 is countable.

Define 𝑓 by 𝑓(𝑥) = 𝑓(𝑥, 𝑦) for 𝑥 /∈ 𝑆 (this definition does not depend on the choice

of 𝑦 by definition of 𝑆). Then our assumption on 𝑓 immediately implies that 𝑓 is

non-decreasing on R∖𝑆. We can thus extend 𝑓 to a non-decreasing function defined

over all of R (for example by right continuity). The resulting 𝑓 satisfies the stated

requirements.

Finally, we have the following characterization of interim IR for BNIC mechanisms.

Proposition 3.1.5. Suppose private types are of the form 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂←𝑖 ∈ Θ𝑖 for

each bidder 𝑖 ∈ 𝑁 . Then a BNIC mechanism satisfies the interim IR constraint

𝑉𝑖(𝑡𝑖; 𝑡𝑖) ≥ 𝑉𝑖(∅; 𝑡𝑖) for all 𝑡𝑖 ∈ Θ𝑖, if and only if this condition is satisfied for some

type of the form 𝑣
¯ 𝑖𝑒𝑖 − 𝜂←𝑖, where 𝜂←𝑖 ∈

∏︀
𝑗∈𝑁∖𝑖[𝜂

¯ 𝑗←𝑖
, 𝜂𝑗←𝑖].

Proof. Note that BNIC implies (3.1.6), and since the integrand 𝑦𝑖 ≥ 0, we have that

𝑉𝑖(𝑡𝑖; 𝑡𝑖) ≥ 𝑉𝑖(𝑣¯𝑖) for all 𝑡𝑖 ∈ Θ𝑖. Since 𝑉𝑖(∅; 𝑡𝑖) is independent with respect to 𝑡𝑖, it

is both necessary and sufficient for IR to hold that the IR condition holds for some

type of the form 𝑣
¯𝑖𝑒𝑖 − 𝜂←𝑖, for each bidder 𝑖 ∈ 𝑁 .
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3.2 Welfare Maximization

In this section, the seller’s problem is to design allocation and payment functions,

𝑥(·) and 𝑝(·) that maximize the total social welfare, i.e. the sum of bidder valuations:

SW(𝑥; 𝑡) =
∑︁
𝑖∈𝑁

𝜈𝑖(𝑥) =
∑︁
𝑖∈𝑁

(︁
𝑣𝑖𝑥𝑖 −

∑︁
𝑗∈𝑁∖𝑖

𝜂𝑖←𝑗𝑥𝑗

)︁
(3.2.1)

such that the auction: (i) is incentive compatible; (ii) satisfies individual rationality;

(iii) has no positive transfers, i.e., the seller never pays a bidder to participate in the

auction. We organize this section by the private types of the bidders according to the

two settings described in Section 2.2.1.

3.2.1 Welfare Maximization in Setting 1

We first consider the case where the private type of bidder 𝑖 ∈ 𝑁 takes the form

𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂𝑖←, so each bidder observes the incoming allocative externalities that it

suffers due to other bidders. Note that in this setting, a bidder 𝑖’s valuation of a vector

of allocations can be expressed as 𝜈𝑖(𝑥) = 𝑡𝑖 · 𝑥. We instantiate the Vickrey–Clarke–

Groves (VCG) mechanism for this setting and comment on the resulting allocation

and payment functions.

We wish to maximize (3.2.1) subject to DSIC (Definition 2.2.2), ex-post IR (Def-

inition 2.2.3), and the feasibility constraint that for all 𝑖 ∈ 𝑁, 𝑥𝑖 ∈ [0, 1] (Section

2.2.3). To define ex-post IR, recall that we need to instantiate the outside option, i.e.

what occurs if bidder 𝑖 chooses not to participate in the auction. Here, we choose

the natural outside option, that is to run the welfare-maximizing auction with the

remaining set 𝑁∖𝑖 of bidders.
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Efficient Allocation. Note that by rearranging terms, we can express the social

welfare objective (3.2.1) as

SW(𝑥; 𝑡) =
∑︁
𝑖∈𝑁

⎛⎝𝑣𝑖 −
∑︁
𝑗∈𝑁∖𝑖

𝜂𝑗←𝑖

⎞⎠𝑥𝑖(𝑡) =
∑︁
𝑖∈𝑁

𝑊𝑖(𝑡)𝑥𝑖(𝑡) (3.2.2)

where we let 𝑊𝑖(𝑡) := 𝑣𝑖 −
∑︀

𝑗∈𝑁∖𝑖 𝜂𝑗←𝑖 represent the “welfare contribution” of bidder

𝑖, that is, the net contribution to the social welfare, SW, if bidder 𝑖 were allocated

the good. As we shall see, a constant theme for the efficient and optimal mechanisms

studied in this chapter is that 𝑊𝑖, or variants thereof, is the key quantity determining

the allocation of bidder 𝑖. Since (3.2.2) is linear in the allocations 𝑥𝑖, it easily follows

that the welfare-maximizing, or efficient, allocation under the above constraints is

simply to allocate whenever 𝑊𝑖(𝑡) is nonnegative, i.e.

𝑥𝑖(𝑡) = 1{𝑊𝑖(𝑡) ≥ 0} = 1

{︂
𝑣𝑖 −

∑︁
𝑗∈𝑁∖𝑖

𝜂𝑗←𝑖 ≥ 0

}︂
. (3.2.3)

As was alluded to in Section 2.2.2, although 𝑥𝑖 is only constrained to be in [0, 1], the

optimal allocation turns out to be one of two extremes: either allocate all data or

none of it to a bidder.

IR and the Outside Option. To streamline presentation, let us define the welfare

contribution of bidder 𝑗 when (only) bidder 𝑖 chooses to not participate in the auction

to be, for 𝑗 ∈ 𝑁∖𝑖,

𝑊 𝑖
𝑗 (𝑡−𝑖) := 𝑣𝑗 −

∑︁
𝑘∈𝑁∖{𝑖,𝑗}

𝜂𝑘←𝑗

Then following the same reasoning above, the welfare maximizing allocation of bidder

𝑗 in the absence of bidder 𝑖 is given by

𝑥𝑗(𝑡𝑖 = ∅, 𝑡−𝑖) = 1
{︀
𝑊 𝑖

𝑗 (𝑡−𝑖) ≥ 0
}︀
. (3.2.4)
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and the value of bidder 𝑖’s outside option utility is thus

𝑢𝑖

(︀
𝑥(∅, 𝑡−𝑖), 𝑝𝑖(∅, 𝑡−𝑖); 𝑡

)︀
= −

∑︁
𝑗∈𝑁∖𝑖

𝜂𝑖←𝑗𝑥𝑗(𝑡𝑖 = ∅, 𝑡−𝑖) = −
∑︁
𝑗∈𝑁∖𝑖

𝜂𝑖←𝑗 1
{︀
𝑊 𝑖

𝑗 (𝑡−𝑖) ≥ 0
}︀
.

Note that the welfare-maximizing VCG mechanism does not guarantee that each

bidder’s net utility will be nonnegative, but rather no less than the utility if the bidder

were to not participate in the auction, which could be negative due to externalities.

Remark 3.2.1. While we choose the outside option to be the welfare-maximizing auc-

tion with the remaining bidders, as is natural, we could instead have declared the

ensuing auction to have any feasible allocation rule for the bidders 𝑁∖𝑖 that does

not depend on bidder 𝑖’s bid. For instance, a feasible outside option is to allo-

cate all data to every 𝑗 ∈ 𝑁∖𝑖 if bidder 𝑖 does not participate, resulting in utility

𝑢𝑖(∅, 𝑡−𝑖; 𝑡𝑖, 𝑡−𝑖) = −
∑︀

𝑗∈𝑁∖𝑖 𝜂𝑖←𝑗. This is in fact the worst possible outside option

for bidder 𝑖, which thereby increases the set of IR-satisfying mechanisms. Indeed, as

discussed in Section 3.3, this worst-case outside option is the revenue-optimal one.

VCG Payment Rule. The payments associated with this allocation rule are for

each bidder 𝑖 ∈ 𝑁 , and for all 𝑡 ∈ Θ,

𝑝𝑖(𝑡) =
∑︁
𝑗∈𝑁∖𝑖

𝑊 𝑖
𝑗 (𝑡−𝑖)𝑥𝑗(𝑡𝑖 = ∅, 𝑡−𝑖)⏟  ⏞  

𝑆𝑊 when 𝑖 is absent

−
∑︁
𝑗∈𝑁∖𝑖

⎛⎝𝑣𝑗𝑥𝑗 −
∑︁

𝑘∈𝑁∖𝑗

𝜂𝑗←𝑘𝑥𝑘

⎞⎠
⏟  ⏞  

𝑆𝑊 with 𝑁∖𝑖

=
∑︁
𝑗∈𝑁∖𝑖

(︀
𝑊 𝑖

𝑗 (𝑡−𝑖)(𝑥𝑗(𝑡𝑖 = ∅, 𝑡−𝑖) − 𝑥𝑗(𝑡)) + 𝜂𝑗←𝑖𝑥𝑖(𝑡)
)︀

=
∑︁
𝑗∈𝑁∖𝑖

(︀
𝑊 𝑖

𝑗 (𝑡−𝑖)
[︀
1{𝑊 𝑖

𝑗 (𝑡−𝑖) ≥ 0} − 1{𝑊𝑗(𝑡) ≥ 0}
]︀

+ 𝜂𝑗←𝑖 1{𝑊𝑖(𝑡) ≥ 0}
)︀

(3.2.5)

Note that bidder 𝑖’s payment is the sum of the change in welfare if it leaves the

auction and the sum of externalities it induces in the current allocation.

Proposition 3.2.2 (Efficient Mechanism, Setting 1). The mechanism specified by
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allocation function (3.2.3) with outside option (3.2.4) and payment function (3.2.5),

maximizes social welfare among all DSIC and ex-post IR auctions, and has no positive

transfer.

A proof of these properties is given in Appendix A.1.1.

3.2.2 Welfare Maximization in Setting 2

We now consider the case where bidders know the externality that they would exert

on other bidders if allocated the good, i.e., when the private type of each bidder

𝑖 ∈ 𝑁 , is 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂←𝑖.

Motivating Interim Constraints. Note that in this setting, bidder 𝑖 cannot fully

evaluate its valuation of a given allocation 𝑥, since it depends on the parameters

(𝜂𝑖←𝑗)𝑗∈𝑁∖𝑖, which are part of the private types of the other bidders 𝑁∖𝑖. Therefore,

each bidder can only reason with its own realized type 𝑡𝑖 and the commonly known

priors on other bidders’ types. It is more sensible, therefore, to impose interim versions

of truthfulness (BNIC) and participation (interim IR) conditions (see Definitions 2.2.4

and 2.2.5 respectively).

Ex-Ante Welfare Optimality. As a first attempt toward a welfare-maximizing

mechanism in this setting, one might try to use the previous welfare-maximizing allo-

cation rule (3.2.3). Due to Proposition 3.1.3, however, this allocation violates BNIC

when the private types are of the form 𝑡𝑖 = 𝑣𝑖𝑒𝑖−𝜂←𝑖, since the corresponding interim

allocation 𝑦𝑖(𝑡𝑖) = 1{𝑊𝑖(𝑡) ≥ 0} = 1{𝑣𝑖 ≥
∑︀

𝑗∈𝑁∖𝑖 𝜂𝑗←𝑖} is not in general constant

with respect to 𝜂𝑗←𝑖. Indeed, note that in this setting the welfare contribution of

bidder 𝑖 depends solely on 𝑡𝑖 and can be expressed as 𝑊𝑖(𝑡) = 𝑡𝑖 · 1.

In fact, any attempt to find such welfare-maximizing BNIC mechanisms will fail.

It turns out that in general, no mechanism satisfying BNIC can be ex-post (pointwise)

welfare-maximal over all types 𝑡, as stated next.

Proposition 3.2.3 (Impossibility of Ex-Post Optimality). Suppose bidders’ private

types are of the form 𝑡𝑖 = 𝑣𝑖𝑒𝑖− 𝜂←𝑖 for each bidder 𝑖 ∈ 𝑁 . For any joint distribution
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𝐹 of types 𝑡 = (𝑡1, . . . , 𝑡𝑛), let

𝒳𝐵𝑁𝐼𝐶(𝐹 ) := {𝑥 : Θ → [0, 1]𝑛| ∀𝑖 ∈ 𝑁, 𝑦𝑖(𝑡𝑖) = 𝑦𝑖(𝑣𝑖) for some non-decreasing function 𝑦𝑖}

be the set of allocation functions that satisfy condition (i) in the BNIC characteriza-

tion. Then there exists a distribution 𝐹 of types on Θ s.t. for all 𝑥 ∈ 𝒳𝐵𝑁𝐼𝐶(𝐹 ),

there exists a 𝑡0 ∈ Θ and 𝑥′ ∈ 𝒳𝐵𝑁𝐼𝐶(𝐹 ) such that

SW(𝑥; 𝑡0) < SW(𝑥′; 𝑡0) (3.2.6)

Proof. Consider the distribution of types 𝐹 with probability mass 1/2 on each of two

points: 𝑡𝑎 = (𝑣1𝑒1 − 𝜂𝑎←1, 𝑡−1) and 𝑡𝑏 = (𝑣1𝑒1 − 𝜂𝑏←1, 𝑡−1), where 𝑣1 ∈ R ≥ 0 and

𝑡−1 = (𝑡𝑗 : 𝑗 ̸= 1) take arbitrary, fixed values. Let 𝜂𝑎𝑗←1 and 𝜂𝑏𝑗←1, for 𝑗 ∈ 𝑁∖𝑖 be such

that

𝑣1 −
∑︁

𝑗∈𝑁∖1

𝜂𝑎𝑗←1 > 0 (3.2.7)

and 𝑣1 −
∑︁

𝑗∈𝑁∖1

𝜂𝑏𝑗←1 < 0 (3.2.8)

For instance, we can take each 𝜂𝑎𝑗←1 = 0 and 𝜂𝑏𝑗←1 = 2𝑣1.

Note that for all 𝑥(·) ∈ 𝒳𝐵𝑁𝐼𝐶(𝐹 ) and 𝑡 ∈ Θ, 𝑥1(𝑡) = E[𝑥1(𝑡)|𝑡1] = 𝑦𝑖(𝑣𝑖) for some

increasing function 𝑦𝑖(𝑣𝑖). However, under distribution 𝐹 , 𝑣𝑖 only takes the single

value 𝑣𝑖, so the function 𝑥1(𝑡) must be constant-valued.

Then for all 𝑥(·) ∈ 𝒳𝐵𝑁𝐼𝐶(𝐹 ), and 𝑡 ∈ Θ, if 𝑥1(𝑡) > 0, let 𝑦(·) be such that

𝑦1(𝑡) = 0 and 𝑦𝑗(𝑡) = 𝑥𝑗(𝑡) for all 𝑗 ̸= 1. We have that

𝑆𝑊 (𝑥; 𝑡𝑏) − 𝑆𝑊 (𝑦; 𝑡𝑏)

=(𝑣1 −
∑︁
𝑗∈𝑁∖𝑖

𝜂𝑏𝑗←1)(𝑥1(𝑡
𝑏) − 𝑦1(𝑡

𝑏)) < 0

where the strict inequality follows from (3.2.8) and that for all 𝑡, 𝑥1(𝑡) > 0 = 𝑦1(𝑡).

Likewise, if 𝑥1(𝑡) ≤ 0, let 𝑦(·) be such that 𝑦1(𝑡) = 1 and 𝑦𝑗(𝑡) = 𝑥𝑗(𝑡) for all 𝑗 ̸= 1.
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Then

𝑆𝑊 (𝑥; 𝑡𝑎) − 𝑆𝑊 (𝑦; 𝑡𝑎)

=(𝑣1 −
∑︁

𝑗∈𝑁∖1

𝜂𝑎𝑗←1)(𝑥1(𝑡
𝑎) − 𝑦1(𝑡

𝑎)) < 0

where the strict inequality follows from (3.2.7) and that for all 𝑡, 𝑥1(𝑡) ≤ 0 < 1 = 𝑦1(𝑡).

Thus, we have shown that for any allocation rule in a BNIC mechanism, there

is some type realization such that a different BNIC allocation rule yields a strictly

greater social welfare, which is the statement of (3.2.6).

Since Proposition 3.2.3 implies that there are distributions in which no mechanism

satisfying BNIC can also be welfare-maximizing over all type realizations, we relax

the objective of finding a pointwise optimum to one of maximizing the expected social

welfare, that is,

E[SW(𝑥; 𝑡)] =
∑︁
𝑖∈𝑁

E

[︃(︂
𝑣𝑖 −

∑︁
𝑗∈𝑁∖𝑖

𝜂𝑗←𝑖

)︂
𝑥𝑖(𝑡)

]︃
. (3.2.9)

Proposition 3.2.4 (Welfare-Maximizing Allocation, Setting 2). Suppose that the

map 𝑣𝑖 ↦→ 𝑣𝑖 −
∑︀

𝑗∈𝑁∖𝑖 E[𝜂𝑗←𝑖|𝑣𝑖] is non-decreasing for every bidder 𝑖 ∈ 𝑁 . Then the

allocation rule maximizing the expected social welfare (3.2.9) under BNIC is

𝑥𝑖(𝑡) = 1

{︂
𝑣𝑖 ≥

∑︁
𝑗∈𝑁∖𝑖

E[𝜂𝑗←𝑖 | 𝑣𝑖]
}︂
, 𝑖 ∈ 𝑁 . (3.2.10)

Proof. To solve for the form of the expected welfare maximizing allocation function

satisfying the IC constraints, we first express the objective in terms of the interim

allocations 𝑦𝑖(𝑡𝑖). In terms of the welfare contribution 𝑊𝑖(𝑡) = 𝑣𝑖 −
∑︀

𝑗∈𝑁∖𝑖 𝜂𝑗←𝑖, we

have

E
[︀
SW(𝑥; 𝑡)

]︀
=
∑︁
𝑖∈𝑁

E[𝑊𝑖(𝑡)𝑥𝑖(𝑡)] =
∑︁
𝑖∈𝑁

E
[︀
E[𝑊𝑖(𝑡)𝑥𝑖(𝑡𝑖, 𝑡−𝑖) | 𝑡𝑖]

]︀
=
∑︁
𝑖∈𝑁

E[𝑊𝑖(𝑡)𝑦𝑖(𝑡𝑖)] .
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As noted, in the present setting of private types, 𝑊𝑖(𝑡) depends only on 𝑡𝑖. Now, the

BNIC characterization from Proposition 3.1.3 implies that there must exist functions̃︀𝑦𝑖 : [𝑣
¯𝑖, 𝑣𝑖] → [0, 1] such that 𝑦𝑖(𝑡𝑖) = ̃︀𝑦𝑖(𝑣𝑖) for almost all 𝑡𝑖 ∈ Θ𝑖. Plugging in this

representation above, we get

E[SW(𝑥; 𝑡)] =
∑︁
𝑖∈𝑁

E[𝑊𝑖(𝑡)̃︀𝑦𝑖(𝑣𝑖)] =
∑︁
𝑖∈𝑁

E
[︀̃︀𝑦𝑖(𝑣𝑖)E[𝑊𝑖(𝑡) | 𝑣𝑖]

]︀
.

Noting the linearity of the objective in ̃︀𝑦𝑖, we find that the optimal allocation rule is

̃︀𝑦𝑖(𝑣𝑖) = 1
{︀
E[𝑊𝑖(𝑡) | 𝑣𝑖] ≥ 0

}︀
= 1

{︂
𝑣𝑖 −

∑︁
𝑗∈𝑁∖𝑖

E[𝜂𝑗←𝑖 | 𝑣𝑖] ≥ 0

}︂
.

Under the given assumptions, ̃︀𝑦𝑖(𝑣𝑖) is non-decreasing in 𝑣𝑖, so BNIC is satisfied.

Finally, note that since we can express the objective function and constraints only in

terms of the interim allocations 𝑦𝑖 for 𝑖 ∈ 𝑁 , we can without loss of generality for all

𝑖 ∈ 𝑁 , set the allocation rule 𝑥𝑖(𝑡) = 𝑦𝑖(𝑡𝑖) = ̃︀𝑦𝑖(𝑣𝑖).
Remark 3.2.5. Note that if we were selling a non-replicable good rather than the

digital good of our setting, the feasibility constraint
∑︀

𝑖∈𝑁 𝑥𝑖 ≤ 1 would couple the

allocations and 𝑥𝑖 would be a function of other bids 𝑣𝑗 for 𝑗 ̸= 𝑖.

Proposition 3.2.6 (Payment Rule Associated with Welfare-Maximizing Allocation,

Setting 2). Suppose that the map 𝑣𝑖 ↦→ 𝑣𝑖 −
∑︀

𝑗∈𝑁∖𝑖 E[𝜂𝑗←𝑖|𝑣𝑖] is non-decreasing for

every bidder 𝑖 ∈ 𝑁 , and let 𝜏𝑖 := inf{𝑣 ∈ [𝑣
¯ 𝑖, 𝑣𝑖] | 𝑣 ≥

∑︀
𝑗∈𝑁∖𝑖 E[𝜂𝑗←𝑖|𝑣]}1. Consider

the auction with the welfare-maximizing allocation rule described in Proposition 3.2.4,

that also runs the welfare-maximizing allocation on the remaining set of bidders when-

ever some subset of bidders chooses not to participate in the auction. Then the BNIC

payment rule with this allocation is given by

𝑝𝑖(𝑡𝑖) =
∑︁
𝑗∈𝑁∖𝑖

𝜏𝑖 · 1{𝑣𝑖 ≥ 𝜏𝑖} −
∑︁
𝑗∈𝑁∖𝑖

E
[︀
𝜂𝑖←𝑗 · 1{𝑣𝑗 ≥ 𝜏𝑗}

]︀
− 𝐶𝑖. (3.2.11)

Furthermore, IR is satisfied whenever 𝐶𝑖 = 𝑉𝑖(𝑡𝑖; 𝑡𝑖) ≥ 𝑉𝑖(∅; 𝑡𝑖), for some 𝑡𝑖 of the
1Here and throughout this chapter, we use the convention that 0 · ∞ = 0
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form 𝑣
¯ 𝑖𝑒𝑖 − 𝜂←𝑖 ∈ Θ𝑖. In particular, if the maps 𝑣𝑗 ↦→ 𝑣𝑗 −

∑︀
𝑘∈𝑁∖{𝑗,𝑖} E[𝜂𝑘←𝑗|𝑣𝑗] are

non-decreasing, for 𝑗 ∈ 𝑁∖𝑖, then 𝑉𝑖(∅; 𝑡𝑖) is given by

∑︁
𝑗∈𝑁∖𝑖

E

[︃
𝜂𝑖←𝑗 · 1

{︂
𝑣𝑗 ≥

∑︁
𝑘∈𝑁∖{𝑗,𝑖}

E[𝜂𝑘←𝑗 | 𝑣𝑗]
}︂]︃

(3.2.12)

Proof. The induced interim payment rule 𝑞𝑖(𝑡𝑖) = E[𝑝𝑖(𝑡) | 𝑡𝑖] associated with 𝑦𝑖 as

derived in Proposition 3.1.3, condition (ii) is

𝑞𝑖(𝑡𝑖) = 𝑣𝑖 · 𝑦𝑖(𝑡𝑖) −
∫︁ 𝑣𝑖

𝑣
¯𝑖

̃︀𝑦𝑖(𝑣)𝑑𝑣 −
∑︁
𝑗∈𝑁∖𝑖

E
[︀
𝜂𝑖←𝑗𝑥𝑗(𝑡𝑖, 𝑡−𝑖)

⃒⃒
𝑡𝑖
]︀
− 𝐶𝑖 . (3.2.13)

Recall that the constant term 𝐶𝑖 is set such that the payment function satisfies IR.

By Proposition 3.1.5, it suffices to check IR for any type of the form 𝑡𝑖 = 𝑣
¯𝑖𝑒𝑖 − 𝜂←𝑖,

for each 𝑖 ∈ 𝑁 . Here, bidder 𝑖’s expected utility 𝑉𝑖(∅; 𝑡𝑖) if it doesn’t participate

is the sum of the externalities effects from the allocations 𝑥𝑗(𝑡𝑖 = ∅, 𝑡−𝑖) in the

welfare-maximizing auction run with the remaining set 𝑁∖𝑖 of bidders, and given

the assumption of 𝑣𝑗 ↦→ 𝑣𝑗 −
∑︀

𝑘∈𝑁∖{𝑗,𝑖} E[𝜂𝑘←𝑗|𝑣𝑗] non-decreasing, we have

𝑉𝑖(∅; 𝑡𝑖) =
∑︁
𝑗∈𝑁∖𝑖

E[𝜂𝑖←𝑗𝑥𝑗(𝑡𝑖 = ∅, 𝑡−𝑖)(𝑡−𝑖)] =
∑︁
𝑗∈𝑁∖𝑖

E

[︃
𝜂𝑖←𝑗 1

{︂
𝑣𝑗 ≥

∑︁
𝑘∈𝑁∖{𝑗,𝑖}

E[𝜂𝑘←𝑗|𝑣𝑗]
}︂]︃

(3.2.14)

Then any payment rule of the form (3.2.13) with the constant 𝐶𝑖 set greater than or

equal to 𝑉𝑖(∅; 𝑡𝑖) in (3.2.14) will give us an IR mechanism.

Finally, since the objective function and constraints can be expressed solely in

terms of the interim payments 𝑞𝑖, we can set 𝑝𝑖(𝑡) := 𝑞𝑖(𝑡𝑖). Under the given as-

sumption that 𝑣𝑖 ↦→ 𝑣𝑖 −
∑︀

𝑗∈𝑁∖𝑖 E[𝜂𝑗←𝑖|𝑣𝑖] is non-decreasing, we can re-express the

allocation rule as

𝑥𝑖(𝑡) = 𝑦𝑖(𝑡𝑖) = 1

{︂
𝑣𝑖 ≥

∑︁
𝑗∈𝑁∖𝑖

E[𝜂𝑗←𝑖 | 𝑣𝑖]
}︂

(3.2.15)

= 1{𝑣𝑖 ≥ 𝜏𝑖} (3.2.16)
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The integral term in (3.2.13) then becomes

∫︁ 𝑣𝑖

𝑣
¯𝑖

1{𝑣 ≥ 𝜏𝑖}𝑑𝑣 = (𝑣𝑖 − 𝜏𝑖) · 1{𝑣𝑖 ≥ 𝜏𝑖} = (𝑣𝑖 − 𝜏𝑖) · 𝑦𝑖(𝑡𝑖)

Plugging in the above expression, along with the form of the allocation (3.2.15), into

(3.2.13) completes the proof.

Proposition 3.2.7 (Efficient Mechanism, Setting 2). The mechanism specified by

allocation function (3.2.10), and that runs the welfare-maximizing auction with the

remaining bidders whenever a subset of bidders chooses not to participate, and uses

payment function (3.2.11) maximizes expected social welfare among all BNIC, interim

IR auctions.

Proof. Immediate from Proposition 3.2.4 and 3.2.6.

3.3 Revenue Maximization

In this section, we focus on the problem of designing auctions that achieve optimal

revenue. Specifically, the goal is to design allocation and payment functions 𝑥(·) and

𝑝(·) to maximize the seller’s expected revenue

∑︁
𝑖∈𝑁

E
[︀
𝑝𝑖(𝑡)

]︀
(3.3.1)

subject to BNIC and interim IR constraints. Note that we can also express the

expected revenue as
∑︀

𝑖∈𝑁 E
[︀
E[𝑝𝑖(𝑡) | 𝑡𝑖]

]︀
=
∑︀

𝑖∈𝑁 E
[︀
𝑞𝑖(𝑡𝑖)

]︀
by the law of total expec-

tation and the definition of the interim payments.

3.3.1 Revenue Maximization in Setting 1

We aim to maximize the seller’s expected revenue subject to BNIC and IR constraints,

where private types take the form 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂𝑖← for each 𝑖 ∈ 𝑁 . Recall the notation

for the interim expected allocation functions 𝑦(𝑖)(𝑡𝑖) = E𝑡−𝑖
[𝑥(𝑡𝑖, 𝑡−𝑖)] and the interim

expected payment functions 𝑞𝑖(𝑡𝑖) := E𝑡−𝑖
[𝑝𝑖(𝑡𝑖, 𝑡−𝑖)], for each bidder 𝑖 ∈ 𝑁 . (See
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Section 3.1.1). As is natural, 𝑡𝑖,𝑘 = 𝑡𝑖 · 𝑒𝑘 denotes the 𝑘th component of the vector 𝑡𝑖,

for 𝑖, 𝑘 ∈ 𝑁 .

Independence assumption. For this section, we make the simplifying assump-

tion that the components of each bidder 𝑖’s type are independent, so the prob-

ability distribution function of 𝑡𝑖 factors as 𝑓𝑖(𝑡𝑖) = Π𝑘∈𝑁𝑓𝑖,𝑘(𝑡𝑖,𝑘), where we de-

fine the density functions 𝑓𝑖,𝑘(𝑡𝑖,𝑘) = 𝑓𝑖,𝑘(−𝜂𝑖←𝑘) := 𝑓𝜂𝑖←𝑘
(𝜂𝑖←𝑘) for 𝑖 ̸= 𝑘 ∈ 𝑁

and 𝑓𝑖,𝑖(𝑡𝑖,𝑖) = 𝑓𝑣𝑖(𝑣𝑖) for 𝑖 ∈ 𝑁 . We further define the virtual value functions

Φ𝑖,𝑘(𝑡𝑖,𝑘) := 𝑡𝑖,𝑘 − (1 − 𝐹𝑖,𝑘(𝑡𝑖,𝑘))/𝑓𝑖,𝑘(𝑡𝑖,𝑘).

Proposition 3.3.1 (Optimal Mechanism, Setting 1). Suppose bidders have private

types of the form 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂𝑖← for each bidder 𝑖 ∈ 𝑁 , and that 𝑓𝑖(𝑡𝑖) factorizes as

𝑓𝑖(𝑡𝑖) = Π𝑘∈𝑁𝑓𝑖,𝑘(𝑡𝑖,𝑘). Suppose also that the distribution 𝐹 of bidder types is such

that the virtual valuation functions Φ𝑖,𝑘(𝑡𝑖,𝑘) are nondecreasing. Then the mechanism

with allocation rule

𝑥𝑖(𝑡) = 1
{︀∑︁

𝑘∈𝑁

Φ𝑘,𝑖(𝑡𝑘,𝑖) ≥ 0
}︀
, for 𝑖 ∈ 𝑁, 𝑡 ∈ Θ (3.3.2)

𝑥𝑗(𝑡𝑖 = ∅, 𝑡−𝑖) = 1{𝑖 ̸= 𝑗}, for 𝑖, 𝑗 ∈ 𝑁, 𝑡−𝑖 ∈ Θ−𝑖 (3.3.3)

and payment functions given in Proposition 3.1.1 condition (iii) with 𝐶𝑖 = −
∑︀

𝑗∈𝑁∖𝑖 𝜂
¯ 𝑗←𝑖

is revenue-optimal among BNIC and interim IR auctions.

Proof. We present the proof in three parts: (1) we derive the optimal allocation rule,

(2) we verify that the allocation and associated payment rules satisfy BNIC, and

(3) we set the optimal constant term of the payment function subject to interim IR

constraints.

Part 1: Deriving the Optimal Allocation. We first use the form of the interim

payment functions from the BNIC characterization in Proposition 3.1.1 to express
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our objective solely in terms of interim allocation functions.

E

[︃∑︁
𝑖∈𝑁

𝑝𝑖(𝑡)

]︃
=
∑︁
𝑖∈𝑁

E [E [𝑝𝑖(𝑡)|𝑡𝑖]] =
∑︁
𝑖∈𝑁

E [𝑞𝑖(𝑡𝑖)]

=
∑︁
𝑖∈𝑁

E
[︂
𝑦(𝑖)(𝑡𝑖) · 𝑡𝑖 −

∫︁ 𝑡𝑖

�̊�𝑖

𝑦(𝑖)(𝑠𝑖) · 𝑑𝑠𝑖 − 𝐶𝑖

]︂
=
∑︁
𝑖∈𝑁

E
[︂
𝑦(𝑖)(𝑡𝑖) · 𝑡𝑖 −

∫︁ 𝑡𝑖

𝑡
¯𝑖

𝑦(𝑖)(𝑠𝑖) · 𝑑𝑠𝑖 − 𝐶 ′𝑖

]︂

In the last equality, we shifted the lower bound of integration from �̊�𝑖 to 𝑡
¯𝑖

:= 𝑣
¯𝑖𝑒𝑖 −∑︀

𝑗∈𝑁∖𝑖 𝜂𝑖←𝑗𝑒𝑗 along with the corresponding constant of integration 𝐶𝑖 to 𝐶 ′𝑖. The type

𝑡
¯𝑖

can be considered the “lowest” type of bidder 𝑖, as it yields the lowest valuation on

any given allocation over all feasible types. Originally 𝐶𝑖 = 𝑉 (̊𝑡𝑖; �̊�𝑖), and now the new

constant of integration 𝐶 ′𝑖 sets the value of 𝑉 (𝑡
¯𝑖

; 𝑡
¯𝑖

). The constant term 𝐶 ′𝑖 can be set

independently of the allocation functions, and we defer finding the optimal such 𝐶 ′𝑖

(and thus 𝐶𝑖) satisfying IR to the last part of this proof, after we have solved for the

optimal allocation rules.

Expanding the inner product in the first term above and ignoring the constant

𝐶 ′𝑖, we temporarily take our objective to be

E

[︃∑︁
𝑖∈𝑁

(︃∑︁
𝑗∈𝑁

𝑦
(𝑖)
𝑗 (𝑡𝑖)𝑡𝑖,𝑗

)︃
−
∫︁ 𝑡𝑖

𝑡
¯𝑖

𝑦(𝑖)(𝑠𝑖) · 𝑑𝑠𝑖

]︃
(3.3.4)

Fix any 𝑘 ∈ 𝑁 . We now re-express the above integral term to be linear in 𝑦
(𝑖)
𝑘 (𝑡𝑖).

By Proposition 3.1.1, 𝑦(𝑖) is a conservative vector field, so we can evaluate the line

integral by taking any path from 𝑡
¯𝑖

= (𝑡
¯𝑖,1

, ..., 𝑡
¯𝑖,𝑛

) to 𝑡𝑖 = (𝑡𝑖,1, ..., 𝑡𝑖,𝑛). Let us take any

path that first fixes the 𝑘th coordinate while moving all other coordinates to their

final value at the point (𝑡𝑖,1, ..., 𝑡𝑖,𝑘−1, 𝑡¯𝑖,𝑘
, 𝑡𝑖,𝑘+1, ..., 𝑡𝑖,𝑛) and then from there moves

parallel to the 𝑘th coordinate axis to the endpoint 𝑡𝑖. That is, we evaluate the line
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integral as

∫︁ 𝑡𝑖

𝑡
¯𝑖

𝑦(𝑖)(𝑠𝑖) · 𝑑𝑠𝑖 =

∫︁ (𝑡𝑖,1,...,𝑡𝑖,𝑘−1,𝑡¯𝑖,𝑘
,𝑡𝑖,𝑘+1,...,𝑡𝑖,𝑛)

(𝑡
¯𝑖,1

,...,𝑡
¯𝑖,𝑛

)

𝑦(𝑖)(𝑠𝑖,1, ..., 𝑠𝑖,𝑘−1, 𝑡¯𝑖,𝑘
, 𝑠𝑖,𝑘+1, ..., 𝑠𝑖,𝑛) · 𝑑𝑠𝑖

+

∫︁ 𝑡𝑖,𝑘

𝑡
¯𝑖,𝑘

𝑦
(𝑖)
𝑘 (𝑡𝑖,1, ..., 𝑡𝑖,𝑘−1, 𝑠𝑖,𝑘, 𝑡𝑖,𝑘+1, ..., 𝑡𝑖,𝑛)𝑑𝑠𝑖,𝑘

(3.3.5)

Note that the first integral term on the right hand side of (3.3.5) does not depend

on the value of 𝑡𝑖,𝑘. To emphasize this fact, we temporarily denote this quantity by

𝜉𝑘(𝑡𝑖,1, ..., 𝑡𝑖,𝑘−1, 𝑡𝑖,𝑘+1, ..., 𝑡𝑖,𝑛)

:=

∫︁ (𝑡𝑖,1,...,𝑡𝑖,𝑘−1,𝑡¯𝑖,𝑘
,𝑡𝑖,𝑘+1,...,𝑡𝑖,𝑛)

(𝑡
¯𝑖,1

,...,𝑡
¯𝑖,𝑛

)

𝑦(𝑖)(𝑠𝑖,1, ..., 𝑠𝑖,𝑘−1, 𝑡¯𝑖,𝑘
, 𝑠𝑖,𝑘+1, ..., 𝑠𝑖,𝑛) · 𝑑𝑠𝑖.

(3.3.6)

Next, we use the assumption of independence of the components of 𝑡𝑖 to evaluate

the expectation of the second term on the right hand side of (3.3.5):

E

⎡⎢⎣∫︁ 𝑡𝑖,𝑘

𝑡
¯𝑖,𝑘

𝑦
(𝑖)
𝑘 (𝑡𝑖,1, ..., 𝑡𝑖,𝑘−1⏟  ⏞  

𝑡𝑖,𝑘−

, 𝑠𝑖,𝑘, 𝑡𝑖,𝑘+1, ..., 𝑡𝑖,𝑛)⏟  ⏞  
𝑡𝑖,𝑘+

𝑑𝑠𝑖,𝑘

⎤⎥⎦
=

⎛⎝ ∏︁
𝑗∈𝑁∖𝑘

∫︁ 𝑡𝑖,𝑗

𝑡
¯𝑖,𝑗

𝑑𝑡𝑖,𝑗𝑓𝑖,𝑗(𝑡𝑖,𝑗)

⎞⎠∫︁ 𝑡𝑖,𝑘

𝑡
¯𝑖,𝑘

𝑑𝑡𝑖,𝑘𝑓𝑖,𝑘(𝑡𝑖,𝑘)

∫︁ 𝑡𝑖,𝑘

𝑡
¯𝑖,𝑘

𝑑𝑠𝑖,𝑘𝑦
(𝑖)
𝑘 (𝑡𝑖,𝑘−, 𝑠𝑖,𝑘, 𝑡𝑖,𝑘+)

=

⎛⎝ ∏︁
𝑗∈𝑁∖𝑘

∫︁ 𝑡𝑖,𝑗

𝑡
¯𝑖,𝑗

𝑑𝑡𝑖,𝑗𝑓𝑖,𝑗(𝑡𝑖,𝑗)

⎞⎠∫︁ 𝑡𝑖,𝑘

𝑡
¯𝑖,𝑘

𝑑𝑠𝑖,𝑘𝑦
(𝑖)
𝑘 (𝑡𝑖,𝑘−, 𝑠𝑖,𝑘, 𝑡𝑖,𝑘+)

∫︁ 𝑡𝑖𝑘

𝑠𝑖,𝑘

𝑑𝑡𝑖,𝑘𝑓𝑖,𝑘(𝑡𝑖,𝑘)

=

⎛⎝ ∏︁
𝑗∈𝑁∖𝑘

∫︁ 𝑡𝑖,𝑗

𝑡
¯𝑖,𝑗

𝑑𝑡𝑖,𝑗𝑓𝑖,𝑗(𝑡𝑖,𝑗)

⎞⎠∫︁ 𝑡𝑖,𝑘

𝑡
¯𝑖,𝑘

𝑑𝑠𝑖,𝑘𝑓𝑖,𝑘(𝑠𝑖,𝑘)𝑦
(𝑖)
𝑘 (𝑡𝑖,𝑘−, 𝑠𝑖,𝑘, 𝑡𝑖,𝑘+)

1 − 𝐹𝑖,𝑘(𝑠𝑖,𝑘)

𝑓𝑖,𝑘(𝑠𝑖,𝑘)

=E
[︂
𝑦
(𝑖)
𝑘 (𝑡𝑖,1, ..., 𝑡𝑖,𝑘−1, 𝑡𝑖,𝑘, 𝑡𝑖,𝑘+1, ..., 𝑡𝑖,𝑛)

1 − 𝐹𝑖,𝑘(𝑡𝑖,𝑘)

𝑓𝑖,𝑘(𝑡𝑖,𝑘)

]︂
=E

[︂
𝑦
(𝑖)
𝑘 (𝑡𝑖)

1 − 𝐹𝑖,𝑘(𝑡𝑖,𝑘)

𝑓𝑖,𝑘(𝑡𝑖,𝑘)

]︂

The first equality follows by definition of expectation and by the independence of
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the coordinates of 𝑡𝑖, the second by changing the order of integration, the third by

definition of the CDF, and the fourth by the definition of expectation once again.

Plugging the last expression and (3.3.6) back into the objective (3.3.4), we get

E

[︃∑︁
𝑖∈𝑁

(︃∑︁
𝑗∈𝑁

𝑦
(𝑖)
𝑗 (𝑡𝑖)𝑡𝑖,𝑗

)︃

−
(︂
𝜉𝑘(𝑡𝑖,1, ..., 𝑡𝑖,𝑘−1, 𝑡𝑖,𝑘+1, ..., 𝑡𝑖,𝑛) + 𝑦

(𝑖)
𝑘 (𝑡𝑖)

1 − 𝐹𝑖,𝑘(𝑡𝑖,𝑘)

𝑓𝑖,𝑘(𝑡𝑖,𝑘)

)︂]︃

=E

[︃∑︁
𝑖∈𝑁

𝑦
(𝑖)
𝑘 (𝑡𝑖)(𝑡𝑖,𝑘 −

1 − 𝐹𝑖,𝑘(𝑡𝑖,𝑘)

𝑓𝑖,𝑘(𝑡𝑖,𝑘)
)

+
∑︁
𝑖∈𝑁

⎛⎝ ∑︁
𝑗∈𝑁∖𝑘

𝑦
(𝑖)
𝑗 (𝑡𝑖)𝑡𝑖,𝑗 − 𝜉𝑘(𝑡𝑖,1, ..., 𝑡𝑖,𝑘−1, 𝑡𝑖,𝑘+1, ..., 𝑡𝑖,𝑛)

⎞⎠]︃

=E

[︃∑︁
𝑖∈𝑁

E
[︂
𝑥𝑘(𝑡)(𝑡𝑖,𝑘 −

1 − 𝐹𝑖,𝑘(𝑡𝑖,𝑘)

𝑓𝑖,𝑘(𝑡𝑖,𝑘)
)

⃒⃒⃒⃒
𝑡𝑖

]︂

+
∑︁
𝑖∈𝑁

⎛⎝ ∑︁
𝑗∈𝑁∖𝑘

𝑦
(𝑖)
𝑗 (𝑡𝑖)𝑡𝑖,𝑗 − 𝜉𝑘(𝑡𝑖,1, ..., 𝑡𝑖,𝑘−1, 𝑡𝑖,𝑘+1, ..., 𝑡𝑖,𝑛)

⎞⎠]︃

=E

[︃
𝑥𝑘(𝑡)

∑︁
𝑖∈𝑁

(︂
𝑡𝑖,𝑘 −

1 − 𝐹𝑖,𝑘(𝑡𝑖,𝑘)

𝑓𝑖,𝑘(𝑡𝑖,𝑘)

)︂]︃

+ E

⎡⎣∑︁
𝑖∈𝑁

⎛⎝ ∑︁
𝑗∈𝑁∖𝑘

𝑦
(𝑖)
𝑗 (𝑡𝑖)𝑡𝑖,𝑗 − 𝜉𝑘(𝑡𝑖,1, ..., 𝑡𝑖,𝑘−1, 𝑡𝑖,𝑘+1, ..., 𝑡𝑖,𝑛)

⎞⎠⎤⎦
where we rearrange terms to arrive at the first equality, use the definition of interim

allocation for the second, and the law of total expectation and linearity of expectation

for the last equality. Note that neither the allocation function 𝑥𝑘 nor any of the interim

allocations 𝑦
(𝑖)
𝑘 to bidder 𝑘, for 𝑖 ∈ 𝑁 , feature in the second expectation term of the

last expression. There are also no coupling constraints between the allocations 𝑥𝑘 and

𝑥𝑗 for 𝑗 ̸= 𝑘. Since we have expressed the objective as linear in 𝑥𝑘(𝑡), the optimal
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allocation rule 𝑥𝑘(𝑡) can thus be read off as

𝑥𝑘(𝑡) = 1

{︃∑︁
𝑖∈𝑁

(︂
𝑡𝑖,𝑘 −

1 − 𝐹𝑖,𝑘(𝑡𝑖,𝑘)

𝑓𝑖,𝑘(𝑡𝑖,𝑘)

)︂
≥ 0

}︃
(3.3.7)

=1

⎧⎨⎩Φ𝑘,𝑘(𝑣𝑘) +
∑︁
𝑖∈𝑁∖𝑘

Φ𝑖,𝑘(−𝜂𝑖←𝑘) ≥ 0

⎫⎬⎭
=1

⎧⎨⎩𝑣𝑘 −
1 − 𝐹𝑘,𝑘(𝑣𝑘)

𝑓𝑘,𝑘(𝑣𝑘)
+
∑︁
𝑖∈𝑁∖𝑘

(︂
−𝜂𝑖←𝑘 −

𝐹𝜂𝑖←𝑘
(𝜂𝑖←𝑘)

𝑓𝜂𝑖←𝑘
(𝜂𝑖←𝑘)

)︂
≥ 0

⎫⎬⎭
where Φ𝑖,𝑘(𝑡𝑖,𝑘) = 𝑡𝑖,𝑘 − 1−𝐹𝑖,𝑘(𝑡𝑖,𝑘)

𝑓𝑖,𝑘(𝑡𝑖,𝑘)
is the virtual valuation of the parameter 𝑡𝑖,𝑘 for

𝑖, 𝑘 ∈ 𝑁 , and we used the fact that 𝑓𝑖,𝑘(𝑡𝑖,𝑘) := 𝑓𝜂𝑖←𝑘
(𝜂𝑖←𝑘) and correspondingly,

𝐹𝑖,𝑘(𝑡𝑖,𝑘) = 1 − 𝐹𝜂𝑖←𝑘
(𝜂𝑖←𝑘). Since 𝑘 was fixed arbitrarily, the form of the optimal

allocation rule (3.3.7) holds for all 𝑘 ∈ 𝑁 .

Part 2: Verifying BNIC. We first show that the interim allocation vector fields

𝑦(𝑖) are monotone. Note that for 𝑘 ∈ 𝑁 , the allocation functions 𝑥𝑘(𝑡) are only

dependent on 𝑡𝑖,𝑘, for all 𝑖 ∈ 𝑁 . Further, 𝑦(𝑖)𝑘 (𝑡𝑖) = P[
∑︀

𝑗∈𝑁(𝑡𝑗,𝑘 − 1−𝐹𝑗,𝑘(𝑡𝑗,𝑘)

𝑓𝑗,𝑘(𝑡
𝑗
𝑘)

) ≥ 0|𝑡𝑖,𝑘]

is increasing in 𝑡𝑖,𝑘 since Φ𝑖,𝑘(𝑡𝑖,𝑘) is increasing in 𝑡𝑖,𝑘, and 𝑦
(𝑖)
𝑘 (𝑡𝑖) only depends on

the parameter 𝑡𝑖,𝑘. Given this, let 𝑦(𝑖)𝑘 be a single-parameter, increasing function such

that 𝑦
(𝑖)
𝑘 (𝑡𝑖) = 𝑦

(𝑖)
𝑘 (𝑡𝑖,𝑘). Then for all 𝑠𝑖, 𝑡𝑖 ∈ Θ𝑖,

(𝑠𝑖 − 𝑡𝑖) · (𝑦(𝑖)(𝑠𝑖) − 𝑦(𝑖)(𝑡𝑖))

=
∑︁
𝑘∈𝑁

(𝑠𝑖,𝑘 − 𝑡𝑖,𝑘)(𝑦
(𝑖)
𝑘 (𝑠𝑖,𝑘) − 𝑦

(𝑖)
𝑘 (𝑡𝑖,𝑘)) ≥ 0.

The inequality holds because each term in the sum is nonnegative, since 𝑦
(𝑖)
𝑘 are

increasing functions.

Next, note that the functions 𝑦(𝑖)𝑘 are integrable, and let 𝑌 (𝑖)(𝑡𝑖) =
∑︀𝑛

𝑘=1

∫︀ 𝑡𝑖,𝑘
𝑡
¯𝑖,𝑘

𝑦
(𝑖)
𝑘 (𝑠𝑖,𝑘)𝑑𝑠𝑖,𝑘.

It can be checked that 𝑦(𝑖) is the gradient of potential function 𝑌 (𝑖). Thus, the vector

fields 𝑦(𝑖) are conservative.

Part 3: IR and the Optimal Payment. Finally, we consider the interim IR

constraint and the optimal constant term of the payment function. By Proposition
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3.1.2, the optimal outside option is to allocate 𝑥𝑗 = 1 to all bidders 𝑗 ∈ 𝑁∖𝑖 when

bidder 𝑖 does not participate and it suffices to check interim IR for the type �̊�𝑖 =

𝑣
¯𝑖𝑒𝑖 − 𝜂

¯𝑖←. That is, interim IR given the optimal outside option is equivalent to

having

𝐶𝑖 = 𝑉𝑖(̊𝑡𝑖; �̊�𝑖) ≥ 𝑉𝑖(∅; �̊�𝑖) = −
∑︁
𝑗∈𝑁∖𝑖

𝜂
¯𝑖←𝑗

Maximizing revenue corresponds to maximizing the expected sum of the interim pay-

ments 𝑞𝑖(𝑡𝑖) and thus of minimizing 𝑉𝑖(̊𝑡𝑖; �̊�𝑖). Hence, in the revenue-maximizing auc-

tion, we set the constant 𝐶𝑖 in the payment function to be −
∑︀

𝑗∈𝑁∖𝑖 𝜂
¯𝑖←𝑗

. Recall that

we re-expressed our objective function in terms of the constant 𝐶 ′𝑖 = 𝑉𝑖(𝑡¯𝑖
; 𝑡
¯𝑖

), which

is fully determined by the interim allocation rule 𝑦(𝑖) given above and 𝐶𝑖. Thus the

corresponding optimal constant 𝐶 ′𝑖 that yields an IR mechanism is

𝐶 ′𝑖 =

∫︁ �̊�𝑖

𝑡
¯𝑖

𝑦(𝑖)(𝑠𝑖) · 𝑑𝑠𝑖 + 𝐶𝑖 =

∫︁ �̊�𝑖

𝑡
¯𝑖

𝑦(𝑖)(𝑠𝑖) · 𝑑𝑠𝑖 −
∑︁
𝑗∈𝑁∖𝑖

𝜂
¯𝑖←𝑗

.

By construction, our payment rule satisfies the BNIC characterization of Propo-

sition 3.1.1, so our overall mechanism is BNIC and interim IR.

Remark 3.3.2. We are able to prove this result despite the multidimensional nature of

this auction due to two assumptions. The first one exploits the fact data is inherently

a digital, freely replicable good and imposes no feasibility constraint on the allocation

function besides 𝑥𝑖 ∈ [0, 1], allowing us to effectively decouple the allocations. The

second, more restrictive, assumption is that the coordinates of 𝑡𝑖 are independent. It

is unclear whether it is necessary or simply an artefact of our proof technique.

Remark 3.3.3. Observe that the allocation rule given in Proposition 3.3.1 is similar

in form to the threshold functions derived for the two social-welfare maximization

cases (3.2.2) and (3.2.10) but where the virtual value functions (as introduced in

[32]) now play the role of the relevant coordinates of the bidders’ private types. As

with standard revenue maximization settings, the optimal allocation is in general not
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efficient, i.e. welfare-maximizing, and allocates the digital good less often to bidders

than the efficient allocation. An illustrative example is presented in Section 3.4.

3.3.2 Revenue Maximization in Setting 2

Recall in this case the private type of each bidder 𝑖 ∈ 𝑁 is 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂←𝑖. Using

the BNIC characterization of Proposition 3.1.3, Proposition 3.3.4 below shows that

the problem of finding the revenue-optimal mechanism can be reduced to solving

𝑛 distinct optimizations over single-variable functions. Throughout this section, we

denote by 𝐹𝑣𝑖 (resp. 𝑓𝑣𝑖) the cumulative (resp. probability) distribution function of

the marginal distribution of 𝑣𝑖, for 𝑖 ∈ 𝑁 .

Proposition 3.3.4. For each 𝑖 ∈ 𝑁 , let 𝑦⋆𝑖 be a solution to the maximization problem

sup
𝑦

E

[︃
𝑦(𝑣𝑖)

(︃
𝑣𝑖 −

1 − 𝐹𝑣𝑖(𝑣𝑖)

𝑓𝑣𝑖(𝑣𝑖)
−
∑︁
𝑗∈𝑁∖𝑖

E[𝜂𝑗←𝑖 | 𝑣𝑖]

)︃]︃
,

where the maximization is over the set of non-decreasing functions 𝑦 : [𝑣
¯ 𝑖, 𝑣𝑖] → [0, 1].

Then the mechanism with allocation functions 𝑥𝑖(𝑡) := 𝑦⋆𝑖 (𝑣𝑖) and 𝑥𝑗(𝑡𝑖 = ∅, 𝑡−𝑖) =

1{𝑖 ̸= 𝑗} for 𝑖, 𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 , and payment function given by (3.1.3) with 𝐶𝑖 set to

−
∑︀

𝑗∈𝑁∖𝑖 E[𝜂𝑖←𝑗] is revenue optimal among all BNIC and interim IR auctions.

Proof. We consider a mechanism (𝑥, 𝑝) and use the BNIC characterization of Propo-

sition 3.1.3. In particular, recall that there exists a non-decreasing function ̃︀𝑦𝑖 such

that 𝑦𝑖(𝑡𝑖) = ̃︀𝑦𝑖(𝑣𝑖), where 𝑦𝑖 is the interim allocation. Plugging in the form of interim

payments 𝑞𝑖 given by (3.1.3) we get the expected revenue

∑︁
𝑖∈𝑁

E[𝑝𝑖(𝑡)] =
∑︁
𝑖∈𝑁

E

⎡⎣𝑣𝑖̃︀𝑦𝑖(𝑣𝑖) − ∫︁ 𝑣𝑖

𝑣
¯𝑖

̃︀𝑦𝑖(𝑣)𝑑𝑣 −
∑︁
𝑗∈𝑁∖𝑖

E [𝜂𝑖←𝑗 · 𝑥𝑗(𝑡) | 𝑡𝑖] − 𝐶𝑖

⎤⎦ .

(3.3.8)

Observe that the last term on the right-hand side is independent of the choice of (𝑥, 𝑝)

and can thus be ignored when searching for the revenue optimal auction.
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For the second term, swapping the order of integration gives

E
[︂∫︁ 𝑣𝑖

𝑣
¯𝑖

̃︀𝑦𝑖(𝑣)𝑑𝑣

]︂
=

∫︁ 𝑣𝑖

𝑣
¯𝑖

𝑓𝑣𝑖(𝑣𝑖)

(︂∫︁ 𝑣𝑖

𝑣
¯𝑖

̃︀𝑦𝑖(𝑣)𝑑𝑣

)︂
𝑑𝑣𝑖

=

∫︁ 𝑣𝑖

𝑣
¯𝑖

(︀
1 − 𝐹𝑣𝑖(𝑣𝑖)

)︀̃︀𝑦𝑖(𝑣𝑖)𝑑𝑣𝑖 = E
[︂

1 − 𝐹𝑣𝑖(𝑣𝑖)

𝑓𝑣𝑖(𝑣𝑖)
· ̃︀𝑦𝑖(𝑣𝑖)]︂ .

For the third term, we write

E

⎡⎣∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁∖𝑖

E [𝜂𝑖←𝑗𝑥𝑗(𝑡) | 𝑡𝑖]

⎤⎦ =
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁∖𝑖

E
[︀
𝜂𝑖←𝑗 · 𝑥𝑗(𝑡)

]︀
=
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁∖𝑖

E
[︀
𝜂𝑗←𝑖 · 𝑥𝑖(𝑡)

]︀
=
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁∖𝑖

E
[︀
𝜂𝑗←𝑖 · E[𝑥𝑖(𝑡) | 𝑡𝑖]

]︀
=
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁∖𝑖

E
[︀
𝜂𝑗←𝑖 · ̃︀𝑦𝑖(𝑣𝑖)]︀ =

∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁∖𝑖

E
[︀̃︀𝑦𝑖(𝑣𝑖) · E[𝜂𝑗←𝑖 | 𝑣𝑖]

]︀
,

where the first, third and last equality use the law of total expectation, the second

equality is just a change of index and the penultimate is by definition of ̃︀𝑦𝑖.
Combining the previous derivations, we get that the revenue maximizing problem

is equivalent to maximizing

∑︁
𝑖∈𝑁

E

⎡⎣̃︀𝑦𝑖(𝑣𝑖)
⎛⎝𝑣𝑖 −

1 − 𝐹𝑣𝑖(𝑣𝑖)

𝑓𝑣𝑖(𝑣𝑖)
−
∑︁
𝑗∈𝑁∖𝑖

E[𝜂𝑗←𝑖 | 𝑣𝑖]

⎞⎠⎤⎦ . (3.3.9)

where ̃︀𝑦𝑖 is the interim allocation computed from 𝑥𝑖 and must be non-decreasing by

Proposition 3.1.3. Hence, we see that the objective function as well as the BNIC

and IR constraints can be written solely in terms of the functions (̃︀𝑦𝑖)𝑖∈𝑁 . It is

thus sufficient to optimize over them separately, under the constraint that ̃︀𝑦𝑖 be non-

decreasing and [0, 1]-valued. Given an optimal choice of (𝑦⋆𝑖 )𝑖∈𝑁 , we can then define

𝑥𝑖 and 𝑝𝑖 as in the proposition statement.

To complete the proof we need to choose the smallest constant of integration 𝐶𝑖

in (3.3.8) such that interim IR is satisfied. By Proposition 3.1.5, it suffices to set 𝐶𝑖

to be the lowest interim utility a bidder could get in any outside option, which is
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exactly −
∑︀

𝑗∈𝑁∖𝑖 E[𝜂𝑗←𝑖].

Remark 3.3.5. In contrast to Proposition 3.3.1, Proposition 3.3.4 does not make the

assumption of independently coordinates for bidder 𝑖’s type. However, it again cru-

cially exploits that digital goods are freely replicable so there are no feasibility con-

straints coupling bidders’ allocations.

As a corollary to Proposition 3.3.4, and similar to the single parameter setting

[32], we obtain that under a certain regularity assumption, the optimal allocation rule

takes a simple form: set a threshold value for each bidder above which the good is

deterministically allocated and below which it is not. In other words, the optimization

problem of Proposition 3.3.4 over single-variable functions further reduces to finding

𝑛 parameters: the optimal threshold value of each bidder.

Corollary 3.3.6 (Optimal Mechanism, Setting 2). Define for 𝑖 ∈ 𝑁 , the virtual value

function Φ𝑖(𝑣𝑖) := 𝑣𝑖 − (1 − 𝐹𝑣𝑖(𝑣𝑖))/𝑓𝑣𝑖(𝑣𝑖). Assume the function ̃︀Φ𝑖 : 𝑣𝑖 ↦→ Φ𝑖(𝑣𝑖) −∑︀
𝑗∈𝑁∖𝑖 E[𝜂𝑗←𝑖 | 𝑣𝑖] is non-decreasing and define 𝜏𝑖 := ̃︀Φ−1𝑖 (0). Then the mechanism

given by allocation functions

𝑥𝑖(𝑡) = 1{𝑣𝑖 ≥ 𝜏𝑖} and 𝑥𝑗(𝑡𝑖 = ∅, 𝑡−𝑖) = 1{𝑖 ̸= 𝑗}, 𝑖, 𝑗 ∈ 𝑁, 𝑡 ∈ Θ

and payment function

𝑝𝑖(𝑡) = 1{𝑣𝑖 ≥ 𝜏𝑖} · 𝜏𝑖 +
∑︁
𝑗∈𝑁∖𝑖

E
[︀
𝜂𝑖←𝑗 1{𝑣𝑗 < 𝜏𝑗}

]︀
, 𝑖 ∈ 𝑁, 𝑡 ∈ Θ

is revenue optimal among all BNIC and interim IR mechanisms.

Proof. Observe that the optimization problem in the statement of Proposition 3.3.4

can be written concisely in terms of ̃︀Φ𝑖(𝑣𝑖) as sup𝑦 E[̃︀Φ𝑖(𝑣𝑖)𝑦(𝑣𝑖)] where the optimiza-

tion is over non-decreasing functions taking values in [0, 1]. Note that the pointwise

optimal function 𝑦 is given by 1{̃︀Φ𝑖(𝑣𝑖) ≥ 0} and that this function is non-decreasing

in 𝑣𝑖 if ̃︀Φ𝑖 is also non-decreasing. The result then follows from Proposition 3.3.4.
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Remark 3.3.7. Again, observe that ̃︀Φ𝑖 is similar in form to the threshold functions

derived for the two social-welfare maximization cases (3.2.2) and (3.2.10). In contrast

to Proposition 3.3.1, the virtual function is only applied on the valuation 𝑣𝑖.

Example 3.3.8. If we further assume that 𝜂𝑗←𝑖 is independent of 𝑣𝑖, then E[𝜂𝑗←𝑖 | 𝑣𝑖] =

E[𝜂𝑗←𝑖] and the last term in the definition of ̃︀Φ𝑖 does not depend on 𝑣𝑖. In this case our

assumption on ̃︀Φ𝑖 is equivalent to the standard regularity assumption of the marginal

distribution 𝐹𝑣𝑖 of 𝑣𝑖. The payments also take the simpler form

𝑝𝑖(𝑣𝑖) = 1{𝑣𝑖 ≥ 𝜏𝑖} · 𝜏𝑖 +
∑︁
𝑗∈𝑁∖𝑖

E[𝜂𝑖←𝑗]P[𝑣𝑗 < 𝜏𝑗] .

3.4 Discussion

In this section, we discuss the techniques used and results for single digital good auc-

tions. The related work of [28] and [27] reduce the optimal mechanism design problem

down to be essentially one-dimensional: the first work, studying Setting 1 of private

types, imposes symmetry assumptions on bidder types, and explicitly restricts bids

to be single-dimensional, and the second, studying Setting 2, uses a characterization

of incentive compatibility to show that bids are effectively one dimensional. In this

chapter, we have extended these results to auctions with digital goods. In Setting

1, under an assumption of independent type parameters, we solved for the optimal

mechanism with fully multidimensional bids and without requiring any symmetries.

In Setting 2, the same IC characterization reducing the relevant information in a bid

to a single parameter held in our setting.

We find that in both settings of private types and both objectives (welfare and rev-

enue maximization), the prescribed allocation rules are thresholding functions which

allocate the good to a bidder if its value for the good sufficiently outweighs the ex-

ternalities it causes on other bidders, or else allocates nothing. The specific way in

which the threshold is set depends on the situation considered and is summarized in

Table 3.1.

We now provide some interpretation for Table 3.1. In Setting 1, we transition
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𝑥𝑖(𝑡) = 1{·} Setting 1 (𝜂𝑖←) Setting 2 (𝜂←𝑖)

Welfare Maximization 𝑣𝑖 ≥
∑︀

𝑗∈𝑁∖𝑖 𝜂𝑗←𝑖 𝑣𝑖 ≥
∑︀

𝑗∈𝑁∖𝑖 E[𝜂𝑗←𝑖|𝑣𝑖]

Revenue Maximization Φ𝑖(𝑣𝑖) ≥
∑︀

𝑗∈𝑁∖𝑖 −Φ𝑗,𝑖(−𝜂𝑗←𝑖) Φ𝑖(𝑣𝑖) ≥
∑︀

𝑗∈𝑁∖𝑖 E[𝜂𝑗←𝑖|𝑣𝑖]

Table 3.1: Summary of efficient and optimal allocation rules 𝑥𝑖(𝑡) in the two settings
of private types for the single-digital good auction considered in this chapter. Setting
1 is where each bidder knows the incoming externalities caused by others, and Setting
2 is where each bidder knows the outgoing externalities they cause on others. Here,
𝜑𝑍(𝑧) := 𝑧 − (1 − 𝐹𝑍(𝑧))/𝑓𝑍(𝑧) denotes the virtual valuation function associated
with a bounded random variable 𝑍 with distribution and density functions 𝐹𝑍 , 𝑓𝑍 ,
respectively.

from welfare maximization to revenue maximization simply by replacing the type

parameters (both the value for the good and externalities) with virtual types. This

parallels what happens in the standard result [32], where virtual values reduce the

problem of maximizing revenue to maximizing welfare. In Setting 2, a similar reduc-

tion holds, but only the value 𝑣𝑖 needs to be transformed via the virtual function.

In this setting, the externality parameters reported by a bidder do not appear in

the bidder’s own utility function but rather other bidders’ utilities. Thus, incentive

compatible allocations ignore these reports and instead rely on the prior distribution

on externalities.

For more intuition on efficient versus optimal allocations, we consider the special

case of two bidders with uniformly distributed type parameters in Scenario 1. The

revenue-maximizing allocation allocates to bidders less often than does the welfare-

maximizing allocation and is in general not efficient. This is illustrated in Figure

3-1, where the welfare-maximizing and revenue-maximizing allocations are shown to

partition the type space for 𝑡 into the regions based on bidder 1’s allocation. For

details, see Appendix A.2.
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Figure 3-1: Partition of type space by welfare versus revenue maximizing allocations,

assuming 𝑣1 and 𝜂2←1 are uniformly distributed on their respective domains [0, 3] and

[0, 2]. The shaded regions denote where bidder 1 is allocated the entire digital good

(𝑥1 = 1) and the un-shaded regions correspond to the opposite case of 𝑥1 = 0.

Finally, we revisit the problem of selling data sets for prediction tasks to buyers

with downstream interactions. Given the reduction of this problem to one of selling a

single digital good, as presented in Section 2.1, we interpret an allocation of 𝑥𝑖 ∈ [0, 1]

to be either a probabilistic allocation of the entire collection of data to bidder 𝑖 or the

allocation of an appropriate subset of data. The findings in this chapter imply that

all-or-nothing data allocations suffice: in both the welfare-maximizing and revenue-

maximizing auctions, bidders either receive the entire collection of data or nothing at

all, depending on the thresholding rules discussed above.
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Chapter 4

Auctions of Multiple Digital Goods

with Externalities

In this chapter, we consider auctions of multiple heterogeneous digital goods in the

presence of negative externalities among bidders. We assume that bidders have ad-

ditive valuations over the goods and study the setting of privately known incoming

externalities, the analog of Setting 1 in Chapter 3. That is, bidders’ private types

include their valuations of each good and the negative externalities that allocations

of goods to other bidders have on their utility.

Once again, we would like to find auction mechanisms that either maximize the

social welfare or the seller’s expected revenue. However, as will be explained in

Section 4.3, optimal multi-item mechanisms are notoriously complicated and often

not realistically implementable. To this end, we prove that simply selling each item

in separate auctions can yield a guaranteed fraction of the optimal multi-item auction

revenue. This allows us to construct approximately optimal multi-item mechanisms

using the optimal single-item auctions derived in Chapter 3.

Section 4.1 presents the extension of the model in Chapter 2 to the setting of mul-

tiple digital goods. Section 4.2 studies welfare-maximizing mechanisms, and Section

4.3 studies (approximately) revenue-maximizing mechanisms.
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4.1 Model

Let 𝐺 = [𝑔] be the set of heterogeneous digital goods for sale, indexed by 𝑘 ∈

𝐺. Let 𝑁 = [𝑛] be the set of bidders, usually indexed by 𝑖, 𝑗 ∈ 𝑁 . We assume

independent items and independent bidders, i.e., valuations for items are independent

across bidders and across items. As previously stated, we also assume that bidders’

valuations are additive over the items. That is, each bidder’s valuation of a set of

items is simply the sum of the valuations of each item in the set.

We denote by 𝑇𝑖 the private type of each bidder 𝑖 ∈ 𝑁 , where 𝑇𝑖 ∈ R𝑛×𝑔 is a

matrix with (𝑗, 𝑘)th entry

𝑇 𝑘
𝑖,𝑗 =

⎧⎪⎨⎪⎩𝑣𝑘𝑖 , 𝑗 = 𝑖

−𝜂𝑘𝑖←𝑗, 𝑗 ̸= 𝑖

Similar to the single-item case, 𝑣𝑘𝑖 ≥ 0 is bidder 𝑖’s value of the 𝑘th good and 𝜂𝑘𝑖←𝑗 ≥ 0

is the magnitude of the negative externality that bidder 𝑗’s allocation of item 𝑘 has

on 𝑖’s utility. We collect all private types into 𝑇 = (𝑇1, ..., 𝑇𝑛), and let 𝑇−𝑖 = (𝑇𝑗)𝑗 ̸=𝑖

contain all type matrices except for bidder 𝑖’s. Let Θ =
∏︀

𝑖,𝑗∈𝑁
∏︀

𝑘∈𝐺 Θ𝑘
𝑖,𝑗 denote the

type space, where 𝑇 𝑘
𝑖,𝑗 ∈ Θ𝑘

𝑖,𝑗 = [−𝜂𝑘𝑖←𝑗,−𝜂
¯
𝑘
𝑖←𝑗

] for 𝑗 ̸= 𝑖 and 𝑇 𝑘
𝑖,𝑖 ∈ Θ𝑘

𝑖𝑖 = [𝑣
¯
𝑘
𝑖 , 𝑣

𝑘
𝑖 ] for

𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐺. For 𝑖 ∈ 𝑁 , define the critical type 𝑇𝑖 to be the type in Θ𝑖 closest

the origin, i.e., 𝑇 𝑘
𝑖,𝑗 := −𝜂

¯
𝑘
𝑖,𝑗

and 𝑇 𝑘
𝑖,𝑖 := 𝑣

¯
𝑘
𝑖 for 𝑗 ̸= 𝑖 ∈ 𝑁 and 𝑘 ∈ 𝐺. In the case

of revenue maximization, we assume that the types 𝑇 are distributed according to a

distribution ℱ on Θ. The assumptions of independent items and bidders translates

to the type parameters {𝑇 𝑘
𝑖,𝑗 : 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐺} being mutually independent.

We denote an allocation of items by the matrix 𝑋 ∈ R𝑛×𝑔 where the (𝑖, 𝑘)th

element 𝑋𝑘
𝑖 ∈ [0, 1] denotes the probability of allocating the 𝑘th good to bidder 𝑖.

In our model, a bidder 𝑖 with type 𝑇𝑖 has a valuation 𝜈𝑖(𝑋;𝑇𝑖) that is linear in the

allocation 𝑋 over both bidders and items, and can be expressed using the matrix
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inner product as

𝜈𝑖(𝑋;𝑇𝑖) = 𝑇𝑖 ·𝑋 (4.1.1)

=
∑︁
𝑘∈𝐺

⎛⎝𝑣𝑘𝑖 𝑋
𝑘
𝑖 −

∑︁
𝑗∈𝑁∖𝑖

𝜂𝑘𝑖←𝑗𝑋
𝑘
𝑗

⎞⎠ (4.1.2)

Let 𝑝 = (𝑝1, ..., 𝑝𝑛) ∈ R𝑛 be the vector of payments from the bidders to the

auctioneer. Bidders have quasilinear utilities 𝑢𝑖(𝑋, 𝑝𝑖;𝑇𝑖) = 𝜈𝑖(𝑋;𝑇𝑖) − 𝑝𝑖.

Auction Design As in the single-item setting (see Section 2.2.2), we augment the

type spaces of bidders 𝑖 with the element ∅ denoting a bid of non-participation, to

obtain the space of feasible bids 𝐵𝑖 = 𝑇𝑖 ∪ {∅}. Let 𝐵 =
∏︀

𝑖∈𝑁 𝐵𝑖 be the entire bid

space. A auction mechanism 𝜇 = (𝑋(·), 𝑝(·)) consists of an allocation function 𝑋(·)

and payment function 𝑝(·) mapping bids in 𝐵 to allocations in [0, 1]𝑛·𝑔 and payment

vectors in R𝑛, respectively.

Two common goals of mechanism design are social welfare maximization and rev-

enue maximization. Using the revelation principle, without loss of generality, we

optimize for these two goals over direct mechanisms that are Bayes Nash incentive

compatible (BNIC) and interim individually rational (interim IR), as defined in Sec-

tion 2.2.3.

4.2 Welfare Maximization

To derive the class of welfare-maximizing auctions of multiple digital goods, as with

the case of single goods, we instantiate the VCG mechanism. Because valuations are

additive over items, the resulting efficient mechanism can be interpreted as running

𝑔 VCG mechanism, one for selling each item separately.
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To see this, we express the social welfare as

SW(𝑋;𝑇 ) =
∑︁
𝑖∈𝑁

𝑇𝑖 ·𝑋

=
∑︁
𝑘∈𝐺

∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁

𝑇 𝑘
𝑖,𝑗 ·𝑋𝑘

𝑗 =
∑︁
𝑘∈𝐺

∑︁
𝑖∈𝑁

(︁∑︁
𝑗∈𝑁

𝑇 𝑘
𝑗,𝑖

)︁
·𝑋𝑘

𝑖 .

Thus the welfare maximizing allocation rule is 𝑋𝑘
𝑖 (𝑇 ) = 1{

∑︀
𝑗∈𝑁 𝑇 𝑘

𝑗,𝑖 ≥ 0} = 1{𝑣𝑘𝑖 −∑︀
𝑗∈𝑁∖𝑖 𝜂𝑗←𝑖 ≥ 0}, which allocates item 𝑘 to bidder 𝑖 if the net contribution of such an

allocation to the overall welfare is nonnegative. Because the social welfare decomposes

as a sum over the items, the associated VCG payment rules also decompose as sums

of VCG payments for the individual items. See Section 3.2.1, and specifically (3.2.5),

for details on the single-item payment rules.

4.3 Revenue Maximization

We now consider the problem of revenue-maximizing auctions for multiple digital

goods with externalities when bidders have additive valuations over the items. Despite

the apparently simple condition of additive valuations, however, optimal multi-item

mechanism design in this setting and more generally is notoriously complicated. With

a single good for sale, the format of the optimal auction is the same regardless of

bidders’ type distributions. In the standard auction setting without externalities,

for instance, the optimal mechanism may be implemented as a second price auction

with reserve price. Though the reserve price depends on the type distribution, the

fact that we have a single threshold function as the allocation rule remains the same.

However, with multiple goods for sale, the form of the optimal auction itself depends

on the type distribution, and may require randomness, uncountably large menus, and

bundling (even when bidders have additive valuations over the items!) [16]. The

optimal mechanisms can also exhibit unintuitive properties like being non-monotone

in the distribution of bidders’ valuations, i.e., even when bidders’ values for items

increase, the maximum expected revenue may decrease [24].
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Because optimal multi-item mechanisms can be structurally complex and often

not realistically implementable, we turn from trying to solve for exactly optimal

mechanisms and instead seek mechanisms with a simple structure, such as selling

items separately or as a grand bundle, that still perform reasonably well. In this

section we prove that selling items separately via optimal single-item auctions (which

are studied in Chapter 3) yields a guaranteed fraction of the optimal multi-item

auction revenue. To do this, we nontrivially extend the approximation technique of

[22] to the present setting of interdependent valuations with endogenous participation

constraints.

4.3.1 Approximately Optimal Mechanisms

Once again using the Revelation Principle, we restrict the class of mechanisms 𝜇 =

(𝑋(·), 𝑝(·)) considered to those that satisfy Bayes-Nash incentive compatibility (BNIC)

and interim individual rationality (interim IR) (see Definitions 2.2.4, 2.2.5). Then for

a given distribution of random valuations 𝑇 , let Rev(𝑇 ) denote the maximum ex-

pected revenue attainable by a BNIC, interim IR mechanism:

Rev(𝑇 ) := sup
𝜇 is IC, IR

E

[︃∑︁
𝑖∈𝑁

𝑝𝑖(𝑇 )

]︃

This quantity will be the benchmark by which we measure the performance of classes

of simple multi-item auctions.

Given that valuations are additive over items, it is natural to compare the sum

of the revenues of single-item auctions for each of the goods with the optimal multi-

item auction revenue. It turns out that under the running assumption of independent

item and bidder valuations, selling items separately can guarantee a fraction of the

optimal revenue. This is formalized in the following main result, which bounds the

revenue from the optimal mechanism for selling 2 items in terms of the revenue from

optimally selling each item separately.

Theorem 4.3.1. Let 𝑇 be the random matrix of types for 𝑛 bidders and 𝑔 = 2 items,
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distributed according to ℱ on Θ = Θ1×Θ2, such that the types {𝑇 𝑘
𝑖,𝑗 : 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐺}

are mutually independent. Further, suppose the average externalities are bounded by

a constant factor 𝛾 ≥ 1 times the smallest, such that E[𝑇 𝑘
𝑖,𝑗] ≥ 𝛾𝑇 𝑘

𝑖,𝑗 for all 𝑖 ̸= 𝑗 ∈ 𝑁 ,

𝑘 ∈ 𝐺. Then

Rev(𝑇 1) + Rev(𝑇 2) ≤ Rev(𝑇 ) ≤ (1 + 𝑛 + 𝛾) ·
(︀
Rev(𝑇 1) + Rev(𝑇 2)

)︀
We first present a collection of relevant results that will be used in the proof of

this theorem, but that also illustrate the nature of auctions of multiple digital goods

with externalities. In particular, the fact that bidders have interdependent valuations

and their outside option utility (i.e., utility under non-participation in the auction) is

endogenously determined, foils attempts at a simple extension of existing constant-

factor approximation results ([22]) that hold in settings without externalities.

Notation. Before moving on, we define the following useful quantities. Let 𝑉𝑖(𝑇𝑖;𝑇𝑖) :=

E[𝑢𝑖(𝑋(𝑇𝑖, 𝑇−𝑖), 𝑝(𝑇𝑖, 𝑇∖𝑖);𝑇𝑖)|𝑇𝑖] be the interim expected utility of bidder 𝑖 for report-

ing type 𝑇𝑖 ∈ 𝐵𝑖 given true type 𝑇𝑖 ∈ Θ𝑖, and assuming all other bidders report their

types 𝑇−𝑖 ∈ Θ−𝑖 truthfully. Recall that a bid of ∅ represents non-participation in the

auction, and we must have that 𝑋𝑘
𝑖 (𝑇𝑖 = ∅, 𝑇−𝑖) = 0 for 𝑘 ∈ 𝐺 and 𝑝𝑖(𝑇𝑖 = ∅, 𝑇−𝑖) = 0,

for all 𝑖 ∈ 𝑁 . Further, let 𝑌 (𝑇𝑖) := E[𝑋(𝑇𝑖, 𝑇−𝑖)|𝑇𝑖] = E𝑇−𝑖
[𝑋(𝑇𝑖, 𝑇−𝑖)] denote the

interim expected allocation from bidder 𝑖’s perspective, when 𝑖 bids 𝑇𝑖 with true type

𝑇𝑖, and let 𝑞𝑖(𝑇𝑖) := E[𝑝(𝑇𝑖, 𝑇−𝑖)|𝑇𝑖] = E𝑇−𝑖
[𝑝(𝑇𝑖, 𝑇−𝑖)] likewise denote the interim ex-

pected payment by bidder 𝑖. Note that, under the given assumption of independent

bidder types, the interim expected allocation and payment functions do not depend

on bidder 𝑖’s true type 𝑇𝑖. Also note that 𝑌 (𝑇𝑖) ∈ [0, 1]𝑛·𝑔 is in general a different

function for each bidder 𝑖 ∈ 𝑁 , which for notational simplicity we do not explicitly

denote. We then have that

𝑉𝑖(𝑇𝑖;𝑇𝑖) = 𝑇𝑖 · 𝑌 (𝑇𝑖) − 𝑞𝑖(𝑇𝑖).
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As in the single good case, the optimal allocation given a bid of non-participation

𝑇𝑖 = ∅ by bidder 𝑖 ∈ 𝑁 is to allocate all goods to all bidders except 𝑖. For 𝑖 ∈ 𝑁 , let

𝑍(𝑖) denote this allocation matrix, such that 𝑍𝑘
(𝑖)𝑗 = 1{𝑖 ̸= 𝑗}. Due to negative exter-

nalities, this allocation maximally depresses bidder 𝑖’s utility of non-participation, and

gives us the loosest IR constraint and thus the largest feasible set of mechanisms over

which we maximize expected revenue. Then it is optimal to set 𝑋(𝑇𝑖 = ∅, 𝑇−𝑖) = 𝑍(𝑖).

Note that we only need to consider single bidder deviations (i.e., non-participation)

from equilibrium under the Bayes-Nash solution concept.

The first of our results adapts the proof technique of [22, Proposition 6] to show

that any optimal mechanism can be implemented with the no positive transfer

(NPT) property. This property states that the auctioneer never has to pay a bidder

to participate, i.e., 𝑝(𝑇 ) ≥ 0 for all 𝑇 ∈ Θ.

Proposition 4.3.2. Let 𝜇 = (𝑋(·), 𝑝(·)) be an BNIC and interim IR mechanism on

type space Θ. Then the following hold.

(i) For all allocations 𝑋 ∈ [0, 1]𝑛·𝑔 and types 𝑇𝑖 ∈ Θ𝑖, 𝑇𝑖 · (𝑋 − 𝑍(𝑖)) ≥ 0.

(ii) 𝑞𝑖(𝑇𝑖) ≥ 𝑇𝑖 ·(𝑌 (𝑇𝑖)−𝑍(𝑖)) for all 𝑇𝑖 ∈ Θ𝑖 if and only if 𝑞𝑖(𝑇𝑖) = 𝑇𝑖 ·(𝑌 (𝑇𝑖)−𝑍(𝑖)).

(iii) There exists a BNIC, interim IR, and NPT mechanism �̃� = (�̃�(·), 𝑝(·)) such

that the allocation rule �̃�(𝑇 ) = 𝑋(𝑇 ) and E[𝑝𝑖(𝑇 )] ≥ E[𝑝𝑖(𝑇 )] for all 𝑖 ∈ 𝑁

and 𝑇 ∈ Θ.

(iv) Let 𝜃 ⊆ Θ be a subset of the type space. Then E
[︀∑︀

𝑖∈𝑁 𝑝𝑖(𝑇 )1(𝑇 ∈ 𝜃)
]︀
≤

Rev(𝑇 ).
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Proof. (i) Let 𝑇𝑖 ∈ Θ𝑖, 𝑋 ∈ [0, 1]𝑛·𝑔. Then

𝑇𝑖 ·𝑋 =
∑︁
𝑘∈𝐺

⎛⎝∑︁
𝑗∈𝑁∖𝑖

𝑡𝑘𝑖,𝑗𝑥
𝑘
𝑗 + 𝑡𝑘𝑖,𝑖𝑥

𝑘
𝑖

⎞⎠
≥
∑︁
𝑘∈𝐺

∑︁
𝑗∈𝑁∖𝑖

𝑡𝑘𝑖,𝑗 · 1 + 0

= 𝑇𝑖 · 𝑍(𝑖)

where we used that 𝑥𝑘
𝑗 ∈ [0, 1] for 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐺 and 𝑡𝑘𝑖,𝑗 ≤ 0 for 𝑗 ̸= 𝑖, and

𝑡𝑘𝑖,𝑖 ≥ 0.

(ii) (⇒) Suppose 𝑞𝑖(𝑇𝑖) ≥ 𝑇𝑖 · (𝑌 (𝑇𝑖)−𝑍(𝑖)) for all 𝑇𝑖 ∈ Θ𝑖. In particular, this holds

for the critical type 𝑇𝑖. Next, by the interim IR condition for 𝑇𝑖,

𝑇𝑖 · 𝑌 (𝑇𝑖) − 𝑞𝑖(𝑇𝑖) ≥ 𝑇𝑖 · 𝑌 (𝑇𝑖 = ∅)

⇒ 𝑇𝑖 · 𝑌 (𝑇𝑖) − 𝑞𝑖(𝑇𝑖) ≥ 𝑇𝑖 · 𝑍(𝑖)

⇒ 𝑞𝑖(𝑇𝑖) ≤ 𝑇𝑖 · (𝑌 (𝑇𝑖) − 𝑍(𝑖))

where for the first implication we used the fact that the lowest utility from

non-participation occurs when the allocation is 𝑍(𝑖), i.e., 𝑇𝑖 · 𝑌 (𝑇𝑖 = ∅) ≥

𝑇𝑖 ·𝑍(𝑖) for any mechanism with interim allocation 𝑌 . Combined with the initial

assumption, we get that equality must hold: 𝑞𝑖(𝑇𝑖) = 𝑇𝑖 · (𝑌 (𝑇𝑖) − 𝑍(𝑖)).

(⇐) Suppose that 𝑞𝑖(𝑇𝑖) = 𝑇𝑖 · (𝑌 (𝑇𝑖) − 𝑍(𝑖)). By BNIC, for all 𝑇𝑖 ∈ Θ𝑖

𝑇𝑖 · 𝑌 (𝑇𝑖) − 𝑞𝑖(𝑇𝑖) ≥ 𝑇𝑖 · 𝑌 (𝑇𝑖) − 𝑞𝑖(𝑇𝑖)

⇒ 𝑇𝑖 · 𝑌 (𝑇𝑖) − (𝑇𝑖 · 𝑌 (𝑇𝑖) − 𝑇𝑖 · 𝑍(𝑖)) ≥ 𝑇𝑖 · 𝑌 (𝑇𝑖) − 𝑞𝑖(𝑇𝑖)

⇒ 𝑇𝑖 · (𝑍(𝑖) − 𝑌 (𝑇𝑖)) ≥ −𝑞𝑖(𝑇𝑖)

⇒ 𝑞𝑖(𝑇𝑖) ≥ 𝑇𝑖 · (𝑌 (𝑇𝑖) − 𝑍(𝑖))
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(iii) Define the new mechanism �̄� = (�̄�(·), 𝑝(·)) with �̄�(𝑇 ) = 𝑋(𝑇 ) and

𝑝𝑖(𝑇 ) = 𝑝𝑖(𝑇 ) + [−𝑞𝑖(𝑇𝑖) + 𝑇𝑖 · (𝑌 (𝑇𝑖) − 𝑍(𝑖))]

for all 𝑇 ∈ Θ, 𝑖 ∈ 𝑁 . Here we let 𝑞𝑖(𝑇𝑖) and 𝑌 (𝑇𝑖) denote, respectively, the

interim expected payment and allocation from bidder 𝑖’s perspective for the

mechanism 𝜇, and accordingly let 𝑞𝑖(𝑇𝑖) and 𝑌 (𝑇𝑖) denote, respectively, the

interim expected payment and allocations for the new mechanism �̄�. Then for

all 𝑇𝑖 ∈ Θ𝑖, 𝑌 = 𝑌 and 𝑞𝑖(𝑇𝑖) = 𝑞𝑖(𝑇𝑖) − 𝑞𝑖(𝑇𝑖) + 𝑇𝑖 · (𝑌 (𝑇𝑖) − 𝑍). Let us

further set the allocation in case of non-participation of a single bidder 𝑖 to be

the “worst-case” for 𝑖: �̄�(𝑇𝑖 = ∅, 𝑇−𝑖) = 𝑍(𝑖).

Note that since 𝜇 is interim IR, the constant shift in bidder 𝑖’s payments is

nonnegative, i.e., −𝑞𝑖(𝑇𝑖) + 𝑇𝑖 · (𝑌 (𝑇𝑖) − 𝑍(𝑖)) ≥ 0, so 𝑝(𝑇 ) ≥ 𝑝(𝑇 ). �̄� satisfies

BNIC since bidder 𝑖’s utilities are uniformly shifted by a constant. Further, by

Lemma 4.3.4, �̄� is interim IR if and only if interim IR is satisfied for the types

𝑇𝑖, for 𝑖 ∈ 𝑁 . This condition indeed holds by construction:

𝑇𝑖 · 𝑌 (𝑇𝑖) − 𝑞𝑖(𝑇𝑖) = 𝑇𝑖 · 𝑌 (𝑇𝑖) − 𝑇𝑖 · (𝑌 (𝑇𝑖) − 𝑍(𝑖)) = 𝑇𝑖 · 𝑍(𝑖).

Since �̄� is BNIC, interim IR, and 𝑞𝑖(𝑇𝑖) = 𝑇𝑖 ·(𝑌 (𝑇𝑖)−𝑍(𝑖)) for 𝑖 ∈ 𝑁 , statements

(4.3.2.i) and (4.3.2.ii) imply that for all 𝑇𝑖 ∈ Θ𝑖, 𝑞𝑖(𝑇𝑖) ≥ 0.

Now given �̄�, Lemma 4.3.5 gives us another BNIC and interim IR mechanism

�̃� = (�̃�(·), 𝑝(·)) with 𝑝𝑖(𝑇 ) = 𝑞𝑖(𝑇𝑖) ≥ 0 for 𝑖 ∈ 𝑁 . Thus �̃� also satisfies NPT

and for all 𝑖 ∈ 𝑁 , E[𝑝𝑖(𝑇 )] ≤ E[𝑝𝑖(𝑇 )] = E[𝑞𝑖(𝑇𝑖)] = E[𝑝𝑖(𝑇 )].

(iv) Let �̃� = (�̃�(·), 𝑝(·)) be a BNIC, interim IR, NPT mechanism with E[𝑝𝑖(𝑇 )] ≥

E[𝑝𝑖(𝑇 )], as constructed in the proof of (4.3.2.iii). Then

E[
∑︁
𝑖∈𝑁

𝑝𝑖(𝑇 )1(𝑇 ∈ 𝜃)] ≤ E[
∑︁
𝑖∈𝑁

𝑝𝑖(𝑇 )1(𝑇 ∈ 𝜃)] ≤ E[
∑︁
𝑖∈𝑁

𝑝𝑖(𝑇 )] ≤ Rev(𝑇 )

where we use that 𝑝 ≥ 0 by NPT, and the definition of Rev(𝑇 ).
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Remark 4.3.3. Note that the conditions in (4.3.2.ii) are stronger than NPT, by state-

ment (4.3.2.i). In particular, we make use of the fact that the interim IR constraint is

endogenously determined by the mechanism because of the externality effects, and the

optimal such constraint allows the auctioneer to charge bidders against the “threat”

of allocating goods to other bidders. By statement (4.3.2.iii), it suffices to consider

BNIC, interim IR, and NPT mechanisms in the search for revenue-maximizing mech-

anisms.

The following two lemmas were used in the proof of Proposition 4.3.2. Lemma

4.3.4 is a characterization of interim IR similar to that of 3.1.2 and says that it suffices

to check interim IR for the critical type 𝑇𝑖 ∈ Θ𝑖 for 𝑖 ∈ 𝑁 .

Lemma 4.3.4. Suppose 𝜇 = (𝑋(·), 𝑝(·)) is a BNIC mechanism on type space Θ with

the allocation rule 𝑋(𝑇𝑖 = ∅, 𝑇−𝑖) = 𝑍(𝑖) for 𝑖 ∈ 𝑁 . Then 𝜇 is interim IR if and only

if interim IR holds for the critical types 𝑇𝑖, i.e., that

𝑇𝑖 · 𝑌 (𝑇𝑖) − 𝑞(𝑇𝑖) ≥ 𝑇𝑖 · 𝑍(𝑖), 𝑖 ∈ 𝑁. (4.3.1)

Proof. Suppose (4.3.1) holds. Then for all 𝑇𝑖 ∈ Θ𝑖,

𝑇𝑖 · 𝑌 (𝑇𝑖) − 𝑞𝑖(𝑇𝑖) ≥ 𝑇𝑖 · 𝑌 (𝑇𝑖) − 𝑞𝑖(𝑇𝑖)

= (𝑇𝑖 − 𝑇𝑖) · 𝑌 (𝑇𝑖) + (𝑇𝑖 · 𝑌 (𝑇𝑖)) − 𝑞𝑖(𝑇𝑖))

≥ (𝑇𝑖 − 𝑇𝑖) · 𝑍(𝑖) + 𝑇𝑖 · 𝑍(𝑖)

= 𝑇𝑖 · 𝑍(𝑖),

which is the desired interim IR condition. The first inequality is by BNIC and the

second inequality is follows by (4.3.1) and from the fact that for any 𝑋 ∈ [0, 1]𝑛·𝑔,

(𝑇𝑖 − 𝑇𝑖) ·𝑋 ≥ (𝑇𝑖 − 𝑇𝑖) · 𝑍(𝑖). We can see this by using the definition of the critical
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type 𝑇𝑖 to get

(𝑇𝑖 − 𝑇𝑖)
𝑘
𝑗 =

⎧⎪⎨⎪⎩𝑣𝑘𝑖 − 𝑣
¯
𝑘
𝑖 ≥ 0, 𝑖 = 𝑗

−𝜂𝑘𝑖←𝑗 + 𝜂
¯
𝑘
𝑖←𝑗

≤ 0, 𝑖 ̸= 𝑗.

For 𝑘 ̸= 𝐺, 𝑋𝑘
𝑖 ≥ 𝑍𝑘

(𝑖)𝑖 = 0, and 𝑋𝑘
𝑗 ≤ 𝑍𝑘

(𝑖)𝑗 = 1 for 𝑗 ̸= 𝑖, so that (𝑇𝑖−𝑇𝑖)·(𝑋−𝑍(𝑖)) ≥

0. Finally, the converse implication clearly holds.

The next lemma allows us to, without loss of generality, choose the payment rule

for each bidder 𝑖 to be equal its interim payment rule. In particular, we can have that

bidder 𝑖’s payment only depends on 𝑖’s bid 𝑇𝑖.

Lemma 4.3.5. Suppose 𝜇 = (𝑋(·), 𝑝(·)) is a BNIC and interim IR mechanism on

type space Θ. Then the mechanism �̃� = (�̃�(·), 𝑝(·)) with �̃� := 𝑋 and 𝑝𝑖(𝑇 ) := 𝑞𝑖(𝑇𝑖)

is BNIC and interim IR, and E[
∑︀

𝑖∈𝑁 𝑝𝑖(𝑇 )] = E[
∑︀

𝑖∈𝑁 𝑝𝑖(𝑇 )].

Proof. Let �̃� := 𝑋 and 𝑝𝑖(𝑇 ) := 𝑞𝑖(𝑇𝑖) = E[𝑝𝑖(𝑇 )|𝑇𝑖] for 𝑖 ∈ 𝑁, 𝑇 ∈ Θ. The expected

revenue remains unchanged by the law of total expectation and linearity of expec-

tation: E[
∑︀

𝑖∈𝑁 𝑝𝑖(𝑇 )] = E[
∑︀

𝑖∈𝑁 E[𝑝𝑖(𝑇 )|𝑇𝑖]] = E[
∑︀

𝑖∈𝑁 𝑞𝑖(𝑇𝑖)] = E[
∑︀

𝑖∈𝑁 E[𝑝𝑖(𝑇 )].

The interim IR and BNIC conditions for 𝜇 only feature the interim expected pay-

ments for each bidder 𝑖 ∈ 𝑁 :

(𝐼𝐶) 𝑇𝑖 · E[𝑋(𝑇𝑖, 𝑇−𝑖)|𝑇𝑖] − 𝑞𝑖(𝑇𝑖) ≥ 𝑇𝑖 · E[𝑋(𝑇𝑖, 𝑇−𝑖)|𝑇𝑖] − 𝑞𝑖(𝑇𝑖)

(𝐼𝑅) 𝑇𝑖 · E[𝑋(𝑇𝑖, 𝑇−𝑖)|𝑇𝑖] − 𝑞𝑖(𝑇𝑖) ≥ 𝑇𝑖 · E[𝑋(𝑇𝑖 = ∅, 𝑇−𝑖)|𝑇𝑖]

Since 𝑞𝑖(𝑇𝑖) = 𝑞𝑖(𝑇𝑖), BNIC and interim IR carry over to �̃�.

Lemmas 4.3.6, 4.3.8 and 4.3.9 will be used to bound various terms in the proof of

Theorem 4.3.1. The first of these lemmas follows a proof technique similar to that used

in [22] to derive a mechanism to sell one item given a two-item mechanism. However,

in the current setting of interdependent valuations and endogenous IR constraints,

extra care must be taken to ensure BNIC and interim IR of the induced mechanism.
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Lemma 4.3.6. Suppose 𝜇 = (𝑋(·), 𝑝(·)) is a BNIC and interim IR mechanism for 2

items on type space Θ1 × Θ2. Fix some 𝜏2 ∈ Θ2, and define the induced mechanism

𝜇(1) = (𝑋(1)(·|𝜏2), 𝑝(1)(·|𝜏2)) on Θ1 by

𝑋(1)(𝑇 1|𝜏2) := 𝑋1(𝑇 1, 𝜏2), 𝑋(1)(𝑇 1
𝑖 = ∅, 𝑇 1

−𝑖|𝜏2) = 𝑍(𝑖) (4.3.2)

𝑝
(1)
𝑖 (𝑇 1|𝜏2) := 𝑝𝑖(𝑇

1, 𝜏2) − 𝜏 2𝑖 · E[𝑋2(𝑇 1, 𝑇 2)|𝑇 1
𝑖 , 𝑇

2
𝑖 = 𝜏 2𝑖 ]

+ 𝑇 1
𝑖 · E[𝑋1(𝑇 1, 𝑇 2)|𝑇 1

𝑖 , 𝑇
2 = 𝜏 2] − 𝑇 1

𝑖 · E[𝑋1(𝑇 1, 𝑇 2)|𝑇 1
𝑖 , 𝑇

2
𝑖 = 𝜏 2𝑖 ]

+ 𝜏 2𝑖 · 𝑍2
(𝑖).

(4.3.3)

Then 𝜇(1) is BNIC and interim IR.

An interpretation of the induced mechanism 𝜇(1) is as follows. Given a collection of

bids 𝑇 1, the allocation of item 1 will be as the same as in the 2-item mechanism given

bids 𝜏 2 for item 2. We modify the bidder 𝑖’s original payment rule by subtracting

the effect that the allocation of item 2 would have had on 𝑖’s utility. The third and

fourth terms in (4.3.3) are corrections that will allow us to transfer BNIC properties

from 𝜇 to 𝜇(1), and the final term will allow us to transfer interim IR properties.

Proof of Lemma 4.3.6. By Lemma 4.3.5, without loss of generality, assume that 𝑝𝑖(𝑇 ) =

𝑞𝑖(𝑇𝑖) for all 𝑇 ∈ Θ. Under the induced mechanism, the interim expected utility of

bidder 𝑖 bidding 𝑇 1
𝑖 , with true type 𝑇 1

𝑖 is

𝑉
(1)
𝑖 (𝑇 1

𝑖 ;𝑇 1
𝑖 ) = E𝑇 1 [𝑇 1

𝑖 ·𝑋(1)(𝑇 1
𝑖 , 𝑇

1
−𝑖|𝜏 2) − 𝑝

(1)
𝑖 (𝑇 1

𝑖 , 𝑇
1
−𝑖|𝜏 2) |𝑇 1

𝑖 ]

= 𝑇 1
𝑖 · E𝑇 1 [𝑋1(𝑇 1

𝑖 , 𝑇
1
−𝑖, 𝜏

2) |𝑇 1
𝑖 ] − 𝑞𝑖(𝑇

1
𝑖 , 𝜏

2
𝑖 )

+ 𝜏 2𝑖 · E𝑇 1,𝑇 2
−𝑖

[𝑋2(𝑇 1
𝑖 , 𝑇

1
−𝑖, 𝜏

2
𝑖 , 𝑇

2
−𝑖) |𝑇 1

𝑖 ]

− 𝑇 1
𝑖 · E𝑇 1 [𝑋1(𝑇 1

𝑖 , 𝑇
1
−𝑖, 𝜏

2) |𝑇 1
𝑖 ] + 𝑇 1

𝑖 · E𝑇 1,𝑇 2
−𝑖

[𝑋1(𝑇 1
𝑖 , 𝑇

1
−𝑖, 𝜏

2
𝑖 , 𝑇

2
−𝑖) |𝑇 1

𝑖 ]

− 𝜏 2𝑖 · 𝑍2
(𝑖),

where we have substituted in the definition of 𝜇(1). After simplifying and re-arranging
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terms, we get

𝑉
(1)
𝑖 (𝑇 1

𝑖 ;𝑇 1
𝑖 ) = 𝑇 1

𝑖 · E𝑇 [𝑋1(𝑇 1
𝑖 , 𝑇

1
−𝑖, 𝑇

2) |𝑇 1
𝑖 , 𝑇

2
𝑖 = 𝜏 2𝑖 ]

+ 𝜏 2𝑖 · E𝑇 [𝑋2(𝑇 1
𝑖 , 𝑇

1
−𝑖, 𝑇

2) |𝑇 1
𝑖 , 𝑇

2
𝑖 = 𝜏 2𝑖 ]

− 𝑞𝑖(𝑇
1
𝑖 , 𝜏

2
𝑖 ) − 𝜏 2𝑖 · 𝑍2

(𝑖)

= 𝑉𝑖((𝑇
1
𝑖 , 𝜏

2
𝑖 ); (𝑇 1

𝑖 , 𝜏
2
𝑖 )) − 𝜏 2𝑖 · 𝑍2

(𝑖).

We thus see that 𝜇(1) inherits BNIC from 𝜇 since bidder 𝑖’s interim utility function

is only shifted by a constant:

𝑉
(1)
𝑖 (𝑇 1

𝑖 ;𝑇 1
𝑖 ) = 𝑉𝑖((𝑇

1
𝑖 , 𝜏

2
𝑖 ); (𝑇 1

𝑖 , 𝜏
2
𝑖 )) − 𝜏 2𝑖 · 𝑍2

(𝑖)

≤ 𝑉𝑖((𝑇
1
𝑖 , 𝜏

2
𝑖 ); (𝑇 1

𝑖 , 𝜏
2
𝑖 )) − 𝜏 2𝑖 · 𝑍2

(𝑖) = 𝑉
(1)
𝑖 (𝑇 1

𝑖 ;𝑇 1
𝑖 ).

Further, 𝜇(1) inherits interim IR as well:

𝑉
(1)
𝑖 (𝑇 1

𝑖 ;𝑇 1
𝑖 ) = 𝑉𝑖((𝑇

1
𝑖 , 𝜏

2
𝑖 ); (𝑇 1

𝑖 , 𝜏
2
𝑖 )) − 𝜏 2𝑖 · 𝑍2

(𝑖)

≥ (𝑇 1
𝑖 , 𝜏

2
𝑖 ) · 𝑍(𝑖) − 𝜏 2𝑖 · 𝑍2

(𝑖)

= 𝑇 1
𝑖 · 𝑍1

(𝑖) = 𝑇 1
𝑖 · 𝑌 (1)(𝑇 1

𝑖 = ∅, 𝑇 1
−𝑖|𝜏2).

Remark 4.3.7. Unlike in the setting of [22], bidders here have interdependent valua-

tions. This prevents us from being able to decouple bidders’ allocations, for example

by replacing the allocation function 𝑋(𝑇 ) with any of the bidders’ interim expected

allocations 𝑌 (𝑇𝑖). Further, we only inherit BNIC conditions from 𝜇 rather than

stronger DSIC conditions that would easily transfer from 𝜇 to 𝜇(1), for all values

of 𝜏 2𝑖 ∈ Θ2
𝑖 . To circumvent this difficulty, we add in the modification term in the

penultimate line of (4.3.3).

Lemma 4.3.8. Let 𝜋 ≥ 0 be a fixed constant. Let 𝜇 = (𝑋(·), 𝑝(·)) be the mechanism
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to sell one item to 𝑛 bidders with type distribution ℱ on type space Θ = Θ1 given by

𝑋𝑖(𝑇 ) = 1{𝑤𝑖(𝑇 ) ≥ 𝜋}, 𝑇 ∈ Θ

𝑋𝑗(𝑇𝑖 = ∅, 𝑇−𝑖) = 1{
∑︁
𝑘∈𝑁∖𝑖

𝑇𝑘𝑗 ≥ 𝜋}, 𝑇−𝑖 ∈ Θ−𝑖

𝑝𝑖(𝑇 ) =
∑︁
𝑗∈𝑁∖𝑖

⎡⎣ ∑︁
𝑘∈𝑁∖𝑖

𝑇𝑘𝑗 (𝑋𝑗(𝑇𝑖 = ∅, 𝑇−𝑖) −𝑋𝑗(𝑇 )) − 𝑇𝑗,𝑖𝑋𝑖(𝑇 )

⎤⎦+ 𝜋𝑋𝑖(𝑇 ), 𝑇 ∈ Θ

where 𝑤𝑖(𝑇 ) :=
∑︀

𝑗∈𝑁 𝑇𝑗,𝑖 for 𝑖 ∈ 𝑁 . Then 𝜇 is BNIC and interim IR with expected

revenue

E

[︃∑︁
𝑖∈𝑁

𝑝𝑖(𝑇 )

]︃
≥ E

[︃∑︁
𝑖∈𝑁

𝜋 1{𝑤𝑖(𝑇 ) ≥ 𝜋}

]︃
(4.3.4)

Proof. We first extend 𝜇 to be a VCG mechanism to sell the single item to 𝑛 + 1

bidders, consisting of the original 𝑛 bidders and a “phantom” bidder 𝑛 + 1 with type

space Θ̃ such that

Θ̃𝑖,𝑗 = Θ𝑖,𝑗, 𝑖, 𝑗 ∈ 𝑁

Θ̃𝑖,𝑛+1 = {0}, Θ̃𝑛+1,𝑖 = {−𝜋}, 𝑖 ∈ 𝑁

Θ̃𝑛+1,𝑛+1 = {0},

and with 𝑇𝑖,𝑗 still distributed according to ℱ𝑖,𝑗 for 𝑖, 𝑗 ∈ 𝑁 . Thus, each of the original

bidders exerts a negative externality of magnitude 𝜋 on the phantom if allocated

the good, but the phantom has no value for and causes no externalities on others if

allocated the good. Let �̃� be the VCG mechanism in the extended setting. Using

Proposition 3.2.2 in Section 3.2.1, with the correspondence that 𝑊𝑖 = 𝑤𝑖(𝑇 ) +𝑇𝑛+1,𝑖,

𝑊 𝑖
𝑗 = 𝑤𝑖(𝑇 )+𝑇𝑛+1,𝑖−𝑇𝑖,𝑗, and 𝑊𝑛+1 = 𝑊 𝑖

𝑛+1 = 0 for 𝑖 ̸= 𝑗 ∈ 𝑁 , we get the allocation
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and payment rules for �̃� on Θ̃:

�̃�𝑖(𝑇 ) = 1

{︁
𝑤𝑖(𝑇 ) − 𝜋 ≥ 0

}︁
, 𝑖 ∈ 𝑁

�̃�𝑗(𝑇𝑖 = ∅, 𝑇−𝑖) = 1

⎧⎨⎩∑︁
𝑘∈𝑁∖𝑖

𝑇𝑘𝑗 − 𝜋 ≥ 0

⎫⎬⎭, 𝑗 ̸= 𝑖 ∈ 𝑁

𝑝𝑖(𝑇 ) =
∑︁
𝑗∈𝑁∖𝑖

⎡⎣(
∑︁
𝑘∈𝑁∖𝑖

𝑇𝑘𝑗 − 𝜋)(�̃�𝑗(𝑇𝑖 = ∅, 𝑇−𝑖) − �̃�𝑗(𝑇 )) − 𝑇𝑗,𝑖�̃�𝑖(𝑇 )

⎤⎦+ 𝜋�̃�𝑖(𝑇 ), 𝑖 ∈ 𝑁

�̃�𝑛+1(𝑇 ) = 1{0 ≥ 0} = 1, 𝑝𝑛+1(𝑇 ) = 0.

These functions comprise a DSIC and ex-post IR mechanism, which also implies that

�̃� is BNIC and interim IR. Note that the allocation and payment rules for 𝜇 are

simply those for �̃� when restricted to bidders 𝑖 ∈ 𝑁 , and the expected interim utility

functions of bidders 𝑖 ∈ 𝑁 under �̃� and 𝜇 are equal since the phantom bidder causes

no externalities. Thus, 𝜇 also satisfies BNIC and interim IR constraints.

Furthermore, note that (
∑︀

𝑘∈𝑁∖𝑖 𝑇𝑘𝑗−𝜋)(�̃�𝑗(𝑇𝑖 = ∅, 𝑇−𝑖)−�̃�𝑗(𝑇 )) ≥ 0 and 𝑇𝑗,𝑖 ≤ 0

for all 𝑇 ∈ Θ̃, 𝑖 ̸= 𝑗 ∈ 𝑁 . Then we immediately get that 𝑝𝑖(𝑇 ) ≥ 𝜋�̃�𝑖(𝑇 ) for 𝑖 ∈ 𝑁 ,

which implies (4.3.4).

Lemma 4.3.9. Given a set of goods 𝐺 and of bidders 𝑁 with types 𝑇 distributed on

type space Θ,

∑︁
𝑘∈𝐺

∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁∖𝑖

−𝑇 𝑘
𝑖,𝑗 ≤ Rev(𝑇 ).

Proof. Consider the mechanism 𝜇 = (𝑋(·), 𝑝(·)) with 𝑋(𝑇 ) = 0 and 𝑝𝑖(𝑇 ) = −𝑇𝑖 ·𝑍(𝑖)

for all 𝑇 ∈ Θ, and 𝑋(𝑇𝑖 = ∅, 𝑇−𝑖) = 𝑍(𝑖) for 𝑖 ∈ 𝑁, 𝑇−𝑖 ∈ Θ−𝑖. That is, 𝜇 never

allocates any item to any bidder but extracts the maximum payment possible under

optimal participation constraints. This mechanism is BNIC (and DSIC) since bidders’

utilities are constant with respect to their bids, and is interim IR (and ex-post IR)
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since for all 𝑇𝑖 ∈ Θ𝑖,

𝑉𝑖(𝑇𝑖;𝑇𝑖) = −𝑝𝑖(𝑇 ) = 𝑇𝑖 · 𝑍(𝑖) ≥ 𝑇𝑖 · 𝑍(𝑖).

Thus, its expected revenue can be bounded by the optimal revenue: E
[︀∑︀

𝑖∈𝑁 𝑝𝑖(𝑇 )
]︀

=∑︀
𝑘∈𝐺

∑︀
𝑖∈𝑁
∑︀

𝑗∈𝑁∖𝑖 −𝑇 𝑘
𝑖,𝑗 ≤ Rev(𝑇 ).

We are now ready to prove our main theorem bounding the optimal revenue from

selling two items in terms of the optimal revenue from selling the items separately.

Proof of Theorem 4.3.1. Suppose 𝜇 = (𝑋(·), 𝑝(·)) is a BNIC, interim IR, and NPT

mechanism on Θ with types 𝑇 distributed according to the distribution function ℱ .

Let us first define the following quantities, which capture the effect of an allocation

of item 𝑘 to bidder 𝑖 on the total welfare:

𝑤𝑘
𝑖 (𝑇 𝑘) =

∑︁
𝑗∈𝑁

𝑇 𝑘
𝑗,𝑖 = 𝑣𝑘𝑖 −

∑︁
𝑗∈𝑁∖𝑖

𝜂𝑘𝑗←𝑖

and let 𝑤𝑘
(1)(𝑇

𝑘) := max𝑖∈𝑁 𝑤𝑘
(𝑖).

Since 𝜇 is NPT, 𝑝𝑖(𝑇 ) ≥ 0 and we partition the type space and bound the expected

revenue from 𝜇:

E

[︃∑︁
𝑖∈𝑁

𝑝𝑖(𝑇 )

]︃
=E

[︃∑︁
𝑖∈𝑁

𝑝𝑖(𝑇 )1
{︀
𝑤1

(1)(𝑇
1) ≥ 𝑤2

(1)(𝑇
2)
}︀]︃

+ E

[︃∑︁
𝑖∈𝑁

𝑝𝑖(𝑇 )1
{︀
𝑤2

(1)(𝑇
2) ≥ 𝑤1

(1)(𝑇
1)
}︀]︃ (4.3.5)

Consider the first term. For a fixed 𝑇 2 = 𝜏 2 ∈ Θ2, let 𝜇(1) = (𝑋(1)(·|𝜏2), 𝑝(1)(·|𝜏2))

be the induced BNIC and interim IR mechanism on Θ1 to sell item 1, as in Lemma

4.3.6. Then expressing 𝑝𝑖(𝑇
1, 𝜏 2) in terms of 𝜇(1) and given our independence assump-
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tions, we write the following conditional expectation

E

[︃∑︁
𝑖∈𝑁

𝑝𝑖(𝑇 )1
{︀
𝑤1

(1)(𝑇
1) ≥ 𝑤2

(1)(𝑇
2)
}︀ ⃒⃒⃒⃒⃒𝑇 2 = 𝜏 2

]︃

=E𝑇 1

[︃∑︁
𝑖∈𝑁

(︀
𝑝
(1)
𝑖 (𝑇 1|𝜏2) + 𝜏 2𝑖 · E[𝑋2(𝑇 1, 𝑇 2)|𝑇 1

𝑖 , 𝑇
2
𝑖 = 𝜏 2𝑖 ]

− 𝑇 1
𝑖 · E[𝑋1(𝑇 1, 𝑇 2)|𝑇 1

𝑖 , 𝑇
2 = 𝜏 2] + 𝑇 1

𝑖 · E[𝑋1(𝑇 1, 𝑇 2)|𝑇 1
𝑖 , 𝑇

2
𝑖 = 𝜏 2𝑖 ]

− 𝜏 2𝑖 · 𝑍2
(𝑖)

)︀
1
{︀
𝑤1

(1)(𝑇
1) ≥ 𝑤2

(1)(𝜏
2)
}︀]︃

.

(4.3.6)

We will bound (4.3.6) by attacking it in four parts.

Part 1. First, note that since 𝜇(1) is a BNIC and interim IR mechanism, statement

(iv) of Proposition 4.3.2 bounds the first term by the optimal revenue from selling

good 1 alone:

E

[︃∑︁
𝑖∈𝑁

𝑝
(1)
𝑖 (𝑇 1|𝜏2)1

{︀
𝑤1

(1)(𝑇
1) ≥ 𝑤2

(1)(𝜏
2)
}︀]︃

≤ Rev(𝑇 1).

Part 2. Next, given 𝜏 2 ∈ Θ2 and any allocation 𝑋2 ∈ [0, 1]𝑛, we can write

∑︁
𝑖∈𝑁

𝜏 2𝑖 ·𝑋2 =
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁

𝜏 2𝑖,𝑗𝑋
2
𝑗 =

∑︁
𝑖∈𝑁

(
∑︁
𝑗∈𝑁

𝜏 2𝑗,𝑖)𝑋
2
𝑖

=
∑︁
𝑖∈𝑁

𝑤2
𝑖 (𝜏

2)𝑋2
𝑖 ≤

∑︁
𝑖∈𝑁

𝑤2
(1)(𝜏

2)1
{︀
𝑤2

(1)(𝜏
2) ≥ 0

}︀
.

Using this, we bound the second term in (4.3.6):

E

[︃∑︁
𝑖∈𝑁

𝜏 2𝑖 · E[𝑋2(𝑇 1, 𝑇 2)|𝑇 1
𝑖 , 𝑇

2
𝑖 = 𝜏 2𝑖 ]1

{︀
𝑤1

(1)(𝑇
1) ≥ 𝑤2

(1)(𝜏
2)
}︀]︃

≤
∑︁
𝑖∈𝑁

E
[︀
𝑤2

(1)(𝜏
2)1
{︀
𝑤2

(1)(𝜏
2) ≥ 0

}︀
1
{︀
𝑤1

(1)(𝑇
1) ≥ 𝑤2

(1)(𝜏
2)
}︀]︀

≤𝑛E

[︃∑︁
𝑖∈𝑁

𝑤2
(1)(𝜏

2)1
{︀
𝑤2

(1)(𝜏
2) ≥ 0

}︀
1
{︀
𝑤1

𝑖 (𝑇
1) ≥ 𝑤2

(1)(𝜏
2)
}︀]︃

. (4.3.7)

By applying Lemma 4.3.8 with 𝜋 = 𝑤2
(1)(𝜏

2)1
{︁
𝑤2

(1)(𝜏
2) ≥ 0

}︁
, and in particular the
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inequality (4.3.4), we bound the quantity under the expectation in (4.3.7) by the

expected revenue of some BNIC and interim IR mechanism. This expected revenue is

in turn bounded above by the optimal revenue, Rev(𝑇1), over all BNIC and interim

IR mechanisms. Thus the second term in (4.3.6) is bounded by 𝑛Rev(𝑇1).

Part 3. We show that the expectation of the second line in (4.3.6) vanishes.

Temporarily let 𝜏 2 denote a random variable independently and identically distributed

with 𝑇 2, with distribution 𝐹 2 on Θ2. Then

E
[︀
E𝑇 1

[︀
−𝑇 1

𝑖 · E[𝑋1(𝑇 1, 𝑇 2)|𝑇 1
𝑖 , 𝑇

2 = 𝜏 2] + 𝑇 1
𝑖 · E[𝑋1(𝑇 1, 𝑇 2)|𝑇 1

𝑖 , 𝑇
2
𝑖 = 𝜏 2𝑖 ]

]︀]︀
=E

[︀
E𝑇 1

[︀
−𝑇 1

𝑖 · E[𝑋1(𝑇 1, 𝜏 2)|𝑇 1
𝑖 , 𝜏

2] + 𝑇 1
𝑖 · E[𝑋1(𝑇 1, 𝜏 2𝑖 , 𝑇

2
−𝑖)|𝑇 1

𝑖 , 𝜏
2
𝑖 ]
]︀]︀

=E
[︀
E
[︀
−𝑇 1

𝑖 ·𝑋1(𝑇 1, 𝜏 2)
⃒⃒
𝜏 2
]︀]︀

+ E
[︀
E
[︀
𝑇 1
𝑖 ·𝑋1(𝑇 1, 𝜏 2𝑖 , 𝑇

2
−𝑖)
⃒⃒
𝜏 2
]︀]︀

=E
[︀
−𝑇 1

𝑖 ·𝑋1(𝑇 1, 𝜏 2)
]︀

+ E
[︀
−𝑇 1

𝑖 ·𝑋1(𝑇 1, 𝜏 2)
]︀

=0,

where we have made use of the independence of 𝑇 𝑘
𝑖 ’s and the law of iterated expec-

tations.

Part 4. Finally, we bound the contribution of the last term in (4.3.6) by using

the assumption on the distributions of externality parameters, that E[𝑇 𝑘
𝑖,𝑗] ≥ 𝛾𝑇 𝑘

𝑖,𝑗 for

𝑖 ̸= 𝑗 ∈ 𝑁 , 𝑘 ∈ 𝐺. Then

E𝑇

[︃∑︁
𝑖∈𝑁

E
[︀
−𝑇 2

𝑖 · 𝑍2
(𝑖) 1

{︀
𝑤1

(1)(𝑇
1) ≥ 𝑤2

(1)(𝑇
2)
}︀ ⃒⃒

𝑇 2
]︀]︃

≤E

[︃∑︁
𝑖∈𝑁

−𝑇 2
𝑖 · 𝑍2

(𝑖)

]︃
= E

[︁
−
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁∖𝑖

𝑇 2
𝑖,𝑗

]︁
≤𝛾
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁∖𝑖

−𝑇 2
𝑖,𝑗 ≤ 𝛾 Rev(𝑇 2)

where the first inequality holds since −𝑇 2
𝑖 ·𝑍2

(𝑖) ≥ 0, and the second inequality by the

distributional assumptions on 𝑇𝑖,𝑗, and the final inequality by Lemma 4.3.9 applied

with a single good, item 2.
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Putting everything together, we have

E

[︃∑︁
𝑖∈𝑁

𝑝𝑖(𝑇 )1
{︀
𝑤1

(1)(𝑇
1) ≥ 𝑤2

(1)(𝑇
2)
}︀]︃

= Rev(𝑇 1) + 𝑛Rev(𝑇 1) + 𝛾 Rev(𝑇 2).

A similar argument holds for the second term in (4.3.5). Thus, given any BNIC,

interim IR, and NPT mechanism 𝜇, its expected revenue

E

[︃∑︁
𝑖∈𝑁

𝑝𝑖(𝑇 )

]︃
≤ (1 + 𝑛 + 𝛾)(Rev(𝑇 1) + Rev(𝑇 2)).

By statement (iii) of Proposition 4.3.2, Rev(𝑇 ) can be taken as the optimal revenue

over BNIC, interim IR, and NPT mechanisms. Finally, since the sum of the revenues

from selling each of the two items in separate auctions is bounded by Rev(𝑇 ), we

conclude

Rev(𝑇 1) + Rev(𝑇 2) ≤ Rev(𝑇 ) ≤ (1 + 𝑛 + 𝛾)(Rev(𝑇 1) + Rev(𝑇 2)).

Remark 4.3.10. While [22] prove that selling 2 goods separately provides a constant

factor 2-approximation to the optimal revenue in the absence of externalities, we

obtain a less desirable (1 + 𝑛 + 𝛾) approximation factor. The dependence on the

number 𝑛 of bidders arises because the interdependent valuations couple bids, allo-

cations, and utilities across bidders and thus restricts the set of BNIC mechanisms

that we can use to bound the second term in (4.3.6). The 𝛾 term arises from the fact

that the presence of negative externalities makes outside option utilities and thus IR

constraints endogenously determined by bidders’ private types. Reducing a two-item

mechanism to a one-item mechanism tightens the IR constraints (since in the latter,

one can only extract at most the magnitude of the externalities caused by a single

item), a restriction which does not occur in standard auction settings.
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Remark 4.3.11. To extend the result from auctions of 2 digital goods to auctions of

𝑔 digital goods, one could follow the strategy used in [22], where an approximation

bound similar to Theorem 4.3.1, but for 2 bundles of items, is used to prove the

result inductively. However, this extension relies primarily on the common assump-

tion of additive item valuations, while the 2-item setting already captures the key

complications that externalities bring to the table.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we set out to answer the question: how should a data seller allocate and

price data sets to data buyers who may compete with each other downstream, in such

a way that maximizes social welfare or the seller’s expected revenue? Along the way,

we captured the problem of valuing and selling data sets for prediction tasks within

the more general framework of digital goods auctions, and motivated the model of

additively separable negative externalities among the bidders.

Note that a multi-bidder (𝑛) auction digital goods without externalities simply

reduces to 𝑛 single-bidder auctions, since the lack of a constraint in the supply of

digital goods decouples the allocations of goods among bidders. In the presence of

externalities, however, bidders’ allocation functions are once again coupled, but this

time through the interdependent valuations that determine their utility functions and

affect strategic considerations like truthful bidding.

We studied two settings of the bidders’ privately known information, or type: one

in which bidders observe their value for each good sold and the externalities that

other bidders exert on them, and one in which bidders observe their value for each

good and the externalities that they exert on other bidders. The form of private

types affects the characterization of incentive compatible and individually rational

mechanisms, and thus the form of the efficient and optimal allocation functions.
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Welfare-maximizing and revenue-maximizing mechanisms for auctions of a single

digital good under both settings of private types were studied in Chapter 3. Welfare-

maximizing and approximately revenue-maximizing mechanisms for auctions of mul-

tiple heterogenous digital goods with additive valuations over items were studied in

Chapter 4.

A version of Chapters 2 and 3 of this thesis, on the sale of data and auctions of a

single digital good, is published in [5].

5.2 Future Work

Beyond additively separable externalities. In the central model studied, bid-

ders have utility functions linear in the allocations to all bidders. In particular, allo-

cations of goods induce additively separable negative externalities among bidders, a

setting which can capture first-order downstream interactions. However, many sce-

narios of interest may feature significant higher order, nonlinear interactions between

the bidders. For example, a bidder’s utility may depend on which groups of other

bidders get an item or on the number of other bidders who get certain items. A natu-

ral next step would be to characterize and solve for efficient and optimal mechanisms

given more general forms of externalities.

Learning. As we saw in Chapter 3, the optimal allocation rule for single digital good

auctions with externalities takes the form of a thresholding function, with the specific

threshold depending on the distribution of bidders’ types. However, the standard

assumption that this prior distribution is common knowledge is often unrealistic.

Instead, an auction designer may need to learn either the distribution or directly,

the optimal threshold to set, from either a single-shot auction with a large number

of bidders or over multiple repeated rounds of auctions. [5] begins to study the

sequential learning version of this problem, and it would be useful to explore whether

one can exploit the structure of externalities among bidders to more efficiently learn

the optimal auction. A related direction is to extend the line of work on learning
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simple auctions that approximate optimal multi-item auctions [31, 13] to the present

setting of interdependent valuations arising from externalities.

Approximating Optimal Mechanisms. In Chapter 4, we showed that opti-

mally selling 2 digital goods separately guarantees at least a 1/(1 + 𝑛 + 𝛾) fraction

of the optimal revenue, where 𝑛 is the number of bidders and 𝛾 captures a distri-

butional assumption on the externality parameters. It is currently unknown how

tight this lower bound is. In the setting without externalities, a constant factor 2-

approximation to the optimal 2-item auction has been shown [22]. In the present

setting, however, complications arise from the fact that bidders have interdependent

valuations and that participation constraints are endogenously determined (i.e., a

bidder’s “outside option” utility depends on its externality parameters). A natural

next step would be to explore is whether simple auctions, possibly including bundling,

can guarantee a fraction of the optimal revenue that is in constant with respect to 𝑛

or the distribution of externalities, or whether some dependence inherently necessary.
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Appendix A

Appendix

A.1 Welfare Maximization

A.1.1 Proof of Proposition 3.2.2

Proof. We show that the specified VCG mechanism (1) satisfies DSIC, (2) ex-post

IR, and (3) uses nonnegative payments. Recall that in this setting, private types are

of the form 𝑡𝑖 = 𝑣𝑖𝑒𝑖 − 𝜂𝑖←, for 𝑖 ∈ 𝑁 .

1. For all 𝑖 ∈ 𝑁 and all 𝑡𝑖, 𝑡𝑖 ∈ Θ𝑖, 𝑡−𝑖, 𝑡−𝑖 ∈ Θ−𝑖, let us temporarily define the

following quantities for ease of notation. Note the only quantity varying in the

following terms is bidder 𝑖’s bid, while all other parameters are fixed.

𝑥𝑖 := 𝑥𝑖(𝑡𝑖, 𝑡−𝑖), �̂�𝑖 := 𝑥𝑖(𝑡𝑖, 𝑡−𝑖)

𝑥𝑗 := 𝑥𝑗(𝑡𝑖, 𝑡−𝑖), �̂�𝑗 := 𝑥𝑗(𝑡𝑖, 𝑡−𝑖), 𝑥
𝑖
𝑗 := 𝑥𝑗(𝑡𝑖 = ∅, 𝑡−𝑖), for 𝑗 ∈ 𝑁∖𝑖

𝑝𝑖 := 𝑝𝑖(𝑡𝑖, 𝑡−𝑖), 𝑝𝑖 := 𝑝𝑖(𝑡𝑖, 𝑡−𝑖)

𝑊𝑖 := 𝑣𝑖 −
∑︁
𝑗∈𝑁∖𝑖

𝜂𝑗←𝑖, �̂�𝑖 := 𝑣𝑖 −
∑︁
𝑗∈𝑁∖𝑖

𝜂𝑗←𝑖

𝑊𝑗 = 𝑣𝑗 −
∑︁

𝑘∈𝑁∖𝑗

𝜂𝑘←𝑗, �̂�𝑗 := 𝑣𝑗 −
∑︁

𝑘∈𝑁∖{𝑗,𝑖}

𝜂𝑘←𝑗 − 𝜂𝑖←𝑗, for 𝑗 ∈ 𝑁∖𝑖

We show that the following expression is nonnegative, which is precisely the
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statement of DSIC:

𝑢𝑖

(︀
𝑥(𝑡𝑖, 𝑡−𝑖), 𝑝𝑖(𝑡𝑖, 𝑡−𝑖); 𝑡

)︀
− 𝑢𝑖

(︀
𝑥(𝑡), 𝑝𝑖(𝑡); 𝑡

)︀
= (𝑥𝑖 − �̂�𝑖)𝑣𝑖 −

∑︁
𝑗∈𝑁∖𝑖

𝜂𝑖←𝑗(𝑥𝑗 − �̂�𝑗)

+
∑︁
𝑗∈𝑁∖𝑖

(−𝑊 𝑖
𝑗 (𝑥

𝑖
𝑗 − 𝑥𝑗) − 𝜂𝑗←𝑖𝑥𝑖 + 𝑊 𝑖

𝑗 (𝑥
𝑖
𝑗 − �̂�𝑗) − 𝜂𝑗←𝑖�̂�𝑖)

= (𝑥𝑖 − �̂�𝑖)(𝑣𝑖 −
∑︁
𝑗∈𝑁∖𝑖

𝜂𝑗←𝑖) +
∑︁
𝑗∈𝑁∖𝑖

(𝑊 𝑖
𝑗 − 𝜂𝑖←𝑗)(𝑥𝑗 − �̂�𝑗)

= (1{𝑊𝑖 ≥ 0} − 1{�̂�𝑖 ≥ 0})𝑊𝑖 +
∑︁
𝑗∈𝑁∖𝑖

𝑊𝑗(1{𝑊𝑗 ≥ 0} − 1{�̂�𝑗 ≥ 0})

≥ 0.

For the first equality we used the second expression of the payment rule in

(3.2.5), we regrouped terms and used the definitions of 𝑊𝑖,𝑊𝑗 for the second

and third equalities. The final inequality holds because

1{𝑊𝑖 ≥ 0} − 1{�̂�𝑖 ≥ 0} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 iff 𝑊𝑖 ≥ 0 and �̂�𝑖 < 0

−1 iff 𝑊𝑖 < 0 and �̂�𝑖 ≥ 0

0 else.

and likewise for 1{𝑊𝑗 ≥ 0} − 1{�̂�𝑗 ≥ 0}, implies that each term in the sum-

mation is nonnegative.

2. Let 𝑡 be an arbitrary type realization. Showing ex-post IR is equivalent to

showing

𝑣𝑖𝑥𝑖 −
∑︁
𝑗∈𝑁∖𝑖

𝜂𝑖←𝑗𝑥𝑗 − 𝑝𝑖 ≥ 𝑢𝑖(𝑥(∅, 𝑡−𝑖), 𝑝𝑖(∅, 𝑡−𝑖); 𝑡) = −
∑︁
𝑗∈𝑁∖𝑖

𝜂𝑖←𝑗𝑥
𝑖
𝑗.
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Plugging in the payment rule, we get the equivalent inequality

𝑣𝑖𝑥𝑖 −
∑︁
𝑗∈𝑁∖𝑖

(︀
𝑊 𝑖

𝑗 (𝑥
𝑖
𝑗 − 𝑥𝑗) + 𝜂𝑗←𝑖𝑥𝑖

)︀
≥ −

∑︁
𝑗∈𝑁∖𝑖

𝜂𝑖←𝑗(𝑥
𝑖
𝑗 − 𝑥𝑗)

Rearranging and regrouping terms, we get that this is equivalent to

𝑊𝑖𝑥𝑖 −
∑︁
𝑗∈𝑁∖𝑖

𝑊𝑗(𝑥
𝑖
𝑗 − 𝑥𝑗) ≥ 0

Since 𝑥𝑖 = 1{𝑊𝑖 ≥ 0}, the first term is always nonnegative. The terms in the

summation are likewise nonnegative since

𝑥𝑖
𝑗 − 𝑥𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 iff 𝑊𝑗 ≥ 0 and 𝑊 𝑖

𝑗 < 0

−1 iff 𝑊𝑗 < 0 and 𝑊 𝑖
𝑗 ≥ 0

0 else.

Thus, the IR constraint is satisfied for all types 𝑡.

3. Let 𝑡 be an arbitrary type realization. Note that since 𝜂𝑗←𝑖 ≥ 0, we can bound

the payments given by (3.2.5) by

𝑝𝑖 ≥
∑︁
𝑗∈𝑁∖𝑖

𝑊 𝑖
𝑗 (1{𝑊 𝑖

𝑗 ≥ 0} − 1{𝑊𝑗 ≥ 0})

We have that

1{𝑊 𝑖
𝑗 ≥ 0} − 1{𝑊𝑗 ≥ 0} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 iff 𝑊 𝑖

𝑗 ≥ 0 and 𝑊𝑗 < 0

−1 iff 𝑊 𝑖
𝑗 < 0 and 𝑊𝑗 ≥ 0

0 else

Matching up the cases, we get that 𝑝𝑖 ≥ 0, so payments are nonnegative.
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A.2 Comparing Efficient and Optimal Allocations

We consider the special case of two bidders with uniformly distributed type parame-

ters in Setting 1 and compare the welfare-maximizing and revenue-maximizing allo-

cation functions.

As stated in Section 3.3.1, given a distribution function 𝐹𝜂𝑖←𝑗
and corresponding

density function 𝑓𝜂𝑖←𝑗
for 𝜂𝑖←𝑗 on [𝜂

¯𝑖←𝑗
, 𝜂𝑖←𝑗], for 𝑖 ̸= 𝑗 ∈ 𝑁 , we define the distribution

of 𝑡𝑖,𝑗 on [−𝜂𝑖←𝑗,−𝜂
¯𝑖←𝑗

] by the distribution and density functions

𝐹𝑖,𝑗(𝑡𝑖,𝑗) = 1 − 𝐹𝜂𝑖←𝑗
(−𝑡𝑖,𝑗) = 1 − 𝐹𝜂𝑖←𝑗

(𝜂𝑖←𝑗)

𝑓𝑖,𝑗(𝑡𝑖,𝑗) = 𝑓𝜂𝑖←𝑗
(−𝑡𝑖,𝑗) = 𝑓𝜂𝑖←𝑗

(𝜂𝑖←𝑗).

Further, for all 𝑖, 𝑗 ∈ 𝑁 , we define the virtual value functions Φ𝑖,𝑗(𝑡𝑖,𝑗) := 𝑡𝑖,𝑗 − (1 −

𝐹𝑖,𝑗(𝑡𝑖,𝑗))/𝑓𝑖,𝑗(𝑡𝑖,𝑗). Then for all 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁∖𝑖, we can express the virtual

functions as

Φ𝑖,𝑖(𝑡𝑖,𝑖) = 𝑣𝑖 − (1 − 𝐹𝑣𝑖(𝑣𝑖))/𝑓𝑣𝑖(𝑣𝑖)

Φ𝑖,𝑗(𝑡𝑖,𝑗) = −𝜂𝑖←𝑗 − 𝐹𝜂𝑖←𝑗
(𝜂𝑖←𝑗)/𝑓𝜂𝑖←𝑗

(𝜂𝑖←𝑗)

Suppose all the parameters 𝑣𝑖 and 𝜂𝑖←𝑗, for 𝑖 ̸= 𝑗 ∈ 𝑁 are uniformly distributed

on their respective domains. The virtual value functions take the forms

Φ𝑖,𝑖(𝑡𝑖,𝑖) = 2𝑣𝑖 − 𝑣𝑖

Φ𝑖,𝑗(𝑡𝑖,𝑗) = −2𝜂𝑖←𝑗 + 𝜂
¯𝑖←𝑗
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The optimal allocation rule 3.3.2 then becomes

𝑥𝑘(𝑡) = 1

{︃∑︁
𝑖∈𝑁

𝜑𝑖,𝑘(𝑡𝑖,𝑘) ≥ 0

}︃

= 1

⎧⎨⎩(2𝑣𝑘 − 𝑣𝑘) +
∑︁
𝑖∈𝑁∖𝑘

(−2𝜂𝑖←𝑘 + 𝜂
¯𝑖←𝑘

) ≥ 0

⎫⎬⎭
= 1

⎧⎨⎩𝑣𝑘 −
∑︁
𝑖∈𝑁∖𝑘

𝜂𝑖←𝑘 ≥
𝑣𝑘 −

∑︀
𝑖∈𝑁∖𝑘 𝜂

¯𝑖←𝑘

2

⎫⎬⎭
In the case of 𝑛 = 2 bidders, bidder 1’s allocation is

𝑥1(𝑡) = 1

{︂
𝑣1 − 𝜂2←1 ≥

𝑣1 − 𝜂
¯2←1

2

}︂

Meanwhile, the welfare-maximizing allocation rule for bidder 1 is

𝑥1(𝑡) = 1{𝑣1 − 𝜂2←1 ≥ 0}.

Thus, the revenue-maximizing allocation allocates to bidders less often than does the

welfare-maximizing allocation. The optimal mechanism therefore is not in general

efficient. This is illustrated in Figure 3-1, where the welfare-maximizing and revenue-

maximizing allocations are shown to partition the type space for 𝑡 into the regions

based on bidder 1’s allocation.
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