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Abstract
Polaritons in metals, semimetals, semiconductors, and polar insulators can allow for ex-
treme confinement of electromagnetic energy, providing many promising opportunities for
enhancing typically weak light-matter interactions such as multipolar radiation, multipho-
ton spontaneous emission, Raman scattering, and material nonlinearities. These extremely
confined polaritons are quasi-electrostatic in nature, with most of their energy residing in
the electric field. As a result, these "electric" polaritons are far from optimized for en-
hancing emission of a magnetic nature, such as spin relaxation, which is typically many
orders of magnitude slower than corresponding electric decays. Here, we take concepts of
“electric” polaritons into magnetic materials, and propose using surface magnon polaritons
in negative magnetic permeability materials to strongly enhance spin-relaxation in nearby
emitters. Specifically, we provide quantitative examples with MnF2 and FeF2, enhancing
spin transitions in the THz spectral range. We find that these magnetic polaritons in 100
nm thin-films can be confined to lengths over 10,000 times smaller than the wavelength
of a photon at the same frequency, allowing for a surprising twelve orders of magnitude
enhancement in magnetic dipole transitions. This takes THz spin-flip transitions, which
normally occur at timescales on the order of a year, and forces them to occur at sub-ms
timescales. Our results suggest an interesting platform for polaritonics at THz frequencies,
and more broadly, a new way to use polaritons to control light-matter interactions.
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Chapter 1

Introduction

Polaritons, collective excitations of light and matter, offer the ability to concentrate electro-

magnetic energy down to volumes far below that of a photon in free space [3, 4, 5, 6, 7, 8],

holding promise to achieve the long-standing goal of low-loss confinement of electromag-

netic energy at the near-atomic scale. The most famous examples are surface plasmon po-

laritons on conductors, which arise from the coherent sloshing of surface charges accompa-

nied by an evanescent electromagnetic field. These collective excitations are so widespread

in optics that their manipulation is referred to as “plasmonics.” Plasmons enjoy a myriad

of applications, particularly in spectroscopy due to their enhanced interactions with matter.

This enhancement applies to spontaneous emission, Raman scattering, optical nonlineari-

ties, and even dipole-“forbidden” transitions in emitters [9, 10, 11, 12, 13, 14, 15, 16, 17,

18]. Beyond plasmons in metals, polaritons in polar dielectrics, such as phonon polari-

tons [19, 20, 21, 22] are now being exploited for similar applications due to their ability to

concentrate electromagnetic energy on the nanoscale in the mid-IR/THz spectral range.

The ability of nano-confined polaritons to strongly enhance electromagnetic interac-

tions with matter can ultimately be understood in terms of electromagnetic energy density.

An electromagnetic quantum of energy ~𝜔, confined to a volume 𝑉 , leads to a character-

istic root-mean-square electric field of order
√︁

~𝜔
𝜖0𝑉

. In the case of field interaction with

an electron in an emitter, this characteristic field drives spontaneous emission, and thus

concentration of energy to smaller volumes leads to enhanced emission. This well-studied

phenomenon is best known as the Purcell effect [23]. Interestingly, if one looks at the elec-
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Figure 1-1: Electromagnetically dual relationship between surface plasmon polari-
tons on negative permittivity materials and surface magnon polaritons on negative
permeability materials. (a) Surface plasmon polariton represented as charge density os-
cillations in a negative 𝜖 material. These quantum fluctuations can couple strongly to an
electric dipole emitter near the surface to drive enhanced spontaneous emission. (b) Surface
magnon polariton represented as a spin density oscillation in a negative 𝜇 material. These
quantum fluctuations can couple strongly to a magnetic dipole emitter near the surface to
drive enhanced spontaneous emission. Both electric and magnetic surface polaritons can
exhibit strong mode confinement, helping to overcome the mismatch between mode wave-
length and emitter size.

tromagnetic energy distribution of a highly confined plasmon- or phonon- polariton, one

finds that an overwhelming majority of this energy resides in the electric field [24, 25, 26].

For a polariton with a wavelength 100 times smaller than that of a photon at the same fre-

quency, the magnitude of 𝐸 is then 100 times larger than that of 𝜇0𝑐𝐻 . In sharp contrast

to free space wave propagation, the energy residing in the magnetic field is of the order

of a mere 0.01% of the total energy ~𝜔. This largely suggests that such excitations are

relatively inefficient for enhancing spontaneous emission processes which couple to the

magnetic field, such as spin-flip transitions or magnetic multipole decays. As such, en-

abling magnetic decays at very fast rates represents a rewarding challenge, as increasing

rates of spontaneous emission can provide new opportunities for detectors, devices, and

sources of light.

The Purcell enhancement of magnetic dipole transitions has been approached by a few

basic means: the use of highly confined resonances at optical frequencies [27, 28], meta-

materials [29, 30] and for microwave frequencies, materials with simultaneously very high

quality factor and highly confined fields. These advances are reviewed in Ref. [31]. Many

of these methods have the benefit of compatibility with well-known materials and use at
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optical frequencies, but the Purcell enhancements in these cases are typically very far from

maximal Purcell enhancements that can be achieved with "electric" polaritons at similar

frequencies [32, 33, 16, 34, 35, 18]. This prompts the question: what kind of electro-

magnetic response allows one to achieve a similar degree of very strong enhancement for

magnetic transitions?

The duality between electric and magnetic phenomena, combined with ideas from plas-

monics and nano-optics, suggests a new pathway for achieving strong magnetic transition

enhancement: highly confined magnetic modes in materials with negative magnetic per-

meability. In particular, plasmon- and phonon-polaritons are associated with a negative

dielectric permittivity 𝜖(𝜔). By the well-established principle of electromagnetic duality

[36, 37], if one replaces 𝜖(𝜔) with the magnetic permeability 𝜇(𝜔), then the electric field

E in the dielectric structure becomes the magnetic field H in the dual magnetic structure.

Thus, to very efficiently enhance magnetic decays, one desires a material with negative

𝜇(𝜔) which supports modes dual to “electric” surface polaritons. While likely not the only

example, antiferromagnetic resonance is a well-studied example of a phenomenon which

can provide precisely this permeability, and the corresponding modes are surface magnon

polaritons [38, 39, 40].

Here, we use macroscopic quantum electrodynamics (MQED) of magnetic materials

to propose extreme enhancement of magnetic transitions in nearby quantum emitters by

using highly confined surface magnon polaritons (SMPs). We find enhancement of spin re-

laxation rates by over 12 orders of magnitude, showing magnetic Purcell enhancements as

large as the highest limits predicted for electric Purcell enhancements. We discuss how the

losses present in magnetic materials impact the magnetic decay rate, and argue that even

with these considerations, extremely large enhancements can be achieved. Such enhance-

ments could provide access to extremely fast magnetic dipole decays, shortening radiative

lifetimes on the order of a year to sub-millisecond timescales.

The organization of this manuscript is as follows: in section I, we review the classical

electrodynamics of SMPs, and derive the dispersion relation and mode profile of SMPs for

the example of an antiferromagnetic thin film. We briefly review the propagation properties

of these modes, and in particular note their extremely large confinement. In section II,
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we use MQED to quantize the SMP modes, and calculate the spontaneous emission rate

of nearby magnetic dipole emitters into these modes. Finally, in section III, we provide

quantitative results for the spontaneous emission by spin systems near existing magnon-

polaritonic materials, such as MnF2 and FeF2.
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Chapter 2

Surface magnon polariton modes

The spin interactions in solids which give rise to different varieties of magnetic order have

been studied extensively. Of particular note for our purposes is the study of the long-range

order established by spin waves in (anti)ferromagnets [41, 42, 43, 44, 45, 46, 47, 48, 49].

These spin waves can be excited at the level of a single quantum, and the quasiparticles

associated with these excitations are magnons [39]. More recently, magnons have attracted

considerable attention for their ability to interact with electric currents and electron spins,

leading to the rapidly growing field of magnon spintronics [50, 51, 52, 53, 54, 55, 56, 57,

58, 59].

We begin by reviewing the confined modes which exist on thin films of materials with

negative magnetic permeability, denoted 𝜇(𝜔). The modes we describe are well-studied

surface magnon polaritons (SMPs) [38, 60, 61, 62] with Re𝜇(𝜔) ≤ 0. At a microscopic

level, the modes correspond to ordered precession of the spins in an antiferromagnetic lat-

tice, and are also referred to as surface spin waves [63]. The classical dynamics of spin

wave propagation are governed by the Landau-Lifshitz-Gilbert (LLG) equation, which ac-

counts for damping [64, 65]. These microscopic interactions give rise to a magnetic sus-

ceptibility (or equivalently a magnetic permeability) which dictates how macroscopic elec-

tromagnetic fields propagate in the material. Given the classical solutions to the Maxwell

equations in a material configuration, one can then quantize the magnon modes, allowing

the use of quantum optics techniques to describe the interaction of magnon modes in the

vicinity of emitters. We construct these classical solutions, quantize these modes, and then
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solve for magnetic dipole transition rates into these modes.

For the specific case of an antiferromagnetic material near resonance, the frequency-

dependent permeability which includes material losses takes the form of a Lorentz oscilla-

tor which depends on the microscopic magnetic properties of the antiferromagnetic crystal.

Studies of the crystal structures of important antiferromagnetic materials can be found in

[66]. The magnetic permeability function for antiferromagnetic resonance (AFMR) in the

absence of an external magnetizing field from [67, 2, 68] is

𝜇𝑥𝑥 = 𝜇𝑦𝑦 = 1 +
2𝛾2𝐻𝐴𝐻𝑀

𝜔2
0 − (𝜔 + 𝑖Γ)2

, (2.1)

with coordinates shown in Figure 1-1. In Equation 2.1, 𝜔0 is the resonance frequency, 𝐻𝐴

is the anisotropy field, 𝐻𝑀 is the sublattice magnetization field, 𝛾 is the gyromagnetic ra-

tio, and Γ = 1/𝜏 is a phenomenological damping parameter inversely proportional to the

loss relaxation time 𝜏 . Furthermore, in the approximation of low damping, the resonant

frequency is given as 𝜔0 = 𝛾
√︀

2𝐻𝐴(𝐻𝐴 +𝐻𝐸), where 𝐻𝐸 is the exchange field which

is representative of the magnetic field required to invert neighboring spin pairs. For anti-

ferromagnetic materials such as MnF2 and FeF2, the resonance frequencies 𝜔 takes values

1.69×1012 and 9.89×1012 rad/s respectively, and have negative permeability over a rela-

tively narrow bandwidth on the scale of a few GHz. Most importantly for our purposes,

Re𝜇(𝜔) < 0 for 𝜔 < 𝜔0 < 𝜔max, which will permit surface-confined modes. Finally, we

note that we have implicitly assumed that the magnetic permeability carries no dependence

on the wavevector through nonlocal effects. For wavelengths which substantially exceed

the atomic lattice spacing, this should be an excellent approximation. A more detailed

discussion of nonlocality in terms of mean-field parameters from Landau-Ginzburg phase

transition theory can be found in [69]. Table 2.1 shows values of material parameters for

a variety of antiferromagnetic materials. Figure 2-1(a) shows the real and imaginary parts

of the magnetic permeability 𝜇(𝜔) associated with the AFMR in MnF2. We see that at the

peak of the resonance, Re(𝜇) ≈ −40 and Im(𝜇) ≈ 90.

We now discuss the geometry of the thin-film configurations we study. Antiferromag-

netic fluorides exhibit a uniaxial permeability structure with two orthogonal components
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Material 𝜇0𝐻𝐴(𝑇 ) 𝜇0𝐻𝐸 (T) 𝜇0𝐻𝑀 (T) 𝜔0 (rad THz) 𝜏 (nsec)
MnF2 0.787 53.0 0.06 1.69 7.58

FeF2 19.745 53.3 0.056 9.89 0.11

GdAlO3 0.365 1.88 0.062 0.23 –

Table 2.1: Anisotropy fields, exchange fields, sublattice magnetization, resonance frequen-
cies, and damping constants (where known) for antiferromagnetic materials that can sup-
port SMPs. Parameters are taken from Refs. [1, 2].

of the permeability tensor given by 𝜇(𝜔) above, and the other orthogonal component as

unity. We start by focusing on crystal orientations in which 𝜇 = (𝜇(𝜔), 𝜇(𝜔), 1). It is

also worthwhile to note that experiments, specifically on nonreciprocal optical phenom-

ena [70], have been performed on these materials in a less conventional geometry where

𝜇 = (𝜇(𝜔), 1, 𝜇(𝜔)). The in-plane anisotropy of this configuration substantially compli-

cates the dispersion relation and propagation structure of the modes. As such, we focus

primarily on the isotropic case, but present results for the in-plane anisotropic case near the

end of the text.

For concreteness, we focus on MnF2, a material which has been studied in depth both

in theory and experiment [71, 72], and also exhibits a relatively low propagation loss. We

note that FeF2 is also a promising candidate with higher resonance frequency, but also

higher loss [73, 74]. We solve for SMPs supported by optically very thin (here, sub-micron

thickness denoted by 𝑑) MnF2 films surrounded by air. For the confined modes we con-

sider, the effect of retardation is negligible [75], and thus we can find the magnon modes

using a quasi-magnetostatic treatment as described in [2]. In the magnetostatic limit, the

resulting “polaritons" are much more magnon-like than photon-like. Nevertheless, many of

the applications which are considered in polaritonics are feasible with these modes [4, 6].

In the absence of retardation, the electric field is negligible, and the magnetic field, since

there are no free currents, satisfies ∇×H = 0. Thus the magnetic field can then be written

as the gradient of a scalar potential H = ∇𝜓𝐻 . This scalar potential then satisfies a scalar

Laplace equation

𝜕𝑖𝜇𝑖𝑗(𝜔)𝜕𝑗𝜓𝐻 = 0, (2.2)

where we have used repeated indices to denote summation. In this work, the absence of

applied magnetic fields guarantees that 𝜇𝑖𝑗 is diagonal, and so Eq. 2.2 contains only three
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terms. Applying boundary conditions for the continuity of B in the 𝑧-direction and of H in

the 𝑥𝑦-plane at the two interfaces of a film of thickness 𝑑 gives the dispersion relation

𝑞𝑛 =
1

2𝑑
√︀

−𝜇(𝜔)

[︃
tan−1

(︃
1√︀

−𝜇(𝜔)

)︃
+
𝑛𝜋

2

]︃
, (2.3)

where 𝑛 is an integer, 𝑞𝑛 is the in-plane wavevector of mode 𝑛, and 𝜇(𝜔) is the permeability

given in Equation 2.1. We see that 𝑞𝑛 is inversely proportional to the thickness of the slab

𝑑, which is anticipated, as the thickness of the material sets the scale of the wave solution in

the 𝑧-direction. Identically to confined modes on thin films of plasmonic materials (silver

and gold for instance), a thinner film results in a smaller wavelength. An extreme limiting

case in plasmonics is graphene, in which an atomically thin layer is capable of confining

surface plasmons with confinement factors of 200 [7]. Figure 2-1c shows plots of the scalar

potential 𝜓𝐻 associated with SMP modes on MnF2, which is proportional to the magnetic

field in direction of propagation. The scalar potential solutions to the Laplace equation take

the form

𝜓𝑛
𝐻(r, 𝜔) =

⎧⎪⎨⎪⎩𝑒
𝑖q𝑛·𝜌𝑒−𝑞𝑛|𝑧| |𝑧| > 𝑑/2(︁
𝑒−𝑞𝑛𝑑

𝑓(𝑞𝑛𝑑)

)︁
𝑒𝑖q𝑛·𝜌𝑓(𝑞𝑛𝑧) |𝑧| < 𝑑/2

, (2.4)

where 𝜌 = (𝑥, 𝑦) is the in-plane position, 𝑓(𝑥) = cos(𝑥) for even modes, and 𝑓(𝑥) =

sin(𝑥) for odd modes. Taking the gradient of the scalar potential gives the fully vectorial

magnetic field, which reveals that the SMP mode propagates in the in-plane direction 𝑞

with circular polarization 𝜀q = (𝑞 + 𝑖𝑧)/
√

2. This polarization is well known to be typical

of quasistatic surface polariton modes, whether they are the transverse magnetic modes

associated with quasielectrostatic excitations or transverse electric modes associated with

quasimagnetostatic excitations.

We now discuss the key properties of these surface modes, including their dispersion,

confinement, velocities, and quality factor resulting from material losses. In Figure 2-

1b, we plot the material-thickness-invariant dispersion relation 𝜔(𝑞𝑑). The dimensionless

wavevector 𝑞𝑑 indicates how the size of the in-plane wavevector compares to the thickness

of the film. We note that we have incorporated the effect of loss into the dispersion by

finding solutions with real frequency and complex wavevector. Our dispersion plots show
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the real part of the wavevector. In the lossless limit, the dispersion is asymptotic to a fixed

frequency in the limit that 𝑞 → ∞. The introduction of loss causes the band to fold back

on itself, placing a limit on the wavevectors which can be excited. Consequently, modes

near the peak of this folded band exhibit the highest attenuation.

The dispersion plot shows the first four bands – the fundamental mode (𝑛 = 0) as well

as three higher harmonics (𝑛 = 1, 2, 3). Due to the the reflection symmetry of the geometry

in the 𝑧-direction, two of these modes are even parity, and two are odd parity. We can in-

terpret the mode index as the number of half oscillations which the magnetic field makes in

the 𝑧-direction of the film. Higher order modes will have larger wavevectors. Once again,

we can further understand the dispersion relation of these modes through analogy to exist-

ing polaritonic systems. Specifically, MnF2 is a hyperbolic material since 𝜇⊥ > 0 while

𝜇‖ < 0 (where the directions ⊥ and ‖ are taken with respect to the 𝑧 axis). This is much

like the naturally occurring hyperbolic material hexagonal boron nitride, which has one

component of its permittivity negative, while another component is positive [21, 20]. As a

result of this, these systems have a multiply-branched dispersion, and the electromagnetic

fields are guided inside the crystal. The first two modes (𝑛 = 0, 1) are shown in Figure 2-

1c, where we note the mode confinement to the slab, as well as the evanescent tails which

enable interaction with surrounding emitters.

The most impressive figure of merit of these modes is the size of their wavelength in

comparison to the free space wavelength at a given frequency, also known as a confinement

factor or effective index of the mode. Figure 2-2b highlights this, showing the confinement

factor 𝜂 = 𝑞𝑐/𝜔 = 𝜆0/𝜆SMP for the first four modes (𝑛 = 0, 1, 2, 3) on 𝑑 = 200 nm MnF2

as a function of frequency. We see that the fundamental mode reaches a peak confinement

of 𝜂 = 2 × 104, while the first harmonic is confined to twice that with 𝜂 = 4 × 104.

These values exceed by two orders of magnitude the maximum confinement val-

ues that have been observed in common plasmonic media such as thin films of silver,

gold, or titanium nitride, or doped graphene. Furthermore, since the confinement scales

linearly with 𝑞 ∼ 1/𝑑, decreasing the material thickness increases the achievable range

of confinement factors. As a simple example of this, consider that a material thickness of

𝑑 = 50 nm would correspond to a wavevector 4 times larger than for 𝑑 = 200 nm, in other
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words a maximum fundamental mode confinement of 8 × 104, and a confinement above

104 for much of the surface magnon band.

An explanation for this high confinement in terms of most basic principles is that the fre-

quencies at which SMPs exist (GHz-THz) are orders of magnitude lower than for plasmons

which typically exist in IR to optical regimes. Simultaneously, the scale of the wavevector

𝑞 in both plasmonic and magnonic media is set by the film thickness 𝑑 for electrostatic

and magnetostatic modes respectively (this means that plasmons and magnons will have

wavevectors of similar scale, regardless of frequency). In other words, at a fixed material

thickness, lower frequency surface magnons have substantially higher potential for geomet-

rical squeezing than surface plasmons. We note that this is not of purely formal interest, as

when considering the enhancement of spontaneous emission, one finds that the enhance-

ment is proportional to a power of precisely this confinement factor.

In addition to understanding the confinement of magnon polaritons, it is also impor-

tant to understand their propagation characteristics, such as propagation quality factor, and

group velocity. Figure 2-2a,c shows the quality factor 𝑄 = Re(𝑞)/Im(𝑞), as well as the

normalized group velocity 𝑣𝑔/𝑐 as a function of frequency for the first four modes. We see

that propagation losses are lowest toward the middle of the allowed frequency band, show-

ing quality factors greater than 20 for the fundamental mode (𝑛 = 0). Additionally, we

see that the group velocity 𝑣𝑔 reaches its maximum near the lower portion of the allowed

frequency range, and goes toward zero at the other end.
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Figure 2-1: Surface magnon polariton (SMP) modes on MnF2. (a) Frequency dependent
permeability function for MnF2 calculated using Equation 2.1 and using the parameters
given in Table 2.1. For MnF2, the resonance frequency is 𝜔0 = 1.68 × 1012 rad/s. For
𝜔0 < 𝜔 < 𝜔max, Re(𝜇) < 0, allowing for surface modes. (b) Dispersion relation for MnF2

of thickness 𝑑, calculated in the quasi-magnetostatic limit which is valid in the range of
thicknesses 𝑑 we consider. The first four modes are shown. (c) Visualization of fundamen-
tal and first harmonic mode SMP through the field component 𝐻𝑥 shown for a 𝑑 = 200
nm film of MnF2 at 𝜔/𝜔0 = 1.005. The locations of these two modes are indicated on the
dispersion curve.

Figure 2-2: Propagation properties of SMP modes on MnF2. The following dimension-
less quantities are plotted for MnF2 with propagation loss 𝜏 = 7.58 nsec for the first 4
modes indexed by 𝑛 = (0, 1, 2, 3). (a) Mode quality factor 𝑄 = Re(𝑞)/Im(𝑞) as a function
of mode frequency. (b) Mode confinement factor 𝜂 = 𝑞𝑐/𝜔 as a function of mode fre-
quency. (c) Normalized group velocity 𝑣𝑔/𝑐 = |𝑑𝜔/𝑑𝑘|/𝑐 as a function of mode frequency.
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Chapter 3

Theory of spin relaxation into magnon

polaritons

We now discuss how an an emitter with a magnetic dipole transition placed above the

surface of a thin negative permeability material can undergo spontaneous emission into

SMPs which is much faster than the emission into free space photons. First, we consider the

Hamiltonian which couples the magnetic moment of the emitter to the quantized magnetic

field. Fluctuations in the evanescent magnetic field from SMPs can then cause the emitter

to relax via the emission of a SMP. The rate at which this process occurs is calculated using

Fermi’s golden rule. Finally, we discuss the effect of material losses on the total decay rate,

and argue that for parameters of interest, the effect should be small.

3.1 Theory of spin relaxation

We first discuss the mechanisms that can allow an emitter to couple to highly confined

SMPs. A magnetic field can couple to both the electron spin angular momentum and or-

bital angular momentum, as both angular momenta contribute to the electron’s magnetic

moment. We describe this interaction quantum mechanically with a interaction Hamilto-

nian 𝐻int between an emitter and a magnetic field [76, 77]

𝐻int = −𝜇 ·B = −𝜇𝐵(L + 𝑔S)

~
·B, (3.1)
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where 𝜇 is the total magnetic moment of the emitter, S = ~𝜎 is the spin angular momentum

operator, L is the orbital angular momentum operator, 𝑔 ≈ 2.002 is the Landé g-factor. In

this Hamiltonian, we note that B is the quantized magnetic field operator associated with

SMP modes.

In order to provide a fully quantum mechanical description of the interactions, we use

the formalism of macroscopic QED (MQED) to rigorously quantize the electromagnetic

field modes in a medium (in this case, a thin slab of negative permeability material) This

approach is similar to that in [78], which was applied to quantize electromagnetic fields in

dielectric structures. We consider a geometry of a negative 𝜇 material which is translation

invariant (i.e., a slab geometry). In this case, the modes are labeled by an in-plane wavevec-

tor q. We can then construct an operator which creates and annihilates excitations of the

magnetic field which are normalized so that each SMP carries energy ~𝜔q. The magnetic

field operator in the evanescent region above the slab (𝑧 > 𝑑/2) takes the form:

B(r) =
∑︁
q

√︃
𝜇0~𝜔
2𝐴𝐶𝑞

(︀
𝜀q𝑒

𝑖q·𝜌𝑒−𝑞𝑧𝑎q + 𝜀*q𝑒
−𝑖q·𝜌𝑒−𝑞𝑧𝑎†q

)︀
, (3.2)

where 𝑎†q and 𝑎q are creation and annihilation operators for the SMP modes satisfying the

canonical commutation relation [𝑎q, 𝑎
†
q′ ] = 𝛿qq′ , 𝜀q is the mode polarization, 𝐴 is the area

normalization factor, and 𝐶𝑞 =
∫︀
𝑑𝑧H*(𝑧) · 𝑑(𝜇𝜔)

𝑑𝜔
·H(𝑧) is a normalization factor ensuring

that the mode H = ∇𝜓𝐻 has an energy of ~𝜔q. The energy has been calculated according

to the Brillouin formula for the electromagnetic field energy in a dispersive medium in a

transparency window [79, 80]. As a point of comparison, we note that similar quantization

schemes have been implemented for surface plasmon-polariton modes on graphene [24]

and many other systems in optics [78, 81]. In this expression for the energy, we have also

used the fact that the modes are magnetostatic in nature, so that the contribution of the

electric field to the energy associated with them is negligible.

To establish the strength of the coupling between a magnetic dipole emitter and SMPs,

we calculate spontaneous emission of a spin into a thin negative 𝜇 material such as an

antiferromagnet, using Fermi’s golden rule. The rate of transition via the emission of a
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magnon of wavevector q is given as

Γ(eg)
q =

2𝜋

~2
| ⟨g,q|𝐻int|e, 0⟩ |2𝛿(𝜔q − 𝜔eg). (3.3)

We specify the initial and final states of the system as |e, 0⟩ and |g,q⟩ respectively,

where e and g index the excited and ground states of the emitter, q is the wavevector of the

magnon resulting from spontaneous emission, 𝜔q is its corresponding frequency, and 𝜔eg

is the frequency of the spin transition. Note that Eq. 3.3 applies generally and can capture

any multipolar magnetic transition.

With the magnetic field quantized appropriately and the interaction Hamiltonian estab-

lished, obtaining the spontaneous emission rate proceeds in the usual way. Substituting

Equation 3.2 into the Hamiltonian of Equation 3.1, and then applying Fermi’s golden rule

as written in Equation 3.3, we find that the spontaneous emission rate Γ(eg) per unit magnon

in-plane propagation angle 𝜃 is given by:

dΓ
(eg)
dipole

d𝜃
=
𝜇2
𝐵𝜇0𝜔eg

2𝜋~
𝑞3(𝜔eg)

𝐶𝑞(𝜔eg)|𝑣𝑔(𝜔eg)|
𝑒−2𝑞(𝜔eg)𝑧0|𝑀eg|2, (3.4)

where |𝑣𝑔| = |∇q𝜔| is the magnitude of the SMP group velocity, 𝜇𝐵 is the Bohr magneton,

and 𝑀𝑒𝑔 = ⟨𝑔|𝜖q · (L + 𝑔S)|𝑒⟩ is the matrix element which describes the transition. Also

note that here, we have made the dipole approximation for magnetic transitions, which

comes from assuming that the evanescent field of the emitted SMP varies negligibly over

the size of the emitter, and can thus be assumed constant. However, if one wishes to remove

this simplifying assumption in order to consider magnetic multipole transitions, the matrix

element can be numerically evaluated. To simplify the proceeding discussion, we focus

on cases where the transition corresponds only to a change of spin of the electron in the

emitter from |↑⟩ to |↓⟩, this matrix element is simply proportional to 𝜎eg = ⟨↓ |𝜎 · 𝜀q| ↑⟩.

Here, the angular dependence can come solely from the magnon polarization. For a spin

transition oriented along the 𝑧 (ie. out-of-plane) axis, the transition strength into modes at

different 𝜃 will be the same, and thus the distribution of emitted magnons isotropic. Spin

transitions along a different axis will break this symmetry, resulting in angle dependent
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emission. In any case, the total rate of emission is obtained by integrating over all angles

as Γ
(eg)
dipole =

∫︀ 2𝜋

0

(︁
dΓ(eg)

d𝜃

)︁
d𝜃.

We now consider the effect of material losses, and argue that the lossless approximation

for decay rates presented here should provide a strong approximation for decay rates in the

presence of losses. The formalism of macroscopic QED detailed in [36] can be used to

incorporate material losses into spontaneous emission calculations. It was found explicitly

in [16] that in general, the presence of losses does not drastically change the total decay

rate of the emitter, unless the emitter is at distances from the material much smaller than

the inverse wavevector of the modes that are emitted. For the case of relatively low losses,

Fermi’s golden rule shown in Equation 3.3 can be modified by replacing the delta function

density of states with a Lorentzian of width ∆𝜔 ≡ 1/𝜏 . The lossy decay rate is then

obtained as a convolution of this Lorentzian frequency spread with the lossless rate as

Γ
(eg)
dipole −→

∫︁
Γ
(eg)
dipole

(︂
1

𝜋

1/(2𝜏)

(𝜔eg − 𝜔)2 + (1/2𝜏)2

)︂
d𝜔. (3.5)

In general, this correction from losses will be small provided that the range of frequencies

∆𝜔 coupled by Equation 3.5 is small compared to the width of the magnon band, denoted

∆Ω. More succinctly, losses are negligible if ∆𝜔/∆Ω ≪ 1. For the MnF2 considered

here, ∆𝜔 ≈ 10−8 s−1, and ∆Ω ≈ 1010 s−1, so ∆𝜔/∆Ω ≈ 10−2, confirming that the

Lorentzian distribution behaves similarly to a delta function 𝛿(𝜔eg − 𝜔) which does not

mix frequencies. Having presented the general framework for analyzing SMP emission,

we now present specific results for SMP emission into a thin film of MnF2.

3.2 Transition rate results

We now discuss the transition rates and associated Purcell factors of magnetic dipole emit-

ters. For a 𝑧-oriented spin flip of frequency 𝜔eg placed a distance 𝑧0 from the surface of a

negative 𝜇 film, the spontaneous emission rate is given as

Γ
(eg)
dipole =

𝜇2
𝐵𝜇0𝜔eg

~
𝑞2(𝜔eg)

𝐶 ′(𝜔eg)|𝑣𝑔(𝜔eg)|
𝑒−2𝑞(𝜔eg)𝑧0 , (3.6)
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Figure 3-1: Dipole transition rate enhancement by SMPs. (a) Dipole transition rate for a
𝑧-oriented spin flip as a function of normalized frequency and distance 𝑧0 from the emitter
to the surface of a 𝑑 = 200 nm MnF2 film. The transition rates decay exponentially with
increasing distance from the surface. (b) Line cuts of the information shown in (a) for
different fixed distances 𝑧0. The axis on the left shows the total transition rate, while the
axis on the right shows the Purcell factor, in other words, the transition rate normalized by
the free space transition rate.

where 𝐶 ′(𝜔) = 𝐶(𝜔)/𝑞(𝜔) is introduced to remove the wavevector dependence from the

normalization. We also note that the group velocity |𝑣𝑔(𝜔)| ∝ 1/𝑞(𝜔), and thus the whole

expression carries a wavevector dependence of Γ
(eg)
dipole ∝ 𝑞3(𝜔eg).

We now discuss the numerical values for spin-flip transition rates in nearby emitters

which come directly from Eq. 3.6. We find these transition rates into SMPs to be orders of

magnitude faster than the rates of transition into free-space photons at the same frequency.

Figure 3-1 shows the emission rate as a function of frequency 𝜔 and emitter distance 𝑧0

for a 𝑑 = 200 nm MnF2 film. Panel (b) shows line cuts of the dipole transition rate at

various emitter distances 𝑧0. In this geometry we find that for the highest supported magnon

frequencies, the total rate of emission may exceed 105 s−1, which corresponds to a decay

time of 10 𝜇s. This is eleven orders of magnitude of improvement over the free space decay
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lifetime of more than a week. We see that for sufficiently close distances 𝑧0, the decay rate

increases with 𝜔, spanning many orders of magnitude over a small frequency bandwidth.

Furthermore, we see that with increasing distance 𝑧0, the total decay rate is suppressed

exponentially by the evanescent tail of the surface magnon. More specifically, we see in

the exponential dependence 𝑒−2𝑞(𝜔eg)𝑧0 that in order for rate enhancement to be effective, 𝑧0

should be comparable to or ideally smaller than 1/𝑞 ∼ 𝑑. For a 200 nm film, enhancement

begins to saturate for 𝑧0 < 20 nm. In terms of a potential experiment, these are promising

parameters which could result in a total transition rate of 104 s−1. Finally, we note that

at distances 𝑧0 extremely near to the surface, effects such as material losses or nonlocality

may cause the behavior of the transition rate to deviate slightly from the predicted behavior.

It is also worthwhile to consider not only the total transition rates, but also the Purcell

factors. The right side axis of Figure 3-1(b) shows the Purcell factor for spin relaxation

into SMPs, computed as the ratio between the enhanced transition rate and the free space

transition rate, and denoted as 𝐹𝑝(𝜔) = Γdipole/Γ0. We note that while the transition rate in

the magnonic environment is technically the sum of the SMP emission rate and the radiative

rate, in our systems the radiative rate is so small that it need not be considered.

Thinner films offer even more drastic capabilities for enhancement. The dipole tran-

sition rate and Purcell factor scale as 𝜂3, which means that shrinking the film thickness 𝑑

even by conservative factors can result in a rapid increase in the maximum transition rate

achievable. This 𝜂3 scaling is exactly the same scaling found for Purcell factors of electric

dipole transition enhancement in the vicinity of highly confined electrostatic modes such

as surface plasmon polaritons [16, 19, 35].

Having established the duality between electric and magnetic surface polaritonics in the

context of Purcell enhancement, other important conclusions about the scope and utility of

SMPs follow. Most notably, Purcell factors for higher order magnetic processes should

scale with mode confinement identically to those for the corresponding electric processes.

Given an emitter-material system that can support such processes, it should be possible to

compute transition rates of higher order processes such as magnetic quadrupole transitions

and multi-magnon emission processes. Conveniently, electromagnetic duality implies that

the confinement scaling properties of all electric multipolar or multi-photon transitions
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into electric polaritons are identical to those of their magnetic analogs. For example, the

magnetic quadrupole transition Purcell factor should scale as ∝ 𝜂5. For emission into

modes confined to factors of 1000 or more, this enhancement factor could easily exceed

1015, eluding to the possibility of making highly forbidden magnetic quadrupole processes

observable.

3.3 Emission with in-plane anisotropy

Thus far, we have considered geometries of MnF2 in which the anisotropy axis of the crystal

is out of the plane of a thin film (in the 𝑧 direction). Past work has brought both theoretical

interest as well as experimental studies on antiferromagnetic surface interfaces in which

the magnetic permeability anisotropy axis lies in-plane. In other words, the material has

negative permeability in the out-of-plane direction as well as one in-plane direction, while

having a permeability of 1 in the other in-plane direction. This geometry gives rise to

an rich anisotropic dispersion relation of SMP modes, which in turn result in a nontrivial

angular dependence for processes of spontaneous emission. We summarize those findings

here.

For the in-plane anisotropic geometry with 𝜇 = (𝜇(𝜔), 1, 𝜇(𝜔)), the dispersion (ob-

tained again by solving Maxwell ’s equations for a quasimagnetostatic scalar potential) is

given by solutions to:

𝑒𝑞𝑑
√

𝛽(𝜃,𝜔) =
1 − 𝜇(𝜔)

√︀
𝛽(𝜃, 𝜔)

1 + 𝜇(𝜔)
√︀
𝛽(𝜃, 𝜔)

, (3.7)

where 𝛽(𝜃, 𝜔) = cos2 𝜃 + sin2 𝜃/𝜇(𝜔) and 𝜃 is the in-plane propagation angle measured

with respect to the 𝑥-axis. When 𝛽 > 0, the mode function has a 𝑧-dependence of cosh(𝑞𝑧)

or sinh(𝑞𝑧), dependent on the parity of the solution. When 𝛽 < 0, the modes have a

cos(𝑞𝑧) or sin(𝑞𝑧) dependence. We note that the 𝛽 < 0 solutions have a multiply branched

structure which correspond to higher harmonic modes, just as with the in-plane isotropic

case discussed throughout the text. Furthermore, recalling that 𝜇 < 0 and examining

𝛽(𝜃, 𝜔), we see that for angles of propagation near 0, 𝛽 will be positive, while for angles

of propagation near 𝜋/2, 𝛽 is negative. Based on the sign of 𝛽, we can classify the modes
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into two distinct types. We refer to 𝛽 > 0 modes as type I modes, and 𝛽 < 0 modes as

type II modes. The fundamental type I modes propagate in the range 𝜃 ∈ (0, 𝜃𝑥), where

𝜃𝑥 = tan−1(
√︀
−𝜇(𝜔)), while the type II modes with 𝑛 = 1 propagate in the range 𝜃 ∈

(𝜃𝑦, 𝜋/2), with 𝜃𝑦 = cos−1(1/
√︀

−𝜇(𝜔)). The angular propagation ranges for the type I

modes and the lowest order type II mode are non-overlapping, and the gap between 𝜃𝑥 and

𝜃𝑦 increases with 𝜔.

The dispersion for even type I and type II modes are respectively given as:

𝑞I = − 1

2𝑑
√︀
𝛽(𝜃, 𝜔)

tanh−1

(︃
1

𝜇(𝜔)
√︀
𝛽(𝜃, 𝜔)

)︃
, (3.8)

𝑞𝑛II =
1

2𝑑
√︀

−𝛽(𝜃, 𝜔)
tan−1

(︃
1

𝜇(𝜔)
√︀

−𝛽(𝜃, 𝜔)
+
𝑛𝜋

2

)︃
, (3.9)

where 𝑛 is an integer. We see that for even type I modes, only a single band of surface

polariton modes exists, while for type II modes, a richer structure with harmonics exists

due to the multivalued nature of the arctangent, just as in the in-plane isotropic case. In

Figure 3-2, we see the isofrequency contours for the dispersion in the case of in-plane

anisotropy. We clearly observe that the mode structure is anisotropic, in that type I modes

behave differently than type II modes. We comment briefly on the polarization of the

modes. The in-slab H-field polarization of the type I and II modes are respectively given

as

𝜀𝑞 =

⎧⎪⎪⎨⎪⎪⎩
𝑞 cosh(𝑞𝑧) + 𝑖 sinh(𝑞𝑧)𝑧√

2
, type I

𝑞 cos(𝑞𝑧) + 𝑖 sin(𝑞𝑧)𝑧√
2

, type II
. (3.10)

Applying the same formalism as before, the rate of emission into SMPs per unit angle

by a 𝑧-oriented spin flip of strength 𝜇𝐵 is given by

dΓ(eg)

d𝜃
=
𝜇2
𝐵𝜇0𝜔eg

2𝜋~
𝑞3(𝜃, 𝜔eg)|𝜎𝑒𝑔 · 𝜖q|2

𝐶𝑞(𝜃, 𝜔eg)|𝑣𝑔(𝜃, 𝜔eg)|
𝑒−2𝑞(𝜃,𝜔eg)𝑧0 . (3.11)

The total rate is obtained by integrating over all angles:

Γ(eg) =
𝜇2
𝐵𝜇0𝜔eg

2𝜋~

∫︁ 2𝜋

0

𝑞3(𝜃, 𝜔eg)|𝜎𝑒𝑔 · 𝜖q|2

𝐶𝑞(𝜃, 𝜔eg)|𝑣𝑔(𝜃, 𝜔eg)|
𝑒−2𝑞(𝜃,𝜔eg)𝑧0d𝜃. (3.12)

34



In Figure 3-3 we see the lossless differential decay rate 𝑑Γ(𝑒𝑔)/𝑑𝜃 plotted as a func-

tion of polar angle 𝜃 for a 𝑧-oriented spin flip transition at different emitter frequencies

𝜔. We see that with increasing frequency, the angular spread of type I modes narrows,

while the angular spread of type II modes increases. We can understand this behavior in

terms of the availability and confinement of modes for different propagation angles 𝜃. The

most highly confined modes are the type I modes near the angular cutoff. As 𝜔 increases

the confinement of type I modes at low angles increases, while the confinement of type II

modes decreases. This system exhibits the interesting property that tuning the frequency

of the emitter over a narrow bandwidth dramatically shapes the angular spectrum of polari-

ton emission. An interesting consequence is that for an emitter with a broadened spectral

line (broader than 0.001𝜔0), the angular spectrum will be a complicated mixture of the

qualitatively different angular spectra in 3-3.

In Figure 3-4, we see the total transition rate Γ(eg) for a dipole emitter above MnF2 ori-

ented with the anisotropy axis in the 𝑦 direction. While the transition rates of both modes

are greatly enhanced compared to the free space transition rate of order 10−6 𝑠−1, the type I

mode benefits approximately two orders of magnitude more than the first type II mode. In

particular, the Purcell factor for the type I mode ranges from 1010 to 1012, and is thus quite

comparable to Purcell factors obtained for the in-plane isotropic discussed previously. In

this sense, we see that extreme enhancement of magnetic dipole transition rates is achiev-

able in both crystal orientations. The dispersion relation, however, is notably different in

these cases. As an additional degree of freedom, one can consider how the dispersion,

and consequently the dipole emission rate, will be influenced by an applied magnetic field

along the anisotropy axis of a material such as MnF2. In this case, an effective Zeeman

splitting causes the resonance frequency 𝜔0 to split into two frequencies which move away

from each other in linear proportion to the applied field, as described, for example, in [82].

When the anisotropy axis lies in the plane of the material, such an applied field results in

nonreciprocal propagation of waves due to the broken reflection symmetry. For these rea-

sons, applied fields may be used to tune the AFMR frequencies, or to shape the properties

of the spin waves emitted by magnetic dipole transitions. The net result is a highly flexible

platform for strong interaction between magnetic transitions and matter.

35



Figure 3-2: Dispersion for anisotropic modes. Isofrequency contours for MnF2 of thick-
ness 𝑑 = 200 nm. The frequency labels are given as 𝜔/𝜔0, where 𝜔0 is the resonance
frequency of the material. The first type I modes are shown in red, while the type II modes
with 𝑛 = 1 are shown in blue.

Figure 3-3: Angular distribution of SMP emission. Magnetic dipole transition rate per
unit angle 𝑑Γ(eg)/𝑑𝜃 for radiation into SMPs on a 200 nm thick slab of MnF2. The radial
axis shows 𝑑Γ(eg)/𝑑𝜃 plotted on a log scale in units of s−1. The first type I modes are
shown in red and the first type II modes are shown in blue. Dashed lines indicate the
angular cutoffs 𝜃𝑥 and 𝜃𝑦 for each type of mode. Note that at low frequencies 𝜃𝑥 and 𝜃𝑦
become very close. We additionally note that for 𝜔/𝜔0 > 1.0035, the type I mode branch
shown in red vanishes entirely, leaving only the type II modes.
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Figure 3-4: Magnetic dipole transition rate for in-plane anisotropic MnF2. Magnetic
dipole transition rate for a 𝑧-oriented dipole transition a distance 𝑧0 = 5 nm from the
surface into two different SMP modes in a 𝑑 = 200 nm thick anisotropic slab of MnF2.
The type I mode emits most strongly but over a narrower range of frequencies. The cutoff
frequency is the frequency at which the first type I mode no longer satisfies the boundary
conditions. The first order type II mode is emitted more weakly but is supported over the
entire range of frequencies for which 𝜇(𝜔) < 0.
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Chapter 4

Experimental considerations and

Outlook

We have shown that highly confined surface magnon polaritons, such as those on anti-

ferromagnetic materials, could speed up magnetic transitions by more than 10 orders of

magnitude, bridging the inherent gap in decay rates which typically separates electric and

magnetic processes. We predict that these confined magnetic surface modes in systems

with realizable parameters may exhibit confinement factors in excess of 104. We developed

the theory of magnon polaritons and their interactions with emitters in a way that unifies

this set of materials with other more well-known polaritonic materials, casting light on

opportunities to use these materials to gain unprecedented control over spins in emitters.

To push the field of magnon polaritonics at THz frequencies forward, it will be neces-

sary to identify an ideal experimental platform for manipulating these modes and interfac-

ing them with matter. For antiferromagnetic platforms, experiments will need to take place

below the Néel temperature of the material in order to establish antiferromagnetic order.

Importantly, we note that the only strict material requirement for surface magnon polari-

tons is that Re(𝜇) < 0 over some frequency range, presenting opportunities for other types

of magnetic order, 2D magnetic materials, or even metamaterials which exhibit negative

permeability. The other key consideration is what class of emitters may be well-suited to

interact with these polaritonic modes. In terms of existing materials, a potential emitter sys-

tem which can interact with the antiferromagnetic SMPs discussed here is ErFeO3, which
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Figure 4-1: Schematic for a potential fluorescence spectroscopy experiment to observe
enhancement of magnetic dipole (MD) transitions through surface magnon polari-
tons. We consider a layered sample which contains a thin negative permeability film which
supports SMPs, and a material containing an appropriately chosen emitter material. An
external laser prepares the emitters into an excited state via an IR/optical transition. This
excited state then decays via a THz transition into SMPs in the thin film, and then relaxes
via a photon transition into the far field. The far field signal can be measured with a spec-
trometer to detect the Raman-shift in the fluorescence frequency compared to the incident
laser frequency.

has several electric and magnetic dipole transitions in the range between 0.25 and 1.5 THz

[83]. Recent work has also considered THz magnon-polaritons in TmFeO3 [84]. It could

also prove interesting to consider GHz-THz orbital angular momentum transitions between

high energy levels in Rydberg atoms, Landau levels, or vibrational modes in molecules. In

addition, one could consider THz transitions arising from impurity states in semiconduc-

tors [85], which have the benefit of the tunability over THz scale by the application of an

external magnetic field.

The theoretical predictions made in this work could be verified by fluorescence spec-

troscopy measurements on a thin layered sample as shown in Figure 4-1. We represent the

emitter as a three level system, where the gap between the lower level and the higher levels

is in the optical/IR and is excited with an external laser via an electric dipole transition. The

excited state can then decay into SMPs in the material below via a magnetic dipole transi-

tion. Such a magnetic dipole transition is usually very slow in free space, but as detailed in

our work, will occur orders of magnitude faster due to decay into SMPs. The emitter state
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populations and transition rates can then be monitored via spectroscopy of the optical pho-

ton emitted to free space. One would expect to see a decrease in fluorescence at the exciting

laser frequency, in conjunction with the appearance of a new Raman peak, shifted from the

exciting frequency by the THz SMP frequency. Similar schemes for monitoring Purcell

enhancements in plasmonics have been implemented in [86]. Time resolved measurements

have also been made in [87] in order to directly measure the decay in excited state pop-

ulations which occurs through Purcell-enhanced emission of polaritons. Alternatively, a

substantial rate increase in a THz MD transition due to SMP excitation could influence

rate dynamics in a way which produces optical/IR far-field decays at frequencies entirely

different from the exciting laser. Methods for analyzing such mechanisms are detailed in

[88].

Future work could also consider processes involving the emission of multiple surface

magnons using the framework presented in [35], or mixed processes with the emission

of a magnon polariton in addition to one or more excitations of another nearby material.

In any case, surface magnon polaritons provide an interesting new degree of control over

magnetic degrees of freedom in matter as well as a means to consider magnetic analogs at

THz frequencies of many famous effects in plasmonics and polaritonics.
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