
Wasserstein Barycenters: Statistics and Optimization
by

Austin J. Stromme

B.S., Mathematics, University of Washington (2018)
B.S., Computer Science, University of Washington (2018)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c○Massachusetts Institute of Technology 2020. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 15th, 2020

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Philippe Rigollet

Associate Professor of Mathematics
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee for Graduate Students



2



Wasserstein Barycenters: Statistics and Optimization
by

Austin J. Stromme

Submitted to the Department of Electrical Engineering and Computer Science
on May 15th, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

We study a geometric notion of average, the barycenter, over 2-Wasserstein space. We
significantly advance the state of the art by introducing extendible geodesics, a simple
synthetic geometric condition which implies non-asymptotic convergence of the empir-
ical barycenter in non-negatively curved spaces such as Wasserstein space. We further
establish convergence of first-order methods in the Gaussian case, overcoming the non-
convexity of the barycenter functional. These results are accomplished by various novel
geometrically inspired estimates for the barycenter functional including a variance in-
equality, new so-called quantitative stability estimates, and a Polyak-Łojasiewicz (PL) in-
equality. These inequalities may be of independent interest.
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Chapter 1

Introduction

This thesis is concerned with averaging probability measures. It combines the theory of opti-

mal transport, termed Wasserstein space, with geometric averages, termed barycenters, to

provide novel quantitative understanding of barycenters on Wasserstein space.

1.1 Background

Optimal transport is a geometrically meaningful way of measuring distances between

probability distributions. Essentially, optimal transport distances measure the most effi-

cient means of moving one distribution to another. Stated at the level of random variables,

the optimal transport distance between two random variables 𝑋,𝑌 is the infimum, over

all of couplings 𝜋 of 𝑋,𝑌 , of E𝜋[‖𝑋 − 𝑌 ‖22]. Note the contrast between this distance mea-

sure and classical information divergences, such as the Kullback-Liebler divergence, which

measure purely pointwise differences of densities. This distinction is often summed up by

saying that optimal transport is “horizontal" whereas divergences are “vertical". We shall

call the space of measures with the optimal transport metric Wasserstein space.

Optimal transport was first studied in 1781 by Gaspard Monge who wondered about

the optimal way to fill holes with sand [42]. The theory developed in fits and starts until

the 1980’s when Knott and Smith [34] and Brenier [16] independently discovered a simple

and beautiful form for the optimal coupling. Since these major advances, the theory has

deepened and expanded at an accelerating pace.

Although this rapid theoretical progress inspired a few practical forays into optimal

transport, it was Cuturi’s 2013 introduction of an efficient approximation algorithm via
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entropic regularization that heralded the current wave of interest amongst applied scien-

tists [23]. His efficient algorithm, combined with optimal transport’s appealing geometric

semantics for comparing probability distributions, led to an explosion of applications, see

e.g. [49] and the references therein. The aspect of optimal transport at stake in this present

thesis is a means of using the geometry to construct meaningful summaries, i.e., “aver-

ages," of collections of distributions. To incorporate the geometry of optimal transport into

this average, we use the concept of barycenters.

The barycenter, also dubbed center of mass, center of gravity, or (mistakenly) the Karcher

mean, is a natural generalization of averages to curved spaces that has been studied since

at least the early 20th century [58, 31]. Ignoring issues of existence and uniqueness, the

barycenter 𝑏* of a distribution 𝑃 on a metric space (𝑀,𝑑𝑀 ), is defined as

𝑏* := argmin
𝑏∈𝑀

𝐹 (𝑏) :=
1

2
E𝑝∼𝑃

[︀
𝑑2𝑀 (𝑏, 𝑝)

]︀
.

As can be easily verified, this coincides with the usual Euclidean average in the case where

(𝑀,𝑑𝑀 ) = (R𝑑, ‖ · ‖2).

Wasserstein barycenters are thus barycenters in the case of probability measures on R𝑑

metrized by the optimal transport distance. Wasserstein barycenters offer practitioners a

highly non-linear yet meaningful average for applications where the pointwise average of

measures is inappropriate. Whenever data can be embedded as a probability distribution

over R𝑑, Wasserstein barycenters may offer a significant advantage over more traditional

techniques of summarization [24]. They have thus been applied in a broad variety of ar-

eas, including graphics, neuroimaging, Bayestian statistics, dimensionality reduction, and

economics [51, 50, 55, 27, 15, 56, 21].

The theoretical study of Wasserstein barycenters dates back to the 1990’s [45, 35, 41].

Several special cases were considered, the most important being the case where 𝑃 is sup-

ported on two points and the corresponding theory of Wasserstein geodesics by McCann

in [41]. Although there was significant theoretical understanding of barycenters in some

general contexts around that time [58], the existing theory did not apply in a significant

way due to the positive curvature of Wasserstein space [7, 44]. Because of this, insight

into the Wasserstein space case was not provided until the work of Agueh and Carlier

in 2011 [1], where the authors used the structure of Wasserstein space to develop a primal-
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dual proof establishing existence, uniqueness, and optimality conditions under general

assumptions. One beautiful consequence of the work of Agueh and Carlier is a surprising

connection between the barycenter problem and the original optimal transport problem

via the concept of multi-marginal transport. This connection, combined with the funda-

mental relationship between barycenters and geometry, serve to theoretically motivate the

study of Wasserstein barycenters.

1.2 Main Results

Theoretical work subsequent to the Agueh and Carlier paper has focused on both statistical

and computational aspects of Wasserstein barycenters. In this section, we present the two

primary results contained in this thesis. The first result is on the convergence of empirical

Wasserstein barycenters to their population counterparts, from [26]. The second result is

on the convergence of popular first order methods for computing Wasserstein barycenters,

from [22].

The failure of standard techniques for both of these problems essentially stems from the

(sometimes infinitely) positive curvature of Wasserstein space. As such, the proofs rely on

building a powerful quantitative understanding of the positive curvature of Wasserstein

space and carefully applying it to the problems of interest.

1.2.1 Empirical barycenters

Empirical averages and their convergence to population averages are at the heart of statis-

tics. We thus study the corresponding problem on Wasserstein space. Consider a distri-

bution 𝑃 on Wasserstein space, and let �̂�𝑛 be the barycenter of the empirical distribution

𝑃𝑛 := 1
𝑛

∑︀𝑛
𝑖=1 𝛿𝑝𝑖 for independent samples 𝑝𝑖 ∼ 𝑃 . We call �̂�𝑛 the empirical barycenter. It has

been shown that �̂�𝑛 is a consistent estimator of 𝑏* [38]. It is then natural to ask about the

finite sample variance for this estimator, which we can define by E[𝑊 2
2 (𝑏

*, �̂�𝑛)] where the

expectation is over all samples of size 𝑛. Note that in the Euclidean case, the variance of

the empirical mean is always exactly

E
[︁
‖𝑏* − �̂�𝑛‖22

]︁
=
𝜎2

𝑛
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where 𝜎2 := E[‖𝑥 − 𝑏*‖22] is the variance of the distribution. We are thus motivated to

understand when a parametric rate1 holds for the empirical barycenter over Wasserstein

space. Some special cases have been considered [47, 12, 14, 2]. In [36], parametric rates are

obtained for the Gaussian case. Prior to the following theorem, the best rates in a general

context were of the form 𝑂(𝑛−1/𝑑) and were established using techniques from empirical

process theory [3].

Before we can state our first main result, we review the discovery of Brenier and Agueh

and Carlier: consider the 2-Wasserstein problem between two measures 𝜇, 𝜈. If 𝜇 is abso-

lutely continuous w.r.t. the Lebesgue measure then the infimium over couplings in the

𝑊2 problem is uniquely attained by a deterministic mapping which we will often write

as 𝑇𝜇→𝜈 . Moreover, this mapping is the gradient of a convex function; we write this as

𝑇𝜇→𝜈 = ∇𝜙𝜇→𝜈 . The first main result in this thesis is the following:

Theorem 1.2.1 (Main Theorem 1). Suppose 𝑃 is a distribution supported on absolutely continu-

ous measures over R𝑑 with finite second moment. Suppose further that 𝑃 has a barycenter 𝑏* such

that for each 𝜇 ∈ supp(𝑃 ), the optimal potential 𝜙𝑏*→𝜇 is 𝛼-strongly convex and 𝛽-smooth, where

𝛽 − 𝛼 < 1. Then 𝑏* is the unique barycenter of 𝑃 and moreover

E
[︁
𝑊 2

2 (�̂�𝑛, 𝑏
*)
]︁
6

4𝜎2

𝑘2𝑛
.

where 𝑘 := 1− (𝛽 − 𝛼) > 0 and 𝜎2 := E[𝑊 2
2 (𝑝, 𝑏

*)] is the variance of 𝑃 .

A couple of remarks are now in order. First, the condition on the optimal potential is

geometrically natural. In fact, it is merely the statement that the 𝑊2-geodesic between 𝑏*

and 𝜇 can be extended past 𝑏* and past 𝜇 by an amount depending on 𝛽 and 𝛼, respectively.

The second remark is that this result is actually a special case of a much more general

theorem proved by the author and collaborators in [26].

1.2.2 First-order methods for barycenters on Gaussians

The above theorem provides finite-sample convergence rates for empirical Wasserstein

barycenters in a broad variety of situations. However, given that there is no explicit form

for the Wasserstein barycenter, the question becomes how to compute one. A common ap-

proach considered in a number of applications is to use a first order optimization method
1precisely: a rate of the form 𝑐/𝑛 for 𝑐 independent of dimension
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such as gradient descent or stochastic gradient descent to approximate the barycenter. This

can be made formally rigorous (see [7]), but for our purposes we will simply define the𝑊2-

gradient of the barycenter functional to be, for all 𝑏 absolutely continuous and with finite

second moment,

∇𝑊2𝐹 (𝑏) := −E𝑝∼𝑃 [(𝑇𝑏→𝑝 − id)]

where 𝑇𝑏→𝑝 is the optimal map from 𝑏→ 𝑝 and id : R𝑑 → R𝑑 is the identity. Panaretos and

Zemel were able to show that under mild assumptions on the distribution 𝑃 , a simple gra-

dient descent algorithm converges to the population barycenter asymptotically [46]. The

case where 𝑃 is supported on Gaussians was also studied in [6, 9, 62]. Fast convergence of

first order methods was observed in each of these three works, and proving such conver-

gence was left open in [6]. The following theorem, from our work [22], resolves this open

problem.

Theorem 1.2.2 (Main Theorem 2). Let 𝑃 be a distribution supported on mean-zero Gaussians

whose covariance matrices have eigenvalues uniformly bounded between 𝜆min and 𝜆max. Let 𝜅 :=

𝜆max/𝜆min. Then 𝑃 has a unique barycenter 𝑏*. Moreover, 𝑊2 gradient descent for the barycenter

functional initialized at 𝑏0 ∈ supp(𝑃 ) obeys

𝑊 2
2 (𝑏𝑇 , 𝑏

*) 6 2𝜅

(︂
1− 1

4𝜅2

)︂𝑇

(𝐹 (𝑏0)− 𝐹 (𝑏*)).

Performing stochastic gradient descent for the barycenter functional initialized at 𝑏0 ∈ supp(𝑃 ),

we obtain the bound

E
[︀
𝑊 2

2 (𝑏𝑛, 𝑏
*)
]︀
6

96𝜎2𝜅5

𝑛
.

We remark that this theorem is an example of a non-convex optimization problem

where convex methods provably work. Specifically, the positive curvature of Wasserstein

space means the barycenter functional is not geodesically convex - in fact, over Gaus-

sians, it can actually be concave! The proof overcomes this non-convexity by establishing

a Polyak-Łojasiewicz inequality using novel theory for the Wasserstein barycenter func-

tional. In fact, a significant portion of the technical work is valid at the level of general

first-order optimization for Wasserstein barycenters.
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1.3 Guide to the thesis

Chapter 2 begins by summarizing facts from optimal transport and then dives into a signif-

icant exploration of curvature in𝑊2(R𝑑) and its connection with the barycenter functional.

We believe that this chapter is the most independently interesting, so we attempted to de-

velop a cohesive discussion of the relevant ideas. Sections marked with an asterisk are

not used in the remainder of the work, though we feel they are of independent interest.

Chapter 3 takes the machinery developed in the previous chapter and applies it to pro-

vide a quick solution for the empirical barycenters problem. Chapter 4 studies first-order

methods for the barycenter problem.

The most generally useful and novel inequalities are in Theorem 2.3.7, Theorem 2.7.11

(see also Theorem 2.6.1 and Theorem 2.9.2 for specializations), and Lemma 4.4.1.

The appendices contain some empirical work as well as omitted proofs.
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Chapter 2

Geometry of optimal transport

In this chapter we develop some of the most general and conceptually important results

of the thesis. We start by summarizing background on optimal transport, discussing some

simple notions of curvature in metric spaces, and then explaining their close relationship

with the barycenter functional. We then study the curvature of Wasserstein space. We

conclude with a series of related inequalities that, roughly, allow us to control the positive

curvature under the assumption of extendible geodesics.

2.1 Background on optimal transport

In this section, we define frequently used notation and state the most important theorems

about optimal transport. We refer the reader to the books [60, 61, 7, 52]. We let 𝒫2(R𝑑)

be the set of probability measures on R𝑑 with finite second moment, namely 𝜇 such that

E𝑥∼𝜇[‖𝑥‖22] < ∞. We write the collection of probability measures that are absolutely con-

tinuous w.r.t. the Lebesgue measure with finite second moment as 𝒫2,ac(R𝑑). We shall

often write the identity map id : R𝑑 → R𝑑.

Given two measures 𝜇, 𝜈 ∈ 𝒫2(R𝑑), the set Π(𝜇, 𝜈) is the set of all couplings of 𝜇 and 𝜈,

i.e. the set of measures 𝜋 on R𝑑 × R𝑑 with marginals 𝜇 and 𝜈. The 2-Wasserstein distance

between 𝜇 and 𝜈 is defined as

𝑊 2
2 (𝜇, 𝜈) := inf

𝜋∈Π(𝜇,𝜈)

∫︁
‖𝑥− 𝑦‖22d𝜋(𝑥, 𝑦).

The infimum can be shown to be attained by compactness of Π(𝜇, 𝜈) w.r.t. the weak topol-

15



ogy. A minimizer is referred to as an optimal transport plan. Moreover, 𝑊2(𝜇, 𝜈) thus

defined is a metric and, when restricted to probability measures over a compact set, the𝑊2

distance metrizes weak convergence of measures. In the non-compact case, 𝑊2 metrizes

weak convergence and convergence of second moments [60, Thm 7.12]. The 2-Wasserstein

problem admits a dual formulation, called the dual Kantorovich problem, given by

sup
(𝑓,𝑔)∈𝑆𝜇,𝜈

(︂∫︁
𝑓𝑑𝜇+

∫︁
𝑔𝑑𝜈

)︂
,

where

𝑆𝜇,𝜈 := {(𝑓, 𝑔) ∈ 𝐿1(𝜇)× 𝐿1(𝜈) : 𝑓(𝑥) + 𝑔(𝑦) 6 ‖𝑥− 𝑦‖22}.

Given a map 𝑇 : R𝑑 → R𝑑, we let 𝑇#𝜇 be the push-forward of 𝜇 under 𝑇 , namely the law

of 𝑇 (𝑥) when 𝑥 ∼ 𝜇. We shall call a convex function 𝜙 proper if 𝜙(𝑥) < +∞ for some

𝑥 and if 𝜙(𝑥) > −∞ for all 𝑥. The domain of a convex function dom(𝜙) shall be the set

of points at which it is finite. The convex conjugate of a convex function 𝜙 is denoted 𝜙*

and defined as 𝜙*(𝑦) := sup𝑥∈R𝑑⟨𝑥, 𝑦⟩ − 𝜙(𝑥). We shall often use that for a proper lower

semicontinous function 𝜙, 𝜙 convex if and only if 𝜙 = 𝜙**, and as well that ∇𝜙* and ∇𝜙,

when defined uniquely, are inverses for one another.

We can now state the fundamental theorem of optimal transport.

Theorem 2.1.1. Suppose 𝜇 ∈ 𝒫2,ac(R𝑑) and 𝜈 ∈ 𝒫2(R𝑑). Then the following are equivalent:

1. 𝜋 ∈ Π(𝜇, 𝜈) is an optimal transport plan

2. 𝜋 = (id,∇𝜙)#𝜇 for a proper convex function 𝜙

3. Strong duality holds between the 𝑊2 problem and the dual Kantorovich problem:

∫︁
‖𝑥− 𝑦‖22𝑑𝜋(𝑥, 𝑦) = sup

(𝑓,𝑔)∈𝑆𝜇,𝜈

(︂∫︁
𝑓𝑑𝜇+

∫︁
𝑔𝑑𝜈

)︂
.

Moreover, the supremum is attained for 𝑓 = ‖𝑥‖22 − 2𝜙(𝑥) and 𝑔 = ‖𝑦‖22 − 2𝜙*(𝑦).

Finally, there is a unique∇𝜙 such that the above holds, in the sense that if∇𝜓 is also optimal then

∇𝜙(𝑥) = ∇𝜓(𝑥) 𝜇-a.e.

The potentials 𝜙,𝜙* are referred to as Kantorovich potentials for the pair (𝜇, 𝜈). We

shall often write the optimal transport map between 𝜇 ∈ 𝒫2,ac(R𝑑) and 𝜈 ∈ 𝒫2,ac(R𝑑) as
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𝑇𝜇→𝜈 and an optimal Kantorovich potential as 𝜙𝜇→𝜈 so that 𝑇𝜇→𝜈 = ∇𝜙𝜇→𝜈 .

We shall always implicitly assume metric spaces (𝑋, 𝑑𝑋) are complete and separable.

A constant speed geodesic in (𝑋, 𝑑𝑋) is a curve 𝛾 : [𝑎, 𝑏]→ 𝑋 such that for all 𝑡, 𝑠 ∈ [𝑎, 𝑏],

𝑑𝑋(𝛾(𝑡), 𝛾(𝑠)) =
|𝑡− 𝑠|
𝑏− 𝑎

𝑑𝑋(𝛾(𝑎), 𝛾(𝑏)).

We then say that (𝑋, 𝑑𝑋) is geodesically complete if each pair of points can be connected

by a constant speed geodesic.

Theorem 2.1.2. 𝑊2(R𝑑) is a geodesically complete metric space. For any 𝜇, 𝜈 ∈ 𝑊2, let 𝜋𝑡 :=

(1− 𝑡)𝑥+ 𝑡𝑦 for 𝑡 ∈ [0, 1]. Let 𝜋* ∈ Π(𝜇, 𝜈) be an optimal transport plan for 𝜇 to 𝜈. Then the path

𝜔(𝑡) = (𝜋𝑡)#𝜋
* is a constant-speed geodesic in 𝑊2 connecting 𝜔(0) = 𝜇 to 𝜔(1) = 𝜈. Moreover,

all constant-speed geodesics are of this form. Hence, if 𝜇 is absolutely continuous with respect to

Lebesgue, there is in fact a unique geodesic joining 𝜇 to 𝜈.

Remark 2.1.3. We remark that geodesics between non-absolutely continuous measures need not be

unique. Consider as an example the measures 𝜇0 := 1
2𝛿(0,1)+

1
2𝛿(0,−1) and 𝜇1 := 1

2𝛿(1,0)+
1
2𝛿(−1,0).

Then both

𝜇𝑡 :=
1

2
𝛿(𝑡,(1−𝑡)) +

1

2
𝛿(−𝑡,−(1−𝑡))

and

�̃�𝑡 :=
1

2
𝛿(−𝑡,1−𝑡) +

1

2
𝛿(𝑡,−(1−𝑡))

are distance-minimizing geodesics between 𝜇0 and 𝜇1.

Lastly, we shall need to define strong convexity and smoothness: for 𝛼 > 0 and 𝛽 > 0,

we will say that a convex function 𝜙 is 𝛼-strongly convex if for all 𝑥, 𝑦 ∈ dom(𝜙)

𝜙((1− 𝑡)𝑥+ 𝑡𝑦) 6 (1− 𝑡)𝜙(𝑥) + 𝑡𝜙(𝑦)− 𝛼

2
𝑡(1− 𝑡)‖𝑥− 𝑦‖22.

It is 𝛽-smooth if the reverse inequality holds with 𝛼 replaced by 𝛽.

2.2 A simple notion of curvature in geodesic metric spaces

It is not within scope for this thesis to give an introduction to curvature in Riemannian and

metric geometry. Suffice it to say that curvature is a word with many meanings, all gener-
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ally related to controlling the deviation of an object from it’s flat Euclidean counterpart. As

Gromov says in [28]: “The curvature tensor of a Riemannian manifold is a little monster

of (multi)linear algebra whose full geometric meaning remains obscure." Luckily, there are

intuitive simplifications of the full curvature tensor which generalize well beyond Rieman-

nian manifolds. In this section we shall define one such notion that will be fundamental

for the rest of the thesis.

Definition 2.2.1. We say a geodesically complete metric space (𝑋, 𝑑𝑋) is non-positively curved

(NPC) if for every 𝑦, 𝑥0, 𝑥1 ∈ 𝑋 , and every constant speed geodesic 𝛾 : [0, 1] → (𝑋, 𝑑𝑋) joining

𝑥0 to 𝑥1,

𝑑2𝑋(𝛾(𝑡), 𝑦) 6 (1− 𝑡)𝑑2𝑋(𝑥0, 𝑦) + 𝑡𝑑2𝑋(𝑥1, 𝑦)− 𝑡(1− 𝑡)𝑑2𝑋(𝑥0, 𝑥1). (2.2.1.1)

If the reverse inquality holds for all triples 𝑦, 𝑥0, 𝑥1 and constant speed geodesics 𝛾 : [0, 1] →

(𝑋, 𝑑𝑋), namely

𝑑2𝑋(𝛾(𝑡), 𝑦) > (1− 𝑡)𝑑2𝑋(𝑥0, 𝑦) + 𝑡𝑑2𝑋(𝑥1, 𝑦)− 𝑡(1− 𝑡)𝑑2𝑋(𝑥0, 𝑥1). (2.2.1.2)

then we say that (𝑋, 𝑑𝑋) is non-negatively curved (NNC).

Remark 2.2.2. We remark that the parallelogram identity in R𝑑 is the equality case of the above

inequalities, and so we can say that R𝑑 has zero curvature, or is flat. The standard examples

of NPC and NNC spaces are the constant curvature surfaces: hyperbolic manifolds and spheres,

respectively. In fact, the sectional curvature of these surfaces, and indeed any Riemannian manifold,

is reflected at least locally by a constant factor times the third term [43]. For our purposes these

simple definitions are sufficient.

Remark 2.2.3. The theory of curvature in metric spaces goes back to work of Alexandrov in

1951 [4]. There is a huge literature on the subject, see e.g. [58, 57, 19] as well as the books [18, 17, 5].

In the case where (𝑋, 𝑑𝑋) is a Riemannian manifold, these definitions coincide with complete Rie-

mannian manifolds of non-positive sectional curvature and complete Riemannian manifolds of non-

negative sectional curvature, respectively. They arise not merely as an idle generalization of Rie-

mannian manifolds, but as limits of sequences of Riemannian manifolds cropping up in geometric

flows. As evidenced in this thesis, they also provide a useful way of thinking about the structure of

infinite-dimensional, non-Riemannian spaces such as 𝑊2(R𝑑).
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2.3 Curvature and convexity of the barycenter functional

In this section we explore the close relationship between curvature of the metric space and

convexity properties of barycenter functionals.

Definition 2.3.1 (Barycenters). Given a distribution 𝑃 on (𝑋, 𝑑𝑋) we define the barycenter

functional 𝐹𝑃 : (𝑋, 𝑑𝑋)→ R as

𝐹𝑃 (𝑏) :=
1

2
E𝑥∼𝑃 [𝑑

2
𝑋(𝑥, 𝑏)].

If 𝐹𝑃 (𝑏) is finite for any 𝑏 ∈ 𝑋 , then we say that 𝑃 has finite second moment. The collection of

all distributions supported on 𝑋 with finite second moment is denoted 𝒫2(𝑋). The variance of 𝑃

is defined as

𝜎2(𝑃 ) := 2 inf
𝑏
𝐹𝑃 (𝑏).

Lastly, a barycenter of 𝑃 is a minimizer of 𝐹𝑃 .

Remark 2.3.2. We shall typically suppress the distribution 𝑃 and write simply 𝐹 = 𝐹𝑃 and

𝜎2 = 𝜎2(𝑃 ). Note as well that by the triangle inequality 𝐹𝑃 (𝑏) is finite for any fixed 𝑏 ∈ 𝑋 if and

only if it is finite for all 𝑏 ∈ 𝑋 .

Definition 2.3.3. Given a geodesically complete metric space (𝑋, 𝑑𝑋), we say that a function

𝑓 : (𝑋, 𝑑𝑋) → R is 𝛼-geodesically convex for 𝛼 > 0 if along all constant speed geodesics

𝛾 : [0, 1]→ (𝑋, 𝑑𝑋) we have the analog of the Euclidean inequality:

𝑓(𝛾(𝑡)) 6 (1− 𝑡)𝑓(𝛾(0)) + 𝑡𝑓(𝛾(1))− 𝛼

2
𝑡(1− 𝑡)𝑑2𝑋(𝛾(0), 𝛾(1)).

We say it is 𝛽-geodesically smooth for 𝛽 > 0 if along all constant speed geodesics 𝛾 : [0, 1] →

(𝑋, 𝑑𝑋) we have the opposite inequality:

𝑓(𝛾(𝑡)) > (1− 𝑡)𝑓(𝛾(0)) + 𝑡𝑓(𝛾(1))− 𝛽

2
𝑡(1− 𝑡)𝑑2𝑋(𝛾(0), 𝛾(1)).

Using these definitions we can derive the following simple but important observation:

Proposition 2.3.4. (𝑋, 𝑑𝑋) is non-positively curved (resp. non-negatively curved) if and only

if for all distributions 𝑃 ∈ 𝒫2(𝑋) the barycenter functional 𝐹𝑃 is 1-geodesically convex (resp.

smooth).
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Proof. For the forward direction apply our definition of curvature pointwise in the expec-

tation, and for the reverse direction take the distribution 𝑃 = 𝛿𝑥 for each 𝑥 ∈ 𝑋 .

We thus see that the convexity of the barycenter functional is a direct reflection of the

underlying curvature of (𝑋, 𝑑𝑋). In this thesis the central issue shall be that we want

the barycenter functional to be convex, but it is not because of the positive curvature of

𝑊2(R𝑑) (see Section 2.4 below). To circumvent this issue we then marshal various weak

and quantitative forms of convexity that allow us to achieve our ends.

One important weak form of convexity that shall play a major role is termed a quadratic

growth condition. This is a standard notion in optimization which says that if a function 𝑓

has a minimizer 𝑥* then 𝑓(𝑥) − 𝑓(𝑥*) > 𝑐‖𝑥 − 𝑥*‖22 for some constant 𝑐 > 0. In particular,

it is a consequence of strong convexity. In the context of barycenters, this is known as a

variance inequality.

Definition 2.3.5 (Variance Inequality). Suppose (𝑋, 𝑑𝑋) is a geodesically complete metric space

and 𝑃 ∈ 𝒫2(𝑋). Then we say that 𝐹𝑃 satisfies a variance inequality with constant 𝐶var > 0 if

there exists a point 𝑏* ∈ 𝑋 such that for all 𝑏 ∈ 𝑋 ,

𝐶var

2
𝑑2(𝑏, 𝑏*) 6 𝐹 (𝑏)− 𝐹 (𝑏*).

Let’s look at this inequality when (𝑋, 𝑑𝑋) is NPC. In that case, for any 𝑃 ∈ 𝒫2(𝑋) with

a barycenter 𝑏*, fix a point 𝑏 ∈ 𝑋 . Let 𝛾 be the constant speed geodesic joining 𝑏* to 𝑏. Then

by Prop. 2.3.4, for each 𝑡 ∈ [0, 1], we have

𝐹 (𝛾(𝑡)) 6 (1− 𝑡)𝐹 (𝑏*) + 𝑡𝐹 (𝑏)− 1

2
𝑡(1− 𝑡)𝑑2𝑋(𝑏, 𝑏*).

Observe that by definition 𝐹 (𝑏*) 6 𝐹 (𝛾(𝑡)) for all 𝑡 ∈ [0, 1]. Whence

0 6 𝐹 (𝛾(𝑡))− 𝐹 (𝑏*) 6 𝑡(𝐹 (𝑏)− 𝐹 (𝑏*))− 1

2
𝑡(1− 𝑡)𝑑2𝑋(𝑏, 𝑏*).

Dividing by 𝑡 and re-arranging yields

1

2
(1− 𝑡)𝑑2𝑋(𝑏, 𝑏*) 6 𝐹 (𝑏)− 𝐹 (𝑏*).

Since 𝑡 is arbitrary we conclude that in NPC spaces, barycenter functionals (with minimiz-
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ers) always satisfy a variance inequality with 𝐶var = 1. In fact, more is true.

Theorem 2.3.6 ([58]). Suppose (𝑋, 𝑑𝑋) is a geodesically complete metric space. Then (𝑋, 𝑑𝑋)

is non-positively curved if and only if 𝐹𝑃 obeys a variance inequality with 𝐶var = 1 for every

𝑃 ∈ 𝒫2(𝑋).

We omit the proof for brevity. As this theorem evidences, even relaxations of convexity

for the barycenter functional are equivalent to non-positive curvature. Variance inequali-

ties for barycenter functionals are fundamental to the two central problems of this thesis.

For the empirical barycenters problem considered in Chapter 3, it has been shown that a

variance inequality leads to dimension-dependent rates [3]. Moreover, our approach to the

statistical barycenters problem crucially uses a variance inequality. And a general variance

inequality shall be central to our approach to analyzing first-order methods for barycenters

in Chapter 4.

We conclude this section with the first significant result of this thesis, which provides

general conditions under which distributions on Wasserstein space satisfy a variance in-

equality.

Theorem 2.3.7 (Variance inequality in 𝑊2(R𝑑) [22]). Let 𝑃 ∈ 𝒫2(𝒫2,ac(R𝑑)) be a distribution

with barycenter 𝑏* ∈ 𝒫2,ac(R𝑑). Assume there exists a mapping 𝜙 : 𝒫2,ac(R𝑑)×R𝑑 → R such that

(1) 𝜙 is measurable

(2) for 𝑃 -a.e. 𝜇, 𝜙𝜇 is an optimal Kantorovich potential for 𝑏* to 𝜇

(3) for almost all 𝑥 ∈ R𝑑

E𝜇∼𝑃 [𝜙𝜇(𝑥)] =
1

2
‖𝑥‖22.

(4) for 𝑃 -a.e. 𝜇 ∈ 𝒫2,ac(R𝑑), the mapping 𝜙𝜇 is 𝛼(𝜇)-strongly convex for some measurable

function 𝛼 : 𝒫2,ac(R𝑑)→ R+.

Then, 𝑃 satisfies a variance inequality for all 𝑏 ∈ 𝒫2,ac(R𝑑) with constant

𝐶var =

∫︁
𝛼(𝜇) d𝑃 (𝜇) .

Remark 2.3.8. Assumption (3) is roughly a first-order optimality statement for 𝑏*, and so should be

thought of as essentially following from the assumption that 𝑏* is the barycenter of 𝑃 . We shall have
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more to say about assumption (3) in Chapter 4. Assumption (4) is related to extendible geodesics,

see Section 2.7. Finally, we remark that a similar result appears in the unpublished note [37].

Proof. Fix a 𝜇 ∈ supp(𝑃 ) and 𝑏 ∈ 𝒫2,ac(R𝑑). By lemma A.1.1, for arbitrary 𝑥 ∈ R𝑑 and

almost every 𝑦 ∈ R𝑑 we have

𝜙𝜇(𝑥) + 𝜙*
𝜇(𝑦) > ⟨𝑥, 𝑦⟩+

𝛼(𝜇)

2
‖𝑥−∇𝜙*

𝜇(𝑦)‖22.

Rearranging this is

1

2
‖𝑥‖22 − 𝜙𝜇(𝑥) +

1

2
‖𝑦‖22 − 𝜙*

𝜇(𝑦) 6
1

2
‖𝑥− 𝑦‖22 −

𝛼(𝜇)

2
‖𝑥−∇𝜙*

𝜇(𝑦)‖22.

Hence we can integrate over the optimal coupling of 𝜇 to 𝑏 to yield

1

2
𝑊 2

2 (𝑏, 𝜇) >
∫︁
(
1

2
‖𝑥‖22 − 𝜙𝜇(𝑥))d𝑏(𝑥) +

∫︁
(
1

2
‖𝑦‖22 − 𝜙*

𝜇(𝑦))d𝜇(𝑦)

+
𝛼(𝜇)

2
‖𝑇𝜇→𝑏 − 𝑇𝜇→𝑏*‖2𝐿2(𝜇)

>
∫︁
(
1

2
‖𝑥‖22 − 𝜙𝜇(𝑥))d𝑏(𝑥) +

∫︁
(
1

2
‖𝑦‖22 − 𝜙*

𝜇(𝑦))d𝜇(𝑦)

+
𝛼(𝜇)

2
𝑊 2

2 (𝑏, 𝑏
*).

where in the last inequality we used the definition of 𝑊2 distance. We now integrate over

𝜇 ∼ 𝑃 and argue the first integral is 0 irrespective of 𝑏. To do this, we first observe that

∫︁∫︁
|1
2
‖𝑥‖22 − 𝜙𝜇(𝑥)|d𝑃 (𝜇)d𝑏(𝑥) 6

1

2
𝜎2(𝑏) +

∫︁∫︁
|𝜙𝜇(𝑥)|d𝑃 (𝜇)d𝑏(𝑥)

=
1

2
𝜎2(𝑏) +

∫︁∫︁
𝜙𝜇(𝑥)d𝑃 (𝜇)d𝑏(𝑥)

=
1

2
𝜎2(𝑏) <∞.

where we applied triangle inequality, added and subtracted a linear function lower bound-

ing 𝜙𝜇(𝑥) (the linear function is integrable by the assumption that 𝑃 ∈ 𝒫2(𝒫2,ac(R𝑑))), and

assumption (3), respectively. It follows that (‖𝑥‖22/2 − 𝜙𝜇(𝑥)) ∈ 𝐿1(𝑏 ⊗ 𝑃 ) so that we can

swap integrals and apply assumption (3) again to conclude

∫︁∫︁
(
1

2
‖𝑥‖22 − 𝜙𝜇(𝑥))d𝑏(𝑥)d𝑃 (𝜇) =

∫︁∫︁
(
1

2
‖𝑥‖22 − 𝜙𝜇(𝑥))d𝑃 (𝜇)d𝑏(𝑥) = 0.
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In fact, the same reasoning applied to 𝑏 = 𝑏* shows

∫︁∫︁
(
1

2
‖𝑥‖22 − 𝜙𝜇(𝑥))d𝑏(𝑥)d𝑃 (𝜇) = 0 =

∫︁∫︁
(
1

2
‖𝑥‖22 − 𝜙𝜇(𝑥))d𝑏

*(𝑥)d𝑃 (𝜇).

Hence

𝐹 (𝑏) >
∫︁∫︁

(
1

2
‖𝑥‖22 − 𝜙𝜇(𝑥))d𝑏(𝑥)d𝑃 (𝜇) +

∫︁∫︁
(
1

2
‖𝑦‖22 − 𝜙*

𝜇(𝑦))d𝜇(𝑦)d𝑃 (𝜇)

+
𝛼(𝜇)

2
𝑊 2

2 (𝑏, 𝑏
*)

=

∫︁∫︁
(
1

2
‖𝑥‖22 − 𝜙𝜇(𝑥))d𝑏

*(𝑥)d𝑃 (𝜇) +

∫︁∫︁
(
1

2
‖𝑦‖22 − 𝜙*

𝜇(𝑦))d𝜇(𝑦)d𝑃 (𝜇)

+
𝛼(𝜇)

2
𝑊 2

2 (𝑏, 𝑏
*)

= 𝐹 (𝑏*) +
𝛼(𝜇)

2
𝑊 2

2 (𝑏, 𝑏
*).

This proves the result.

2.4 Wasserstein space is non-negatively curved

Theorem 2.4.1. The space 𝑊2(R𝑑) is non-negatively curved.

Proof. We know that it is geodesically complete by 2.1.2. Fix 𝜇, 𝜈0, 𝜈1 ∈ 𝒫2(R𝑑). Choose a

𝑊2 geodesic 𝜈𝑡 from 𝜈0 to 𝜈1. Then 𝜈𝑡 = ((1− 𝑡)𝜋1+ 𝑡𝜋2)#𝛾 where 𝛾 is an optimal coupling

of 𝜈0 to 𝜈1 and the 𝜋𝑖 are the projection operators. Fix 𝑡 ∈ [0, 1], let 𝑦𝑡 := (1 − 𝑡)𝑦0 + 𝑡𝑦1,

and let 𝛼𝑡 be an optimal coupling from 𝜈𝑡 to 𝜇. We describe a coupling (𝑥, 𝑦0, 𝑦1) where

𝑥 ∼ 𝜇, 𝑦0 ∼ 𝜈0, and 𝑦1 ∼ 𝜈1. We take 𝑦0 ∼ 𝜈0, 𝑦1 from 𝛾 conditional on 𝑦0, and 𝑥 from 𝛼𝑡

conditional on 𝑦𝑡. Then we can calculate:

𝑊 2
2 (𝜇, 𝜈𝑡) = E[‖𝑥− 𝑦𝑡‖22]

= (1− 𝑡)E[‖𝑥− 𝑦0‖22] + 𝑡E[‖𝑥− 𝑦1‖22]− 𝑡(1− 𝑡)E[‖𝑦0 − 𝑦1‖22]

= (1− 𝑡)E[‖𝑥− 𝑦0‖22] + 𝑡E[‖𝑥− 𝑦1‖22]− 𝑡(1− 𝑡)𝑊 2
2 (𝜈0, 𝜈1).

We observe that the joint couplings of (𝑥, 𝑦0) and (𝑥, 𝑦1) have marginals 𝜇, 𝜈0 and 𝜇, 𝜈1
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respectively, but may not in fact be optimal. Hence we get the lower bound

𝑊 2
2 (𝜇, 𝜈𝑡) > (1− 𝑡)𝑊 2

2 (𝜇, 𝜈0) + 𝑡𝑊 2
2 (𝜇, 𝜈1)− 𝑡(1− 𝑡)𝑊 2

2 (𝜈0, 𝜈1).

Which proves the result.

We remark that this theorem can be significantly extended, though we omit the proof

for brevity.

Theorem 2.4.2 (Thm. A.2 [39]). A smooth compact connected Riemannian manifold 𝑀 has non-

negative curvature if and only if 𝑊2(𝑀) has non-negative curvature.

2.5 Wasserstein space has infinite curvature

In this section, we describe an example which shows, in a certain sense, that “Wasserstein

space has infinite curvature at every scale." The idea of the construction is that we can

embed the square counterexample in remark 2.1.3 at an arbitrarily small scale within a

given measure. We thereby show that any 𝑊2 ball around any measure has elements with

non-unique midpoints, which means there cannot be a uniform upper curvature bound on

any open subset of Wasserstein space.

Fix a measure 𝜇 ∈ 𝒫2(R𝑑) and 𝜀 > 0. More specifically, we shall show that there exist

measures �̃�0 and �̃�1, such that 𝑊2(𝜇, 𝜇0),𝑊2(𝜇, 𝜇1) < 𝜀 and 𝜇0 and 𝜇1 have two midpoints

contained in the 𝑊2 𝜀-ball around 𝜇.

Begin by letting �̃� be the (normalized) restriction of 𝜇 to the complement of a ball 𝐵.

We claim that it is possible to choose the ball 𝐵 such that 𝑊2(𝜇, �̃�) < 𝜀/2. If 𝜇 has a

continuous density this ball can be chosen within the support, and otherwise it can be

chosen at infinity. Suppose the ball 𝐵 = 𝐵(𝑚,𝑅). For a small parameter 𝜏 > 0, let

𝜈0 :=
1

2
𝛿𝑚+𝜏𝑒1 +

1

2
𝛿𝑚−𝜏𝑒1 ,

𝜈1 :=
1

2
𝛿𝑚+𝜏𝑒2 +

1

2
𝛿𝑚−𝜏𝑒2 .
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Let the union of these four points be 𝑆. Finally, for a small parameter 𝜂 > 0, set

�̃�0 := (1− 𝜂)�̃�+ 𝜂𝜈0

�̃�1 := (1− 𝜂)�̃�+ 𝜂𝜈1.

We claim that by taking 𝜏 sufficiently small, the optimal coupling 𝜋*01 between �̃�0 and �̃�1

can be decomposed as

𝜋*01 = (1− 𝜂)(id, id)#�̃�+ 𝜂𝑞01,

where 𝑞01 is an optimal coupling between 𝜈0 and 𝜈1. To see this, consider any coupling

𝜋 ∈ Π(�̃�0, �̃�1). Let 𝑝𝑐𝑐 = P𝜋[(𝑥0, 𝑥1) ∈ 𝐵𝑐 × 𝐵𝑐], 𝑝𝑐𝑠 = P𝜋[(𝑥0, 𝑥1) ∈ 𝐵𝑐 × 𝑆] and similarly

for 𝑝𝑠𝑐 and 𝑝𝑠𝑠. Then

E𝜋[‖𝑥− 𝑦‖22] > (𝑅− 𝜏)2𝑝𝑐𝑠 + 𝜏2𝑝𝑠𝑠

> 𝜏2(𝑝𝑐𝑠 + 𝑝𝑠𝑠)

= 𝜂𝜏2 = E𝜋*
01
[‖𝑥0 − 𝑥1‖22].

Where the first inequality follows by ignoring the contribution of 𝑝𝑐𝑐 and 𝑝𝑠𝑐, the second

by choosing 𝜏 < 𝑅/2, the third equality by the fact that 𝜋 ∈ Π(�̃�0, �̃�1), and the last equality

by our choice of 𝜋*01. We observe that if 𝑝𝑐𝑠 > 0 then by our choice of 𝜏 < 𝑅/2, the second

inequality is in fact strict. Hence it follows that the optimal couplings must indeed be of

the form 𝜋*01.

But then, since there are two optimal couplings of 𝜈0 to 𝜈1, there are two optimal cou-

plings of �̃�0 and �̃�1. Hence they don’t have a unique midpoint. Lastly, we verify that 𝜂 > 0

can be chosen small enough that both 𝑊2-geodesics between �̃�0 and �̃�1 are always within

𝜀 of 𝜇 in 𝑊2 distance. Fix one of the optimal couplings from 𝜈0 to 𝜈1 as 𝑞01, and let 𝜈𝑡 be the

point along this geodesic from 𝜈0 to 𝜈1. Let

�̃�𝑡 := (1− 𝜂)�̃�+ 𝜂𝜈𝑡.

Observe that

((1− 𝜂)(id, id)#�̃�+ 𝜂�̃�⊗ 𝜈𝑡) ∈ Π(�̃�, �̃�𝑡)
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and using this coupling we have the upper bound

𝑊2(�̃�, �̃�𝑡) 6 𝜂(2E𝑥∼�̃�[‖𝑥‖22] + 2‖𝑚‖22 + 𝜏2)1/2.

Take 𝜂 small enough so that this is smaller than 𝜀/2. Using these settings we get

𝑊2(𝜇, �̃�𝑡) 6𝑊2(𝜇, �̃�) +𝑊2(�̃�, �̃�𝑡)

< 𝜀/2 + 𝜀/2 = 𝜀.

We summarize this construction in the next proposition.

Proposition 2.5.1. Suppose 𝜇 ∈ 𝒫2(R𝑑) and 𝜀 > 0. Then there exist distinct distance minimizing

𝑊2-geodesics 𝛾0, 𝛾1 : [0, 1]→ 𝐵𝑊2(𝜇, 𝜀) such that 𝛾0(0) = 𝛾1(0) and 𝛾0(1) = 𝛾1(1).

Combining this with the fact that geodesic spaces with bounded curvature (the reader

can regard "bounded curvature" as strong geodesic convexity of the squared distance for

the moment) have locally unique geodesics we get the following theorem.

Theorem 2.5.2. No open subset of 𝑊2(R𝑑) has bounded curvature.

2.6 An ounce of convexity

Not discouraged by the previous section, we will look for some weak form of geodesic

convexity of the squared 2-Wasserstein distance.

Specifically, fix measures 𝜇0, 𝜇1, 𝜇2 ∈ 𝒫2,ac(R𝑑), and consider the𝑊2-geodesic 𝜇𝑡 : [0, 1]→

𝑊2,ac(R𝑑). Consider the following approach to establishing a form of convexity for𝑊 2
2 (𝜇2, 𝜇𝑡)

by applying the definition of Wasserstein space and the flatness of Hilbert spaces:

𝑊 2
2 (𝜇2, 𝜇𝑡) 6 ‖𝑇𝜇0→𝜇𝑡 − 𝑇𝜇0→𝜇2‖2𝐿2(𝜇0)

= (1− 𝑡)𝑊 2
2 (𝜇2, 𝜇0) + 𝑡‖𝑇𝜇0→𝜇1 − 𝑇𝜇0→𝜇2‖2𝐿2(𝜇0)

− 𝑡(1− 𝑡)𝑊 2
2 (𝜇0, 𝜇1).

Compare to the 𝐾-strong convexity inequality for 𝑊 2
2 (𝜇2, 𝜇𝑡),

𝑊 2
2 (𝜇2, 𝜇𝑡) = (1− 𝑡)𝑊 2

2 (𝜇2, 𝜇0) + 𝑡𝑊 2
2 (𝜇2, 𝜇1)−

𝐾

2
𝑡(1− 𝑡)𝑊 2

2 (𝜇0, 𝜇1) (2.6.0.1)
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Hence we see that if we could show an inequality of the form

‖𝑇𝜇0→𝜇1 − 𝑇𝜇0→𝜇2‖2𝐿2(𝜇0)
6𝑊 2

2 (𝜇2, 𝜇1) + (1−𝐾/2)(1− 𝑡)𝑊 2
2 (𝜇0, 𝜇1),

we’d be able to get the 𝐾-strong convexity inequality (2.6.0.1). We remark that when each

𝜇𝑖 is simply a translate of some base measure 𝜇, we in fact expect this inequality to hold

with 𝐾 = 1, since in that case the 2-Wasserstein geometry is totally flat. Hence, this in-

equality can actually hold. On the other hand, by the construction in Section 2.5, we know

that it cannot hold uniformly over open subsets of 𝑊2(R𝑑).

In this section, we show that under a simple regularity condition on the Kantorovich

potentials generating the optimal coupling, we can get inequalities of this form.

The crucial estimate is as follows.

Theorem 2.6.1. Suppose 𝜇 ∈𝑊2,ac(R𝑑), 𝜈0, 𝜈1 ∈𝑊2(R𝑑), and the optimal Kantorovich potential

𝜙𝜇→𝜈0 is 𝛼-strongly convex and 𝛽-smooth.

‖𝑇𝜇→𝜈0 − 𝑇𝜇→𝜈1‖2𝐿2(𝜇) 6𝑊 2
2 (𝜈0, 𝜈1) + (𝛽 − 𝛼)𝑊 2

2 (𝜇, 𝜈1).

Before we give the proof, we note that combining the preceding discussion, this esti-

mate, and a tedious calculation, we obtain the corollary.

Corollary 2.6.2. Fix 𝜇 ∈ 𝑊2,ac(R𝑑) and 𝜈0, 𝜈1 ∈ 𝑊2(R𝑑). Suppose that the optimal Kantorovich

potentials 𝜙𝜇→𝜈𝑖 are 𝛼𝑖-strongly convex and 𝛽𝑖-smooth, 𝑖 = 0, 1. Let 𝜅𝑖 := 1/𝛼𝑖 − 1/𝛽𝑖 and

𝜅𝑖 < 1, 𝑖 = 0, 1. Then the 𝐾-strong convexity inequality (2.6.0.1) holds with 𝐾 = 2(𝜅0 + 𝜅1).

We remark as well that the most useful applications of this estimate will generally be

when only one of the optimal potentials is known to be strongly convex and smooth, which

corresponds to a 𝐾-strong convexity inequality but only for small 𝑡.

Proof of Theorem 2.6.1. We begin by writing

‖𝑇𝜇→𝜈0 − 𝑇𝜇→𝜈1‖2𝐿2(𝜇)

=𝑊 2
2 (𝜈0, 𝜇) +𝑊 2

2 (𝜇, 𝜈1)− 2E𝜇[⟨𝑇𝜇→𝜈0(𝑥)− 𝑥, 𝑇𝜇→𝜈1(𝑥)− 𝑥⟩].

We will focus on bounding this last term. Write 𝑇𝜇→𝜈0 = ∇𝑓0. We can integrate the 𝛽-
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smoothness condition to obtain

E𝜇[⟨𝑇𝜇→𝜈0(𝑥), 𝑇𝜇→𝜈1(𝑥)− 𝑥⟩]

> E𝜇[𝑓0(𝑇𝜇→𝜈1(𝑥))− 𝑓0(𝑥)]−
𝛽

2
E𝜇[‖𝑇𝜇→𝜈1(𝑥)− 𝑥‖22]

= E𝜈1 [𝑓0]− E𝜇[𝑓0]−
𝛽

2
𝑊 2

2 (𝜇, 𝜈1).

Let 𝑧 be such that (𝑇𝜇→𝜈0(𝑥), 𝑧) is an optimal coupling of 𝜈0 to 𝜈1 when 𝑥 ∼ 𝜇. In this case,

we can apply the strong convexity assumption to continue the lower bound:

E𝜇[⟨𝑇𝜇→𝜈0(𝑥), 𝑇𝜇→𝜈1(𝑥)− 𝑥⟩]

> E[⟨∇𝑓0(𝑥), 𝑧 − 𝑥⟩] +
𝛼

2
E‖𝑧 − 𝑥‖22 −

𝛽

2
𝑊 2

2 (𝜇, 𝜈1)

> E[⟨∇𝑓0(𝑥), 𝑧 − 𝑥⟩]−
𝛽 − 𝛼
2

𝑊 2
2 (𝜇, 𝜈1),

where in the last line we used that the induced joint on 𝑥 and 𝑧 is a valid coupling of 𝜇 to

𝜈1. We also calculate

𝑊 2
2 (𝜈0, 𝜇) = E𝑥∼𝜇[‖𝑥‖22] + E𝑥∼𝜈0 [‖𝑥‖22]− 2E𝜇[⟨𝑇𝜇→𝜈0(𝑥), 𝑥⟩],

and similarly

𝑊 2
2 (𝜈1, 𝜇) = E𝑥∼𝜇[‖𝑥‖22] + E𝑥∼𝜈1 [‖𝑥‖22]− 2E𝜇[⟨𝑇𝜇→𝜈1(𝑥), 𝑥⟩].

Putting this together we find

‖𝑇𝜇→𝜈0 − 𝑇𝜇→𝜈1‖2𝐿2(𝜇) 6 E[‖∇𝑓0(𝑥)− 𝑧‖22] + (𝛽 − 𝛼)𝑊 2
2 (𝜇, 𝜈1)

=𝑊 2
2 (𝜈0, 𝜈1) + (𝛽 − 𝛼)𝑊 2

2 (𝜇, 𝜈1),

where the last equality is by our assumption on 𝑧. Hence the result.

2.7 Extendible geodesics and curvature bounds

In this section, we shall generalize quite extensively theorem 2.6.1. The starting point for

this work is the observation that the hypotheses in theorem 2.6.1 are related to simple
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geometric conditions on the Wasserstein space.

Definition 2.7.1. A constant-speed geodesic 𝛾 : [0, 1] → (𝑋, 𝑑𝑋) is said to be (𝜆in, 𝜆out) ex-

tendible for 𝜆in, 𝜆out > 0 if there exists a constant-speed geodesic 𝛾+ : [−𝜆in, 1+𝜆out]→ (𝑋, 𝑑𝑋)

such that 𝛾 is the restriction of 𝛾+ to [0, 1].

Theorem 2.7.2 (Thm. 3.5 [3]). Let 𝜇, 𝜈 ∈ 𝒫2(R𝑑) and 𝛾 : [0, 1] → 𝑊2(R𝑑) be a geodesic con-

necting 𝜇 to 𝜈. Then, 𝛾 is (0, 𝜆) extendible if, and only if, the support of the optimal transport plan

of 𝜇 to 𝜈 lies in the subdifferential 𝜕𝜙𝜇→𝜈 of a 𝜆/(1 + 𝜆)-strongly convex map 𝜙𝜇→𝜈 .

Hence, we can re-interpret theorem 2.6.1 as follows.

Corollary 2.7.3. Fix 𝜇 ∈ 𝒫2,ac(R𝑑) and 𝜈0, 𝜈1 ∈ ∈(R𝑑). Suppose the 𝑊2-geodesic connecting 𝜇

to 𝜈0 is (𝜆in, 𝜆out)-extendible. Then

‖𝑇𝜇→𝜈0 − 𝑇𝜇→𝜈1‖2𝐿2(𝜇) 6𝑊 2
2 (𝜈0, 𝜈1) +

(︂
1 +

1

𝜆in
− 𝜆out

1 + 𝜆out

)︂
𝑊 2

2 (𝜇, 𝜈1). (2.7.3.1)

In this section, we shall show that an analogous statement holds in fact over all non-

negatively curved metric spaces. The power and utility of this result will be made clear

subsequently. To complete our work, we will need a certain amount of technical machinery

from the theory of Alexandrov spaces with (lower) curvature bounds. Specifically, we will

need to find the proper generalization of the left-hand side of (2.7.3.1). We begin with this,

and refer to [18] for a comprehensive treatment.

Definition 2.7.4. Suppose (𝑋, 𝑑𝑋) is a non-negatively curved metric space. For 𝑝, 𝑥, 𝑦 ∈ 𝑋 , the

comparison angle ^0
𝑝(𝑥, 𝑦) ∈ [0, 𝜋] at 𝑝 is defined by

cos^0
𝑝(𝑥, 𝑦) :=

𝑑2𝑋(𝑝, 𝑥) + 𝑑2𝑋(𝑝, 𝑦)− 𝑑2𝑋(𝑥, 𝑦)

2𝑑𝑋(𝑝, 𝑥)𝑑𝑋(𝑝, 𝑦)
.

Applying triangle inequality shows that this is well-defined. Now, fix 𝑝 ∈ 𝑋 , and let Γ𝑝 be the

set of all geodesics 𝛾 : [0, 1] → (𝑋, 𝑑𝑋) with 𝛾(0) = 𝑝. For 𝛾, 𝜎 ∈ Γ𝑝 the Alexandrov angle

^𝑝(𝛾, 𝜎) is defined as

^𝑝(𝛾, 𝜎) := lim
𝑠,𝑡→0

^0
𝑝(𝛾(𝑠), 𝜎(𝑡)).

It can be shown that when (𝑋, 𝑑𝑋) is non-negatively curved, this is well defined and is in fact a

(pseudo-)metric on Γ𝑝. Quotient by this equivalence relationship and take the completion of the
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result to yield the space of directions (Σ𝑝,^𝑝). Then the tangent cone 𝑇𝑝𝑋 of (𝑋, 𝑑𝑋) at 𝑝 is

the set Σ𝑝 × R>0 modulo the equivalence (𝛾, 𝑠) ≈ (𝜎, 𝑡) when 𝑠 = 𝑡 = 0. We denote the unique

element (𝛾, 0) by 𝑜𝑝, and call it the tip of the cone. For 𝑢, 𝑣 ∈ 𝑇𝑝𝑋 with 𝑢 = (𝛾, 𝑠) and 𝑣 = (𝜎, 𝑡)

the metric is

‖𝑢− 𝑣‖2𝑝 := 𝑠2 + 𝑡2 − 2𝑠𝑡 cos^𝑝(𝛾, 𝜎).

We use the notation ‖𝑢‖𝑝 := ‖𝑢− 𝑜𝑝‖𝑝 and ⟨𝑢, 𝑣⟩𝑝 := 𝑠𝑡 cos^𝑝(𝛾, 𝜎), which means

‖𝑢− 𝑣‖2𝑝 = ‖𝑢‖2𝑝 + ‖𝑣‖2𝑝 − 2⟨𝑢, 𝑣⟩𝑝.

Let 𝐶𝑝 ⊂ 𝑆 be the cut-locus of 𝑝 nad for all 𝑥 ∈ 𝑆 ∖ 𝐶𝑝, let 𝛾𝑝→𝑥 ∈ Σ𝑝 denote the direction of the

unique geodesic connecting 𝑝 to 𝑥. Then the log map at 𝑝 is the map log𝑝 : 𝑆 ∖ 𝐶𝑝 → 𝑇𝑝𝑆 which

sends

𝑥 ↦→ log𝑝(𝑥) := (𝛾𝑝→𝑥, 𝑑𝑋(𝑝, 𝑥)).

We will extend this to 𝑥 ∈ 𝐶𝑝 by selecting an arbitrary direction from 𝑝 to 𝑥.

Using these definitions, we now collect the relevant facts we will need about non-

negatively curved spaces, tangent cones, and barycenters. We’ll omit proofs as they would

take us quite far afield; full details are given in our work [26].

Theorem 2.7.5. Suppose (𝑋, 𝑑𝑋) is non-negatively curved and 𝑃 ∈ 𝒫2(𝑋) with barycenter 𝑏*.

1. For any 𝑝, 𝑥, 𝑦 ∈ 𝑋

𝑑2𝑋(𝑥, 𝑦) 6 ‖ log𝑝(𝑥)− log𝑝(𝑦)‖2𝑝. (2.7.5.1)

2. We have ∫︁∫︁
⟨log𝑏*(𝑥), log𝑏*(𝑦)⟩𝑏*d𝑃 (𝑥)d𝑃 (𝑦) = 0. (2.7.5.2)

3. There exists a subset ℒ𝑏*𝑋 ⊂ 𝑇𝑏*𝑋 which is a Hilbert space when equipped with the re-

stricted metric and such that log𝑏*(supp(𝑃 )) ⊂ ℒ𝑏*𝑋 .

4. For any 𝑄 ∈ 𝒫2(𝑋) with log𝑏*(supp(𝑄)) ⊂ ℒ𝑏*𝑋 and 𝑏 ∈ 𝑋 , we have

∫︁
⟨log𝑏*(𝑥), log𝑏*(𝑏)⟩𝑏*d𝑄(𝑥) =

⟨∫︁
log𝑏*(𝑥)d𝑄(𝑥), log𝑏*(𝑏)

⟩
𝑏*
. (2.7.5.3)

The following property is sometimes called being an exponential barycenter in the
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literature [3].

Corollary 2.7.6. Suppose (𝑋, 𝑑𝑋) is non-negatively curved and 𝑃 ∈ 𝒫2(𝑋) with barycenter 𝑏*.

Then ∫︁
log𝑏*(𝑥)d𝑃 (𝑥) = 0.

Definition 2.7.7. Suppose (𝑋, 𝑑𝑋) is non-negatively curved, 𝑃 ∈ 𝒫2(𝑋), and 𝑏* is a barycenter

of 𝑃 . Then for all 𝑏, 𝑥 ∈ 𝑋 we define hugging function at 𝑏* as

𝑘𝑏𝑏*(𝑥) := 1−
‖ log𝑏*(𝑥)− log𝑏*(𝑏)‖2𝑏* − 𝑑2𝑋(𝑥, 𝑏)

𝑑2𝑋(𝑏, 𝑏*)
.

Remark 2.7.8. In Section 2.8, we shall show that in case (𝑋, 𝑑𝑋) = (𝒫2,ac(R𝑑),𝑊2), the tangent

cone metric is the “𝐿2(𝑏*) norm on transport maps." This will mean that

‖𝑇𝜇→𝜈0 − 𝑇𝜇→𝜈1‖2𝐿2(𝜇) =𝑊 2
2 (𝜈0, 𝜈1) + (1− 𝑘𝜈1𝜇 (𝜈0))𝑊

2
2 (𝜇, 𝜈1).

Hence, contingent upon Section 2.8, we are indeed studying a generalization of the previous esti-

mates.

We start with the following fact.

Proposition 2.7.9. Suppose (𝑋, 𝑑𝑋) is non-negatively curved, 𝑃 ∈ 𝒫2(𝑋), and 𝑏* is a barycenter

of 𝑃 . Then, for all 𝑏 ∈ 𝑋 ,

1

2
𝑑2𝑋(𝑏, 𝑏*)

∫︁
𝑘𝑏𝑏*(𝑥)d𝑃 (𝑥) = 𝐹 (𝑏)− 𝐹 (𝑏*).

Proof. Expanding and using the definition of the cone metric we calculate:

𝑑2𝑋(𝑏, 𝑏*)𝑘𝑏𝑏*(𝑥) = 𝑑2𝑋(𝑥, 𝑏) + 𝑑2𝑋(𝑏, 𝑏*)− ‖ log𝑏*(𝑥)− log𝑏*(𝑏)‖2𝑏*

= 𝑑2𝑋(𝑥, 𝑏)− 𝑑2𝑋(𝑥, 𝑏*) + 2⟨log𝑏*(𝑥), log𝑏*(𝑏)⟩𝑏* .

Taking the expectation over 𝑥 ∼ 𝑃 , the second term is 0 by Corollary 2.7.6 and (2.7.5.3).

This yields the result.

Theorem 2.7.10 (Theorem 3.3 [3]). Suppose (𝑋, 𝑑𝑋) is non-negatively curved. Let 𝑃 ∈ 𝒫2(𝑋)

with barycenter 𝑏*. Suppose that, for each 𝑥 ∈ supp(𝑃 ), there exists a geodesic 𝛾𝑥 : [0, 1] → 𝑋
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connecting 𝑏* to 𝑥 which is (0, 𝜆)-extendible. Suppose in addition that 𝑏* remains a barycenter of

distribution 𝑃𝜆 = (𝑒𝜆)#𝑃 where 𝑒𝜆(𝑥) = 𝛾+𝑥 (1+𝜆). Then for all 𝑏 ∈ 𝑋 , 𝐹 (𝑏) satisfies a variance

inequality with 𝐶VI = 𝜆/(1 + 𝜆).

We give a simpler proof.

Proof. Fix any 𝑏 ∈ 𝑋 . Write the NNC inequality:

𝑑2𝑋(𝑏, 𝑥) >
𝜆

1 + 𝜆
𝑑2𝑋(𝑏, 𝑏*) +

1

1 + 𝜆
𝑑2𝑋(𝑏, 𝑒𝜆(𝑥))−

𝜆

(1 + 𝜆)2
𝑑2𝑋(𝑏*, 𝑥𝜆).

Re-arrange to yield

𝜆

1 + 𝜆
𝑑2𝑋(𝑏*, 𝑏) 6 𝑑2𝑋(𝑏, 𝑥)− 1

1 + 𝜆
𝑑2𝑋(𝑏, 𝑒𝜆(𝑥)) +

𝜆

(1 + 𝜆)2
𝑑2𝑋(𝑏*, 𝑒𝜆(𝑥)).

We calculate that

𝜆

(1 + 𝜆)2
𝑑2𝑋(𝑏*, 𝑥𝜆) =

1

1 + 𝜆
𝑑2𝑋(𝑏*, 𝑒𝜆(𝑥))− 𝑑2𝑋(𝑏*, 𝑥).

Hence

𝜆

1 + 𝜆
𝑑2𝑋(𝑏*, 𝑏) 6 𝑑2𝑋(𝑏, 𝑥)− 𝑑2𝑋(𝑏*, 𝑥) +

1

1 + 𝜆

(︀
𝑑2𝑋(𝑏*, 𝑒𝜆(𝑥))− 𝑑2𝑋(𝑏, 𝑒𝜆(𝑥)

)︀
.

We assumed that 𝑏* is a barycenter of the extended distribution, so by taking expectation

over 𝑃 the second term is non-positive and we get the result.

According to proposition 2.7.9, a variance inequality with𝐶var = 𝜆/(1+𝜆) is equivalent

to the statement that, for all 𝑏 ∈ 𝑋 ,

∫︁
𝑘𝑏𝑏*(𝑥)d𝑃 (𝑥) >

𝜆

1 + 𝜆
.

We’ll use this observation next.

Theorem 2.7.11. Suppose that (𝑋, 𝑑𝑋) is non-negatively curved and let 𝑥, 𝑏, 𝑏* ∈ 𝑋 . Assume

that for some 𝜆in, 𝜆out > 0, there is a geodesic connecting 𝑏* to 𝑥 which is (𝜆in, 𝜆out)-extendible.

Then

𝑘𝑏𝑏*(𝑥) >
𝜆out

1 + 𝜆out
− 1

𝜆in
.
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Remark 2.7.12. We note that we can combine this bound with the analogous argument at the

beginning of Section 2.6 (also using (2.7.5.1)) to get similar strong convexity statements for the

squared distance function as in Corollary 2.7.3.

Proof. Let 𝛾 : [0, 1] → 𝑋 be a (𝜆in, 𝜆out)-extendible geodesic connecting 𝑏* to 𝑥 and let

𝛾+ : [−𝜆in, 1 + 𝜆out]→ 𝑆 be its extension. Let 𝑧 = 𝛾+(−𝜉) where 𝜉 = 𝜆in/(1 + 𝜆out). Then,

it may be easily checked that 𝑏* is a barycenter of the probability measure

𝑃 :=
𝜉

1 + 𝜉
𝛿𝑥 +

1

1 + 𝜉
𝛿𝑧.

Now, we wish to apply theorem 2.7.10 to 𝑃 . To this aim, note that the geodesic 𝛾 from 𝑏*

to 𝑥 is (0, 1 + 𝜆out)-extendible by assumption with 𝑒𝜆out(𝑥) = 𝛾+(1 + 𝜆out). Similarly, we

check that the geodesic 𝜎 : [0, 1] → 𝑆 connecting 𝑏* to 𝑧 and defined by 𝜎(𝑡) = 𝛾+(−𝑡𝜉) is

(0, 1 + 𝜆out)-extendible by construction with 𝑒𝜆out(𝑧) = 𝛾+(−𝜆in). Finally, one checks that

𝑏* remains a barycenter of the probability measure 𝑃𝜆out = (𝑒𝜆out)#𝑃 . As a result, theorem

2.7.10 implies that

𝜆out
1 + 𝜆out

6 E𝑥∼𝑃 [𝑘
𝑏
𝑏*(𝑥)]

=
𝜉

1 + 𝜉
𝑘𝑏𝑏*(𝑥) +

1

1 + 𝜉
𝑘𝑏𝑏*(𝑧).

Finally, the fact (𝑋, 𝑑𝑋) is non-negatively curved implies that 𝑑(𝑥, 𝑦) 6 ‖ log𝑏*(𝑥)−log𝑏*(𝑦)‖𝑏* ,

for all 𝑥, 𝑦 ∈ 𝑋 . Thus, 𝑘𝑏𝑏*(𝑧) 6 1 for all 𝑏, 𝑧 ∈ 𝑆. Hence we obtain

𝑘𝑏𝑏*(𝑥) >
1 + 𝜉

𝜉

(︂
𝜆out

1 + 𝜆out
− 1

1 + 𝜉

)︂
=

𝜆out
1 + 𝜆out

− 1

𝜆in
,

which completes the proof.

2.8 The tangent cone in 𝑊2(R𝑑)*

In this section we give a characterization of the tangent cone of Definition 2.7.4, in case

(𝑋, 𝑑𝑋) = (𝒫2,ac(R𝑑),𝑊2). This allows us to prove that the result of theorem 2.7.11 is a

total generalization of theorem 2.6.1. We remark that our proof uses theorem 2.7.11 to
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provide a geometrically natural analysis of the tangent cone.

Start by fixing a measure 𝜇 ∈ 𝒫2,ac(R𝑑). At stated in Definition 2.7.4, since 𝑊2(R𝑑) is

non-negatively curved the Alexandrov angles always exist. Fix two elements of the tan-

gent cone, 𝑢, 𝑣 ∈ 𝑇𝜇𝑊2(R𝑑), and assume 𝑢 = [𝛾0, 𝑠0] and 𝑣 = [𝛾1, 𝑠1] with representatives

such that 𝑊2(𝛾𝑖(1), 𝜇) = 𝑠𝑖, 𝑖 = 1, 2. Since the angle ^𝜇(𝛾0, 𝛾1) exists we can take the limit

with 𝑡 = 𝑠. Applying continuity of cos and re-arranging we find that in this case

‖𝑢− 𝑣‖2𝜇 = lim
𝑡→0

𝑊 2
2 (𝛾0(𝑡), 𝛾1(𝑡))

𝑡2
.

The key point of this section is to show another form for the right side. Since our as-

sumptions will always be satisfied in particular by 𝑢 and 𝑣 of the form log𝜇(𝜈), this will

prove that the squared norm in the definition of the hugging function (Definition 2.7.7) is

precisely the 𝐿2 distance between transport maps, as claimed in 2.7.8.

Theorem 2.8.1. Suppose 𝜇 ∈ 𝒫2,ac(R𝑑) and 𝜈0, 𝜈1 ∈ 𝑊2(R𝑑). Let 𝛾𝑖 be the constant-speed

geodesic 𝛾𝑖 : [0, 1]→𝑊2(R𝑑) joining 𝜇 and 𝜈𝑖, 𝑖 = 1, 2. Then

lim
𝑡→0

𝑊 2
2 (𝛾0(𝑡), 𝛾1(𝑡))

𝑡2
= ‖𝑇𝜇→𝜈0 − 𝑇𝜇→𝜈1‖2𝐿2(𝜇).

Proof. Using the definition of 𝑊2(R𝑑) we get that

𝑊 2
2 (𝛾0(𝑡), 𝛾1(𝑡)) 6 ‖𝑇𝜇→𝛾0(𝑡) − 𝑇𝜇→𝛾1(𝑡)‖

2
𝐿2(𝜇)

= ‖((1− 𝑡) id+𝑡𝑇𝜇→𝜈0 − ((1− 𝑡) id+𝑡𝑇𝜇→𝜈1)‖2𝐿2(𝜇)

= 𝑡2‖𝑇𝜇→𝜈0 − 𝑇𝜇→𝜈1‖2𝐿2(𝜇)
.

Dividing by 𝑡2 and taking 𝑡 → 0+ we get one side of the equality. The other side is a bit

more subtle. We start by assuming that the transport map 𝑇𝜇→𝜈0 = ∇𝜙 and 𝜙 is 𝛽-smooth

for some 𝛽 ∈ R>0. Then 𝑇𝜇→𝛾0(𝑡) is the gradient of a (1− 𝑡) + 𝑡𝛽 smooth and at least 1− 𝑡

convex function. Apply theorem 2.6.1 to yield

𝑡2‖𝑇𝜇→𝜈0 − 𝑇𝜇→𝜈1‖2𝐿2(𝜇)
= ‖𝑇𝜇→𝛾0(𝑡) − 𝑇𝜇→𝛾1(𝑡)‖

2
𝐿2(𝜇)

6 ((1− 𝑡+ 𝑡𝛽)− (1− 𝑡))𝑊 2
2 (𝜇, 𝛾0(𝑡)) +𝑊 2

2 (𝛾0(𝑡), 𝛾1(𝑡))

= 𝛽𝑡3𝑊 2
2 (𝜇, 𝜈0) +𝑊 2

2 (𝛾0(𝑡), 𝛾1(𝑡)).

34



Dividing by 𝑡2 and letting 𝑡→ 0+ shows that

lim
𝑡→0

𝑊 2
2 (𝛾0(𝑡), 𝛾1(𝑡))

𝑡2
= ‖𝑇𝜇→𝜈0 − 𝑇𝜇→𝜈1‖2𝐿2(𝜇)

,

at least when 𝑇𝜇→𝜈0 is 𝛽-smooth for some 𝛽. As we remarked above, this implies that, for

smooth 𝑇𝜇→𝜈0 ,

‖[𝛾0,𝑊2(𝜇, 𝛾0(1))]− [𝛾1,𝑊2(𝜇, 𝛾1(1))]‖2𝜇 = ‖𝑇𝜇→𝜈0 − 𝑇𝜇→𝜈1‖2𝐿2(𝜇)
. (2.8.1.1)

To finish, we can take a sequence of smooth transport maps approximating a given one

(say by Moreau-Yosida regularization): each side of (2.8.1.1) will converge, and so we will

have (2.8.1.1) for all 𝛾0, 𝛾1 ∈ Σ𝑝. Thence we can apply the discussion above the theorem to

conclude the result.

Lastly, we mention that this result can be strengthened into a full isomorphism.

Theorem 2.8.2 (Thm. 12.4.4 [7]). Suppose 𝜇 ∈ 𝒫2,ac(R𝑑). Then

𝑇𝜇(𝑊2(R𝑑)) ∼= {𝜆(∇𝜙− id) : 𝜆 > 0, ∇𝜙(𝑥) = 𝑇𝜇→(∇𝜙)#(𝜇)(𝑥) 𝜇-a.e.}

where the overline indicates a completion with respect to 𝐿2(𝜇).

2.9 New quantitative stability bounds*

In this section we demonstrate the power of our bound on the hugging function 𝑘 through

the following application. Fix a compact smooth manifold without boundary and with

non-negative sectional curvatures 𝑀 and consider the Wasserstein geometry on 𝒫2(𝑀).

Then 𝒫2(𝑀) is non-negatively curved and moreover theorem 2.8.1 can be generalized [39,

Prop. A.8, A.33], so that we can write, for any 𝜈, 𝜇1, 𝜇2 ∈ 𝒫2(𝑀),

∫︁
𝑀
𝑑(𝑇𝜈→𝜇1 , 𝑇𝜈→𝜇2)

2𝑑𝜈 = (1− 𝑘(𝜇1, 𝜇2, 𝜈))𝑊 2
2 (𝜇2, 𝜈) +𝑊 2

2 (𝜇1, 𝜇2). (2.9.0.1)

Hence, analogous to the Euclidean case, lower bounds on the quantity 𝑘(𝜇1, 𝜇2, 𝜈) are di-

rectly related to upper bounds on E[𝑑(𝑇𝜈→𝜇1 , 𝑇𝜈→𝜇2)
2]. This was stated explicitly as a prob-

lem in [8]. Desire for upper bounds on this quantity arises naturally in applications beyond
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that setting, such as when obtaining fast rates for estimating optimal transport maps [30].

We can apply theorem 2.7.11 and optimal transport theory to get different quantitative sta-

bility estimates in terms of analytic conditions on the potentials generating the transport

maps.

We make an example explicit. Unfortunately, the manifold case does not exhibit the

same simple relationship between the Brenier theorem optimality condition, namely 𝑑2/2-

convexity, and analytic conditions [61, Chapter 13]. However, under fairly restrictive con-

ditions on the potential 𝜙, we may still obtain sufficient conditions for 𝑑2/2-convexity.

Theorem 2.9.1 ([25]). Suppose (𝑀, 𝑔) is a smooth compact manifold without boundary. Then

there is a constant 𝑐 depending on 𝑀 such that if 𝜙 : 𝑀 → R is 𝐶2 and

‖∇𝜙‖∞ + ‖∇2𝜙‖∞ 6 𝑐,

then 𝜙 is 𝑑2/2-convex.

With this theorem in hand we can state a new quantitative stability result.

Theorem 2.9.2. Suppose (𝑀, 𝑔) is a smooth compact manifold with non-negative sectional cur-

vatures and no boundary. Fix 𝜈, 𝜇1, 𝜇2 ∈ 𝒫2(𝑀). Let 𝜈 ≪ 𝑑 vol𝑔. Let 𝑇1, 𝑇2 be the optimal

maps between 𝜈 and 𝜇1, 𝜇2 respectively and assume 𝑇−1
1 = exp(∇𝜙) for some 𝑑2/2-convex

𝜙 : 𝑀 → R. Then there is a constant 𝑐 depending on the manifold 𝑀 such that whenever

‖∇𝜙‖∞ + ‖∇2𝜙‖∞ 6 𝑐,

∫︁
𝑀
𝑑(𝑇1, 𝑇2)

2𝑑𝜈 6
𝑐

𝑐− (‖∇𝜙‖∞ + ‖∇2𝜙‖∞)
𝑊 2

2 (𝜇1, 𝜈) +𝑊 2
2 (𝜇1, 𝜇2).

Remark 2.9.3. Contrast with [8], where they get the estimate

∫︁
𝑀
𝑑(𝑇1, 𝑇2)

2𝑑𝜈 .𝑊 2
2 (𝜇1, 𝜇2) +𝑊2(𝜇1, 𝜇2)𝑊2(𝜈, 𝜇2).

Proof of Theorem 2.9.2. If the denominator on the left term is 0 then the bound is trivial. So

suppose it isn’t. Since 𝑊2(𝑀) is non-negatively curved, we may apply theorem 2.7.11 to

see that, if the geodesic between 𝜈 and 𝜇1 is (𝜆in, 𝜆out) extendible, then

𝑘(𝜇1, 𝜇2, 𝜈) >
𝜆out

1 + 𝜆out
− 1

𝜆in
.
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Now, by the sufficient condition in 2.9.1 we know

𝜆in >
𝑐

‖∇𝜙‖∞ + ‖∇2𝜙‖∞
− 1.

Plugging this in to equation 2.9.0.1, we get

∫︁
𝑀
𝑑(𝑇𝜈→𝜇1 , 𝑇𝜈→𝜇2)

2𝑑𝜈 = (1− 𝑘(𝜇1, 𝜇2, 𝜈))𝑊 2
2 (𝜇2, 𝜈) +𝑊 2

2 (𝜇1, 𝜇2)

6

(︂
1 +

1

𝜆in
− 𝜆out

1 + 𝜆out

)︂
𝑊 2

2 (𝜈, 𝜇1) +𝑊 2
2 (𝜇1, 𝜇2)

6

(︂
1 +

1

𝜆in

)︂
𝑊 2

2 (𝜈, 𝜇1) +𝑊 2
2 (𝜇1, 𝜇2)

6
𝑐

𝑐− (‖∇𝜙‖∞ + ‖∇2𝜙‖∞)
𝑊 2

2 (𝜇1, 𝜈) +𝑊 2
2 (𝜇1, 𝜇2).
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Chapter 3

Averaging probability distributions:

statistics

3.1 Introduction to the problem

In this chapter we develop the first major application of the theory in Chapter 2. We are

interested here in perhaps the most basic statistical question of all: how quickly does the

sample average converge to the population average? Specifically, let 𝑃 ∈ 𝒫2(𝑋) for 𝑋

a non-negatively curved metric space. Assume 𝑃 has a barycenter 𝑏*. Given samples

𝑥1, . . . , 𝑥𝑛 ∼ 𝑃 , we shall let 𝑃𝑛 be the empirical measure defined as

𝑃𝑛 :=
1

𝑛

𝑛∑︁
𝑖=1

𝛿𝑥𝑖 .

Assume 𝑃𝑛 has a barycenter �̂�𝑛. Then we wish to understand the quantity

E[𝑑2𝑋(�̂�𝑛, 𝑏
*)],

where the expectation is over samples of size 𝑛. We note that in the case where 𝑋 = R𝑑,

we can use the fact that barycenters are averages to see that this is precisely

E[𝑑2𝑋(�̂�𝑛, 𝑏
*) = E[‖�̂�𝑛 − 𝑏*‖22] =

𝜎2(𝑃 )

𝑛
.
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We shall call a rate of the form 𝑐/𝑛 for parametric. This is the model case that we will try

and emulate in our results.

Remark 3.1.1. We shall assume throughout that barycenters exist. In all cases of interest this is

know to hold [38]. Uniqueness of the population barycenter 𝑏* will hold under the hypotheses we

consider as well. We note that our results do not require uniqueness of the empirical barycenter.

3.2 Parametric rates under bi-extendibility

We now state the main result of this section.

Theorem 3.2.1. Suppose (𝑋, 𝑑𝑋) is non-negatively curved and 𝑃 ∈ 𝒫2(𝑋) with barycenter 𝑏*.

If there exists 𝑘min > 0 such that 𝑘𝑏𝑏*(𝑥) > 𝑘min (cf. Definition 2.7.7) for all 𝑏, 𝑥 ∈ 𝑋 , then 𝑏* is

unique and any empirical barycenter �̂�𝑛 obeys

E[𝑑2𝑋(�̂�𝑛, 𝑏
*)] 6

4𝜎2

𝑛𝑘2min

For a moment taking this statement as granted we immediately obtain the following

corollaries courtesy of Section 2.7.

Corollary 3.2.2. Suppose (𝑋, 𝑑𝑋) is non-negatively curved and 𝑃 ∈ 𝒫2(𝑋) with barycenter 𝑏*.

Suppose for each 𝑥 ∈ supp(𝑃 ) the geodesic from 𝑏* to 𝑥 is (𝜆in, 𝜆out)-extendible such that

𝑘0 :=
𝜆out

1 + 𝜆out
− 1

𝜆in

is positive. Then

E[𝑑2𝑋(�̂�𝑛, 𝑏
*)] 6

4𝜎2(𝑃 )

𝑛𝑘20
.

In case (𝑋, 𝑑𝑋) = 𝑊2(R𝑑), suppose 𝑃 has a barycenter 𝑏* ∈ 𝒫2,ac(R𝑑) such that for each 𝜇 ∈

supp(𝑃 ), the optimal Kantorovich potential 𝜙𝑏*→𝜇 is 𝛼-strongly convex and 𝛽-smooth for 𝛽−𝛼 <

1. Then

E[𝑊 2
2 (�̂�𝑛, 𝑏

*)] 6
4𝜎2(𝑃 )

𝑛(1− (𝛽 − 𝛼))2
.

Remark 3.2.3. This result significantly advances the state of the art. Early works on empirical

barycenters focused on consistency and limit distributions [10, 11, 33]. Asymptotics in the Wasser-

stein case were considered in [38]. Finite sample rates have been established in the non-positively
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curved regime and mild generalizations thereof [58, 13, 54]. The most significant result valid on

spaces of non-negative curvature is from [3]. There, the authors show dimension dependent rates

under a variance inequality. In case (𝑋, 𝑑𝑋) = 𝑊2(R𝑑), their convergence rates are of the form

𝑛−1/𝑑.

Proof of Theorem 3.2.1. Fix 𝑛 elements 𝑥1, . . . , 𝑥𝑛 ∈ supp(𝑃 ) and let �̂�𝑛 be their barycenter.

We apply our assumption on the hugging function to observe that for each 𝑥𝑖,

‖ log𝑏*(�̂�𝑛)− log𝑏*(𝑥𝑖)‖2𝑏* 6 𝑘min𝑑
2
𝑋(𝑏*, �̂�𝑛) + 𝑑2𝑋(�̂�𝑛, 𝑥𝑖).

On the other hand, by definition of the tangent cone

‖ log𝑏*(�̂�𝑛)− log𝑏*(𝑥𝑖)‖2𝑏* = 𝑑2𝑋(𝑏*, �̂�𝑛)− 2⟨log𝑏*(�̂�𝑛)− id, log𝑏*(𝑥𝑖)− id⟩𝑏* + 𝑑2𝑋(𝑏*, 𝑥𝑖).

Whence

(1− 𝑘min)𝑑
2
𝑋(𝑏*, �̂�𝑛) 6 2⟨log𝑏*(�̂�𝑛), log𝑏*(𝑥𝑖)⟩𝑏* + 𝑑2𝑋(�̂�𝑛, 𝑥𝑖)− 𝑑2𝑋(𝑏*, 𝑥𝑖).

If we sum over 𝑖 and divide by 𝑛 then the difference on the right hand side is non-positive,

so we get

(1− 𝑘min)𝑑
2
𝑋(𝑏*, �̂�𝑛) 6 2⟨log𝑏*(�̂�𝑛), 𝑏𝑛⟩𝑏* .

where we set 𝑏𝑛 := 1
𝑛

∑︀𝑛
𝑖=1 log𝑏*(𝑥𝑖), Applying Cauchy-Schwarz and simplifying we find

(1− 𝑘min)
2𝑑2𝑋(𝑏*, �̂�𝑛) 6 4‖𝑏𝑛‖2𝑏*

We observe that by theorem 2.7.5-(3) the log𝑏*(𝑥𝑖) are in a Hilbert space, so that

‖𝑏𝑛‖2𝑏* =
1

𝑛2

𝑛∑︁
𝑖,𝑗=1

⟨log𝑏*(𝑥𝑖)− id, 𝑇𝑏*→𝑥𝑗
− id⟩𝑏* .

Taking each 𝑥𝑖 independently distributed according to 𝑃 and applying theorem 2.7.5-(2)

we obtain

(1− 𝑘min)
2E[𝑑2𝑋(𝑏*, �̂�𝑛)] 6

4

𝑛
E[𝑑2𝑋(𝑏*, 𝑥)] =

4𝜎2

𝑛
.

This proves the result.
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Chapter 4

Averaging probability distributions:

optimization

In this chapter, we turn to the question of computing Wasserstein barycenters. We develop

a general machinery to study first-order optimization methods for this purpose, and apply

it to the case of distributions supported on Gaussians known as the Bures-Wasserstein

manifold. We provide the first analysis of exponential convergence of gradient descent in

this setting, resolving an open question of [6].

4.1 Introduction and main results

Establishing fast convergence of first-order methods is usually intimately related to con-

vexity. As we well know by now, however, the barycenter functional on 𝑊2(R𝑑) cannot be

expected to be (geodesically) convex. Indeed, as we can see in Figure 4.1, the barycenter

functional may even be concave along geodesics.

Fortunately, the optimization literature describes conditions for global convergence of

first order algorithms even for non-convex objectives. We shall employ one such condition,

a Polyak-Łojasiewicz (PL) inequality of the form (4.3.2.1), which is known to yield linear

convergence for a variety of gradient methods on flat spaces even in absence of convex-

ity [32].

The main work of this chapter is in two parts. The first is to develop general machinery

towards a PL inequality for the barycenter functional, and the second is to instantiate it for
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Figure 4-1: Example of the non-geodesic convexity of 𝑊 2
2 . Displayed is the squared Bu-

res distance along a Wasserstein geodesic and a Euclidean geodesic. Details are given in
Appendix B.0.2

the Bures-Wasserstein case. The consequences for distributions supported on Gaussians

are given below.

Theorem 4.1.1. Fix 𝜁 ∈ (0, 1] and let 𝑃 be a distribution supported on mean-zero Gaussian

measures whose covariance matrices Σ satisfy ‖Σ‖op 6 1 and detΣ > 𝜁. Then, 𝑃 has a unique

barycenter 𝑏*, and Gradient Descent (Algorithm 1) initialized at 𝑏0 ∈ supp(𝑃 ) yields a sequence

(𝑏𝑇 )𝑇>1 such that

𝑊 2
2 (𝑏𝑇 , 𝑏

*) 6
2

𝜁

(︁
1− 𝜁2

4

)︁𝑇

[𝐹 (𝑏0)− 𝐹 (𝑏*)] .

The above theorem establishes a linear rate of convergence for gradient descent and

answers a question left open in [6]. Moreover, when 𝑃 is an empirical distribution, com-

bined with the existing results of [3, 36], it yields a procedure to estimate Bures-Wasserstein

barycenters at the parametric rate after a number of iterations that is logarithmic in the

sample size 𝑛.

Still in the Gaussian case, we also show that a stochastic gradient descent (SGD) algo-

rithm converges to the true barycenter at a parametric rate.

Theorem 4.1.2. Fix 𝜁 ∈ (0, 1] and let 𝑃 be a distribution supported on mean-zero Gaussian

measures whose covariance matrices Σ satisfy ‖Σ‖op 6 1 and detΣ > 𝜁. Then, 𝑃 has a unique

barycenter 𝑏*, and Stochastic Gradient Descent (Algorithm 2) run on a sample of size 𝑛 + 1 from

𝑃 returns a Gaussian measure 𝑏𝑛 such that

E𝑊 2
2 (𝑏𝑛, 𝑏

*) 6
96𝜎2(𝑃 )

𝑛𝜁5
.
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Figure 4-2: Left. Convergence of SGD on Bures manifold for 𝑛 = 1000, 𝑑 = 3, and 𝑏⋆ =
𝛾0,𝐼3 . Right: linear convergence of GD on the same problem.

This theorem shows that SGD yields an estimator 𝑏𝑛, different from the empirical

barycenter �̂�𝑛, that also converges at the parametric rate to 𝑏⋆. Hence we actually have

two ways to estimate an empirical barycenter: we can either apply theorem 4.1.1 to the

empirical distribution or theorem 4.1.2 to the population distribution. The latter exhibits

slower convergence but has much cheaper iterations.

As far as we are aware, these results provide the first non-asymptotic rates of conver-

gence for first-order methods on the Bures-Wasserstein manifold. The problem of Bures-

Wasserstein barycenters over Gaussians has been studied since the 1990’s [35]. Previous

works have focused primarily on empirical and asymptotic explorations, as well as con-

nections with matrix analysis [6, 9].

Remark 4.1.3. The assumption ‖Σ‖op 6 1 is simply a normalization and changes nothing. A

natural sufficient condition for detΣ > 𝜁 to be satisfied is when all the eigenvalues of the covariance

matrix Σ are lower bounded by a constant 𝜆min > 0. In this case, the parameter 𝜁 > 𝜆𝑑min can be

exponentially small in the dimension. Note, however, that in this case the Gaussian measure is quite

degenerate in the sense that the density of 𝛾0,Σ is exponentially large at 0.

In Figure 4-2, we present an experiment confirming these two results; see Appendix B

for more details and further numerical results.
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4.2 Local to global phenomena for Wasserstein barycenters

The gradient of the barycenter functional is defined as

∇𝐹 (𝑏) := E𝜇∼𝑃 [id−𝑇𝑏→𝜇] ∀𝑏 ∈ 𝒫2,ac.

This formula can be justified rigorously, but we take it simply as a convention [7]. The

early work of Agueh and Carlier in 2011 [1] showed that the norm of this gradient is closely

related to the barycenter problem. Specifically, they proved:

Theorem 4.2.1 ([1] Prop. 3.8). Suppose 𝑃 has finite support in 𝒫2,ac. Fix 𝑏 ∈ 𝒫2,ac(R𝑑). For

each 𝜇 ∈ supp(𝑃 ), let the Monge-Kantorovich potentials generating the optimal coupling from 𝑏

to 𝜇 be 𝜙𝑏→𝜇 so that 𝑇𝑏→𝜇 = ∇𝜙𝑏→𝜇. Then 𝑏 is the barycenter of 𝑃 if and only if there exists a

constant 𝐶 such that

E𝜇∼𝑃 [𝜙𝑏→𝜇𝑖
(𝑥)] 6 𝐶 +

1

2
‖𝑥‖22 ∀𝑥 ∈ R𝑑

and such that equality holds for 𝑏-a.e. 𝑥 ∈ R𝑑.

The crucial point here is that the statement that E𝜇∼𝑃 [𝜙𝑏→𝜇𝑖
(𝑥)] = 1

2‖𝑥‖
2
2 𝑏-a.e. is equiv-

alent to 𝑏 being a critical point for 𝐹 :

‖∇𝐹 (𝑏)‖𝐿2(𝑏) = 0.

Indeed, under some mild regularity and support assumptions on 𝑏 and the support of 𝑃 ,

their theorem can be strengthened to an unconditional if and only if: ‖∇𝐹 (𝑏)‖𝐿2(𝑏) = 0 if

and only if 𝑏 = 𝑏* [48].

Taking this interpretation we have found a promising fact. The positive curvature of

𝑊2(R𝑑) a priori blocks convexity of 𝐹 (𝑏), and yet, 𝐹 (𝑏) still has one of the local-to-global

attributes of convex functions: critical points are global optima. It is this fact which moti-

vates the previous and present study of first-order methods for computing barycenters.
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4.3 Sufficient conditions for first-order methods to converge on

𝑊2(R𝑑)

In this section we describe an approach to combine the 1-smoothness of 𝐹 (𝑏) (cf. propo-

sition 2.3.4) with a certain quantitative weakening of strong convexity to obtain fast rates

of convergence for first-order algorithms for Wasserstein barycenters. To begin, we shall

describe the methods in consideration.

Given a sequence of step-sizes (𝜂𝑡)𝑡>1 and an initial point 𝑏0 ∈ 𝒫2,ac(R𝑑) we consider

the gradient descent (GD) dynamics:

𝑏𝑡+1 := (id−𝜂𝑡∇𝐹 (𝑏𝑡))#𝑏𝑡 𝑡 = 1, 2, . . . (4.3.0.1)

We shall also consider the stochastic gradient descent (SGD) dynamics: given a sequence

of step sizes (𝜂𝑡)𝑛−1
𝑡=1 , an initial point 𝑏0 ∈ 𝒫2,ac(R𝑑), and 𝑛 samples 𝜇𝑡 ∼ 𝑃 , 𝑡 = 1, . . . , 𝑛, the

iterates are

𝑏𝑡+1 := (id+𝜂𝑡(𝑇𝑏𝑡→𝜇𝑡+1 − id))#𝑏𝑡 𝑡 = 0, . . . , 𝑛− 1. (4.3.0.2)

To analyze these dynamics we shall first need a calculus version of the 1-smoothness

property of 𝐹 .

Proposition 4.3.1. For any 𝑏0, 𝑏1 ∈ 𝒫2,ac(R𝑑) such that 𝐹 (𝑏0) < ∞, the barycenter functional

satisfies the smoothness inequality

𝐹 (𝑏1) 6 𝐹 (𝑏0) + ⟨∇𝐹 (𝑏0), 𝑇𝑏0→𝑏1 − id⟩𝑏0 +
1

2
𝑊 2

2 (𝑏0, 𝑏1). (4.3.1.1)

Moreover, for any 𝑏 ∈ 𝒫2,ac(R𝑑) and 𝑏+ := [id−∇𝐹 (𝑏)]#𝑏, it holds.

𝐹 (𝑏+)− 𝐹 (𝑏) 6 −1

2
‖∇𝐹 (𝑏)‖2𝑏 . (4.3.1.2)

Proof. Let (𝑏𝑠)𝑠∈[0,1] be the constant-speed geodesic between arbitrary 𝑏0, 𝑏1 ∈ 𝒫2,ac(R𝑑).

From the non-negative curvature inequality (2.2.1.2), it holds that for any 𝑠 ∈ (0, 1],

∫︁
𝑊 2

2 (𝑏𝑠, 𝜇)−𝑊 2
2 (𝑏0, 𝜇)

𝑠
d𝑃 (𝜇) >

∫︁
[𝑊 2

2 (𝑏1, 𝜇)−𝑊 2
2 (𝑏0, 𝜇)] d𝑃 (𝜇)− (1− 𝑠)𝑊 2

2 (𝑏0, 𝑏1).

We will apply the dominated convergence theorem to the left-hand side. To do this, we
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observe that

1

𝑠

⃒⃒
𝑊 2

2 (𝑏𝑠, 𝜇)−𝑊 2
2 (𝑏0, 𝜇)

⃒⃒
=

1

𝑠
(𝑊2(𝑏𝑠, 𝜇) +𝑊2(𝑏0, 𝜇))(𝑊2(𝑏𝑠, 𝜇)−𝑊2(𝑏0, 𝜇))

6
1

𝑠
(𝑊2(𝑏0, 𝑏𝑠) + 2𝑊2(𝑏0, 𝜇))𝑊2(𝑏0, 𝑏𝑠)

6 (𝑊2(𝑏0, 𝑏1) + 2𝑊2(𝑏0, 𝜇))𝑊2(𝑏0, 𝑏1).

By our assumption that 𝐹 (𝑏0) <∞, the result is integrable. Hence, the LHS converges to

∫︁
d

d𝑠
𝑊 2

2 (𝑏𝑠, 𝜇)
⃒⃒
𝑠=0+

d𝑃 (𝜇) = −2
∫︁
⟨𝑇𝑏0→𝜇 − id, 𝑇𝑏0→𝑏1 − id⟩𝐿2(𝑏0) d𝑃 (𝜇)

= 2⟨∇𝐹 (𝑏0), 𝑇𝑏0→𝑏1 − id⟩𝑏0 ,

where in the first identity, we used the characterization of [7, Prop. 7.3.6]. Rearranging

terms yields (4.3.1.1).

Noticing that 𝑊 2
2 (𝑏, 𝑏

+) = ‖−∇𝐹 (𝑏)‖2𝑏 , the second equation follows from the first.

We now introduce a certain quantitative weakening of strong convexity which shall be

useful in the sequel.

Definition 4.3.2. We say that 𝑃 satisfies a Polyak-Łojasiewicz (PL) inequality at 𝑏 ∈ 𝒫2,ac(R𝑑) if

2𝐶PL(𝐹 (𝑏)− 𝐹 (𝑏*)) 6 ‖∇𝐹 (𝑏)‖2𝐿2(𝑏). (4.3.2.1)

Remark 4.3.3. PL inequalities are a standard item in the theory of optimization, for they are essen-

tially a minimal requirement to derive typical rates of convergence for optimization methods [32].

We note as well that a PL inequality for the barycenter functional can be viewed as a quantitative

strengthening of the “critical points are optimal" statement from the previous section.

As the following theorems evidence, if 𝐹 satisfies a PL inequality at each iterate of

gradient descent or stochastic gradient descent then we can recover the usual rates from

Euclidean optimization.

Theorem 4.3.4 (Exponential convergence for GD). Suppose 𝐹 satisfies a PL inequality at each

iterate of the gradient descent dynamics (𝑏𝑡)𝑡<𝑇 . Then

𝐹 (𝑏𝑇 )− 𝐹 (𝑏*) 6 (1− 𝐶PL)
𝑇 (𝐹 (𝑏0)− 𝐹 (𝑏*)).
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Proof of Theorem 4.3.4. The PL inequality implies 𝐹 (𝑏𝑡) < ∞ for all 𝑡. We may thus apply

the smoothness (4.3.1.2) and PL (4.3.2.1) inequalities, to see that

𝐹 (𝑏𝑡+1)− 𝐹 (𝑏𝑡) 6 −𝐶PL[𝐹 (𝑏𝑡)− 𝐹 (𝑏*)].

It yields 𝐹 (𝑏𝑡+1)− 𝐹 (𝑏*) 6 (1− 𝐶PL)[𝐹 (𝑏𝑡)− 𝐹 (𝑏*)], which gives the result.

We also get a 1/𝑛 rate for the SGD dynamics.

Theorem 4.3.5 (1/𝑛 convergence for SGD). Suppose that there exists a constant 𝐶PL > 0 such

that 𝐹 satisfies the PL inequality (4.3.2.1) at all iterates (𝑏𝑡)06𝑡6𝑛 of SGD run with step size

𝜂𝑡 = 𝐶PL

(︁
1−

√︃
1− 2(𝑡+ 𝑘) + 1

𝐶2
PL(𝑡+ 𝑘 + 1)2

)︁
6

2

𝐶PL(𝑡+ 𝑘 + 1)
, (4.3.5.1)

where we take 𝑘 = 2/𝐶2
PL − 1 > 0. Then,

E𝐹 (𝑏𝑛)− 𝐹 (𝑏*) 6
3𝜎2(𝑃 )

𝐶2
PL𝑛

.

The proof is relegated to the appendix subsection A.2.1. Although mostly standard,

there is a critical usage of the non-negative curvature of 𝑊2(R𝑑).

4.4 An integrated Polyak-Łojasiewicz inequality

The aim of this section is to prove the following “integrated PL inequality".

Lemma 4.4.1 (Integrated PL). Let 𝑃 satisfy a variance inequality with constant 𝐶var and let

𝑏 ∈ 𝒫2,ac(R𝑑) be such that the barycenter 𝑏* of 𝑃 is absolutely continuous w.r.t. 𝑏. Assume

further the following measurability conditions: there exists a 𝑃 ⊗ 𝑏*, 𝑃 ⊗ 𝑏-integrable mapping

𝜙 : 𝒫2,ac(R𝑑)× R𝑑 → R ∪ {∞}, (𝜇, 𝑥) ↦→ 𝜙𝑏→𝜇(𝑥), such that for 𝑃 -almost every 𝜇 ∈ 𝒫2,ac(R𝑑),

𝜙𝑏→𝜇 : R𝑑 → R∪ {∞} is a Kantorovich potential for the optimal transport map from 𝑏 to 𝜇. Then,

𝐹 (𝑏)− 𝐹 (𝑏*) 6 2

𝐶var

(︂∫︁ 1

0
‖∇𝐹 (𝑏)‖𝐿2(𝑏𝑠)𝑑𝑠

)︂2

,

where (𝑏𝑠)𝑠∈[0,1] is the constant-speed 𝑊2-geodesic joining 𝑏 to 𝑏*.
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Remark 4.4.2. We comment on deriving a full PL inequality from the above. If we know that

‖𝑑𝑏𝑠/𝑑𝑏‖∞ 6 𝐶, then this immediately yields a full PL inequality. The difficulty with such an

approach lies in the fact that we must guarantee it to be true when 𝑏 is an iterate of the gradient

descent trajectory. In fact, sup norm upper bounds on the iterates can be easily maintained through-

out the trajectory as they hold along 𝑊2-geodesics. To complete such an argument we would need a

lower bound of the form 𝑑𝑏 > 𝑐. However, ensuring lower bounds along 𝑊2-geodesics is a difficult

open problem [53].

The following lemma will be useful for us. It appears in [39, Lem. A.1] in the case

of Lipschitz functions. A minor modification of their proof allows us to handle locally

Lipschitz rather than only Lipschitz functions, which we include in Appendix A.2.2.

Lemma 4.4.3. Let (𝑏𝑠)𝑠∈[0,1] be a Wasserstein geodesic in 𝒫2(R𝑑). Let Ω ⊆ R𝑑 be a convex open

subset for which 𝑏0(Ω) = 𝑏1(Ω) = 1. Then, for any function 𝑓 : R𝑑 → R which is locally Lipschitz

on Ω, it holds that

⃒⃒⃒∫︁
𝑓 d𝑏0 −

∫︁
𝑓 d𝑏1

⃒⃒⃒
6𝑊2(𝑏0, 𝑏1)

∫︁ 1

0
‖∇𝑓‖𝐿2(𝑏𝑠) d𝑠.

Proof of Lemma 4.4.1. By Kantorovich duality (cf. theorem 2.1.1),

1

2
𝑊 2

2 (𝑏, 𝜇) =

∫︁ (︁‖·‖2
2
− 𝜙𝜇→𝑏

)︁
d𝜇+

∫︁ (︁‖·‖2
2
− 𝜙𝑏→𝜇

)︁
d𝑏,

1

2
𝑊 2

2 (𝑏
*, 𝜇) >

∫︁ (︁‖·‖2
2
− 𝜙𝜇→𝑏

)︁
d𝜇+

∫︁ (︁‖·‖2
2
− 𝜙𝑏→𝜇

)︁
d𝑏*.

This yields the inequality

𝐹 (𝑏)− 𝐹 (𝑏*) 6
∫︁ (︁‖·‖2

2
−
∫︁
𝜙𝑏→𝜇 d𝑃 (𝜇)

)︁
d(𝑏− 𝑏*),

where we have used the integrability assumption to swap integrals. Let𝜙 :=
∫︀
𝜙𝑏→𝜇 d𝑃 (𝜇);

this is a proper LSC convex function R𝑑 → R ∪ {∞}. We apply lemma 4.4.3 with Ω =

int dom 𝜙. Since 𝜙 is locally Lipschitz on the interior of its domain and 𝑏* ≪ 𝑏, then

𝑏(Ω) = 𝑏*(Ω) = 1, whence

𝐹 (𝑏)− 𝐹 (𝑏*) 6𝑊2(𝑏, 𝑏
*)

∫︁ 1

0
‖∇𝜙− id‖𝐿2(𝑏𝑠) d𝑠 6

√︃
2[𝐹 (𝑏)− 𝐹 (𝑏*)]

𝐶var

∫︁ 1

0
‖∇𝜙− id‖𝐿2(𝑏𝑠) d𝑠.
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Square and rearrange to yield

𝐹 (𝑏)− 𝐹 (𝑏*) 6 2

𝐶var

(︁∫︁ 1

0
‖∇𝜙− id‖𝐿2(𝑏𝑠)

)︁2
d𝑠.

Recognizing that∇𝐹 (𝑏) = id−∇𝜙 yields the result.

4.5 Specializing to the Bures-Wasserstein case

As discussed in Remark 4.4.2, obtaining a full PL inequality from the integrated PL in

general is not known. In this section, we apply the integrated PL inequality to obtain a

bona fide PL for distributions supported on Gaussians.

Identifying a centered non-degenerate Gaussian measure with its covariance matrix,

the Wasserstein geometry induces a Riemannian structure on the space of positive definite

matrices, known as the Bures geometry. Accordingly, we now refer to the barycenter of 𝑃

as the Bures-Wasserstein barycenter [20, 9].

4.5.1 Bures-Wasserstein gradient descent algorithms

We now specialize both GD and SGD when 𝑃 is supported on mean-zero Gaussian mea-

sures. In this case, the updates of both algorithms take a remarkably simple form. To see

this, for 𝑚 ∈ R𝑑, Σ ∈ S𝑑++, let 𝛾𝑚,Σ denote the Gaussian measure on R𝑑 with mean 𝑚 and

covariance matrix Σ. In particular, the optimal coupling between 𝛾𝑚0,Σ0 and 𝛾𝑚1,Σ1 has the

explicit form

𝑥 ↦→ 𝑇𝛾𝜇0,Σ0
→𝛾𝜇1,Σ1

(𝑥) := 𝑚1 +Σ
−1/2
0 (Σ

1/2
0 Σ1Σ

1/2
0 )

1/2
Σ
−1/2
0 (𝑥−𝑚0). (4.5.0.1)

Observe that 𝑇𝛾𝜇0,Σ0
→𝛾𝜇1,Σ1

is affine, and thus
∫︀
𝑇𝛾𝜇0,Σ0

→𝛾 d𝑃 (𝛾) is affine.

This means that all of the GD (or SGD) iterates are Gaussian measures, so it suffices to

keep track of the mean and covariance matrix of the current iterate. For both GD and SGD,

the update equation for the descent step decomposes into two decoupled equations: an

update equation for the mean, and an update equation for the covariance matrix. More-

over, the update equation for the mean is trivial, corresponding to a simple GD or SGD

procedure on the objective function 𝑚 ↦→
∫︀
‖𝑚 −𝑚(𝜇)‖2 d𝑃 (𝜇). Therefore, for simplicity

and without loss of generality, we consider only mean-zero Gaussians throughout this sec-
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Algorithm 1 Bures-Wasserstein GD
1: procedure BURES-GD(Σ0, 𝑃, 𝑇 )
2: for 𝑡 = 1, . . . , 𝑇 do

3: 𝑆𝑡 ←
∫︀
Σ
−1/2
𝑡−1 {Σ

1/2
𝑡−1Σ(𝜇)Σ

1/2
𝑡−1}

1/2
Σ
−1/2
𝑡−1 d𝑃 (𝜇)

4: Σ𝑡 ← 𝑆𝑡Σ𝑡−1𝑆𝑡
5: end for
6: return Σ𝑇

7: end procedure

Algorithm 2 Bures-Wasserstein SGD

1: procedure BURES-SGD(Σ0, (𝜂𝑡)
𝑇
𝑡=1, (𝐾𝑡)

𝑇
𝑡=1)

2: for 𝑡 = 1, . . . , 𝑇 do

3: 𝑆𝑡 ← Σ
−1/2
𝑡−1 {Σ

1/2
𝑡−1𝐾𝑡Σ

1/2
𝑡−1}

1/2
Σ
−1/2
𝑡−1

4: Σ𝑡 ← ((1− 𝜂𝑡)𝐼𝐷 + 𝜂𝑡𝑆𝑡)Σ𝑡−1((1− 𝜂𝑡)𝐼𝐷 + 𝜂𝑡𝑆𝑡)
5: end for
6: return Σ𝑇

7: end procedure

tion and we simply have to write down the update equations for the covariance matrix Σ𝑡

of the iterate. They are summarized in Algorithms 1 and 2.

In the rest of this section, we prove the guarantees for GD and SGD on the Bures-

Wasserstein manifold given in theorems 4.1.1 and 4.1.2.

4.5.2 Proof of the main results

For simplicity, we make the following reductions: we assume that the Gaussians are cen-

tered (see previous subsection) and that the eigenvalues of the covariance matrices of the

Gaussians are uniformly bounded above by 1. The latter assumption is justified by the

observation that if there is a uniform upper bound on the eigenvalues of the covariance

matrices, then we can simply rescale them so that the bound becomes 1. As can be easily

checked, the barycenter thus obtained will be the scaled version of the original barycenter,

so there is no harm in doing this.

While the centering and scaling assumptions stated above can be made without loss of

generality, our results require the following regularity condition. Note that it is equivalent

to a uniform upper bound on the densities of the Gaussians.
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Definition 4.5.1 (𝜁-regular). Fix 𝜁 ∈ (0, 1]. A distribution 𝑃 ∈ 𝒫2(R𝑑) is said to be 𝜁-regular if

its support is contained in

𝒮𝜁 =
{︀
𝛾0,Σ : Σ ∈ S𝑑++, ‖Σ‖op 6 1, detΣ > 𝜁

}︀
. (4.5.1.1)

We use this definition to prove our main theorems with the following four steps. We

show that, for any 𝜁-regular distribution 𝑃 ,

1. Corollary 4.5.5: 𝑃 has a barycenter in 𝒮𝜁 .

2. Theorem 4.5.7: 𝑃 obeys a variance inequality with 𝐶var = 𝜁.

3. Theorem 4.5.8: 𝑃 obeys a PL-inequality uniformly over 𝒮𝜁 with 𝐶PL = 𝜁2/4.

4. Corollary 4.5.6: GD and SGD initialized in 𝒮𝜁 remain in 𝒮𝜁 .

We thus obtain a PL inequality throughout the optimization trajectories and can apply our

optimizations results from Section 4.3 to conclude. For the rest of this section, we execute

this proof plan.

We lay the groundwork for our proof by defining the following strong form of geodesic

convexity for 𝒮𝜁 .

Definition 4.5.2 (Defn. 7.4 [1]). Fix 𝜇, 𝜈0, 𝜈1 ∈ 𝒫2,ac(R𝑑). Let 𝑇𝑖 be the optimal coupling from 𝜇

to 𝜈𝑖, 𝑖 = 0, 1. Then the generalized geodesic from 𝜈0 to 𝜈1 with base 𝜇 is the interpolated curve

𝜈𝜇𝑡 := ((1− 𝑡)𝑇0 + 𝑡𝑇1)#𝜇.

We say that a functional 𝐺 : 𝒫2,ac(R𝑑) → R is convex along generalized geodesics if for all

generalized geodesics 𝜈𝜇𝑡 , the function 𝐺 ∘ 𝜈𝜇𝑡 : [0, 1] → R ∪ {∞} is convex. A set 𝑆 ⊂ 𝒫2,ac(R𝑑)

is said to be convex along generalized geodesics if the convex indicator

𝜄𝑆(𝜇) :=

⎧⎪⎨⎪⎩
0 𝜇 ∈ 𝑆

∞ 𝜇 ̸∈ 𝑆

is convex along generalized geodesics.

We next demonstrate two important functionals which are convex along generalized

geodesics.
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Lemma 4.5.3. For a measure 𝜇 ∈ 𝒫2(R𝑑), let 𝑀(𝜇) :=
∫︀
𝑥 ⊗ 𝑥 d𝜇(𝑥). Then, the functional

𝜇 ↦→ ‖𝑀(𝜇)‖op = 𝜆max(𝑀(𝜇)) is convex along generalized geodesics on 𝒫2(R𝑑).

Proof. Let 𝑆𝑑−1 denote the unit sphere of R𝑑 and observe that for any 𝑒 ∈ 𝑆𝑑−1 the function

𝑥 ↦→ ⟨𝑥, 𝑒⟩2 is convex on R𝑑. By known results for geodesic convexity in Wasserstein

space (see [7, Prop. 9.3.2]), the functional 𝜇 ↦→
∫︀
⟨·, 𝑒⟩2 d𝜇 = ⟨𝑒,𝑀(𝜇)𝑒⟩ is convex along

generalized geodesics in 𝒫2(R𝑑); hence, so is the functional 𝜇 ↦→ max𝑒∈𝑆𝑑−1⟨𝑒,𝑀(𝜇)𝑒⟩ =

‖𝑀(𝜇)‖op.

The next lemma establishes convexity along generalized geodesics of 𝜇 ↦→ − ln detΣ(𝜇).

It follows from specializing lemma A.2.3 in the Appendix to the Bures-Wasserstein mani-

fold.

Lemma 4.5.4. The functional 𝛾0,Σ ↦→ −
∑︀𝑑

𝑖=1 ln𝜆𝑖(Σ) is convex along generalized geodesics on

the space of non-degenerate Gaussian measures.

It follows readily from lemmas 4.5.3 and 4.5.4 that the set 𝒮𝜁 is convex along general-

ized geodesics. Combining this with the fact that 𝜁-regular distributions have barycenters

(proposition A.2.1 in the Appendix) and a result of Agueh and Carlier [1, Prop. 7.6] we get

the following.

Corollary 4.5.5. If 𝑃 is 𝜁-regular then it has a barycenter 𝑏* ∈ 𝒮𝜁 .

Moreover since SGD moves along geodesics and is initialized at 𝑏0 ∈ supp𝑃 ⊂ 𝒮𝜁 , then

all the iterates of SGD stay in 𝒮𝜁 . To show that the same holds for GD, observe that the

set log𝑏𝑡(𝒮𝜁) is convex. Therefore, −∇𝐹 (𝑏𝑡) =
∫︀
(𝑇𝑏𝑡→𝜇 − id) d𝑃 (𝜇) ∈ log𝑏𝑡(𝒮𝜁) as a convex

combination of elements in this set. This is equivalent to 𝑏𝑡+1 = exp𝑏𝑡(−∇𝐹 (𝑏𝑡)) ∈ 𝒮𝜁 .

These observations yield the following corollary.

Corollary 4.5.6. The set 𝒮𝜁 is convex along generalized geodesics and when initialized in supp𝑃 ,

the iterates of both GD and SGD remain in 𝒮𝜁 .

The next result establishes uniqueness and a variance inequality.

Theorem 4.5.7. Suppose 𝑃 is a 𝜁-regular distribution. Then 𝑃 has a unique barycenter 𝑏* ∈ 𝒮𝜁
and obeys a variance inequality with 𝐶var = 𝜁.
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Proof. By lemma A.2.2 we know that the Jacobian of the transport map between any two

elements of 𝒮𝜁 has eigenvalues between 𝜁 and 1/𝜁. We can thus apply theorem 2.3.7 to get

a variance inequality with 𝐶var = 𝜁. This implies uniqueness.

We can now show a PL inequality over all of 𝒮𝜁 .

Theorem 4.5.8. Fix 𝜁 ∈ (0, 1], and let 𝑃 be a 𝜁-regular distribution. Then, the barycenter func-

tional 𝐹 satisfies the PL inequality with constant 𝐶PL = 𝜁2/4 uniformly at all 𝑏 ∈ 𝒮𝜁 :

𝐹 (𝑏)− 𝐹 (𝑏*) 6 2

𝜁2
‖∇𝐹 (𝑏)‖2𝑏 .

Proof. For any 𝛾0,Σ ∈ 𝒮𝜁 , the eigenvalues of Σ are in [𝜁, 1]. Let (�̃�𝑠)𝑠∈[0,1] be the constant-

speed geodesic between �̃�0 := 𝑏 := 𝛾0,Σ and �̃�1 := 𝑏* := 𝛾0,Σ* . Combining lemma 4.4.1

(with an additional use of the Cauchy-Schwarz inequality) and theorem 4.5.7, we get

𝐹 (𝑏)− 𝐹 (𝑏*) 6 2

𝜁

∫︁ 1

0

∫︁
‖∇𝐹 (𝑏)‖22 d�̃�𝑠 d𝑠. (4.5.8.1)

Define a random variable 𝑋𝑠 ∼ �̃�𝑠 and observe that

∫︁
‖∇𝐹 (𝑏)‖22 d�̃�𝑠 = E‖(�̃� − 𝐼𝐷)𝑋𝑠‖22 , where �̃� =

∫︁
Σ−1/2(Σ1/2𝑆Σ1/2)

1/2
Σ−1/2 d𝑃 (𝛾0,𝑆).

Moreover, recall that 𝑋𝑠 = 𝑠𝑋1 + (1 − 𝑠)𝑋0 where 𝑋0 ∼ �̃�0 and 𝑋1 ∼ �̃�1 are optimally

coupled. Therefore, by Jensen’s inequality, we have for all 𝑠 ∈ [0, 1],

E‖(�̃� − 𝐼𝐷)𝑋𝑠‖22 6 𝑠E‖(�̃� − 𝐼𝐷)𝑋1‖22 + (1− 𝑠)E‖(�̃� − 𝐼𝐷)𝑋0‖22 6
1

𝜁
E‖(�̃� − 𝐼𝐷)𝑋0‖22 ,

where in the second inequality, we used the fact that

E‖(�̃� − 𝐼𝐷)𝑋1‖22 = tr
(︀
Σ*(�̃� − 𝐼𝐷)2

)︀
6 ‖Σ*Σ−1‖op tr

(︀
Σ(�̃� − 𝐼𝐷)

2)︀
6

1

𝜁
E‖(�̃� − 𝐼𝐷)𝑋0‖22 .

Together with (4.5.8.1), it yields

𝐹 (𝑏)− 𝐹 (𝑏*) 6 2

𝜁2
E‖(�̃� − 𝐼𝐷)𝑋0‖22 =

2

𝜁2
‖∇𝐹 (𝑏)‖2𝑏 .
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By combining corollary 4.5.6 with theorem 4.5.8, we can instantiate theorems 4.3.4

and 4.3.5 to obtain our main results for this chapter, theorem 4.1.1 and theorem 4.1.2 re-

spectively.
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Appendix A

Additional results and omitted proofs

A.1 Additional results and omitted proofs from Chapter 2

Lemma A.1.1. Suppose 𝜙 : R𝑑 → R is an 𝛼-strongly convex proper lower-semi continuous func-

tion. Then for arbitrary 𝑥 ∈ R𝑑 and almost every 𝑦 ∈ R𝑑

𝜙(𝑥) + 𝜙*(𝑥) > ⟨𝑥, 𝑦⟩+ 𝛼

2
‖𝑥−∇𝜙*(𝑦)‖22.

Proof. Fix 𝑥, 𝑦 ∈ R𝑑, and let 𝑥0 ∈ 𝜕𝜙*(𝑦). Then 𝑦 ∈ 𝜕𝜙(𝑥0) (by e.g. Prop. 2.4 [60]), so

𝜙((1− 𝑡)𝑥0 + 𝑡𝑥) > 𝑡⟨𝑥− 𝑥0, 𝑦⟩+ 𝜙(𝑥0).

Using this, we have

𝜙*(𝑦) > ⟨𝑥0, 𝑦⟩ − 𝜙(𝑥0)

> ⟨𝑥, 𝑦⟩+ 1

𝑡
(𝜙(𝑥0)− 𝜙((1− 𝑡)𝑥0 + 𝑡𝑥))− 𝜙(𝑥0)

> ⟨𝑥, 𝑦⟩+ 𝜙(𝑥0)− 𝜙(𝑥) +
𝛼

2
(1− 𝑡)‖𝑥− 𝑥0‖22 − 𝜙(𝑥0),

where the last inequality follows from 𝛼-strong convexity. Rearranging and taking 𝑡 → 0

yields

𝜙(𝑥) + 𝜙(𝑦) > ⟨𝑥, 𝑦⟩+ 𝛼

2
‖𝑥− 𝑥0‖22.

We know that 𝜙* is differentiable at almost every 𝑦 ∈ R𝑑, in which case 𝑥0 = ∇𝜙*(𝑦). This

gives the result.
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A.2 Additional results and omitted proofs from Chapter 4

A.2.1 Proof of Theorem 4.3.5

We begin by noting that the step size 𝜂𝑡 is chosen to solve the equation

1− 2𝐶PL𝜂𝑡 + 𝜂2𝑡 =
(︁ 𝑡+ 𝑘

𝑡+ 𝑘 + 1

)︁2

.

We use the definition of Wasserstein distance to calculate:

𝑊 2
2 (𝑏𝑡+1, 𝜇) ≤ ‖log𝑏𝑡 𝑏𝑡+1 − log𝑏𝑡 𝜇‖

2
𝑏𝑡 = ‖𝜂𝑡 log𝑏𝑡 𝜇𝑡+1 − log𝑏𝑡 𝜇‖

2
𝑏𝑡

= ‖log𝑏𝑡 𝜇‖
2
𝑏𝑡 + 𝜂2𝑡 ‖log𝑏𝑡 𝜇𝑡+1‖2𝑏𝑡 − 2𝜂𝑡⟨log𝑏𝑡 𝜇, log𝑏𝑡 𝜇𝑡+1⟩𝑏𝑡 .

Taking the expectation with respect to (𝜇, 𝜇𝑡+1) ∼ 𝑃⊗2 (conditioning appropriately on the

increasing sequence of 𝜎-fields), we have

E𝐹 (𝑏𝑡+1) 6 E[(1 + 𝜂2𝑡 )𝐹 (𝑏𝑡)− 𝜂𝑡‖∇𝐹 (𝑏𝑡)‖2𝐿2(𝑏𝑡)
].

Using the PL inequality (4.3.2.1),

E𝐹 (𝑏𝑡+1) 6 E
[︀
(1 + 𝜂2𝑡 )𝐹 (𝑏𝑡)− 2𝐶PL𝜂𝑡[𝐹 (𝑏𝑡)− 𝐹 (𝑏*)]

]︀
.

Subtracting 𝐹 (𝑏*) and rearranging,

E𝐹 (𝑏𝑡+1)− 𝐹 (𝑏*) 6 (1− 2𝐶PL𝜂𝑡 + 𝜂2𝑡 )[E𝐹 (𝑏𝑡)− 𝐹 (𝑏*)] +
𝜂2𝑡
2
𝜎2(𝑃 ),

With the chosen step size, we find

E𝐹 (𝑏𝑡+1)− 𝐹 (𝑏*) 6
(︁ 𝑡+ 𝑘

𝑡+ 𝑘 + 1

)︁2

[E𝐹 (𝑏𝑡)− 𝐹 (𝑏*)] +
2𝜎2(𝑃 )

𝐶2
PL(𝑡+ 𝑘 + 1)2

.

Or equivalently,

(𝑡+ 𝑘 + 1)2[E𝐹 (𝑏𝑡+1)− 𝐹 (𝑏*)] 6 (𝑡+ 𝑘)2[E𝐹 (𝑏𝑡)− 𝐹 (𝑏*)] +
2𝜎2(𝑃 )

𝐶2
PL

.
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Unrolling over 𝑡 = 0, 1, . . . , 𝑛− 1 yields

(𝑛+ 𝑘)2[E𝐹 (𝑏𝑛)− 𝐹 (𝑏*)] 6 𝑘2[E𝐹 (𝑏0)− 𝐹 (𝑏*)] +
2𝑛𝜎2(𝑃 )

𝐶2
PL

,

or, equivalently,

E𝐹 (𝑏𝑛)− 𝐹 (𝑏*) 6
𝑘2

(𝑛+ 𝑘)2
[E𝐹 (𝑏0)− 𝐹 (𝑏*)] +

2𝜎2(𝑃 )

𝐶2
PL(𝑛+ 𝑘)

. (A.2.0.1)

To conclude the proof, recall that from (4.3.1.1), we have

𝐹 (𝑏0)− 𝐹 (𝑏*) 6
1

2
𝑊 2

2 (𝑏0, 𝑏
*).

Taking the expectation over 𝑏0 ∼ 𝑃 we find

E𝐹 (𝑏0)− 𝐹 (𝑏*) 6 𝐹 (𝑏*) =
1

2
𝜎2(𝑃 ),

as claimed. Together with (A.2.0.1), it yields

E𝐹 (𝑏𝑛)− 𝐹 (𝑏*) 6
𝜎2(𝑃 )

𝑛+ 𝑘

(︁ 𝑘2

2(𝑛+ 𝑘)
+

2

𝐶2
PL

)︁
6
𝜎2(𝑃 )

𝑛

(︁𝑘 + 1

2
+

2

𝐶2
PL

)︁
.

Plugging in the value of 𝑘 completes the proof.

A.2.2 Proof of Lemma 4.4.3

According to [39, Corollary 7.22], there exists a probability measure Π on the space of

constant-speed geodesics in R𝑑 such that 𝛾 ∼ Π and 𝑏𝑠 is the law of 𝛾(𝑠). In particular, it

yields

∫︁
𝑓 d𝑏0 −

∫︁
𝑓 d𝑏1 =

∫︁ [︀
𝑓
(︀
𝛾(0)

)︀
− 𝑓

(︀
𝛾(1)

)︀]︀
dΠ(𝛾).

We can cover the geodesic (𝛾(𝑠))𝑠∈[0,1] by finitely many open neighborhoods contained

in Ω so that 𝑓 is Lipschitz on each such neighborhood; thus, the mapping 𝑡 ↦→ 𝑓(𝛾(𝑠))

is Lipschitz and we may apply the fundamental theorem of calculus, the Fubini-Tonelli
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theorem, and Cauchy-Schwarz:

∫︁
𝑓 d𝑏0 −

∫︁
𝑓 d𝑏1 =

∫︁ ∫︁ 1

0

⟨︀
∇𝑓

(︀
𝛾(𝑠)

)︀
, �̇�(𝑠)

⟩︀
d𝑠 dΠ(𝛾)

6
∫︁ 1

0

∫︁
len(𝛾)

⃦⃦
∇𝑓

(︀
𝛾(𝑠)

)︀⃦⃦
dΠ(𝛾) d𝑠

6
∫︁ 1

0

(︀ ∫︁
len(𝛾)2 dΠ(𝛾)

)︀1/2(︀ ∫︁ ⃦⃦
∇𝑓

(︀
𝛾(𝑠)

)︀⃦⃦2
dΠ(𝛾)

)︀1/2
d𝑠

=𝑊2(𝑏0, 𝑏1)

∫︁ 1

0
‖∇𝑓‖𝐿2(𝑏𝑠) d𝑠.

It yields the result.

A.2.3 Results for Bures-Wasserstein barycenters

Proposition A.2.1 (Gaussian barycenter). Fix 0 < 𝜆min 6 𝜆max <∞. Let 𝑃 ∈ 𝒫2(𝒫2,ac(R𝑑))

be such that for all 𝜇 ∈ supp𝑃 , 𝜇 = 𝛾𝑚(𝜇),Σ(𝜇) is a Gaussian with 𝜆min𝐼𝐷 ⪯ Σ(𝜇) ⪯ 𝜆max𝐼𝐷.

Let 𝛾𝑚*,Σ* be the Gaussian measure with mean 𝑚* :=
∫︀
𝑚(𝜇) d𝑃 (𝜇) and covariance matrix Σ*

which is a fixed point of the mapping 𝑆 ↦→ 𝐹 (𝑆) :=
∫︀
(𝑆1/2Σ(𝜇)𝑆1/2)

1/2
d𝑃 (𝜇). Then, 𝛾𝑚*,Σ* is

a barycenter of 𝑃 .

Proof. To show that there exists a fixed point for the mapping 𝐹 , apply Brouwer’s fixed-

point theorem as in [1, Theorem 6.1]. To see that 𝛾𝑚*,Σ* is indeed a barycenter, we observe

the mapping

𝜙 : (𝜇, 𝑥) ↦→ 𝜙𝜇(𝑥) := ⟨𝑥,𝑚(𝜇)⟩+1

2
⟨𝑥−𝑚*, (Σ*)−1/2[(Σ*)1/2Σ(𝜇)(Σ*)1/2]

1/2
(Σ*)−1/2(𝑥−𝑚*)⟩

satisfies the following condition:

E𝜇∼𝑃 [𝜙𝜇(𝑥)] =
1

2
‖𝑥‖22 +

1

2
‖𝑚*‖22.

This implies optimality by simply applying the dual definition of optimal transport to any
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alternative 𝛾𝑚,Σ:

𝐹 (𝛾𝑚,Σ) >
∫︁∫︁ (︂

1

2
‖𝑥‖22 − 𝜙𝜇

)︂
d𝛾𝑚,Σd𝑄(𝜇) +

∫︁∫︁ (︂
1

2
‖𝑥‖22 − 𝜙*

𝜇

)︂
d𝜇d𝑄(𝜇)

=

∫︁∫︁ (︂
1

2
‖𝑥‖22 − 𝜙*

𝜇

)︂
d𝜇d𝑄(𝜇)

= 𝐹 (𝛾𝑚*,Σ*),

where we swapped integrals with the same justification as in the proof of Theorem 2.3.7.

Hence 𝛾𝑚*,Σ* is a barycenter of 𝑃 .

Lemma A.2.2. Suppose there exist constants 0 < 𝜆min 6 𝜆max < ∞ such that all of the eigen-

values of Σ,Σ′ ∈ S𝐷++ are bounded between 𝜆min and 𝜆max and define 𝜅 = 𝜆max/𝜆min. Then, the

transport map from 𝛾0,Σ to 𝛾0,Σ′ is (𝜅−1, 𝜅)-regular.

Proof. The transport map from 𝛾0,Σ to 𝛾0,Σ′ is the map 𝑥 ↦→ Σ−1/2(Σ1/2Σ′Σ1/2)
1/2

Σ−1/2𝑥.

Throughout this proof, we write ‖ · ‖ = ‖ · ‖op for simplicity. We have the trivial bound

‖Σ−1/2(Σ1/2Σ′Σ1/2)
1/2

Σ−1/2‖ 6
√︁
‖Σ−1‖‖Σ1/2Σ′Σ1/2‖‖Σ−1‖.

Moreover ‖Σ−1‖ 6 𝜆−1
min and ‖Σ1/2Σ′Σ1/2‖ 6 𝜆2max, so that the smoothness is bounded by

‖Σ−1/2(Σ1/2Σ′Σ1/2)
1/2

Σ−1/2‖ 6 𝜆max

𝜆min
.

We can take advantage of the fact that Σ, Σ′ are interchangeable and infer that the strong

convexity parameter of the transport map from Σ to Σ′ is the inverse of the smoothness

parameter of the transport map from Σ′ to Σ. In other words,

min
16𝑗6𝐷

𝜆𝑗
(︀
Σ−1/2(Σ1/2Σ′Σ1/2)

1/2
Σ−1/2

)︀
>
𝜆min

𝜆max
.

This concludes the proof.

Lemma A.2.3. Identify measures 𝜌 ∈ 𝒫2,ac(R𝑑) with their densities, and let the ‖·‖𝐿∞ norm

denote the 𝐿∞-norm (essential supremum) w.r.t. the Lebesgue measure on R𝑑. Then, for any
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𝑏, 𝜇0, 𝜇1 ∈ 𝒫2,ac(R𝑑), any 𝑠 ∈ [0, 1], and almost every 𝑥 ∈ R𝑑, it holds that

ln𝜇𝑏𝑠
(︀
∇𝜙𝑏→𝜇𝑏

𝑠
(𝑥)

)︀
6 (1− 𝑠) ln𝜇0

(︀
∇𝜙𝑏→𝜇0(𝑥)

)︀
+ 𝑠 ln𝜇1

(︀
∇𝜙𝑏→𝜇1(𝑥)

)︀
.

In particular, taking the essential supremum over 𝑥 on both sides, we deduce that the functional

𝒫2,ac(R𝑑)→ (−∞,∞] given by 𝜌 ↦→ ln ‖·‖𝐿∞ is convex along generalized geodesics.

Proof. Let 𝜌 := [(1− 𝑠)𝑇𝑏→𝜇 + 𝑠𝑇𝑏→𝜈 ]#𝑏 be a point on the generalized geodesic with base 𝑏

connecting 𝜇 to 𝜈. Let 𝜙𝑏→𝜇, 𝜙𝑏→𝜈 be the convex potentials whose gradients are 𝑇𝑏→𝜇 and

𝑇𝑏→𝜈 respectively. Then, for almost all 𝑥 ∈ R𝑑, the Monge-Ampère equation applied to the

pairs (𝑏, 𝜇), (𝑏, 𝜈), and (𝑏, 𝜌) respectively, yields

𝑏(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜇
(︀
∇𝜙𝑏→𝜇(𝑥)

)︀
det𝐷2

A𝜙𝑏→𝜇(𝑥)

𝜈
(︀
∇𝜙𝑏→𝜈(𝑥)

)︀
det𝐷2

A𝜙𝑏→𝜈(𝑥)

𝜌
(︀
(1− 𝑠)∇𝜙𝑏→𝜇(𝑥) + 𝑠∇𝜙𝑏→𝜈(𝑥)

)︀
det

(︀
(1− 𝑠)𝐷2

A𝜙𝑏→𝜇(𝑥) + 𝑠𝐷2
A𝜙𝑏→𝜈(𝑥)

)︀
.

Here, 𝐷2
A𝜙 denotes the Hessian of 𝜙 in the Alexandrov sense; see [60, Theorem 4.8].

Fix 𝑥 such that 𝑏(𝑥) > 0. On the one hand, applying log-concavity of the determinant,

it follows from the third Monge-Ampère equation that

ln 𝑏(𝑥) = ln 𝜌
(︀
(1− 𝑠)∇𝜙𝑏→𝜇(𝑥) + 𝑠∇𝜙𝑏→𝜈(𝑥)

)︀
+ ln det

(︀
(1− 𝑠)𝐷2

A𝜙𝑏→𝜇(𝑥) + 𝑠𝐷2
A𝜙𝑏→𝜈(𝑥)

)︀
> ln 𝜌

(︀
(1− 𝑠)∇𝜙𝑏→𝜇(𝑥) + 𝑠∇𝜙𝑏→𝜈(𝑥)

)︀
+ (1− 𝑠) ln det𝐷2

A𝜙𝑏→𝜇(𝑥) + 𝑠 ln det𝐷2
A𝜙𝑏→𝜈(𝑥).

On the other hand, it follows from the first two Monge-Ampère equations that

ln 𝑏(𝑥) = (1− 𝑠) ln𝜇
(︀
∇𝜙𝑏→𝜇(𝑥)

)︀
+ 𝑠 ln 𝜈

(︀
∇𝜙𝑏→𝜈(𝑥)

)︀
+ (1− 𝑠) ln det𝐷2

A𝜙𝑏→𝜇(𝑥) + 𝑠 ln det𝐷2
A𝜙𝑏→𝜈(𝑥).

The above two displays yield

ln 𝜌
(︀
(1− 𝑠)∇𝜙𝑏→𝜇(𝑥) + 𝑠∇𝜙𝑏→𝜈(𝑥)

)︀
6 (1− 𝑠) ln𝜇

(︀
∇𝜙𝑏→𝜇(𝑥)

)︀
+ 𝑠 ln 𝜈

(︀
∇𝜙𝑏→𝜈(𝑥)

)︀
It yields the result.
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Appendix B

Experiments for Bures-Wasserstein

barycenters

In this section, we demonstrate the linear convergence of GD, the fast rate of estimation for

SGD, and some potential advantages of averaging stochastic gradient by way of numerical

experiments. In evaluating SGD, we also include a variant that involves sampling with

replacement from the empirical distribution.

B.0.1 Simulations for the Bures manifold

First, we begin by illustrating how SGD indeed achieves the fast rate of convergence to the

true barycenter on the Bures manifold, as indicated by Theorem 4.1.2.

To generate distributions with a known barycenter, we use the following fact. If the

mean of the distribution (log𝑏⋆)#𝑃 is 0, then 𝑏⋆ is a barycenter of 𝑃 . This fact follows from

our PL inequality (Theorem 4.5.8) or also from general arguments in [48, Theorem 2]. We

also use the fact that the tangent space of the Bures manifold is given by the set of all

symmetric matrices [9].

Figure 4-2 shows convergence of SGD for distributions on the Bures manifold. To gen-

erate a sample, we let 𝐴𝑖 be a matrix with i.i.d. 𝛾0,𝜎2 entries. Our random sample on the

Bures manifold is then given by

Σ𝑖 = exp𝛾0,𝐼𝐷

(︁𝐴𝑖 +𝐴⊤
𝑖

2

)︁
, (B.0.0.1)
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Figure B-1: Log-log plot of convergence for SGD on Bures manifold for 𝑛 = 1000, 𝑑 = 3,
and and 𝑏⋆ = 𝛾0,𝐼3 . This corresponds to the experiment on the left in Figure 4-2.

which has population barycenter 𝑏⋆ = 𝛾0,𝐼𝐷 . An explicit form of this exponential map

is derived in [40]. We run two versions of SGD. The first variant uses each sample only

once, and passes over the data once. The second variant samples from Σ1, . . . ,Σ𝑛 with

replacement at each iteration and takes the stochastic gradient step towards the selected

matrix. For the resulting sequences, we also show the results of averaging the iterates.

Specifically, if (𝑏𝑡)𝑡∈N is the sequence generated by SGD, then the averaged sequence is

given by �̃�0 = 𝑏0 and

�̃�𝑡+1 =
[︁ 𝑡

𝑡+ 1
id+

1

𝑡+ 1
𝑇�̃�𝑡→𝑏𝑡+1

]︁
#
�̃�𝑡.

On Riemannian manifolds, averaged SGD is known to attain optimal statistical rates under

smoothness and geodesic convexity assumptions [59].

Here, we generate 100 datasets of size 𝑛 = 1000 in the way specified above and set

𝜎2 = 0.25. In this experiment, the SGD step size is chosen to be 𝜂𝑡 = 2/[0.7 · (𝑡+2/0.7+1)].

The results from these 100 datasets are then averaged for each algorithm, and we also

display 95% confidence bands for the resulting sequences. As is clear from the log-log plot

in Figure B-1, SGD achieves the fast 𝑂(𝑛−1) statistical rate on this dataset.

The right of Figure 4-2 shows convergence of GD to the empirical barycenter and true

barycenter. We generate samples in the same way as before. This linear convergence was

observed previously by [6].

In Figure B-2, we repeat the same experiment, except this time the barycenter has co-
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Figure B-2: Convergence of SGD on Bures manifold. Here, 𝑛 = 1000, 𝑑 = 3, and barycen-
ter given by diag(20, 1, 1). The result displays the average over 100 randomly generated
datasets.

variance matrix

Σ⋆ =

⎛⎜⎜⎜⎝
20 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎠ ,

and the entries of 𝐴𝑖 are drawn i.i.d. from 𝛾0,1. In this situation, the condition numbers

of the matrices generated according to this distribution are typically much larger than

those centered around 𝛾0,𝐼3 . To account for a potentially smaller PL constant, we chose

𝜂𝑡 = 2/[0.1 · (𝑡 + 2/0.1 + 1)]. It is again clear from the right pane in Figure B-2 that SGD

achieves the fast𝑂(𝑛−1) statistical rate on this dataset. To account for the slow convergence

initially, we only fit this line to the last 500 iterations. We also note that averaging yields

drastically better performance in this case, which we are currently unable to theoretically

justify.

Figure B-3 shows convergence of SGD with replacement to the empirical barycenter.

We generate 𝑛 = 500 samples in the same way as in Figure 4-2, where the true barycenter

is 𝐼3 and 𝜎2 = 0.25. We calculate the error obtained by the empirical barycenter by running

GD on this dataset until convergence, which is displayed with the green line. We also

calculate the error obtained by a single pass of SGD, which is given by the blue line. SGD

with replacement is then run for 5000 iterations, and we observe that it does indeed achieve

better error than single pass SGD if run for long enough. SGD with replacement converges

to the empirical barycenter, albeit at a slow rate.
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Figure B-3: Convergence of SGD on Bures manifold. Here, 𝑛 = 500, 𝑑 = 3, and the distri-
bution is given by (B.0.0.1) with Σ⋆ = 𝐼3 and 𝜎2 = 0.25. The result displays the average
over 100 randomly generated datasets.

B.0.2 Details of the non-convexity example

We consider the example of the Wasserstein metric restricted to centered Gaussian mea-

sures, which induces the Bures metric on positive definite matrices. Even restricted to

such Gaussian measures, the Wasserstein barycenter objective is geodesically non-convex,

despite the fact that it is Euclidean convex [62]. Figure 4.1 gives a simulated example of

this fact. This figure plots the Bures distance squared between a positive definite matrix

𝐶 and points along some geodesic 𝛾, which runs between two matrices 𝐴 and 𝐵. The

matrices used in this example are

𝐴 =

⎛⎝ 0.8 −0.4

−0.4 0.3

⎞⎠ , 𝐵 =

⎛⎝ 0.3 −0.5

−0.5 1.0

⎞⎠ , 𝐶 =

⎛⎝0.5 0.5

0.5 0.6

⎞⎠ ,

and 𝛾(𝑡), 𝑡 ∈ [0, 1], is taken to be the Bures or Euclidean geodesic from𝐴 to𝐵 (the Euclidean

geodesic is given by 𝑡 ↦→ (1− 𝑡)𝐴+ 𝑡𝐵). This function is clearly non-convex, and therefore

we cannot assume that there is some underlying strong convexity (although the Bures

distance is in fact strongly geodesically convex for sufficiently small balls [29]).
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