
Partition WaveNet for Deep Modeling of Automated
Material Handling System Traffic

by

David J. Amirault

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 18, 2020

Certified by. .
Duane Boning

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Partition WaveNet for Deep Modeling of Automated Material

Handling System Traffic

by

David J. Amirault

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The throughput of a modern semiconductor fabrication plant depends greatly on the
performance of its automated material handling system. Spatiotemporal modeling
of the dynamics of a material handling system can lead to a multi-purpose model
capable of generalizing to many tasks, including dynamic route optimization, traffic
prediction, and anomaly detection. Graph-based deep learning methods have enjoyed
considerable success in other traffic modeling domains, but semiconductor fabrication
plants are out of reach because of their prohibitively large transport graphs. In this
thesis, we consider a novel neural network architecture, Partition WaveNet, for spa-
tiotemporal modeling on large graphs. Partition WaveNet uses a learned graph par-
tition as an encoder to reduce the input size combined with a WaveNet-based stacked
dilated 1D convolution component. The adjacency structure from the original graph
is propagated to the induced partition graph. For our problem, we determine that
supervised learning is preferable to reinforcement learning because of its flexibility
and robustness to reward hacking. Within supervised learning, Partition WaveNet is
superior because it is both end-to-end and incorporates the known spatial informa-
tion encoded in the adjacency matrix. We find that Partition WaveNet outperforms
other spatiotemporal networks using network embeddings or graph partitions for di-
mensionality reduction.

Thesis Supervisor: Duane Boning
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

First and foremost, I would like to thank Samsung, and in particular Mokmin Park

(mmpark@mit.edu), for their partnership on this project. Without their collaboration,

this research and our experiments using the proprietary industry Fab emulator would

not have been possible. I would like to thank Professor Duane Boning for being an

incredible thesis supervisor and mentor. His tireless efforts, breadth of knowledge

about manufacturing systems, and insightful feedback helped shape this project into

what it is today. I would like to thank Jami Mitchell for her work organizing the

Boning group and coordinating our working and meeting spaces. I would like to thank

the members of the Boning group for their research advice and helpful commentary

during our weekly group meetings. I would like to thank my friends and family, and

especially my parents, for their encouragement and affection throughout my academic

endeavors. Last but not least, I would like to thank Carmen Chan for her love and

support.

5

6

Contents

1 Introduction 13

1.1 The Task of an AMHS . 14

1.2 Related Works . 15

1.2.1 Spatiotemporal Graph Neural Networks 15

1.2.2 Dimensionality Reduction . 16

1.3 Thesis Organization . 18

2 Problem Framing 21

2.1 Reinforcement Learning . 21

2.2 Supervised Learning . 24

2.3 WaveNet in Practice . 27

3 Methods 29

3.1 Problem Formulation . 29

3.2 Partition-Embedded Graph Convolution Layer 30

3.3 Temporal Convolution Layer . 32

3.4 Architecture . 33

4 Simulation 35

4.1 Goals . 35

4.2 Implementation . 36

4.3 Preventing Deadlock . 38

4.4 Design Abstractions . 42

7

4.4.1 AppSite . 42

4.4.2 RailPath . 43

4.4.3 FOUP . 43

4.4.4 OHT . 44

4.4.5 MHS . 44

4.4.6 AMHS . 45

4.4.7 Simulation . 45

4.4.8 Evaluation . 46

4.4.9 Animation . 46

4.5 Summary Statistics . 47

4.6 Data Generation . 49

4.7 Containerization . 53

5 Experiments 59

5.1 Constructed Datasets . 59

5.2 Benchmark Models . 63

5.2.1 Selected Benchmark Models 63

5.2.2 Rejected Benchmark Models 65

5.3 Computational Setup . 66

5.4 Experimental Results . 67

5.5 Future Analyses . 71

5.6 Further Directions . 72

8

List of Figures

1-1 Vehicle traveling along the OHT system of a Fab 14

1-2 Graph convolution . 16

1-3 Graph partition . 17

1-4 Network embedding . 18

2-1 Toy reinforcement learning problem 22

2-2 Types of machine learning . 24

3-1 Stacked dilated 1D causal convolution 33

3-2 Graph WaveNet architecture . 34

4-1 OHT system graph layout . 37

4-2 Traffic jam vulnerability . 41

4-3 Animation snapshot . 47

5-1 Hand-selected graph partition . 62

5-2 Deep autoencoder architectures . 73

9

10

List of Tables

4.1 Lot movement request rates . 39

4.2 Simulation trial runs . 48

4.3 Dataset time steps . 51

4.4 Generated training data part 1 . 54

4.5 Generated training data part 2 . 55

4.6 Generated training data part 3 . 56

4.7 Generated training data part 4 . 57

5.1 Dataset shapes . 63

5.2 Model training times . 68

5.3 Model performance . 69

5.4 Model performance at different prediction horizons 70

11

12

Chapter 1

Introduction

Modern semiconductor manufacturing is carried out by a complex automated system

in a semiconductor fabrication plant (Fab). To meet the rising demands of the semi-

conductor market, semiconductor manufacturers have adopted a unified Fab layout

approach [33]. In a unified Fab layout, many independent semiconductor processing

tools are all interconnected by an overhead hoist transport (OHT) system. An OHT

system consists of vehicles that travel on guided rails hung from the ceiling, as pic-

tured in Figure 1-1. A unified Fab layout allows for programmable wafer production,

so that the same facility is capable of producing many semiconductor wafer designs

and different sequences of processing steps without additional tools.

However, a unified Fab layout means that all the vehicles in the Fab must share

the same OHT system. Under high production conditions, there is an increased

risk of traffic in the OHT system. Traffic increases production latency and reduces

throughput, which is undesirable to semiconductor manufacturers. In the worst case,

high production latency may ruin semiconductor wafer lots because certain processing

steps are time-sensitive. To further complicate the problem, hundreds of processing

steps may be required to produce a single semiconductor wafer lot. Traffic routing in

a Fab is controlled by its automated material handling system (AMHS).

13

Figure 1-1: A vehicle traveling along the OHT system of a Fab. Image courtesy of
Samsung.

1.1 The Task of an AMHS

To make the problem of material handling more approachable, we may divide the

task of an AMHS into several stages:

1. The selection of a destination tool from a set of candidate tools, any one of

which would be capable of completing the next processing step for the wafer

lot.

2. The low-level vehicle programming which controls how the vehicle acquires and

deposits the wafer lot and interacts with the tools.

3. The vehicle selection and routing to transport the wafer lot to its destination.

In this thesis, we focus on the traffic routing problem; for recent advances in using

machine learning for destination tool selection, we refer the reader to [24].

Improving the traffic routing efficiency of an AMHS increases the utilization of

existing hardware and decreases production latency, which is desirable to semicon-

ductor manufacturers. Heuristic-based AMHS traffic routing algorithms are often

used in practice [3, 7, 38], but these leave significant opportunities for improvement.

Therefore, optimizing AMHS traffic routing has received increasing attention with the

rise of deep learning methods. Reinforcement learning methods can achieve strong

14

traffic control performance [23, 19, 21], but they struggle with impractical compute

requirements and the narrow scope of the resulting model.

Similarly, heuristic-based or narrow-scope methods may be applied to anomaly

detection in AMHS [41]. However, in this project, our goal is a unified framework for

spatiotemporal modeling on large graphs. Spatiotemporal modeling has applications

in environmental science, social media, traffic forecasting, crime, health care, and

other complex system problems [2]. Spatiotemporal modeling also provides general

methods for network-constrained trajectory clustering which may be used for anomaly

detection [22, 14, 10, 37].

Deep learning methods have been used for spatiotemporal modeling [43], but

most models are computationally infeasible on large graphs [28, 45]. METR-LA and

PEMS-BAY, two benchmark datasets for spatiotemporal modeling, have 207 and 325

nodes respectively [28]. In contrast, transport graphs with ∼10000 nodes render the

requisite 𝒪 (𝑁2) computations infeasible.

1.2 Related Works

Our discussion of related works is split into two parts. First, we discuss spatiotemporal

graph neural networks in Section 1.2.1. The models referenced in Section 1.2.1 are

nearest neighbors to the Partition WaveNet model that we describe in this thesis.

The related works in Section 1.2.1 are specific to the task of spatiotemporal modeling.

Second, we discuss dimensionality reduction techniques in Section 1.2.2. Section 1.2.2

contains a more broad overview of the approaches available to reduce the size of

graphs. Some of these techniques are specific to neural networks, while others are

more general.

1.2.1 Spatiotemporal Graph Neural Networks

Most spatiotemporal graph neural networks use graph convolutions to capture spa-

tial information, and RNNs or CNNs to capture temporal information [44]. Graph

convolutions are a method for aggregating node feature information using the edges

15

Figure 1-2: A schematic of a graph convolution. For each node in the graph, feature
information from its neighbors is aggregated to derive the output.

incident to a node. The nodes involved in an example graph convolution are circled

in Figure 1-2. One early RNN-based approach used a mixture of RNNs structured

as a graph [20]. Other RNN-based approaches have used diffusion-convolution [28] or

gated attention mechanisms [49] to combine the spatial and temporal components.

RNN-based approaches tend to suffer from exploding gradients and are slow for long

input sequences. CNN-based approaches have combined graph convolutions with 1D

temporal convolutions, either using standard [46] or dilated [45] causal convolutions.

These approaches are fast and enjoy stable gradients, but they assume it is feasible

to perform computations on the 𝑁 ×𝑁 adjacency matrix of the input graph.

1.2.2 Dimensionality Reduction

A graph partition is a well-established method for reducing the size of a graph [4].

In a graph partition, nodes are grouped together into supernodes. Figure 1-3 depicts

a graph partition with two supernodes, colored red and blue. The goal of a graph

partition is to have few edges between nodes that belong to different supernodes.

16

Figure 1-3: An example graph partition that intuitively corresponds to a well-chosen
graph reduction.

Then, the supernodes approximate a “zoomed out” view of the adjacency structure

present in the original graph.

Graph partitions have been applied successfully to image and video segmenta-

tion tasks in machine vision [11]. The graph partition problem is NP-complete, so

heuristic-based and deep learning methods are used in practice to find an approximate

solution [32]. Graph neural networks have used heuristic-based graph partitions for

dimensionality reduction [29], but not in an end-to-end fashion. We seek an end-to-

end approach that simultaneously learns an appropriate graph partition and carries

out spatiotemporal modeling on the induced representation.

A network embedding may also be used to reduce the size of the graph [8]. In

a network embedding, such as the network embedding depicted in Figure 1-4, nodes

are mapped to points in R-space. The goal is for close nodes under the adjacency

(spatial) structure of the original graph to correspond to close points in R-space.

This approach has been used for anomaly detection in computer networks [17].

While network embeddings offer an end-to-end solution, the adjacency structure from

the original graph is lost, and thus deep temporal models may be used with a standard

network embedding instead of the desired spatiotemporal models.

For learning graph embeddings, deep neural networks have used random walks [5]

and variational methods [26]. Later improvements to the variational methods incor-

porated adversarial regularization [35, 48]. However, graph embedding approaches

lose the original graph adjacency structure. Therefore, they cannot be used as a pre-

17

Figure 1-4: A graph and an example network embedding in R2.

cursor to state-of-the-art spatiotemporal graph networks, which rely on the inputted

graph adjacency structure to compute graph convolutions. We desire a method that

fully leverages the known spatial information captured in the adjacency matrix of the

OHT system graph.

Thus, we seek a graph reduction that can be incorporated into existing neural

network architectures in an end-to-end manner, and retains important information

about the original graph adjacency structure. We propose Partition WaveNet, a

modification of Graph WaveNet [45] for large graphs. Partition WaveNet learns a

normalized node embedding, which may be thought of as a “fuzzy” partition, to

reduce the graph and render spatial computations feasible.

1.3 Thesis Organization

This thesis is structured as follows. In Chapter 2, we discuss the motivation for our

choice to frame the AMHS traffic problem as a supervised learning task. The intuition

behind Partition WaveNet and its benefits over alternative neural network architec-

tures are summarized. Next, we explain the mathematical formulation of the problem

and our proposed solution in Chapter 3. Then, we explore the implementation details

18

of our simulated Fab and data generation process in Chapter 4. Last, we discuss our

experimental results and potential follow-up research in Chapter 5.

19

20

Chapter 2

Problem Framing

Broadly, the scope of our problem is to optimize traffic routing in an AMHS. In the

context of machine learning, there are two natural paradigms which may be used to

frame our problem: reinforcement learning and supervised learning.

2.1 Reinforcement Learning

In reinforcement learning, an agent takes actions to move between states, with the

goal of maximizing reward. The agent has multiple attempts to learn an effective

policy, i.e., strategy. To specialize reinforcement learning to our problem, we could

adopt the following assignments:

∙ The agent would be an AMHS.

∙ The actions would be the traffic routing decisions, including which vehicle to

assign and which path to take.

∙ The state would be the positions of the vehicles and semiconductor wafer lots

in the OHT system.

∙ The reward would be a metric for how effectively the AMHS maximizes through-

put and minimizes latency.

21

Figure 2-1: A schematic of a toy reinforcement learning problem. The robot agent
must take actions to traverse the graph. The diamond represents positive reward,
and the fires represent negative rewards.

Alternative assignments are possible. In [19], nodes in the OHT system graph are

modeled as agents, and the actions correspond to routing decisions for the vehicles

passing through a node. Our arguments against reinforcement learning are not based

on these assignments, but rather on general issues that arise in reinforcement learn-

ing. Figure 2-1 sets up a toy reinforcement learning problem that we will repeatedly

reference to explain these general issues with reinforcement learning.

To make the problem tractable, we would restrict our action space to include only

a small subset of possible routing decisions. We would select the actions with the

greatest impact on the resulting traffic routing in the OHT system. For example,

we might let actions control the edge weights for a shortest path search in the OHT

system graph. This shortest path search would determine our vehicle routing policy.

Reinforcement learning is a natural paradigm to consider for the problem of AMHS

traffic control, and it has several attractive benefits. In reinforcement learning, we can

optimize directly for a reward function that we decide is important. Reinforcement

learning is more likely to succeed in settings where data generation is inexpensive,

which is the case for AMHS traffic control. Through deep reinforcement learning, we

can leverage the power of deep neural networks.

However, we argue that reinforcement learning is less suitable for traffic control

in an AMHS than approaches derived from supervised learning. First, reinforcement

22

learning tends to suffer from sample inefficiency [16]. State-of-the-art reinforcement

learning agents can require thousands of CPU hours of training to match the results

of human agents. In contrast, ground truth- or simulation planning-based models can

achieve comparable performance with zero training [42].

Second, reinforcement learning can adopt undesirable policies if the reward func-

tion is misspecified. Called “reward hacking,” this problem refers to reinforcement

learning agents that learn to exploit the reward function rather than learning a de-

sirable policy [1]. In Figure 2-1, reward hacking could correspond to the robot agent

never moving in order to collect a passive reward for staying alive.

Reward hacking is particularly dangerous in our problem because our selected

reward function must balance the tradeoff between maximizing throughput and min-

imizing latency. If our reward function is misspecified, then reward hacking may

cause our agent to ignore particular lots in pursuit of maximizing throughput, or

to over-prioritize particular lots at the expense of overall throughput. In the worst

case, reward hacking could cause our agent to never finish processing a lot which is

taking too long in order to avoid a negative reward associated with completing the

lot. In this way, a well-intentioned reward function has the potential to backfire in

edge cases.

Another aspect of the reward function that has potential for misspecification is the

simulated environment. The sample inefficiency of reinforcement learning prevents us

from training an agent on the production environment, so we would need to train our

policy on a simulated Fab. Our simulation is therefore part of our reward function,

and any inaccuracies, approximations, or bugs in the simulation have the potential to

be exploited via reward hacking. Due to the vast complexity of a modern Fab, this

is a significant concern for AMHS traffic control. In Figure 2-1, this type of reward

hacking could correspond to the robot agent traveling out of bounds to navigate

the maze and collect the diamond, if this behavior were mistakenly allowed by the

simulation environment.

Reward hacking aside, reinforcement learning has the added downside of requiring

the reward function to be specified before training the model. This is undesirable

23

Figure 2-2: A schematic relating different types of machine learning. The bottom
row lists problems to which each type of machine learning would be applied.

in the setting of AMHS traffic control because as previously mentioned, we have

two, possibly competing goals: maximizing throughput and minimizing latency. In

a modern Fab, which fulfills many lot requests simultaneously, the desired balance

between these two rewards may change over time. In an extreme case, semiconductor

manufacturers may wish to complete a high-priority lot as quickly as possible and

maximize throughput on the other lots. We would prefer the flexibility of changing

our reward function in a production model and having ready access to a corresponding

policy that maximizes the new reward function. To achieve this flexibility, we turn

to supervised learning approaches.

2.2 Supervised Learning

In supervised learning, we seek to approximate a function based on a limited number

of input-output pairs, which we call our training data. This paradigm has the poten-

tial drawback of requiring high-quality training data for the function we would like

to approximate. Nonetheless, we find that supervised learning is well-suited for the

AMHS traffic control problem. An overview of the high-level machine learning fields,

including both reinforcement learning and supervised learning, is shown is Figure 2-2.

To specialize supervised learning to our problem, we would need to select a func-

tion to approximate. In AMHS traffic control, there are several functions we may

consider approximating:

24

∙ 𝑓1 : system state ↦→ desired vehicle routing policy

∙ 𝑓2 : (system state, vehicle routing policy) ↦→ improved vehicle routing policy

∙ 𝑓3 : system state ↦→ future system state

∙ 𝑓4 : (system state, vehicle routing policy) ↦→ future system state

While 𝑓1 or 𝑓2 would be ideal, learning a function that outputs a desired vehicle

routing policy would be infeasible without high-quality training data. Accordingly,

this would require access to a source of effective vehicle routing policies, which would

defeat the purpose of our model. Therefore, we focus our attention on the functions

that output the future system state.

Because 𝑓3 implicitly assumes an underlying vehicle routing policy, we seek to

approximate a fourth function instead, 𝑓4: (system state, vehicle routing policy) ↦→

future system state. This is a generalization of 𝑓3. Note that we are using our defini-

tion of system state from Section 2.1: the positions of the vehicles and semiconductor

wafer lots in the OHT system. Depending on our access to the internal states of the

tools in the Fab, we may augment our system state with this data accordingly. As in

Section 2.1, we consider a restricted, parameterized action space: the vehicle routing

policies corresponding to a shortest path search using selected edge weights.

We now contrast this approach with a reinforcement learning-based approach. In-

stead of training an agent to make traffic routing decisions for the AMHS as we would

do in reinforcement learning, we are training a simulation model that predicts future

traffic given a vehicle routing policy and the current vehicle and semiconductor wafer

lot positions. Unlike reinforcement learning, supervised learning can be quite sam-

ple efficient. Supervised learning can approximate the future system state well with

limited training data, which is important in our problem because the OHT system

graph is large. So we expect supervised learning to be tractable when reinforcement

learning would not be tractable.

Supervised learning allows for a wider variety of applications than would reinforce-

ment learning. Whereas reinforcement learning would only optimize one prespecified

25

reward function, supervised learning allows for a dynamic reward function that can

be changed after training. For example, given a reward function on system states, we

could use Monte Carlo Tree Search to optimize the reward function evaluated at the

end of some desired time horizon. Alternatively, we could detect Fab-wide anomalies

by measuring the difference between the predicted system state and reality. If many

vehicles are out of place according to our model prediction, then we may suspect a

disruption to normal Fab operation.

In order to generate training data for our supervised learning model, we must

specify our vehicle routing policy in advance. We would not like to restrict ourselves

to just one vehicle routing policy, so to circumvent this limitation, we generate training

data that is a mix of many simulated runs all using different vehicle routing policies.

We discuss our training data generation process further in Chapter 4.

Now, we may ask the question “if our model is just an approximation of our

simulation environment, then what value does it add?” We argue that in fact, we

should hope to recover our simulation environment in the limit of infinite training

data. If we perfectly learned the dynamics of our simulation environment, then the

problem of finding an effective vehicle routing policy would be reduced to a tree search

problem, which could then be optimized by any number of methods [15].

Moreover, approximating our simulation environment has desirable denoising ef-

fects in the finite-sample case. Based on limited training data, we do not learn the

extreme edge cases of our simulation environment, but rather the general trends and

behaviors according to a compressed latent space for our simulation environment.

Consequently, we are less likely to fall prey to reward hacking or the exploitation of

loopholes in our simulation environment. There is also the benefit of computation

time. We expect the model learned by supervised learning to run more quickly than

the underlying full simulation model. This makes the tree search to find an effective

vehicle routing policy more efficient.

26

2.3 WaveNet in Practice

WaveNet is a CNN-based architecture designed for supervised learning tasks involving

time-series data [34]. WaveNet has many benefits over RNN-based predecessors for

time-series analysis: faster training, stable gradients, and a larger receptive field size.

The faster training of CNN-based approaches is a necessity for modeling complex

systems as in our problem, and the large receptive field size means that WaveNet is

better able to model OHT system dynamics over longer time scales. This is important

because a vehicle traveling from one side of the OHT system to another takes many

units of time to complete its journey. So only a neural network architecture with a

large receptive field size, such as WaveNet, would be able to effectively model traffic

over longer time scales.

Given a high-fidelity traffic model approximation as would be provided by a

trained WaveNet model, the task of traffic route optimization in an AMHS is greatly

simplified. We must only apply penalties to edges in accordance with the level of pre-

dicted traffic at each edge. If we produced traffic predictions at multiple time scales,

then we could apply diminishing penalties to traffic predictions farther in the future.

In this way, vehicles could be rerouted to minimize future traffic. This summarizes

one way that an effective and flexible vehicle routing policy could be derived from a

trained traffic model.

27

28

Chapter 3

Methods

In this chapter, we begin by outlining our problem formulation. Then, we describe the

building blocks of our proposed network architecture, focusing on our novel partition-

embedded graph convolution layer. Last, we present our proposed architecture for

deep spatiotemporal modeling on large graphs.

3.1 Problem Formulation

We follow a similar problem formulation to that of Graph WaveNet [45]. We are

given a graph 𝐺 = (𝑉,𝐸) with nodes 𝑉 and directed edges 𝐸, and we suppose that

|𝑉 | = 𝑁 is large. The graph adjacency matrix is denoted by A ∈ R𝑁×𝑁 , where

A𝑖,𝑗 = 1{(𝑣𝑖, 𝑣𝑗) ∈ 𝐸}. We operate in the setting where 𝐺 is a sparse graph with

a convenient sparse representation for A. At time step 𝑡, we observe graph signals

X(𝑡) ∈ R𝑁×𝐷. Given a graph and its 𝑆 historical graph signals, our goal is to forecast

its next 𝑇 graph signals:

[︀
X(𝑡−𝑆):𝑡, 𝐺

]︀ 𝑓−→ X(𝑡+1):(𝑡+𝑇) , (3.1)

where X(𝑡−𝑆):𝑡 ∈ R𝑁×𝐷×𝑆 and X(𝑡+1):(𝑡+𝑇) ∈ R𝑁×𝐷×𝑇 . We suppose that 𝐷,𝑇 ≪ 𝑁 so

that computations involving the graph signals are feasible, but computations involving

the adjacency matrix are not.

29

For large 𝑁 and potentially large 𝑆, we must take care to note the format of the

data that we would like to model. We might expect the adjacency matrix A and the

graph signals X(𝑡) to both exist in compressed representations. For the graph signals,

this could be lists of lot and vehicle trajectories with corresponding timestamps. If

this is the case, expanding the dataset to 𝒳 ∈ R𝑁×𝐷×𝑆 may also be infeasible. For

our problem formulation to apply in this setting, we would need to coarsen the time

dimension of the input data by grouping together consecutive timestamps and aggre-

gating the corresponding graph signals. For intuitive physical signals like lot count,

vehicle count, traffic congestion, etc., this aggregation is straightforward, and dimen-

sionality reduction via the time dimension is simpler than via the spatial dimension.

3.2 Partition-Embedded Graph Convolution Layer

The graph convolution layer is defined as

Z = ÃXW , (3.2)

where Z ∈ R𝑁×𝑀 is the output, Ã ∈ R𝑁×𝑁 is the normalized adjacency matrix

with self-loops, and W ∈ R𝐷×𝑀 is the model parameter matrix [25]. We use a

node embedding dictionary with learnable parameters E ∈ R𝑁×𝑏 to reduce the 𝑁

dependence of our computation. For our node embedding dictionary, we propose

B𝑒𝑚𝑏 = SoftMax(E) . (3.3)

The SoftMax function normalizes the embedding, which ensures that a unit graph

signal in 𝐺 maps to a unit graph signal under the embedding. This is important

in AMHS, where a graph signal may correspond to lot or a vehicle spatiotemporal

observation. We would like to enforce the conservation of these graph signals. Note

that B𝑒𝑚𝑏 defines a continuous partition of 𝐺 in which nodes are permitted to have

30

partial group assignments. Using B𝑒𝑚𝑏, we may define the embedded graph signal as

X𝑒𝑚𝑏 = B𝑇
𝑒𝑚𝑏X . (3.4)

We proceed by using X𝑒𝑚𝑏 ∈ R(𝑏×𝐷) in place of X ∈ R(𝑁×𝐷) in order to lessen

the computational burden of large 𝑁 . The adjacency matrix A is replaced by

A𝑒𝑚𝑏 = B𝑇
𝑒𝑚𝑏AB𝑒𝑚𝑏. The resulting layer, which we call a partition-embedded graph

convolution layer, is given in Equation 3.5:

Z = Ã𝑒𝑚𝑏X𝑒𝑚𝑏W , (3.5)

where Ã𝑒𝑚𝑏 = A𝑒𝑚𝑏 with normalization and self-loops added. Equations 3.2 and

3.5 are equally feasible using a sparse representation for A. However, we would like

to incorporate diffusion-convolution [28] and a self-adaptive adjacency matrix [45].

Diffusion-convolution takes the power series of the transition matrix A/rowsum (A) to

aggregate information from successively larger orders of neighborhoods in the graph.

This is not feasible for large 𝑁 and sparsely-represented A, but it is feasible for our

embedded adjacency matrix A𝑒𝑚𝑏.

While self-adaptation of our full adjacency matrix is not essential for a known and

fixed OHT system graph, we desire our approach to adapt A𝑒𝑚𝑏 for applicability to

wider scenarios, and to adapt in response to approximations resulting from the parti-

tion embedding. Even for a known and fixed OHT system graph, self-adaptation gives

our model the flexibility to capture coincidental long-distance spatial dependencies

that are stronger than our adjacency matrix would otherwise predict.

Therefore, we modify our partition-embedded graph convolution layer to incorpo-

rate diffusion-convolution and a self-adaptive adjacency matrix. Overall, we have

Z =
𝐾∑︁
𝑘=0

P𝑘
𝑒𝑚𝑏X𝑒𝑚𝑏W𝑘 , (3.6)

where P𝑘
𝑒𝑚𝑏 represents the power series of the embedded transition matrix A𝑒𝑚𝑏/

31

rowsum (A𝑒𝑚𝑏). This may be adapted to directed graphs by replacing P𝑒𝑚𝑏 with a

forward and a backward transition matrix. We perform this replacement for all our

models in Chapter 5 because the OHT system graph is directed.

3.3 Temporal Convolution Layer

For modeling node temporal trends, we use a stacked dilated 1D causal convolu-

tion [47] based on the WaveNet architecture [34]. A dilated causal convolution with

zero-padded inputs computes a standard 1D convolution, except that it samples in-

puts with period given by the dilation factor and skips the rest. The dilated causal

convolution operator is described by

(x ⋆ f) (𝑡) =
𝐾−1∑︁
𝑠=0

f(𝑠)x(𝑡− 𝑑 · 𝑠) , (3.7)

where 𝑑 is the dilation factor, x ∈ R𝑇 is the 1D input sequence, and f ∈ R𝐾 is the

convolution filter. The relationship between the receptive field size and the number

of hidden layers is illustrated in Figure 3-1.

Gating mechanisms [9] are a simple but powerful approach for controlling infor-

mation flow in RNNs and in temporal CNNs. The gating mechanism of a temporal

convolution layer is described by

h = 𝑔(Θ1 ⋆ 𝒳 + b)⊙ 𝜎(Θ2 ⋆ 𝒳 + c) , (3.8)

where 𝒳 ∈ R𝑁×𝐷×𝑆 is the input and Θ1, Θ2, b, and c are model parameters. Here

⊙ is the entrywise product, 𝑔(·) is the activation function applied entrywise, and 𝜎(·)

is the sigmoid function applied entrywise. The sigmoid function serves as the gate,

and it controls the ratio of information passed to the next layer.

32

Figure 3-1: A schematic of a stacked dilated 1D causal convolution. The receptive field
size grows exponentially with the number of hidden layers, enabling the architecture
to efficiently capture long time scale temporal dependencies in the data [47, 34].

3.4 Architecture

For our neural network architecture, we adopt the Graph WaveNet architecture [45]

with our proposed Partition-Embedded GCN layers in place of the Graph WaveNet

GCN layers. The Graph WaveNet architecture is depicted in Figure 3-2.

33

Figure 3-2: A schematic of the Graph WaveNet architecture as featured in the original
Graph WaveNet paper [45]. The 𝐾 spatiotemporal layers are stacked using increasing
dilation factors as illustrated in Figure 3-1.

34

Chapter 4

Simulation

This chapter is dedicated to our implementation of a simulated Fab. First, we discuss

what we desire from our simulation, as these goals affect our design choices. Next,

we go into the specifics of our implementation, difficulties with deadlock, and design

abstractions. Then, we present statistics about our Fab simulation. Last, we describe

how we derive training data from our simulation. Our codebase is available at https:

//github.com/david-amirault/amhs.

4.1 Goals

The fundamental purpose of our Fab simulation is to define an environment for eval-

uating AMHS vehicle routing policies. While this remains the primary goal of our

simulation, we identify a number of subsidiary and additional goals in the following

list of desiderata:

D.1 Realistic: the simulation environment should accurately reflect the dynamics of

the interactions between vehicles, lots, and tools in a real-world Fab.

D.2 General: the simulation environment should support arbitrary OHT system

graphs, vehicle travel times, lot acquire and deposit times, and tool processing

times.

35

https://github.com/david-amirault/amhs
https://github.com/david-amirault/amhs

D.3 Expressive: the simulation environment should enable the user to easily create

different vehicle routing policies.

D.4 Visual: we should be able to visualize vehicle movement under different routing

policies using our simulation environment.

D.5 Random: the simulation environment should use a statistical generative model

for lot requests.

D.6 Repeatable: we should be able to duplicate sequences of lot requests in order to

compare different vehicle routing policies using exactly the same lot requests.

D.7 Nontrivial: we should be able to create difficult to solve AMHS traffic control

problems using our simulation environment.

D.8 Fail-safe: it should be impossible for a vehicle routing policy to break the sim-

ulation environment.

D.9 Standard: when possible, our simulation environment should adhere to existing

benchmarks and conventions in the field.

D.10 Free and open source: we would like to publish our simulation environment for

others in the community to freely use.

We reference these desiderata when we discuss our corresponding design choices

in Section 4.2.

4.2 Implementation

The most prevalent Fab simulation environment in the semiconductor manufactur-

ing industry is Applied Material’s AutoModTM. However, in pursuit of D.10, we

would like to avoid using proprietary software as part of our simulation environ-

ment. Therefore, we create our simulation environment using SimPy, a process-based

discrete-event simulation framework programmed in Python [6]. Other frameworks

36

Figure 4-1: The default OHT system graph layout. The top image is the original
layout created in [19] using Applied Material’s AutoModTM, and the bottom image
is our recreated version in SimPy. The labels 1–20 represent tools in the Fab.

for Fab simulation are possible [30, 27], but SimPy has the advantage of being free

and open-source.

Through advanced usage of Python generators, SimPy is able to simulate concur-

rent process interactions despite the Python global interpreter lock, which enforces

single-threaded code execution. SimPy offers low-level shared resource primitives for

synchronizing the simulated concurrent processes. These shared resource primitives

are general, so we implement the AMHS-specific structures from the ground up: vehi-

cles, lots, tools, and the OHT system. We examine our design abstractions for these

AMHS-specific structures in Section 4.4.

To maintain standardization when possible per D.9, we select defaults for our

environment drawn from existing literature. For D.2, our default OHT system graph

has the same layout as used by [19]. A schematic of the layout is provided in Figure 4-

1. We infer the vehicle travel times and lot acquire and deposit times from a video

of the simulation in action. Our simulated Fab has 20 tools, which we name a1–a20.

For D.5, our statistical generative model for lot requests uses the same generative

model defined by [19]. This generative model is based on a Poisson process, as is

standard in manufacturing. Lot requests are generated independently for each pair

of tools. Therefore, we choose not to model the hundreds of potential processing

steps which may be required to complete the processing for one lot. Instead, we

model each pairwise movement request as a separate lot. For the purpose of AMHS

37

vehicle control, the two are equivalent, so this is a convenient simplifying assumption

to make. The expected number of requests generated for each pair of tools over one

day is presented in Table 4.1.

We use discrete-time simulation instead of continuous-time simulation. Our ratio-

nale is to promote ease of visualization per D.4, and to increase the complexity of the

AMHS traffic control problem per D.7. In a discrete-time simulation, we frequently

find that vehicles, lots, and tools become available simultaneously, which facilitates

the creation of complex, multifaceted decisions. It is easier to create Fab visualiza-

tions frame by frame in a discrete-time simulation. For our simulation, one unit of

time represents one second. To implement a Poisson process in our discrete-time

simulation, we may sample independent Bernoulli random variables at each time step

to decide whether or not to create a lot request. The success probabilities of the

Bernoulli random variables are given by the lot request rates in Table 4.1 normalized

by the number of seconds per day.

For efficient graph algorithm implementations and graph visualization tools, we

employ the Python NetworkX package [13]. Using NetworkX, we can initialize a

weighted, directed graph from a list of edges and efficiently carry out an all pairs

shortest path computation. We use NetworkX graph visualization utilities to update

node and edge colors based on current traffic levels for our D.4 vehicle movement

visualization.

4.3 Preventing Deadlock

Our desiderata from Section 4.1 place a complex set of constraints on what we would

consider to be a suitable simulation environment. One notable issue that our sim-

ulation must overcome is deadlock. In this section, we explain why deadlock is a

recurring issue for our simulation environment and how we can prevent it.

By D.7, our simulation environment must allow traffic to jam. Without traffic

jams, our simulation environment would be incapable of producing useful training

data because the AMHS traffic control problem would be trivial. Moreover, by D.1,

38

Table 4.1: Lot movement request rates for our statistical generative model for lot
requests. Movement rates are in lots/day. For this data, we credit [19].

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 0.0 0.0 0.0 116.1 161.6 0.0 0.0 85.4 37.4 2.7
a2 0.0 0.0 158.2 32.1 0.0 87.4 85.4 0.0 0.0 40.0
a3 0.0 89.8 0.0 0.0 0.0 158.2 77.1 0.0 0.0 55.3
a4 84.2 0.0 0.0 0.0 116.1 32.1 0.0 77.1 81.8 34.5
a5 311.8 18.2 0.0 158.5 0.0 0.0 9.3 298.9 278.2 7.7
a6 0.0 288.0 220.1 47.9 48.3 0.0 378.1 88.5 44.4 319.2
a7 2.3 70.6 206.2 0.0 14.7 568.5 0.0 0.0 109.4 0.0
a8 72.9 0.0 0.0 206.2 471.8 111.5 0.0 0.0 109.4 0.0
a9 37.0 0.2 0.0 97.0 318.4 53.5 0.0 35.5 0.0 0.0
a10 0.0 41.4 111.7 1.3 0.0 394.9 256.2 220.7 0.0 0.0
a11 0.0 72.9 113.8 92.4 0.0 583.3 0.0 0.0 0.0 109.4
a12 72.9 0.0 0.0 7.9 670.2 111.5 0.0 0.0 15.2 94.2
a13 46.3 5.1 0.0 0.0 46.3 5.1 19.1 62.5 435.2 26.4
a14 0.0 41.1 0.0 0.0 0.0 41.1 43.4 0.0 0.0 378.7
a15 0.0 0.0 2.0 0.0 0.0 5.9 257.5 0.0 0.0 0.0
a16 0.0 0.0 0.0 1.1 6.8 0.0 0.0 30.5 271.6 0.0
a17 0.0 0.0 0.0 0.0 4.6 0.0 0.0 0.0 0.0 0.0
a18 0.0 0.0 0.3 0.9 0.1 3.5 363.3 0.0 0.0 0.0
a19 0.0 0.0 2.0 0.0 0.0 5.9 0.0 0.0 0.0 310.4
a20 0.0 0.0 0.0 2.0 5.9 0.0 0.0 590.3 0.0 0.0

a11 a12 a13 a14 a15 a16 a17 a18 a19 a20

a1 0.0 85.4 138.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
a2 85.4 0.0 15.4 123.4 0.0 0.0 0.0 0.0 0.0 0.0
a3 77.1 0.0 0.0 284.3 33.7 0.0 0.0 20.7 18.3 0.0
a4 0.0 2.9 266.5 0.0 0.0 33.7 19.0 0.0 15.4 0.0
a5 0.0 373.1 272.9 19.7 0.0 31.7 18.7 0.0 0.6 65.4
a6 387.5 88.5 23.4 146.3 31.7 0.0 0.0 19.5 31.1 0.0
a7 0.0 0.0 96.4 219.2 0.0 0.0 0.0 17.2 182.2 2.6
a8 0.0 0.0 315.6 0.0 0.0 192.2 0.0 0.0 0.0 9.9
a9 256.2 256.2 191.7 0.0 0.0 17.8 98.7 0.0 2.4 17.8
a10 0.0 0.0 3.5 203.5 17.8 0.0 0.0 112.0 15.5 0.0
a11 0.0 0.0 0.0 315.6 192.2 0.0 0.0 0.0 9.9 0.0
a12 0.0 0.0 315.6 0.0 0.0 0.0 22.5 0.0 0.0 179.6
a13 0.0 62.5 0.0 0.0 0.0 370.4 213.7 0.0 114.0 370.4
a14 62.5 0.0 0.0 0.0 370.4 0.0 0.0 228.0 256.5 0.0
a15 332.8 0.0 14.6 32.9 0.0 0.0 0.0 0.0 0.0 0.0
a16 0.0 288.3 47.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
a17 8.0 332.5 27.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
a18 0.0 0.0 0.0 29.3 0.0 0.0 0.0 0.0 0.0 0.0
a19 279.9 0.0 0.0 47.5 0.0 0.0 0.0 0.0 0.0 0.0
a20 0.0 0.0 47.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

39

traffic must be permitted to jam badly; this is what happens when real-world road

systems are burdened with too many vehicles. D.8 requires that no traffic jam may

be inescapable, but D.1 implies that there is no immediate and direct way to enforce

this.

By the realistic requirement D.1, on any given path in the OHT system graph,

the order of the vehicles is fixed. If a vehicle is blocking our way, then we must wait

for the vehicle to clear out in order to continue traversing the OHT system. This also

means that only one vehicle may occupy an intersection, i.e., node, at a time. These

conditions together imply that deadlock is possible on our OHT system graph, and it

occurs precisely when all the nodes and edges in a cycle have reached their respective

vehicle capacities. Increasing the vehicle capacities is not an option because this

would trivialize the problem, which would violate D.7.

Unfortunately, detecting at-capacity cycles is insufficient for addressing deadlock.

Figure 4-2 highlights the difficulty of preventing deadlock. We imagine that the cycle

depicted in Figure 4-2 currently has capacity for 4 additional vehicles. Seeing this

remaining capacity, our AMHS could decide to direct a vehicle along each edge leading

into the nodes 𝑚4, 𝑚16, 𝑛5, and 𝑛17. If these vehicles enter the cycle simultaneously,

then the cycle goes directly from capacity = 4 to deadlock.

Preventing deadlock requires a preemptive approach. This is because our OHT

system graph has cycles, and if a cycle fills up, then it is already too late to stop a

deadlock from occurring. Ideally we would cancel a movement request and reroute one

of the stuck vehicles to make space, but this is not permissible under SimPy. SimPy

uses blocking requests for space to open up in the destination node or edge, so we

are dealing with deadlock which occurs in the software as well. Detecting deadlocks

preemptively is difficult because our OHT system graph has many cycles, each with

multiple incoming edges for us to consider.

Another deadlock-related concern is the runtime of our attempted solution. We

found that standard graph algorithms are too slow to be feasible for preventing dead-

lock. For example, with a runtime of 𝒪(|𝑉 |+ |𝐸|), breadth-first search would have to

perform at least 624 operations on our selected OHT system graph. For 100 simulated

40

Figure 4-2: A cycle in our OHT system graph that is vulnerable to traffic jams. The
four incoming edges to the cycle at m4, m16, n5, and n17 allow a traffic jam to become
inescapable before the cycle has reached its vehicle capacity.

runs, each lasting 1 day = 86400 seconds, performing this many operations at each

time step would place a huge computational burden on our simulation environment.

So we seek algorithms that are sublinear in the size of the OHT system graph.

One approach is to hard code the cycles that are capable of producing deadlock,

of which there are four cycles with capacity 20, ten cycles with capacity 25, three

cycles with capacity 40, and two cycles with capacity 42. This attempted solution

has too many edge cases, so another approach is required.

To fully resolve the deadlock problem, we draw inspiration from real-world traffic

systems. In real-world road systems, if there is no space, then additional cars are not

allowed to merge onto the road. In this way, completely stopped traffic is prevented.

To implement this idea, we create priority requests for the right to travel through a

node corresponding to a merge. Vehicles already in the loop take priority over vehicles

attempting to merge. This keeps traffic moving around the loops without allowing

them to fill up completely. We find that this solution fully resolves the deadlock

problem without negatively affecting simulation performance.

By resolving the deadlock problem, we address the primary difficulty of D.8. In

the process, we unlock a greater region of the space of vehicle routing policies for our

training process to explore. Now that our training process no longer has to worry

about deadlock, we can generate training data according to ineffective vehicle routing

policies as well. Then, our training data can span a broader region of the space of

41

vehicle routing policies, which has the potential to lead to a more robust supervised

learning model.

4.4 Design Abstractions

We implement the AMHS structures using an object-oriented programming approach.

This section documents the relevant fields and methods associated with each Python

class and how they relate to our desiderata from Section 4.1.

Our AMHS structures use the following SimPy shared resource primitives for

synchronization: resource, that represents a discrete shared resource supporting

prioritized requests, and store, that represents a shared resource for storing objects

supporting requests for specific objects.

4.4.1 AppSite

The AppSite class is a container class that represents a node in the OHT system

graph. This class serves the dual-purpose of representing tools in the Fab as well as

intersections in the OHT system. An AppSite has a string field for naming purposes,

a SimPy Resource field with customizable capacity representing the number of lots

the tool can hold, a PriorityResource field with capacity 1 for vehicles to request

exclusive access to the AppSite, and three time fields. The time fields allow the user

to customize the time durations required for the tool to process a lot, for a vehicle

to acquire or deposit a lot at the AppSite, and for a vehicle to travel through the

AppSite. By default, we set the lot acquisition and deposition times to high values

of 15 seconds each to induce traffic jams at the tools in the Fab. This class is the

primary means of customization for D.2. This class also has the capability to serve

as a side-track buffer, i.e., temporary storage unit for lots in the Fab.

42

4.4.2 RailPath

The RailPath class is a container class that represents an edge in the OHT system

graph. A RailPath has a string field for naming purposes, a SimPy Resource field

with customizable capacity representing the number of vehicles the edge can hold,

and a time field that controls how long it takes for a vehicle to travel through the

RailPath. This class is the secondary means of customization for D.2. Note that a

PriorityResource is only needed at the AppSites, where merges occur, in order to

prevent deadlock. An ordinary SimPy Resource is sufficient here.

4.4.3 FOUP

The FOUP, or front-opening unified pod, class represents a semiconductor wafer lot.

A FOUP has a uuid field that stores a unique identifier for the lot, a time field that

controls how long to wait at the beginning of the simulation before creating the lot,

a location field that stores the name of the node or edge at which the lot is currently

located, a status field that describes what the lot is currently doing, and an ordered

list of tool demands that gives the remaining processing steps in order to completely

process the lot.

The FOUP status values that we allow are WAIT IN, TRANSFERRING, COMPLETED,

APPLICATION, and WAIT OUT. The first entry of the demand list gives the starting

location of the lot. Because we model each lot movement request as a separate lot,

our demand lists all start out with two demands: the starting tool and the ending

tool. However, one could use our simulation environment to model lots with hundreds

of processing steps if desired. Our simulated runs each have tens of thousands of lot

movement requests, so we use the Python uuid package to generate unique identifiers

for each corresponding FOUP.

The FOUP class has a method for completing a processing step if the lot is at the

appropriate tool. Per D.8, the FOUP class verifies that the lot is at the appropriate

tool before it completes the processing step. We use a SimPy FilterStore to store

all the active lots in our simulation. The AMHS can request a specific lot or any lot

43

from the FilterStore. The FOUP class logs tool usage times so that the performance

of the AMHS vehicle routing policy can be evaluated after the run.

4.4.4 OHT

The OHT, or overhead hoist transport, class represents a vehicle. An OHT has a uuid

field that stores a unique identifier for the vehicle, a location field that stores the

name of the node or edge at which the vehicle is currently located, a status field that

describes what the vehicle is currently doing, and a field that saves a reference to the

FOUP the vehicle is carrying or None if there is no such FOUP.

The OHT status values that we allow are ENTERING, PARKED, ENROUTE, ACQUIRING,

DEPOSITING, and REMOVED. We again use the Python uuid package to generate unique

identifiers for each OHT. We initialize all our vehicles to enter near tool a1 in the

upper-left corner of our OHT system graph, following the precedent set by [19] for

D.9. Vehicles are the most significant AMHS structure involved in traversing the

OHT system graph, and the OHT class has corresponding methods to simulate vehicle

activities. The OHT class has methods for taking a RailPath, acquiring a FOUP, and

depositing a FOUP.

Per D.8, the OHT class guarantees that all attempted edge traversals, lot acqui-

sitions, and lot depositions are valid. In pursuit of D.1, the OHT class leverages the

SimPy shared resource primitives to guarantee that a vehicle only travels where there

is space for it and that the vehicles pass through the intersections in the OHT system

graph one at a time. The OHT class is responsible for updating lot location and status

after the lot is acquired by a vehicle. Like the FOUP class, the OHT class logs all edge

and node traversals for diagnostic and evaluation purposes.

4.4.5 MHS

The MHS, or material handling system, class is a container class that represents all of

the physical AMHS structures. An MHS has fields for the nodes in the graph stored

in a hash table that maps node names to AppSites, the edges in the graph stored

44

in a hash table that maps edge names to RailPaths, the FilterStore of FOUPs in

the simulated Fab, the FilterStore of OHTs in the simulated Fab, and the OHT

system graph constructed via the Python NetworkX package. The MHS class provides

a convenient wrapper around the physical AMHS structures.

4.4.6 AMHS

The AMHS, or automated material handling system, class is the parent class for all

vehicle routing policy implementations. It has a field for the MHS, and it may be

extended by subclasses to have any number of other fields. The AMHS class promotes

flexibility in implementing vehicle routing policies, which contributes to D.3. Sub-

classes of AMHS must implement a single method: run, which carries out all the vehicle

routing policy logic.

4.4.7 Simulation

The Simulation class represents one run of our simulated Fab. When initialized,

the Simulation class creates all lot movement requests for the simulated run. We

create the lot movement requests according to the Poisson process generative model

described in Section 4.2, in accordance with D.5. The Simulation class accepts a

random seed argument that allows simulated runs to be repeated per D.6. Alter-

natively, the Simulation class also supports the creation of multiple simulated runs

from the same Simulation instance for runtime efficiency purposes. We implement

an optional burn-in period during which lot request rates are linearly scaled up to

their desired levels; this is a convention followed by [19] that we adopt for D.9.

For space efficiency purposes, the Simulation class uses a sparse representation

for storing the generated lot movement requests. The Simulation class has one

method: run_simulation, that executes one run of our simulated Fab and returns the

logged data from the run. For D.3, our run_simulation method supports arbitrary

argument-passing to the AMHS to enable the implementation of adaptable vehicle

routing policies.

45

4.4.8 Evaluation

We implement a function, performance, that calculates statistics to measure the per-

formance of a vehicle routing policy. The performance function calculates the total

number of movement requests completed during the recording period, the average

latency of the completed movement requests, and the average throughput during the

recording period. We ignore the burn-in period for the purpose of calculating these

statistics. We focus on the average latency and throughput for comparing vehicle

routing policies.

4.4.9 Animation

For our visualization per D.4, we implement a function to animate the results of a Fab

simulation. Our animate function is built around the Python Matplotlib package,

and more specifically, the FuncAnimation API [18]. The primary design constraint

of our animate function is its speed. Therefore, we implement several optimizations

geared towards performance engineering our software implementation. The animate

function uses lookup tables to quickly access the graphical elements corresponding to

each node and edge in the OHT system graph. We use the Matplotlib blit feature

to avoid re-rendering the full image at each frame. Instead, we only re-render the

graphical elements that are updated with each new frame.

The animation colors, size, and frame rate are all customizable. By default,

our animate function produces videos that run at 5 frames per second and uses a

green −→ yellow −→ red color scheme to represent the spectrum of unoccupied −→

occupied regions of the OHT system graph. In this way, traffic jams may be quickly

identified by the red regions of the animation. A snapshot from our animate function

is depicted in Figure 4-3.

46

Figure 4-3: One frame from our animation of an example vehicle routing policy.
Red represents at vehicle capacity, green represents no vehicles present, and yellow
represents in between.

4.5 Summary Statistics

As a trial for our Fab simulation, we implement three vehicle routing policies and

measure their performance on simulated runs. Using these vehicle routing policies,

we are able to verify that our desiderata outlined in Section 4.1 are met.

We implement a subclass of AMHS called StaticAMHS that represents a vehicle

routing policy parameterized by a shortest path search in a fixed, weighted graph.

The StaticAMHS class precomputes and memorizes the results of the all pairs shortest

path computation for the duration of the simulation. We add 1 to the weight of each

edge to incorporate node travel times. This ensures that we route vehicles according

to the true shortest path in the no-traffic setting.

We implement three subclasses of StaticAMHS, corresponding to three different

policies for assigning vehicles to lot movement requests. These subclasses are called

GreedyAMHS, PayloadAMHS, and VehicleAMHS. The GreedyAMHS vehicle routing policy

assigns an arbitrary available vehicle to handle an arbitrary pending lot movement

request as soon as both a lot and a vehicle are available. The PayloadAMHS vehicle

routing policy considers the pending lot movement requests in an arbitrary order, then

assigns the closest available vehicle to each lot movement request in sequence. The

VehicleAMHS vehicle routing policy considers the available vehicles in an arbitrary

order, then assigns each vehicle to the closest available lot with a pending movement

request in sequence. All three vehicle routing policies use the precomputed shortest

paths to route the vehicles through the OHT system graph.

We follow several more conventions from [19] during our simulated runs for D.9.

We run simulations at four levels of increasing traffic: 37, 39, 41, and 43 vehicles.

47

Table 4.2: Results of simulation trial runs. The GreedyAMHS and PayloadAMHS policies
achieve very poor performance regardless of the number of vehicles, whereas the
VehicleAMHS policy exhibits significant performance degradation as the number of
vehicles increases.

Routing Policy Number of Vehicles Latency Throughput

GreedyAMHS 37 15402 15275
GreedyAMHS 39 15394 15977
GreedyAMHS 41 15810 16722
GreedyAMHS 43 15907 17400

PayloadAMHS 37 15476 15268
PayloadAMHS 39 15356 16017
PayloadAMHS 41 15775 16712
PayloadAMHS 43 15919 17473

VehicleAMHS 37 533 22007
VehicleAMHS 39 1061 23219
VehicleAMHS 41 1416 23729
VehicleAMHS 43 2706 24253

We scale up the rate of generated lot movement requests in these cases by 1.00, 1.05,

1.10, and 1.15, respectively. We use a burn-in period of 10 hours and a recording

period of 24 hours. The relevant performance metrics are presented in Table 4.2.

Table 4.2 shows that the GreedyAMHS and PayloadAMHS policies are ineffective

at efficiently routing vehicles through the OHT system graph. Both policies achieve

15000–16000 average latency of completed lot movement requests, regardless of the

number of vehicles. We believe that 15000–16000 average latency corresponds to the

maximum latency that can be realized under our simulation, with the vehicles moving

at the slowest average rate that does not cause deadlock.

The VehicleAMHS policy is effective at the lowest level of vehicle traffic, but its

performance degrades quickly as the number of vehicles increases beyond the critical

threshold of 37. A 16% increase in the number of vehicles from 37 to 43 results in a

>400% longer average latency.

We argue that this explosive performance degradation is a desirable feature of our

simulation. This is because it is relatively easy to simulate no traffic at all or only

48

standstill traffic. However, in order to derive useful training data from our simulated

Fab, both extremes must be permissible under our simulation. According to queuing

theory, physical systems tend to exhibit an exponential decrease in performance as

the system approaches capacity. If our simulation emulates this behavior, then that

is a good sign that we are achieving D.1. We hope to find that a small change to the

number of vehicles or underlying routing policy should have a disproportionately large

affect on the routing times. Table 4.2 shows that this is the case: the average latencies

span multiple orders of magnitude. Our simulation is right on the edge between

heavily congested traffic and manageable traffic, so that both extremes happen within

a single run due to the randomness of our simulation.

The vehicle routing policies considered here still have a long way to go from

the theoretical optimum. According to our specified lot movement request generation

process, the lowest achievable average latency is 137 seconds: 18 seconds spent passing

through nodes, 89 seconds spent passing through edges, 15 seconds spent acquiring the

lot, and 15 seconds spent depositing the lot. So the best static vehicle routing policy

among those considered is operating at 4× the best-case optimal average latency,

which leaves significant room for improvement. Because the VehicleAMHS policy is

most effective in all simulated runs, we use this policy to generate all of our training

data in Section 4.6.

4.6 Data Generation

In order to extract useful training data from our Fab simulation, we must decide the

following:

1. How to represent traffic data as a graph signal, which is a concept that we

explain in Chapter 3, and

2. Which parameters to use for our selected vehicle routing policy.

Selecting a graph signal is a double-edged sword. More complex graph signals

convey more information, but at the same time, more complex graph signals increase

49

the difficulty of our prediction task. Therefore, we want to select graph signals that

are both useful and possible to predict well. For simulated Fab traffic, we consider

two candidate graph signals, which we call the snapshot signal and the compressed

destination signal.

The snapshot graph signal consists of the tuple (number of vehicles, number of

lots, edge weight 𝑤 for the vehicle routing policy). This signal is taken at every node in

our transformed OHT system graph. In the transformed graph, a node corresponds to

a node or an edge in the original OHT system graph. The downside of the snapshot

signal is that we are ignoring potentially valuable information about the eventual

destination of each vehicle and lot. However, the snapshot signal has the advantage

of being simple and interpretable. Also, the snapshot signal forces the supervised

learning model to infer the distribution over vehicle and lot destinations. This has

the potential benefit of giving us a built-in model for normal Fab operation.

The compressed destination graph signal consists of the tuple (number of vehicles

separated by destination, number of lots separated by destination, edge weight 𝑤

for the vehicle routing policy). The vehicles and lots are separated using a one-hot

encoding for the destinations. Because we assume a low-dimensional graph signal,

the components of the one-hot encoding correspond to the groups of nodes under our

learned graph partition, which is described in Chapter 3. The compressed destination

signal has the downside of being large and complex. Also, the compressed destination

signal leads to a very sparse target signal that is more difficult to model. Since the

input data depends on a learned parameter, we can encounter unstable, GAN-like

performance with the possibility of mode collapse [36]. This signal has the advantage

of using all the information that is available to us.

For our system, we select the snapshot graph signal. We believe its ease of use

outweighs its downsides, and we want to avoid the difficulties of training a model

that predicts the compressed destination signal. Also, we do not believe that the

destination information merits usage because of its high space requirement.

To construct our graph signal, we also need to decide on an appropriate timescale.

For reference, the authors of the original Graph WaveNet paper aggregate traffic data

50

Table 4.3: Numbers of time steps for different traffic datasets. The industry Fab
dataset is the outlier, with a low number of time steps relative to the size of the
graph.

Dataset Nodes Edges Time Steps

METR-LA 207 1515 34272
PEMS-BAY 325 2369 52116
Industry Fab 13577 14403 27650
Simulated Fab 120 168 8640000
Transformed Simulated Fab 288 336 8640000

over 5-minute intervals and predict traffic 12 time steps into the future for a 1-hour

prediction horizon [45]. Table 4.3 offers a comparison between different reference

datasets and their total numbers of time steps.

Based on the results presented in Table 4.3, we decide to aggregate our data

over 30-second intervals. To aggregate the traffic data, the snapshot graph signal

becomes the average number of vehicles and the average number of lots over the

aggregation window at each node in our transformed OHT system graph. With 30-

second aggregation intervals, a prediction 12 time steps into the future gives us a

6-minute prediction horizon, which is a useful horizon for rerouting the vehicles in

order to mitigate a pending traffic jam. Also, the signal aggregation has the benefit

of making our graph signal less sparse and easier to predict. We are thus able to

avoid using 1-second time steps, which would be too granular to be useful.

Next, we discuss which parameters we use for our selected vehicle routing policy.

We generate training data according to 100 fixed vehicle routing policies. The policies

were derived from shortest path searches on copies of the OHT system graph modified

to have different edge weights. By fixed vehicle routing policy, we mean that the

policy always selects the same route between any chosen starting and ending node,

regardless of the presence of traffic in the simulated Fab. Fixed vehicle routing policies

are theoretically less efficient than the alternative, which are referred to as dynamic

vehicle routing policies, but they are useful for exploring the space of vehicle routing

policies.

We design a statistical process for perturbing the edge weights controlling the

51

shortest path search for our fixed vehicle routing policies. This statistical process

corresponds to a hierarchical Bayesian model [12]. To guarantee a fixed vehicle routing

policy, the parameters of this model are sampled once before the simulated run, and

the results of the induced shortest path search are precomputed for runtime efficiency

purposes.

The space of possible edge weights to control a shortest path search is very large.

Therefore, we must select our generative model for edge weight perturbations carefully

so that it explores a useful region of the vehicle routing policy space that is also as

broad as possible. We engineer a perturbation model inspired by the changes a human

might make to the edge weights in order to reroute traffic around an ongoing traffic

jam. We introduce a notion of outlier nodes which are essential to our perturbation

model. Outlier nodes have increased travel times so that the shortest path search will

avoid these traffic choke points whenever possible. We use outlier nodes instead of

outlier edges because we empirically observe a greater tendency for traffic to back up

at the nodes rather than the edges.

In statistical notation, our generative model for edge weight perturbations is given

by:

outlier_prob ∼ Uniform(0.01, 0.25) ,

for each node 𝑖 :

is_outlier𝑖 ∼ Bernoulli(outlier_prob) ,

if is_outlier𝑖 :

𝑤𝑖 ← 𝑤𝑖 + Discrete_Uniform(1, 10) .

(4.1)

Our outlier_prob variable is a hyperparameter controlling the number of high-

traffic outlier nodes. The Uniform distribution encodes an ignorance prior over the

number of high-traffic outlier nodes. A value of 0.01 would correspond to almost no

high-traffic outlier nodes, and a value of 0.25 would correspond to many high-traffic

outlier nodes. Similarly, the Discrete_Uniform distribution over the perturbation

magnitude encodes an ignorance prior over the degree of traffic present in each high-

52

traffic outlier node. A value of 1 would correspond to almost no traffic at the node,

and a value of 10 would correspond to heavily congested traffic at the node. Our

broad prior distribution allows for many possible edge weight perturbations. Note

that our generative model for edge weight perturbations only ever increases the edge

weights and never decreases them because congestion can slow down the vehicles in

our simulated Fab but never speed them up.

Tables 4.4 to 4.7 catalog the results of 100 simulated training data runs. Instead

of sampling the outlier probability from our specified Uniform(0.01, 0.25) prior dis-

tribution, we performed runs with a deterministic sequence of outlier probabilities:

0.01, 0.02, 0.03, . . . , 0.24, 0.25. This was to reduce the variance of our runs and

guarantee training data exposure to as broad a region of our prior distribution as

possible. The is_outlier indicator variables and edge weight perturbations were still

randomly sampled as specified in Equation 4.1.

Tables 4.4 to 4.7 highlight both sides of the critical threshold for the number of

vehicles. Above this threshold, latency grows enormously as vehicles are added to

the simulated Fab. In Table 4.4, the observed latencies vary between 518 and 1096,

with of the most observed latencies <1000. In contrast, Table 4.7 has minimum

observed latency 1559 and maximum observed latency 3818. Tables 4.5 and 4.6

are intermediaries along the transition to higher latency and variance of the latency

observations.

4.7 Containerization

Over the course of this project, we consulted with Samsung and worked with their

proprietary simulator. To facilitate interaction with the Samsung proprietary soft-

ware, we create a containerization environment using the Docker project [31]. Docker

is a lightweight virtual machine replacement which allows for consistent runtime con-

ditions across multiple systems. The Docker containerization environment allows the

user to more easily control the parameters of the Samsung proprietary software.

53

Table 4.4: Results of the generated training data runs with 37 vehicles. Regardless
of the outlier probability, all the randomly sampled routing policies are reasonably
effective at completing the lot movement requests with low latency.

Number of Vehicles Outlier Prob Latency Throughput

37 0.01 670 21943
37 0.02 518 21905
37 0.03 694 21935
37 0.04 701 21726
37 0.05 686 21937
37 0.06 756 21993
37 0.07 725 21945
37 0.08 586 21911
37 0.09 596 21713
37 0.10 683 21918
37 0.11 819 21750
37 0.12 660 22218
37 0.13 1096 22143
37 0.14 982 21921
37 0.15 587 21805
37 0.16 608 21958
37 0.17 752 21915
37 0.18 734 21856
37 0.19 781 21754
37 0.20 849 21942
37 0.21 1024 21996
37 0.22 768 22045
37 0.23 718 22099
37 0.24 637 21966
37 0.25 957 22165

54

Table 4.5: Results of the generated training data runs with 39 vehicles. We are
beginning to see higher variance in the results, with certain simulated runs struggling
to maintain low latency.

Number of Vehicles Outlier Prob Latency Throughput

39 0.01 1030 22981
39 0.02 1532 22789
39 0.03 1080 22946
39 0.04 1655 22710
39 0.05 1025 22981
39 0.06 995 22959
39 0.07 1499 22713
39 0.08 1568 22840
39 0.09 902 22821
39 0.10 912 22993
39 0.11 888 22968
39 0.12 1271 23033
39 0.13 1241 22564
39 0.14 969 22876
39 0.15 1006 22851
39 0.16 1848 22731
39 0.17 877 22917
39 0.18 930 22946
39 0.19 1197 22855
39 0.20 1268 22875
39 0.21 1274 22919
39 0.22 1454 22793
39 0.23 1608 22843
39 0.24 1392 22754
39 0.25 1530 22722

55

Table 4.6: Results of the generated training data runs with 41 vehicles. Nearly all the
simulated runs have greatly slowed down relative to the 37-vehicle runs. The overall
Fab throughput remains relatively constant regardless of the outlier probability.

Number of Vehicles Outlier Prob Latency Throughput

41 0.01 1926 23489
41 0.02 1793 23824
41 0.03 1928 23488
41 0.04 1149 23537
41 0.05 1710 23931
41 0.06 2117 23340
41 0.07 1956 23529
41 0.08 2339 23714
41 0.09 2087 23815
41 0.10 1773 23645
41 0.11 1452 23588
41 0.12 1948 23313
41 0.13 1715 23671
41 0.14 1902 23475
41 0.15 1454 23771
41 0.16 2384 23702
41 0.17 2172 23388
41 0.18 1751 23822
41 0.19 2168 23257
41 0.20 2128 23899
41 0.21 1855 23652
41 0.22 2064 23785
41 0.23 1122 23707
41 0.24 1643 23648
41 0.25 1152 23801

56

Table 4.7: Results of the generated training data runs with 43 vehicles. Representing
the worst results out of all our simulated runs, the 43-vehicle runs see an explosive
increase in the average latency over the recording period.

Number of Vehicles Outlier Prob Latency Throughput

43 0.01 2702 24033
43 0.02 2155 24473
43 0.03 2112 24151
43 0.04 2087 23967
43 0.05 2484 24458
43 0.06 2866 24027
43 0.07 1559 24683
43 0.08 3085 24508
43 0.09 2060 24203
43 0.10 2831 24185
43 0.11 3324 23949
43 0.12 2236 24567
43 0.13 2227 24269
43 0.14 2691 24085
43 0.15 3818 23865
43 0.16 2263 24399
43 0.17 2528 24232
43 0.18 1977 24411
43 0.19 3451 23975
43 0.20 2968 24121
43 0.21 3322 23797
43 0.22 3388 23685
43 0.23 2159 24346
43 0.24 2231 24184
43 0.25 2419 24002

57

58

Chapter 5

Experiments

The goal of this chapter is to compare Partition WaveNet to alternative approaches

for spatiotemporal modeling on large graphs. We first describe our constructed spa-

tiotemporal datasets, picking up where we left off in Chapter 4. After, we explain

our benchmark models and our process for designing these benchmarks. The purpose

of the benchmarks is to measure the performance of different methods for reducing

the size of the OHT system graph. Then, we go over our computational setup and

present our experimental results, focusing on our inferences about why the models

achieve their measured performance. We also identify simulations and analyses for

future exploration of the performance of Partition WaveNet. We conclude with a

discussion about potentially interesting follow-up research projects.

5.1 Constructed Datasets

Our codebase is built on an improved Graph WaveNet implementation [40]. In addi-

tion to using better hyperparameters, the authors add skip connections and learning

rate decay to improve the performance of Graph WaveNet on the reference datasets.

We do not change the missing data representation as described in [40] because our

snapshot graph signal does not represent traffic speed, but instead represents the rate

of congestion as measured by the average number of vehicles. The improved Graph

WaveNet implementation has convenient helper functions for:

59

1. Correctly constructing the Graph WaveNet adjacency matrix from a list of edges

(gen_adj_matrix.py),

2. Generating the training, validation, and testing datasets by using a moving

window over the time dimension (generate_training_data.py), and

3. Summarizing the performance of trained models with a concise set of metrics

(exp_results.py).

We modify the dataset generation tool in generate_training_data.py to add

another feature to the constructed datasets: the edge weight 𝑤 for the vehicle routing

policy. The original, unmodified dataset generation tool only supports one, tempo-

rally contiguous traffic run as the input data. We generalize the implementation to

support an arbitrary number of temporally contiguous traffic runs as the input data.

This change allows us to create new datasets from our 100 simulated training data

runs summarized in Tables 4.4–4.7.

The three model preparation tools require particular formatting of the inputs

in order to function properly. Our simulated Fab model from Chapter 4 outputs

data that does not match the formatting needs of the model preparation tools.

Therefore, we implement a set of preprocessing tools, included in our codebase as

AMHS_preprocess.ipynb, to serve as an intermediary between our simulated Fab

model and the model preparation tools. AMHS_preprocess.ipynb aggregates graph

signals at the desired intervals, performs shortest path searches and graph partitions,

and reformats the data to meet the needs of the model preparation tools.

The process for constructing the Graph WaveNet adjacency matrix is to take the

shortest path length between all pairs of nodes in the OHT system graph, trans-

formed first by Z-score normalization and then by a thresholded Gaussian kernel [45].

Mathematically, this construction process is given by

𝐴𝑖𝑗 = max

(︂
𝑒−

spl2𝑖𝑗
𝜎 − 𝑘, 0

)︂
, (5.1)

where spl𝑖𝑗 represents the shortest path length between nodes 𝑖 and 𝑗, 𝜎 represents

60

the standard deviation of all the spl𝑖𝑗 values, and 𝑘 is some suitably chosen constant.

Following the literature, we use 𝑘 = 0.1. We follow the convention that spl𝑖𝑖 ̸= 0,

but instead equals the shortest path length of the self-loop in the OHT system graph

from node 𝑖 to itself. This convention allows the adjacency matrix to better capture

the effect of a node on the future state of that node. For example, vehicles caught in

traffic at a node may follow a loop in the OHT system graph and return to the same

node at a future point in time.

The constructed datasets are separated chronologically with 70% for training,

10% for validation, and 20% for testing. In the case of multiple input traffic runs,

we separate each run chronologically. This guarantees that each run is represented in

the training, validation, and testing datasets.

In total, we construct four AMHS traffic datasets. These datasets consist of two

data sources crossed with two graph formats. Our data sources are:

1. The data source of 100 simulated training data runs generated according to

differently perturbed, fixed vehicle routing policies (FAB).

2. A toy data source of four simulated training data runs, one with each of 37,

39, 41, and 43 vehicles, generated according to the unperturbed, fixed vehicle

routing policy (TOY).

The purpose of the TOY data source is to provide a sanity checking problem that

we expect to be able to model well. The TOY data source leads to datasets that

give faster iteration on model training so that we can more quickly debug and get

feedback on our trained models. Our two graph formats are:

1. The transformed OHT system graph, in which a node corresponds to a node or

an edge in the original OHT system graph (FULL).

2. The transformed OHT system graph with a hand-selected graph partition ap-

plied to reduce the size of the graph (PARTITION).

For the purpose of calculating the adjacency matrix, we must assign distances un-

der our hand-selected graph partition. In the PARTITION graph format, we set the

61

Figure 5-1: The original OHT system graph colored according to our hand-selected
graph partition. The duplicated colors on opposite diagonals of the graph correspond
to different supernodes under the partition.

distance between a pair of supernodes equal to the average distance from a node

in the first supernode to a node in the second supernode. For the edge weight

𝑤 feature of the snapshot graph signal, we use the average perturbed edge weight

in the supernode. The graph signals are aggregated at each supernode under the

hand-selected graph partition. All of the partition modifications are carried out in

AMHS_preprocess.ipynb.

We only use the PARTITION graph format for our partition benchmark model,

which we describe in greater detail in Section 5.2. Our hand-selected graph partition

is depicted in Figure 5-1. The partition has one supernode for every tool in the

simulated Fab. Each node is grouped with the closest tool, and each directed edge

(𝑢, 𝑣) is grouped with node 𝑣.

We present summary statistics for our four constructed datasets in Table 5.1. To

reduce the storage burden of our datasets, we perform several reductions to simplify

our problem. These reductions are undesirable because they force our models to

specialize to problems that are more narrow in scope. However, we find the reduc-

tions necessary to build tractable datasets. We discuss the unreduced task further in

Section 5.5.

For our first reduction, instead of modeling nodes and edges in the original OHT

system graph, we only model the edges in the original OHT system graph. Vehicles

at nodes are treated as though they still have not left the previous edge. Second,

instead of predicting the three entries of the snapshot graph signal, we only predict

two, leaving out the number of lots feature. This restricts the scope of our prediction

problem to vehicle traffic instead of vehicle traffic and lot movement requests. Third,

62

Table 5.1: The shapes of our four constructed datasets. The FAB data source leads
to significantly larger datasets because it is based on the results of 100 simulated runs
instead of only four.

Data Source Graph Format Time Steps Window Nodes Features

FAB FULL 47700 12 168 2
FAB PARTITION 47700 12 20 2
TOY FULL 5716 12 168 2
TOY PARTITION 5716 12 20 2

we add a stride to our time dimension, analogous to the stride used in neural network

convolutions. We only create data points from time steps at a specified period. We

use a stride of two for the TOY data source and a stride of six for the FAB data

source. These simplifications reduce the size of our largest dataset, FAB FULL, by

∼93.5%. Even so, FAB FULL takes >256 MB to store on disk.

5.2 Benchmark Models

The purpose of our benchmark models is to provide a concise set of alternatives for

comparison to Partition WaveNet. Because the computational cost of training another

model is high, we strive to select a minimal set of benchmarks that would still allow

us to draw conclusions about the performance of Partition WaveNet. Therefore,

each benchmark model is carefully selected to provide the most useful comparisons,

leading us to exclusively use deep learning models as benchmarks. Since we expect

non-deep learning methods to underperform relative to Partition WaveNet, the non-

deep learning methods would be less useful as benchmarks.

5.2.1 Selected Benchmark Models

We use a suite of three deep learning models as benchmarks:

1. Graph WaveNet.

2. Graph WaveNet without a prespecified adjacency matrix, and with added linear

63

input and output layers to reduce the dimensionality of the problem. Since there

is no prespecified adjacency matrix, Graph WaveNet uses only the self-adaptive

adjacency matrix. We refer to this model as the embedding benchmark model.

3. Graph WaveNet applied to the PARTITION graph format. Graph WaveNet

uses the self-adaptive adjacency matrix in addition to the PARTITION adja-

cency matrix. We refer to this model as the partition benchmark model.

We have different expectations about how each of these models would perform

relative to Partition WaveNet. Our expectations dictate the intended purpose of

each benchmark model.

We expect the Graph WaveNet model to outperform Partition WaveNet with re-

spect to MAE because the latter equals the former with an added handicap of the

normalized node embedding. We purposefully construct our datasets so that Graph

WaveNet is tractable, even though the intended purpose of Partition WaveNet is for

settings in which Graph WaveNet is infeasible to train. By using Graph WaveNet as

a benchmark, we can measure the performance degradation imposed by the normal-

ized node embedding. Therefore, Graph WaveNet serves as an upper bound on the

performance of Partition WaveNet.

We expect Partition WaveNet to outperform the embedding benchmark model

with respect to MAE. The embedding benchmark model is analogous to a state-of-

the-art temporal network with an end-to-end network embedding applied to its spatial

inputs. The adjacency structure from the original graph is lost with the embedding,

so we cannot specify an adjacency matrix using the embedding benchmark model.

We thus expect Partition WaveNet to outperform the embedding benchmark model

because the embedding benchmark model does not fully leverage the known spatial

information encoded in the adjacency matrix. The embedding benchmark model

helps us quantify the predictive value of the known spatial information.

We also expect Partition WaveNet to outperform the partition benchmark model

with respect to MAE. The partition benchmark model is a multi-stage model. First,

the state-of-the-art Graph WaveNet model is applied to a hand-reduced graph. This

64

model predicts the average traffic in each supernode under the selected partition.

Then, the predicted average traffic in each supernode is used to predict the aver-

age traffic in each constituent node. Constituent node traffic is predicted with a

linear model. We use the linear regression implemented by the Python statsmodels

package [39].

We expect Partition WaveNet to outperform the partition benchmark model be-

cause Partition WaveNet automatically selects a graph partition to aid in the predic-

tion task. We expect an automatically selected graph partition to be more suitable

than a hand-selected graph partition. The partition benchmark model thus helps us

measure the predictive value of the automatic partition selection.

The partition and embedding benchmark models use the same reduced dimension

as the 𝑏 parameter defined in Section 3.2. This guarantees that we are comparing

networks with approximately the same numbers of parameters. Therefore, each of

our alternative models performs the same degree of dimensionality reduction as does

Partition WaveNet.

5.2.2 Rejected Benchmark Models

In this section, we consider several potential models that we do not select as bench-

mark models. We describe these alternative benchmark models and our rationale for

rejecting them.

We consider three alternative benchmark models below:

1. Graph GRU, an RNN-based deep spatiotemporal network architecture that is

suitable for large graphs [49].

2. WaveNet with a network embedding applied to the inputs.

3. The embedding benchmark model with the PARTITION adjacency matrix.

Our issue with Graph GRU as a benchmark is that the superiority of CNN-based

temporal models, and specifically the WaveNet dilated causal convolutions, has been

65

demonstrated in [34, 45]. We therefore expect Graph GRU to perform worse than

Graph WaveNet and to have a higher computational cost of training.

We reject WaveNet as a benchmark because Graph WaveNet without a specified

adjacency matrix is a superior benchmark due to its self-adaptive adjacency matrix.

Therefore, we prefer our embedding benchmark model.

We consider the embedding benchmark model with the PARTITION adjacency

matrix to be less suitable than our selected benchmarks because we believe it does

not constitute a principled usage of the PARTITION adjacency matrix. We prefer

to create alternative datasets using the PARTITION graph format and train the

unmodified Graph WaveNet architecture on these alternative datasets, as we do for

our partition benchmark model.

5.3 Computational Setup

We conduct our experiments under various computer environments provided by Ama-

zon Web Services (AWS), a popular cloud computing platform. AWS provides on-

demand access to virtual computers called instances, which can emulate hardware

CPUs and GPUs for processing.

Our simulated training data runs for the FAB and TOY data sources are carried

out by one t2.2xlarge Amazon Elastic Compute Cloud instance. This instance type

guarantees eight virtual CPU cores and 32 GB of RAM. Our instance is attached to

one 16 GB Amazon Elastic Block Storage volume to store the generated data. We

perform our simulated training data runs in parallel, so that one run occurs on each

of the eight virtual CPU cores simultaneously.

To speed up training on the FAB data source, we leverage GPU compute resources,

which are the fastest hardware components available for training neural networks. Our

GPU computing environment consists of one g4dn.xlarge Amazon Elastic Compute

Cloud instance. This instance type guarantees four virtual CPU cores, 16 GB of

RAM, and 125 GB of instance storage. The g4dn.xlarge instance also guarantees

one NVIDIA T4 Tensor Core GPU with 16 GB of GPU memory.

66

The t2.2xlarge instance is used to train all our models on the TOY data source.

These models are trained on CPU by setting the PyTorch device to "cpu" instead

of "cuda:0". The g4dn.xlarge instance is used to train all our models on the FAB

data source. These models are trained on GPU by setting the PyTorch device to

"cuda:0".

5.4 Experimental Results

In total, we train eight models: Partition WaveNet plus three benchmark models

crossed with two data sources. In this section, we compare the training and per-

formance of Partition WaveNet to that of the other models. Our general findings

are that Partition WaveNet trains nearly as quickly as the partition and embedding

benchmark models, and outperforms both with respect to MAE.

Our model training times are presented in Table 5.2. Graph WaveNet takes sig-

nificantly longer to train than the other three models on both data sources. This

is because Partition WaveNet and our partition and embedding benchmark models

correspond to Graph WaveNet on a 20-node graph; the full Graph WaveNet has a

168-node graph, and it requires much more training time as a result. Among the

other three models, Partition WaveNet is the slowest by a small margin. This is the

expected result because of the training cost associated with training the normalized

node embedding.

The recorded model training times are skewed on the TOY data source because the

embedding and partition benchmark models are not trained for the full 100 epochs.

The early stopping feature of the Graph WaveNet training policy halts model training

if no improvement to validation loss is observed for 20 epochs. Therefore, our em-

bedding benchmark model trains for 46 epochs, and our partition benchmark model

trains for 35 epochs. We suspect that the early stopping is invoked because the

TOY data source has too few time steps, which inhibits the embedding and partition

benchmark models from generalizing well. Early stopping does not occur on the more

broad FAB data source.

67

Table 5.2: The training times of our eight models. Although the FAB data source is
∼10× larger than the TOY data source, the FAB data source models were trained
on a GPU, which leads to much shorter training times.

Model Data Source Hours Minutes

Partition WaveNet TOY 4 2.68
Graph WaveNet TOY 30 39.13
Embedding Benchmark TOY 1 57.46
Partition Benchmark TOY 0 55.09

Partition WaveNet FAB 0 44.70
Graph WaveNet FAB 3 59.12
Embedding Benchmark FAB 0 38.06
Partition Benchmark FAB 0 39.82

Our measured training time for Graph WaveNet is consistent with the literature.

Our FAB FULL dataset is approximately the same size as the METR-LA dataset

used in [40]. The authors report four hours of training time is needed to train Graph

WaveNet on a dataset of this size on an NVIDIA T4 Tensor Core GPU. Our Graph

WaveNet model trains in almost exactly four hours on the same hardware.

We present the performance of our eight models in Table 5.3. On both data

sources, Graph WaveNet is the best-performing model by a wide margin. This sug-

gests that modeling the full graph yields a large benefit to the performance of the

resulting model. This result is expected given the state-of-the-art status of Graph

WaveNet. On both data sources, Partition WaveNet is the runner-up to Graph

WaveNet. Partition WaveNet achieves a testing MAE of 0.185 on the TOY data

source and 0.183 on the FAB data source. In comparison, Graph WaveNet achieves a

testing MAE of 0.164 on the TOY data source and 0.163 on the FAB data source. The

magnitude of the observed MAEs is approximately the same for both data sources.

Our validation MAE column in Table 5.3 suggests that no model is substantially

overfitting to the data. Our testing MAE column suggests that there is no measurable

difference between the training data distribution and the testing data distribution.

Therefore, we believe that we generated enough data for the training, validation, and

testing datasets, to all be representative of the typical traffic in our simulated Fab.

68

Table 5.3: Model training, validation, and testing dataset performance. The loss
function ℓ is the mean MAE across the length-12 prediction window, and the Epoch
column records the index of the best epoch from 1 to 100. We report two performance
measurements for our partition benchmark model: the performance of the model on
the PARTITION data format, and the performance of the derived linear model that
predicts the FULL data format.

Model Data Source Train ℓ Valid ℓ Test ℓ Epoch

Partition WaveNet TOY 0.183 0.184 0.185 97
Graph WaveNet TOY 0.163 0.164 0.164 93
Embedding Benchmark TOY 0.199 0.199 0.200 26
Partition Benchmark TOY 0.831 0.841 0.845 15
P. B. Linear Output TOY 0.215 0.207 0.213 —

Partition WaveNet FAB 0.184 0.182 0.183 98
Graph WaveNet FAB 0.165 0.162 0.163 98
Embedding Benchmark FAB 0.195 0.193 0.195 93
Partition Benchmark FAB 0.834 0.830 0.830 96
P. B. Linear Output FAB 0.193 0.191 0.187 —

This is important to verify because our datasets are separated chronologically, so we

do not want a later time to correspond to a different traffic regime.

The embedding and partition benchmark models perform better on the FAB data

source than on the TOY data source. For Partition WaveNet and Graph WaveNet,

there is little difference in performance between the two data sources. The underper-

forming embedding and partition benchmark models correspond to the models that

exhibit early stopping during training. We suspect that the early stopping is not

the cause of the underperformance, but is rather a symptom. The embedding and

partition benchmark models do not generalize well on the TOY data source, so the

training process is not able to improve either model beyond a certain epoch.

It is interesting to note the relative difficulty of the intermediate prediction task on

the PARTITION data format, which corresponds to the partition benchmark model

in Table 5.3. We might expect the PARTITION data format to correspond to an

easier task than the FULL data format because there are fewer nodes to predict, as

the graph signals are aggregated at the supernodes. However, the smaller number

69

Table 5.4: Model testing dataset performance at four different prediction horizons.
The 𝑡 = 30s column corresponds to the first prediction horizon, and the 𝑡 = 360s
column corresponds to the last prediction horizon. We report MAE loss for all models.

Model Data Source 𝑡 = 30s 𝑡 = 90s 𝑡 = 180s 𝑡 = 360s

Partition WaveNet TOY 0.169 0.179 0.186 0.191
Graph WaveNet TOY 0.124 0.150 0.169 0.175
Embedding Benchmark TOY 0.200 0.200 0.199 0.200
Partition Benchmark TOY 0.608 0.808 0.875 0.917
P. B. Linear Output TOY 0.211 0.209 0.219 0.212

Partition WaveNet FAB 0.156 0.177 0.186 0.192
Graph WaveNet FAB 0.115 0.157 0.169 0.175
Embedding Benchmark FAB 0.195 0.195 0.195 0.195
Partition Benchmark FAB 0.583 0.780 0.861 0.907
P. B. Linear Output FAB 0.172 0.174 0.192 0.200

of nodes means that the partition benchmark model has a smaller sized input as

well. We believe that the poor performance of the partition benchmark model before

the linear output is caused by the applied graph partition obfuscating the original

problem.

We present the performance of our eight models as a function of the prediction

horizon in Table 5.4. We observe lower MAE at the shorter prediction horizons

and higher MAE at the longer prediction horizons for most models. This trend is

broken by the partition benchmark linear output on the TOY data source, and by

the embedding benchmark model on both data sources. We hypothesize that the

embedding benchmark model predicts uniformly poorly across prediction horizons

because of the presence of two linear layers. The embedding benchmark model uses

a linear layer to scale up the inputs to Graph WaveNet and a linear layer to scale up

the outputs from Graph WaveNet. We suspect that the interaction between the two

linear layers and the Graph WaveNet architecture causes this undesirable behavior.

Once again, Graph WaveNet is the best in terms of MAE. Graph WaveNet per-

forms particularly well on the shortest prediction horizon 𝑡 = 30s. Partition WaveNet

lags behind Graph WaveNet in terms of MAE, but outperforms the embedding and

70

partition benchmark models on both data sources. Partition WaveNet is the only

reduced benchmark to consistently exhibit the expected behavior across different

prediction horizons.

5.5 Future Analyses

There are several additional simulations that would be helpful to perform in order to

better understand the performance of Partition WaveNet as it relates to the AMHS

traffic control problem. First, it would be useful to run Partition WaveNet on the

unreduced versions of our constructed datasets. The unreduced datasets would have

288 nodes instead of 168 nodes and would have three features instead of two features.

The stride reduction would still be needed to store our datasets. Training models on

the unreduced datasets could take >2× the amount of training time, depending on

the caching behavior of the hardware. This change would give us insight into the full

AMHS modeling problem that we are trying to solve.

It would be useful to simulate Partition WaveNet with many different 𝑏 parameters

to get a better sense of the tradeoff between spatial compression, training time, and

performance. We would start by approximating the curve that relates the training

time to the performance of Partition WaveNet. This curve would be analogous to an

ROC curve, and points along the curve would be parameterized by the 𝑏 parameter

of Partition WaveNet, i.e., its level of spatial compression.

Another suitable simulation to run would be training Partition WaveNet on a

sequence of graphs, sized in increasing orders of magnitude. This experiment would

help us measure the scalability of Partition WaveNet in the extremely large graph

regime. A corresponding real-world experiment that would give us insight into the

scalability of Partition WaveNet would be to train Partition WaveNet on data from a

large semiconductor Fab. Because a large semiconductor Fab is the intended setting

for Partition WaveNet, this experiment would give the most relevant measure of the

performance of Partition WaveNet.

71

5.6 Further Directions

In Section 5.4, we find that Partition WaveNet outperforms the embedding and parti-

tion benchmark models on both data sources. Even so, there may be more successful

extensions to Partition WaveNet based on similar ideas and architectures. First, it

would be interesting to see how different structural modifications affect the perfor-

mance of Partition WaveNet. For example, we could replace our node embedding

dictionary B𝑒𝑚𝑏 with a source and a destination node embedding dictionary. Under

this extension, we lose the physical interpretation of the node embedding dictionary,

but it would be interesting to observe the performance of the resulting model.

In this thesis, we only scratch the surface of AMHS modeling tasks. We do

not explore the process of deriving vehicle routing policies from a learned Partition

WaveNet traffic model in depth. It would be interesting to compare the performance

of various tree search algorithms on the task of deriving vehicle routing policies. There

are many unanswered questions in this domain, e.g., whether breadth-first (alpha-beta

pruning) or depth-first (Monte Carlo Tree Search) is a more effective search strategy,

or, whether it is better to update a dynamic policy frequently based on short searches

or infrequently based on long searches. Our simulated Fab could be extended with a

dynamic vehicle routing policy class parameterized by an arbitrary traffic prediction

function so that models can be easily compared on the basis of their performance as

a vehicle routing policy.

We also do not explore the specifics of anomaly detection based on a learned

Partition WaveNet traffic model in much detail. Partition WaveNet gives us the

flexibility to frame the anomaly detection problem as supervised learning if we treat

anomalies as labeled graph signals, as unsupervised learning if we cluster predicted

outputs, or as semi-supervised learning if we take an in-between approach. In the

unsupervised learning case, it would be interesting to compare heuristic approaches

to established machine learning algorithms for clustering.

Given the success of Partition WaveNet in the AMHS modeling domain, it is

natural to ask if Partition WaveNet would be equally successful in other domains

72

Figure 5-2: A schematic of deep autoencoder architectures with less restricted and
more restricted induced graph representations.

that deal with large system graphs. For example, Partition WaveNet could be used

to model temporal social network signals or the spread of disease via a contact graph.

Graphs corresponding to social interactions can have millions of nodes and edges,

so it would be interesting to measure the performance of Partition WaveNet in the

extremely large graph regime.

Also, it is worth investigating whether deep variational methods for learning graph

embeddings are successful at tasks within the AMHS domain. Deep variational graph

autoencoders inspired the partition encoding architecture of Partition WaveNet, so

if this framework can succeed at other AMHS-related tasks, then it would support

the success of Partition WaveNet at general traffic modeling in AMHS. It would be

interesting to compare degradation in the performances of Partition WaveNet and of

deep variational graph autoencoders as a function of the induced graph representation

size 𝑏. In Figure 5-2, the more restricted induced graph representation labeled Code

has 𝑏 = 3 because we force the autoencoder to compress the signal into a three-

dimensional latent space.

It would be interesting to apply Partition WaveNet directly to the dynamic traffic

routing task rather than through general-purpose traffic modeling as an intermediary.

To do this, training examples would be constructed in real-time using simulations,

and Partition WaveNet would attempt to optimize a heuristic objective function

corresponding to traffic management using graph signals consisting of both current

73

network traffic and tunable parameters to control the AMHS routing protocol. This

experiment would border on being computationally infeasible due to its similarities

with deep reinforcement learning methods, but it could also help understand the

behavior of Partition WaveNet on a deeper level.

74

Bibliography

[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman,
and Dan Mané. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565,
2016.

[2] Gowtham Atluri, Anuj Karpatne, and Vipin Kumar. Spatio-temporal data min-
ing: A survey of problems and methods. ACM Computing Surveys (CSUR),
51(4):83, 2018.

[3] Kelly Bartlett, Junho Lee, Shabbir Ahmed, George Nemhauser, Joel Sokol, and
Byungsoo Na. Congestion-aware dynamic routing in automated material han-
dling systems. Computers & Industrial Engineering, 70:176–182, 2014.

[4] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian
Schulz. Recent advances in graph partitioning. In Algorithm Engineering, pages
117–158. Springer, 2016.

[5] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning
graph representations. In Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[6] Victor Castillo. Parallel simulations of manufacturing processing using SimPy, a
python-based discrete event simulation tool. In Proceedings of the 2006 Winter
Simulation Conference, pages 2294–2294. IEEE, 2006.

[7] Jianping Chen, Beixin Xia, and Xin Chen. Effectiveness of vehicle dynamic
reassignment dispatching in interbay material handling system. In 2016 In-
ternational Conference on Artificial Intelligence and Engineering Applications.
Atlantis Press, 2016.

[8] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. A survey on network embed-
ding. IEEE Transactions on Knowledge and Data Engineering, 31(5):833–852,
2018.

[9] Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language
modeling with gated convolutional networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pages 933–941. JMLR. org,
2017.

75

[10] Mohamed Khalil El Mahrsi and Fabrice Rossi. Graph-based approaches to clus-
tering network-constrained trajectory data. In International Workshop on New
Frontiers in Mining Complex Patterns, pages 124–137. Springer, 2012.

[11] Fabio Galasso, Margret Keuper, Thomas Brox, and Bernt Schiele. Spectral graph
reduction for efficient image and streaming video segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
49–56, 2014.

[12] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari,
and Donald B. Rubin. Bayesian Data Analysis. CRC Press, 2013.

[13] Aric Hagberg, Pieter Swart, and Daniel S. Chult. Exploring network structure,
dynamics, and function using NetworkX. Technical report, Los Alamos National
Laboratory.(LANL), Los Alamos, NM (United States), 2008.

[14] Binh Han, Ling Liu, and Edward Omiecinski. NEAT: Road network aware tra-
jectory clustering. In 2012 IEEE 32nd International Conference on Distributed
Computing Systems, pages 142–151. IEEE, 2012.

[15] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[16] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg
Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of
locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286,
2017.

[17] Renjun Hu, Charu C. Aggarwal, Shuai Ma, and Jinpeng Huai. An embedding
approach to anomaly detection. In 2016 IEEE 32nd International Conference
on Data Engineering (ICDE), pages 385–396. IEEE, 2016.

[18] John D Hunter. Matplotlib: A 2d graphics environment. Computing in Science
& Engineering, 9(3):90–95, 2007.

[19] Illhoe Hwang and Young Jae Jang. Q (𝜆) learning-based dynamic route guidance
algorithm for overhead hoist transport systems in semiconductor fabs. Interna-
tional Journal of Production Research, 58(4):1–23, 2019.

[20] Ashesh Jain, Amir R. Zamir, Silvio Savarese, and Ashutosh Saxena. Structural-
RNN: Deep learning on spatio-temporal graphs. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 5308–5317, 2016.

[21] Younkook Kang, Sungwon Lyu, Jeeyung Kim, Bongjoon Park, and Sungzoon
Cho. Dynamic vehicle traffic control using deep reinforcement learning in au-
tomated material handling system. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 9949–9950, 2019.

76

[22] Ahmed Kharrat, Iulian Sandu Popa, Karine Zeitouni, and Sami Faiz. Cluster-
ing algorithm for network constraint trajectories. In Headway in Spatial Data
Handling, pages 631–647. Springer, 2008.

[23] Haejoong Kim and Dae-Eun Lim. Deep-learning-based storage-allocation ap-
proach to improve the AMHS throughput capacity in a semiconductor fabrication
facility. In Asian Simulation Conference, pages 232–240. Springer, 2018.

[24] Haejoong Kim, Dae-Eun Lim, and Sangmin Lee. Deep learning-based dynamic
scheduling for semiconductor manufacturing with high uncertainty of automated
material handling system capability. IEEE Transactions on Semiconductor Man-
ufacturing, 33(1):13–22, 2020.

[25] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[26] Thomas N. Kipf and Max Welling. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308, 2016.

[27] Hiroshi Kondo. Advanced simulation framework for AMHS. In 2007 Interna-
tional Symposium on Semiconductor Manufacturing, pages 1–4. IEEE, 2007.

[28] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolu-
tional recurrent neural network: Data-driven traffic forecasting. arXiv preprint
arXiv:1707.01926, 2017.

[29] Renjie Liao, Marc Brockschmidt, Daniel Tarlow, Alexander L Gaunt, Raquel Ur-
tasun, and Richard Zemel. Graph partition neural networks for semi-supervised
classification. arXiv preprint arXiv:1803.06272, 2018.

[30] James T. Lin, Fu-Kwun Wang, and Chun-Kuan Wu. Simulation analysis of the
connecting transport AMHS in a wafer fab. IEEE Transactions on Semiconduc-
tor Manufacturing, 16(3):555–564, 2003.

[31] Dirk Merkel. Docker: lightweight Linux containers for consistent development
and deployment. Linux Journal, 2014.

[32] Azade Nazi, Will Hang, Anna Goldie, Sujith Ravi, and Azalia Mirhoseini.
Gap: Generalizable approximate graph partitioning framework. arXiv preprint
arXiv:1903.00614, 2019.

[33] Yoshio Nishi and Robert Doering. Handbook of Semiconductor Manufacturing
Technology. CRC Press, 2007.

[34] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. WaveNet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

77

[35] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.
Adversarially regularized graph autoencoder for graph embedding. arXiv preprint
arXiv:1802.04407, 2018.

[36] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[37] Yukio Sadahiro, Raymond Lay, and Tetsuo Kobayashi. Trajectories of moving
objects on a network: detection of similarities, visualization of relations, and
classification of trajectories. Transactions in Geographic Information Systems,
17(1):18–40, 2013.

[38] Robert Schmaler, Christian Hammel, Thorsten Schmidt, Matthias Schoeps, Jo-
erg Luebke, and Ralf Hupfer. Strategies to empower existing automated material
handling systems to rising requirements. IEEE Transactions on Semiconductor
Manufacturing, 30(4):440–447, 2017.

[39] Skipper Seabold and Josef Perktold. Statsmodels: Econometric and statistical
modeling with python. In Proceedings of the 9th Python in Science Conference,
volume 57, page 61. Scipy, 2010.

[40] Sam Shleifer, Clara McCreery, and Vamsi Chitters. Incrementally im-
proving Graph WaveNet performance on traffic prediction. arXiv preprint
arXiv:1912.07390, 2019.

[41] Gian Antonio Susto, Matteo Terzi, and Alessandro Beghi. Anomaly detection
approaches for semiconductor manufacturing. Procedia Manufacturing, 11:2018–
2024, 2017.

[42] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of
complex behaviors through online trajectory optimization. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 4906–4913.
IEEE, 2012.

[43] Senzhang Wang, Jiannong Cao, and Philip S Yu. Deep learning for spatio-
temporal data mining: A survey. arXiv preprint arXiv:1906.04928, 2019.

[44] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. A comprehensive survey on graph neural networks. arXiv preprint
arXiv:1901.00596, 2019.

[45] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang.
Graph WaveNet for deep spatial-temporal graph modeling. arXiv preprint
arXiv:1906.00121, 2019.

[46] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolu-
tional networks: A deep learning framework for traffic forecasting. arXiv preprint
arXiv:1709.04875, 2017.

78

[47] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated con-
volutions. arXiv preprint arXiv:1511.07122, 2015.

[48] Wenchao Yu, Cheng Zheng, Wei Cheng, Charu C. Aggarwal, Dongjin Song,
Bo Zong, Haifeng Chen, and Wei Wang. Learning deep network representa-
tions with adversarially regularized autoencoders. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing, pages 2663–2671. ACM, 2018.

[49] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Ye-
ung. GAAN: Gated attention networks for learning on large and spatiotemporal
graphs. arXiv preprint arXiv:1803.07294, 2018.

79

	Introduction
	The Task of an AMHS
	Related Works
	Spatiotemporal Graph Neural Networks
	Dimensionality Reduction

	Thesis Organization

	Problem Framing
	Reinforcement Learning
	Supervised Learning
	WaveNet in Practice

	Methods
	Problem Formulation
	Partition-Embedded Graph Convolution Layer
	Temporal Convolution Layer
	Architecture

	Simulation
	Goals
	Implementation
	Preventing Deadlock
	Design Abstractions
	AppSite
	RailPath
	FOUP
	OHT
	MHS
	AMHS
	Simulation
	Evaluation
	Animation

	Summary Statistics
	Data Generation
	Containerization

	Experiments
	Constructed Datasets
	Benchmark Models
	Selected Benchmark Models
	Rejected Benchmark Models

	Computational Setup
	Experimental Results
	Future Analyses
	Further Directions

