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Abstract

This thesis considers the design of two-way (i.e., round-trip) car-sharing services. The
optimization problems are formulated as high-dimensional discrete simulation-based
optimization (DSO) problems. Existing DSO algorithms cannot tackle these problems
at scale. Moreover, they are designed based on asymptotic performance guarantees,
but lack computational efficiency, i.e., they tend to not perform well under tight
computational or simulation budgets. The main contribution of this thesis is to show
how mixed-integer programming (MIP) models can be used to enable general-purpose
DSO algorithms to become: (i) scalable: the car-sharing problems can now be tackled
at scale; and (ii) computationally efficient: solutions with good performance can be
identified given tight computational budgets. More generally, the methods proposed
in this thesis contribute to bridging the gap between these two mostly disconnected
research communities of analytical optimization and simulation-based optimization.

This thesis formulates MIP models and proposes two approaches to embed the
MIP information within the DSO algorithms. First, we use a MIP to formulate a
metamodel, which is an analytical approximation of the simulation-based objective
function. The information from the MIP is used at every iteration of a DSO algorithm
by solving an analytical metamodel optimization problem. Second, we use a MIP to
enhance the partitioning step of an existing globally convergent DSO algorithm. The
MIP is used to identify low-dimensional subregions of the feasible region, where more
exhaustive simulation is to be carried out.

We then compare the performance of methods that either: (i) use the MIP infor-
mation for metamodeling, (ii) use the MIP information for partitioning, or (iii) use
the MIP information for both metamodeling and partitioning. We study how the
MIP’s accuracy impacts the performance of these methods.

Based on both small synthetic problems and a Boston area case study, we show
how the scalability and the computational efficiency of both a general-purpose locally
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convergent DSO algorithm and a general-purpose globally convergent DSO algorithm
are enhanced. We also present results from a New York City case study. The case
studies use detailed car-sharing reservation data from a major car-sharing operator.
We benchmark the methods versus several algorithms, including stochastic program-
ming. The combination of MIPs with DSO algorithms leads to methods with both
asymptotic performance guarantees as well as good short-term performance.

Thesis Supervisor: Carolina Osorio
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Dissertation motivation and objective

In recent years, the most successful trend in the space of urban mobility services has

been the widespread use of shared mobility services, such as ride-sharing, car-sharing,

bike-sharing and, most recently, scooter-sharing (Shaheen and Chan, 2016). Major

technology companies have been behind the rapid growth of these shared services. The

operators of these services collect abundant data of the usage of the vehicles and the

behavior of the clients (or users). This data provides a high-resolution disaggregate

description of the interaction of demand and supply. This work is motivated by the

following research question: how can we exploit the rich disaggregate information

in this data to optimize the design and the operations of these new urban mobility

services?

The most common approach to address these optimization problems is to aggre-

gate the data such as to estimate parameters of a mathematical program, such as a

mixed-integer programming model (MIP) or a stochastic programming model (SP).

These mathematical programs provide an aggregate description of both demand and

of the interaction of demand and supply. This aggregate description enables their com-

putational tractability and their scalability (i.e., their use for large-scale instances).

Nonetheless, through this aggregation a wealth of information of the intricate interac-

tions between demand and supply is lost. Losing such information may lead to a less
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detailed understanding of the mobility-sharing system. Chen et al. (2019b) found that

aggregated data would disregard individual heterogeneity, and hence underestimate

level of unevenness of the distribution of the accessibility of a bike-sharing system.

A current trend among major technology companies is to design optimization

methods that exploit the rich information in their disaggregate data. Companies

such as Lyft are building high-resolution simulators of their services that sample

directly from their disaggregate data and provide a disaggregate description of the

performance of their service (Greenhall, 2016). Hence, the next generation of mobility

optimization algorithms will increasingly perform optimization based on models that

provide a disaggregate description of mobility.

This work addresses this need. It formulates a car-sharing optimization problem

as a simulation-based optimization (SO) problem, and proposes computationally effi-

cient SO algorithms. We use a disaggregate car-sharing service simulator, which was

developed in collaboration with Ford and with the car-sharing operator Zipcar (Fields

et al., 2017). The simulator samples from disaggregate car-sharing reservation data

to estimate (disaggregate) demand (i.e., it yields a set of desired reservations) and

then provides a simple stochastic mapping of how this demand interacts with supply

to yield disaggregate reservations (i.e., a final set of realized reservations).

There are challenges remaining for applying the existing SO algorithms to address

this high-dimensional car-sharing optimization problem. Most discrete SO algorithms

are general-purposes and do not account for problem specific information. Due to the

curse-of-dimensionality problem of discrete optimization, most of them do not scale.

Problems with more than 10 decision variables are considered as high-dimensional

in the context of discrete SO (Xu et al., 2013). These algorithms usually have lo-

cal or global convergence guarantees, but are not designed to have good finite time

performance.

To address these scalability and computational efficiency challenges, we propose

to formulate and embed analytical mathematical optimization models (more specifi-

cally, mixed-integer formulations) within the discrete SO algorithms. The proposed

approaches maintain the local or global convergence guarantees of the underlying
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discrete SO algorithms and enable these algorithms to become scalable and computa-

tionally efficient. The proposed algorithms and case studies illustrate how abundant

disaggregate mobility data can be used to perform large-scale (e.g., city-scale) opti-

mization.

1.2 Dissertation structure and contributions

This dissertation contains four chapters. In Chapter 2, we present MetaAHA, an

efficient locally convergent discrete SO algorithm. The contributions of this chapter

can be summarized as follows.

• Data-driven technique The most traditional approach to car-sharing service

optimization has been analytical optimization. This comes at the cost of a

simplified description of demand and of demand-supply interactions. In this

work, our goal is to acknowledge both the intricacy of a car sharing service (e.g.,

intricate demand distribution, intricate demand-supply interactions), as well as

the availability of high-resolution data. Hence, we propose a method that relies

heavily on the rich reservation data and uses limited modeling assumptions. The

information captured in the data about the underlying demand distribution and

demand-supply interactions is preserved and exploited at a disaggregate level.

To the best of our knowledge, this is the first work to design algorithms that

preserves this high-resolution information of the data (i.e., does not merely

aggregate the disaggregate data) for car-sharing network design optimization.

Case studies with data from Zipcar’s Boston market are carried out.

• High dimensional discrete SO problems The proposed algorithm is suitable

to address high-dimensional network design problems. In Section 2.3.3 and

2.3.4, we use it to address a Boston metropolitan area case study with 315

stations. General-purpose discrete SO algorithms have been extensively used

to tackle problems with roughly 20 decision variables. Our enhanced scalability

comes at the cost of proposing an algorithm tailored for a specific class of
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network design problems, while the general-purpose algorithms can be used

for a broader class of general discrete SO problems. We achieve scalability by

formulating and embedding information from a MIP within the general-purpose

algorithm AHA proposed by Xu et al. (2013). This yields the proposed discrete

SO algorithm, which we call MetaAHA. The approach combines the merits of

both analytical optimization methods (i.e., tractability and scalability) and of

simulation-based optimization methods (i.e., we can sample directly from the

disaggregate data to enable a detailed description of demand and of demand-

supply interactions).

• Computationally efficient algorithms The proposed algorithms are de-

signed to identify good quality solutions within few iterations (i.e., when few

simulation observations are available). This differs from most discrete SO liter-

ature which is focused on asymptotic performance. This efficiency is achieved

through the novel metamodel formulation which embeds a non-simulation-based

representation (a MIP formulation) of the network design problem. In other

words, the simulator is no longer treated as a black box, instead analytical

problem-specific information is embedded within the SO algorithm. We pro-

pose both locally convergent and globally convergent frameworks. The results

of Section 2.3 indicate that this analytical structural information is the key to

achieving computational efficiency. They also illustrated how the combination

of the proposed metamodel along with a general-purpose discrete SO algorithm

yields an algorithm with both good short-term and asymptotic performance

properties. Moreover, the metamodel enables the general-purpose algorithm to

become robust to the quality of the initial solution.

• Metamodeling for discrete SO The main feature of the proposed algorithm

is the formulation of a metamodel, (i.e., an analytical approximation of the

simulation-based objective function) that has a functional form that is problem-

specific. Such metamodel ideas for transportation problems have been success-

fully formulated for various continuous SO problems. This is the first work
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that extends these ideas to the discrete SO setting. This work shows that by

using such metamodel ideas, high-dimensional discrete SO problems can be ad-

dressed in a computationally efficient way. The chapter shows how the proposed

metamodel ideas enable general-purpose discrete SO algorithms to become more

scalable (i.e., suitable for higher-dimensional problems). Since fundamental OR

transportation optimization problems (e.g., routing) are naturally formulated

as discrete optimization problems, the ideas of this work lay the foundations

for a variety of important and difficult transportation problems to be addressed

efficiently with data-driven, or simulation-based, network models.

In Chapter 3, we present MetaESBB-OptDim, a globally convergent discrete SO

algorithm. The contributions of this chapter are summarized as the follows.

• Computationally efficient globally convergent discrete SO algorithm

We extend an existing globally convergent discrete SO algorithm, and enable

it to become efficient and scalable. We achieve this by formulating a MIP and

combining information from the simulator with information from the MIP. The

proposed algorithm can identify solutions with good performance in only a few

iterations.

• Enhanced computational efficiency We use the information from the MIP

in two ways: (1) we use the MIP to formulate a metamodel and solve a meta-

model optimization problem (this is in line with the method proposed in Chap-

ter 2, and (2) we use the MIP to partition the feasible region, i.e., we use it to

identify a low-dimesional subregion of the feasible region where more extensive

simulation is to be carried out. As far as we know, this is the first method

in discrete SO that use problem specific information to guide the partitioning

procedure.

In Chapter 4, we conclude this work and discuss future research directions.
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Chapter 2

A a locally convergent discrete SO

algorithm suitable for

high-dimensional car-sharing service

design problems

2.1 Introduction

In this chapter, we propose a discrete simulation-based optimization (SO) algorithm

for a family of large-scale car-sharing network design problems. We focus on two-way

car-sharing services, and aim to assign a fleet to a network of car-sharing stations

to maximize the profit of the service. The proposed approach is a metamodel SO

approach. The metamodel in the form of mixed-integer program (MIP) is formu-

lated. The metamodel is embedded within Adaptive Hyperbox Algorithm (AHA), a

general-purpose locally convergent discrete SO algorithm. The proposed algorithm is

validated with synthetic toy network experiments. The algorithm is then applied to a

high-dimensional Boston case study using reservation data from Zipcar, a major US

car-sharing operator. The method is benchmarked versus several algorithms, includ-

ing stochastic programming. The experiments indicate that the analytical network
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model information, provided by the MIP to the SO algorithm, is useful both at the

first iteration of the algorithm and across subsequent iterations. The solutions de-

rived by the proposed method are benchmarked versus the solution deployed in the

field by the car-sharing operator.

2.1.1 Car-sharing service optimization

Car-sharing has become a popular transportation mode in urban areas in the past

decades. Its deployment, as of 2010, covered over 31,600 vehicles in over 1,100 cities

in 26 countries with over 1 million members (Shaheen and Cohen, 2013). The car-

sharing literature has studied its potential to reduce the transportation cost of house-

holds (Duncan, 2011), to complement private-vehicle ownership (Shaheen and Cohen,

2013, Becker et al., 2017) and public transportation systems (Chiraphadhanakul 2013

Chapter 4, Nair and Miller-Hooks 2014, Zhou 2015 Chapter 3), as well as to mitigate

greenhouse gas emissions and total vehicle miles traveled (Firnkorn and Müller, 2011,

Shaheen and Cohen, 2013).

The main types of car-sharing service are two-way (also known as round-trip),

one-way station-based, free-floating and peer-to-peer. For full definitions, see for

instance Schmöller et al. (2015). A station is a location with a certain number of

vehicle-sharing parking spots. Two-way services consist of a set of vehicles parked at

a set of fixed stations. In advance, customers reserve a vehicle for a given duration

and a given start time. They then pick-up and drop-off the vehicle from the same

predetermined station. Reservations can be made from several months in advance to

minutes in advance. There is no upper limit on the duration of a reservation. As

of July 2015, there were an estimated 1.17 million two-way service members along

with 0.31 million one-way service members in the United States (NCSL, 2020). This

chapter focuses on two-way services with an application to a Boston case study with

Zipcar data. Zipcar is a major car-sharing service provider in the US. It is also

one of the world’s largest car-sharing service provider with operations in more than

500 cities worldwide. It has deployed over 12,000 vehicles around the world (Zipcar,

2017). Currently, Zipcar offers two-way service, one-way station-based service and
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free-floating service. Round-trip is the primary service mode for Zipcar and the

foundation of its business. Studying the optimization of its two-way service is critical

for the business of Zipcar’s business.

The data we use in this chapter consists of two-way car-sharing reservations made

in the Boston metropolitan area. Each reservation contains detailed information, such

as creation time (time at which the reservation was made), duration, start time, end

time, station (location where the vehicle is to be picked up and dropped off), and

other vehicle attributes. Hereafter, we use the term data-driven to emphasize that:

(i) unlike most approaches, we do not aggregate the data, instead we sample directly

from the disaggregate reservation data to yield a disaggregate description of latent

demand; (ii) we then use the disaggregate latent demand as input to a (disaggregate)

simulator that mimics the reservation process or behavior of individual clients (e.g.,

if their desired reservation is not available, they may consider opting out or opting

for a reservation at another station or time); this yields a disaggregate set of realized

(through simulation) reservations. The optimization problem studied in this chapter

is the optimal spatial allocation of a fleet of two-way car-sharing vehicles to a set of

stations. This is a tactical decision that car-sharing operators typically make on a

monthly basis. The corresponding optimization problem is solved offline.

Detailed reviews of vehicle-sharing studies are given in Jorge and Correia (2013),

Brandstätter et al. (2016). Table 2.1 summarizes some of the recent vehicle-sharing

network design literature. The column “Optimization” indicates whether the method

is analytical, simulation-based or a combination of both. The column “Context”

specifies the type of vehicle-sharing service (one-way, two-way, free-floating) and the

type of vehicle (bike, car). The column “Case study size” indicates, for the main

case study of each paper, the number of sites (e.g., locations, regions, stations), the

number of integer and the number of continuous variables (including both decision

variables and auxiliary variables). Cells are left blank for cases where these numbers

are not directly reported in the papers. The “Problem” column specifies the type of

decisions the problem addresses.

The most popular approach to address vehicle-sharing (both car- and bike-sharing)
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Table 2.1: Summary of recent related vehicle-sharing network design papers

Paper Optimization Context Case study size Problem

Analytical Simulation-
based

One-
way

Two-
way

Free-
floating

Bike-
sharing

Car-
sharing Site Integer Continuous Site

location
Fleet
assignment

Station
capacity Other

Correia and Antunes (2012) ✓ ✓ ✓ 75 0 ✓ ✓ ✓ Rebalance fleet
Cepolina and Farina (2012) ✓ ✓ ✓ 11 9 0 ✓ Fleet size
Chiraphadhanakul (2013,
Chapter 4) ✓ ✓ ✓ 27 27 ✓ Route user flow

Correia et al. (2014) ✓ ✓ ✓ 116 0 ✓ ✓ Select trips
Nair and Miller-Hooks
(2014) ✓ ✓ ✓ ✓ 64 4420 6295 ✓ ✓ ✓ Route user flow

Boyacıet al. (2015) ✓ ✓ ✓ 100 All together ∼ 105 ✓ ✓
Determine fleet size,
regions served by each
station and number of
relocation personnel,
rebalance fleet

Deng (2015, Chapter 5) ✓ ✓ ✓ 8 11 2 ✓ ✓ Determine fleet size,
rebalance fleet

Jorge et al. (2015) ✓ ✓ ✓ ✓ 391 0 ✓ ✓ Select trips, rebalance
fleet

O’Mahony (2015, Chapter 3) ✓ ✓ ✓ 300 ✓ ✓
Zhou (2015, Chapter 4) ✓ ✓ ✓ 30 5133 ∼ 1.5 × 107 ✓ Route user flow
Jian et al. (2016) ✓ ✓ ✓ ✓ 466 932 0 ✓ ✓
Lu et al. (2017) ✓ ✓ ✓ ✓ ✓ 9 ✓ ✓ Route user flow,

rebalance fleet

He et al. (2017) ✓ ✓ ✓ 61 ✓ Route user flow,
rebalance fleet

This thesis ✓ ✓ ✓ ✓ 315 315 0 ✓



network design problems across all service types (two-way, one-way, floating) is the use

of analytical mixed integer programming (MIP). Studies with deterministic demand

include Correia and Antunes (2012), Chiraphadhanakul (2013, Chapter 4), Correia

et al. (2014), Nair and Miller-Hooks (2014), Zhou (2015, Chapter 3). Past work in

the field has also accounted for demand uncertainty by using a parametric probabil-

ity distribution for demand combined with optimization methods such as stochastic

programming and robust optimization (O’Mahony 2015, Chapter 4, Lu et al. 2017,

He et al., 2017).

Car-sharing demand-supply interactions are intricate to model, yet are critical to

account for when planning and operating car-sharing services. Studies of car-sharing

demand include Millard-Ball et al. (2005), Stillwater et al. (2009), Ciari et al. (2013),

De Lorimier and El-Geneidy (2013), Coll et al. (2014), Ciari et al. (2014, 2016b).

The analytical modeling of demand involves accounting for how the distribution of

demand varies as a function of space, time, user-specific attributes (e.g., value of time,

willingness to walk, trip purpose) and other transportation system attributes (e.g.,

alternative travel modes for that user and that trip purpose). Moreover, for two-

way car-sharing, the analytical modeling of the interaction of demand and supply

is particularly difficult due to the often low supply capacity: there are typically

few car-sharing parking spots available at each station. Hence, if a user does not

find a vehicle available at the desired time and station, the user may opt out of

renting a vehicle (the demand is said to be lost, and the historical reservation data

is aid to be truncated) or may opt into renting a nearby (e.g., in space, in time)

reservation (the demand is said to spillover or spillback and the historical reservation

is said to be censored). For a detailed description of truncation and censoring in the

context of car-sharing, see Fields et al. (2018). The likelihood of truncation and of

censoring can depend on user characteristics (e.g., willingness to walk, car ownership),

on trip attributes (e.g., trip purpose) as well as on the general mobility system (e.g.,

availability of other competitive travel alternatives). Additionally, given this low

supply capacity, it is important to account for the temporal order in which users make

reservations. In other words, modeling the first-come-first-reserve principle (i.e., the
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fact that reservations are prioritized or processed in the order of their creation time) is

important. Due to the difficulties of accurately modeling car-sharing demand, as well

as demand-supply interactions, we propose to directly use disaggregate car-sharing

reservation data that embeds a detailed description of the interaction of demand and

supply.

Compared to pure analytical models, stochastic simulators enable a more detailed

modeling of demand and supply uncertainties, and of demand-supply interactions,

their use to address optimization problems of realistic dimensions remains intricate.

In the context of vehicle-sharing, simulation tools have mostly been used to evaluate

the performance of network designs obtained from analytical models, i.e., the simu-

lator is used to perform what-if analysis (Cepolina and Farina 2012, O’Mahony 2015

Chapter 5, Ciari et al. 2015). Various simulation studies that account for car-sharing

(Ciari et al., 2009, 2016a, Balać et al., 2016, Balac et al., 2017) have been carried

out with the MATSim transportation simulation software (MATSim, 2018). Studies,

such as Cepolina and Farina (2012) and Deng (2015, Chapter 5), have included the

simulator as part of an optimization framework and have resorted to general-purpose

black-box optimization algorithms such as simulated annealing and particle swarm

optimization. The study of Jian et al. (2016) exploited problem-specific information

to yield gradient-type information. Interestingly, Jian et al. (2016) use the solution

of an analytical linear integer program as the initial solution for a simulation-based

optimization algorithm. Such an approach is also used as benchmark method in the

case studies of this chapter. Of particular notice is the large-scale bike-sharing opti-

mization instance studied in Jian et al. (2016), which considers a set of 466 stations.

2.1.2 Discrete simulation-based optimization

We formally define the discrete SO problem. Let x ∈ X ∩ ZI be our decision vector

of dimension I, where X ⊂ RI is convex and bounded. For any x ∈ X ∩ZI , G(x) is a

random variable. We can observe the value of G(x) via stochastic simulation. Our
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goal is to solve the optimization problem:

max
x∈X∩ZI

g(x) = E[G(x)]. (2.1)

In this chapter, in order to enable the direct use of disaggregate car-sharing reser-

vation data for optimization, we formulate the problem as a discrete simulation-

based optimization (SO) problem. The problem has a simulation-based objective

function with discrete decision variables. Constraints are analytical (i.e., they are not

simulation-based). The main challenges of addressing such problems are the following.

There is no analytical expression available for the objective function, hence traditional

(analytical) discrete optimization algorithms cannot be used. The objective function

can only be estimated by running a set of stochastic simulation replications. Dis-

crete SO problems inherit the curse of dimensionality of discrete analytical problems.

Since simulation is used, the objective function is often an intricate (e.g., non-convex)

function of the decision variables with several local optima.

There are a variety of discrete SO algorithms in the literature; recent reviews

include Nelson (2010) and Hong et al. (2015). Discrete SO algorithms include Con-

vergent Optimization via Most-Promising-Area Stochastic Search (COMPASS) (Hong

and Nelson, 2006), Adaptive Hyperbox Algorithm (AHA) (Xu et al., 2013), R-SPLINE

(Wang et al., 2013), and cgR-SPLINE (Nagaraj, 2014). Methods that aim to identify

solutions with good performance at an early stage (i.e., within few simulations) in-

clude an extension of COMPASS known as the Industrial Strength COMPASS (ISC)

(Xu et al., 2010), as well as extension of AHA known as ISC-AHA (Xu et al., 2013).

Other common approaches to discrete SO problems include ranking-and-selection

(R&S) techniques, such as Chick and Inoue (2001), Frazier et al. (2008). An R&S

review can be found in Swisher et al. (2003).

Discrete SO algorithms are most often designed: (i) as general-purpose algorithms,

i.e., they can be used to address a broad family of optimization problems, their use

is not limited to transportation problems, and (ii) based on asymptotic convergence

properties, there is limited focus on their short-term (i.e., small sample performance).
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The performance of these general-purpose discrete SO algorithms is typically illus-

trated with low-dimensional problems (e.g., around 20 decision variables). Few studies

have reported higher-dimensional instances. The work of Xu et al. (2013) reported

experiments where AHA successfully addressed problems with up to 100 decision

variables. Developing discrete SO algorithms that are suitable for high-dimensional

problems remains a challenge. Past studies, such as Xu et al. (2013), illustrate that

for locally convergent general-purpose discrete SO algorithms, the quality of the fi-

nal solution is sensitive to the quality of the initial solution. Hence, there is also an

interest to develop algorithms with enhanced robustness to the quality of the initial

solution.

There is a lack of studies that evaluate the performance of general-purpose discrete

SO algorithms for high-dimensional problems and under tight computational budgets

(i.e., within few simulation runs). Nonetheless, when using simulators to address

optimization problems, practitioners often use the algorithms under tight computa-

tional budgets (e.g., they terminate the algorithm once a fixed time or a fixed number

of iterations have elapsed). Hence, there is a need for computationally efficient al-

gorithms. These are algorithms that provide solutions with improved performance

(compared to initial solutions or solutions deployed in the field) within few simulation

runs.

In transportation, fundamental optimization problems are naturally formulated as

discrete problems. Additionally, realistic case studies quickly lead to high-dimensional

instances. Hence, this chapter designs a discrete SO algorithm that is both compu-

tationally efficient and suitable for high-dimensional problems. Moreover, the case

studies of this chapter, illustrate the robustness of the algorithm to the quality of the

initial point.

This chapter focuses on metamodel SO approaches. In past work, we have formu-

lated metamodel SO algorithms for various continuous SO transportation problems

(Osorio and Nanduri, 2015, Chong and Osorio, 2017, Zhang et al., 2017, Chen et al.,

2019a, Osorio, 2019). A recent review of metamodel SO methods appears in Oso-

rio and Chong (2015). A more detailed description of commonly used metamodels is
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given in Section 2.2.2. To the best of our knowledge, the use of metamodel approaches

for discrete SO has been limited to low-dimensional problems (with up to 15 decision

variables). In the broader area of transportation (i.e., not limited to vehicle-sharing)

discrete SO has been used in studies such as Jung et al. (2014), Chen et al. (2015),

Sebastiani et al. (2016), Jian et al. (2016), Boyacıet al. (2017).

This chapter formulates a novel metamodel for a family of car-sharing SO prob-

lems. We then combine the metamodel with an existing general-purpose discrete SO

algorithm, known as AHA, leading to a novel metamodel SO algorithm. The proposed

algorithm preserves the asymptotic convergence properties of the general-purpose

algorithm. More specifically, the proposed algorithm remains a locally convergent

algorithm.

In this chapter, we use a car-sharing network simulator (Fields et al., 2017), which

relies on few demand modeling assumptions. Instead, it relies primary on sampling

from disaggregate car-sharing reservation data. It provides a detailed description of

the spatial-temporal distribution of demand as well as of demand-supply interactions.

Unlike most methods that aggregate the data to fit aggregate model parameters, we

use the data in disaggregate form. Hence, we refer to our method as a data-driven

SO algorithm.

In the following parts of this chapter, Section 2.2 formulates the proposed method-

ology. Its performance is evaluated and benchmarked in Section 2.3 with experiments

on both synthetic toy networks and Boston networks. Summary of this chapter are

presented in Section 2.4. Algorithmic details are presented in Appendix B. The for-

mulation of the SP model that is used as a benchmark in Section 2.3.4 is given in

Appendix C. Additional implementation detailes are given in Appendix D.

2.2 Methodology

This section presents the proposed methodology. The network design problem is

formulated in Section 2.2.1. The general metamodel SO framework is discussed in

Section 2.2.2. The metamodel for the considered car-sharing network design problem
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is formulated in Section 2.2.3 and the proposed algorithm is described in Section 2.2.4.

The car-sharing network simulator used in this chapter as well as the role of the car-

sharing data are summarized in Section 2.2.5.

2.2.1 Network design problem formulation

We consider a two-way car-sharing system from the perspective of the car-sharing

operator. The network design problem is to assign a fleet of vehicles across a network

of stations such as to maximize the expected profit. We also refer to this problem as

the fleet assignment problem. The network design problem is studied for a given finite

time horizon, which we refer to as the planning period. To formulate the problem,

we introduce the following notation.

• xi: number of cars assigned to station i (decision variable);

• x: vector of xi’s for all i ∈ I;

• R(x;q1): random variable representing the revenue;

• g(x;q1): expected profit (SO objective function);

• ci: cost, over the planning period, of a parking space at station i;

• q1: exogenous simulation parameter vector (e.g., reservation pricing);

• N i: capacity of station i (i.e., number of parking spots);

• X: total fleet size (i.e., number of cars to assign);

• I: total number of stations;

• I: set of all stations, I = {1,2, . . . , I};

• F : feasible region.

The problem is formulated as follows:

max
x

g(x;q1) = E[R(x;q1)] −�
i∈I

cixi (2.2)
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subject to

�

i∈I
xi ≤X (2.3)

xi ≤ N
i
∀i ∈ I (2.4)

xi ∈ Z+ ∀i ∈ I. (2.5)

The objective function represents the expected profit for a given fleet assignment

vector, x. It is defined as the difference between the expected revenue E[R(x;q1)]

and the costs. The expected revenue is a simulation-based function, estimates of

which can be obtained via simulation. The cost parameters, ci, are exogenous. In

this work, they represent parking space leasing fees. Constraint (2.3) bounds the

total number of cars assigned across all stations with the fleet size. Constraint (2.4)

bounds the number of cars assigned to each station i with the space capacity of the

station. The number of cars assigned to each station are assumed to be non-negative

integers (Constraint (2.5)). Constraints (2.3)-(2.5) specify the feasible region, F .

The expectation in the objective function accounts for the stochasticity in the

simulation process. The simulator, which is summarized in Figure 2-1 and described

in more detail in Section 2.2.5, combines a sampling procedure that samples from

a set of car-sharing reservation data and an assigning procedure that determines

whether a reservation request will be satisfied and how it will be satisfied. In other

words, realizations of the revenue random variable R are obtained by sampling from

car-sharing reservation data. The sources of uncertainty include: (i) a stochastic

sampling process that samples from the historical reservation data to infer a set of

disaggregate latent demand (or desired reservations); (ii) a stochastic description

of how demand and supply interact and how truncation and censoring occur (e.g.,

probability with which a user for which his/her desired reservation is not available,

decides to opt out of making a reservation or decides to find a substitute reservation).

The challenges of addressing discrete SO problems, such as Problem (2.2)-(2.5),

were detailed in Section 2.1. Given these challenges, we propose an algorithm that at

every iteration, uses the set of estimates of g obtained so far to formulate and solve an
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(approximate) analytical discrete problem that: (i) provides good quality solutions

to the underlying SO problem, (ii) can be solved efficiently for high-dimensional

instances, and (iii) can be solved with a variety of widely-used commercial solvers.

Note that the traditional approach to address this fleet assignment problem is to

formulate it as a MIP (such a formulation is given in Section 2.2.3), or as a stochastic

programming model. The problem would no longer be simulation-based, and hence

large-scale instances could be solved efficiently. Nonetheless, this would come at the

cost of using only aggregate information from the car-sharing reservation data (since

the data would merely be used to fit a set parameters of the analytical mathematical

programs) and of embedding a simplified description of demand-supply interactions,

as is detailed below.

A stochastic programming model is used as a benchmark method in the case

study of Section 2.3.4. Compared to its SP counterpart, the simulator provides a more

detailed description of the truncation and of the censoring of demand. First, it satisfies

the first-come-first-reserve principle, i.e., the desired reservations are processed in the

order of their creation time (which is obtained from the historical data). Second, when

a user’s desired reservation is not available and he/she decides to consider alternate

substitute reservations, the simulator considers a sequential process where feasible

substitute reservations are ranked by a distance metric (for instance, available vehicles

that are closer in spatial or temporal distance, are more likely to be a substitute

than those further away). These aspects could be naturally formulated as analytical

nonlinear functions, or based on analytical linear approximations. Nonetheless, the

resulting SP would be less tractable and less scalable.

As is detailed below, the proposed methodology combines the advantages of using

a simulation-based model (which allows for the use of more detailed models and

historical data) and those of an analytical mathematical program (which allows for

computational tractability and scalability).
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2.2.2 General metamodel approach

Let us first briefly present the main ideas of the metamodel SO approach, which are

based on the continuous SO framework of Osorio and Bierlaire (2013). To formulate

the problem, we introduce the following notation.

• k: iteration index of the SO algorithm;

• mk: metamodel at SO iteration k;

• �
k
: vector of metamodel parameters at SO iteration k, element i is denoted

�k,i;

• z: vector of endogenous variables;

• q2: vector of exogenous parameters;

• gA: approximation of g (Equation (2.2)) derived by the analytical;

• h: constraints of the analytical network model.

The main idea of metamodel SO is to replace the simulation-based objective func-

tion (2.2) with an analytical approximation, which is known as the metamodel. In

the metamodel literature, general-purpose functions (e.g., low-order polynomial func-

tions, radial-basis functions, Kriging functions) are the most common choice both

for continuous SO problems (Jones et al., 1998, Barton and Meckesheimer, 2006,

Wild et al., 2008, Kleijnen et al., 2010, Ankenman et al., 2010) and for discrete

SO problems (Xu 2012, Sun et al. 2014, Salemi 2014 Chapter 4, Xie et al. 2016).

They are chosen based on their mathematical properties. They are referred to as

general-purpose functions because their choice does not depend on the specific prob-

lem formulation (i.e., their functional form is invariant to the choice of the objective

function (2.2)). Nonetheless, due to this generality, their functional form does not

embed any problem-specific structural information. Osorio and Bierlaire (2013) pro-

pose to formulate metamodels that embed problem-specific information. By doing so,
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the resulting SO algorithms have enhanced computational efficiency, scalability and

robustness to both simulator stochasticity and to the quality of the initial solutions.

In this chapter, we follow the idea of Osorio and Bierlaire (2013). The metamodel

is defined by (2.6) as the sum of a problem-specific function (gA) and a general-purpose

linear function (term within parenthesis of (2.6)). The problem-specific function (gA)

is the analytical objective function of a mathematical program (more specifically of a

mixed-integer linear fleet assignment problem), which embeds a simplified represen-

tation (compared to the simulator) of the mapping between the supply configuration

(x) and the expected profit (g of (2.2)). The goal of gA is to provide a good ana-

lytical approximation of the simulation-based objective function for the considered

problem. Nonetheless, this analytical approximation is not expected to be accurate

(due to the more detailed and intricate models of demand and of supply embedded

in the simulator, that are not accounted for in the mathematical program). Hence,

the metamodel (2.6) can be thought of as the objective function of a MIP that is cor-

rected for parametrically by both a scaling term (scalar �k,0 of (2.6)) and an additive

linear error term (term within parenthesis of (2.6)). To the best of our knowledge,

this is the first work to consider a metamodel that combines both a problem-specific

component and a general-purpose component for discrete SO problems.

At a given iteration k of the SO algorithm, we solve the following analytical

problem, referred to as the metamodel optimization problem.

max
x,z

mk(x,z;�k
,q2) = �k,0gA(x,z;q2) + ��k,1 +�

i∈I
�k,i+1xi� (2.6)

h(x,z;q2) = 0 (2.7)

x ∈ F . (2.8)

Since gA is the objective function of a MIP, the corresponding constraints of the MIP

are represented here through the function h of (2.7). These are formulated in detail in

Section 2.2.3. The constraints of Section 2.2.3 consist of both equality and inequality

constraints. They are summarized here as a set of equality constraints (they can

equivalently be represented as a set of inequality constraints).
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The metamodel optimization Problem (2.6)-(2.8) differs from the simulation-based

optimization Problem (2.2)-(2.5) in that: (i) it replaces the (unknown) simulation-

based objective function (g of (2.2)) with an analytical function (mk of (2.6)); (ii) it

has additional constraints (Eq. (2.7)). The main feature that has allowed us in the

past to design efficient algorithms for continuous SO problems is the formulation of

a metamodel that embeds an analytical and problem-specific approximation of g(x).

This is the key component of the approach, yet this is also where the main method-

ological challenge lies because it is necessary to formulate an analytical model that:

(i) provides a good approximation of the intricate function g(x), which as will be

discussed in Section 2.2.3 is particularly difficult for this car-sharing context, (ii) is

scalable (i.e., is suitable to address high-dimensional instances), and (iii) is computa-

tionally efficient. The latter is critical because the metamodel optimization problem

is solved at every iteration of the SO algorithm. Hence, it should be sufficiently ef-

ficient to warrant the allocation of computing resources to solving it rather than to

running the simulator (i.e., simulating new points or increasing the accuracy of the

estimates of simulated points).

The metamodel (mk of (2.6)) is a parametric function with parameter vector �
k
.

The latter are fitted, at every iteration of the SO algorithm, by solving a problem that

minimizes a least squares distance between metamodel predictions and simulation

observations. For more details, see Problem (A.1) in Appendix A. As discussed

above, the main challenge in this approach is the formulation of a computationally

efficient and scalable problem-specific approximation of g, denoted here gA. Let us

now present the proposed formulation.

In Figure 2-1, we show the basic logic of the data-driven metamodel SO framework.

The main idea is that historical disaggregate car-sharing reservation data (which

represents potentially censored or truncated demand) is used to estimate disaggregate

latent (i.e., uncensored and untruncated) demand (for a detailed description of this

demand estimation methodology, see Fields et al. (2018)). For a given latent demand

and a given supply solution (i.e., a given spatial allocation of the vehicle fleet), the

simulator stochastically evaluates the performance of the solution, this yields a set of
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disaggregate reservations (which may have been censored).

Every time new supply solutions are evaluated via simulation, the metamodel is

updated (i.e., its parameters are fitted by using the current set of simulation observa-

tions) and then used to solve an analytical optimization problem. More specifically,

the metamodel optimization problem is a mixed-integer program (MIP). While the

analytical metamodel (i.e., the MIP) provides an aggregate description of demand

and of demand-supply interactions, the simulator operates based on a disaggregate

representation of demand (i.e., individual desired reservations) and of demand-supply

interactions (i.e., individual realized reservations).

Fit metamodel parameters.
Optimize metamodel

by solving a MIP

Simulator

Reservation process

Demand estimation

Historical
disaggregate
reservation

records

New supply
solution

Simulated perfor-
mance of the solution.
Disaggregate simu-
lated reservations

Disaggregate
latend demand

Figure 2-1: Data-driven metamodel SO framework

2.2.3 Car-sharing network design metamodel formulation

To formulate the analytical problem-specific component of the metamodel, gA, which

approximates the profit of a given network design strategy, we introduce the following

additional notation.

• di
tl
: number of customers that desire a reservation at station i with start time t

and duration l;

• rtl: revenue from a reservation with start time t and duration l;
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• pij: discount to the revenue if a reservation is desired for station i but is fulfilled

at (i.e., is made at) station j;

• zi
tl
: number of customers that make a reservation at station i with start time t

and duration l;

• z
ij

tl
: number of customers that desire to make a reservation at station i with

start time t and duration l but make an adjusted reservation at station j with

start time t and duration l;

• tmax: number of one-hour reservation start time intervals during the planning

period (e.g., for an n-day planning period, tmax = n × 24);

• lmax: maximum reservation duration;

• Ii: set of stations “near” station i, including station i;

• L: set of reservation durations (in hours), L = {1,2, . . . , lmax};

• T : set of reservation start time interval indices, T = {1,2, . . . , tmax};

• T1(t, l): set of reservation start times for reservations with duration l that are

ongoing at time t (i.e., they start prior to t and have not finished at time t).

The vector z defined in Section 2.2.2 consists of all variables {zi
tl
} and {zij

tl
}. The

function gA is formulated as:

gA(x,z;q2) =�
i∈I �j∈Ii

�

t∈T �l∈L
p
ij
rtlz

ij

tl
−�

i∈I
cixi. (2.9)

This function is defined as the difference between the total revenue and the total cost.

Note that in the total revenue expression, we give a discount (pij) for reservations

that are adjusted (i.e., the initial desired reservation was not feasible because a car

was not available). This allows us to account for the impact on revenue of demand

spillback (i.e., demand censoring). Note that demand spillback and loss are described

in a more detailed and disaggregate manner in the simulator (see. Section 2.2.5).
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The auxiliary variable zij
tl

is related to the decision vector x through the analytical

network model, which is denoted by h in Equation (2.7) and is defined as follows.

�

j∈Ii
z
ji

tl
= z

i

tl
∀i ∈ I,∀t ∈ T ,∀l ∈ L (2.10)

�

j∈Ii
z
ij

tl
≤ d

i

tl
∀i ∈ I,∀t ∈ T ,∀l ∈ L (2.11)

�

l∈L
z
i

tl
+�

l∈L �

t′∈T1(t,l)
z
i

t′l ≤ xi ∀i ∈ I,∀t ∈ T (2.12)

z
i

tl
∈ R+ ∀i ∈ I,∀t ∈ T ,∀l ∈ L (2.13)

z
ij

tl
∈ R+ ∀i ∈ I,∀j ∈ Ii,∀t ∈ T ,∀l ∈ L, (2.14)

where T1(t, l) = {t′ ∈ T ∶ t′ + 1 ≤ t ≤ t′ + l − 1}. Equation (2.10) states that zi
tl
, the

number of reservations at station i with start time t and duration l, is the sum of all

desired reservations at station j (with start time t and duration l) that were shifted to

station i. Note that i ∈ Ii, hence this summation includes the reservations that were

desired and also made at station i (with start time t and duration l). Equation (2.11)

is a demand constraint. The right-hand side is the total demand for station i with

start time t and duration l. The left hand side considers the set of reservations

with a preference for station i start time t and duration l. This summation includes

reservations where: (i) the preference was available and was made, (ii) the preference

was not available and the reservation was adjusted and made at a neighboring station

j (with the same start time t and the same duration l). For a given fleet assignment,

the difference between the right-hand side and the left-hand side represents the lost

demand for reservations at station i with start time t and duration l. The left-side

of the Constraint (2.12) consists of two terms. The first term represents the total

number of reservations at station i that start at time t. The second term represents

the total number of reservations at station i that have started prior to time t and

are still ongoing. Hence, Constraint (2.12) ensures that at station i and time t, the

number of reserved cars (left-side of the inequality) is bounded above by the number

of cars assigned to station i. Constraints (2.13) and (2.14) assume non-negative
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real values for the auxiliary variables (zi
tl

and z
ij

tl
). The use of real-valued auxiliary

variables, rather than integer variables, contributes to the computational efficiency

of this analytical approximation. In this model, the exogenous parameters are di
tl
,

rtl, ci, pij, tmax and lmax. Together they form the exogenous parameter vector q2.

The endogenous variables are zi
tl
, zji

tl
and xi. The exogenous parameters rtl, ci, pij

and lmax are directly estimated from the data and in consultation with Zipcar staff.

Note that we have 0 ≤ pij ≤ 1 and pii = 1 for all i ∈ I and j ∈ Ii. A discussion

on the simplifications of this analytical model compared to the simulator is given in

Section 2.2.5.

The demand parameters (di
tl
) are estimated by sampling from the historical reser-

vation data to estimate latent demand. For a description of the demand sampling

step, see Section 2.2.5. Since this data sampling is stochastic, the case studies of

Section 2.3 consider experiments based on different realizations of the sampling (i.e.,

they consider different latent demand estimates). This serves to evaluate the impact

of varying demand on the performance of the proposed method. Moreover, the SP,

which is used as one of the benchmark algorithms in Section 2.3.4, considers a set of

latent demand realizations. This data sampling process yields a set of disaggregate

desired reservations, which are then aggregated to estimate the aggregate parameters

di
tl
. The simulator, unlike the analytical MIPs (metamodel MIP or SP), uses the

disaggregate demand without aggregating it.

For any station i ∈ I, if we assume the maximum number of stations in the

neighborhood of i, Ii, is smaller than a constant W , i.e., �Ii� ≤W , then the number of

auxiliary variables of the metamodel is in the order of O (W �I ��T ��L�), and the number

of constraints is in the order of O (�I ��T ��L�). Hence, by bounding the duration of the

planning period and the maximum duration of a reservation, the number of variables

and the number of constraints increase linearly with the number of stations. This

contributes to the scalability of the model. In summary, the metamodel optimization

problem is a mixed-integer linear model, which can be solved in a computationally

efficient way with a variety of standard solvers. For the case studies of Section 2.3.2,

the MIP (2.6)-(2.8) is solved on average in 2.4 seconds for the the Boston South End
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network and in 35.1 seconds for the large-scale Boston network of Section 2.3.3.

2.2.4 Discrete SO algorithm: MetaAHA

The proposed metamodel is embedded within a general-purpose discrete SO algo-

rithm. We have chosen the Adaptive Hyperbox Algorithm (AHA) of Xu et al. (2013).

As discussed in Section 2.1, AHA has been used to solve high-dimensional problems

with a decision vector of dimension 100. AHA is a locally convergence random search

algorithm. We use the term current iterate, denoted xk, to refer to the point con-

sidered to have best performance at iteration k. The name AHA stems from the

sampling, at every iteration, from a region which is the intersection of the feasible

region and the hyperbox (for more details, see Appendix B). The latter is centered

at the current iterate with a size that is updated, at every iteration, based on the

performance of the current iterate and of its neighbors. Let Hk denote the hyperbox

at iteration k. The proposed algorithm, denoted MetaAHA, is an extension of AHA.

Algorithm 1 presents MetaAHA.

Each iteration k of the algorithm consists of 4 main steps. Step 1 identifies the set

of points to simulate. These can be new points that have not been simulated before

or points that have already been simulated and for which we will run additional simu-

lation replications. Step 2 simulates these points. Step 3 checks whether termination

criteria are satisfied. Step 4 uses the set of all simulation observations collected so far

and updates the fit of the metamodel. Additional algorithmic details and a flowchart

summary of MetaAHA are given in Appendix B.

Algorithm AHA is obtained from MetaAHA by omitting Steps 1b, 1c , 3b and

4; and setting r (of Step 1a) to n (while for MetaAHA r = n − 2). Steps 1b and

1c solve mixed-integer programs. These steps yield solutions to MIPs. Hence, they

exploit problem-specific analytical structural information provided by the analytical

network design model. This information enables the algorithm to: (i) identify points

with good performance within few, or even no, simulation runs because the analytical

network design model can be solved without available simulation observations, and

(ii) become less sensitive to the quality of the initial sample. This sensitivity to the
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Algorithm 1 MetaAHA

Initialization:

– Initialize parameters: iteration index k = 1, hyperbox H1 = {x ∶ 0 ≤ xi ≤

N i,∀i ∈ I}, set n (the number of solutions to simulate per iteration). Set
the number of randomly sampled solution in each iteration r = n − 2. For
the metamodel parameter vector �1, set �1,0 = 1 and �1,i = 0 (∀i ≥ 1).

Step 1: identify the set of n points to sample

– Step 1a: obtain r points in F ∩Hk based on the asymptotically uniform
sampling mechanism of AHA.

– Step 1b: obtain 1 point, denoted xmeta
k

, as the solution to the metamodel
optimization Problem (2.6)-(2.8).

– Step 1c: obtain 1 point, denoted xmeta-hyper
k

, as the solution to the meta-
model optimization Problem (2.6)-(2.8) with the additional constraint that
the point belongs to Hk.

Step 2: simulation

– Following the procedure of AHA: simulate the points identified in Step 1;
simulate xk−1 (for k > 1); select the point with best performance xk (i.e.,
update the current iterate); update the hyperbox.

Step 3: check for algorithm termination

– Step 3a: test if xk is a local optimum following the procedure of AHA. If
so, stop.

– Step 3b: if the total number of iterations exceeds the maximum number
of iterations (i.e., if the computational budget is depleted), stop.

Step 4: metamodel update

– Step 4a: for any simulated point x that has not been evaluated by the
analytical network model, evaluate it (i.e., for a given x, maximize gA(x,z)
of Equation (2.9) over z subject to Constraints (2.10)-(2.14)).

– Step 4b: use all simulation observations collected so far to fit the meta-
model parameter �

k
(i.e., solve the least squares Problem (A.1) defined in

Appendix A).

Step 5: update iteration counter

– Set k = k + 1, proceed to Step 1.
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quality of the initial sample has been identified and discussed in past AHA work (Xu

et al., 2013).

While both Steps 1b and 1c exploit this problem-specific analytical information,

Step 1c does so within the hyperbox, leading to the identification of local points with

good performance, while Step 1b does so in the entire feasible region, leading to the

identification of global points with good performance. In Step 2, we determine the

number of replications to simulate for each point (this is done based on the approach

of AHA, which is also described in Appendix B), we simulate the points and then

update both the hyperbox and the current iterate. In Step 3b, if the computational

budget is depleted, then the algorithm is terminated without convergence. This serves

to reflect the most common way in which these algorithms are used in practice.

Note that MetaAHA does not change the main building blocks of the basic algo-

rithm AHA. It merely complements it by adding a problem-specific sampling strategy

which is based on the use of the metamodel. Hence, AHA’s asymptotic local opti-

mality guarantee is preserved. MetaAHA illustrates how a variety of general-purpose

discrete SO algorithms can be complemented with such problem-specific sampling

strategies to improve their robustness to the quality of the initial points as well as

their short-term (i.e., small sample) performance. For practitioners, who typically

use these algorithms under tight computational budgets, this has the potential to

improve the performance of these general-purpose algorithms.

2.2.5 Two-way car-sharing simulator

We summarize here the main ideas underlying the simulator. For more details on

the specification of the simulator as well as on its validation, see Fields et al. (2017).

The simulator takes as input disaggregate historical reservation data, estimated daily

demand per station (i.e., total daily number of reservations desired per station), a fleet

assignment strategy, and yields as output a set of realized reservations (reservations

actually made) with the corresponding network-wide profit.

More specifically, the simulation process consists of two main parts, as summa-

rized in Figure 2-1. The first step, referred to as the demand sampling step, samples
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from the data such as to (approximately) obtain a set of desired reservation requests

(i.e., reservations that users would ideally desire to make). These reservations can

be thought of as realizations of latent demand. Hence, we distinguish between real-

ized demand (an empirical distribution of which is given by the dataset) and latent

demand. The second step, referred to as the reservation simulation step, considers

a given latent demand (i.e., a given set of desired reservations) and simulates the

reservation process as follows. It ranks, and then sequentially processes, the desired

reservations by increasing creation time. For a given reservation, if a car is available

(at the desired station and during the desired time interval), then the reservation is

made. Otherwise, with a given probability the client will either not make a reserva-

tion (this is referred to as lost demand) or it will consider an “adjacent” reservation,

which is either at a nearby station or at a nearby start time (this is referred to as

demand spillback; it accounts for demand censoring). The probability depends on the

distance between the initially desired reservation and the considered adjacent reser-

vation. Once a given reservation is made, other users cannot use the same car at any

time during this reservation period. This procedure mimics the first-come-first-reserve

process.

The most important input to the simulator is the set of historical disaggregate

reservation data. In this work, we use Zipcar data. For each reservation observation

in the dataset, the following attributes are used: station (this is both the pick-up

and the drop-off location), start time, duration and reservation creation time (i.e.,

the timestamp of when the reservation was made). Additionally, based on informa-

tion available online we have estimated reservation revenues. The time resolution

of the simulator is based on that of the data which is 30 minutes. This means that

reservation durations and reservation start times are defined in 30 minute increments.

A main feature of this simulator is that this reservation process simulation is based

on a handful of parameters, which are estimated from the data. Additionally, there are

few modeling assumptions, which were made in consultation with Zipcar staff. They

include the probability of considering an adjacent reservation and the formulation of a

distance metric between reservations. Each of the two steps of the simulation process
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described above (i.e., demand sampling and reservation simulation) are stochastic. In

other words, the generation of a set of desired reservation requests is stochastic and

the mapping of a desired reservation to a realized (or even a lost) reservation is also

stochastic.

We now present the main simplifications of the analytical network model compared

to the simulator. These simplifications contribute to the formulation of an efficient

analytical metamodel. First, the analytical model does not enforce the first-come-

first-reserve rule of the simulator. In other words, for a given set of reservation

requests, they will not be processed by increasing order of reservation creation time.

Instead, the set of reservations that leads to highest (metamodel) profit will be realized

regardless of their respective creation times. Second, the analytical model allows for

reservations to be adjusted in space (i.e., change of station) but not in time (i.e., the

start time of a desired reservation cannot change). Third, the adjustment process

is simplified. For a given reservation, the simulator checks whether it is available,

and if not with a certain probability it considers to either not make any reservation

(leading to lost demand) or to attempt a nearby (in space and time) reservation

(leading to demand spillback). The simulator iterates on these steps (i.e., a given

client may attempt to make several reservations before deciding on a final reservation

or before deciding not to make a reservation). In the analytical model, there is no

sequential reservation process. Instead, demand spillback is approximated through

the discounted revenue parameter, pij of Eq. (2.9). Fourth, the simulator considers a

time resolution of 30 minutes (i.e., reservation start times and durations are defined

in 30 minute increments), while the analytical model considers a time resolution of 1

hour.

2.3 Case studies

In this section, we apply MetaAHA to optimize the design of two-way car-sharing sys-

tems. Section 2.3.1 considers a low-dimensional problem with synthetic toy networks.

Sections 2.3.2-2.3.4 consider high-dimensional problems for Zipcar’s Boston market.
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We study its two-way services for two Boston areas: (i) an area of downtown Boston

known as South End (Section 2.3.2) and (ii) a larger network that includes 23 zipcodes

of the Boston metropolitan area (they include Allston, Arlington, Boston, Brighton,

Brookline, Cambridge, Charlestown, Chelsea, Medford and Somerville) (Section 2.3.3

and 2.3.4). All experiments are conducted on a machine with 125GB RAM with an

Intel Xeon E5-2630 v3 processor.

2.3.1 Synthetic toy networks

The goal of these low-dimensional synthetic experiments is to evaluate the quality of

the analytical approximation (gA of Equation (2.9), which is provided by the analytical

network model) of the simulation-based objective function (g of Equation (2.2)).

We consider 3 networks with topologies that are simple and are representative of

subnetwork topologies of Zipcar’s Boston network. The 3 networks are displayed

in Figure 2-2. Each circle represents a car-sharing station. Each network has four

stations. Recall from Section 2.2.3 that, in the analytical model, when the desired

reservation of a user is not available, he/she may consider a substitute chosen from a

set of neighbors that are defined as spatially nearby locations (this set was denoted Ii

in Section 2.2.3). In other words, these are stations where the demand can spillover.

In Figure 2-2, for a given station i, its set of neighbors or substitute stations, Ii, is

the set of stations that are connected with an edge to station i. Hence, the three

network topologies of Figures 2-2a, 2-2b and 2-2c consider, respectively, a loosely

connected network of stations, where no stations share any neighbors; a centralized

network, where all stations have the center station as a neighbor; and a fully connected

network, where all stations are neighbors with all other stations. Each station has a

capacity of 6 vehicles (i.e., N i of Equation (2.4) equals 6), the fleet size is unlimited

(i.e., X of Equation (2.3) takes any value such that X ≥ 24). Hence, the feasible

region is {x ∈ [0,6]4 ∩Z4}, which contains 2401 feasible solutions. The data used for

simulation is the Zipcar reservation data related to such a subnetwork. The planning

period is an 8-day period in July 2014 (July 10 to July 17).

For each network, we generate a group of 10 demand scenarios. A demand scenario
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(a) Toy network 1 (b) Toy network 2 (c) Toy network 3

Figure 2-2: Toy network topologies

consists of the desired reservations generated through the demand sampling step

described in Section 2.2.5. The use of various demand scenarios serves to account

for demand stochasticity. For a given point, x, one simulation replication (i.e., one

simulation-based realization of its performance) is defined as the average simulated

performance over the 10 demand scenarios. For a given point, x, the final estimate of

its simulation-based performance, ĝ(x), is obtained as the average over 50 simulation

replications. For the analytical model, we generate a different demand scenario to

estimate its exogenous parameters (di
tl

of Equation (2.11)). For a given point x ∈ F ,

the analytical objective function, gA(x,z∗), is obtained by maximizing Equation (2.9)

over z subject to Constraints (2.10)-(2.14).

Each plot of Figure 2-3 considers one network and displays the analytical objective

function, gA(x,z∗), along the x-axis and the estimated simulation-based objective

function, ĝ(x), with a corresponding 95% interval along the y-axis. The confidence

intervals are barely visible. Each plot displays the 2401 feasible solutions.
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Figure 2-3: Comparison of the analytical objective function value with the estimated
simulation-based objective function value for toy networks
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For all three plots, there is a positive linear correlation between the analytical

approximations, gA(x,z∗), and the simulation-based estimates, ĝ(x). This indicates

that for all three representative network topologies the analytical network model

provides a good approximation of the simulation-based objective function.

2.3.2 Boston South End network

We now consider the South End neighborhood in downtown Boston. A map of the

area is displayed in Figure 2-4. The 23 stations over which we optimize are displayed

with red circles. The planning period is July 10-17, 2014. During this period the

average fleet size is 101 cars (i.e., X = 101). Based on consultation with Zipcar, we

set the station capacity, N i, to 16. We compare the performance of MetaAHA and

AHA. This comparison serves to evaluate the added value of complementing AHA

with information from the analytical problem-specific network model. The maximum

number of algorithm iterations, K, is set to 40. At every iteration, the number of

points to be simulated is set to 10 (i.e., n = 10).

To account for the stochasticity of demand, we proceed as in Section 2.3.1. We

consider a group of 10 demand scenarios. For a given point, x, one simulation replica-

tion (i.e., one simulation-based realization of its performance) is defined as the average

simulated performance over the 10 demand scenarios. Figure 2-5 contains four plots.

Each plot considers a different group of 10 demand scenarios. As in Section 2.3.1 for

each group of demand scenarios, one additional demand scenario is used to estimate

the exogenous parameters of the analytical network model.

Each plot displays the iteration index along the x-axis and the performance esti-

mate of the current iterate (i.e., simulation-based estimate of the objective function

of the best point) along the y-axis. The range of the y-axis differs across the plots.

Each plot illustrates, for a given demand scenario group, the difference in perfor-

mance of the two methods. Each plot displays 6 lines: 3 solid (resp. dashed) lines

that represent 3 MetaAHA (resp. AHA) runs. For all plots, we observe the following

main trends. First, MetaAHA identifies points with good performance from the first

iteration, while the points initially sampled by AHA do not have good performance.
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Figure 2-4: Zipcar stations in Boston South End neighborhood (map data: Google Maps (2017b))

Actually, for all six runs of MetaAHA, the best point identified in the first iteration

corresponds to the solution of the analytical network design problem (i.e., maximize

gA of Equation (2.9) over both x and z subject to Constraints (2.3)-(2.5) and (2.10)-

(2.14)). This shows the added value of the analytical structural information provided

by gA. Note that the initial points sampled by AHA are obtained from an asymp-

totically uniform sampling distribution for integral points from compact polyhedrons

as defined in Hong and Nelson (2006). This general-purpose sampling method allows

AHA to ensure asymptotic convergence properties, yet since it lacks problem-specific

information, it is not designed to provide good quality initial solutions. Second, as the

iterations advance, AHA identifies points with improved performance. This is con-

sistent with the experiments and observations in Xu et al. (2013), which show that

AHA is an efficient algorithm for a broad class of discrete SO problems. Nonethe-

less, it is outperformed throughout by MetaAHA. Third, MetaAHA shows a slight

improvement across iterations, yet it is not as significant as that of AHA. Fourth, the
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(a) Demand scenario group 1
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(b) Demand scenario group 2
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(c) Demand scenario group 3

0 5 10 15 20 25 30 35 40
Iteration

8.65

8.7

8.75

8.8

8.85

8.9

8.95

9

9.05

9.1

9.15

Es
tim

at
ed

 p
ro

fit
 o

f c
ur

re
nt

 it
er

at
e 

($
)

104

MetaAHA
AHA

(d) Demand scenario group 4

Figure 2-5: MetaAHA vs. AHA: objective function estimate of the current iterate across iterations

performance of the final solution derived by MetaAHA (i.e., the current iterate at the

final iteration) is similar across the 3 MetaAHA runs, while final solutions have higher

variability in performance for the 3 AHA runs. This indicates that MetaAHA is less

sensitive to the stochasticity of the simulator. This may be attributed to the struc-

tural analytical information provided by the problem-specific network design model

(gA).

Note that in Figure 2-5 all lines terminate prior to iteration 40. This occurs if

a current iterate is considered to be a local optimum (Step 3a of Algorithm 1). To

limit the premature convergence of AHA, Xu et al. (2013) have combined it with the

multi-start ISC framework (Xu et al., 2010). Also, most lines are not monotonically

non-decreasing. This can occur when running additional simulation replications of
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the current iterate leads to a lower objective function estimate (which can itself lead

to a change of the current iterate).

These results indicate the ability of the metamodel approach to: (i) improve the

robustness of the algorithm to the quality of the initial points, (ii) identify good

solutions within very few iterations, and (iii) lead to low variability across the perfor-

mance of the derived final solutions. These are all trends that have been observed in

our past metamodel work for continuous SO transportation problems (Zhang et al.,

2017, Chong and Osorio, 2017, Chen et al., 2019a, Osorio, 2019).

The results of Figure 2-5 indicate that a suitable approach would be to include

in the initial sample of AHA the solution proposed by the analytical network design

problem (i.e., the solution that maximizes gA of Equation (2.9) over both x and z

subject to Constraints (2.3)-(2.5) and (2.10)-(2.14)), and then to use the traditional

AHA algorithm for all other iterations. Let AHAInit denote this approach. We

now carry out a comparison of MetaAHA with AHAInit. This comparison serves to

evaluate the added value of using analytical network model information across the

iterations of AHA, rather than limiting the use of this analytical model to the first

iteration. We use the same experimental design as for Figure 2-5. Figure 2-6 display

four plots. Each plot considers a given group of 10 demand scenarios for the simulator

and one demand scenario for the analytical model. The solid (respectively, dashed)

lines represent MetaAHA (resp. AHAInit). The range of the y-axis differs across the

plots.

The following trends are common to the four plots. First, MetaAHA outperforms

AHAInit across all iterations. This reveals the added value of the metamodel mk

which combines the analytical network design information gA with the simulation in-

formation. In other words, using the analytical network design model gA to initialize a

general-purpose algorithm contributes to its efficiency, yet there is even further added

value of using the analytical information across iterations. Second, AHAInit tends to

converge more quickly to a local optimum. Often, this local optimum has performance

that is similar to that of the point obtained by solving the analytical network design

problem (i.e., the point obtained by maximizing gA subject to Constraints (2.3)-(2.5)
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(a) Demand scenario group 1
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(b) Demand scenario group 2
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(c) Demand scenario group 3
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(d) Demand scenario group 4

Figure 2-6: MetaAHA vs. AHAInit: objective function estimate of the current iterate across
iterations

and (2.10)-(2.14)).

For the 12 MetaAHA runs of Figure 2-6 (i.e., 3 runs for each of the 4 plots),

there are a total of 87 instances where the current iterate is updated. Recall that

for MetaAHA a current iterate can be of 3 types: (i) it can be a solution to the

metamodel optimization problem solved in the entire feasible region (i.e., Step 1b of

Algorithm 1, which yields points denoted xmeta), (ii) it can be a solution to the meta-

model optimization problem solved in the intersection of the entire feasible region and

the hyperbox (i.e., Step 1c of Algorithm 1, which yields points denoted xmeta-hyper),

or (iii) it can be obtained from random sampling (i.e., Step 1a of Algorithm 1, which

yields points denoted xsampled). Note that a point can be both of type xmeta and

of type xmeta-hyper. This occurs when the solution to the metamodel optimization
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problem in the entire feasible region is located in the hyperbox. Of the 87 different

current iterates of the 12 MetaAHA runs in Figure 2-6, more than two thirds (i.e.,

71.3% or 62 points) are of type xmeta or xmeta-hyper, while less than one third (28.7%

or 25 points) are of type xsampled. In other words, two thirds of the current iterates

are obtained by using the structural information of the analytical network model. For

the 12 final best solutions returned by the MetaAHA runs, 9 of them are identified

by solving the metamodel and 3 of them by random sampling. Moreover for the 12

runs of MetaAHA, we simulated 2364 points. Only 18.1% of the simulated points

are obtained by solving the metamodel (429 points), while the remaining 81.9% are

obtained by random sampling. Hence, even though the points derived by metamodel

evaluations represent only 18.1% of the total set of sampled points, they lead to 75%

of the final solutions and 71.3% of the current iterates. This highlights the added

value of the structural information provided by the analytical MIP. Among the 62

current iterates obtained by using structural analytical information, 21 are of type

xmeta and 47 are of type xmeta-hyper (note that 6 points are both of type xmeta and

xmeta-hyper). This shows that both the global (i.e., in the entire feasible region) and

the local (i.e., in the hyperbox) information of the analytical network model help to

identify points with improved performance. Recall that the metamodel is fitted after

every iteration, hence the metamodel optimization problems solved across iterations

differ and hence their solutions may differ. It is through this fitting process that the

metamodel combines information from the simulator with information from the ana-

lytical network model. The high number of distinct current iterates identified by the

metamodels illustrates the added value, across iterations, of combining the analytical

information with the simulated information.

Figure 2-7 compares the performance of the best fleet assignment identified by

MetaAHA (the proposed strategy) with that used by Zipcar during the planning

period of interest. The final proposed (or “best”) MetaAHA solution is defined as

follows. We consider a set of 50 new demand scenarios. For all 12 solutions derived

by MetaAHA (i.e., 3 algorithmic runs for each of the 4 plots of Figure 2-6), we

estimate the average (over the 50 demand scenarios, each scenario is simulated with
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50 replications) performance. The proposed solution is that with the best (i.e., largest)

average performance.
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Figure 2-7: Comparison of the Zipcar fleet assignment with the proposed assignment for the
Boston South End network

Figure 2-7 displays two plots. The left plot compares the profit estimates of

the two assignments. The right plot compares them according to vehicle utilization.

Both of these metrics are important for Zipcar. For each plot, the x-axis considers

the Zipcar assignment and the y-axis considers the MetaAHA proposed assignment.

Each plot displays 50 points, which correspond to 50 demand scenarios. For each

demand scenario, we estimate the performance based on 50 simulation replications.

The performance estimate of each point is displayed along with a, barely visible, 95%

confidence interval along each direction. Both the left and the right plots indicate that

for all 50 demand scenarios the proposed plan yields improved performance, and this

across all 50 demand scenarios. Compared to Zipcar’s fleet assignment, the proposed

solution yields an average improvement of profit of 3.2% and of vehicle utilization of

2.2%. Recall that these estimates are obtained via simulation. Hence, they do not

state that the proposed method outperforms the Zipcar method when deployed in

the field.

53



2.3.3 Boston area network - comparison versus AHAInit

In this section, we consider a larger area of the Boston metropolitan area. This

serves to evaluate the performance of MetaAHA for a high-dimensional problem. We

consider a network of 315 stations distributed throughout 23 zipcodes that span over

Allston, Arlington, Boston, Brighton, Brookline, Cambridge, Charlestown, Chelsea,

Medford and Somerville. The map of Figure 2-8 displays the stations as red circles.

We consider the same planning period as before. The station capacity, N i, is set

to 16, based on consultation with Zipcar. Historical data indicates that, during

this planning period, there are an average of 894 cars assigned to these stations,

i.e., X = 894. We proceed as before and consider a group of 10 demand scenarios.

One additional demand scenario is used to estimate the exogenous parameters of the

analytical model. We set the maximum number of iterations to 40 (i.e., K = 40) and

the number of points to simulate per iteration to 70 (i.e., n = 70).

Figure 2-8: 315 Zipcar stations in Boston area (map data: Google Maps (2017a))

Figure 2-9 displays the results of 8 MetaAHA runs (solid lines) and 8 AHAInit

runs (dashed lines). Only 3 of the 16 runs deplete the computational budget (i.e.,
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they stop at iteration 40). They correspond to 3 MetaAHA runs. More specifically,

the 8 MetaAHA runs stop at iterations 13, 14, 24, 33, 33, 40, 40 and 40. Those of

AHAInit stop at iterations 14, 15, 15, 19, 20, 24, 33 and 38. All 8 runs of AHAInit

yield final solutions with similar objective estimates. Seven out of the 8 MetaAHA

final solutions are better than all 8 AHAInit final solutions.
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Figure 2-9: MetaAHA vs. AHA: objective function estimate of the current iterate across iterations

Figure 2-10 compares the performance of the best solution identified by MetaAHA

with the fleet assignment strategy used by Zipcar. To evaluate the performance of

a given fleet assignment strategy (that proposed by MetaAHA or that of Zipcar),

we proceed as before. We generate 50 demand scenarios. For each of the 8 final

solutions derived by MetaAHA and for each demand scenario, we run 50 simulation

replications to estimate the average profit per solution. The solution with the highest

average simulated profit is selected as the proposed solution. Figure 2-10 displays two

plots: the left plot considers profit and the right plot considers vehicle utilization.

For each plot, the x-axis considers the Zipcar assignment and the y-axis considers the

proposed assignment. Each plot displays 50 points which correspond to the 50 demand

scenarios. Each point estimate is displayed along with a 95% confidence interval along

both directions. The confidence intervals, which are barely visible, are computed
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based on 50 replications. For both plots, the 50 points, which represent 50 different

demand scenarios, are above the diagonal. Compared to Zipcar’s fleet assignment,

the proposed solution yields an average improvement of profit of 6% and of vehicle

utilization of 3.1%. Moreover, for all 50 demand scenarios, the proposed strategy

improves both the profit and the fleet utilization. Again, note that this comparison

is based on simulated performance, which may not reflect field performance.
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Figure 2-10: Comparison of the Zipcar fleet assignment with the proposed assignment for the
Boston area network

2.3.4 Boston area network - comparison versus stochastic pro-

gramming

As mentioned in Section 2.1, the most common approach to study the fleet assign-

ment problem is the use of analytical optimization methods, such as mathematical

programs. In this section, we benchmark the performance of the proposed approach to

stochastic programming (SP), which accounts for demand uncertainty. We consider

a two-stage SP, where the second stage accounts for demand scenario realizations.

The SP formulation is given in Appendix C. We use the same Boston area network

as that of Section 2.3.3. We consider a set of 9 experiments with varying levels of

demand and of cost. Demand is scaled by a factor: � ∈ {1,2,3}, cost (i.e., term ci

of Eq.(2.2)) is scaled by a factor: ✓ ∈ {1,2,3}. For each experiment (i.e., a given
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value of (�, ✓)), we proceed as follows. We consider one demand scenario to esti-

mate the exogenous parameters of MetaAHA, and 3 additional demand scenarios for

SP and for the simulator. Hence, the SP model and the simulator used as part of

MetaAHA have the same demand input. When evaluating a solution via simulation

(within MetaAHA), the simulated estimate of the objective function is obtained as

the average over the 3 demand scenarios. We solve the SP model to obtain one SP

solution. We run MetaAHA 3 times (in order to account for the stochasticity of both

the simulator and the algorithm) to obtain 3 MetaAHA solutions. We use the same

MetaAHA algorithmic parameters as in Section 2.3.3 (i.e., K = 40 and n = 70). For

each final solution (SP or MetaAHA), we simulate its performance considering 50

demand scenarios and 50 simulation replications per demand scenario (for a total of

2500 simulations per solution). We compare the performance of the SP solution to

that of the best MetaAHA solution, which is defined as that with the best simulated

profit over the 2500 simulations.

Figure 2-11 displays 9 plots, one for each experiment. The demand scaling factor

� (resp. cost scaling factor ✓) is constant across columns (resp. rows) and increases

across rows (resp. columns). Each plot displays 50 points, which correspond to each

of the 50 demand scenarios. The y-axis (resp. x-axis) displays the estimated, via

simulation, mean profit over 50 replications using the SP (resp. best MetaAHA)

solution. Each point has a 95% confidence interval along both coordinate directions.

These intervals are barely visible. Each plot also displays the diagonal line defined

by y = x.

For � = 1 (i.e., top row of plots: Figures 2-11a, 2-11b, 2-11c), all 50 points are above

the diagonal line. In other words, the SP solution outperforms that of MetaAHA.

More specifically, the SP solution improves, on average, the profit by 0.65%, 0.43%

and 0.21%, for ✓ = 1,2 and 3, respectively. This trend is reversed for the other 2

rows of plots. For � = 2 (i.e., second row of plots), MetaAHA outperforms SP by an

average of 0.1%, 0.26% and 1.36%, for ✓ = 1,2 and 3, respectively. For � = 3 (bottom

row of plots), MetaAHA outperforms SP, on average, by 0.51%, 2.80% and 3.48%,

for ✓ = 1,2 and 3, respectively. For demand levels � of 2 or 3 (i.e., second or third
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row of plots), as the cost level ✓ increases, so does the amount by which MetaAHA

outperforms SP. For a given cost level (i.e., a given column of plots), as the demand

level increases (i.e., from the top row to the bottom row), so does the amount by

which MetaAHA outperforms SP.
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Figure 2-11: Comparison of the average profit, considering 50 demand scenarios, of the SP solution
and of the best MetaAHA solution

Figure 2-12 considers the same 9 levels of demand and cost. It evaluates the

ability of SP to approximate the simulation-based objective function. Each point

of Figure 2-12 considers a given feasible solution and displays along the x-axis the

simulated estimate of its objective function value and along the y-axis its SP objective

function value. Each plot considers a set of the following 30 feasible solutions: the SP

optimal solution (displayed as a blue circle), the best MetaAHA solution (displayed

as a red triangle), and a set of 28 randomly sampled solutions (black crosses) that

are in the neighborhood of the line connecting the SP optimal solution and the best

MetaAHA solution (the sampling process is detailed in Appendix D). The diagonal
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line, y = x, is also displayed. For each solution, the SP objective function value and

the simulation-based objective function estimate are based on the same 3 demand

scenarios. These demand scenarios are the same as those used to derive the SP

solution of the previous analysis. The simulation-based objective function estimate

is obtained as the average across 50 replications of each of these 3 demand scenarios

(i.e., each estimate involves 150 = 50 × 3 simulation evaluations). Figure 2-13 differs

from Figure 2-12 in that the y-axis of each plot displays the metamodel objective

function value. The value of the metamodel parameter � is that of the last iteration

of the MetaAHA run which generated the best MetaAHA solution. Each of the 9

subplots of Figure 2-12 have the same axis limits as the corresponding subplot in

Figure 2-13. Hence, the subplots are directly comparable across Figures 2-12 and

2-13.

For all plots of Figure 2-12, all points are above the diagonal line, i.e., SP tends

to overestimate the simulated profit for all cost and demand levels. For � = 1, the SP

objective function exhibits a positive linear correlation with the simulated estimate.

This also occurs for (�, ✓) ∈ {(2,1), (2,2)}. Hence, the SP model correctly ranks the

performance of the feasible solutions, and hence is an adequate tool for optimization.

Nonetheless for high values of demand and of cost (i.e., all plots with � = 3, as well

as the plot (�, ✓) = (2,3)), there is no longer a positive linear correlation.

For all plots of Figure 2-13, all points are close to the diagonal line. This indicates

that the metamodel approximates well the simulation-based objective function. The

positive linear correlation also highlights the ability of the metamodel to correctly rank

the performance of the solutions, and hence its adequacy for optimization. Unlike

Figure 2-12, this correlation trend holds even for high levels of demand and of supply.

These figures indicate the ability of the metamodel approach to approximate the

simulation-based objective function even as the demand-supply interactions become

more intricate to model (i.e., when both demand levels and cost levels are high).

Recall that the main simplifications of the MIPs (both the metamodel MIP and the

SP) compared to the simulator are the lack of the first-come-first-reserve principle,

as well as the coarse description of demand spillback (for a description of these sim-
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Figure 2-12: Comparison of the objective functions of the SP model and of the simulation model
across various demand levels and cost levels.
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Figure 2-13: Comparison of the objective functions of the metamodel and of the simulation model
across various demand levels and cost levels.
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plifications, see the last paragraph of Section 2.2.5). Hence, we expect the ability

of the MIPs to approximate the simulator’s objective function to deteriorate as the

demand and cost levels increase. This is illustrated by comparing Figures 2-12 and

2-13. Moreover, the results of Figure 2-13 indicate that a simple linear parametric

correction to the MIP (through the metamodel parameter �) suffices to correct for

these simplifications. In other words, we need not resort to the formulation of a more

intricate analytical optimization problem (e.g., with nonlinear functions to describe

spillback in more detail).

2.3.5 New York City case study

In this section, we apply our method to the Manhattan area of New York City. The

goal of this study is to detect the impact of different total car supply levels and

different demand levels on the performance metrics of a car-sharing company. We use

the data from Zipcar. We focus our study during April, May and June of 2017.

The goal of the experiments is know the performance of a car-sharing service

under different demand levels and supply levels. Given a specific level of demand and

a specific level of supply, we solve the optimization problem (2.2) to (2.5) to find an

optimized network design strategy. We evaluate this strategy using the simulator,

and treat its performance as the performance of the car-sharing service under the

given demand and supply level.

Experiment Setup

We design the following experiments for a single month. We can then apply the same

experiments to each of the three months, with only data input changed.

To study the impact of different levels of demand and supply on the performance

of a car-sharing service, we will vary value of the demand vector d and fleet size X.

For a month, let d0 be the demand vector we trained from data using the method of

Fields et al. (2017) and X0 be the actual average fleet size of the month. Note that

the number of cars at a station may change during the month, so to obtain X0, we
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calculate the average number of cars at each station and sum them up.

For each month, we will use three different demand levels, and denote the set of

these levels as D = {90% × d0, d0,110% × d0,}. We will also use three different supply

levels, and deote the set of these levels as S = {80%×X0,90%×X0,X0}. Hence, there

are 9 different combinations of demand and supply levels. For each such combination

(d,X) ∈D×S (d ∈D and X ∈S), we find an optimized network design strategy, and

use the simulator to evaluate 7 metrics: profit, total hours served, fleet utilization,

total number of customers served, total number of customers lost, revenue obtained

and revenue lost. Note that the optimization objective function is just the mean

simulated profit.

For different months, we use the same ci, N i (∀i ∈ I), and q across all experiments.

We assume all cars are homogeneous. In this study, there are 277 Zipcar stations,

i.e., I = 277.

Input preparation

For each of d ∈D, we generate and store the following intermediate data:

1. using the historical reservation records of the study month, generate Q1 = 21

scenarios, 20 of which will be used as simulator input, and the rest one will be

used to generate demand parameter for the analytical model;

2. using the historical reservation records of the study month, generate one group

of Q2 = 50 scenarios, which will be used to evaluate the solutions;

Experiments Procedure

Here we present the experiment procedure and some modifications of MetaAHA. For

each combination of (d,X) ∈D ×S, we do the following things.

1. Read in all previously simulated solutions that were obtained in any previous

experiments with the same demand vector d. Denote the set with all those

solutions as F0. Note some of the solutions may not be feasible current in for

current supply X.
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2. Randomly generate N = 80 feasible solutions, and add them into F0

3. For each solution x ∈ F0, simulate 10 replications and evaluate it analytically,

store the simulated objective value and analytical objective value.

4. Run MetaAHA once. In the procedure of MetaAHA, when fitting the meta-

model’s objective function in each iteration, we use all solutions in F0 and those

newly obtained in the current iteration. The fitting center is the current best

feasible solution obtained in this MetaAHA run. For solutions newly obtained

in the current iteration will be added to F0. If a solution is already in F0, just

updated the newly obtained simulation results.

5. After MetaAHA finishes, for each solutions in F0. Store the solution vector (x),

all simulated profit and analytical profit.

For the MetaAHA run, we set the maximum number of iterations to be 20, and in

each iteration, we sample 48 solutions randomly from the current hyperbox. In the

procedure of MetaAHA, if solution x is to be simulated at iteration k, we compute the

number of simulation replications to run at this iteration as max{Nk(x) − a(x),0},

where a(x) is the total number of replications that x has been simulated in this

MetaAHA run and previous experiments with same demand vector d, and Nk(x) =

min{10, �10(log20(k))
1.01�}.

Select the Best Solutions

For each combination (d,X), usually several thousands of solutions will be simulated

after the MetaAHA stops. Even though we can sort these solutions by their mean

simulated profit value, it should be noted that the solution with the highest ranking

we find in this way may not be the actual best one among all feasible solutions that

have been simulated. This is because (i) the small number of simulation replications

we run for each solution (ii) the Q1 = 20 demand scenarios for the simulator may not

be representative enough to show the whole picture of demand distribution.
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Another issue is that Zipcar divide the Manhattan island into 23 different non-

overlapping zones. Each station belongs to a specific zone. The feasible solution for

(d,X) we obtained are station-based, namely, each element of the decision vector is

the number of car assigned to a station. We can aggregate it into a zonal solution -

a vector with each element standing for the number of car in a zone. This is done

by simply sum up the numbers of cars assigned to the stations in a zone. Hence, one

zonal solution may correspond to several station-based solutions.

To select the best solution for a combination of (d,X), we order all feasible solu-

tions (station-based) we obtained in the MetaAHA procedure by their mean simulated

profit. Let FdX = � be the set for candidate solutions. Beginning from the one with

the largest mean simulated profit, we add each solution into FdX unless (i) FdX has

10 solutions, (ii) there are three different corresponding zonal solutions for those so-

lutions already FdX and (iii) there are five solution in FdX whose the zonal solution

is the same as the zonal solution of this solution. Hence, FdX will have at most 10

solutions after this process. These solutions corresponds to no more than three zonal

solutions. Each zonal solution correspond to fewer than 5 solutions.

For the station-based solutions in FdX , we simulation each of them for 50 repli-

cations, using the Q2 = 50 demand scenarios we generated before as the input for the

simulator. For each solution, we plot its empirical cumulative distribution function of

the simulated profit based on the 50 replications. Then we pick one using the curves,

and treat it as the best solution for combination (d,X).

Experiment Results

We present some interesting results. First, we show the comparison between the

optimized solution and actual network design strategy Zipcar used. In order to have

a fair comparison, we only consider cases with trained demand and actual fleet size

for each month (100% demand level and 100% supply level).

The heat maps of Manhattan in Figure 2-14, we show the different of the optimized

strategy and actual strategy for April, May and June of 2017, respectively. The shape

of a heat map approximate the Manhattan island. The x-axis is the longitude and the
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y-axis is the latitude. The color of the heat map indicate the change of cars. Green

means either there is no Zipcar stations, or the optimized solutions suggests do not

change the number of cars. For places where the color is more red, the optimized

solution suggests to add more cars to this places. For places where the color is more

towards blue, we suggests to remove more cars. The numbers on the color bar on

the right side of each heat map are used in the process of generating the heap maps.

Their values do not make practical sense when we interpret the heat maps. The big

blue area in the lower center part, which is areas around the Empire State Building,

shows that during the three-month period, Zipcar seems put more cars than needed

there. This is consistent with our observation that the fleet utilization there is low.

The optimized solution suggests that removing cars from there can increase expected

profit. The upper center part of the maps, which is the East Harlem area, shows

red for the three-month period. This is consistent with our observation that the fleet

utilization there is high. These comparisons shows that our method gives consistent

suggestions over the time.
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Figure 2-14: Optimized Solution vs. Real Assignment (100% Supply 100% Demand)

In Figure 2-15, we compare the simulated profit of the proposed solution under the

100% demand level and 100% supply level and the Zipcar actually fleet assignment

for each month. Each of the three plots correspond to a month. The x-axis is profit of

Zipcar’s actual assignment and the y-axis is the performance of the proposed solution.
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There are 50 points in each plot, and each corresponds to one demand scenario. For

each solution, we simulate each demand scenario for 50 times. The vertical error bar

on each point stands for a 95% confidence interval of the mean profit estimation of the

corresponding demand scenario under the proposed solution. Similarly, the horizontal

error bars is for the profit confidence intervals under Zipcar’s actual fleet assignment.

For each month, we can see that all 50 points is above the diagonal line. Also, all

error bars do not intersect with the diagonal line. These results indicates that the

simulated profit of the proposed solution is significantly higher than the simulated

profit of actual fleet assignment. In Figure 2-16, we make a similar comparison for

the fleet utilization of the two network design strategies. The results is also similar

to the comparison of profit: for each month, all 50 points are all above the diagonal

line and all error bars do not intersect with the diagonal line. Note only maximizing

the profit, rather than utilization, is the objective of the network design problem.

The comparison of utilization indicate that our solution can significantly increase the

utilization of the fleet from the actual practice.
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Figure 2-15: Profit Comparison (100% Supply 100% Demand)

Another interesting finding shows that overall Zipcar may have a fleet size larger

than actually needed. Here we focus on June 2016. In Figure 2-17, we plot the profit

of the optimized solution under different demand levels and supply levels. Different

colors stand for different level of demand. The x-axis stand for the level of supply.

The y-axis stand for the profit. In Figure 2-18, we plot the revenue of the optimized

solution under different levels of demand and supply. The plot format is same as

Figure 2-17, except that the y-axis is the revenue. We can see that as the supply
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Figure 2-16: Utilization Comparison (100% Supply 100% Demand)
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Figure 2-17: June 2016 Profit
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Figure 2-18: June 2016 Revenue

increase, for different levels of demand we tried in experiment, the revenue increases

slightly, while the profits decrease. This means that the as we increase the supply

level from 80% to 100%, the increase of revenue cannot cover the extra cost of adding

more cars. Which means the 100% supply level is larger than needed for even 100%

demand level. This finding results in the conclusion that Zipcar put too many cars in

the Manhattan market for June 2017. The same phenomenon can be also observed

in April and May of 2017.

In Figure 2-19, we plot the change of total reservation hours served; in Figure 2-20,

we plot the change of number of customers served. We can see that both reservation

hours and number of served customers increase only slighted as the supply increase,

under all three demand cases. In Figure 2-21, we plot the change of fleet utilization as

the supply level increases for all three demand levels. We can see that as the supply

level increases, the fleet utilization drops quickly. This indicates that if we add more

cars to the Manhattan fleet during June 2017, the fleet resources might be wasted.

67



These findings are consistent with our findings with revenue in Figure 2-18.
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Figure 2-19: June 2016 Hour
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Figure 2-20: June 2016 Served Customer
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Figure 2-21: June 2016 Utilization

2.4 Summary

This chapter formulates a discrete SO algorithm for a family of large-scale car-sharing

network design problems. The approach is a metamodel SO approach. A novel

metamodel is formulated, which is based on a MIP formulation. The metamodel is

embedded within a general-purpose locally convergent discrete SO algorithm.

The proposed algorithm is validated with synthetic toy network experiments. The

metamodel approximations of profit are shown to have a positive linear correlation

with the higher resolution simulation-based profit estimates. The algorithm is then

applied to several Boston case studies using Zipcar car-sharing reservation data, in-

cluding a high-dimensional problem. The method is first benchmarked versus two
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types of algorithms that differ only in their use of the analytical MIP information:

one benchmark algorithm (AHA) does not use any analytical network information

(i.e., no MIP information), the second benchmark algorithm (AHAInit) uses the MIP

information only to identify an initial solution but not throughout the optimization

process. The experiments indicate that the analytical network model information is

useful both at the first iteration of the algorithm and across iterations. The solutions

derived by the proposed method are also benchmarked versus the Zipcar deployed

solution. Via simulation, the proposed solutions outperform those deployed, both in

terms of profit and vehicle utilization. This holds for all considered demand scenarios.

We also benchmark MetaAHA versus stochastic programming (SP). SP outper-

forms the proposed approach for low levels of demand and of cost. As demand and

cost levels increase, so does the occurrence of demand spillback and the importance of

accounting for the first-come-first-reserve principle. In these cases, the SP approach

is outperformed by the metamodel approach.

The combination of the problem-specific analytical MIP with a general-purpose

SO algorithm enables the discrete SO algorithm to: (i) address high-dimensional

problems, (ii) become computationally efficient (i.e., it can identify good quality so-

lutions within few simulation observations), (iii) become robust to the quality of the

initial points and to the stochasticity of the simulator. More generally, the informa-

tion provided by the MIP to the SO algorithm enables it to exploit problem-specific

structural information. Hence, the simulator is no longer treated as a black box.
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Chapter 3

A globally convergent discrete SO

algorithm suitable for

high-dimensional car-sharing service

design problems

3.1 Introduction

In this chapter, we propose to extend a globally convergent discrete SO methods to

enable its efficient use for high-dimensional car-sharing service design problems. The

proposed approach allows us to utilize the detailed high-resolution car-sharing service

data. We reviewed recent studies about car-sharing network design in Section 2.1.1.

Over the past years, there are many studies about globally convergent discrete

SO algorithms. Proposed by Yan and Mukai (1992), stochastic ruler algorithm is one

the the earliest globally convergent random search discrete algorithm. It creates a

discrete-time Markov chain over the problem feasible region. In each iteration, this

algorithm explore a small neighborhood around the current iteration. This algorithm

only maintain simulation results of one solution, which allows it save memory spaces

in implementation. But its practical performance is usually poor (Hong et al., 2015).
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Andradóttir (1999) improved the stochastic ruler algorithm, and showed that using

accumulated information can largely improve the performance of random search al-

gorithms. Shi and Ólafsson (2000) introduced the Nested Partition algorithm (NP),

which partition the feasible region into non-overlapping subregions. In each iteration,

NP partition the current best subregion and sample and simulate solutions from each

of the newly generated subregions. NP uses a bounding method that rank subregions

by comparing the best solution in each of them. Andradóttir and Prudius (2009)

extended NP and proposed Balanced Explorative and Exploitative Search with Es-

timation (BEESE), which is a framework combines a global search scheme based

on NP and a local improve scheme based on hill-climbing algorithm. Norkin et al.

(1998) proposed Stochastic Branch-and-Bound (SBB) algorithm. This method also

relies on partition the feasible region into non-overlapping subregions. Unlike NP,

which aggregate most existing subregions except the best one into a large subregion,

the SBB algorithm keeps all subregions. In this way, the algorithm does not need

to record how each subregion are generated, which saves machine memory when im-

plementing. Based on SBB, Xu and Nelson (2013) proposed Empirical Stochastic

Branch-and-Bound (ESBB), which combines the branching scheme of SBB and the

bounding method of NP. This is the state-of-art random search discrete SO algorithm.

However, most these algorithms have only been tested on low-dimensional problem

with less than 30 decision variables. Shi and Ólafsson (2000) provided a case study

of a travel salesman problem (TSP) with 101 cities (i.e., 101 decision variables), in

which the objective value can be computed in a very fast way.

Another type of algorithms rely on an analytical model to obtain solutions. These

methods mainly have two steps in one iteration: sample solutions based on the model,

and update the model. Some algorithms use probabilistic models which assign a

probability to be sampled to each feasible solution. Hu et al. (2008) proposed to

use distributions belongs to the natural exponential family. Other commonly used

probabilistic model includes Gaussian process (e.g., Sun et al. (2014)) and Gaus-

sian Markov random fields (e.g. Salemi (2014) and Salemi et al. (2019)). Xie et al.

(2016) proposed a globally convergent Bayesian optimization framework using Gaus-
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sian model and Kriging model. Metamodel SO is another type of model-based SO

algorithm. A metamodel is an analytical model which approximates the simulated

objective value of the SO problem (Barton and Meckesheimer, 2006). Commonly used

metamodels for SO include Kriging model (Kleijnen, 2009, Ankenman et al., 2010,

Xu, 2012), radial-basis model Wild et al. (2008) and low-order polynomial model.

See Barton and Meckesheimer (2006) for a summary. These general-purpose discrete

SO algorithms do not embed any problem specific information. They are referred as

functional metamodel Søndergaard (2003). They have been tested with problem with

fewer than 20 decision variables.

There is a lack of literature about globally convergent discrete SO algorithms that

can solve high-dimensional problem (i.e., with more than 10 decision variables ac-

cording to Xu et al. (2013)) efficiently under tight computational budget. In practice,

many problems require to obtain good solutions within given time. Most asymptoti-

cally globally convergent algorithm are not designing for high-dimensional problems

and are not scalable due to the curse of dimensionality. Hence, there is a need to

develop methods that can provide good solutions at the earlier stage of the algorithm

run and maintain the globally convergent property so that the algorithm does not

stop immaturely.

In this work, we propose an algorithm that combines metamodels with ESBB, a

state-of-art globally convergent random search general-purpose discrete SO algorithm.

We follow the framework of Osorio and Bierlaire (2013) and use metamodels with

problem specific information. We study the problem of how to use analytical model

that contains problem specific information to enhance the computational efficiency

and scalability of a globally convergent discrete SO algorithm.

We use the metamodel for two purpose: (1) update and solve the metamodel

in each iteration to obtain new solutions, and (2) use the metamodel to build a

smaller sampling region and enhance the efficiency for solution sampling. We have

two different metamodels, both in the form of MIP. We will study the performance of

the proposed algorithm using the two metamodels of different accuracy. In this study,

we have detailed data about the historical reservation record of a two-way car-sharing
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service provider. We use an efficient simulator propose by Fields et al. (2017), which

can sample directly from the data to approximate the demand information. By using

this simulator, we achieve the goal of optimizing the car-sharing network design using

disaggregated information from historical data.

The following part of this paper are organized as follows. In Section 3.2, we dis-

cuss our methodology, including the metamodel SO framework, two metamodels of

different accuracy and the globally convergent algorithm we propose. In Section 3.3,

we present case studies to show how well the metamodels can approximate the simu-

lator, and the performance of the proposed algorithm. In Section 3.4, we summarize

this chapter.

3.2 Methodology

In this chapter, we use discrete SO algorithm to address the problem of two-way car-

sharing service design, the same problem we addressed in Chapter 2. We determine

the way to assign certain number of cars to given stations in a way that the expected

profit of the car-sharing system will be maximized. A station is a predetermined place

where the company put a certain number of cars. We first formally define the problem

as a SO problem. This formulation is the same as the one proposed in Section 2.2.1.

We use the following notation.

• I: total number of stations

• I: set of all stations, I = {1,2, ..., I}

• x: decision vector, xi (i ∈ I) is the number of cars at station i

• R(x;q1): random variable representing the revenue

• g(x;q1): expected profit, i.e., the objective function of the SO problem

• ci: cost of putting one car at station i ∈ I

• q1: exogenous simulation parameters
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• N i: capacity of station i

• X: total fleet size, i.e., the number of cars to be assigned

• F : problem feasible region

We formulate the problem as the follows

max
x

g(x;q1) = E[R(x;q1)] −�
i∈I

cixi (3.1)

subject to

�

i∈I
xi ≤X (3.2)

xi ≤ N
i
∀i ∈ I (3.3)

xi ∈ Z+ ∀i ∈ I. (3.4)

The objective function (3.1) is the expect profit, i.e., the expected revenue E[R(x;q1)]

minus the cost ∑i∈I cixi, when the network design is represented by the decision vector

x. For any given x, the revenue R(x;q1) cannot be computed directly, rather, we can

only obtain one sample by running the simulator for one replication. The expected

revenue for a given network design x can be estimated by calculating the average value

over samples obtained by running multiple simulation replications. Constraint (3.2)

requires that the total number of cars assigned be smaller than the fleet size. Con-

straint (3.3) forces the number of cars at each station be smaller than the station

capacity. Constraint (3.4) means that all decision variables should be non-negative

integers. Constraint (3.2)-(3.4) forms the problem feasible region F .

We use the two-way car-sharing simulator of Fields et al. (2017). This simulator

samples directly from historical reservation records to represent the attempts demand

information, and then try to assign these attempts to the car-sharing fleet. For any

given network design strategy, it will return the reservation attempts succeed, and

compute the system revenue based on the succeeded attempts. One drawback of such

data is that a lot of lost customers cannot be observed when the car supply is low. To
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overcome this problem, Fields et al. (2018) discussed in detail about how to address

the censored and truncated historical reservation, and provided a framework to infer

the latent demand using the simulator of Fields et al. (2017) that samples directly

from historical reservation record of two-way car-sharing service. We use the demand

inferred by that framework. When supply is low, the order of the reservation making

of different customers also matters a lot. In Section 2.1.1, we defined the term first-

come-first-serve to describe the principle that the customer who make reservation

first will get the car if there are others wanting to use a car at the same place and for

overlapping reservation times.

In the following part of this section, we introduce the general metamodel SO

framework in Section 3.2.1. Then introduce the two metamodel we will use in Sec-

tion 3.2.3. Next, we introduce the low-dimensional search subregion construction

method and its benchmark methods in Section 3.2.4

3.2.1 Using the MIP as a metamodel

As discussed in Section 3.1, a metamodel is an analytical model that approximates

the simulator’s objective function. Metamodel simulation-based optimization, i.e.,

metamodel SO, is a procedure that iteratively solve and update the metamodel. Oso-

rio and Bierlaire (2013) proposed a framework that use a metamodel which combines

a problem specific metamodel, or physical metamodel, with a lower-order polyno-

mial model. Such combination was used to solve a continuous SO problems in urban

transportation context. It increases the computational efficiency of general-purpose

algorithms (Osorio and Nanduri, 2015, Chong and Osorio, 2017, Zhang et al., 2017,

Chen et al., 2019a, Osorio, 2019). Zhou et al. (2019) (i.e., Chapter 2) extended the

framework of Osorio and Bierlaire (2013) and proposed MetaAHA, an locally conver-

gent algorithm, and applied to solve large-scale car-sharing network design problem.

Such algorithm are efficient to find good solutions for high-dimensional discrete SO

problems.

We follow the framework of Osorio and Bierlaire (2013). We use the following

notation.
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• k: the iteration index of the SO algorithm

• mk: the metamodel at iteration k

• �
k
: vector of metamodel parameters at SO iteration k

• �i: the ith element of �
k

• z: vector of endogenous variables

• q2: vector of exogenous parameters

• gA: analytical expression approximating g, the simulated objective function

• h: constraints of the analytical model

Following the idea of Osorio and Bierlaire (2013), the metamodel of iteration k is as

follows.

max
x,z

mk(x,z;�k
,q2) = �k,0gA(x,z;q2) + ��k,1 +�

i∈I
�k,i+1xi� (3.5)

h(x,z;q2) = 0 (3.6)

x ∈ F . (3.7)

The objective function (3.5) approximates the expected profit - the simulator’s objec-

tive function g (i.e, Equation (3.1)). It consists two parts. The first part �k,0gA(x,z;q2)

is an analytical approximation gA(x,z;q2) of g multiplied by a scale parameter �k,0.

gA is the physical metamodel which has problem specific information. It describes g

in a simplified way. In our case, gA is a MIP that approximate the simulated profit.

The second part (�k,1 +∑i∈I �k,i+1xi) is a linear expression of all decision variables.

It is the functional part of the metamodel. In each iteration of the algorithm we will

present later, the value of the metamodel parameters (i.e., �
k
) will be updated by the

fitting methods described in Appendix A. Hence, in each iteration, the metamodel

will have different parameter values, and solving it may result in different solutions.

Equation (3.6) represents the set of all constraints needed for the metamodel. Such a
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constraint can be either equality or inequality. Since in optimization problem, we can

always change an inequality constraint into equality constraints by adding auxiliary

variables, we simple use one equality constraint to represent them. Equation (3.7)

indicates that x must be feasible, i.e., subject to Equation (3.2)-(3.4). Details about

the metamodel of our car-sharing network design problem will be presented in Sec-

tion 3.2.3.

Compared to the original SO problem (3.1)-(3.4), the metamodel no long need

the simulator to evaluate its objective function. It is now an analytical optimization

problem. Also, we add more constraints to the original problems, i.e., Equation (3.6).

In Figure 3-1, we summarize the basic logic of metamodel framework. At the

beginning of each iteration, we update the metamodel parameter � using previous

simulated solutions. Detailed description about how to update the value for � are

presented in Appendix A. We obtain new solutions by both solving the metamodels

and randomly sampling. Then we feed the newly obtained solutions to the data-

driven simulator, and evaluate their performance. For each solution, the simulator

will return disaggregated simulated reservation, based on which we can estimated

the expected revenue. With the revenue estimation, we enter the next iteration and

update the metamodel again. In this work, we focus on the step of how to obtain

better solutions more efficiently.

3.2.2 Using the MIP to identify low-dimensional subregions

with good performance

Often, globally convergent discrete SO algorithms are not designed for high-dimensional

problem. For example, an important step of ESBB is to partition the current best

subregion into lower-dimensional non-overlapping subregions and then sample from

the newly generated subregions. When the number of decision variables is large, the

volume of the current best subregion will still be huge even after many iterations.

Uniformly sampling within such a large space will be inefficient. In our car-sharing

problem, there is a network effect: demand of one location may spillback to nearby
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Figure 3-1: Data-driven metamodel SO framework

locations. We propose a method that utilize such information to define the subregions

for sampling We use a metamodel to select the dimensions. Then we build a small

hyperbox around the given solution, such that only values of the selected dimensions

are allowed to be changed, while the rest dimensions are fixed.

To formulate the dimension-selection problem, we use the following additional

notation.

• xk: the current iterate at the end of iteration k

• Rk: the current best subregion, i.e., the subregion containing xk

• LBk

i
: the minimum value of all solutions in Rk along dimension i ∈ I, i.e.,

LBk

i
=minx∈Rk xi

• UBk

i
: the maximum value of all solutions in Rk along dimension i ∈ I, i.e.,

UBk

i
=maxx∈Rk xi

• u: a binary decision vector, ui = 1 if dimension i (i ∈ I) is selection, otherwise

ui = 0

• uk: the solved value of u in iteration k
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• U : the maximum number of dimensions to be selected, a non-negative integer

• ": a small positive real number

At the beginning of iteration k (k > 1) of MetaESBB, we have xk−1 as the current

iterate, Rk−1 as the current best subregion, mk(x,z;�k
,q2) (i.e., Equation (3.5))

as the metamodel objective function of iteration k and h(x,z;q2) = 0 (i.e., Equa-

tion (3.6)) be the constraints corresponding to the metamodel. We select U dimension

by solving the following analytical optimization problem

max
x,z,u

mk(x,z;�k
,q2) + ��

i∈I
"ui� (3.8)

subject to

h(x,z;q2) = 0, (3.9)

x ∈ F , (3.10)

LB
k−1
i ui + x

k−1
i (1 − ui) ≤ xi ∀i ∈ I, (3.11)

xi ≤ UB
k−1
i ui + x

k−1
i (1 − ui) ∀i ∈ I, (3.12)

�

i∈I
ui ≤ U, (3.13)

ui ∈ {0,1}, ∀i ∈ I. (3.14)

Constraint (3.9) forces the x to be within the problem feasible region, and (3.10) is

the same to Constraint (3.6). Constraint (3.11) and (3.12) mean that when ui = 0, xi

must be equal to xk−1
i

, and when ui = 1, xi can take value between LBk−1
i

and UBk−1
i

.

Constraint (3.11) and (3.12) ensure that only the value of the selected dimensions

are allowed to change, while for dimensions that are not selected, the values will

be fixed to the current value of the current iterate. Constraint 3.13 ensures that

at most U dimensions can be selected. Constraint 3.14 states that all ui’s must be

binary. The term (∑i∈I "ui) in the objective function (3.8) allows us to select as

more dimensions as we can. Since the value of " is set to be close to zero, we are

essentially maximizing the metamodel objective mk(x,z;�k
,q2) (i.e., Equation (3.5))
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with additional requirement that at most U decision variables can be different from

the current iterate xk.

The MIP (3.8)-(3.14) allows us optimally select U dimensions. We denote this

procedure as OptDim. Solving it gives us uk, the optimal value of u of iteration k.

We then use uk to build a hyperbox

H
opt
k
= �x ∶ LBk−1

i u
k

i + x
k−1
i (1 − u

k

i ) ≤ xi ≤ UB
k−1
i u

k

i + x
k−1
i (1 − u

k

i ),∀i ∈ I� , (3.15)

where uk

i
is the ith element of uk. In order to speed up the solution procedure, we

may relax x to be continuous. Since the two metamodel we proposed in Section 3.2.3

are both MIPs, this dimension-selection problem is also a MIP.

With such a hyperbox which allows only U selected dimensions to change, in

iteration k, we can sample from the lower-dimensional subregion Hopt
k
∩ Rk−1 and

thus reduce the size of the searching space. Also, these solved U dimensions are the

result of optimizing a metamodel which approximates the simulation objective and

accounts for the network effect such that customers may spillback from one station

to its neighboring stations when there is no available car at the desired location.

3.2.3 Two MIPs for car-sharing network design

We present two MIPs that approximate the simulated estimation of the SO problem’s

objective function g (i.e. Equation (3.1)). Both of them are simplification of the

simulator, and contain problem specific information. One MIP contains more detailed

information about joint demand distribution over both time and space, and we call

it detailed model. The other MIP contains less detailed information about demand

distribution over space and time, and we denote it as simple model. With the problem

specific information in the MIP, the simulator is no long a black box. Rather, it can

be viewed as a “gray” box. The level of the problem specific information contained in

the metamodel is an indicator of the gray level of the simulator, i.e., how much we

know about the simulator. In Section 3.3, we will first use small-scale toy networks

to compare how well the two metamodels can approximate the simulator. Then we
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will study the performance of the algorithm, which we will propose in Section 3.2.4,

with the two metamodels.

Detailed MIP

For the detailed MIP, we use the same one proposed in Section 2.2.3. We use the

following notation.

• di
tl
: number of customers that desire a reservation at station i with start time t

and duration l;

• rtl: revenue from a reservation with start time t and duration l;

• pij: discount to the revenue if a reservation is desired for station i but is fulfilled

at (i.e., is made at) station j;

• zi
tl
: number of customers that make a reservation at station i with start time t

and duration l;

• z
ij

tl
: number of customers that desire to make a reservation at station i with

start time t and duration l but make an adjusted reservation at station j with

start time t and duration l;

• tmax: number of one-hour reservation start time intervals during the planning

period (e.g., for an n-day planning period, tmax = n × 24);

• lmax: maximum reservation duration;

• Ii: set of stations “near” station i, including station i;

• L: set of reservation durations (in hours), L = {1,2, . . . , lmax};

• T : set of reservation start time interval indices, T = {1,2, . . . , tmax};

The MIP is formulated as follows.

g
c

A
(x,z) =�

i∈I �j∈Ii
�

t∈T �l∈L
p
ij
rtlz

ij

tl
−�

i∈I
cixi. (3.16)
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The metamodel constraint h, i.e., Equation (3.6) consists of the Constraints (3.17)-

(3.21).

�

j∈Ii
z
ji

tl
= z

i

tl
∀i ∈ I,∀t ∈ T ,∀l ∈ L (3.17)

�

j∈Ii
z
ij

tl
≤ d

i

tl
∀i ∈ I,∀t ∈ T ,∀l ∈ L (3.18)

�

l∈L
z
i

tl
+�

l∈L �

t′∈T1(t,l)
z
i

t′l ≤ xi ∀i ∈ I,∀t ∈ T (3.19)

z
i

tl
∈ R+ ∀i ∈ I,∀t ∈ T ,∀l ∈ L (3.20)

z
ij

tl
∈ R+ ∀i ∈ I,∀j ∈ Ii,∀t ∈ T ,∀l ∈ L, (3.21)

x ∈ F , (3.22)

where T1(t, l) = {t′ ∈ T ∶ t′ + 1 ≤ t ≤ t′ + l − 1}. The objective function (3.16) is

modeled as the the total revenue minus the cost. The cost part is the same as the SO

problem, i.e., Equation (3.1). The revenue part sums up the revenues brought by all

customers that have been served. The discount parameter, pij, are used to account for

the customer lost and customer spillover in simulator when they cannot find available

cars. Detail of customer spillback and spillover can be found in Fields et al. (2017).

Constraint (3.17) is the customer flow conservation constraint. It shows that the zi
tl
,

the total number of customers who want to user car at time t with duration l and

actually use car at location i, is equal to the sum of customers who want to use car at

time t with duration l at both i and nearby locations (∀j ∈ Ii). In Constraint (3.18),

the left-hand-side is the total number of customers who want to user a car at time

t location i for duration l and actually be served by the system; the right-hand-side

is the total number of customers who want to user a car at time t location i for

duration l. It means that the demand is higher than the number of customers served.

Constraint (3.19) means that at any time and any location, the number of cars that

are being used (i.e., ∑l∈L∑t′∈T1(t,l) zit′l) and are about to be checked out by customers

(i.e., ∑l∈L zitl) should be smaller than the number of cars assigned to that location (i.e.,

xi). Constraint (3.20) and (3.21) indicate that the auxiliary variables (i.e., zi
tl
’s and
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z
ij

tl
’s) are non-negative real numbers. We do not set them to integers, as we hope the

metamodel can be solved fast. In this model, the auxiliary variable vector z consists

of all of the zi
tl
’s and z

ij

tl
’s. Finally, Constraint (3.22) means that the network design

should be feasible, i.e., the Constraint (3.2)-(3.4) should be satisfied.

To estimate the demand parameter di
tl
, we run the simulator for one replication

with a network design such that all stations have unlimited number of cars. As a cus-

tomer will always find an available car at the desired location and time, no customer

spillover and customer lost will happen. Compared to the simulator, the MIP (3.16)-

(3.21) are simplified in the following ways. First, the first-come-first-served principle

is not kept. We include no information about reservation creation time in the model.

Rather than forcing reservations that comes first to be fulfilled, the analytical model

will choose a group of reservations that can result in the highest profit. Second, in the

simulator, the customers can change both location and time if there are no available

cars, while the analytical model only allows the change of location but not allow the

change of time when customer spillback. Third, the analytical model uses the revenue

discount parameter pij to approximate the spillback effect, while the simulator will

try reservations that are similar (nearby location and slightly different time). Forth,

the time resolution is 30 minute (i.e., both the reservation start time and duration

can only increase for multiples of 30 minutes) in the simulator and 1 hour in the

analytical model.

Simple MIP

To formulate the simple MIP, we use the following additional notation.

• di: total number of desired trips at station i ∈ I

• ri: average revenue of desired reservation at station i

• zij: number of customers that desire to make a reservation at station i with but

make an adjusted reservation at station j

• ti: average reservation duration of station i
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The simple metamodel is formulated as follows.

g
s

A
(x,z;q2) =�

i∈I �j∈Ii
p
ij
rjz

ij
−�

i∈I
cixi (3.23)

The MIP constraint h (i.e. Equation (3.6)) consists of Constraints (3.24)-(3.26).

�

j∈Ii
z
ij
≤ d

i
, ∀i ∈ I, (3.24)

�

j∈Ii
tjz

ji
≤ tmaxxi ∀i ∈ I, (3.25)

z
ij
∈ R+, ∀i ∈ I,∀j ∈ Ii, (3.26)

x ∈ F . (3.27)

Similar to the detailed MIP, the simple MIP’s objective function (3.23) is computed

as the revenue minus the cost. For the revenue part, we assume we only have the

information about the average revenue of the successful reservation for each station.

The total revenue, ∑i∈I∑j∈Ii pijrjzij, is computed as the sum of revenues from all

served customers. The revenue from each customer is base on the actual station

the customer uses rather than the desired station. The total cost is computed in the

same way as the SO problem (3.1) and the detailed model (3.16). Constraint (3.24) is

the demand constraint, which means that the number of served customers should be

smaller than the demand. Constraint (3.25) is the supply constraint. It means that

the total reservation hours used by one location should be smaller than the total avail-

able reservation hours, which is simply the number of one-hour reservation start time

intervals (tmax) times the number of cars assign to that location. Constraint (3.26)

require the auxiliary variables (zij’s) be non-negative real numbers. In this model,

the auxiliary variable vector z consists of all of the zij’s. Finally, Constraint (3.27)

indicates that the network design should be feasible.

In the simple MIP, we run the simulator for one replication with a network de-

sign such that all stations have unlimited number of cars to estimate the demand

parameter di’s, the revenue parameter ri’s reservation duration parameter ti’s. We
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count the number of sampled reservation for each station. Compared to the detailed

model (3.16)-(3.21), the simple model has no detailed information about the demand

distribution over time. Only average reservation duration is given for all stations (i.e.,

ti’s). No information about reservation start time is provided. Also, the simple MIP

still track the customer spillback, but in a aggregated way such that customers with

different start time and duration are not distinguished. Compared to the simulator

of Fields et al. (2017), the simple MIP inherits the detailed model’s features: the

first-come-first-reserve principle are not enforced, the customers are allowed only to

change the location, and the spillback effect is represented by the revenue discount

parameter pij.

3.2.4 Algorithm

In this section, we propose a globally convergent discrete SO algorithm MetaESBB-

OptDim. It is an extension of Empirical Stochastic Branch-and-Bound (ESBB) (Xu

and Nelson, 2013). The main idea of ESBB is to iteratively partition the feasible

region of the problem into smaller subregions, and focus on sampling from more po-

tential subregions. One iteration contains three parts: partitioning, bounding and

updating. In each iteration, ESBB first partitions current best subregion into sev-

eral non-overlapping and non-empty subregions. Then it randomly samples a certain

number of solutions from the newly created subregions, and also randomly sample

some solutions from subregions generated in previous iterations. Next, these solu-

tions are simulated and their mean objective values are computed. The subregion

containing the current iterate (i.e., the current best solution) is considered as the

best subregion. The best solution is the one with the best mean simulated objective

value. Our extension of ESBB maintains the property that all feasible solutions have

a positive probability to be sampled and simulated in every iteration, hence maintains

the globally convergent property. For more details about ESBB, please refer to Xu

and Nelson (2013).

We use the following addition notation.
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• Gk: all feasible solutions that have been simulated at least one replication at

the end of iteration k.

• xk: the current iterate, a solution in Gk with the best mean simulated objective

value.

• Pk: the partition of F at iteration k, the set of all subregions.

• P(R): set of newly created subregions that are partitioned from R.

• Sk: set of solutions to be simulated in iteration k.

• vR: total number of solutions to be sampled from newly created subregions in

P(Rk−1) in each iteration during iteration k.

• vO: total number of solutions to be sampled from existing subregions in Pk �

P(Rk−1) during iteration k.

• vL: number of solutions to be sampled from the lower-dimensional subregion in

each iteration.

• �nF : number of simulation runs to conduct for a solution if it has never been

simulated in previous iterations.

• �nA: number of simulation runs to conduct for a solution if it has been simu-

lated in previous iterations.

• xmeta
k

: solution obtained by solving the metamodel in iteration k.

• xmeta-sub
k

: solution obtained by solving the metamodel in iteration k, with addi-

tional constraint that the solution must be in Rk−1.

• K: the maximum number of iterations to run.

We propose MetaESBB-OptDim, an algorithm which combines metamodel and

ESBB, and present it in Algorithm 2. MetaESBB-OptDim contains the following

steps. At the beginning, we set the value for the related parameters and initialize the
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algorithm. In Step 1, we partition the feasible region. In Step 2, we obtain solutions

that needed to be simulated. Step 2a means that the current iterate will always

be simulated for additional replications since the second iteration. Solutions can be

sampled from both newly generated subregions and subregions generated in previous

solutions. In Step 2b, we sample in total vR solutions from newly generated partitions.

In Step 2c, we allocate the vO sampling budget using the upper confidence bound

Chebyshev (UCB-Chebyshev) method proposed in Xu and Nelson (2013). Same as

MetaAHA, we use the RMD algorithm of Hong and Nelson (2006) to sample solutions.

RMD sampling is an asymptotically uniform sampling strategy. This method samples

integral points from a compact set. We obtain solutions by solving the metamodel

in Step 2d. We first solve the fitted metamodel to obtain one solution (i.e., xmeta
k

),

and solve it again with additional constraints forcing the solution to be within, the

best subregion identified in the previous iteration to obtain another solution (i.e.,

xmeta-sub
k

). At Step 2e, MetaESBB-OptDim will solve the dimension-selection problem

to generate the hyperbox Hopt
k

, and then randomly sample solutions from the lower-

dimensional subregion Hopt
k
∩ Rk−1. In Step 3, we simulate the solutions obtained

in Step 2. In Step 4, we update the current iterate and current best subregion. In

Step 5, if we reach the maximum iteration number, we stop and return the current

iteration. Otherwise, we compute the analytical objective value for solutions, update

parameters of the metamodel and the iteration counter, and proceed to the next

iteration.

We use metamodel for two purposes: (1) we solve the fitted metamodel in each it-

eration to obtain new solutions as discussed in Section 3.2.1 (2) we use the metamodel

to build lower-dimensional subregions to sample solutions as discussed in Section 3.2.2.

Algorithm 2 is essentially ESBB if we remove Step 2d, Step 2e, Step 5b and Step 5c.

In order to guarantee global convergence, as stated in Xu and Nelson (2013),

during iteration k (k > 0), the union of all subregions in Pk should contain all feasible

solutions, and all subregions should be non-overlapping. In other words, no matter

what partition method we use, we should guarantee that �R∈Pk
= F and �R∈Pk

= �.

This indicates that whenever we partition a subregion R, we should also guarantee
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Algorithm 2 MetaESBB-OptDim
Initialization:

– Initialize parameters: set values for K, vR, vO, �nF , �nA; let R0 = F and
P0 = {F}; let iteration index k = 1.

Step 1: partitioning
– Partition Rk−1 to create P(Rk−1), and let Pk = (Pk−1 � {Rk−1})∪P(Rk−1).

Step 2: sampling
– Step 2a: if k = 1, let Sk = �; if k > 1, Sk = {xk−1}.
– Step 2b: randomly sample vR solutions from the newly create partitions;

add all sampled solutions to Sk.
– Step 2c: if k = 1, do nothing; if k > 1, randomly sample vO solutions from

old subregions in Pk−1 � {Rk−1}.
– Step 2d: solve the metamodel (3.5)-(3.7) to obtain xmeta

k
; if k > 1, solve the

metamodel (3.5)-(3.7) with extra constraint x ∈ Rk−1 to obtain xmeta-sub
k

;
add xmeta

k
and xmeta-sub

k
to Sk.

– Step 2e: if k = 1, do nothing; if k > 1, solve the dimension-selection prob-
lem (3.8)-(3.14) and build Hopt

k
, randomly sample vL solutions from the

lower-dimensional subregion Hopt
k
∩Rk−1, then add them to Sk.

– Step 2f: if k = 1, let G1 = S1; if k > 1, let Gk = Gk−1 ∪ Sk.
Step 3: simulation

– For each solution in Sk: simulate �nF replications if it has never been
simulated before; otherwise, simulate �nA replications.

Step 4: update current iteration and best subregion
– Step 4a: let xk be the solution in Gk with the best average simulated

objective value.
– Step 4b: let Rk be the subregion in Pk that contains xk.

Step 5: stop or update metamodel and iteration counter
– Step 5a: if k =K, terminate and return xk; otherwise, set k = k + 1.
– Step 5b: for any simulated point x that has not been evaluated by the

analytical network model, evaluate it (i.e., for a given x, maximize gA(x,z)
over z subject to Constraints (3.6)).

– Step 5c: use all simulation observations collected so far to fit the meta-
model parameter �

k
(i.e., solve the least squares Problem (A.1) defined in

Appendix A).
– Step 5d: proceed to Step 1.
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that newly created subregions should cover all parts of R, while each of these new

subregions should share no common element, i.e., �R′∈P(R) = R and �R∈P(R) = �.

We use a generic partition method that will keep the current iterate in the relatively

interior part of one of the newly created subregions. See Algorithm 4 in Appendix E

for details of this partition method.

3.3 Case studies

In this section, we apply the propose algorithms to several case studies. We first study

three two networks. Then we present the results of the comparison of the algorithms

using two high-dimensional problem using data from Zipcar’s Boston two-way car-

sharing fleet. All experiments are conducted on a machine with 125GB RAM and an

Intel Xeon E5-2630 v3 processor.

3.3.1 Evaluation of metamodel accuracy

In this section, we use toy networks to evaluate the ability of both the simple and

detailed metamodels to approximate the simulated objective value. We use three toy

networks that are presented in Figure 3-2. All three toy networks have four stations.

Each circle represent one station. If two circles are connected, customers who wants

to use car-sharing service at one station may spillback to the other one. Otherwise,

customers will not spillback to the other station. Figure 3-2a shows a tandem network,

where customers from one station can only spillback to the left or right neighboring

stations. Figure 3-2b shows a centralized network, where one station may have its

customers spillback to all other three stations, and customers from the other three

stations can only spillback to the center station. Figure 3-2c shows a fully connected

network, where customers from any station can spillback to all other three stations.

For each network, all stations have capacity of 6 (i.e., N i = 6). The fleet size is

unlimited (i.e., X ≥ 24). Hence, for each toy network, there are in total 2401 feasible

solutions (i.e., �F � = 2401).

For all feasible solutions in each network, we compare the analytical objective
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(a) Toy network 1 (b) Toy network 2 (c) Toy network 3

Figure 3-2: Toy network topologies

value and simulated objective value. For a given feasible solution x̄ ∈ F , its analytical

objective is computed by maximizing the metamodel objective function over auxiliary

variable z with x = x̄ in problem (3.5)-(3.7). Specifically, maxz gcA(x̄;z) subjected to

Constraints (3.17) -(3.21) for the detailed metamodel and maxz gsA(x̄;z) subjected

to Constraints (3.24)-(3.26) for the simple metamodel. For the simulated objective

function, we run 20 simulation replications for each solution to estimate objective

function and to compute the 95% confidence intervals.
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Figure 3-3: Objective function values: analytical vs. simulated (detailed metamodel)

We plot the results for the result for the detailed metamodel in Figure 3-3 and the

simple metamodel in Figure 3-4. Each figure contains three subfigures, and each sub-

figure corresponds to one toy network. The confidence intervals are very small and are

barely visible. In each subfigure, the x-axis is the value for analytical objective func-

tion, and the y-axis is the value for simulated objective function. We can see that the

detailed metamodel shows a better approximation for the simulated objective values,

compared to the simple metamodel. We compute the Pearson correlation coefficient
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Figure 3-4: Objective function values: analytical vs. simulated (simple metamodel)

between the analytical objective values and the mean simulated objective values of all

2401 feasible solutions for each toy network. The Pearson correlation coefficients for

the detailed metamodel are 0.974 (toy network 1), 0.992 (toy network 2) and 0.979

(toy network 3). For the simple metamodel, Pearson correlation coefficients are 0.847

(toy network 1), 0.881 (toy network 2) and 0.645 (toy network 3). The comparison

of the Pearson correlation coefficients between the two metamodels shows that the

detailed metamodel is a better approximation of the simulated objective function

compared to the simple metamodel.

3.3.2 High-dimensional case study with 144 stations

In this section, we study the performance of the proposed algorithm using a case

with 144 stations. These stations are located in the cities of Cambridge, Somerville

and Medford of Massachusetts, USA. The map in Figure 3-5 shows the location of

these 144 stations. Section 2.3.4 showed that the accuracy of the detailed metamodel

approximating the simulated objective function decreases as the demand and cost

level increases. To better demonstrate the performance of the propose algorithms, in

this section, we increase the demand level to 3 times of the trained demand for each

station and the cost level to 3 times of the real cost level. For more about the trained

demand, see the Section 2 of Fields et al. (2018).

For experiments in this section, we run 10 simulation replications for newly ob-

tained solutions and 2 simulation replications if a solution has already been simulated

(i.e, �nF = 10 and �nA = 2). When building a lower-dimensional subregion (either
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Figure 3-5: Zipcar stations in Boston South End neighborhood (map data: Google Maps (2019))

optimally or randomly), we select 5 dimensions (i.e., U = 5).

Added value of using MIP for algorithm initialization

In this section, we compare ESBB algorithm with different initial solutions obtained

by solving the simple metamodel and detailed metamodel. No lower-dimensional sub-

region will be created. We run three algorithms: (1) ESBB of Xu and Nelson (2013);

(2) ESBBInit-Detailed, which is ESBB with one initial solution as the solution of the

unfitted detailed metamodel (i.e, maximize gc
A
(x;z) subjected to Constraints (3.17)

-(3.22)); (3) ESBBInit-Simple, which is ESBB with one initial solution as the so-

lution of the unfitted simple metamodel (i.e., maximize gs
A
(x;z) subjected to Con-

straints (3.24)-(3.27)). We set vR = 25, and vO = 4. Hence, there will be 29 solutions

simulated in each iteration. For all algorithm runs, we run each for 80 iterations (i.e.,

K = 80)

In Figure 3-6, we present the result of the three algorithms. The x-axis is the
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Figure 3-6: ESBB with different initial solutions

iteration index, and the y-axis the the simulated mean objective value of the current

iterate. we run each algorithm 3 times. The black lines are for ESBB, the blue

lines are for ESBBInit-Simple, and the red lines are for ESBBInit-Detailed. The red

lines start with the solution of the detailed metamodel, and have not improved since

the first iteration. The blue lines start with the solution of the simple metamodel

and also show no improvement since the first iteration. Such results shows that a

metamodel with problem specific information has the potential to help ESBB find

better solutions. But we need more than just initializing the ESBB with metamodel

solutions.

Added value of using MIP information for subregion identification

We have demonstrate the added value of using the MIP for to initialize ESBB. Here,

we consider using the MIP information only for subregion identification. Specifi-

cally, we propose ESBBInit-OptDim, which builds the lower-dimensional by solv-

ing the dimension-selection problem (3.8)-(3.14). ESBBInit-OptDim is essentially

MetaESBB-OptDim without solving the updated metamodel for solutions in each

iterate, i.e., Algorithm 2 without Step 2d. For a benchmark purpose, we also pro-

94



pose ESBBInit-RanDim, which builds the lower-dimensional by randomly select U

dimensions. It is essentially Algorithm 2 without Step 2d, 5b and 5c, and build

lower-dimensional subregion in Step 2e using the method described in Appendix F.

Both ESBBInit-OptDim and ESBBInit-RanDim are initialize by the solution of the

unfitted metamodel.

In Figure 3-7, using the simple metamodel, we compare ESBBInit-OptDim and

ESBBInit-RanDim. We run each algorithm 6 times. For both methods, we set

K = 80, vR = 14, vL = 10 and vO = 4. Plus the current iterate, in each iteration, we

sample in total 29 solutions. The figure format is the same as Figure 3-12. The red

line and red shaded area represent ESBBInit-OptDim, and the blue line and blue

shaded area represent ESBBInit-RanDim. For all 6 runs of the two methods, all

current iterate except for the first iteration are identified by sampling from the lower-

dimensional subregion. The first iteration current iterate are the solution obtained by

solving the unfitted simple metamodel. ESBBInit-OptDim outperforms ESBBInit-

RanDim. Note that the time spent on building lower-dimensional subregion using

the simple metamodel is negligible, compare to the time for simulation. This indicate

that sampling from the lower-dimensional subregion built by solving the dimension-

selection problem using metamodel can result in solutions with better performance

than sampling from randomly built lower-dimensional subregions. Metamodel can

guild the algorithm find better solutions by using it in the lower-dimensional subregion

creation.

We also compare ESBBInit-OptDim and ESBBInit-RanDim using the detailed

metamodel. We run each algorithm 6 times. For both methods, we set K = 80,

vR = 14, vL = 10 and vO = 4. Plus the current iterate, in each iteration, we sample in

total 29 solutions. Figure 3-8, which has the same figure format as Figure 3-7, shows

the change of the objective value as the iteration index increases. We see that the red

shaded area quickly becomes higher than the blue shaded area. For all runs of the two

algorithm, all current iterates are identified by sampling from the lower-dimensional

subregion. This shows that given the same simulation budget, lower-dimensional

subregion built by using the metamodel can provide better solutions than lower-
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Figure 3-7: ESBBInit-OptDim vs. ESBBInit-RanDim (simple metamodel)

dimensional subregion built by random dimension-selection. This is consistent with

the case of simple metamodel, as shown in Figure 3-7.

In Figure 3-9, we plot the change of objective values against elapsed time of all runs

of ESBBInit-OptDim and ESBBInit-RanDim with the detailed metamodel. When all

the ESBBInit-RanDim (blue lines) stops, There are five red lines are higher than all

blue lines. This shows that ESBBInit-OptDim outperforms ESBBInit-RanDim. We

see that the red lines last longer than the blue lines. Note both algorithms run 80 iter-

ations, the additional time of ESBBInit-OptDim comes from solving the dimension-

selection problem using the detailed model. This indicate that when solving the

metamodel-based dimension-selection time is not negligible compared to simulation,

there may be a trade-off between solution quality and algorithm run time.

Added value of using MIP information for both metamodel optimization

and subregion identification

In above sections, we show the benefit of using MIP information to build a lower-

dimensional subregion for sampling. Previous researches such as Osorio and Bierlaire

(2013), Zhang et al. (2017) and Zhou et al. (2019) (i.e., Chapter 2) show the benefit of
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Figure 3-8: ESBBInit-OptDim vs. ESBBInit-RanDim (detailed metamodel)

solving the fitted metamodel to obtain solutions in each iteration. In this section, we

study whether using the lower-dimensional subregion built by solving the dimension-

selection problem (3.8)-(3.14) can bring additional benefit given that we solve the

fitted metamodel to obtain solutions in each iteration

We first compare the MetaESBB-OptDim and MetaESBB. MetaESBB combines

metamodel with ESBB. It only solves the metamodel for solutions but does not build

lower-dimensional subregion for sample. It is essentially MetaESBB-OptDim (i.e.,

Algorithm 2) without Step 2e. We run MetaESBB-OptDim and MetaESBB each for

6 times using the simple metamodel and each for another 6 times using the detailed

metamodel. For all 24 algorithm runs, we run each for 80 iterations (i.e., K = 80).

For MetaESBB-OptDim, we set vR = 12, vL = 10, and vO = 4. For MetaESBB, we set

vR = 22, and vO = 4. Plus the two solutions obtained by solving the metamodel and

the current iterate, 29 solutions will be simulated for both MetaESBB-OptDim and

MetaESBB in each iteration.

In Figure 3-10, using the simple metamodel, we plot the comparison between

MetaESBB-OptDim and MetaESBB. The x-axis is the iteration index, and the y-

axis is the estimation of the objective value of the current iterate. The red line is
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Figure 3-9: Change of current iterate objective value over time: ESBBInit-OptDim vs.
ESBBInit-RanDim (detailed metamodel)

the average objective function value of the 6 run of MetaESBB-OptDim, i.e., for each

iteration, we compute and plot the mean objective value of the 6 current iterates of

the 6 runs of MetaESBB-OptDim. The red shaded area is the 95% confidence interval

of mean objective values of the 6 runs of MetaESBB-OptDim, i.e., for each iteration,

we compute and plot the 95% confidence interval of the mean objective value of

the 6 current iterates. The black line is the average objective value of the 6 run of

MetaESBB, with the gray shaded area as the 95% confidence interval. We see that

the red line is higher than the black line. The red shaded area has almost no overlap

with the black shaded area. In the case of using the simple metamodel for both

optimization and lower-dimensional subregion building, the time spent on solving

the dimension-selection problem (i.e., Step 2e of Algorithm 2) as well as solving the

fitted metamodel for solution (i.e., Step 2d of Algorithm 2) are negligible compared

to the simulation time in each iteration, so we only plot the change of objective values

against iteration index for the simple metamodel.

We compare the performance of MetaESBB-OptDim and MetaESBB using the

detailed metamodel in Figure 3-11. The figure format is the same as Figure 3-10. We
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Figure 3-10: Added value of building lower-dimensional subregion using metamodel (simple
metamodel)

can see that after the first several iterations, the red line is above the black curve,

and the red shaded area have no overlap with the gray shaded area after iteration 16.

Note that in Figure 3-11, the x-axis is the iteration index not the time. This means

that with the same simulation budget, using the lower-dimensional subregion built

by solving the dimension-selection problem needs fewer simulations to achieve better

solutions than not using the lower-dimensional subregion.

Compared to the blue lines (ESBBInit-Simple) and red lines (ESBBInit-Detailed)

in Figure 3-6, we note that the black lines in both Figure 3-10 (MetaESBB with

simple metamodel) and 3-11 (MetaESBB with detailed metamodel) show an increase

of objective value as the algorithm advances. This means that for both the simple

and detailed metamodel, using the MIP information in each iteration is an effective

way for discrete SO algorithms to identify better solutions after the first iteration.

This is consistent with the findings in Section 2.3.2 and 2.3.3.

Table 3.1: Percentage of how current iterates are found in MetaESBB-OptDim

Solving updated metamodel Lower-dimensional subregion sampling
Simple metamodel 16% 84%

Detailed metamodel 77% 23%
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Figure 3-11: Added value of building lower-dimensional subregion using metamodel (detailed
metamodel)

In terms of how current iterates are identified, for MetaESBB (using either sim-

ple or detailed metamodel), all current iterates are found by solving the updated

metamodel. In Table 3.1, we summarize the percentage of how current iterates are

found in MetaESBB-OptDim using the two metamodels. When we use the simple

metamodel, most (84%) of current iterates are identified by sampling from lower-

dimensional subregion. When we use the detailed metamodel, most (77%) current

iterates are found by solving the updated metamodel. This may indicate that when

using a more accurate metamodel, solving the fitted metamodel for solution is better

than sampling from the lower-dimensional subregion, but otherwise when the meta-

model is less accurate.

In Figure 3-12, using the simple metamodel, we benchmark MetaESBB-OptDim

with MetaESBB-RanDim. MetaESBB-RanDim follows most steps of MetaESBB-

OptDim except for how to build the lower-dimensional subregion (i.e., Step 2e of

Algorithm 2). Instead of solving the dimension-selection problem (i.e. problem (3.8)-

(3.14)), MetaESBB-RanDim builds the lower-dimensional subregion by randomly

sampling dimensions. See Appendix F for details. We run MetaESBB-RanDim
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for 6 times. For MetaESBB-RanDim, we set all algorithm control parameters the

same as MetaESBB-OptDim. The figure axes the same as Figure 3-10. The red

line correspond to the mean performance of MetaESBB-OptDim, and the red shaded

area represent the 95% confidence interval. The blue line correspond to the mean

performance of MetaESBB-RanDim, and the blue shaded area represent the 95%

confidence interval. Both methods have similar performance. MetaESBB-OptDim is

slightly better.
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Figure 3-12: Benchmark random dimension-selection with dimension-selection using metamodel
(simple metamodel)

In Figure 3-13, using the detailed metamodel, we benchmark MetaESBB-OptDim

with MetaESBB-RanDim. We also run MetaESBB-RanDim for 6 times. For MetaESBB-

RanDim, we set all algorithm control parameters the same as MetaESBB-OptDim.

The figure format is the same as Figure 3-12. MetaESBB-OptDim which uses the

metamodel to build the lower-dimensional subregion have better performance than

MetaESBB-RanDim which randomly build the lower-dimensional subregion, given

the same simulation budget.

In this case of 144 stations, the time for solving the dimension-selection problem

using the detailed metamodel are not negligible compared to the time for simula-
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Figure 3-13: Benchmark random dimension-selection with dimension-selection using metamodel
(detailed metamodel)

tion. In Figure 3-14, we plot the algorithm runs of MetaESBB-OptDim (red lines),

MetaESBB-RanDim (blue lines) and MetaESBB (black lines) The x-axis is the time.

The y-axis the simulated mean objective value of the current iterate. We can see that

several red lines are longer. For the 6 runs of MetaESBB-OptDim using the detailed

metamodel, the time for solving one dimension-selection problem is 180.1 seconds on

average. The simulation time per iteration on average is 781.2 seconds. This also

indicates a trade-off about time and algorithm performance.

In Table 3.2, we summarize the percentage of how current iterates are found in

MetaESBB-RanDim using the two metamodels. When we use the simple metamodel,

most (87%) of current iterates are identified by sampling from lower-dimensional

subregion. When we use the detailed metamodel, most (72%) current iterates are

found by solving the updated metamodel. These values are similar to the case of

MetaESBB-OptDim (i.e., Table 3.1). This result indicate that randomly built lower-

dimensional subregion has the potential to guide the algorithm to better solutions

efficiently.

We run additional simulation replications to compare solutions obtained by MetaESBB-
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Figure 3-14: Change of current iterate objective value over time: MetaESBB-OptDim vs.
MetaESBB-RanDim vs. MetaESBB (detailed metamodel)

Table 3.2: Percentage of how current iterates are found in MetaESBB-RanDim

Solving updated metamodel Lower-dimensional subregion sampling
Simple metamodel 13% 87%

Detailed metamodel 72% 28%

OptDim, MetaESBB and MetaESBB-RanDim using both the simple and detailed

metamodel. Detailed results are summarized in Appendix G.

On when to use MIP information for either metamodel optimization or

for subregion identification

In the above discussion, we use metamodel in the ESBB framework mainly for two

purposes - solving for solutions in each iteration and building a lower-dimensional

subregion for focused sampling. We also find that for MetaESBB-OptDim, more

current iterate are found by sampling from the lower-dimensional subregion when

using the simple metamodel, while more current iterate are found by solving the

fitted metamodel when using the detailed metamodel. In Section 3.3.1, we use toy

networks to show that the simple metamodel is a less accurate approximation for

the simulator than the detailed metamodel. In this section, we study which method
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is more useful to enhance the computational efficiency of ESBB. Based on the 144

station network of Zipcar, we use four examples: (1) simple metamodel with the case

of 3-time cost and 3-time demand, (2) simple metamodel with 1-time cost and 1-time

demand, (3) detailed metamodel with the case of 3-time cost 3-time demand, and (4)

detailed metamodel with 1-time cost and 1-time demand. Example 1 and 3 refer to

a more congested case, and example 2 and 4 refer to a less congested case.

For each example, we run both algorithm 6 times. For MetaESBB, we set K = 80,

vR = 22, and vO = 4. For ESBBInit-OptDim, we set K = 80, vR = 14, vL = 10 and

vO = 4. In Table 3.3, for each example, we compute the Pearson correlation coefficients

between analytical and mean simulated objective values of all simulated solutions in

all 12 algorithm runs (i.e., 6 runs of ESBBInit-OptDim and 6 runs of MetaESBB).

We plot the comparison between the two algorithms: MetaESBB and ESBBInit-

OptDim, which we initialize ESBB with the solution of the unfitted metamodel and

solve the dimension-selection problem in each iteration since the second one. The

results are plotted in Figure 3-15, where each subfigure represent one example. For

each subfigure, the x-axis is the iteration index, and the y-axis is the estimated

objective value of the current iterate. The red line is the mean performance averaged

over 6 runs of MetaESBB. The red shaded area is the 95% confidence interval. The

blue line is the mean performance averaged over 6 runs of ESBBInit-OptDim. The

red shaded area is the 95% confidence interval.

Table 3.3: Pearson correlation coefficients between analytical and mean simulated objective values
of all simulated solutions in each example

Example Pearson Correlation Coefficient
Simple metamodel, more congested 0.8702
Simple metamodel, less congested 0.8906

Detailed metamodel, more congested 0.9851
Detailed metamodel, less congested 0.9937

We can see that in Figure 3-15a and 3-15b , the blue shaded area is higher than

the red ones for both more congested and less congested cases when we use the

simple metamodel. The Pearson correlation coefficients of all simulated solutions in

algorithm runs of the two examples are relatively low: 0.8702 and 0.8906, respectively,
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(a) Simple metamodel, more congested
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(b) Simple metamodel, less congested
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(c) Detailed metamodel, more congested
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(d) Detailed metamodel, less congested

Figure 3-15: MetaESBB vs. ESBBInit-OptDim: use metamodel with different level of accuracy

compared to the coefficients of the more detailed metamodel. This indicates that the

simple model is a worse approximation to the simulator. On the other hand, when we

use the detailed metamodel, in Figure 3-15c, the blue and red shaded areas overlap

a lot. The Pearson correlation coefficients of all simulated solutions in algorithm

runs of this example is 0.9851, the second highest among the four examples. This

indicates that in this example the metamodel is more accurate. In Figure 3-15d, the

red shaded area is higher than the blue shaded area, with a slight overlap at later

stages. The Pearson correlation coefficients of all simulated solutions in algorithm

runs of this example is 0.9937, the highest among the four examples. The Pearson

correlation coefficients in Table 3.3 and the plots in Figure 3-15 indicate: (i) for

metamodels with low correlation it is best to use them to identify subregions rather
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than for metamodel optimization; (ii) as the metamodel correlation increases, so does

the added value of using them for metamodel optimization.

As for the time issue, for the examples with simple metamodel, the time for

solving the metamodel for solution and the time for solving for dimension-selection

problem are both negligible, compare to the time for simulation. When using detailed

metamodel for the congested case, the time for solving for solution and the time for

solving for dimension-selection problem cannot be ignored. We plot the result in

Figure 3-16a. The x-axis is the time, and the y-axis is the estimated objective of the

current iterate. The red lines are for MetaESBB, and the blue lines are for ESBBInit-

OptDim. For MetaESBB, the mean simulation time is 859.46 seconds per iteration,

the mean time for solving metamodel for solutions is 95.2 seconds per iteration. For

ESBBInit-OptDim, the mean simulation time is 888.3 seconds per iteration, the mean

time for solving dimension-selection problem is 599.1 seconds per iteration. When

using detailed metamodel for less congested case, we plot the results in Figure 3-16b.

The figure format is the same as Figure 3-16a. In this example, the time for solving the

metamodel for solution and the time for solving for dimension-selection problem are

both small, compared to simulation time. For MetaESBB, the mean simulation time

is 422.4 seconds per iteration, the mean time for solving metamodel for solutions is

10.4 seconds per iteration. For ESBBInit-OptDim, the mean simulation time is 422.5

seconds per iteration, the mean time for solving dimension-selection problem is 25.6

seconds per iteration.

3.3.3 High-dimensional case study with 315 Stations

In this section, we study the performance of the proposed algorithm using a case with

315 stations, which are the same stations we used in Section 2.3.3 and 2.3.4. The

location of these stations are presented in Figure 2-8. We set the demand level to

3 times of the trained demand for each station and the cost level to 3 times of the

real cost level. The fleet size is 894 (i.e., X = 894). We compare the performance of

MetaESBB-OptDim, MetaESBB and MetaESBB-RanDim. For MetaESBB-OptDim

and MetaESBB-RanDim, we set vR = 18, vL = 20, vO = 5 and U = 5. For MetaESBB,
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(a) Detailed metamodel, more congested case
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(b) Detailed metamodel, less congested case

Figure 3-16: MetaESBB vs. ESBBInit-OptDim: compare algorithms using elapsed time

we set vR = 28 and vO = 5. For all algorithm runs, we set K = 40, �nF = 5 and

�nA = 2.

In Figure 3-17, we compare the performance of the three algorithms using the

simple metamodel. We run each algorithm 6 times. The red line shows the mean

performance of MetaESBB-OptDim, with the red shaded area as the 95% confidence

interval. The blue (black) line and blue (gray) shaded area have similar meanings,

but correspond to MetaESBB-RanDim (MetaESBB).

5 10 15 20 25 30 35 40
Iteration

6.55

6.6

6.65

6.7

6.75

6.8

6.85

6.9

6.95

Es
tim

at
ed

 p
ro

fit
 o

f c
ur

re
nt

 it
er

at
e 

($
)

105

MetaESBB-OptDim
MetaESBB-RanDim
MetaESBB

Figure 3-17: MetaESBB-OptDim vs. MetaESBB-RanDim vs. MetaESBB (simple metamodel)
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In Figure 3-17, we see that the red shaded area are above the black shaded area

for most iterations. The black shaded shows overlap with the red shaded area at

latter iterations, but the black line is under the red line. This shows that MetaESBB-

OptDim outperforms MetaESBB. For MetaESBB-OptDim, about 9% of the current

iterate are obtained by solving the current iterate, and 91% are identified by sampling

from the lower-dimensional subregion. All current iterate of MetaESBB are obtained

by solving the fitted metamodel. These findings are consistent with the findings in

Section 3.3.2 This shows that when the metamodel is less accurate, sampling from

the lower-dimensional subregion built by solving the dimension-selection problem is

more useful than solving the fitted metamodel.

In Figure 3-17, we also see that the blue shade area are lower than the red shaded

area throughout the algorithm runs. This shows that MetaESBB-OptDim outper-

forms MetaESBB-RanDim For MetaESBB-RanDim, 13% of the current iterate are

identified by solving the fitted metamodel, while 87% are found by sampling from the

lower-dimensional subregion. This indicates that sampling from a lower-subregion

built by randomly select dimensions may be less efficient than sampling from a lower-

subregion built by solving the dimension-selection problem. The gray shaded area

also becomes higher than the blue shaded area at latter stages. This shows that

MetaESBB outperforms MetaESBB-RanDim. This indicates that sampling from

lower-subregion built by randomly select dimensions may have negative effect on

the quality of metamodel such that solving the fitted metamodel becomes less useful

to find better solutions.

Using the detailed metamodel, we run MetaESBB-OptDim, MetaESBB and MetaESBB-

RanDim each for 3 times. In Figure 3-18, we compare MetaESBB-OptDim (red lines)

and MetaESBB (black lines). The x-axis is the iteration index, and the y-axis the the

simulated mean objective value of the current iterate. At earlier stage, the red lines

are higher, but then the black lines catch up and become higher than the red lines.

The red lines outperforms the black lines at latter stages of the algorithm run. For

MetaESBB-OptDim, 74% of the current iterates are identified by solving the fitted

metamodel, while 26% of them are found by sampling from the lower-dimensional
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Figure 3-18: MetaESBB-OptDim vs. MetaESBB (detailed metamodel)

subregion. For MetaESBB, all current iterates are obtained by solving the fitted

metamodel. This means that given the same simulation budget, using metamodel to

build the lower-dimensional subregion and sampling from it can improve the perfor-

mance of MetaESBB, when we use a more accurate metamodel. This is consistent

with the findings in Section 3.3.2.

In Figure 3-19, we compare MetaESBB-OptDim (red lines) and MetaESBB-RanDim

(blue lines). The axis format is the same as the axis format of Figure 3-18. We find

that the red lines outperform the blue lines, but their performance are close. For

MetaESBB-RanDim, 62% of current iterates are found by solving the fitted meta-

model, and 38% of them are identified by sampling from the lower-dimensional sub-

region. This means that given the same simulation budget, MetaESBB-OptDim is

slightly better than MetaESBB-RanDim. This is also consistent with the findings in

Section 3.3.2.

In this case of 315 stations, the time for solving the dimension-selection problem

using the detailed metamodel is no longer negligible compared to the time for simu-

lation. In Figure 3-20, we plot the algorithm runs of MetaESBB-OptDim (red lines),

MetaESBB-RanDim (blue lines) and MetaESBB (black lines) The x-axis is the time.
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Figure 3-19: MetaESBB-OptDim vs. MetaESBB-RanDim (detailed metamodel)

The y-axis the simulated mean objective value of the current iterate. We can see that

several red lines are longer. For the 3 runs of MetaESBB-OptDim using the detailed

metamodel, the time for solving one dimension-selection problem is 1144.1 seconds

on average. The simulation time per iteration on average is 2987.4 seconds. Consider

the time cost of solving the dimension-selection problem, using lower-dimensional

subregion built by randomly select dimensions may be a better choice to enhance the

performance of MetaESBB, when we are using a more accurate metamodel.

3.4 Summary

This chapter proposes MetaESBB-OptDim, which extends ESBB, a globally conver-

gent discrete SO algorithm, to address the problem of car-sharing network design.

It is a metamodel SO algorithm, which combines a metamodel with problem spe-

cific information with a general-purpose globally convergent discrete SO algorithm

ESBB. We use the metamodel for two purposes: (1) solving the updated metamodel

in each iteration for solutions and (2) select dimensions to build a lower-dimensional

subregion for sampling. We use two metamodels, one simple and one detailed, with
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Figure 3-20: Change of current iterate objective value over time: MetaESBB-OptDim vs.
MetaESBB-RanDim vs. MetaESBB (detailed metamodel)

different ability to approximate the simulator. And we use toy networks to show the

accuracy of the two metamodels by comparing the analytical objective values and

mean simulated objective values of all feasible solutions.

We apply the proposed algorithm to high-dimensional case studies using Zipcar’s

historical data of its Boston fleet. Experiment results indicate that metamodel can

bring a good initial start point to ESBB. In the case study, the solution of both

unfitted simple metamodel and detailed metamodel are proved to be better than

randomly sampled solutions. Chapter 2 shows the value of solving fitted metamodel

in each iteration. In this works, we show that use the metamodel to select dimensions

to build lower-dimensional sampling subregion can further enhance the algorithm

computational efficiency. If the time for solving the dimension-selection problem is

acceptable, we recommend to do so. We also show that using the metamodel to

build lower-dimensional subregions for sampling can also improve the efficiency of

ESBB. It has better performance than using lower-dimensional subregion built by

randomly select dimensions, given the same computational budget. We find that

when metamodel is more accurate, using it to solve for solutions is more likely to find
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better solutions than using it to build a lower-dimensional subregion for sampling,

but otherwise when the metamodel is less accurate.
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Chapter 4

Conclusions

This work proposes discrete SO algorithms for a family of large-scale car-sharing net-

work design problems. We sample from disaggregate reservation data, and tackle the

corresponding service design optimization problems directly using the disaggregate

data, without aggregating it. We propose two approaches that rely on the general

idea of metamodeling. We show that the use of metamodels allows the discrete SO

algorithms to become scalable and computationally efficient.

In Chapter 2, we propose a metamodel which has the form of a MIP to approx-

imate the simulated objective function. This metamodel has a physical part with

analytically compute the profit of the car-sharing system, and functional part which

is a linear expression of decision variables. We propose MetaAHA, which embeds

the metamodel into AHA - an efficient locally convergent general-purpose discrete

SO algorithm. In each iteration, we solve the metamodel to obtain new solutions

and update the metamodel parameters using simulation results. Experiments with

a high-dimensional case studies show that the metamodel can identify points with

good performs both initially (i.e., as initial points) as well as throughout the itera-

tions of the discrete SO algorithm. We also benchmark MetaAHA with stochastic

programming (SP).

In Chapter 3, we propose MetaESBB-OptDim, which embeds the metamodels

into ESBB, a globally convergent discrete SO algorithm. We maintain the globally

convergent property of ESBB. We use the metamodel for two purposes: solving the
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updated metamodel in each iteration for solutions, and solving a metamodel-based

dimension-selection problem to build a lower-dimensional subregion and sample from

it. We used two metamodels with different accuracy of approximating the simu-

lated objective value. Experiments with high-dimensional problems show an added

value of using the lower-dimensional subregion, given that we solve the metamodel

for solutions in each iteration. Sampling from the lower-dimensional subregion is

more efficient than solving the fitted metamodel for solution when the metamodel is

less accurate. But when the metamodel is more accurate, sampling from the lower-

dimensional subregion is less efficient than solving the fitted metamodel for solution.

We view this general idea of combining analytical MIP formulations with general-

purpose SO algorithms, or more broadly with general-purpose sampling strategies,

as an innovative and promising area of future research. With the increase in the

availability and the resolution of transportation data comes the potential to address

more intricate formulations of traditional transportation optimization problems (e.g.,

formulations with a more detailed probabilistic data-driven description of demand).

This work illustrates how the traditional MIP formulations that exist can be coupled

with high-resolution data, a sampling (or simulation) strategy, and a general-purpose

SO algorithm, to address this next generation of transportation problems.

There is a wide-variety of general-purpose discrete SO algorithms. As general-

purpose algorithms, they can be used to address a broad class of problems. Nonethe-

less, they are rarely designed such as to achieve good short term performance (i.e.,

good performance within few simulation runs). This dissertation illustrates how the

scalability, computational efficiency and robustness of these SO algorithms can be en-

hanced such as to enable them to address realistic transportation problems at scale.

The proposed approach performs optimization preserving the disaggregate infor-

mation in the data (rather than limiting its use to fitting aggregate demand param-

eters). This leads to a data-driven approach that exploits the rich information of

demand and of demand-supply interactions embedded in the data. Nonetheless, this

also limits its use for car-sharing markets where data is unavailable or unreliable. In

particular, it is not directly applicable for new markets where data has not yet been
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collected.

The propose algorithms can also be used in other fields beyond transportation

(e.g., Wang et al. (2019)). Extensions of ongoing interest include the use of MIPs to

enable the design of real-time discrete SO problems. For future work, it is worth to

further study how many dimensions we should choose to build the lower-dimensional

subregion for discrete SO problems with different dimensionality. In our method, the

lower-dimensional subregion are build around the current iterate, hence it searches

around the current iterate locally. It is also worthwhile to study other possible local

search method that are suitable to combine with metamodel-based globally convergent

discrete SO algorithm.
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Appendix A

Metamodel fitting

We use a method similar to the one used by Osorio and Bierlaire (2013) to compute

the value of metamodel parameter � in each iteration. Specifically, at the Step 4b of

MetaAHA (i.e., Algorithm 1) and the Step 5c of both MetaESBB (i.e., Algorithm ??)

and MetaESBB-OptDim (i.e., Algorithm 2), we solve the following optimization prob-

lem

min
�k

�

x∈Gk
�wk(x) �ĝ(x;q1) − ��k,0g

∗
A
(x;q2) + �k,1 +�

i∈I
�k,i+1xi���

2

+ (w0(�k,0 − 1))
2
+

�I�+1
�
i=1
(w0�k,i)

2
.

(A.1)

Gk is the set containing all solutions that have been simulated up until iteration k.

w0 is a fixed parameter. wk(x) = (1+ �x−xk�)
−1 is a weight parameter reflecting the

Euclidean distance between a solution x and the current iterate xk. Hence, solutions

closer to the current iterate are considered more important than solutions that are

more distant. ĝ(x;q1) is the mean simulated objective value of solution x. g∗
A
(x;q2)

is the analytical objective value of x, which is obtained by maximizing gA(x,z;q2)

over z with constraint h(x,z;q2) = 0 (i.e., Equation (3.6)) and x fixed.

This least square problem minimizes the weighted distance between the simulated

objective values and the analytical objective values of all solutions that have been

simulated so far. The last two terms will make sure that the least-square matrix is
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full rank. For the term (w0(�k,0 − 1))
2, the intuition is to assume that the analytical

model is a good approximation to the mean simulated objective value for the feasible

solutions. We also have the intercept term �k,1. The reason to have this intercept term

is to better capture the systematic bias of the analytical approximation. We also note

that this may result in a metamodel with objective value different to the simulated

objective value. For example, when the decision vector x = 0, the simulated objective

value will be 0, but the metamodel objective value will equal to �k,1 rather than 0.

This problem is a continuous convex optimization problem, and can be efficiently

solved.
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Appendix B

MetaAHA algorithmic details

In this section, we present algorithmic details of MetaAHA. The algorithmic steps

refer to Algorithm 1. In Step 2 of the algorithm, the number of simulation replications

to run for a given point x up until and including iteration k, denoted Nk(x), is

computed based on the approach of AHA (Xu et al., 2013). It is given by Nk(x) =

min{5, �5(log k)1.01�}. If at a given iteration k, the number of simulation replications

of point x obtained from previous iterations is greater or equal to Nk(x), then we do

not evaluate additional replications.

In Step 2 of the algorithm, the hyperbox is updated based on the following AHA

approach (Xu et al., 2013). Let xk denote the current iterate at iteration k, with the

ith element denoted xk,i. Let E(k) denote the set of points that have been simulated

up until and including iteration k. The hyperbox is defined (or updated) at iteration

k as Hk = {x ∶ lk,i ≤ xi ≤ uk,i,∀i ∈ I}. The bounds lk,i and uk,i are defined as follows.

lk,i = max
x∈E(k)�{xk}{xi ∶ xi < xk,i} ,∀i ∈ I.

If lk,i is empty, then set lk,i = 0. Similarly,

uk,i = min
x∈E(k)�{xk}{xi ∶ xi > xk,i} ,∀i ∈ I.

If uk,i is empty, then set uk,i = N
i.
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Step 4b of the algorithm fits the metamodel parameter �
k

by solving the least

squares problem discussed in Appendix A.

Figure B-1 provides a flowchart summary of the MetaAHA algorithm.

(1) Solve problem (2.6)-(2.8) and obtain
xmeta
k ;

(2) Solve problem (2.6)-(2.8) with constraint
x ∈Hk and obtain xmeta-hyper

k ;
(3) Randomly sample r points from F ∩Hk

Initialize algorith-
mic parameters

Simulate all points derived in the
above step; simulate xk−1 if k > 1

Determine the current iterate xk

Update Hk

Is xk a local
optimum or is the

computational
budget depleted?

Return xk

For all solutions simulated
during iteration k, maximize

gA(x,z) over z with
Constraints (2.10)-(2.14)

Fit metamodel
to estimate �k+1

Set k = k + 1

yes
no

Figure B-1: MetaAHA Steps
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Appendix C

Stochastic programming (SP)

formulation

To formulate the SP model, we use the notation of the main manuscript and introduce

the following notation.

• Q: number of demand scenarios;

• d
i(q)
tl

: number of customers that desire a reservation at station i with start time

t and duration l in demand scenario q;

• z
i(q)
tl

: number of customers that make a reservation at station i with start time

t and duration l in demand scenario q;

• z
ji(q)
tl

: number of customers that desire to make a reservation at station j with

start time t and duration l but make an adjusted reservation at station i with

start time t and duration l in demand scenario q;

• z: vector that combines all variables {zi(q)
tl
} and {zji(q)

tl
};

• ⇡(q): probability of scenario q, set to 1�Q;

• q3: vector of exogenous parameters;

• gSP : analytical approximation of g (Equation (2.2)) derived by the SP model.
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We view the network design strategy x as the first-stage decision variables, and the

demand-supply interaction z as the second-stage decision variables. The SP problem

is formulated as follows.

max
x,z

gSP (x,z;q3) =

Q

�
q=1

⇡
(q)
��

i∈I �j∈Ii
�

t∈T �l∈L
p
ij
rtlz

ij(q)
tl
� −�

i∈I
cixi, (C.1)

subject to

�

j∈Ii
z
ji(q)
tl
= z

i(q)
tl

∀i ∈ I,∀t ∈ T ,∀l ∈ L,∀q ∈ {1,2, . . . ,Q}, (C.2)

�

j∈Ii
z
ij(q)
tl
≤ d

i(q)
tl

∀i ∈ I,∀t ∈ T ,∀l ∈ L,∀q ∈ {1,2, . . . ,Q}, (C.3)

�

l∈L
z
i(q)
tl
+�

l∈L �

t′∈T1(t,l)
z
i(q)
t′l ≤ xi ∀i ∈ I,∀t ∈ T ,∀q ∈ {1,2, . . . ,Q}, (C.4)

z
i(q)
tl
∈ R+ ∀i ∈ I,∀t ∈ T ,∀l ∈ L,∀q ∈ {1,2, . . . ,Q}, (C.5)

z
ij(q)
tl
∈ R+ ∀i ∈ I,∀j ∈ Ii,∀t ∈ T ,∀l ∈ L,∀q ∈ {1,2, . . . ,Q}, (C.6)

x ∈ F , (C.7)

where T1(t, l) = {t′ ∈ T ∶ t′+1 ≤ t ≤ t′+ l−1}. In this model, the exogenous parameters

are d
i(q)
tl

and ⇡(q), as well as rtl, ci, pij, tmax and lmax defined in Section 2.2.3, repre-

sented by the vector q3. The objective function (C.1) is the expected revenue over

all scenarios minus the cost. Constraints (C.2)-(C.6) are the equivalent of their MIP

counterparts Constraints (2.10)-(2.14), respectively. Constraint (C.7) is equivalent to

Constraint (2.8).
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Appendix D

Sampling of feasible solutions for the

experiments of Figures 2-12 and 2-13

For a given demand scenario, let x(1) be the SP solution and x(2) be the best

MetaAHA solution of the experiments of Section 2.3.4. We use the following Al-

gorithm 3 to generate a solution near the line connecting the SP optimal solution and

the best MetaAHA solution:

Algorithm 3 Sampling one integral point close to the line connecting two points

• Step 1: generate u ∼ U(0,1), where U(0,1) is the standard uniform distribution.

• Step 2: let x̃ = x(1) + u (x(2) −x(1)).
• Step 3: build a hyperbox H(x̃) = {x ∶ x̃i − 2 ≤ xi ≤ x̃i + 2,∀i ∈ I}.

• Step 4: randomly sample a point x from H(x̃)∩F using the uniform sampling
distribution of AHA (Xu et al., 2013).
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Appendix E

A generic partition method

We present a generic partition method for the ESBB algorithm. We have two control

parameters: (1) the number of total dimensions to select, which we denote as D; (2)

the proportion of area in the newly generated subregion which contains the current

iterate, which denote as  ( ∈ [0,1]). A simple 2-D demonstration of this partition

method are shown in Figure E-1. The black dot represent the current iterate. In

this case, we have D = 2 and  = 0.5. We first select the horizontal dimension, cut

the feasible region into two subregions in a way that the current iterate is in the

interior part of one of the subregions. Since  = 0.5, the cut is in the center between

the current iterate and the left edge of the feasible region along the horizontal axis.

Then we select the vertical dimension and cut the subregion that contains the current

iterate in a similar way. We finally get 3 subregions, and the current iterate is in the

relative interior part of one of them.

Figure E-1: 2D illustration of the partition method

Here we formally define the generic parallel partitioning algorithm we mentioned

in . Let x̃ be the current iterate. Let R = F ∩ H be the current best subregion,
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where H = {x ∈ R�I� ∶ LBi ≤ xi ≤ UBi} is a hyperbox that bounds the decision vector

along each dimension. The generic parallel partitioning algorithm is presented in

Algorithm 4.

Algorithm 4 A generic partitioning algorithm

Initialization:

– Let R∗ = R, D = {i ∈ I ∶ LBi < UBi}, and P(R) = {R∗}. Let k =

min(D, �D�).

Step 1: select dimension

– Randomly select i ∈ D, let l = x̃i − LBi, u = UBi − x̃i, D = D � {i} and
P(R) = P(R) � {R∗}.

Step 2: partitioning

– If l > u, let Ru = R∗ ∩ {x ∈ H ∶ xi ≥ min (UBi, �x̃i − (x̃i −LBi)� + 1)},
Rl =R∗ ∩ {x ∈H ∶ xi ≤ �x̃i − (x̃i −LBi)�} and R∗ =Ru.

– If l < u, let Ru = R∗ ∩ {x ∈ H ∶ xi ≥ �x̃i + (UBi − x̃i)�}, Rl = R∗ ∩ {x ∈ H ∶
xi ≤max (LBi, �x̃i + (UBi − x̃i)� − 1)} and R∗ =Rl.

– If l = u, let s be a randomly and uniformly sampled number from [0,1]. If
s > 0.5, follow the rule of the case l > u; otherwise, follow the rule of l < u.

Step 3: update partition and update iteration counter

– Step 3a: Let P(R) = P(R) ∪ {Rl,Ru}.
– Step 3b: Set k = k − 1. If k = 0, terminate; otherwise, proceed to Step 1.

To initialize the algorithm, we identify the dimensions along which we can do

further partition for the current best subregion R. Then we randomly pick one of

them to partition. On the selected dimension, we cut R along this dimension and try

to have the current iterate in the interior part of one of the generated subregions. Not

that the current iterate may still be on the boarder of the newly generated subregion.

Then we add both newly generated partitions to P(R), the set of all subregions that

will be generated for R for running this algorithm. Then we further partition the

subregion that contains the current iterate.

We design the partition method in this way because we want to keep the current
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iterate in the relative interior part of the current best subregion. Also, we can use

the parameters D and  to control the speed of convergence. Note that this method

can ensure that the generated subregions have no common elements, and the union

of these subregions will be R. In all experiments in Section 3.3.2 and 3.3.3, we set

D = 5 and  = 0.5.
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Appendix F

RanDim: build lower-dimensional

subregion by randomly select

dimensions

In order to show the effectiveness of using the metamodel to selection dimensions

optimally, we benchmark it with a method that build the lower-dimensional subregion

by randomly select dimensions. Specifically, in iteration k (k > 1), given Rk−1, the

best subregion obtained at the end of iteration k−1, we first find Dk = {i ∈ I ∶ LBk−1
i
<

UBk−1
i
}, and then randomly select min(U, �Dk�) unique elements from Dk to form Dk∗.

Let ūk be a vector such that ūik = 1 if i ∈ Dk∗ and ūik = 0 if i ∉ Dk∗. We create the

random hyperbox of iteration k as

H
ran
k
= �x ∶ LBk−1

i ūik + x
k−1
i (1 − ūik) ≤ xi ≤ UB

k−1
i ūik + x

k−1
i (1 − ūik),∀i ∈ I� . (F.1)

The main difference between Hopt
k

and Hran
k

is that the former one is obtained by

solving a combinatorial optimization problem, while the latter one is generated ran-

domly.

We propose an algorithm MetaESBB-RanDim. It is almost same to MetaESBB-

OptDim (i.e., Algorithm 2). The only difference between MetaESBB-RanDim and

MetaESBB-OptDim is that at Step 2e, MetaESBB-RanDim randomly generates a
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hyperbox Hran
k

and then randomly samples solutions from Hran
k
∩Rk−1. If we remove

Step 2e from MetaESBB-RanDim, it is the same as MetaESBB.
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Appendix G

Detailed solution comparison of

Section 3.3.2

To further investigate the performance of MetaESBB-OptDim, MetaESBB and MetaESBB-

RanDim, we run additional simulation replications for solutions we obtain in Sec-

tion 3.3.2. In this appendix, we conduct statistical test to compare the performance

of those solutions.

In Section 3.3.2, we obtain 6 MetaESBB-OptDim solutions, 6 MetaESBB solu-

tions, and 6 MetaESBB-Random solutions using the simple metamodel. For each of

the 18 solutions, we run 50 simulation replications, and compute the mean simulated

profit and sample standard deviation based on the 50 replication. The results are

summarized in Table G.1.

In Table G.2, we compare all 6 MetaESBB-OptDim final solutions to all 6 MetaESBB

solutions when using the simple metamodel. Each row of the table corresponds

to a solution of MetaESBB-OptDim, and each column corresponds to a solution

of MetaESBB. In each cell, we show the p-value of a one-way t-test using the 50

simulated objective value of the corresponding row solution and the 50 simulated

objective value of the corresponding column solution. The null hypothesis is that the

mean simulated objective value of the row solution is the equal to the mean simulated

objective value of the column solution. The alternative hypothesis is that the former

one is larger than the latter one, as we solve a maximization problem in Section 3.3.2.
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Table G.1: Final solution simulation: MetaESBB-OptDim, MetaESBB-RanDim and MetaESBB
(simple metamodel)

Algorithm Run Mean Standard deviation

MetaESBB-OptDim

1 289422.06 346.64
2 288960.37 375.45
3 288197.96 354.66
4 287885.95 433.10
5 287987.78 341.29
6 288172.13 350.00

MetaESBB

1 288007.14 404.47
2 286407.97 412.11
3 287697.99 406.99
4 283734.09 328.65
5 285946.58 323.18
6 284136.31 359.28

MetaESBB-RanDim

1 288193.08 310.05
2 288393.21 330.27
3 288732.76 354.05
4 287917.01 324.43
5 287650.01 324.85
6 287164.43 363.40

If the p-value is larger than 0.05, the value is shown in bold and we do not reject the

null hypothesis, otherwise we reject the null hypothesis. We see that in Table G.2,

only two values are in bold and we cannot reject the null hypothesis, while for the

other 34 t-tests we can reject the null hypothesis.

Table G.2: Final solution comparison: MetaESBB-OptDim vs. MetaESBB (simple metamodel)

MetaESBBRun 1 2 3 4 5 6
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0069 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.9243 0.0000 0.0138 0.0000 0.0000 0.0000
5 0.6017 0.0000 0.0001 0.0000 0.0000 0.0000M

et
aE

SB
B

-
O

pt
D

im

6 0.0158 0.0000 0.0000 0.0000 0.0000 0.0000

In Table G.3, we compare the 6 solutions of MetaESBB-OptDim to the 6 solutions

of MetaESBB-RanDim when using the simple metamodel. The table format is the

same as the format of In Table G.2, except that now the column solutions are solutions
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of MetaESBB-RanDim. In Table G.3, there are 14 values in bold, which means that

we cannot reject the null hypothesis of the 14 t-tests. This is consistent with Figure 3-

12, where the red shades area have some overlap with the blue shaded area at the

last iteration.

Table G.3: Final solution comparison: MetaESBB-OptDim vs. MetaESBB-RanDim (simple
metamodel)

MetaESBBRun 1 2 3 4 5 6
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0012 0.0000 0.0000 0.0000
3 0.4709 0.9973 1.0000 0.0000 0.0000 0.0000
4 1.0000 1.0000 1.0000 0.6571 0.0014 0.0000
5 0.9989 1.0000 1.0000 0.1453 0.0000 0.0000M

et
aE

SB
B

-
O

pt
D

im

6 0.6239 0.9992 1.0000 0.0001 0.0000 0.0000

In Section 3.3.2, we obtain 6 MetaESBB-OptDim solutions, 6 MetaESBB solu-

tions, and 6 MetaESBB-Random solutions using the detailed metamodel. For each

of the 18 solutions, we also run 50 simulation replications, and compute the mean

simulated profit and sample standard deviation based on the 50 replication. The

results are summarized in Table G.4.

In Table G.5, we compare the 6 solutions of MetaESBB-OptDim to the 6 solu-

tions of MetaESBB when using the detailed metamodel. The format of Table G.5

is the same to the Table G.2 We can see that no value in Table G.5 are in bold.

This means that we reject the null hypothesis for 36 t-tests between the solutions of

MetaESBB-OptDim and MetaESBB. All 6 MetaESBB-OptDim solutions outperform

all 6 MetaESBB solutions.

In Table G.6, we compare the 6 solutions of MetaESBB-OptDim to the 6 solutions

of MetaESBB-RanDim when using the detailed metamodel. The table format is the

same as the format of Table G.3. In Table G.3, there are 6 values in bold, which

means that we cannot reject the null hypothesis of the 6 t-tests.
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Table G.4: Final solution simulation: MetaESBB-OptDim, MetaESBB-RanDim and MetaESBB
(detailed metamodel)

Algorithm Run Mean Standard deviation

MetaESBB-OptDim

1 295850.08 375.90
2 296213.23 333.28
3 296056.48 406.12
4 296251.71 328.51
5 296732.88 420.44
6 295910.48 392.52

MetaESBB

1 294607.35 420.63
2 294491.98 351.18
3 295117.07 387.08
4 295006.46 444.68
5 294534.41 350.68
6 294126.67 354.63

MetaESBB-RanDim

1 294989.69 338.46
2 295894.35 416.96
3 295269.41 310.75
4 295374.37 337.01
5 295656.57 343.23
6 296132.56 306.60

Table G.5: Final solution comparison: MetaESBB-OptDim vs. MetaESBB (detailed metamodel)

MetaESBBRun 1 2 3 4 5 6
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000M

et
aE

SB
B

-
O

pt
D

im

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table G.6: Final solution comparison: MetaESBB-OptDim vs. MetaESBB-RanDim (detailed
metamodel)

MetaESBB-RanDimRun 1 2 3 4 5 6
1 0.0000 0.7108 0.0000 0.0000 0.0042 1.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.1054
3 0.0000 0.0259 0.0000 0.0000 0.0000 0.8534
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0319
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000M

et
aE

SB
B

-
O

pt
D

im

6 0.0000 0.4213 0.0000 0.0000 0.0004 0.9989
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