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Abstract
Medical image registration is an important initial step in many downstream clinical
tasks. Repeated imaging for diagnostic, therapeutic, or scientific discovery is common.
Classical longitudinal image registration systems are too slow to be useful in practice
and are often only designed for a highly specific type of image data. Efficient pairwise
image registration models are limited by not accounting for the temporal nature of the
data. We present Longitudinal VoxelMorph, a novel machine-learning-based model for
efficient and scalable spatiotemporal medical image registration. We also define a new
evaluation metric to quantify the temporal smoothness of a longitudinal deformation
field. We evaluate the model on cardiac cine-MRI data and echocardiography data, and
find that Longitudinal VoxelMorph is more temporally consistent than state-of-the-art
pairwise models, and achieves comparable or improved anatomical accuracy. Longitu-
dinal VoxelMorph has the potential to be incorporated in downstream medical image
tasks, such as image prediction and diagnosis, facilitating better clinical outcomes.
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Chapter 1

Introduction

MEDICAL imaging has become widespread over the past two decades [77]. Physi-
cians use medical images both as diagnostic tests and to monitor ongoing treat-

ment, and the images have become an important component of medical care.
Medical images can be 2-D, such as x-rays, or 3-D, such as Magnetic Resonance

Imaging (MRI) scans. A 2-D image is made up of pixels; a 3-D scan is made up of
voxels. A 3-D scan can be decomposed into 2-D slices by only considering voxels at a
specific location along one of the image axes.

Image registration is a common pre-processing step for many image analysis tasks
[38, 43, 60, 85]. In general, image registration determines an alignment between two or
more images to place them in the same reference frame or measure correspondences
between them. In medical imaging, registration often aligns an image for a specific
patient to an atlas (reference) image, which usually represents a prototypical image for
that patient’s population [3, 14, 15, 31, 38, 80]. In the case of a brain image, for example,
the registration could measure how the size of the patient’s hippocampus differs from
what is considered normal [84].

Recently, machine learning models have been employed to automate medical image
registration [11, 14, 19, 23, 31, 40, 72, 90, 91]. To register images, these models usually
compute a deformation field that maps between pixels in the images of interest [14, 22].
Different anatomical structures or tissue types are usually manifested as different pixel
intensities, so a mapping between pixels of similar intensities across images is a common
proxy for a mapping between structures across images [14, 22, 34].

Patients also often undergo repeated medical imaging. Repeated imaging of the
same body part can be done during the diagnosis or treatment phase of an illness or
injury, as repeated screenings during preventative care checkups, or as part of a medical
study. The temporal medical data can be interpreted either as images taken from the
same subject at distinct time points, or as frames in a video of that patient’s anatomical
activity.

This presents the need for image registration over time, also known as spatiotem-
poral image registration [22, 25, 31, 46, 50, 86]. Spatiotemporal image registration aligns
multiple images taken from the same subject over time to each other. For n-D images,
registration can be viewed as an (n+ 2)-D deformation field estimation problem, where
the additional dimensions are space and time. In the case of repeated brain images, the

13



14 CHAPTER 1. INTRODUCTION

registration could, for example, now measure the expansion of the patient’s ventricles
over time [28].

We present Longitudinal VoxelMorph, a novel machine-learning model for spa-
tiotemporal image registration. In this work, we will use 2-D image examples. We
therefore refer to images and pixels when discussing medical imaging artifacts and their
constituents. Whenever data were originally 3-D scans, we consider 2-D slices of the
scans instead. The modeling ideas, however, extend to higher dimensions for scans and
voxels. We evaluate the model on several real-world medical image datasets, and find
that the model achieves a more temporally smooth deformation field than state-of-the-
art pairwise image registration models, while maintaining or improving accuracy on
each individual image.

� 1.1 Spatiotemporal Modeling Applications

An efficient and accurate model for spatiotemporal medical image registration has sev-
eral important applications. First, registration between images from the same subject
is useful for segmentation propagation [39, 49, 92]. Image segmentations identify spe-
cific regions of an image. In cardiac imaging, for example, the left ventricle is often
segmented. The volume of the left ventricle at different phases of the cardiac cycle
is used to compute the ejection fraction, which is an indicator for a patient’s risk of
cardiac failure, and is therefore a quantity of clinical interest [37].

However, it is costly for experts to segment these images. Particularly in the case
of repeated images for the same subject, manually segmenting all images in the time
series, of which there might be hundreds, is not practical. Instead, it would be ideal if
a registration model could, given a segmentation for a single image in that time series,
propagate the segmentation to all other images.

Second, there is clinical meaning in a deformation that measures changes in a specific
structure over time. Although all information content about how a structure changes
over time is present in the images themselves, an automatically computed deformation
field can draw attention to important parts of the image and quantify changes.

Third, closely measuring development has medical significance. Brain development
progression, for example, is important in both neurodegenerative and developmental
studies. Tracking brain structures over time is common in both neuroscience and clinical
neurology [4, 51, 52]. Previous work estimates an Alzheimer’s disease (AD) patient’s
future symptom class trajectory by using two Magnetic Resonance Imaging (MRI)
scans from that patient, as well as some genetic and clinical information gathered at
the time of the MRIs [17]. Other work predicts future MRI scans for an AD patient
from a single MRI and accompanying genetic and clinical information [13, 66].

Fourth, there is benefit in modeling the short-term changes of a lesion. For example,
targeted radiation therapy for non-small cell lung cancer (NSCLC) patients is made
more difficult by patient respiration. While the patient breathes, the lung tumor moves,
making it hard to accurately target the cancerous cells while minimizing radiation to
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the surrounding healthy cells [58]. Models that track tumor movement over the course
of a patient’s breath cycle help mitigate the possibility of error during radiation, and
have been introduced for this specific use case [33, 58].

Finally, image registration is a useful precursor to other important clinical tasks,
such as prediction. In the example of symptom-trajectory prediction for AD patients,
we believe that using as input to the prediction model a time series of more than two
MRIs per patient will enable the model to achieve higher accuracy. Although this work
will not explore prediction given a time series of images, it is a natural extension and
an interesting avenue for future work.

� 1.2 Current Medical Image Registration Techniques

Medical image registration between an image taken from a patient and a synthesized
atlas image, often created to define a prototypical image from a population of interest,
is a well-explored problem. Classical medical image registration models have optimized
a loss function combining an image similarity loss and regularization penalty term for
each pair of images. Classical methods are discussed more in Section 2.2.

Existing longitudinal image registration pipelines are often optimization-based, so
run slowly over datasets of large images, or are specialized to a specific kind of image
data. Current longitudinal medical image registration pipelines like FreeSurfer end up
using neither optimization-based longitudinal registration models nor pairwise learning-
based models, and instead create a template image for each subject before performing
local optimizations to align the template image to the original input images [67].

Efficient and accurate learning-based models that are designed for use across dif-
ferent kinds of medical imaging data exist, but are often pairwise [14, 22]. To effi-
ciently construct a deformation between the patient’s image and the atlas, these pair-
wise methods commonly use a deep neural network to estimate a mapping between
pixels in the two images. The mapping can be interpreted as a flow field, moving
pixels in the patient’s image to the location in the atlas image to which they align
[14, 18, 22, 23, 60, 85, 90].

Although these subject-to-atlas registration models were not designed for longitu-
dinal data, the idea of a deformation between images can be extended to image time
series. Rather than registering a patient’s image to an atlas, the same models can be
converted to map between two images taken from the same patient at different points
in time, creating a pairwise deformation. An overall deformation can be computed as
a piecewise combination of the pairwise deformations for that patient. When pairwise
models are used for image time series, the deformations they produce cannot benefit
from information contained in any images apart from the two they consider at any given
time. Even though pairwise models do not take advantage of the temporal aspect of
the data, they are a reasonable baseline method for spatiotemporal registration.

Recently, registration of temporal medical data has also been investigated. One ap-
proach uses Gaussian kernels to model intensity changes over time for both inter- and
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intra-subject n-D registration [34]. Others use the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) framework [22]. These compose a spatial deformation and
a temporal deformation. In a diseased population, for example, the average patient
trajectory can be modeled as the temporal deformation, while a specific patient’s devi-
ation for the mean is modeled as the spatial deformation [22, 31]. Most of these models
are infeasible in practice given the size of modern medical images and the number of
images that might be included in a time series [31].

Some models seek to overcome this efficiency limitation by re-framing the image reg-
istration task as a longitudinal regression problem [34]. They extract low-dimensional
characteristics of the image, such as the brain’s posterior thalamic radiation, and esti-
mate its development over time to address a specific clinical task. This is an effective
solution to the estimation speed problem, but limits the utility of the model. Such a
model is only useful when the task can be re-framed using a low-dimensional represen-
tation of the image.

Another recent approach for spatiotemporal image data uses deep-learning to effi-
ciently estimate a deformation field between images. This method is similar to frame
prediction for short-term temporal data, when the images can easily be interpreted as
frames in a video. In this case, frames can be registered using a conditional variational
autoencoder (CVAE) to create deformations, where the structure of previous and future
frames inform the deformation for the current frame [46]. This approach, however, was
designed for medical data where time between images is under a second, and therefore
might not scale well to data that have larger time gaps.

� 1.3 Longitudinal VoxelMorph

In this work, we present Longitudinal VoxelMorph, a model for n-D spatiotemporal
image registration across a time series of medical images taken from the same subject.
Our main contributions are:

• Longitudinal VoxelMorph: We define a novel spatiotemporal image registra-
tion model with a b-spline representation that enables scalability. We implement a
learning-based approximation network to efficiently register a time series of medi-
cal images.

• Longitudinal Metric: We propose a new evaluation metric, D*, to extend the
existing pairwise Dice score for image registration to longitudinal data.

• Real-world Evaluation: We perform experiments on two medical image datasets,
and find that Longitudinal VoxelMorph produces a deformation that is smoother
in time than baseline state-of-the-art pairwise models, while achieving comparable
or improved registration accuracy.

This thesis is structured as follows. Chapter 2 will supply background on medical
imaging, image registration, and b-splines that will be useful in understanding the con-



Sec. 1.3. Longitudinal VoxelMorph 17

straints and advantages of the model. Chapter 3 will define Longitudinal VoxelMorph.
Chapter 4 will introduce useful metrics to quantify performance of spatiotemporal reg-
istration models, and Chapter 5 will present the results of the model in several experi-
mental settings. Chapter 6 concludes the work, and outlines future research directions.
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Chapter 2

Background

IN this chapter, we explore several medical imaging modalities and mathematical con-
cepts relevant to this work, and provide some background on classical medical image

registration. Together, they help motivate and clarify the model defined in the subse-
quent chapter.

� 2.1 Medical Imaging Background

Medical imaging is frequently used as the principal method of diagnosing a wide range
of conditions and monitoring ongoing treatment. Nearly all of us will undergo medical
imaging many times over the course of our lives, varying from dental x-rays on a yearly
basis to fetal ultrasounds during pregnancy. In this work, we use magnetic resonance
images (MRIs), cine imaging data, and ultrasound.

All medical images are somewhat noisy, meaning the image they produce does not
perfectly capture the underlying anatomy. There are many possible sources of this noise.
Noise can be introduced by variation between machine settings, patient movement,
or imperfect measurements. In the case of longitudinal modeling, where the images
of interest come from the same subject, such variability can sometimes represent a
substantial portion of the differences between two images [68]. A good longitudinal
model should therefore be prepared to handle noisy data.

� 2.1.1 Magnetic Resonance Imaging

Magnetic Resonance Images (MRIs) are 3-D grayscale images, often capturing specific
body parts. MRI is a non-invasive technology that does not require harmful ionizing
radiation, unlike other common medical imaging techniques like x-rays or computed
tomography (CT/CAT) scans. MRI technology is based on nuclear magnetic resonance
(NMR) technology, which was initially used to analyze molecule properties [29]. To
produce an image, an MRI machine first creates a strong magnetic field, causing the
protons in the body’s tissue to align to the field. A set of radio frequency (RF) pulses are
then sent through the patient [2, 29]. These RF pulses temporarily cause the protons
to spin out of their alignment. The speed at which a molecule’s protons return to
alignment with the magnetic field depends on the chemical properties of the tissue.
The speed can be measured to microsecond accuracy by the MRI machine [29]. An
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MRI machine is programmed to identify different tissue types based on the speed at
which the protons re-align to the magnetic field and then to reconstruct an image of
the patient’s underlying anatomy [2].

MRI is a widespread and powerful medical imaging technique, and is used for many
interesting research datasets. The RF pulses can pass through a patient’s bone struc-
tures without degrading, creating accurate images of tissues inside of or in close prox-
imity to bony areas of the body [29]. The accurate images and lack of ionizing radia-
tion make MRI the modality of choice for brain and fetal diagnostic imaging, or when
repeated imaging is needed for either treatment or diagnosis [2]. This lends itself espe-
cially well to longitudinal medical imaging studies. It also enables clinical studies that
include healthy patients by removing ethical concerns surrounding radiation exposure
[53]. Despite their benefits, MRIs are more expensive to obtain than x-ray or CT scans
and require more expertise to interpret, so are not always used [2, 53].

� 2.1.2 Cine-MRI

Cine images are a set of images that, together, can be interpreted as frames in a video.
Cine-MRIs are a set of repeated MRIs taken in close succession that are then combined
to form a brief video. Cardiac cine-MRIs, which show the tissues in the heart over the
course of a heartbeat, are a common type of cine-MRI. They are often constructed in
conjunction with electrocardiograms (ECGs) that, for each frame, measure its location
in the cardiac cycle [5].

For a normal MRI, multiple RF pulses are emitted to measure the average re-
alignment speed, as any individual measurement might be incorrect. Similarly, cine-
MRIs are usually averaged given multiple cycles of measurement. In the case of the
heart, each frame is constructed from RF pulses taken over several non-ectopic heart-
beats. Combined with ECG data measuring the phase in the cardiac cycle, the re-
alignment speeds for a specific phase are averaged, creating re-alignment data for a
synthetic heartbeat. This synthetic heartbeat data is then used to produce the cine-
MRI frames. Figure 2.1a shows an example frame from a cardiac cine-MRI slice. Col-
lecting data across multiple heartbeats can require patients to hold their breath for
ten to twenty seconds (the duration of a single resting heartbeat often ranges between
0.7 and 1.25 seconds) introducing another source of variability between the cine-MRI
frames if patients are unable or forget to do so [5, 10].

� 2.1.3 Ultrasound Imaging

Diagnostic ultrasound imaging is a non-invasive imaging technique that uses sound
waves to produce 2-D images of tissues and organs. These sound waves have higher
than 20KHz frequencies, above the human hearing range (hence the name ultrasound),
but modern ultrasound machines usually have MHz frequencies. These ultrasound
waves are sent into the human body using a transducer, and are reflected back towards
the transducer when the waves hit a tissue boundary. The transducer can measure
the speed at which the wave is traveling and the time it took to return. Similar to
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(a) An example sequence of frames from a cardiac cine-MRI slice showing the ventricles. The
frames shown are all six frames apart in the cine-MRI.

(b) An example sequence of frames from an echocardiogram showing the ventricles. The frames
shown are all 19 frames apart in the echocardiogram.

Figure 2.1: Basic example frames of a cardiac cine-MRI and echocardiogram, each
showing the ventricles of the heart from a different view. Although the cardiac cine-
MRI frames show more detail and much sharper boundaries between structures, it is also
much more expensive to obtain and the added detail is not always clinically necessary
[64].

echolocation, the ultrasound scanner can calculate the distance between the transducer
and the tissue boundary, and use this information to produce an image [6].

Ultrasound machines enable non-invasive imaging of internal organs, and do not
require ionizing radiation [6]. They are not, however, generally accurate in areas with
bones or with air pockets [6]. Only when the surrounding area is fully or partially filled
with fluid can ultrasounds sometimes image bones, most notably for fetal ultrasounds
[6]. A cardiac ultrasound is also called an echocardiogram.

Although the quality and resolution of an echocardiogram is not as high as that of
a cardiac MRI, as compared in Figure 2.1, a cardiac MRI costs over 5.5 times more
than an echocardiogram, as of 2005 [64]. It is therefore valuable to create an image
registration model that works well for both data modalities.

� 2.2 Classical Image Registration Overview

Medical image registration is a well-explored field [8, 12, 16, 24, 35, 79, 88, 89]. Classical
image registration techniques optimized a deformation field by minimizing the cost
function

L(φ, x, y) = Lsim(φ, x, y) + λLsmooth(φ), (2.1)
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where φ is the deformation field estimated by the model and x and y are the two im-
ages being registered [14, 78]. Lsim is some image similarity loss, often mean squared
error based on pixel intensity [14, 31], mutual information [65], or cross-correlation [11].
Lsmooth enforces some smoothness constraint on the estimate of φ. The λ parameter con-
veys the tradeoff between an accurate end-to-end deformation field and an anatomical
desire for smoothness.

Several well-established classical medical image registration models, including elastic-
type models [12, 26, 75], statistical parametric mapping [9], b-spline free-form deforma-
tions (FFDs) [70], discrete methods [24, 35], and Demons [63, 79] interpret the deforma-
tion φ as a displacement vector field between two images. Methods that produce diffeo-
morphic deformation fields, thereby enforcing smooth changes over space and time, are
particularly popular for medical image registration since the diffeomorphic constraint
mirrors medical understanding of anatomical development and motion. Models that
produce diffeomorphic displacement vector fields include Large Diffeomorphic Distance
Metric Mapping (LDDMM) models [16, 20, 41, 42, 54, 87, 89], DARTEL [8], diffeomor-
phic demons [82], and standard symmetric normalization (SyN) [11].

These classical approaches are not learning-based, however, and instead optimize
the cost function given in Equation (2.1) for every pair of new images. Even though
new algorithms that adapt these methods for GPUs can solve this optimization problem
for each pair of images on the order of minutes [56, 57], this does not scale well to studies
over large population sizes or time series including many images [14].

� 2.3 Basis-spline Background

We use basis-splines (b-splines) as an efficient and scalable spatiotemporal represen-
tation for the estimated deformation field in Longitudinal VoxelMorph. B-splines are
a common mathematical modeling formulation, first suggested by Isaac Schoenberg in
1946 [73]. B-splines are used to define a continuous curve or surface given a relatively
small set of points, so can serve as a sparse parameterization. They are widely used
because of their smoothness, generalizability, and efficiency [34, 36, 44, 62, 70, 71]. A
simple example of a b-spline curve is given in Figure 2.2.

A b-spline of order k is defined by a set of control points, φCP , a set of knots
T = {t0, t1, ..., tn : t0 ≤ t1 ≤ ... ≤ tn} where n is the number of knots, and a set of
basis functions {Ni,j : 1 ≤ j ≤ k, i ∈ {0, 1, ..., n + k}}. The b-spline is a piecewise
combination of n polynomials of degree k − 1, which are joined at the knot locations.
Between two adjacent knots, the b-spline is therefore C∞ continuous. At a knot of
multiplicity m, the b-spline is Ck−m−1 continuous [62].

The basis functions are defined using the knot vector T . They can be recursively
written as

Ni,1(t) =

{
1, if ti ≤ t ≤ ti+1

0, otherwise
(2.2)
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Figure 2.2: An example of a b-spline curve. Given simplifying assumptions, the curve
is fully parameterized by the five control points, shown as blue dots.

and

Ni,k(t) =
t− ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t
ti+k − ti+1

Ni+1,k−1(t). (2.3)

This recurrence relation guarantees that Ni,k(t) > 0 for ti < t < ti +k, and that Ni,k(t)
is Ck−2 continuous at each knot of multiplicity 1. B-splines have local support, i.e.,
∀t 6∈ [ti, ti+k] : Ni,k(t) = 0 [62].

The b-spline curve is then defined using the basis functions Ni,k and the control
points φCP = {φ0, ..., φn} as

r(t) =

n∑
i=0

φiNi,k(t), n ≥ k − 1, t ∈ [tk−1, tn+1], (2.4)

following de Boor’s formulation [27, 62]. The local support property of the basis func-
tions extends to the b-spline curve. Importantly, a single span of the b-spline curve is
fully determined by only k control points and, conversely, a single control point only
influences k spans. This is in contrast to other mathematical curve parameterizations,
such as Bézier curves [62]. Local support provides a significant modeling advantage,
since it enables us to tune only a few control points to adjust a specific part of the curve,
and avoid affecting parts of the curve that are far away from those control points. It
also decreases the computational resources required to calculate r(t), since only the
nearest control points are relevant [70].

The formulation of b-spline curves in higher-dimensional cases is analogous to two
dimensions [62]. For example, in 3-D the b-spline surface is defined as

r(u, v) =

m∑
i=0

n∑
j=0

φijNi,k(u)Nj,l(v). (2.5)

To simplify calculations and computation time, specific b-spline parameterizations
can be written in a closed form. Cubic b-splines (i.e., b-splines of order k = 4), are com-
monly used for modeling problems [34, 36, 44, 70, 71], and we use them in the remainder
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(a) A sine curve estimated using b-spline
and linear interpolation, with control points
placed 5 units apart.

(b) The estimated sine curve from Fig. 2.3a
over a smaller window.

Figure 2.3: The result of b-spline and linear interpolation given a set of control points
lying along a sine curve. As can be seen, the b-spline curve is smooth and does not
directly pass through control point set φCP , unlike the linear curve.

of this work. When the knots T are placed uniformly, such that ∀i ∈ [0, ..., n − 1] :
|ti+1 − ti| = ∆, and all control points are spaced uniformly, separated by δd along the
d-axis, the 4-D b-spline surface can be written in closed form as

r(x, y, z) =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(
x

δx
−b x

δx
c)Bm(

y

δy
−b y

δy
c)Bn(

z

δz
−b z

δz
c)φi+l,j+m,k+n, (2.6)

where i = b xδx c, j = b yδy c, and k = b zδz c [70]. The basis functions Bl are defined by

Bl(u) =


(1−u)3

6 if l = 0
3u3−6u2+4

6 if l = 1
−3u3+3u2+3u+1

6 if l = 2
u3

6 if l = 3

. (2.7)

The closed form given in Equation (2.6) exhibits the local support property, where
only the four control points closest to point (x, y, z) in each dimension impact the value
of r(x, y, z). The work presented for the remainder of this thesis is based on the closed
form b-spline parameterization given in Equations (2.6) and (2.7), using uniformly
spaced control points and uniformly placed knot vectors.

� 2.3.1 B-spline interpolation examples

A small set of control points can fully define b-spline curves with uniformly distributed
knots and uniform control-point spacing. For example, a set of control points can be
used to smoothly estimate a sine curve, as in Figure 2.3.
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(a) A sine curve with added i.i.d. Gaussian
noise Y ∼ N (0, 0.25) estimated using b-spline
and linear interpolation, with control points
placed 5 units apart.

(b) The estimated sine curve with noise from
Fig. 2.4a over a smaller window.

Figure 2.4: The result of b-spline and linear interpolation given a set of control points
lying along a sine curve when i.i.d. Gaussian noise Y ∼ N (0, 0.25) is introduced. In
this case, the b-spline curve is better able to reflect the underlying sine curve since it
is not constrained to pass directly through the control points.

This example illustrates two important differences between linear interpolation given
φCP and b-spline interpolation given φCP . First, unlike linear interpolation, a b-spline
curve need not directly pass through the control points. If we wanted a curve that
passed through the point set φCP , as the linear interpolation curve does, a b-spline
could still achieve this. It would simply require a different set of control points φ′CP .
Not passing directly through φCP can be a significant advantage of the b-spline curve.
If, for instance, we have reason to believe that the control points may be noisy, the curve
that follows the overall trend of φCP without adhering too closely to any single point
can produce a more robust overall curve. A synthetic example of this phenomenon is
shown in Figure 2.4.

Second, the b-spline curve is differentiable, unlike linear interpolation, as shown
in figures 2.3 and 2.4. Smoothness, reflecting the clinical understanding of the smooth
change of anatomical structures over space and time, is a central theme throughout this
work. As described in Section 2.3, every point in a cubic b-spline curve with uniformly
distributed knots and control points has at least C2 continuity [62].

B-spline interpolation offers a sparse representation of a smooth curve in n-D, and
can be optimized more easily than other differentiable n-D curves given its local support
property [70]. It is more robust to independent and identically distributed (i.i.d.) noise
than simpler interpolation schemes, such as linear interpolation, but is still faithful to
the overall trend of φCP that parameterizes the curve. For these reasons, b-splines lend
themselves well to modeling anatomical changes over time and space.
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Chapter 3

Model

IN this chapter we introduce our main contribution, Longitudinal VoxelMorph, an
efficient and scalable spatiotemporal medical image registration model. We define

the model and an accompanying learning-based approximation network architecture.
Finally, we provide an analysis of tradeoffs considered in the model design.

We aim to register a time series of medical images to each other. At a high level,
one goal of an image registration method is to transform all input images to a shared
coordinate system. This shared coordinate system is usually the coordinate system of
one of the images, often referred to as the fixed or target image. The transformation
defines a deformation that maps pixels in the other images, sometimes called the moving
or source images, back to the fixed image. Applying the deformation to a moving image
therefore produces an estimate of the fixed image [11, 14, 19, 38, 40, 72, 74, 85, 90, 91]. For
spatiotemporal registration, the deformation field can be interpreted anatomically as
quantifying the structural changes captured in the medical images at different points
in time [4, 28, 39, 49, 92].

Longitudinal VoxelMorph registers a time series X of medical images from a single
patient. To define a shared coordinate system, we choose the patient’s first image, x0,
as the fixed image. Based off of the classical image registration cost function given in
Equation (2.1), we estimate a deformation field φ that minimizes

φ̂ = min
φ

|X|−1∑
i=1

Lsim(φ, x0, xi) + λLsmooth(φ), (3.1)

where Lsim is an image similarity loss and Lsmooth enforces some smoothness constraint
on the deformation φ. We build a learning-based approximation network to estimate
the parameters of the model, as outlined in Section 3.2.

We use a sparse representation of φ, parameterized by b-splines, to represent and
estimate the deformation field in an efficient way. Since a single medical image, and
particularly a 3-D scan, is often very large, supporting time series with more than two
images can exceed memory constraints, even with access to modern GPUs [76]. (Using
CPUs is infeasible, since they run on the order of 55 times slower for pairwise 3-D image
registration tasks [59].)

We also want the deformation field φ to be smooth. Anatomical activity is medically

27
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(a) An example deformation field φt that is
not anatomically consistent. φt warps the pix-
els in the first grid to produce the second,
where the pixel coloration identifies the de-
formation of individual pixels. In this case, φt
is not anatomically consistent, since the red
pixel should not be able to exit all of its encir-
cling neighbors (shown in blue) given our un-
derstanding of anatomical structures’ activity.

(b) Two example deformation fields, φ1

(shown in red) and φ2 (shown in blue), with an
example pixel’s deformed location across the
images shown as gray points. Even though φ1

passes through the points exactly, it is possi-
ble that the deformed locations are noisy be-
cause of noise in the input images, and φ2 is
more temporally consistent, since we expect
anatomical activity to be relatively smooth
over time. Medically, φ2 is more useful.

Figure 3.1: Basic examples to illustrate the concepts of (a) anatomical consistency and
(b) temporal consistency.

understood to change smoothly over space and time. The hippocampus does not tear as
it atrophies, for example [4]. Nor does the lining of the ventricles expand and contract
in a jagged motion during the cardiac cycle. Instead, the ventricles move smoothly [81].
Mathematically, φ is diffeomorphic, meaning that φ is invertible and both φ and φ−1

are differentiable functions.
Spatially, this guarantees anatomical consistency, so underlying structures in the

images move smoothly and obey normal physical laws, such as preventing tissues from
being cut out from the center of an image or moved into an entirely different part of the
image [55]. An example of an anatomically inconsistent φ is shown in Figure 3.1a. The
temporal analog of anatomical consistency is temporal consistency, which requires that
changes are smooth over time. A temporally inconsistent model, for example, might
optimize a deformation field for each individual image, potentially resulting in a non-
differentiable φ, which would not reflect clinical understanding of anatomical changes
over time, as shown in Figure 3.1b [47].

� 3.1 Model Definition

In this section, we define the variables and important hyperparameters used in Longi-
tudinal VoxelMorph.

First, the model defines the hyperparameter F as the number of images in each
patient’s time series and the hyperparameter K as the maximum time gap between the
first and last image from any of the patients. That is, images within a time series must
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all occur within K time of each other.
The model also defines the following variables.

• X = [x0, x1, ..., xF−1]. These are the set of images that make up the time series
for a patient. Each image can be n-dimensional, so xi ∈ Rn. The sequence
X is sorted by the time at which the image was taken, so that x0 is the first
image and xF−1 is the last available image for that patient. As required by the
hyperparameter, we have |X| = F for all patients.

• T = [t0, t1, ..., tF−1]. These are the set of times at which each image was taken.
We define t0 = 0, so that all times are relative to the baseline image. That is,
image xi was taken ti time after x0 was taken. The hyperparameter K requires
that tF−1 ≤ K.

We model φv as the b-spline control-point representation for the vector velocity
field v of the deformation φ, using uniformly spaced control points and knot vector
placement. That is, φv defines the spatial velocity at each control point location. Given
2-D images, where initially xi ∈ RW×H , the control-point representation has shape

φv ∈ R
W
δx
× H
δy
×2× F

δT , (3.2)

where δx, δy, and δT are spatial hyperparameters defined by the model. These determine
the level of sparsity in our representation of the deformation field φ. We define δd as
the spatial-sparsity ratio along the dth dimension of the input image. In the case of
a 2-D image, for example, we would define δx and δy. Similarly, we define δT as the
temporal-sparsity ratio. This determines the sparsity of the model’s representation over
time.

We let φd be the control point parameterization for the deformation field. Therefore,

φd =

∫
φvdt. (3.3)

The integration does not change the dimensions of the control point grid from those of
φv.

Finally, we model the dense deformation field φ using b-spline interpolation of the
control point grid φd at every pixel location. Given the uniformly spaced control points
and knot vector placement, this interpolation is defined in Equation (2.6). For a 2-D
image, this therefore produces

φ ∈ RW×H×2×F−1. (3.4)

We define φt as the slice of the vector field φ when fixing time t, so that

φt ∈ RW×H×2. (3.5)

Based on the model, we aim to learn an approximation of the deformation φ that
minimizes

φ̂ = min
φ

F−1∑
i=1

‖x0 − φi ◦ xi‖+ λ ‖φ‖ . (3.6)
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Figure 3.2: An overview of the proposed network approximating the spatiotemporal
deformation φ. The network inputs X and T are shown in green, while the hyper-
parameters to the model, δd, δT , and K, are shown in yellow. All model layers and
computed values are shown in blue.

� 3.2 Learning-based Approximation

Rather than approximating φ independently for each new time series of images, we use
a network gF,K,δd,δT (X,T ) = φ. The network optimizes

gF,K,δd,δT (X,T ) = min
g

F−1∑
i=1

‖x0 − g(X,T )i ◦ xi‖+ λ ‖g(X,T )‖ . (3.7)

After training, the network g can be used to estimate φ for new example time series
more efficiently than a classical approach that optimizes all examples independently.

We define our network g as follows. Figure 3.2 visually depicts the network archi-
tecture.

• We estimate φv using a truncated U-Net [69]. The U-Net architecture is a com-
monly used convolutional neural network (CNN) specifically designed for medical
images [14, 47, 69]. We define h(X,T ) = UNet[l] to be the output of the lth layer
in the upsampling path of the U-Net. The value of l is based off of the hyperpa-
rameters δd, such that the spatial dimensions of h(X,T ) are as close as possible
to the desired spatial dimensions of φv. Any additional required reshaping is done
immediately following h(X,T ) to produce the correct dimensions of φv, and we
refer to this final reshaping as f . Therefore, φv = f(h(X,T )).
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• We estimate φd using a scaling and squaring layer [23]. In a fully-resolved velocity
vector field, we can imagine taking small steps along a vector field and summing
up the displacement at each location from each step to produce the overall dis-
placement field.

We define ∆ as the number of steps we want to take along the velocity field v.
Define the displacement at each pixel after i steps as the vector field d(i). We
compute d(1) = v

∆ . Then, to improve the model efficiency, we approximate d(2) as

d(1)+d(1), d(4) ≈ d(2)+d(2), and so on until d(∆) ≈ d( ∆
2

)+d( ∆
2

). In each summation,
we use linear interpolation to calculate the displacement at each pixel location in
the vector field. The higher the ∆, the higher the accuracy of the approximated
integration, but the slower the computation time. For this work, we chose ∆ = 27.

Although the intuition is simpler with a fully-resolved vector field, the same can
be done with b-spline control points. Specifically, this approach requires that for
some control-point parameterization φCP ,

bspline(φCP2 ) + bspline(φCP2 ) = bspline(φCP ),

where bspline(·) denotes b-spline interpolation using the given set of control points.
This would guarantee that summing the fully-resolved displacement fields param-
eterized by control points for two smaller steps is the same as resolving the dis-
placement field parameterized by the summation of the control points for each
step.

To see that this is true, consider the 1-D b-spline curve analogous to the 3-D
parameterization given in Equation (2.6). Specifically,

r(p) =
∑3

l=0Bl(
p
δx
− b pδx c)φCP b pδx c+l,

where Bl is defined as in Equation (2.7). The value of p defines the location to
interpolate at, and φCP is the sparse control-point representation. Computing φCP

2
does not impact p, so let cl := Bl(

p
δx
− b pδx c), where cl is a constant in terms of

φCP . Similarly, let il = b pδx c+ l, which is again a constant in terms of p.

Then, for some location p,

bspline(φCP2 ) + bspline(φCP2 ) =
∑3

l=0 cl(
φCP

2 )il + cl(
φCP

2 )il =
∑3

l=0 cl × 2(φCP2 )il =∑3
l=0 cl(φCP )il = bspline(φCP ).

This analysis extends to higher-dimensional b-spline parameterizations. Therefore,
fully-resolving summed control-point representations of step-sized displacements is
equivalent to summing fully-resolved step-sized displacements. It is more efficient
to sum the sparse control-point representation, so this is what is implemented in
the network g.
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Figure 3.3: A 2-D example deformation, as applied by the spatiotemporal transformer
layer. Each index (i, j) in φt contains an 2-D vector that specifies the pixel in xt that
should be used for the (i, j)th pixel in the warped image. The field φt is a surjective
mapping that covers the estimated warped image x̂t, producing an estimated image
that is well-defined and simple to compute. It is not necessary for the vectors in φ to
map to index pixel locations. Values corresponding to non-integer locations within xt
are calculated with linear interpolation using the location’s neighboring pixels.

We therefore use this layer to approximate the control-point representation for the
displacement vector field according to the recursive relation

φ
(1)
d =

φv
27
, (3.8)

and
φ

(s)
d = φ

(log2 s)
d + φ

(log2 s)
d , (3.9)

with the final estimate φd = φ
(27)
d .

• We estimate the full-resolution deformation field φ using a b-spline interpolation
layer. We scale the image times relative to the maximum time frame supported by
the model, so that the final control points in time refer to the longest supported
time gaps. For each pixel location in an image and each time in the input vector
T (scaled relative to K), we interpolate the displacement vector at that pixel for
that time. We compute φ = bspline(φd,

T
K ).

• Finally, we use a spatiotemporal transformer layer to warp xt back to the reference
frame of x0 for all t > 0. If we define the warped version of xt as x̂t, this layer
implements the surjective function x̂t = φt ◦ xt for 0 < t < F , as shown in Figure
3.3. For each pixel in x̂t, the deformation defines the location in xt that corresponds
to that pixel. The field therefore covers the set of pixels in x̂t, producing an
estimated deformation that is well-defined and simple to compute, as shown in
Figure 3.3.
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� 3.3 Fixed Image Choice

To define a shared coordinate system for a patient’s image data, we selected x0 as the
fixed image. We chose to use an image from the input time series as the fixed image
rather than constructing a separate prototypical image to use as an atlas. We made
this design decision mindful of applications like segmentation propagation, as discussed
in Chapter 1, where we only have a segmentation available for the baseline image (i.e.,
x0 has an accompanying segmentation, and the task is to estimate a segmentation for
all other images in the time series). For applications like this, constructing a separate
prototypical image, mapping the segmentation to that space, and then mapping the
prototypical segmentation to all of the other images would introduce more errors to the
estimated segmentations with each mapping. These errors can be avoided by using the
existing baseline image as the fixed image.

� 3.4 Analysis of Error Propagation

Different spatiotemporal registration models could choose to learn a slightly different
interpretation of the deformation field φ, and each interpretation choice would lead to
different behavior when exposed to noisy input data. The input data might be noisy
because of changes to specific scanner settings between images, patient movement, or
imperfect imaging technology [68]. Ideally, noise in one part of the input data or other
errors in the model’s estimated deformation field should not be amplified or create
errors in other parts of the model.

In this section, we perform a theoretical analysis of the Longitudinal VoxelMorph
deformation’s response when exposed to noisy data. We also compare it to two other
deformation field interpretations, and show that the φ computed by Longitudinal Vox-
elMorph is the most robust to noise.

To facilitate different interpretations of φ, in this section we will refer to the warped
version of xt in the fixed reference frame as x̂t. Furthermore, we will analyze the
behavior of each interpretation using the inverse of φ (φ−1, which is guaranteed to exist
since φ is diffeomorphic) to adhere to a more intuitive understanding of xi mapping to
xj , where i < j.

The three analyzed interpretations of φ are as follows.

1. In Longitudinal VoxelMorph, the deformation field φ−1
t represents the mapping

from the baseline image in the sequence to the estimate of the next image. Math-
ematically,

x̂t+1 = φ−1
t (x0), 0 ≤ t ≤ T − 2. (3.10)

This formulation will be called the baseline deformation interpretation throughout
this section.

2. In our first alternative, the deformation field φ−1
t represents the deformation from

the previous image in the input sequence to the estimate of the next image. That
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is, we could interpret φ−1 according to

x̂t+1 = φ−1
t (xt), 0 ≤ t ≤ T − 2. (3.11)

For the remainder of this section, we will refer to this interpretation as the input
timestep deformation interpretation. To distinguish this timestep interpretation
of φ−1, we will use the notation φ−1

t→t+1 := φ−1
t .

3. In our second alternative, the deformation field φ−1
t represents the deformation

that warps the previous image in the estimated sequence, i.e.

x̂t+1 = φ−1
t ◦ φ

−1
t−1 ◦ φ

−1
t−2 ◦ ... ◦ φ

−1
1 ◦ φ

−1
0 (x0), 0 ≤ t ≤ T − 2. (3.12)

This will be referred to as the estimated timestep deformation interpretation for
the remainder of this section. Again, in later parts of this section we will use the
notation φ−1

t→t+1 := φ−1
t to convey that this is a timestep-based interpretation.

� 3.4.1 Introducing Noise to the Data

Consider introducing noise to the input data sequence. For a theoretical analysis, let
x̄t be a ‘perfect’ image, i.e., let it noiselessly capture the patient’s anatomy at time t.
Let xj = x̄j + γσ define a noisy image, for j > 0 and γσ = N (0, σ). To simplify the
analysis, we constrain the baseline image x0 to always be perfect.

Define φ̄−1
t to be the ‘perfect’ deformation field for time point t, i.e. x̄t+1 =

φ̄−1
t→t+1(x̄t), 0 ≤ t ≤ T − 2 for in the timestep interpretations listed above, or x̄t =

φ̄−1
t (x0), 0 ≤ t ≤ T −1 in the baseline interpretation. Then, let φ−1

i = φ̄−1
i + εσ, 0 < i ≤

T − 1, where εσ = N (0, σ), and let φ−1
k = φ̄−1

k , ∀k 6= i, 0 ≤ k ≤ T − 1. That is, all defor-
mations except for the ith are ‘perfect’, and we have introduced Gaussian noise to the
ith deformation. This mimics the case where there is an error in the deformation field
that is not necessarily caused by noise in an input image. It might be impossible, for
instance, to perfectly capture the deformation with a sufficiently sparse representation
of φv.

This is an improbable set of assumptions for a real-world application. First, there
are no noiseless medical images, because of limitations in medical imaging. Second, if
φ−1
i 6= φ̄−1

i , then likely φ−1
i+1 6= φ̄−1

i+1. In Longitudinal VoxelMorph’s model formulation,

for instance, in order to introduce noise into φ−1
i , there must be noise introduced into φv,

since the mapping φv

∫
φvdt,bspline(φd)
−−−−−−−−−−−→ φ is deterministic. If control point φv[x, y, t] has

been shifted by the introduction of noise, the cubic b-spline interpolation will slightly
adjust the result of the interpolated locations nearest that control point in each dimen-
sion. Therefore, if noise is introduced to φ−1

i then a control point that caused at least
part of the noise in φ−1

i also influences φ−1
i+1, and therefore likely introduces noise to

φ−1
i+1 as well.

However, these assumptions simplify the analysis and still convey the advantages and
disadvantages of different interpretations of φ−1. In some cases, the subsequent sections
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comment on steps where a different, more realistic set of assumptions might change
the relative value of different interpretations, but on the whole this basic framework
facilitates analysis.

We consider each of the possible model interpretations for the deformation field
individually and analyze how the noise changes the network behavior.

� 3.4.2 Baseline Deformation Interpretation with Noise

In this interpretation, the model uses the deformation field to estimate an image ac-
cording to x̂t+1 = φ−1

t (x0), as in Equation (3.10). This presents the following cases:

1. t 6= i : x̂t+1 = φ−1
t (x0) = φ̄−1

t (x̄0) = x̄t+1. In this case, the estimated image for
time t+1 is perfect. Under the assumption that x0 is perfect, this does not depend
on j.

2. t = i : x̂t+1 = φ−1
t (x0) = φ̄−1

t ◦ εσ(x̄0) = εσ(x̄t+1). Here, an additional deformation
of εσ is applied to the true value. This analysis is still independent of j.

These results are compared with those of the two alternative deformation field in-
terpretations in Section 3.4.5.

� 3.4.3 Input Timestep Deformation Interpretation with Noise

In this interpretation, the model uses the deformation field to estimate an image ac-
cording to x̂t+1 = φ−1

t→t+1(xt), as in Equation (3.11). We consider the following cases:

1. i 6= t, j 6= t : x̂t+1 = φ−1
t→t+1(xt) = φ̄−1

t→t+1(x̄t) = x̄t+1. In this case, the estimated
image at time t+ 1 is perfect.

2. i = t, j 6= t : x̂t+1 = φ−1
t→t+1(xt) = φ̄−1

t→t+1 ◦ εσ(x̄t) = εσ ◦ φ̄−1
t→t+1(x̄t) = εσ(x̄t+1).

εσ and φ̄−1
t commute, since each deformation can be thought of as a vector field,

and the composition of two displacement vector fields is their sum. Therefore, this
estimation is noisy, applying an unwanted additional deformation of εσ.

3. i 6= t, j = t : x̂t+1 = φ−1
t→t+1(xt) = φ̄−1

t→t+1(x̄t + γσ) = φ̄−1
t→t+1(x̄t) + φ̄−1

t→t+1(γσ) =

x̄t+1 + φ̄−1
t→t+1(γσ), since the deformation field φ−1 acts as a location index into xt,

and is therefore distributive. This estimation is again noisy, adding the warped
value φ̄−1

t→t+1(γσ) to the true value.

4. i = t, j = t : x̂t+1 = φ−1
t→t+1(xt) = εσ ◦ φ̄−1

t→t+1(x̄t + γε) = εσ(x̄t+1 + φ̄−1
t→t+1(γσ)) =

εσ(x̄t+1)+ εσ ◦ φ̄−1
t→t+1(γσ). This estimation is noisy as well, applying an additional

unwanted warp to the true x̄t+1 and then adding εσ ◦ φ̄(γε) to that term as well.

Section 3.4.5 compares these findings with the other potential deformation field
interpretations listed in Section 3.4.
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� 3.4.4 Estimated Timestep Deformation Interpretation with Noise

In this interpretation, the model uses the deformation field to estimate an image ac-
cording to x̂t+1 = φ−1

t→t+1 ◦ φ
−1
t−1→t ◦ ... ◦ φ

−1
1→2 ◦ φ

−1
0→1(x0), as in Equation (3.12). This

leads us to consider the following cases:

1. t < i : x̂t+1 = φ−1
t→t+1 ◦ ...◦φ

−1
0→1(x0) = φ̄−1

t→t+1 ◦ ...◦ φ̄
−1
0→1(x̄0) = φ̄−1

t→t+1(x̄t) = x̄t+1.
This is a perfect estimation of xt+1. This does not depend on j, unlike the analysis
for the input timestep deformation interpretation given in Section 3.4.3. Under the
assumption that x0 = x̄0, any noise in the sequence’s subsequent images does not
directly impact the model’s estimations (i.e., it only impacts the model through
its effects on φ−1).

2. t = i : x̂t+1 = φ−1
t→t+1 ◦ ... ◦ φ

−1
0→1(x0) = φ̄−1

t→t+1 ◦ εσ ◦ φ̄
−1
t−1→t ◦ ... ◦ φ̄

−1
0→1(x̄0) =

εσ ◦ φ̄−1
t→t+1(x̄t) = εσ(x̄t+1). This estimated image is noisy, applying an additional,

unwanted deformation of εσ.

3. t > i : x̂t+1 = φ−1
t→t+1 ◦ ... ◦ φ

−1
i→i+1 ◦ ... ◦ φ

−1
0→1(x0) = φ̄−1

t→t+1 ◦ ... ◦ φ̄
−1
i→i+1 ◦ εσ ◦ ... ◦

φ̄−1
0→1(x̄0) = εσ ◦ φ̄−1

t→t+1 ◦ ... ◦ φ̄
−1
0→1(x̄0) = εσ ◦ φ̄−1

t→t+1(x̄t) = εσ(x̄t+1). We observe
that the deformation εσ is propagated to x̂t even when t > i. Again, this analysis
is independent of j.

The following section will compare these results to the other deformation field in-
terpretations considered in Section 3.4.

� 3.4.5 Interpretation with Noise Analysis Comparison

The analysis presented earlier in this section demonstrates some of the theoretical trade-
offs between the possible interpretations of the deformation field φ−1.

In the analysis of the input timestep deformation interpretation defined in Equation
(3.11), the error in x̂t+1 depends on both i and j, meaning it is impacted by noise in the
input data and noise in the deformation field, even when these two sources of noise are
not assumed to be correlated. This is the only interpretation considered in this section
that is directly impacted by noise in the data itself. In some cases, it is possible that
the noise in the image and the noise in the deformation field help mitigate each other
for future image estimations (i.e. εσ(x̄t+1) + εσ ◦Φt→t+1(γσ) < εσ(x̄t+1), t = i = j), but
in general we would prefer for the deformation field estimation to be robust to noise
in the data. It is also worth noting that this interpretation would prevent the model
from serving the needs of some important temporal registration applications. In the
case of segmentation propagation problems, for example, the model would not have
access to an input segmentation at every time point, creating the need for automated
segmentation propagation in the first place.

When analysing the estimated timestep deformation interpretation given in Equa-
tion (3.12), the noise in the deformation field for a specific time point is propagated
through all subsequent estimated images. In the more realistic case of noise at multiple
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values of t in φ−1
t , it is again possible that the noise introduced by each deformation

could counteract the others, but noise propagation is not desirable in general.
Finally, when considering the baseline deformation interpretation defined in Equa-

tion (3.10) and used in Longitudinal VoxelMorph, the analysis showed that noise only
appeared in the estimation where the noisy deformation field φ−1

i was applied. No
noise was introduced directly from noisy images, assuming x0 is perfect, and no noise
was propagated to estimations of later time points. Although this prevents errors in
multiple φ−1

t from counteracting each other, it also prevents errors from compounding
each other.

Overall, this theoretical analysis leads us to believe that the baseline deformation
interpretation for φ−1 produces the most noise-tolerant results and, by extension, de-
formation field φ. It is therefore the deformation interpretation used in Longitudinal
VoxelMorph.
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Chapter 4

Longitudinal Evaluation Metrics

IN this chapter, we present several metrics that we use to evaluate spatiotemporal
registration. Some metrics, such as Dice score [30] and surface distance, are commonly

used to evaluate pairwise registration performance, while new metrics proposed in this
work take into account the temporal aspect of the data.

� 4.1 Dice Score

Many registration evaluation metrics are based on segmentations. A segmentation labels
an image region as belonging to a specific structure. In the case of cardiac images, for
example, a segmentation might show the area of an image that belongs to the left
ventricle. For a brain MRI, a segmentation could label the hippocampus.

Given a set of segmentations S = {S0, ..., SF−1} that correspond to input images
X = {X0, ..., XF−1}, a registration model can use the estimated deformation field φ
to warp Si to the reference frame of the fixed segmentation S0 according to φ ◦ Si for
all i > 0. In the case of a perfect registration model and perfectly segmented data,
φ ◦ Si = S0 for all i.

Given two segmentations, SA and SB, the Dice score [30] is given by

Dice(SA, SB) =
2× |SA ∩ SB|
|SA|+ |SB|

. (4.1)

Therefore, the Dice score is equal to 1 if the two segmentations align perfectly, and 0 if
they are disjoint.

We can extend Dice scores to the case where |S| > 2. For each i > 1, Dice(S0, φi◦Si)
can help quantify the deformation field φ’s anatomical accuracy. Specifically, it can
measure how faithfully φ deforms anatomical structures over time, which is an important
metric for applications such as segmentation propagation.

It does not, however, measure other desirable quantities such as temporal consis-
tency, which a registration model may or may not directly enforce. In this case, the
pairwise nature of the Dice score rewards a registration model that optimizes φi for
each time point individually, without considering the overall trajectory. This sacrifices
temporal consistency for anatomical accuracy [47].
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To better visualize temporal consistency, consider the example application of seg-
mentation propagation. A video of the resulting segmentations would ideally be smooth,
reflecting temporally consistent anatomical movement, rather than a jagged, frame-by-
frame representation of local optima. This tradeoff between temporal consistency and
intensity matching motivates the longitudinal Dice score proposed in Section 4.3.

� 4.2 Surface Distance

Surface distance between two segmentations in the same reference frame is another
common way to quantify the performance of a registration model. In this case, the
segmentations contain the border of an anatomical structure, so BA = {pA0 , ..., pAn−1},
where pAj is the jth point that lies on the boundary of segmentation A. If BB =

{pB0 , ..., pBm−1}, then the mean surface distance for SA and SB is computed according
to

MSD(SA, SB) =
1

n+m
(
n−1∑
j=0

min
0≤k<m

∥∥pAj − pBk ∥∥+
m−1∑
k=0

min
0≤j<n

∥∥pBk − pAj ∥∥). (4.2)

This yields MSD(SA, SB) = 0 if SA and SB line up perfectly, and the surface distance
continues to increase as SA and SB diverge.

MSD measures a slightly different relationship between segmentations than Dice
score, so it is useful to evaluate registration models using both metrics. For example,
consider a segmented anatomical structure that has a large volume to surface area ratio.
In this case, the Dice score remains high even as edges of the segmentation diverge, since
the overlap in the center of the structure is still large, while surface distance can more
clearly capture differences between the segmentations.

In other respects, surface distance is still very similar to the Dice score metric. It is
also inherently pairwise, and will reward models that optimize local accuracy at each
time point at the cost of temporal consistency.

� 4.3 D* Score

We want the spatiotemporal registration model to estimate a temporally consistent
deformation field. As defined in Chapter 3, a temporally consistent deformation encodes
smooth changes over time. In general, we aim to reward a smooth, globally optimized
temporal trajectory, rather than a jagged, locally optimized trajectory.

In order to quantify temporal consistency as well as anatomical accuracy in a model’s
deformation field, we propose a new, longitudinal Dice coefficient, referred to as D*.
D* is intended to highlight the differences between a temporally consistent deformation
field and one that locally optimizes the result for each individual time point at the
expense of smoothness, as shown in Figure 4.1.

Let S0 be the segmentation for the fixed image. Then, assuming all segmentations
are perfect, there is some optimal deformation field φ̄ for that subject. The field φ̄



(a) Example warped segmentations of a model
locally optimized for the segmentation overlap
between Si and S0.

(b) Example warped segmentations of a model
optimized for the segmentation overlap be-
tween Si and S0, but with global information
that can used to impose temporal consistency.

Figure 4.1: Two examples of three warped segmentations, S1, S2, and S3, compared
to the segmentation S0 of the fixed image. These examples highlight the differences
between a model that optimizes φt for each time point individually, and a model that
optimizes φt with temporal smoothness constraints placed on φ. In this example, the
warped segmentations depicted in Fig. 4.1a achieve a better Dice score when only
compared to S0, and are therefore more optimal locally than the segmentations in Fig.
4.1b, but the warped segmentations in Fig. 4.1b are more consistently located, and
are therefore more globally optimal than the segmentations in Fig. 4.1a. Interpreted
temporally, even if the segmentations in Fig. 4.1a better align to S0, they lead to a
more jagged time series of segmentations than those in Fig. 4.1b.
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should be temporally smooth, since a deformation can be interpreted as the change
of anatomical structures over time, which is scientifically understood to be temporally
consistent [47].

Slight errors ε in the deformation field field, introduced by limitations of the sparse
representation or estimation inaccuracy, produce φ = φ̄ + ε. A model that optimizes
locally for each such i would independently select the ε that minimized the error at each
time point; a model that optimizes globally to include longitudinal consistency would
select a smooth ε.

If the error term ε is smooth, we would expect ‖εi − εi+1‖ < ‖εi − εj‖ for j � i.
This may not be true for every value of j, particularly in the case of cyclic motion, but
we would expect it to hold in general. Intuitively, this means the error of time-adjacent
deformations should be similar if the computed φ is temporally consistent.

For any 0 < i, j < F , we know that

‖φi(Si)− φj(Sj)‖ =
∥∥φ̄i(Si) + εi(Si)− (φ̄j(Sj) + εj(Sj))

∥∥ =
‖S0 + εi(Si)− S0 − εj(Sj)‖ = ‖εi(Si)− εj(Sj)‖.

Medically, we would expect the change in anatomy between two images taken closer in
time to be smaller than the changes between images taken further apart in time. This
may not be true for every possible pair of images, but we aim to optimize this in general.
Mathematically, we can write this as ‖Si+1 − Si‖ < ‖Sj − Si‖ for most values of j � i.
Furthermore, if ε is not too large (meaning the deformations are relatively accurate)
and is smooth over time, then we have a small ‖εi+1 − εi‖, relative to ‖εj − εi‖, for most
values of j � i.

If ‖Si+1 − Si‖ is small and ‖εi+1 − εi‖ is small, we would expect ‖εi+1(Si+1)− εi(Si)‖
to be small as well. That is, we expect warped segmentations from time-adjacent
images to be relatively close to each other, compared to segmentations from distant
time images, if φ is temporally consistent. To capture this intuition mathematically, let
Dij = Dice(φi ◦ Si, φj ◦ Sj), from Equation 4.1. (Define D0j = Dice(S0, φj ◦ Sj).) Then,
we let

D∗i (α) =

∑F−1
j=i+1(1− α)j−i−1Dij∑F−j−2

j=0 (1− α)j
, 0 ≤ i < F − 1, (4.3)

where α ∈ [0, 1] is a hyperparameter. If the image data is inherently cyclic, such
as cardiac imaging over the course of a heartbeat, D∗F−1 can also be computed as
D∗F−1(α) = D0,F−1, thereby considering the image at time 0 and the image at time
F − 1 to be neighbors. For the remainder of this section, we will consider the case of
non-cyclic motion, but this can easily be extended.

Next, we compute D* according to

D∗(α) =
1

F − 1

F−2∑
i=0

D∗i (α). (4.4)

Therefore, D∗(α = 0) computes the average of all of the pairwise Dice scores. This
rewards a model for which ‖εi − εj‖ is small for all values of i and j. It does not, however,
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distinguish pairs i and j that are close to each other versus far away. Conversely, D∗(α =
1) computes the average of the pairwise Dice scores between warped segmentations of
time-adjacent images. That is, it rewards a model that computes φ such that ‖εi+1 − εi‖
is small, but does not directly measure ‖εi − εj‖ for j > i+ 1. The benefits and pitfalls
of setting α to either 0 or 1 are illustrated in Figure 4.2.

Values of α between 0 and 1 highlight the tradeoff between a temporal consistency
with neighboring images and a consistent warped segmentation from all of the images.
Mathematically, values of α close to 0 reward models that minimize ‖ε‖, while values
of α close to 1 minimize 1

F−2

∑F−2
i=0 ‖εi+1 − εi‖. The precise value of α that is best for

evaluating a model is likely application-specific.
The D* score should not fully replace the Dice score as an evaluation technique.

Specifically, when used in registration tasks, the Dice score computes deformation ac-
curacy relative to the ground-truth segmentation, S0. A deformation field can achieve a
high D* score without any anatomical accuracy, as shown in Figure 4.3. It is, however,
useful in distinguishing between models that achieve a comparable Dice score, or other
similar metric measuring anatomical accuracy. Therefore, we will evaluate performance
on both Dice score and D* score in order to capture both anatomical accuracy and
temporal consistency.

This formulation can be expanded analogously to other traditionally pairwise met-
rics, including surface distance, by replacing Dij with MSDij .

� 4.4 Consistency Metrics

In registration models, we might have access to the deformation field as well as the
warped images during evaluation time. In this case, we can directly analyze the defor-
mation field φ to check for anatomical and longitudinal consistency.

� 4.4.1 Anatomical Consistency

To determine whether the model is anatomically consistent, we compute the Jacobian
determinant of φ, |J(φ)|. The Jacobian matrix J(φ) computes the first order partial
derivative of φ with respect to all of the inputs, and can therefore be used to identify
diffeomorphic transforms and capture the amount of local expansion or contraction
in part of the field [8, 11, 14, 28, 40, 79, 88]. For each pixel p in the input images, if
φ(p) represents the deformation at this pixel and |J(φ(p))| ≤ 0, then the deformation
is non-invertible at p, and therefore not diffeomorphic. If |J(φ(p))| < 0, then the
deformation at p reverses its orientation, causing the pixel to fold on itself. This is
also not diffeomorphic. We can therefore quantify the level of anatomical consistency
for a deformation φ by the proportion of pixels for which |J(φ(p))| > 0.

� 4.4.2 Temporal Consistency

We propose a new metric, Ctemp, to quantify temporal consistency. Given a set of
deformations that all achieve an anatomical accuracy within ε of each other, we prefer



Figure 4.2: Four example scenarios of three warped segmentations, S1, S2, and S3 where
Si is the warped segmentation at time i, and a fixed segmentation S0. In scenarios A
and B, the D∗(α = 0) score would be the same, since the only difference between the
two is the ordering of segmentations, while the D∗(α = 1) score would favor case A,
where S1 is closer to S0 and S3 is closer to S2, compared to scenario B. Similarly,
the D∗(α = 0) score is the same in scenarios C and D, while D∗(α = 1) favors C.
In these comparisons, D∗(α = 1) successfully rewards temporal consistency. However,
D∗(α = 1) prefers scenario A to scenario D, even though the warped segmentations in
A continue to drift off in a direction that is not anatomically correct, while D∗(α = 0)
scores scenario D more highly than scenario A, rewarding the clustered segmentations
for all time points. Although these are exaggerated examples, the same method can
quantify subtler differences between real segmentations.
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Figure 4.3: In this example with warped segmentations S1, S2, and S3, and a fixed
segmentation S0, the model could achieve a relatively high D∗ score due to the overlap
between S1, S2 and S3 for all values of α, but have no accuracy with regard to where the
segmentations should be located anatomically. Meanwhile, their Dice score would be 0.
D* is therefore intended to be used as a supplement to Dice score for spatiotemporal
image registration evaluation.

the simplest of these deformations. A function from a simpler function class is less
likely to overfit to the data than a more complex function. To quantify the temporal
simplicity of a deformation, we consider the third-order derivative of the deformation
with respect to time.

We propose using the change in acceleration implied by the deformation φ as a
method to capture some temporal consistency information. In most cases, the regis-
tration model does not provide a continuous velocity field. Instead, this work proposes
using |φt+1 − φt| := φ̇t as a piecewise estimate for the velocity at time t, since φt can
be interpreted as the displacement between time 0 and time t. Similarly, we define
| ˙φt+1 − φ̇t| := φ̈t as an estimate for the acceleration at time t, and | ¨φt+1 − φ̈t| :=

...
φt

as an estimate for the change in acceleration at time t. Then, we propose quantifying
temporal consistency directly from φ according to Ctemp =

∥∥...
φ
∥∥, where lower values of

Ctemp imply that φ is more temporally consistent.
This temporal consistency score Ctemp should always be accompanied by an anatom-

ical correctness metric. Many deformations would have Ctemp = 0 without learning any
meaningful registration between images. Furthermore, anatomical structures do have
a non-zero change in acceleration. Instead, Ctemp can help distinguish between models
that achieve ε-similar results on anatomical correctness metrics, such as the Dice score
from Section 4.1, to determine which model best adheres to scientific understanding of
anatomical activity.
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Chapter 5

Evaluation

In this chapter, we evaluate Longitudinal VoxelMorph against several pairwise baselines
on real-word medical images data. First, we evaluate the model on cardiac cine-MRI
slices, which are high-quality, detailed images. Second, we evaluate Longitudinal Vox-
elMorph on a set of echocardiograms, which contain much less detail but are naturally
2-D. For a comparison between frames of a cardiac cine-MRI and frames of an echocar-
diogram, see Figure 2.1.

� 5.1 Baseline Models

We compare the performance of Longitudinal VoxelMorph against several baselines.
First, we consider the naive model that assumes no change between images. That is,
the deformation field φ that the naive model estimates is the identity transformation.
Although this is very simplistic, it is a reasonable baseline when registering images from
the same subject, and performs well on images where development is slow over time,
such as brain MRIs [66].

Second, we compare to VoxelMorph [23]. VoxelMorph is an efficient model for
medical image registration, estimating a deformation field φvxm pair(x, y) for each pair
of images (x, y) that it is provided. To adapt VoxelMorph to our longitudinal setting,
for a time series of images X = [x0, ..., xF−1], we compute

φvxm = [φvxm pair(x0, x1), φvxm pair(x0, x2), ..., φvxm pair(x0, xF−1)],

where each φvxm pair is computed independently.
VoxelMorph does not estimate φvxm pair at full resolution because of memory con-

straints with large input data, but instead uses linear interpolation as a final step fully
resolve the deformation field [23]. Later sections will refer to this model as linear
VoxelMorph. We also implemented a pairwise VoxelMorph model that uses b-spline in-
terpolation to fully resolve φvxm pair. We will refer to this model as b-spline VoxelMorph.

Finally, we implemented a version of Longitudinal VoxelMorph using linear interpo-
lation. We will refer to this version as linear Longitudinal VoxelMorph. For clarity, this
chapter will refer the the Longitudinal VoxelMorph model presented in section 3.1 as b-
spline Longitudinal VoxelMorph. The inclusion of linear Longitudinal VoxelMorph and
b-spline VoxelMorph facilitate a comparison between linear and b-spline interpolation
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in addition to the comparison between longitudinal and pairwise model formulations.
We built the models using Keras [21], running on top of Tensorflow [7], and trained

and evaluated the models using NVIDIA GPUs.

� 5.2 Cardiac cine-MRI experiment

Our first evaluation of Longitudinal VoxelMorph is on a set of cardiac cine-MRI images.

� 5.2.1 Cardiac Atlas Project Data

The Cardiac Atlas Project (CAP) compiled a set of cine-MRI slices from the Defib-
rillators to Reduce Risk by Magnetic Resonance Imaging Evaluation (DETERMINE)
clinical trial [1, 32]. The data include cine-MRIs from 450 subjects, of which we ran-
domly chose 100 to use for the experiment. The CAP DETERMINE dataset is made
up of subjects with coronary artery diseases and mild-to-moderate left ventricular dys-
function. Each cardiac cine-MRI is 4-D (3-D image plus time), and made up of a set of
slices, which are 3-D (2-D image plus time). We use the sequence of frames from each
slice as the input sequence for each model to register.

Each slice of the cine-MRI is usually under 10 mm thick, with a gap of under 2
mm between slices. Each cine-MRI required a patient breath hold of 8-15 seconds [48].
Figure 5.1 shows the number of slices included in each subject’s cardiac cine-MRI, the
number of frames in each slice, and the number of pixels in a single frame of each slice.
Although the size of the frames vary, we reshape every frame to 256x256 pixels using
scipy’s cubic spline interpolation as a pre-processing step [83]. We define the time at
which each cine-MRI frame was taken to be the frame number in the sequence, so that
there is one time unit between adjacent frames.

CAP also provides left-ventricular wall segmentations for each of the subjects. These
segmentations delineate the boundary of the left ventricle, as shown in Figure 5.2 [32].
We use these segmentations to evaluate the models’ performance.

We randomly divided the 100 subjects into training, validation, and test subjects.
We use 78 training subjects, 11 validation subjects, and 11 test subjects.

� 5.2.2 Training and Hyperparameters

We ran the b-spline and linear Longitudinal VoxelMorph models for 750 epochs of
training, and the b-spline and linear VoxelMorph models for 1500 epochs of training,
using the Adam optimizer [45] and a learning rate of 1× 10−4.

We used mean squared error for the image similarity loss, and the L2 norm of
the deformation field for the regularization penalty. We trained models with different
regularization parameters (λ), and empirically found that values λ = 0.01 achieved
the highest pairwise Dice scores for the baseline pairwise VoxelMorph models on the
validation set. The average Dice scores on the validation set were highest when λ = 0.05
for the Longitudinal VoxelMorph models.



(a) The number of slices included for each sub-
ject in the CAP cardiac cine-MRI dataset.

(b) The number of frames included for each
slice in the CAP cardiac cine-MRI dataset.

(c) The number of pixels included for each
frame in each slice in the CAP cardiac cine-MRI
dataset, before they are resized to 256x256.

Figure 5.1: CAP cardiac cine-MRI data distribution for the number of slices in each
subject, the number of frames in each slice, and the number of pixels in each frame.

(a) Example frame from a
cardiac cine-MRI slice show-
ing the left ventricle.

(b) Example segmentation
of the left ventricle for the
frame shown in Figure 5.2a.

(c) The left ventricle segmenta-
tion 5.2b, shown in red, overlaid
on the cine-MRI slice 5.2a.

Figure 5.2: Each frame of each slice in the CAP dataset has an accompanying left
ventricle segmentation. Each segmentation outlines the left-ventricular wall, and does
not include tissue inside the ventricle, as shown in Fig. 5.2c. These segmentations are
used to evaluate the model’s performance.



Figure 5.3: The accompanying segmentation for 15 frames of a cardiac cine-MRI slice.
Some cine-MRI slices show slightly different anatomy in different frames, as cardiac
structures expand and contract over the time. This is reflected in the segmentations.
Here, the border of the left ventricle partially exits and the re-enters a slice. The model is
exposed to some examples such as this one during training, validation, and testing time.
This violates the model assumption that the true deformation is diffeomorphic since
each image does not contain the same anatomy. We would expect worse performance
on this kind of example.
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For this cardiac cine-MRI experiment, the models were given F = 15 frames from
a single slice for a patient to register. We set the maximum time value to K = 40,
meaning we never try to model any frame later than the 40th in the sequence.

We trained models with different values of the spatial- and temporal-sparsity ratios,
i.e., with different values of δx, δy, and, in the case of the longitudinal models, δT . We
used δx = δy, and refer their value as δ in the subsequent section.

� 5.2.3 Analysis

We trained different versions of Longitudinal VoxelMorph with spatial-sparsity ratios
of δ = 4 and δ = 8, and with δT = 3 and δT = 5. Figure 5.4a shows the training losses
for the Longitudinal VoxelMorph models we implemented. On our validation dataset,
we empirically found that the best b-spline Longitudinal VoxelMorph model and the
best linear Longitudinal VoxelMorph model both used δ = 4 and δT = 3. Here we
defined best by the highest average Dice scores across 10 randomly selected validation
examples.

We also trained different versions of the baseline pairwise VoxelMorph models with
different sparsity levels (training loss shown in Figure 5.4b). The best b-spline Voxel-
Morph baseline model used δ = 2 and the best linear VoxelMorph baseline model used
δ = 4.

We compared the top-performing model of each type on the test set.

� 5.2.4 Results

Overall, our results show that the baseline pairwise VoxelMorph models slightly out-
perform the Longitudinal VoxelMorph models in anatomical-correctness metrics on this
dataset, but the Longitudinal VoxelMorph models are more temporally consistent. We
find that the Longitudinal VoxelMorph models achieve a Dice score 2.715% lower
than the pairwise VoxelMorph models on average over our test set. The Longitudi-
nal VoxelMorph models achieve a D∗(α = 1) value 0.462% higher than the pairwise
VoxelMorph models. The MSD for the Longitudinal VoxelMorph models was 8.710%
higher than the pairwise models.

All models have high spatial consistency on the test set. With the optimal spatial-
and temporal-sparsity values, we did not observe a significant difference between models
using b-spline versus linear interpolation.

Figure 5.5a shows the pairwise Dice scores, where every warped segmentation is
compared to the fixed segmentation of the 0th frame in the cine-MRI slice. Figure 5.5b
shows the D* score, as defined in Equation (4.4), across varying values of the parameter
α.

We found that the pairwise VoxelMorph models performed best in terms of Dice
score, followed by both Longitudinal VoxelMorph models, which perform very similarly.
For low values of α, the pairwise VoxelMorph models achieved better D∗(α) scores
than the Longitudinal VoxelMorph models, suggesting that the pairwise models had a
lower overall error in the deformation field. As α increased, though, the Longitudinal



(a) Loss over training epochs for Longitudinal VoxelMorph models. The labeled δ indicates
the spatial sparsity of the parameterization (e.g., δ = 4 means the model estimates a 64x64
control-point grid in space, given 256x256 pixel cine-MRI slice frames), and δT indicates the
parameterization’s sparsity in time (e.g., δT = 5 means the model estimates 3 control points in
time, given 15 input frames). Increasing δ slightly increases the training loss, but increasing δT
does not have a marked effect. The difference in training loss between the b-spline and linear
model versions appears to be negligible when fixing the other parameters.

(b) Training loss over epochs for baseline VoxelMorph models. The φvxm pair for each model is
calculate at a sparsity factor of δ (e.g., with δ = 4, φvxm pair is a 64x64 vector field, given a
256x256 cine-MRI frame).

Figure 5.4: The loss over training epochs for the Longitudinal VoxelMorph (Fig. 5.4a)
and baseline VoxelMorph (Fig. 5.4b) models on the cardiac cine-MRI dataset. The solid
line gives the average loss across a window of 10 training epochs, and the surrounding
band of the same color shows the minimum and maximum epoch losses over that same
period.



(a) The average left-ventricular wall Dice scores the for 10 testing examples. The average Dice
score for each subject is computed according to the average of [Dice(x0, x1), ...,Dice(x0, xF−1)],
as in Equation (4.1). The average pairwise Dice scores across all 10 subjects is shown as a dotted
line. The b-spline and linear VoxelMorph models achieve the highest average Dice score, followed
by the b-spline and linear Longitudinal VoxelMorph models. All learned models outperform the
naive model baseline. Different interpolation schemes for different models perform similarly.
The poor Dice score of the worst examples can be explained by changing anatomy present in
the cine-MRI slice, as shown in Figure 5.3.

(b) The average left-ventricular wall D* scores for the 10 testing examples across different values
of α, as defined in Equation (4.4). The standard deviations across testing examples for the fixed
α values are also shown. On average, the pairwise VoxelMorph models slightly outperform the
longitudinal models for low values of α, and the longitudinal models outperform the pairwise
models for higher values of α. This suggests that the deformations estimated by the longitudinal
models are more temporally consistent.

Figure 5.5: The average pairwise Dice scores, relative to the baseline image, and the
D* scores across different values of α for each of the models for 10 randomly selected
testing examples. All test examples were held out during training and validation stages.
The pairwise Dice scores shown in Fig. 5.5a best capture the anatomical accuracy of the
warped segmentations, while the D* scores better measure the deformation’s temporal
consistency.
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VoxelMorph models performed best, suggesting the error in their deformation fields was
most temporally consistent. An explicit comparison of the models’ average performance
on Dice and D* scores can be found in Table 5.1.

We compare the models’ average MSD in Figure 5.6a. We found that the pairwise
VoxelMorph models slightly outperform the Longitudinal VoxelMorph models, and all
outperform the naive baseline. However, if we exclude the final two test slices, both
of which contain a vanishing left ventricular wall (as in Figure 5.3), the difference in
MSD between Longitudinal VoxelMorph and pairwise VoxelMorph models decreases,
as shown in Figure 5.6b. An explicit comparison of the models’ average MSD can be
found in Table 5.2.

We also quantified the models’ spatial and temporal consistency using only the de-
formation fields. Overall, all models estimate spatially consistent deformations, but the
Longitudinal VoxelMorph models are much more temporally consistent. The evaluation
of our top-performing models on each of these metrics is given in Table 5.3.

The performance for all models on this dataset is slightly impaired by the change
in anatomy between different frames from the same slice, as presented in Figure 5.3.
With small differences between the models’ evaluation performance, it is difficult to
determine the impact of the frames’ variable anatomy. Although the echocardiogram

Model Mean Dice Score Mean D∗(α = 0) Mean D∗(α = 1)

vxm long bspline 0.781 (0.185) 0.896 (0.042) 0.945 (0.030)
vxm long linear 0.790 (0.183) 0.899 (0.183) 0.946 (0.029)
vxm bspline 0.805 (0.169) 0.903 (0.041) 0.941 (0.026)
vxm linear 0.811 (0.169) 0.904 (0.049) 0.941 (0.026)
naive model 0.731 (0.224) 0.887 (0.044) 0.946 (0.029)

Table 5.1: Comparison of the models’ Dice-based evaluation results. We show the
average Dice, D∗(α = 0), and D∗(α = 1) scores across the ten test subjects from Fig.
5.5. Higher values are better. Standard deviations are given parenthetically.

Model MSD (n = 10) MSD (n = 8)

vxm long bspline 1.644 (2.053) 1.121 (0.506)
vxm long linear 1.609 (2.097) 1.074 (0.499)
vxm bspline 1.512 (1.871) 1.053 (0.486)
vxm linear 1.481 (1.876) 1.003 (0.487)
naive model 1.969 (2.184) 1.432 (0.817)

Table 5.2: Comparison of the models’ MSD evaluation results. We show the average
MSD across the ten test slices shown in Fig. 5.6a, and the average MSD across the eight
test slices shown in Fig. 5.6b, where we exclude the two slices where the left-ventricular
wall significantly exits the slice before re-entering (see Fig. 5.3). Lower values are better.
Standard deviations are given parenthetically.



(a) The average MSD, relative to the baseline image, for each of the models across the same 10
randomly selected testing examples as Fig. 5.5. The average MSD for each subject is computed
according to the average of [MSD(x0, x1), ...,MSD(x0, xF−1)], as in Equation (4.2). All of the
learned models consistently outperform the naive model, and the pairwise VoxelMorph models
slightly outperform the Longitudinal VoxelMorph models overall.

(b) The models’ average MSD, relative to the baseline images for the first 8 testing exam-
ples in Fig. 5.6a. This excludes the two testing slices that contained a dramatically vanishing
left-ventricular wall, as in Fig. 5.3. When only considering these examples, the Longitudinal
VoxelMorph models perform much more similarly to the pairwise baselines.

Figure 5.6: The average MSD for the models. Fig. 5.6a shows the MSD for the same
ten randomly selected testing examples shown in Fig. 5.5. Fig. 5.6b shows the MSD
over the first 8 of these examples, excluding the two examples where the segmentation
for the left-ventricular wall significantly exited the slice before re-entering it, as shown
in Fig. 5.3.
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Model % of |J(φt)| ≤ 0 Clong =
∥∥...
φ
∥∥

vxm long bspline 0.0 (0.0) 55.171 (24.951)
vxm long linear 2.223 ×10−5(5.401× 10−5) 55.710 (27.328)
vxm bspline 0.0 (0.0) 119.736 (47.003)
vxm linear 0.0 (0.0) 124.867 (52.662)
naive model 0.0 (0.0) 0.0 (0.0)

Table 5.3: Comparison of the models on spatial- and temporal-consistency metrics on
10 test examples. First, we show the percentage of pixels for which the Jacobian of the
deformation has a non-positive determinant (lower is better), meaning the deformation
is not spatially diffeomorphic at that location (see Chapter 4). Second, we show the L2
norm of the estimated acceleration (lower is better) implied by the deformation field.
The estimated flow field for the Longitudinal VoxelMorph models have a smaller change
in acceleration, suggesting that they are more temporally consistent. The standard
deviations are given parenthetically.

data is not as precise as the cine-MRI data, the experiment presented in the next section
does not have the limitation of inconsistent anatomy between frames.

� 5.3 Echocardiogram experiment

Our second evaluation of Longitudinal VoxelMorph is on a set of echocardiography
videos.

� 5.3.1 EchoNet Data

We use the EchoNet-Dynamic dataset [61], which includes 10,030 echocardiograms.
Each echocardiogram is 3-D (2-D images plus time). The echocardiograms are from
the 4-chamber apical view, although taken using varying angles, positions, and image
acquisition techniques. These differences are intended to mimic the normal variation
in clinical echocardiograms. The videos in the EchoNet dataset have been cropped and
downsampled to 112x112 pixel frames using cubic interpolation [61]. Figure 5.7 shows
the distribution of the number of frames in each echocardiography video.

The EchoNet dataset also includes expert tracings for the heart’s left ventricle [61].
These tracings, an example of which is given in Figure 5.8b, use a set of lines to define
the area of interest. We then converted the tracing to an area segmentation, as in
Figure 5.8c, using linear interpolation between the endpoints of adjacent lines.

The left-ventricle expert tracings are only available for two points in the cardiac
cycle: the end-systolic phase (ES, the moment at which the left ventricle finishes con-
tracting) and end-diastolic phase (ED, the moment at which the left ventricle finishes
expanding) frames. The end-systolic volume (ESV) and the end-diastolic volume (EDV)
quantify the volume of blood remaining in the ventricle at their respective phases, and
are used to compute the cardiac ejection fraction (EF). EF is a common indicator of



Figure 5.7: The number of frames included in each video of the EchoNet dataset.

(a) Example frame from an echocardiogram
showing the left ventricle.

(b) Example tracing of the left ventricle for
the frame shown in Fig. 5.8a.

(c) The left ventricle segmentation created
from the tracing in Fig. 5.8b using linear inter-
polation between endpoints of adjacent lines.

(d) The left ventricle segmentation in Fig.
5.8c, shown in red, overlaid on the echocar-
diogram frame in Fig. 5.8a.

Figure 5.8: Each frame in the EchoNet dataset has an accompanying left ventricle trac-
ing, which we convert to a segmented area as a pre-processing step. These segmentations
are used to evaluate the models’ performance.
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risk, and is therefore a clinical value of interest [37]. Since only these two tracings are
included for each subject, we will only use these two frames for the segmentation-based
evaluation metrics presented in Chapter 4. We are unable to evaluate the models using
D*, since ground-truth segmentations are not available for the other frames.

We divided the dataset into 7460 training examples, 1288 validation examples, and
1288 testing examples. During validation- and test-time, we ignored any examples
where the end-diastolic and end-systolic phase frames did not both occur in the first F
frames.

� 5.3.2 Training and Hyperparameters

We trained the b-spline and linear Longitudinal VoxelMorph models for 750 epochs, and
the baseline b-spline and linear VoxelMorph models for 1500 epochs. We used the Adam
optimizer [45] and a learning rate of 1 × 10−4. We again used mean squared error for
the image similarity loss and the L2 norm of the deformation field for the regularization
penalty. Empirically, we found an optimal regularization parameter λ = 0.01 for the
baseline VoxelMorph models and λ = 0.05 for the Longitudinal VoxelMorph models on
the validation set.

In the echocardiography video experiment, the models are given F = 25 video
frames to register, where each adjacent frame is again considered to be one time unit
apart. We set the maximum time to be K = 150, so we never model any frames past
the 150th in a sequence.

As in the cardiac cine-MRI experiment, we trained models with varying spatial- and
temporal-sparsity parameters, δ and δT respectively.

� 5.3.3 Analysis

We trained different versions of Longitudinal VoxelMorph with spatial-sparsity ratios
of δ = 4 and δ = 8, and with δT = 2.5 and δT = 5. Figure 5.9a shows the training losses
for the Longitudinal VoxelMorph models that we trained. On our validation dataset,
we empirically found that the best b-spline Longitudinal VoxelMorph model and the
best linear Longitudinal VoxelMorph model both used δ = 4 and δT = 5. We defined
best based on the Dice score and MSD across 10 randomly selected validation examples.

We also trained different versions of the baseline pairwise VoxelMorph models with
varying sparsity levels (training loss shown in Figure 5.9b). The best b-spline and linear
VoxelMorph baseline models both used δ = 2.

We compared the top-performing model of each type on the test set.

� 5.3.4 Results

Overall, we found that the Longitudinal VoxelMorph models generally outperformed the
baseline pairwise VoxelMorph models on segmentation-based metrics, with both types of
models consistently outperforming the naive baseline. When compared in the reference
frame of the 0th echocardiogram frame, the Longitudinal VoxelMorph Models achieved



(a) Loss over training epochs for Longitudinal VoxelMorph models. The labeled δ indicates the
parameterization’s sparsity in space (e.g., δ = 4 means the model estimated an 28x28 control
point grid in space, given 112x112 pixel frames), and δT indicates the parameterization’s sparsity
in time (e.g., δT = 5 means the model estimated 5 control points in time, given 25 input frames).
Here, we can notice that increasing δ increases the training loss, but increasing δT by a factor of 2
has a negligible effect. There appears to be little difference in the training loss after convergence
between the b-spline and linear versions when fixing the other hyperparameters.

(b) Training loss over epochs for baseline VoxelMorph models. The φvxm pair for each model is
calculated at a sparsity of the labeled δ (e.g., with δ = 4, φvxm pair is a 28x28 vector field, given
an image size of 112x112). Here, models with a lower δ value have a lower loss but, given a
fixed δ, the b-spline and linear model versions have a similar loss.

Figure 5.9: Training loss plots for the Longitudinal VoxelMorph and baseline Voxel-
Morph models trained with different hyperparameter settings on the echocardiogram
experiment. The solid line shows the average training loss over a window of 10 epochs,
while the surrounding shaded area of the same color shows the minimum and maximum
epoch training loss over the same period.
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a 3.84% higher Dice score and 3.50% lower MSD than the pairwise models on
average. In the reference frame of the fixed image (either the end-systolic or end-
diastolic phase frame, whichever came first in that particular video), the Longitudinal
VoxelMorph models achieved 1.55% higher Dice score and 3.94% higher MSD
than the pairwise VoxelMorph models on average across our test set.

We found that there were negligible differences between the b-spline- and linear-
versions of each model. The b-spline Longitudinal VoxelMorph model outperformed
the other models in spatial consistency metrics, although all perform well, and the
longitudinal models perform better on the temporal consistency evaluation than the
pairwise models.

All models’ evaluation on spatial- and temporal-consistency metrics is given in Table
5.4. We found that all models are highly spatially consistent, and the Longitudinal
VoxelMorph models are much more temporally consistent than the baseline pairwise
VoxelMorph models.

Figure 5.10 shows the pairwise Dice scores [30] for each of the models, and Figure
5.11 shows the pairwise MSD. The Longitudinal VoxelMorph models outperform the
baseline pairwise VoxelMorph models in terms of Dice score. For MSD, the Longitu-
dinal VoxelMorph models slightly outperform the pairwise VoxelMorph models when
segmentations are compared in the reference frame of the 0th frame. When compared
in the reference frame of the end-systolic or end-diastolic phase (whichever came first in
the echocardiogram), the pairwise baseline VoxelMorph models perform slightly better.
There is not a clear difference in either Dice score or MSD between b-spline and linear
interpolation for these values of δ and δT . All of the learned models outperform the
naive baseline model in all of the anatomical accuracy metrics. An explicit comparison
of the models’ average performance for Dice score and MSD can be found in Table 5.5.

Model % of |J(φt)| ≤ 0 Clong =
∥∥...
φ
∥∥

vxm long bspline 0.0 (0.0) 9.901 (2.507)
vxm long linear 3.943 ×10−4(6.711× 10−4) 7.703 (2.047)
vxm bspline 7.972 ×10−6(1.305× 10−5) 410.377 (74.576)
vxm linear 3.720 ×10−5(5.013× 10−5) 396.553 (90.261)
naive model 0.0 (0.0) 0.0 (0.0)

Table 5.4: Comparison of the models’ spatial- and temporal-consistency evaluation
results. The metrics are averages of the estimated deformation field for the same 10
test subjects as Fig. 5.10 and Fig. 5.11. We include the percentage of pixels for which the
Jacobian of the deformation has a non-positive determinant (lower is better), meaning
the deformation is not spatially diffeomorphic at that location. We also provide the L2
norm of the estimated acceleration (lower is better) implied by the deformation field.
The standard deviations are given parenthetically.



(a) The pairwise Dice scores across 10 testing examples, comparing all segmentations in the
reference frame of the 0th frame in the sequence. The average pairwise Dice score (in the
reference frame of the 0th frame) is shown as a dotted line for each model. Across these ten
examples, the Longitudinal VoxelMorph models outperform the pairwise VoxelMorph models
on average, and consistently outperform the naive baseline.

(b) The pairwise Dice scores across 10 testing examples, comparing all segmentations in the
reference frame of either the end-systolic or end-diastolic phase, whichever came earlier in the
echocardiogram. The models achieve this by first warping the moving segmentation to the
reference frame of the 0th frame in the sequence, and then to the appropriate frame for the
fixed segmentation. Again, the dotted line shows the average Dice score for each model. The
Longitudinal VoxelMorph models continue to outperform the pairwise VoxelMorph models and
the naive models on average. All of the VoxelMorph models have a slightly lower Dice score
than when compared in the reference frame of the baseline image (as shown in Fig. 5.10a).

Figure 5.10: The pairwise Dice scores across 10 testing examples, compared in the
reference frame of the 0th frame in the echocardiogram (Fig. 5.10a) and in the reference
frame of the end-systolic or end-diastolic phase frame, whichever came first in the video
(Fig. 5.10b). We randomly selected the testing examples from the subset of the test set
that contained both end-systolic and end-diastolic phase frames before the 150th frame
(F = 150), enabling the model to estimate the deformations. All testing examples were
held out during the training and validation stages. The average Dice score of each
model in each reference frame is also shown.



(a) The pairwise MSD for 10 testing examples, comparing all segmentations in the reference
frame of the 0th frame in the sequence. The average MSD is shown as a dotted line for
each model. In this reference frame there is not a clear difference between the Longitudinal
VoxelMorph and pairwise VoxelMorph models. All consistently outperform the naive model
baseline.

(b) The pairwise MSD for 10 testing examples, comparing all segmentations in the reference
frame of either the end-systolic or end-diastolic phase frame, whichever came earlier in the
echocardiogram. The models achieve this by first warping the moving segmentation to the
reference frame of the 0th frame in the sequence, and then to the appropriate frame for the
fixed segmentation. Again, the dotted line shows the average MSD score for each model. Here,
the pairwise VoxelMorph baselines appear to slightly outperform the Longitudinal models, and
all still outperform the naive baseline.

Figure 5.11: The pairwise MSD for the same 10 testing examples as Fig. 5.10, compared
in the reference frame of the 0th frame in the echocardiogram (Fig. 5.11a) and in the
reference frame of the end-systolic or end-diastolic phase frame, whichever came first
in the video (Fig. 5.11b). A lower MSD is better. The average MSD in each reference
frame is also shown.



Model Mean Dice Score (rf 0; rf Fixed) Mean MSD (rf 0; rf Fixed)

vxm long bspline 0.791 (0.062) ; 0.774 (0.043) 3.204 (0.733) ; 3.421 (0.783)
vxm long linear 0.802 (0.036) ; 0.770 (0.041) 3.249 (0.720) ; 3.471 (0.707)
vxm bspline 0.777 (0.083) ; 0.760 (0.085) 3.318 (1.433) ; 3.344 (1.374)
vxm linear 0.771 (0.087) ; 0.760 (0.087) 3.363 (1.468) ; 3.286 (1.326)
naive model 0.746 (0.044) ; 0.746 (0.044) 4.301 (1.048) ; 4.301 (1.048)

Table 5.5: Comparison of the models’ segmentation-based anatomical-accuracy evalu-
ation results. We include the average Dice score and MSD across the ten test subjects
from Fig. 5.10 and 5.11. The metrics are shown first when compared in the reference
frame of the 0th frame, and then when compared in the reference frame of the fixed
frame (showing either the end-diastolic or end-systolic volume, whichever came first in
the video). Higher values are better for Dice score; lower values are better for MSD.
Standard deviations are given parenthetically.
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Chapter 6

Conclusion and Discussion

In this work we presented Longitudinal VoxelMorph, a novel machine learning model
for spatiotemporal medical image registration. It improves upon classical longitudinal
registration methods by using a learning-based estimation network for spatiotemporal
fields, increasing model efficiency, and enabling its practical use. Longitudinal Voxel-
Morph promises to estimate a more globally accurate deformation field than pairwise
methods. It uses a sufficiently sparse representation to take advantage of all available
input data in a time series, enabling it to outperform state-of-the-art pairwise models
that can only utilize a small subset of the data at a time.

We evaluated Longitudinal VoxelMorph and several pairwise baseline models on
real-world datasets. The results on cardiac cine-MRI data and echocardiogram data
suggest that Longitudinal VoxelMorph and state-of-the-art pairwise models achieve
similar anatomical accuracy in their estimated deformation, but that Longitudinal Vox-
elMorph is more temporally consistent. We did not find a significant improvement with
b-spline interpolation as compared to linear interpolation, and hypothesize that this
was because the estimated deformation, before it was brought to full resolution, was
sufficiently dense for linear interpolation to perform well. The density of the presented
deformation fields was possible with the data analyzed in this work, but is not scalable
to datasets where the input images are larger.

Learning a sparser deformation field representation enables shorter training times,
a smaller memory load, and a lower likelihood of overfitting to noise in the data than
a denser deformation estimate. Although the experiments we presented in this work
focused on 3-D data (2-D images plus time), in the future we will extend it to 4-D data
(3-D images plus time). With 4-D data, the spatial- and temporal-sparsity factors will
become even more important, since practical memory constraints will require a scalable
estimation solution.

Such 4-D data also presents the need for Longitudinal VoxelMorph to estimate the
longitudinal deformation in a pairwise manner. With larger, 4-D input data, model
implementations may no longer be able to load all of the time series images in memory
simultaneously. Instead, Longitudinal VoxelMorph could be updated to learn control-
point placement in space and time while only ever loading pairs of images into memory.

In future work, we will evaluate more existing datasets. Both the cine-MRI and
echocardiogram data capture cardiac motion over time. There is far more motion
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contained in a video of the heart, such as the expansion and contraction of ventricles
and the opening and closing of valves, than in repeated brain MRIs or dental x-rays.
In these other kinds of medical images where we would expect less change over time,
noise may contribute more to the differences between images than in the cardiac case.
We therefore believe that evaluating Longitudinal VoxelMorph on these fundamentally
different kinds of medical image data would speak to the generalizability, strengths, and
weaknesses of the model.

To transition to these new kinds of data, we also aim to apply Longitudinal Vox-
elMorph to a variable number of input images. For most kinds of repeated medical
imaging there can be a variable number of follow-up scans, and we do not want the
model to be limited to only considering a subset of the available image data for a
patient.

Longitudinal VoxelMorph can be applied to other longitudinal tasks in the future,
such as image and diagnostic prediction. We believe that such a prediction model,
which takes advantage of all available temporal data, could have a significant clinical
impact.
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