
Low Power Time-of-Flight Imaging for Augmented
Reality

by

Alan Cheng

S.B., Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

© Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 17, 2020

Certified by. .
Vivienne Sze

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Low Power Time-of-Flight Imaging for Augmented Reality

by

Alan Cheng

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 2020, in partial ful�llment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Mobile augmented reality (AR) technology has seen immense growth in recent years, such
as the release of the Microsoft HoloLens2, which allows users to interact with virtual objects
around them in the real world. 3D data is often used in AR applications to determine surface
normals, allowing for the correct placement and orientation of virtual objects in the real world
scene. Time-of-�ight (ToF) cameras can be used to acquire this 3D data by emitting light
and measuring its round trip time to obtain depth. However, continuous acquisition of high-
quality depth maps requires the ToF camera to expend signi�cant amounts of power emitting
light, lowering the battery-life of the underlying device. To reduce power consumption, we
can use 3D motion computed using the 2D pixel-wise motion of consecutive RGB images
captured alongside the ToF camera to obtain a new depth map without illuminating the
scene. In this thesis, we propose depth map reconstruction to limit the ToF camera usage
by estimating depth maps using previously captured ones.

In our algorithm, we represent previously captured depth maps as a point cloud called
the scene map. Each time the ToF camera is used, the captured depth data is added to
the scene map to create a representation of the scene captured. The ToF camera is only
used when the 3D motion cannot be obtained, or if the obtained depth map contains too
many zero-depth (invalid) pixels. To evaluate our algorithm for use in AR applications, we
evaluate the accuracy of surface normals and trajectory estimations on our depth maps, in
addition to mean relative error (MRE). Using RGB-D datasets, we show that our algorithm
reduces the usage of the ToF by up to 97% with negligible impact on surface normals and
trajectory estimation, while obtaining depth maps with at least 70% valid pixels. We further
demonstrate the use of our algorithm with integration into an AR application. Finally, we
explore the implementation of depth map reconstruction using a CPU-FPGA co-processing
architecture to achieve real-time performance.

Thesis Supervisor: Vivienne Sze
Title: Associate Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to thank my advisor, Professor Vivienne Sze, for mentorship, feedback, and

support. The ideas and results shown in this thesis would not have been possible without

her collaboration and guidance.

I cannot begin to express my thanks to my supervisor, James Noraky, for his help and

guidance throughout my research work at the Energy-E�cient Multimedia Systems Group.

This thesis work is an extension of his previous work, and he worked tirelessly with me on all

aspects of my research. His invaluable help throughout the last two years made this thesis

work possible.

The Energy-E�cient Multimedia System Group, of which I spent the last two years

doing research work in. I would like to give a special shout-out to Peter Li, who provided

the foundation of the hardware implementations, and who helped me use the Xilinx Zynq

development board.

Analog Devices for providing the SuperUROP funding that led to this work. They also

provided the time-of-�ight camera used in the augmented reality demo.

Additionally, I would like to give special thanks to Professor Marek Perkowski of Portland

State University. It was he who started my path in computer vision and digital logic design.

My time working with him has been some of the most impactful in my life, and I would not

be here without him.

In these special times, I would like to thank my friends for continuing to encourage me

throughout the unfortunate situation, in addition to my time in college. Speci�cally, my

ex-Next friends for keeping me mentally sane, and my housemates for keeping me physically

sane during these periods of lockdown.

Finally, I could not give enough thanks to my family, who have been my biggest sup-

porters. They helped me become the person I am today; always supporting me through my

endeavors, and always telling me to never give up.

5

6

Contents

1 Introduction 23

1.1 Depth Map Estimation . 24

1.2 Depth Map Usage in Augmented Reality . 26

1.3 Depth Map Estimation on Revisited Scenes 28

1.4 Contributions . 28

2 Depth Map Estimation Algorithm Extension - Depth Map Reconstruction 31

2.1 Depth Map Estimation Computation . 33

2.2 Holes Formed by Depth Map Estimation . 37

2.3 Depth Map Reconstruction . 38

2.3.1 Scene Map Creation . 40

2.3.2 Scene Map Reprojection . 45

2.4 Depth Map Reconstruction Summary . 47

3 Augmented Reality Demo and Evaluation 51

3.1 Surface Normal Estimation . 53

3.2 SLAM Trajectory Estimation . 54

3.3 Depth Map Reconstruction Evaluation Metrics 56

3.3.1 Depth Map Quality Evaluation Using Mean Relative Error (MRE) . . 56

3.3.2 Surface Normal Estimation Evaluation Using Percent Good Pixel (PGP) 57

3.3.3 Trajectory Estimation Evaluation Using Absolute Trajectory RMSE . 57

3.4 Depth Map Reconstruction Evaluation Analysis 58

3.4.1 Trends in Using Di�erent Valid Pixel Thresholds 58

7

3.4.2 Depth Map Reconstruction Sequence Analysis 62

3.4.3 AR Demo Rendering . 63

3.4.4 Computational Complexity and Need for Hardware 63

3.5 AR Demo and Evaluation Summary . 64

4 Hardware Acceleration Exploration 69

4.1 Reprojection Pipeline Implementation . 70

4.1.1 Pixel Projection . 71

4.1.2 Point Transformation . 73

4.1.3 Point Reprojection . 73

4.2 Reprojection Implementation Analysis . 76

4.3 Fixed-Point Precision Accuracy Analysis . 77

4.4 Depth Map Reconstruction Co-processing Interface on Xilinx Zynq 78

4.5 Hardware Exploration Summary . 82

5 Conclusion 83

5.1 Future Work . 85

5.1.1 Hardware Implementation Improvements 85

5.1.2 Depth Map Reconstruction Accuracy Improvements 85

A OpenGL Rendering 89

B Hardware Acceleration of Block Matching 91

B.1 Block Matching Function . 91

B.2 Block Matching Hardware Design . 93

C Evaluation Raw Data 97

C.1 Depth Map Estimation . 98

C.2 Depth Map Reconstruction with Lucas Kanade on Key Points 100

C.3 Depth Map Reconstruction with Lucas Kanade on a Sparse Grid of Points . 102

C.4 Depth Map Reconstruction with Block Matching on a Sparse Grid of Points 104

8

List of Figures

1-1 RGB-D images of the same scene captured from a color camera and a ToF

camera. Depth maps are 16-bit images where each pixel's value represents

how far it is from the ToF camera. We've color-coded the depth map for

convenience. Close pixels are blue, and far pixels are red. 24

1-2 The goal of depth map estimation. We want to estimate depth maps by using

the 3D motion between consecutive image frames. We avoid using the ToF

camera every time we estimate a depth map in order to lower the total power

consumption of the camera. 25

1-3 Depth map estimation algorithm presented in [30]. This algorithm estimates

pose using optical �ow and uses this estimate to obtain a new depth map

when the ToF camera is not used. 25

1-4 Example augmented reality application sequence. Here, we render a virtual

dragon model in the scene. The model stays �xed in the scene as we pan the

camera around. 27

1-5 Scene from [16] seen with the camera motion indicated. The ToF camera

�rst pans left to right (in color order orange, green, yellow, blue, and purple),

ending at 1O . The camera then reverse and pans from right to left, ending at

2O . (Top) shows the scene traversed with this motion, and (Bottom) shows

the sections captured at the highlighted intervals. With depth map estimation

from [30], the ToF camera is used at roughly the same positions for the second

panning motion. With our method presented here, we can estimate all of the

depth maps in the second motion, reducing ToF camera usage. 29

9

2-1 AR applications commonly feature sequences where users will revisit parts of

the scene. A user pans the camera from left to right in the scene shown at (a).

Then, the user pans from right to left and ends up in the starting position,

indicated by the dark gray camera. With the depth map estimation algorithm

from Noraky and Sze [30], a new depth map is captured at the indicated

position and shown at (c). However, this algorithm only uses the previously

captured depth map to generate new ones, and the one estimated at the �nal

position contains a larger region of no depth data in the bottom left corner.

Our depth map reconstruction algorithm uses all of the previously captured

depth maps. It generates a depth map with the empty region in Noraky and

Sze �lled in with data from the �rst depth map (d). This resembles the ground

truth depth map (b) better. 32

2-2 The goal of depth map estimation is to estimate depth maps by using the

3D motion between consecutive image frames. We avoid using the ToF cam-

era every time we estimate a depth map in order to lower the total power

consumption of the camera. 34

2-3 The distinct types of holes: holes from forward reprojection, and holes from

regions uncovered by camera motion. Pixel adjacency is not kept during the

transformation of points during forward reprojection. The original depth map

data is not dense enough to �ll in the pixels of a depth map from a rotated

viewpoint. The resulting holes form a grid of curves. Alternatively, panning

the camera laterally left and right introduces holes on the borders of the depth

map. As we move outside the stored depth map's FoV, we have no depth data

for the pixels outside. As a result, the further we pan away from the stored

depth map, the larger the border hole grows. 38

10

2-4 Depth estimation results for di�erent camera movement options starting from

the original captured depth map (c). (a) Camera zoom-in resulting in holes

as lines between each pixel. (b) Camera pan left resulting in holes on the left

side of the depth map. (d) Camera pan right resulting in holes on the right

side of the depth map. (e) Camera zoom-out resulting in a large border hole

around the original depth map. 39

2-5 The full depth map reconstruction algorithm. The shaded cells correspond to

the new processes introduced with reconstruction. We attempt to reproject

a depth map from the scene map upon receiving a pose. A valid reprojected

depth map is one that contains a percentage of non-zero pixels greater than

a set threshold. We typically set the percentage to 75% because most of

the captured depth maps have at least 75% valid pixels. However, we must

capture a new depth map from the ToF camera if we cannot compute a valid

pose or a valid depth map. 41

2-6 Individual pixel update in the scene map reprojection algorithm. The depth

map acquired directly from the ToF camera contains the most up-to-data

depth data. Whenever we acquire a new depth map, we also update the

pixels represented by the new depth map. Consider a scenario where we have

captured the depth map shown at (a) from the ToF camera. (b) shows the

depth map from scene map reprojection, and the shaded gray area represents

the pixels to be updated. We update the corresponding points in the scene

map, and the updated depth map from scene map reprojection integrating

the raw depth map into the new reprojected depth map (c). 43

11

2-7 Scene map creation from two di�erent depth maps. (a) shows the �nal state

of the scene map. The ToF camera �rst captures the scene indicated at

position 1, and then captures the scene indicated at position 2. (b) shows the

paired RGB image and depth map captured at position 1, and (c) shows the

paired RGB image and depth map captured at position 2. Both depth maps

shown here are color-coded by depth. The combination of both these depth

maps results in the scene map. (d) shows the division of points, where points

highlighted in blue are from position 1, and points highlighted in red are from

position 2. 44

2-8 A visualization of the reprojection problem. The ToF camera sees the scene at

each position with di�erent coordinate axes. In scene map creation, we align

the data to the same set of coordinate axes. The ToF camera �rst captures

data represented by the shown point cloud at position 1. The camera then

moves to position 2, and the goal of reprojection is to estimate the resulting

depth map as seen from this position using the captured data. 46

2-9 (Left) Scene map captured throughout a sequence visualized at a point cloud.

(Right) Reconstruction results using the scene map given the positions 1 and

2 as indicated. 47

3-1 AR Pipeline: RGB-D images are �rst used to estimate the next depth map.

Then, the RGB image and estimated depth map are used to both compute the

camera pose through ORB-SLAM2 [28] and also the per-pixel surface normals.

Finally, a virtual object is rendered on the image with OpenGL. 52

3-2 Frames captured from our AR demo in a single sequence. We render the object

in real-time, computing its position and orientation for each new frame. The

object is initially placed on top of the leopard shark toy, where its orientation

is calculated using the depth map. As the user moves the camera throughout

the scene, the object stays �xed in its location. The trajectory is determined

from consecutive RGB-D images and used to �x the object in place. 52

12

3-3 Surface Normal Estimation: Per-pixel surface normals estimated from the

estimated depth map. The color corresponds to the surface normal vector,

where the (x; y; z) components of the surface normal are mapped to color

channels(r; g; b) respectfully . 53

3-4 The features points used to determine pose in ORB-SLAM2. These points

generally correspond to the corners of objects found in the image and are

determined through di�erences in both color and depth. Points are classi�ed

as being close or far, as close points are better for determining scale and

translation while far points are better for determining rotation. 55

3-5 Trends in depth map usage as the valid pixel threshold for depth maps changes.

Decreasing the threshold decreases the ToF camera usage, as more consecutive

frames can be reconstructed before new information must be acquired. The

depth map estimation algorithm by Noraky and Sze [30] fails to reduce the

ToF camera usage at high thresholds, as only 1 or 2 consecutive frames can

be estimated before the number of valid pixels fall below the threshold. Each

depth map reconstruction variant performs within a 3% margin of each other. 59

3-6 Trends in mean relative error (MRE) as the valid pixel threshold for depth

maps changes. Decreasing the threshold increases the number of estimated

frames. With drift present in pose, consecutive estimated frames get progres-

sively inaccurate. Additionally, inaccurate pose a�ects scene map quality. We

see that the MRE becomes quite high as the threshold falls under 60%. The

depth map estimation algorithm by Noraky and Sze [30] has the best MRE in

higher thresholds only because a majority of its depth maps are taken directly

from the ToF camera. However, at a percentage valid pixel threshold under

70% (indicating lower ToF camera usage), all reconstruction variants provide

results within 1.5% of Noraky and Sze. 59

13

3-7 Trends in percent-good-pixel(PGP) 30° as the valid pixel threshold for depth

maps changes. This measures the percentage of pixels with surface normals

within 30° of the ground truth. Much like the MRE trends, surface normal

accuracy su�ers as threshold (and subsequently ToF camera usage) decreases.

Also similarly to the MRE trends, depth map estimation from Noraky and

Sze [30] has the best PGP in higher thresholds as the ToF camera usage nears

100%. However, reconstruction provides results generally within 5%, with the

margin decreasing with the threshold. At 50%, both variants usage Lucas

Kanade for optical �ow estimation performs better than Noraky and Sze. . 60

3-8 Trends in absolute trajectory RMSE as the valid pixel threshold for depth

maps changes. Trajectory is computed by ORB-SLAM2 [28], and the error is

computed using the tools provided by the TUM RGB-D dataset [37]. Unlike

the results of MRE or PGP, changing the threshold has no noticeable impact

on trajectory accuracy. Each variant performs rather identically regardless of

conditions with an RMSE of 0.02 m. 60

3-9 Computation time breakdown of depth map reprojection during the freiburg1/xyz

sequence. The algorithm was run on a laptop with an Intel i7-9750H CPU.

Reprojection is the most expensive, followed by pose estimation, block match-

ing, and �nally the addition of incoming depth data into the scene map. We

will focus on implementing scene map reprojection in hardware 65

3-10 Reprojection computation time increases as the scene map grows. We see a

rather linear relation between the two factors. Increased growth of the scene

map can cause the total computation time per frame to fall below 33.3 ms.

Our hardware implementation of scene map reprojection, used in depth map

reconstruction, aims to solve this issue in less time. 66

14

4-1 Pipelined implementation of pixel projection. We project a 2D depth pixel

(x; y; D) to a 3D point (X; Y; Z) given camera intrinsic of principal point

(cx ; cy), focal lengthf , and depth scaling factorK (Eq. 4.1). We precompute

constants using intrinsics,fs= 1
fK and ds= 1

K prior to processing points in

the pipeline. The pipeline processes a separate coordinate every clock cycle,

totaling three cycles per pixel, by using temporal input signals of the pixel

(px), principal point (pp), and mux control (ctl). We �rst set these values to

x, cx , and 0 respectively to computeX . Then we move to the next values at

row t = 1 to compute Y, and so forth. At the bottom left, we also show the

timing diagram for this pipeline. 72

4-2 Pipelined implementation of point transformation for calculating the x coor-

dinate of the transformed point (X 0). We transform each point using Eq. 4.3.

Input point (pt) data is connected to the output of point projection, which

outputs one coordinate of the 3D point once per clock cycle in the order

X; Y; Z . The cross product between the point and the angular velocity vector

! is computed by aligning the angular velocity values (av) with the input

point for the �xed-point multiplication. The mux control indicates when the

input is the X value of a point, as the displacement is added to the point. We

create similar pipelines for calculatingY 0 and Z 0 74

4-3 Pipelined implementation of point reprojection for calculating the x pixel

coordinate of the reprojected point (x0) and its corresponding depth (D 0). The

reprojection relation is shown in Eq. 4.4. Using the same relation implemented

with pixel projection, we use the camera intrinsics of focal lengthf , principal

point (cx ; cy), and depth scaling factorK . As the point transformation outputs

point data (X 0; Y 0; Z 0) in the same clock cycle, we do not need to use temporal

signals to align calculations. To increase the clock rate, we use a 21-stage �xed-

point pipelined divider from Synopsys Designware. Since no divider is used to

calculateD 0, we delay the signal with23 to sync with the other output pixel

values obtained through division. 75

15

4-4 Di�erences in reprojection from using 32-bit �oating-point in software and

41-bit �xed-point in hardware, given the same original depth map and the

same transformation vectors. (Top-left) shows the generated depth map run in

software using �oating-point, while (top-right) shows the generated depth map

in hardware with an FPGA using our 41-bit �xed-point notation. Although

the per-pixel error may seem high in the border of each object (bottom-left),

we see that this is just an artifact of the �xed-point value rounding into a

16-bit integer. Performing an adjusted per-pixel error analysis (bottom-right)

by considering not just an individual pixel, but also its immediate neighbors,

shows that all points are correctly reprojected within a 1-pixel margin. . . . 79

4-5 CPU-FPGA co-processing architecture for accelerating depth map reconstruc-

tion on the Xilinx Zynq chipset. We o�oad the most computationally expen-

sive component, reconstruction from scene map, to the FPGA for hardware

acceleration. Scene map data is piped from the CPU and FPGA, and the

corresponding reprojected 2D pixels are returned from the FPGA to the CPU. 80

5-1 Reconstructed depth maps with high error occur when the pose is inaccurate.

(Left) is the ground truth depth map, while (right) is the reconstructed depth

map. There exist two clear indicators of misalignment: 1) the foreground

monitor being split in half, and 2) the foreground monitor and the table with

an abrupt split in-between. These errors occur whenever this part of the scene

is reconstructed. 86

A-1 Rendered output of our AR demo on the fr1/xyz sequence from [37]. The

image is rendered as a point cloud viewed from the same camera position

in which it was captured. The model dragon is rendered in the same space,

allowing it to be positioned correctly in the output. 90

16

B-1 Block matching regions used to calculate optical �ow. We �rst resize the image

size in half. Then we de�ne a reference block as a small square around a �xed

(x,y) point (from the sparse grid) in frame 1. We also de�ne a search block

as a larger square around the same �xed (x,y) point (from the sparse grid)

in frame 2. The optical �ow determined is the displacement of the reference

block that best matches the search block. 92

B-2 2D systolic pipeline to perform block matching on reference block size (4 �

4). The inputs at left describe the search block (row,col), and are passed as

input from left to right. Each row in the search block from top to bottom is

increasingly delayed to sync with the systolic array calculations. Given inputs

from the left and top, each module's (AD, S, M) output is depicted with a

red arrow. 94

B-3 Shift register and delay system used to augment the search block data to be

used as input into the 2D systolic array (sized8� 8). The shift register outputs

the �rst 4 values separated by a stride of8. These outputs are delayed, with

each row getting increasingly more delayed. 96

17

18

List of Tables

3.1 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with Lucas Kanade on a sparse grid of points at

70% valid pixel. 62

3.2 Mean computation time breakdown of depth map reconstruction running on

an Intel i7-9750H during the freiburg1/xyz sequence 64

4.1 Number of Arithmetic Operations in Reprojection 70

4.2 Theoretical computation times for di�erent implementations of scene map

reprojection on640� 480points . 76

C.1 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map estimation at 50% valid pixel. 98

C.2 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map estimation at 60% valid pixel. 98

C.3 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map estimation at 70% valid pixel. 98

C.4 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map estimation at 75% valid pixel. 99

C.5 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map estimation at 80% valid pixel. 99

C.6 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with Lucas Kanade on key points at 50% valid pixel. 100

C.7 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with Lucas Kanade on key points at 60% valid pixel. 100

19

C.8 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with Lucas Kanade on key points at 70% valid pixel. 100

C.9 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with Lucas Kanade on key points at 75% valid pixel. 101

C.10 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with Lucas Kanade on key points at 80% valid pixel. 101

C.11 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with Lucas Kanade on a sparse grid of points at

50% valid pixel. 102

C.12 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with Lucas Kanade on a sparse grid of points at

60% valid pixel. 102

C.13 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with Lucas Kanade on a sparse grid of points at

70% valid pixel. 102

C.14 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with Lucas Kanade on a sparse grid of points at

75% valid pixel. 103

C.15 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with Lucas Kanade on a sparse grid of points at

80% valid pixel. 103

C.16 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with block matching on a sparse grid of points at

50% valid pixel. 104

C.17 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with block matching on a sparse grid of points at

60% valid pixel. 104

C.18 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with block matching on a sparse grid of points at

70% valid pixel. 104

20

C.19 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with block matching on a sparse grid of points at

75% valid pixel. 105

C.20 Evaluation metrics for several sequences in the TUM RGB-D Dataset using

depth map reconstruction with block matching on a sparse grid of points at

80% valid pixel. 105

21

22

Chapter 1

Introduction

The emergence of mobile augmented reality (AR) applications highlights the increasing de-

mand for the technology. AR applications allow users to interact with virtual objects in

real physical space. To provide the AR experience, many of these devices use depth sens-

ing. For example, the Microsoft HoloLens [27] and the Samsung Galaxy S10 5G [33] use a

time-of-�ight (ToF) camera to obtain depth data in the form of a depth map (Figure 1-1).

A ToF camera acquires depth by emitting infrared light and measuring its round-trip time

[17]. However, the infrared illumination source of these sensors is power-hungry, limiting

the battery life of mobile devices. To lower power consumption, mobile devices will often

reduce the frame rate of accurate depth map acquisition [3, 4, 23]. In many instances, the

power of the illumination source is also lowered, which results in noisier depth maps. These

drawbacks can limit the accuracy and performance of mobile AR applications.

To increase the accuracy of depth maps obtained from illumination sources with lowered

power, depth map denoising can be applied to restore depth map quality. However, pre-

vious approaches to denoising depth maps [25, 11] are often complex and computationally

expensive, requiring GPU parallelization to denoise in real-time.

In this thesis, we take an alternative approach. Instead of lowering the power of the

illumination source, we lower the frame rate of the ToF camera to reduce its power and

estimate the missing depth maps. Previous work by Noraky and Sze presents an algorithm

that estimates the depth for rigid objects to solve this problem [30]. We build on this

algorithm, and the next sections will review that work. In Section 1.1, we review Noraky

23

Figure 1-1: RGB-D images of the same scene captured from a color camera and a ToF
camera. Depth maps are 16-bit images where each pixel's value represents how far it is from
the ToF camera. We've color-coded the depth map for convenience. Close pixels are blue,
and far pixels are red.

and Sze's depth map estimation algorithm. In Section 1.2, we highlight the use of depth

for AR applications. In Section 1.3, we highlight a key issue with depth map estimation

in sequences containing revisited scenes. In Section 1.4, we outline our key contributions,

which form the basis of this thesis.

1.1 Depth Map Estimation

Recent work by Noraky and Sze [30, 31] presents algorithms for low-power depth map es-

timation. This low-power depth map estimation algorithm uses the 3D motion between

consecutive color (RGB) images, captured alongside depth, to estimate future depth maps.

Figure 1-2 illustrates this goal of depth map estimation, and the depth map estimation

algorithm process is outlined in Figure 1-3. Our goal is to estimate depth maps whenever

possible, instead of capturing depth maps from the ToF camera. We calculate the 3D motion

using optical �ow, which is the pixel-wise motion of objects from frame to frame. The algo-

rithm uses block matching [5, 38, 24, 43] on sparse points to quickly and e�ciently determine

the optical �ow.

We outline the general procedure of the low-power depth map estimation algorithm below:

24

Figure 1-2: The goal of depth map estimation. We want to estimate depth maps by using
the 3D motion between consecutive image frames. We avoid using the ToF camera every
time we estimate a depth map in order to lower the total power consumption of the camera.

Figure 1-3: Depth map estimation algorithm presented in [30]. This algorithm estimates
pose using optical �ow and uses this estimate to obtain a new depth map when the ToF
camera is not used.

25

1. Calculate the optical �ow using block matching.

2. Estimate the pose from optical �ow.

3. Reproject the depth map using the estimated pose.

RGB images are captured at the ToF camera's default frame rate, which is usually 30

frames-per-second (FPS). We estimate depth maps given the camera 3D motion. If the

algorithm cannot estimate a valid depth map, then we must capture a new depth map from

the ToF camera. Block matching is �rst applied to the most recent pair of consecutive RGB

images to determine the optical �ow. Then, using the optical �ow at each point, we solve

a linear system to obtain the rotational and translational vectors of the camera pose. The

pose describes the camera motion, which is the transformation between one camera position

to the next. If the pose cannot be computed, then the ToF camera must be used. Otherwise,

the pose is applied to the previous depth map to reproject it.

Results for this estimation algorithm on rigid objects show depth maps estimated at

30 FPS on an ODROID-XU3 board [32]. The ODRIOD-XU3 has similar performance as

the Samsung Galaxy S5, as they both share the same Exynos 5422 CPU. This embedded

system implementation produces depth maps with a mean relative error of 0.85%, where

it consumes 678 mW total (226 mW is the idle power). Both are signi�cantly lower than

the 2 to 5 W consumed by the illumination sources of ToF cameras [36, 6] used to capture

depth up to 2 m. Additional evaluation of this low-power depth map estimation algorithm

on AR speci�c metrics that relate to simultaneous localization and mapping (SLAM) and

surface normal estimation shows that it can decrease the ToF camera usage by up to 85%

without signi�cantly compromising accuracy. Using depth map estimation reduces the ToF

camera usage without hindering performance in AR applications, which lowers the total

power consumption.

1.2 Depth Map Usage in Augmented Reality

A typical AR application renders virtual objects in the real scene being captured. One

example is rendering a virtual dragon that stays �xed on top of a real keyboard. Figure 1-4

26

	Introduction
	Depth Map Estimation
	Depth Map Usage in Augmented Reality
	Depth Map Estimation on Revisited Scenes
	Contributions

	Depth Map Estimation Algorithm Extension - Depth Map Reconstruction
	Depth Map Estimation Computation
	Holes Formed by Depth Map Estimation
	Depth Map Reconstruction
	Scene Map Creation
	Scene Map Reprojection

	Depth Map Reconstruction Summary

	Augmented Reality Demo and Evaluation
	Surface Normal Estimation
	SLAM Trajectory Estimation
	Depth Map Reconstruction Evaluation Metrics
	Depth Map Quality Evaluation Using Mean Relative Error (MRE)
	Surface Normal Estimation Evaluation Using Percent Good Pixel (PGP)
	Trajectory Estimation Evaluation Using Absolute Trajectory RMSE

	Depth Map Reconstruction Evaluation Analysis
	Trends in Using Different Valid Pixel Thresholds
	Depth Map Reconstruction Sequence Analysis
	AR Demo Rendering
	Computational Complexity and Need for Hardware

	AR Demo and Evaluation Summary

	Hardware Acceleration Exploration
	Reprojection Pipeline Implementation
	Pixel Projection
	Point Transformation
	Point Reprojection

	Reprojection Implementation Analysis
	Fixed-Point Precision Accuracy Analysis
	Depth Map Reconstruction Co-processing Interface on Xilinx Zynq
	Hardware Exploration Summary

	Conclusion
	Future Work
	Hardware Implementation Improvements
	Depth Map Reconstruction Accuracy Improvements

	OpenGL Rendering
	Hardware Acceleration of Block Matching
	Block Matching Function
	Block Matching Hardware Design

	Evaluation Raw Data
	Depth Map Estimation
	Depth Map Reconstruction with Lucas Kanade on Key Points
	Depth Map Reconstruction with Lucas Kanade on a Sparse Grid of Points
	Depth Map Reconstruction with Block Matching on a Sparse Grid of Points

