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Abstract

Mobile augmented reality (AR) technology has seen immense growth in recent years, such
as the release of the Microsoft HoloLens2, which allows users to interact with virtual objects
around them in the real world. 3D data is often used in AR applications to determine surface
normals, allowing for the correct placement and orientation of virtual objects in the real world
scene. Time-of-�ight (ToF) cameras can be used to acquire this 3D data by emitting light
and measuring its round trip time to obtain depth. However, continuous acquisition of high-
quality depth maps requires the ToF camera to expend signi�cant amounts of power emitting
light, lowering the battery-life of the underlying device. To reduce power consumption, we
can use 3D motion computed using the 2D pixel-wise motion of consecutive RGB images
captured alongside the ToF camera to obtain a new depth map without illuminating the
scene. In this thesis, we propose depth map reconstruction to limit the ToF camera usage
by estimating depth maps using previously captured ones.

In our algorithm, we represent previously captured depth maps as a point cloud called
the scene map. Each time the ToF camera is used, the captured depth data is added to
the scene map to create a representation of the scene captured. The ToF camera is only
used when the 3D motion cannot be obtained, or if the obtained depth map contains too
many zero-depth (invalid) pixels. To evaluate our algorithm for use in AR applications, we
evaluate the accuracy of surface normals and trajectory estimations on our depth maps, in
addition to mean relative error (MRE). Using RGB-D datasets, we show that our algorithm
reduces the usage of the ToF by up to 97% with negligible impact on surface normals and
trajectory estimation, while obtaining depth maps with at least 70% valid pixels. We further
demonstrate the use of our algorithm with integration into an AR application. Finally, we
explore the implementation of depth map reconstruction using a CPU-FPGA co-processing
architecture to achieve real-time performance.

Thesis Supervisor: Vivienne Sze
Title: Associate Professor of Electrical Engineering and Computer Science
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2-1 AR applications commonly feature sequences where users will revisit parts of

the scene. A user pans the camera from left to right in the scene shown at (a).

Then, the user pans from right to left and ends up in the starting position,

indicated by the dark gray camera. With the depth map estimation algorithm
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2-4 Depth estimation results for di�erent camera movement options starting from
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3-3 Surface Normal Estimation: Per-pixel surface normals estimated from the
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3-6 Trends in mean relative error (MRE) as the valid pixel threshold for depth
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sively inaccurate. Additionally, inaccurate pose a�ects scene map quality. We
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3-8 Trends in absolute trajectory RMSE as the valid pixel threshold for depth

maps changes. Trajectory is computed by ORB-SLAM2 [28], and the error is
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rather linear relation between the two factors. Increased growth of the scene

map can cause the total computation time per frame to fall below 33.3 ms.

Our hardware implementation of scene map reprojection, used in depth map
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4-1 Pipelined implementation of pixel projection. We project a 2D depth pixel

(x; y; D ) to a 3D point (X; Y; Z ) given camera intrinsic of principal point

(cx ; cy), focal lengthf , and depth scaling factorK (Eq. 4.1). We precompute

constants using intrinsics,fs= 1
fK and ds= 1

K prior to processing points in

the pipeline. The pipeline processes a separate coordinate every clock cycle,

totaling three cycles per pixel, by using temporal input signals of the pixel

(px), principal point ( pp), and mux control (ctl ). We �rst set these values to

x, cx , and 0 respectively to computeX . Then we move to the next values at

row t = 1 to compute Y, and so forth. At the bottom left, we also show the

timing diagram for this pipeline. . . . . . . . . . . . . . . . . . . . . . . . . 72

4-2 Pipelined implementation of point transformation for calculating the x coor-

dinate of the transformed point (X 0). We transform each point using Eq. 4.3.

Input point (pt) data is connected to the output of point projection, which

outputs one coordinate of the 3D point once per clock cycle in the order

X; Y; Z . The cross product between the point and the angular velocity vector

! is computed by aligning the angular velocity values (av) with the input

point for the �xed-point multiplication. The mux control indicates when the

input is the X value of a point, as the displacement is added to the point. We

create similar pipelines for calculatingY 0 and Z 0 . . . . . . . . . . . . . . . . 74

4-3 Pipelined implementation of point reprojection for calculating the x pixel

coordinate of the reprojected point (x0) and its corresponding depth (D 0). The

reprojection relation is shown in Eq. 4.4. Using the same relation implemented

with pixel projection, we use the camera intrinsics of focal lengthf , principal

point (cx ; cy), and depth scaling factorK . As the point transformation outputs

point data (X 0; Y 0; Z 0) in the same clock cycle, we do not need to use temporal

signals to align calculations. To increase the clock rate, we use a 21-stage �xed-

point pipelined divider from Synopsys Designware. Since no divider is used to

calculateD 0, we delay the signal with23 to sync with the other output pixel

values obtained through division. . . . . . . . . . . . . . . . . . . . . . . . . 75
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4-4 Di�erences in reprojection from using 32-bit �oating-point in software and

41-bit �xed-point in hardware, given the same original depth map and the

same transformation vectors. (Top-left) shows the generated depth map run in

software using �oating-point, while (top-right) shows the generated depth map

in hardware with an FPGA using our 41-bit �xed-point notation. Although

the per-pixel error may seem high in the border of each object (bottom-left),

we see that this is just an artifact of the �xed-point value rounding into a

16-bit integer. Performing an adjusted per-pixel error analysis (bottom-right)

by considering not just an individual pixel, but also its immediate neighbors,

shows that all points are correctly reprojected within a 1-pixel margin. . . . 79

4-5 CPU-FPGA co-processing architecture for accelerating depth map reconstruc-

tion on the Xilinx Zynq chipset. We o�oad the most computationally expen-

sive component, reconstruction from scene map, to the FPGA for hardware

acceleration. Scene map data is piped from the CPU and FPGA, and the

corresponding reprojected 2D pixels are returned from the FPGA to the CPU. 80

5-1 Reconstructed depth maps with high error occur when the pose is inaccurate.

(Left) is the ground truth depth map, while (right) is the reconstructed depth

map. There exist two clear indicators of misalignment: 1) the foreground

monitor being split in half, and 2) the foreground monitor and the table with

an abrupt split in-between. These errors occur whenever this part of the scene

is reconstructed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A-1 Rendered output of our AR demo on the fr1/xyz sequence from [37]. The

image is rendered as a point cloud viewed from the same camera position

in which it was captured. The model dragon is rendered in the same space,

allowing it to be positioned correctly in the output. . . . . . . . . . . . . . . 90
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B-1 Block matching regions used to calculate optical �ow. We �rst resize the image

size in half. Then we de�ne a reference block as a small square around a �xed

(x,y) point (from the sparse grid) in frame 1. We also de�ne a search block

as a larger square around the same �xed (x,y) point (from the sparse grid)

in frame 2. The optical �ow determined is the displacement of the reference

block that best matches the search block. . . . . . . . . . . . . . . . . . . . . 92

B-2 2D systolic pipeline to perform block matching on reference block size (4 �

4). The inputs at left describe the search block (row,col), and are passed as

input from left to right. Each row in the search block from top to bottom is

increasingly delayed to sync with the systolic array calculations. Given inputs

from the left and top, each module's (AD, S, M) output is depicted with a

red arrow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B-3 Shift register and delay system used to augment the search block data to be

used as input into the 2D systolic array (sized8� 8). The shift register outputs

the �rst 4 values separated by a stride of8. These outputs are delayed, with

each row getting increasingly more delayed. . . . . . . . . . . . . . . . . . . . 96
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Chapter 1

Introduction

The emergence of mobile augmented reality (AR) applications highlights the increasing de-

mand for the technology. AR applications allow users to interact with virtual objects in

real physical space. To provide the AR experience, many of these devices use depth sens-

ing. For example, the Microsoft HoloLens [27] and the Samsung Galaxy S10 5G [33] use a

time-of-�ight (ToF) camera to obtain depth data in the form of a depth map (Figure 1-1).

A ToF camera acquires depth by emitting infrared light and measuring its round-trip time

[17]. However, the infrared illumination source of these sensors is power-hungry, limiting

the battery life of mobile devices. To lower power consumption, mobile devices will often

reduce the frame rate of accurate depth map acquisition [3, 4, 23]. In many instances, the

power of the illumination source is also lowered, which results in noisier depth maps. These

drawbacks can limit the accuracy and performance of mobile AR applications.

To increase the accuracy of depth maps obtained from illumination sources with lowered

power, depth map denoising can be applied to restore depth map quality. However, pre-

vious approaches to denoising depth maps [25, 11] are often complex and computationally

expensive, requiring GPU parallelization to denoise in real-time.

In this thesis, we take an alternative approach. Instead of lowering the power of the

illumination source, we lower the frame rate of the ToF camera to reduce its power and

estimate the missing depth maps. Previous work by Noraky and Sze presents an algorithm

that estimates the depth for rigid objects to solve this problem [30]. We build on this

algorithm, and the next sections will review that work. In Section 1.1, we review Noraky
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Figure 1-1: RGB-D images of the same scene captured from a color camera and a ToF
camera. Depth maps are 16-bit images where each pixel's value represents how far it is from
the ToF camera. We've color-coded the depth map for convenience. Close pixels are blue,
and far pixels are red.

and Sze's depth map estimation algorithm. In Section 1.2, we highlight the use of depth

for AR applications. In Section 1.3, we highlight a key issue with depth map estimation

in sequences containing revisited scenes. In Section 1.4, we outline our key contributions,

which form the basis of this thesis.

1.1 Depth Map Estimation

Recent work by Noraky and Sze [30, 31] presents algorithms for low-power depth map es-

timation. This low-power depth map estimation algorithm uses the 3D motion between

consecutive color (RGB) images, captured alongside depth, to estimate future depth maps.

Figure 1-2 illustrates this goal of depth map estimation, and the depth map estimation

algorithm process is outlined in Figure 1-3. Our goal is to estimate depth maps whenever

possible, instead of capturing depth maps from the ToF camera. We calculate the 3D motion

using optical �ow, which is the pixel-wise motion of objects from frame to frame. The algo-

rithm uses block matching [5, 38, 24, 43] on sparse points to quickly and e�ciently determine

the optical �ow.

We outline the general procedure of the low-power depth map estimation algorithm below:
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Figure 1-2: The goal of depth map estimation. We want to estimate depth maps by using
the 3D motion between consecutive image frames. We avoid using the ToF camera every
time we estimate a depth map in order to lower the total power consumption of the camera.

Figure 1-3: Depth map estimation algorithm presented in [30]. This algorithm estimates
pose using optical �ow and uses this estimate to obtain a new depth map when the ToF
camera is not used.
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1. Calculate the optical �ow using block matching.

2. Estimate the pose from optical �ow.

3. Reproject the depth map using the estimated pose.

RGB images are captured at the ToF camera's default frame rate, which is usually 30

frames-per-second (FPS). We estimate depth maps given the camera 3D motion. If the

algorithm cannot estimate a valid depth map, then we must capture a new depth map from

the ToF camera. Block matching is �rst applied to the most recent pair of consecutive RGB

images to determine the optical �ow. Then, using the optical �ow at each point, we solve

a linear system to obtain the rotational and translational vectors of the camera pose. The

pose describes the camera motion, which is the transformation between one camera position

to the next. If the pose cannot be computed, then the ToF camera must be used. Otherwise,

the pose is applied to the previous depth map to reproject it.

Results for this estimation algorithm on rigid objects show depth maps estimated at

30 FPS on an ODROID-XU3 board [32]. The ODRIOD-XU3 has similar performance as

the Samsung Galaxy S5, as they both share the same Exynos 5422 CPU. This embedded

system implementation produces depth maps with a mean relative error of 0.85%, where

it consumes 678 mW total (226 mW is the idle power). Both are signi�cantly lower than

the 2 to 5 W consumed by the illumination sources of ToF cameras [36, 6] used to capture

depth up to 2 m. Additional evaluation of this low-power depth map estimation algorithm

on AR speci�c metrics that relate to simultaneous localization and mapping (SLAM) and

surface normal estimation shows that it can decrease the ToF camera usage by up to 85%

without signi�cantly compromising accuracy. Using depth map estimation reduces the ToF

camera usage without hindering performance in AR applications, which lowers the total

power consumption.

1.2 Depth Map Usage in Augmented Reality

A typical AR application renders virtual objects in the real scene being captured. One

example is rendering a virtual dragon that stays �xed on top of a real keyboard. Figure 1-4
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