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Abstract

The tectorial membrane is a gelatinous matrix in the cochlea that is essential for the
amplification and decomposition of sound in mammalian hearing. Material properties
of the tectorial membrane have been studied in vitro by measuring the decay and
speed of artificially generated waves of motion in excised cochlea.

Optical systems for measuring subnanometer motion are essential in these exper-
iments. Analysis of data from these systems typically requires human intervention,
which limits the objectivity and precision of the results. To overcome these limi-
tations, this thesis focuses on the development of robust algorithms for analysing
traveling wave motion data with minimal human intervention. First, we analyse a
general purpose framework to estimate wave motions along a parametric path that is
selected by a user. Although not fully automatic, this method is more flexible, faster,
and less prone to error than previous methods. Second, we present a new gradient-
based, fully automatic algorithm for estimating wave motions. Although it achieves
high accuracy in synthetic data, systematic errors result when it is used to analyze
images from some physiological experiments. Finally, we expand the traditional tec-
torial membrane model by including effects of wave reflection. This model improves
the accuracy of wave estimates in experimental data and also provides convincing
fits to data that were previously dismissed because the motions did not demonstrate
monotonic decay. The new model demonstrates that the non-monotonicity is due to
interference between the forward traveling wave and its reflection.

Thesis Supervisor: Dennis M. Freeman
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Background

1.1.1 Mammalian Cochlea

The mammalian cochlea is a remarkable sensor able to detect motions smaller than

the diameter of a hydrogen atom and discriminate faint sounds from a large range of

frequencies [4, 7].

When sound enters the cochlea, waves travel through the basilar membrane (BM)

and are transduced into neural signals by sensory receptors, including both the in-

ner and outer hair cells [4]. The inner hair cells (IHC) are primarily responsible for

converting mechanical energy into electric signals that travel through the auditory

nerve [3]. The outer hair cells (OHC) are thought to participate in the amplification

of sound [7]. Both IHC and OHC are stimulated by motions of microscopic hair

bundles. Tips of OHC bundles are embedded in a gelatinous matrix called the tec-

torial membrane (TM). IHC bundles are thought to be stimulated by fluid motions

within the subtectorial space. These interactions induce a mechanical feedback loop

between the TM, the outer hair cells and the BM that results in the amplification

and decomposition of sound.
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Figure 1-1: Diagram of cross-sectional view of the cochlea. Adapted from [9].

1.1.2 The Tectorial Membrane

Experimental results suggest the TM is a key component in the cochlear amplification

of sound. Mouse models with genetically mutated TMs have exhibited loss of sensi-

tivity in the BM [3, 4]. Due to its strategic location within the cochlea, it is believed

the TM plays an important role in hair cell stimulation. To study this membrane

structure and properties, both computational and signal processing techniques are

required.

1.1.3 Isolated TM Preparation

Material properties of the TM have been studied using excised mammalian cochleae

in isolation in vitro [4]. This is achieved by measuring the TM’s response to a pure

tone stimulus. The experimental setup consists of placing the TM from a mouse

cochlea between two parallel-aligned supports and applying a sinusoidal motion to

one support. This setup is illustrated in Figure 1-2. This creates longitudinal and

radial sinusoidal waves that travel along the longitudinal direction of the TM and

decay exponentially. These waves are analysed by measuring their decay constants

and speeds [4, 7].

This method has been successfully used to study the role of different TM proteins.

For instance, Ghaffari, et. al showed that the TM of Tecb−/− mice mutant, which

16



Figure 1-2: Diagram of experimental optical setup. Adapted from [7].

exhibit loss in cochlear sensitivity and sharped tuning, are significantly stiffer than the

TM of wild type mice. [5]. Furthermore, this method has been utilized to study the

TM properties under different frequencies. For example, Sellon, et. al demonstrated

that wave speeds depend on stiffness at low frequencies and on viscosity at high

frequencies. [10].

These use cases illustrate the flexible capabilities and importance of this experi-

mental setup. For this reason, it is critical to develop robust algorithms to measure

the wave decay and speed accurately.

1.2 Existing Optical Systems and Methods

To compute the decay constant and speed, the existing algorithms rely on a set of

eight images of the TM, taken at evenly distributed phases. The displacements at

each pixel and from frame to frame are then computed using optical flow methods.

These displacements are fitted to radial and longitudinal sine waves that propagate

longitudinally. The decay constants and wave speeds derive from the amplitude and

phase of the best sinusoidal fit.
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Figure 1-3: Output of the motion detection software. Amplitude and phase plots in
the radial direction are shown respectively.

.

1.2.1 Motion Detection

The first step of the existing pipeline consists of the motion detection software. Given

a set of eight TM images, this tool:

1. Computes the motion from frame to frame using the method developed by

Timoner and Freeman [11]. This algorithm utilizes the constant brightness

assumption [6] to compute the displacement of a region of interest with gradients

in space and time. This algorithm is also optimized for sinusoidal motions.

2. For each pixel, the software tool computes the best sine fit with respect to

the displacements computed at the previous step. From that, it computes the

amplitude and phase in the 𝑥 and 𝑦 direction. The output plots of this software

are illustrated in figure 1-3.

1.2.2 Estimating Wave Decay and Speed

In the ideal model of the TM, the induced radial wave motion at position 𝑥 along the

longitudinal axis, at time 𝑡 and with angular frequency 𝜔 is defined by the following

steady-state displacement formula:
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𝐷(𝑥, 𝜔, 𝑡) = ℜ[𝐵𝑒−
𝑥
𝜎 𝑒−𝑗 𝑥

𝜆 𝑒𝑗𝜔𝑡]

where 𝐵 is a complex constant and 𝜎 and 𝜆 are positive constants. The decay and

speed are then defined as 𝜎 and 𝜔𝜆 respectively.

The amplitudes and phases output by the motion detection software are used to

estimate 𝜎 and 𝜆. The log of the amplitude decays linearly with a slope of 1/𝜎, and

the phase decreases linearly with a slope of 1/𝜆.

1.2.3 Problems with Existing System

The existing procedure for estimating the wave decay and speed mostly relies on

human intervention. In past experiments, the longitudinal trajectory was manually

chosen by either specifying a horizontal line within the TM or manually selecting

equally spaced region of interests. Specifying a horizontal line is not general enoguh

since many TM samples are curved. Selecting region of interests is error-prone since

these are arbitrarily chosen. Furthermore, this method covers fewer data points,

resulting is less robust estimates. Overcoming these limitations requires a careful

examination of the data at the cost of the researchers time.

1.3 Thesis Goals

The goal of this thesis is to develop robust algorithms for analysing wave motions

traveling through the tectorial membrane that require minimum human intervention.

These methods should allow researchers to spend more time analysing rather than

collecting data.

First, we will present a general framework for analysing waves estimates through

a parametric path. This framework is more general and more reliable than previous

methods used in TM research. We will also compare two different methods for esti-

mating wave decay and speed given amplitudes and phases in a defined longitudinal

trajectory.
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Second, we will propose a new fully automatic, gradient-based method for estimat-

ing wave motion properties. This algorithm does not require specifying a longitudinal

trajectory, utilizing the entire TM image and motion.

Finally, we will analyse the effects of wave reflection in TM experiments. We will

show how reflection can distort previous waves measurements and how incorporating

it in our model of the TM achieves more robust wave estimates.

20



Chapter 2

Analyzing Wave Motions along a

Parameterized Path

This chapter focuses on the development of a general purpose method to estimate

wave motions from a sequence of video images, with special attention to ease of use, as

well as accuracy and robustness. The method allows for parametric description of the

trajectory of the wave, which is more flexible than previous straight line specifications

while also being faster and less prone to error than manual selection of individual

regions.

2.1 Parameterized Curved Selection

This section describes the framework for selecting a parameterized curve as the lon-

gitudinal axis to analyze wave motions. First, we introduce the concept of Bezier

curves and the GUI built to manually select such curves in TM images. Second, we

present a simple algorithm for sampling equally spaced points from a parameterized

curve. Finally, we explain how to convert the sampled 𝑥𝑦 amplitudes and phases to

obtain the longitudinal and radial displacements.
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Figure 2-1: Snapshot of GUI

2.1.1 Bezier Curves

A parametric Bezier curve of degree 𝑛 is a curve defined by 𝑛 + 1 points 𝑝0, ..., 𝑝𝑛,

represented by the following parametric equation

𝑝(𝑡) =
𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
𝑡𝑘(1− 𝑡)𝑛−𝑘𝑝𝑘 for 0 ≤ 𝑡 ≤ 1

In our experiments, we utilized a 2D quadratic Bezier curve, meaning that there

are exactly three control points represented by 𝑥𝑦 coordinates.

2.1.2 GUI for Parameterized Curve Selection

After uploading the TM image, the user selects the three points that define the Bezier

curve. As the three points are dragged by the user, the curve adjusts its position and

shape. It also displays the relative position of each of the three control points. A

snapshot of the GUI is found in figure 2-1. It was implemented in javascript using

the React.js library.
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2.1.3 Dividing the Curve Equally

After the user selected the curve, the next step is to divide such curve in equal parts.

Although points in a Bezier curve have a convenient representation, the closed form

is not as trivial. Thus, we opted for the following algorithm to approximates these

points:

1. Compute 𝑠, the estimated arc-length of the entire curve.

2. For 𝑖 = 0, ..., ⌊𝑠⌋:

∙ Compute 𝑡𝑖, the approximation of 𝑡𝑖 such that the arc-length from 𝑝(0) to

𝑝(𝑡𝑖) equals 𝑖.

3. Output 𝑝(𝑡𝑖) for every 𝑖 = 0, ..., ⌊𝑠⌋

Note that if step 1 and 2 output good approximations, the arc-length between

𝑝(𝑡𝑖) and 𝑝( ˆ𝑡𝑖+1) is close to 1. Next, we will describe step 1 and 2 of this algorithm

in more detail.

Estimating arc-length

To approximate the arc-length of a curve, we first compute the intermediate points

𝑝(𝑖/𝑘) for 𝑖 = 0, ..., 𝑘 and for some predetermined constant 𝑘. Then, the estimated

arc-length is
𝑘−1∑︁
𝑖=0

⃦⃦⃦⃦
𝑝

(︂
𝑖 + 1

𝑘

)︂
− 𝑝

(︂
𝑖

𝑘

)︂⃦⃦⃦⃦
where ‖ · ‖ is the l2-norm. Note that as 𝑘 gets bigger, the estimates converge to the

actual arc-length while the runtime increases. For our purposes, we set 𝑘 = 100. This

algorithm can also be extended to compute the arc-length between any two points

alongside the curve.

Finding points in the curve

The second step involves taking as an input a target arc-length 𝑠 and outputting 𝑡 such

that the arc-length between 𝑝(0) and 𝑝(𝑡) is approximately 𝑠. This can be achieved
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by using binary search and the previous algorithm for estimating arc-lengths.

Here is a more detailed description. We first initialize two variables 𝑡𝑠𝑡𝑎𝑟𝑡 ← 0

and 𝑡𝑒𝑛𝑑 ← 1. Then, we proceed with a binary search with the following recursive

algorithm. On input (𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑, 𝑠):

1. Define 𝑡𝑚𝑖𝑑 ← 𝑡𝑠𝑡𝑎𝑟𝑡+𝑡𝑒𝑛𝑑

2
. Estimate arc length 𝑠 between 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑚𝑖𝑑 using

previously described algorithm.

2. If |𝑠− 𝑠| < 𝜖 for some small pre-determined 𝜖, output 𝑡𝑚𝑖𝑑.

3. If 𝑠 > 𝑠 + 𝜖, recurse on (𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑚𝑖𝑑, 𝑠).

4. Otherwise, recurse on (𝑡𝑚𝑖𝑑, 𝑡𝑒𝑛𝑑, 𝑠− 𝑠).

2.1.4 Obtaining Radial and Longitudinal Displacements

The final step involves computing the radial and longitudinal displacements. After

dividing the curve in points 𝑝0, 𝑝1, ..., 𝑝𝑚, we proceed to sample 𝑚 longitudinal and

radial amplitude and phases. For every 𝑖 = 0, ..,𝑚 − 1, we set the longitudinal unit

vector as �̂� = 𝑝𝑖+1−𝑝𝑖
‖𝑝𝑖+1−𝑝𝑖‖ and the radial unit vector 𝑟 as the 90 degrees rotation of �̂�.

Recall that the motion estimation algorithm already outputs the 𝑥𝑦 amplitudes 𝐴𝑥

and 𝐴𝑦 and 𝑥𝑦 phases 𝜑𝑥 and 𝜑𝑦 at each pixel. To obtain the new amplitudes and

phases we just simply change the basis of the following vector

𝐴𝑥𝑒
𝑗𝜑𝑥 �̂� + 𝐴𝑦𝑒

𝑗𝜑𝑦 �̂�

and compute its magnitude and angle to obtain the equivalent vector

𝐴𝑙𝑒
𝑗𝜑𝑙 �̂� + 𝐴𝑟𝑒

𝑗𝜑𝑟𝑟

where 𝐴𝑙 and 𝜑𝑙 are the longitudinal amplitude and phase and 𝐴𝑟 and 𝜑𝑟 are the

radial amplitude and phase.
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2.2 Estimating Wave Decay and Speed

In this section we will describe two different methods for estimating wave decay

and speed through a curve. The first method looks at the amplitudes and phases

separately. The second method uses the complex overall steady-state displacements.

2.2.1 Method 1: Fitting Amplitudes and Phases

Estimating wave decay

Recall that the amplitudes of the steady-state displacements should decay exponen-

tially alongside the longitudinal axis. To be more precise, let 𝐴(𝑥) be the amplitude

of either the radial or longitudinal component at position 𝑥 of the longitudinal axis.

Then, in an ideal model:

𝐴(𝑥) ≈ 𝐴0𝑒
−𝑥
𝜎

where 𝐴0 is a constant and 𝜎 represents the decay. This is also equivalent to:

ln𝐴(𝑥) ≈ ln𝐴0 −
𝑥

𝜎

which means that the log of the amplitudes decay linearly with a slope of 1
𝜎
. Thus, to

estimate the decay we can simply apply a linear regression to the log of the amplitudes

to obtain 𝐴0 and 𝜎.

Estimating wave speed

Recall that the phase should also change linearly. In other words, if 𝜑(𝑥) ∈ [0, 2𝜋)

is the phase at position 𝑥 of either the longitudinal or radial direction alongside the

longitudinal axis, then

𝑒𝑗𝜑(𝑥) ≈ 𝑒𝑗(𝜑0− 𝑗𝑥
𝜆
)

where 𝜆 represents the speed of the wave and 𝜑0 is a constant. Although the phase
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changes linearly, we cannot apply a normal linear regression due to phase wrapping

around 0 and 2𝜋. However, when 𝜑(𝑥) is not close to the boundaries, we have that:

𝜑(𝑥 + ∆𝑥)− 𝜑(𝑥) ≈ −∆𝑥

𝜆

Thus, the first differences ∆𝜑(𝑥) = 𝜑(𝑥) − 𝜑(𝑥 − 1) of the phases should be

roughly equal with the exception of outliers near the boundaries. To eliminate these,

we simply ignore any ∆𝜑(𝑥) above a standard deviation. After this step, the mean

of the remaining ∆𝜑(𝑥) should give us a good approximation of − 1
𝜆
.

2.2.2 Method 2: Fitting Complex Displacements

The second method consists on fitting the complex representation of the displacement

instead of the amplitude and phase separately. This can be done with a non-linear

least squares regression, where the goal is to find 𝜎, 𝜆, 𝑎0, 𝜑0 that minimize:

∑︁
𝑥

⃒⃒
𝐴(𝑥)𝑒𝑗𝜑(𝑥) − 𝑒𝑎0−

𝑥
𝜎 𝑒𝑗(𝜑0− 𝑥

𝜆
)
⃒⃒2

For the non-linear least squares regression, we utilized scipy’s implementation of

Trust Region Reflective algorithm [1, 2, 8]. This algorithm requires an initial guess

of the parameters to be estimated. These are calculated by using the method 1 of

fitting amplitudes and phases separately.

2.3 Results

2.3.1 Synthetic Displacements

The first experiment consists of applying method 1 and 2 to the following function

𝑓(𝑥) = 𝑒−
𝑥
𝜎
−𝑗 𝑥

𝜆

to estimate the values of the known 𝜎 and 𝜆. We simulate both methods for 1000

trials, where the target 𝜎 an 𝜆 were 62.5 and 40 respectively. The values of 𝑥 that
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𝑑2 𝜎 Met 1 𝜎 Met 2 𝜆 Met 1 𝜆 Met 2
0.05 0.34 % 0.73% 3.28% 0.13 %
0.10 0.66% 1.38% 6.67 % 0.25 %
0.20 1.37% 2.74% 14.87 % 0.52 %

Table 2.1: Results of the first experiment, comparing the two different methods for
estimating wave and decay with different noise levels. This table displays the mean
absolute error with respect to the true values. Both methods achieve accurate 𝜎
estimates with errors below 3%. However, method 2 considerably outperform method
1 at estimating 𝜆, with method 2 achieving almost perfect estimates and method 1
having substantial errors of around 15% for higher noise levels.

were used ranged from 0 to 200. To test for robustness, we multiply the real and

imaginary parts by a normal random variable of mean 1 and variance 𝑑2.

Table 2.1 includes the results of the experiment. For each method, we reported

the ratio between the standard deviation of the estimates and the mean.

The results suggests that fitting to the complex displacements (method 2) is more

robust than fitting the amplitudes and phases separately (method 1). Method 2

considerably outperforms method 1 in wave speed estimation. Although method 1

presents better wave decay estimates, method 2 still provides accurate competent

estimates with errors below 3%.

Since method 2 is the better method overall, we will ignore method 1 for our

following experiments.

2.3.2 Synthetic Images

For the second experiment, we generated eight synthetic images of a fake curved TM.

A sample image is displayed in figure 2-2. The fake curved TM consists of a sequence

of pixel columns whose brightness were modeled from a Gaussian distribution. To

simulate a traveling wave motion, each column was vertically shifted with decaying

amplitudes and phases. Although this motion is not perfectly radial, it still provides a

good enough approximation. The parameters used were 𝜎 = 1666.66 and 𝜆 = 181.18.

To test for robustness, we added both fixed pattern noise and shot noise.

The errors with respect to the true values were 3.07% for 𝜎 and 0.01% for 𝜆. These
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Figure 2-2: Images used in the second and third experiment. The left figure is a
synthetic image replicating a curved TM. The right figure is a real TM image. Both
images’ columns were shifted artificially with sinosoidal motions. The left image
contains shot noise and the right image fixed pattern noise. Despite the high noise
levels, wave estimates were very precise in these sets of images.

results are encouraging, achieving an almost perfect estimate of 𝜆. In addition, the

error for 𝜎 remains low even when motions are not perfectly radial.

2.3.3 Real Images with Synthetic Displacements

For the third experiment, we tested our algorithm in a real TM image with synthetic

displacements. This image is illustrated in figure 2-2. As in the previous experiment,

each column was vertically shifted with decaying amplitudes and phases. The values

of 𝜎 and 𝜆 were the same as in the previous experiment. We also added shot and

fixed pattern noise to test robustness.

The results are very similar to the previous experiment, with an error of 2.55%

for 𝜎 and a minor 0.25% for 𝜆. This further suggest that this method accurately

estimates the decay and speed.

2.3.4 Real Data

The last experiment consisted on a qualitatively analysis of our algorithms on real

data. We used four different TM for our experiment and plotted the real part of the

complex displacements versus the best fits. These plots can be found in figure 2-3.

The estimate of 𝜆 looks pretty accurate in the four cases. However, 𝜎 is not a precise
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for two out of the four samples. This is consistent with our previous experiments

where the measurements were more precise for 𝜆 than 𝜎. In addition, in two of the

samples the displacements do not exactly decay exponentially. We will address this

artifact in the last chapter by bringing the concept of reflection waves.

2.4 Discussion

In this chapter we explored two different methods for estimating the decay and wave

speed in TM experiments as well as a more user-friendly and generic framework

for selecting a longitudinal axis. We obtained promising results by fitting to the

complex displacements instead of looking at the amplitudes and phases separately.

This method is also very precise at estimating the wave speed in both synthetic and

real data. Although it is not as precise for the decay in both synthetic and real data,

the results are still encouraging. Furthermore, real data presents the challenge that

amplitudes are more noisy and do not exactly decay exponentially.
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Figure 2-3: Real part of complex displacements versus best fits. The 𝑥 axis represents
the longitudinal axis and the 𝑦 axis the displacements, both in micrometers. The dots
represent the estimated displacements coming from the motion estimation algorithm
while the blue solid curve represents the best fit based on our assumptions. The outer
curve represents how the amplitudes decay exponentially based on the best fit of 𝜎,
the wave decay

.
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Chapter 3

Automatic Gradient-Based Wave

Motion Analysis

This chapter focuses on the development of an automatic method for estimating wave

motions that uses the entirety of the TM image instead of a parametric path. This

method first segments the TM by both brightness and motion and then robustly

averages the local wave estimates to achieve a global wave decay and speed. Since

this method requires minimal user inputs, it presents a more objective and robust

procedure for wave motion estimation.

3.1 Gradient-Based Wave Estimation

This section describes the overall method for estimating decay and wave speed using

motion gradients. For simplicity, assume that the longitudinal axis of the TM is a

horizontal line and the radial axis is a vertical line. In addition, assume that the

motion is purely radial. As in chapter 2, let 𝐴(𝑥, 𝑦) and 𝜑(𝑥, 𝑦) the amplitude and

phase of the sinusoidal motion at position (𝑥, 𝑦) in the TM. In our ideal model, the

sinusoidal motion is described by:

𝑈(𝑥, 𝑦) = 𝐴(𝑥, 𝑦)𝑒𝑗𝜑(𝑥,𝑦) ≈ 𝑒𝑎0−
𝑥
𝜎 𝑒𝑗(𝜑0− 𝑥

𝜆
)
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by setting 𝐵0 = 𝑒𝑎0𝑒𝑗𝜑0 , we get the following equivalent expression:

𝑈(𝑥, 𝑦) ≈ 𝐵0𝑒
−𝑥( 1

𝜎
+ 𝑗

𝜆
)

Then, by taking the partial derivative in the 𝑥 direction we obtain that:

𝜕𝑈(𝑥, 𝑦)

𝜕𝑥
= −𝐵0

(︂
1

𝜎
+

𝑗

𝜆

)︂
𝑒−𝑥( 1

𝜎
+ 𝑗

𝜆
) = −

(︂
1

𝜎
+

𝑗

𝜆

)︂
𝑈(𝑥, 𝑦)

Thus, if 𝑈𝑥 = 𝜕𝑈
𝜕𝑥

we have that

𝑈𝑥(𝑥, 𝑦)

𝑈(𝑥, 𝑦)
= −

(︂
1

𝜎
+

𝑗

𝜆

)︂
which is independent from 𝑥 and 𝑦. This relation gives us a new tool for estimating

𝜎 and 𝜆.

3.2 Gradient-Based Method on TM Experiments

This section presents a new algorithm for estimating the wave decay and speed in

the TM experiments. It is based on the gradient method described in the previous

section. Here is the high-level description of this method:

1. Estimate 𝑈𝑥[𝑥, 𝑦] for each pixel 𝑝 = (𝑥, 𝑦) in the image.

2. Estimate local 𝜎 and 𝜆 for each pixel by computing 𝑈𝑥(𝑥,𝑦)
𝑈(𝑥,𝑦)

3. Eliminate non-TM regions based on brightness and motion.

4. Robustly average local estimates of remaining pixels to obtain global decay and

speed.

Next, we will explain each step in more detail.

3.2.1 Estimating Gradients

The traditional method for computing gradients in images is by convolution with

linear filters. These are inspired by the continuous definition of derivatives. Recall
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that:

𝜕𝑈(𝑥, 𝑦)

𝜕𝑥
= lim

ℎ→0

𝑈(𝑥 + ℎ, 𝑦)− 𝑈(𝑥, 𝑦)

ℎ

In the discrete case, we can approximate the partial derivative by setting

𝑈𝑥[𝑥, 𝑦] = 𝑈 [𝑥 + 1, 𝑦]− 𝑈 [𝑥, 𝑦]

where 𝑈 [𝑥, 𝑦] is the discrete representation of the function 𝑈 . In terms of convolution,

this is equivalent to:

𝑈𝑥[𝑥, 𝑦] = 𝑈 [𝑥, 𝑦] * ℎ𝑥[𝑥, 𝑦]

where ℎ𝑥[𝑥, 𝑦] = 𝛿[𝑥 + 1]− 𝛿[𝑥]. However, this operation is very noise sensitive since

we only use two pixels to estimate the derivatives at any point. In order to make a

more robust gradient estimation, we can convolve 𝑈 with a 2D Gaussian filter. In

the continuous case, this is equivalent to

𝑈𝑥(𝑥, 𝑦) =
𝜕

𝜕𝑥
(𝑈(𝑥, 𝑦) *𝐺(𝑥, 𝑦, 𝜎))

where 𝐺(𝑥, 𝑦, 𝜎) = 𝑔(𝑥, 𝜎)𝑔(𝑦, 𝜎) and

𝑔(𝑥, 𝜎) =
1

𝜎
√

2𝜋
𝑒

−𝑥2

2𝜎2

However, the above expression is also equivalent to:

𝑈𝑥(𝑥, 𝑦) = 𝑈(𝑥, 𝑦) *
(︂
𝜕𝐺(𝑥, 𝑦)

𝜕𝑥

)︂
and

𝜕𝐺(𝑥, 𝑦, 𝜎)

𝜕𝑥
=

𝜕𝑔(𝑥, 𝜎)

𝜕𝑥
𝑔(𝑦, 𝜎)

Thus, we can estimate 𝑈𝑥 by convolving 𝑈 with ℎ𝑥[𝑥, 𝑦] = 𝑔′[𝑥]𝑔[𝑦] where 𝑔′ represents

the derivative of a Gaussian.
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3.2.2 Estimating Local Wave Speed and Decay

To estimate 𝜎 and 𝜆 we just simply compute 𝑈 [𝑥,𝑦]
𝑈𝑥[𝑥,𝑦]

at each pixel. The real and

imaginary parts of this ratio represent the estimates of −1/𝜎 and −1/𝜆 respectively.

Since these estimates are subject to noise, we apply a final Gaussian blur to both

the imaginary and real parts of 𝑈 [𝑥,𝑦]
𝑈𝑥[𝑥,𝑦]

. This is useful because this ratio should be

constant in the TM regions.

3.2.3 Detecting non-TM Regions

After computing the local estimates of 𝜎 and 𝜆, the next step is to eliminate regions

that are not part of the TM. The images used in our experiments usually contain the

three following elements:

1. The TM, whose motion behaves as a decaying traveling wave.

2. The background, which has either a noisy motion or no movement at all.

3. Two coverslip supports, which move like a rigid body.

Next, we will describe in more detail how to detect and remove pixels that are classified

as background or inside a coverslip support.

Detecting the background

We used two different strategies to eliminate the background pixels. The first one

is based on motion. Since the estimated amplitudes and phases are random in this

region, the estimates of 𝜎 and 𝜆 should also be random. In contrast, the estimates of

𝜎 and 𝜆 inside the TM should be roughly uniform. This is based on our assumption

that the TM motion behaves like a decaying traveling wave.

To measure how similar the local estimates of 𝜎 and 𝜆 are around a certain pixel,

we compute the magnitude of their gradients. More specifically, for 𝜎 we compute:

O𝜎[𝑥, 𝑦] =
√︁
�̂�−1
𝑥 [𝑥, 𝑦]2 + �̂�−1

𝑦 [𝑥, 𝑦]2
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where �̂�−1 is the local approximation of 1/𝜎 and �̂�−1
𝑥 and �̂�−1

𝑦 are the approximation

of the partial derivatives in 𝑥 and 𝑦 of �̂�−1 respectively. These are computed with the

technique described in section 3.2.1. We also define and compute O𝜆 analogously.

Notice that if �̂�−1 and �̂�−1 are uniform locally, then both O𝜎 and O𝜆 should be

close to 0. On the other hand, if these estimates are not uniform then these are much

greater than 0. Thus, we can pick a threshold and ignore all points with O𝜎 and

O𝜆 above that certain threshold. In addition, we also eliminate regions where the

amplitude is below a certain threshold. This is to account for edge cases where the

background amplitude is very small but the phases are uniform.

The second strategy is based on brightness. Unlike with motion, the background’s

brightness is mostly uniform meaning that the magnitude of its gradient is close

to 0 in this region. This is the opposite for objects like the TM where brightness

changes considerably. Thus, we eliminate pixels whose gradient’s magnitude is bigger

than a certain threshold. The magnitude of the gradient is computed analogously as

described for O𝜎 and O𝜆.

Detecting the coverslip supports

The previous methods for eliminating the background are not effective for detecting

the two coverslip supports. Their local 𝜎 and 𝜆 estimates are uniform since the

coverslip supports also move sinusoidally. In addition, their brightness is not uniform

unlike the background.

However, the coverslip supports’ motion is significantly different from the TM’s;

they move like a rigid body. More specifically, 𝑈 should be uniform across the rigid

body meaning that 𝑈𝑥 should be 0. This implies that both �̂�−1 and �̂�−1 should be

0 inside the coverslip supports while attaining non-negligible values inside the TM.

Thus, we pick a threshold and ignore all pixels with either ˆ𝜎−1 or �̂�−1 below that

threshold to detect and eliminate pixels corresponding to the coverslip supports.
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𝑑2 Error 𝜎 Error 𝜆

No noise 0.24% 0.22%
0.05 2.05 % 0.25 %
0.10 2.34 % 0.36%
0.20 5.22% 0.65 %

Table 3.1: Results of the first experiment. The first column represents the amount of
noise added. The second and third columns display the average absolute error with
respect to the true values of 𝜎 and 𝜆.

3.2.4 Averaging Local Wave Estimates

The final step of the algorithm is to obtain a global 𝜎 and 𝜆 from the remaining

pixels. We achieve this by:

1. Computing the mean of �̂�−1 and �̂�−1.

2. Eliminating pixels whose average is one standard deviation away from the mean.

3. Recomputing the mean of the remaining pixels.

3.3 Results

3.3.1 Synthetic Displacements

The first experiment aimed to test the method for estimating 1/𝜎 and 1/𝜆 locally. It

consisted of generating a 250× 250 2d-array satisfying the following function:

𝑓(𝑥, 𝑦) = 𝑒−
𝑥
𝜎 𝑒−

𝑗𝑥
𝜆

where 𝜎 = 1818 and 𝜆 = 222. To test for robustness, we multiply the real and

imaginary values by a normal random variable of mean 1 and variance 𝑑2.

For estimating the gradients, we truncate our Gaussian kernel as a 25 × 25 box

with a std of 12 in the 𝑦 direction and 3 in the 𝑥 direction. For estimating 1/𝜎 and

1/𝜆, we applied a Gaussian blur with a 25 x 25 kernel and standard deviation 12.
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Figure 3-1: (A) Sample image with shot noise used to simulate TM experiments. (B)
Results of background elimination based on motion. (C) Estimates of the real part
of 𝑈𝑥/𝑈 or −1/𝜎. The true value is 6e-4. (D) Estimates of imaginary part of 𝑈𝑥/𝑈
or −1/𝜆. The true value is 5.5e-3. For both 𝜎 and 𝜆, the algorithm estimates the
right values in the interior of the simulated TM. However, there are artifacts near the
edges of the TM in both cases, more prominent for 𝜎 than 𝜆. These are ultimately
ignored by the background elimination since the values of 𝜎 and 𝜆 are not uniform in
these regions with artifacts.

.

The results can be found in table 3.1. We reported the average absolute error

with respect to the valid answer after 10 trials.

The results are encouraging and consistent with our previous experiments. Again,

𝜆 estimates are extremely precise and robust while 𝜎 is more sensitive to noise.

3.3.2 Synthetic Images

For the second experiment, we created eight synthetic images with a fake TM and

a background. The fake TM was generated by a sequence of pixel columns with

brightness values modeled from a Gaussian distribution. The center of each column
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Figure 3-2: Results of TM detection for both real TM samples. From left to right:
(A) TM original image. (B) TM detection by brightness only. (C) TM detection by
brightness and wave motion (D) Final output, including rigid body removal. Most
of the background gets eliminated in these examples when looking at changes in
brightness. However, brightness alone cannot eliminate the coverslip supports. These
are filtered in (C) and (D), resulting in a high precision segmentation. This is not as
true for recall. However, precision is much more important than recall since 𝜎 and 𝜆
are constant across the entire TM in our ideal model and the TM generally occupies
the majority of the image.

.

is dark while the edges are bright. A sample image can be found in figure 3-1. The

columns move only in the vertical direction. The motion travels with 𝜎 = 1666.66

and 𝜆 = 181.18. To test for robustness, we added fixed pattern noise and shot noise.

The parameters used for estimating 𝜎 and 𝜆 locally are the same as used in the

first experiment. We also performed the background detection algorithm based on

motion with a threshold of 2e-4 and ignoring pixels with amplitudes smaller than 0.1.

Figure 3-1 shows the results of the background elimination as well as the local

estimates of 𝜎 and 𝜆. In all the cases, the global estimates were almost identical

despite the noise levels. The errors were 0.99% for 𝜎 and 0.25% for 𝜆, which shows

that this method is robust especially for 𝜆.
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Previous decay New decay Previous speed New speed
TM Sample 1 326.55 µm 246.53 µm 4.73 m/s 4.59 m/s
TM Sample 2 274.85 µm 207.93 µm 5.75 m/s 5.57 m/s

Table 3.2: Comparison of wave decay and speed estimates between previous and
current chapter’s methods. The decay is in micrometers and the speed in meters per
second. The speed estimates are similar while the decay estimates are not.

3.3.3 Real Data

For the last experiment, we used two real TM samples. The results of the TM de-

tection are displayed in figure 3-2. Overall, the TM detection method prioritizes

precision (number of false positives) over recall (number of false negatives). However,

this trade off is still positive. The TM region, which occupies most of our images,

should contain similar estimates of 𝜎 and 𝜆 while the background and coverslip sup-

ports provide much more different estimates. Thus, precision is much more important

than recall since it is more crucial to minimize the number of false positives.

We compared this new method’s wave decay and speed estimates with the previous

chapter’s. The two selected images already had fairly reliable estimates with the

method described in chapter 2. This comparison can be found in table 3.2. The

speed estimates are almost identical in both methods. However, this is not true for

the decay. The main reason is that the amplitudes do not decay exponentially at all

points in the TM. This phenomena is displayed in figure 3-3. We will address this

issue in the next chapter.

3.4 Discussion

In this chapter we explored a new algorithm for estimating wave decay and speed

automatically. This method uses the entire TM images instead of a parametric path.

This method demonstrates a high accuracy for synthetic data. It was also very

effective at estimating wave speed in real samples, but not so much for the decay.

The reason is that amplitudes do not exactly decay exponentially in real TM samples.

This issue will be addressed in the next chapter.

39



Figure 3-3: The left plots represent the local estimates of − 1
𝜎

and the right plots
represent the local estimates of − 1

𝜆
. This illustrates the challenge of estimating 𝜎

with this method. In real TMs, the amplitudes do not exactly decay exponentially.
In some regions the amplitudes even increases. However, the phases decay mostly
uniformly resulting in much more precise measurements.

.
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Chapter 4

Wave Reflection Effect

This chapters introduces the concept of wave reflection in TM experiments. If wave

reflection occurs, a reverse wave is present and it interferes with the original wave

motion traveling through the TM. This chapter analyses how reverse waves affect

previous decay and speed estimates and incorporates them to achieve more robust

and accurate results.

4.1 Wave Reflection

In previous chapters, we observed that the amplitudes in real data were not decaying

exponentially as stated in our ideal TM model. To correct for this issue, we introduce

the concept of wave reflection. This has been used in previous TM studies for more

robust measurements [7].

In the TM experiments, the motion wave travels from one coverslip support to

another. The first coverslip support induces a forward decaying traveling wave to

the TM. The second coverslip support is stationary. However, this second coverslip

support can cause a wave reflection, generating a reverse wave with the same speed

and decay but with an opposite direction.

More formally, the radial complex displacements alongside the longitudinal direc-

tion should satisfy the following function:
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Figure 4-1: Plot of the log of the amplitudes (left) and phases (right) when a reverse
wave is present. The amplitudes are more affected than the phases. The ampli-
tudes oscillate since the forward and reverse wave interfere both constructively and
destructively.

.

𝐷(𝑥, 𝜔, 𝑡) = (𝐵𝑓𝑒
− 𝑥

𝜎
−𝑗 𝑥

𝜆 + 𝐵𝑟𝑒
𝑥
𝜎
+𝑗 𝑥

𝜆 )𝑒𝑗𝑤𝑡

where 𝐵𝑓 and 𝐵𝑟 are complex constants, 𝜎 and 𝜆 represent the decay and speed.

Notice that the sum of two sinusoidal waves is still a sinusoidal wave. However,

these two waves interfere both constructively and destructively. This means that

the amplitudes and phases do not decay as in our ideal model. This is especially

true for amplitudes as seen in figure 4-1. The amplitude sometimes increases when

the two waves interfere constructively and decay dramatically when these interfere

destructively.

4.2 Fitting Displacements with a Reverse Wave

For simplicity, we will test the reflection effect theory by using the method described

in chapter 2. Recall that the goal was to find 𝑎0, 𝜑0, 𝜎 and 𝜆 that minimize:

𝑠∑︁
𝑥=0

|𝑈(𝑥)− 𝑒𝑎0−
𝑥
𝜎 𝑒𝑗(𝜑0− 𝑥

𝜆
)|2
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Refl. factor 𝜎 Error 𝜆 Error
1 63.06 % 46.76%
2 15.52 % 15.33 %
5 4.40 % 5.05 %
10 1.97 % 2.38%

Table 4.1: Error associated to the reflection effect. The first column represents the
reflection factor or ratio between the amplitudes of the forward and reverse waves
where the reflection occurs. The reported figures correspond to the absolute error
with respect to the true values.

where 𝑈(𝑥) = 𝐴(𝑥)𝑒𝑗𝜑(𝑥) and 𝐴(𝑥) and 𝜑(𝑥) represent the amplitude and phase at

position 𝑥 of the sinusoidal motion alongside the longitudinal axis. We extend this

model by adding two extra variables 𝑎𝑟0, 𝜑
𝑟
0 and the goal becomes minimizing:

𝑠∑︁
𝑥=0

|𝑈(𝑥)− 𝑒𝑎0−
𝑥
𝜎 𝑒𝑗(𝜑0− 𝑥

𝜆
) − 𝑒𝑎

𝑟
0+

𝑥
𝜎 𝑒𝑗(𝜑

𝑟
0+

𝑥
𝜆
)|2

4.3 Results

4.3.1 Synthetic Displacements

The first experiment consisted in generating an array of size 1500 satisfying the fol-

lowing function:

𝑓(𝑥) = 𝑒𝑎0−
𝑥
𝜎 𝑒𝜑0− 𝑥

𝜆 + 𝑒𝑎
𝑟
0+

𝑥
𝜎 𝑒𝜑

𝑟
0+

𝑥
𝜆

This experiment had two different goals. The first is to predict 𝜎 and 𝜆 using the

method described in chapter 2 with different reflection factors. This is to measure

the possible errors in previous measurements for not including the reverse wave in

the ideal model. The second goal is to test this new method’s robustness to noise.

Reflection effect in previous fitting method

We applied the method described in chapter 2 to measure how wave reflection affects

the estimates of 𝜎 and 𝜆. To achieve this, we chose different ratios of 𝑒𝑎0−
𝑥
𝜎

𝑒𝑎
𝑟
0+

𝑥
𝜎

or ratio
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𝑑 𝜎 Error 𝜆 Error
No noise 0.00 % 0.00%

0.05 0.31 % 0.04%
0.10 1.89 % 1.05 %
0.20 8.92 % 5.96 %

Table 4.2: Results after adding noise to the displacements. The metric used was
average absolute error with respect to the true values.

between the amplitudes of both waves where the reflection occurs. The parameters

used were 𝑎0 = 1, 𝜑0 = 0, 𝜎 = 2000 and 𝜆 = 444.44.

The results are displayed in table 4.1. The errors are significantly high when the

reflection factor is close to 1, even surpassing 50% for both 𝜎 and 𝜆 estimates. This

suggests that if a strong reverse wave is present, the previous measurements of 𝜎 and

𝜆 might not be reliable.

Robustness to noise

To test the new method’s robustness to noise, we multiplied the real and imaginary

parts of the generated displacements by a normal random variable of mean 1 and

variance 𝑑2. The parameters used to generate the displacements were 𝑎0 = 1, 𝜑 =

0, 𝜎 = 2000, 𝜆 = 444.44 with a reflection factor of 1.

The results are included in table 4.2. We ran 100 trials for each noise level and

reported the average absolute error. The results suggest this new method is robust to

noise. For low noise levels the errors were below 2%. The results were not as accurate

for higher noise levels (𝑑 = 0.2). However, these are still reasonable considering the

amount of noise.

4.3.2 Real Data

For the second experiment, we selected three different TM samples where the previous

measurements of decay and speed seemed implausible. We estimated the decay and

speed of the three samples with and without considering the reflection effect.

The results suggest that a reverse wave is present in these three samples. Figure
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No refl. decay Refl. decay No refl. speed Refl. speed
TM Sample 1 298.03 µm 293.32 µm 4.82 m/s 4.76 m/s
TM Sample 2 426.12 µm 259.42 µm 3.49 m/s 3.73 m/s
TM Sample 3 250.78 µm 377.43 µm 6.75 m/s 8.29 m/s

Table 4.3: Comparison of wave decay and speed estimates with and without adding
the reverse wave in our fitting model. The decay is in micrometers and the speed
in meters per second. Both estimates are different. This is more noticeable for the
decay, where some estimates are completely different.

Figure 4-2: Plots of the measured displacement of the three samples and the best
fits. The blue curve represents the real steady state displacements. The orange and
green curve represent the forward and reverse wave fits respectively. The red curve is
a combination of these two, providing a good approximation in all three cases. The
reverse wave is also significant in all samples.

.

4-3 shows snapshots of the raw displacements with and without correcting for the

reflection effect. Subtracting the reverse wave from the original displacements results

in a wave motion similar to a decaying traveling wave. In addition, figure 4-2 displays

the fitted forward and reverse wave. These two waves constructively and destructively

interfere to achieve a fit similar to the original data.

Finally, table 4.3 compares how much the decay and speed changed by including

the reflection effect in our model. The decay changes considerably in some samples

as we expected. The speed also varies for all samples but in a lesser degree. This is

consistent with the results obtained in the previous chapters.
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4.4 Discussion

In this chapter we introduced the concept of wave reflection in the TM experiments.

This theory was previously studied in an attempt for more robust wave measurements.

By experimenting with synthetic data, we showed that not adjusting for the reflection

effect might yield very different estimates. This was also true in real data. We

obtained more precise and reliable fits by adding the reverse wave in our model.

This suggests that reverse waves are present in many TM experiments, which could

significantly affect the final wave decay and speed estimates.
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Figure 4-3: Wave snapshots of the real steady-state displacements. In the left images,
the blue dots represent the displacements measured from the motion estimation algo-
rithm. The blue curve represents the best fit with the traditional method. In the right
images, the blue dots represent the original displacements minus the reverse wave in
order to obtain a decaying traveling wave pattern. The blue curve represents the best
forward wave fit. In all three cases, the left fits seem to have inaccuracies. However,
the fits on the right plots provide a good approximation of the data validating our
theory that a reverse wave is present.

.
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Chapter 5

Conclusions

In this thesis we have presented several algorithms for robust estimation of TM wave

motion parameters with minimum human intervention. After a brief introduction to

the problem (chapter 1), the main results were organized in three sections (chapters

2 to 4).

In chapter 2, we presented a general purpose framework that allows the user to

analyse wave motions along a parametrically described trajectory. This framework

is more flexible, faster and less prone to error than previous methods. This chapter

also compared two different algorithms for estimating wave speed and decay given the

amplitudes and phases along a defined longitudinal axis. The first method involves

fitting the amplitudes and phases separately to compute the wave decay and speed

respectively. The second method consists in fitting the complex displacements to

jointly obtain the decay and speed. The latter proved to be more robust, accurately

predicting the decay and speed whenever the motion data behaved as a decaying

traveling wave. However, some TM samples presented amplitudes that did not decay

uniformly. For these cases, the speed estimates were still accurate while the the decay

estimates were not as reliable.

In chapter 3, we proposed a new fully automatic gradient-based algorithm for wave

estimation. This novel method does not require manual specification of a longitudinal

axis since it computes a global wave decay and speed based on the whole TM image

and motion. This method provided encouraging results in synthetic data for both
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decay and speed. Furthermore, this method accurately estimated the wave speed in

real TM samples. However, it was not as effective for the wave decay. This is due

to amplitudes in real TM samples being noisy and not decaying uniformly in certain

regions.

In chapter 4, we introduced the wave reflection effect in TM experiments. We

first showed that when a wave reflection is present, amplitudes and phases do not

decay as in the ideal model of the TM. By analysing synthetic data we concluded

that previous estimates of wave decay and speed can be significantly distorted if the

reflection is large enough. Finally, we tested this theory on TM samples where wave

motions did not behave as a decaying traveling wave. By including a reverse wave

in our model, we achieved fits that fit well with real data. The biggest effect of the

reflected wave was in changes to the decay estimates, which is consistent with our

results in the previous chapters. This suggests that the reflection effect is present in

many TM experiments and should be considered for more robust estimates.
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