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ABSTRACT

We present solutions to four problems emerging in data-driven long-range weather

prediction that were explored as part of an M.Eng Thesis. These problems are

related to long-range prediction using a network of observing stations and climate

indicators. The first problem relates to the correction of phase error in long-term

temperature forecasts. The second problem involves the task of using correlated ob-

served and proxy signals to update each other to improve forecasting accuracy. The

third problem relates to the use of deep learning in the problem of predicting the

future value of near oscillators. The fourth problem relates to the discovery of new,

finer scale oscillation signals using Representation Learning based Dimensionality

Reduction techniques. Together, our proposed solutions enable the use of inference

and learning for data-driven long-range weather forecasting using context from the

global climate system.
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Chapter 1

Introduction

Long-range weather forecasts are applicable in many different areas of research and

planning, ranging from estimating the long-term likelihoods of droughts and floods

to designing the energy grid to estimating long-term oil and gas demand [30]. It is

an important problem to be researched if we want to be able to make infrastructure

changes to deal with the future effects of climate change.

The problem of long-range weather forecasting, however, is well-known to be dif-

ficult, as many meteorologists believe that weather can only be predicted at long-

horizons with very low accuracy and that the predictions should be considered un-

reliable [31]. There a couple of reasons for this. Most weather forecasts are from

numerical weather prediction models [31]. These aim to model dynamical equations

and simulate them from a set of initial conditions [29]. Errors in initial conditions

grow exponentially and contribute to the overall loss of predictability [31]. Fur-

ther, numerical models must often approximate the governing equations so that key

elements of the dynamics are either approximated or parameterized.

A consequence is that data-driven techniques remain important. Whether used for

data assimilation, calibration, post-processing model outputs, e.g. model output

statistics, or using data to derive data-driven models, e.g. in hurricane prediction,

they are often required to “make models work.”

Data-driven models are not known by themselves to have long-range predictability.
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Indeed, nowcasting research indicates that even at intermediate horizons (e.g. a

few hours for some problems) numerical prediction may be better. Yet, the costs of

such numerical prediction are high, and there is a fundamental curiosity of how far

a data-driven approach can be taken.

Work in the development of Graphical models to incorporate context from multiple

sources, the emergence of deep learning algorithms to model nonlinearities, and

concomitant approaches for dimensionality reduction give new impetus to a data-

driven framework that is the subject of this thesis. Many successes have been

presented that lead us back to an examination of just what data science can do.

Our thesis addresses a few key problems to improve the performance of data-driven

approaches.

A key difficulty in long-range prediction is evident when one observes that signals

(e.g. temperature) have both oscillation and trend. As the forecast error grows and

compounds, the errors no longer are restricted in amplitude but accumulate in timing

(or “phase error”). This is a key reason for the long-term loss of predictability [34].

Our idea to resolve this issue performs phase correction using climate indicators,

which we interpret as oscillators providing synchronization mechanisms. The phase

that we are referring to in this case is referred to as the phase of the analytic signal,

which is found using the Hilbert Transform, which is a signal that is made up of

the original signal as its real part and its Hilbert transform as the imaginary part.

When we discuss the phase of a signal going forward, we are specifically referring to

the phase of the analytic signal.

Dimensionality emerges as a second key difficulty. High dimensionality is often an

issue in numerical model fields, but low-dimensionality is typical when using in-

dividual sensor data alone. Inferences often demand additional constraints, which

we posit observing system networks and global context can deliver, short of using

numerical models themselves. Thus, the second idea this thesis explores is to explic-

itly capture global context with a spatial network model using a bayesian graphical

model.

Important to our research direction is context obtained from climate indicators. Cli-
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matologists have observed naturally occurring oscillations in the Earth’s oceans and

atmosphere over different chronological periods and geographical scales. The ob-

served oscillations are then represented as one-dimensional signals by the National

Oceanic and Atmospheric Administration, which are standardized values that rep-

resent the phase of each of these natural oscillators, or more clearly, where these

oscillators are in their natural cycles at any moment. The data is calculated using

various techniques, but most methods use some kind of proxy measurements for the

phenomena such as averages of sea surface temperature or air pressure in different

areas [25]. Some of these oscillation signals (indices) include the El-Niño Southern

Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation

(NAO), and Arctic Oscillation (AO), as well as others to be mentioned later such

as the East Atlantic Pattern.

A key hypothesis in this thesis is that climate indicators provide context for local

prediction, the context, taking the form of a predictive model. The model changes

from region to region. Nevertheless, together, indicators provide sufficient climate

state context to constrain local predictions to an effective degree. The use of oscilla-

tions for long-term weather predictions are well-established in the relevant scientific

literature [31]. Our results validate this hypothesis, but additionally, their role in

phase correction, which has not hitherto been reported is shown.

Throughout this MEng Thesis, we will be presenting three separate items of analysis

as three separate, self-contained chapters. We will discuss the synergies of the

chapters at the end; as well as our ideas on how they can be best used together

to improve long-term weather forecasts. We will show that long-term forecasts

cannot be done using local data alone, and context is necessary to reduce the error

due to a lack of information. The first part of this context is time, which global

oscillators provide. The second part of this is space, which graphical models provide.

Subsequently, we focus on deriving new oscillators as that will reduce the preceding

two sources of error.

The three chapters focus on the following topics: (1) reducing the phase error and

exploding error of long-term forecasts through phase correction; (2) using oscilla-

tors and site-models to improve predictions from context; and (3) using SST grids
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to derive new explanatory “oscillators” for better context, as well as a method for

deriving new oscillators borrowing from representation learning, a method that can

be used to try to understand the underlying distributions of data using neural net-

works. Throughout this chapter, we will discuss the problem statements for each of

these inquiries, and the data sources we use.

1.1 Problems Solved

1.1.1 Phase Correction

Why are we so interested in these oscillation indices that we just discussed? In other

related work on long-range weather forecasting, we have found that the phases of cli-

mate oscillation signals can be nonlinearly composed, with almost perfect precision

(≈ 0.1◦ phase error), into the phase of daily temperature signals in different locations

in Bangladesh [23]. We have also observed similar results with New England tem-

perature signals. We believe that this will be the case with worldwide temperature

signals given that we have already observed this with two different locations across

the world with datasets given to us by Lincoln Laboratory. To be sure, our initial

effort only showed that if we knew the phases of proxies (climate index timeseries),

we can predict the phase of a quantity of interest, nearly perfectly. This led us to

believe that we could potentially predict future phases of the signal and reconstruct

the timeseries that exhibit phase errors.

Thus, here, we will demonstrate the usefulness in using phase-correction techniques

in the prediction of long-range weather. We will show that the phase of the analytic

signals of global oscillators, found using the Hilbert Transform, can be used to

correct for the phase, or more clearly, almost entirely reduce the “phase error,” in

long-term daily temperature prediction. We introduce a method for automatically

correcting much of the phase error of a predicted temperature signal. This method

is expanded on in Chapter 2. We also run a sample problem in other (extreme)

statistics given to us by MIT Lincoln Laboratory, testing the likelihood that it will

be too hot to work in Bangladesh.
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We conclude there that much of long-range forecasting error is related to “phase

error,” and its correction provides for a much improved skill.

1.1.2 Global Prediction

It is not uncommon in local temperature forecasting to use nearby locations to help

predict the temperature in an individual location; however, there is little to no

research on developing explicit graphical inference models to exploit the spatiotem-

poral relationships between sites to aid in correction. We will be borrowing from

graphical inference towards developing a model for spatial weather correction.

We will use the information present in the temperature and precipitation patterns of

different temperature signals in different locations to provide information about the

climatological relationships between different locations. We will then utilize infor-

mation about these relationships to correct for the future predictions of temperature

and prediction in some target location given future predictions of temperature and

prediction in locations near that target location. Finally, we relate this to a Bayesian

framework for accounting for the spatio-temporal relationships among sites. We con-

clude that the use of context from a spatial network improves predictive skill.

1.1.3 Oscillation Forecasting

Global social and environmental systems are dependent on the ability to forecast

large-scale climate variability, which are related to how well we can predict climate

indicators such as [4].

With respect to short-term forecasting of ENSO events and indices, dynamical (at-

mosphere–ocean coupled) models which use physical equations of the ocean and

atmosphere are often used and it has seemed that over time, dynamical models

have had better performance than statistically-based models. This is likely due to

the spatial complexities and nonlinear characteristics in forecasting ENSO from the

ocean and atmosphere [7]. However, issues lie with numerical models’ availability

due to computational cost and complexity [7].
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Although ENSO forecasts from these atmosphere–ocean coupled models generally

outperform current statistical models, state-of-the-art dynamical forecast systems

do not provide a skilful prediction of ENSO and for other oscillations as well with

lead times longer than one year [4, 3, 1]. ENSO has similar characteristics to other

oscillations in terms of how it’s measured [25], and in terms of its dynamics. We

therefore evaluate oscillation forecasting literature as a whole as we have identified

about ten oscillators that are useful in forecasting temperature [23].

This has led to the development of deep learning approaches towards resolving these

issues with dynamical atmosphere–ocean coupled models. Some of these approaches

are as follows: Convolutional Neural Nets have seen success in the fields of Tropical

Cyclone Detection when taking in pressure and temperature gridded reanalysis data,

which inspired our initial experiments on whether these grids, or the oscillation sig-

nals, can be used for accurate precipitation forecasting [2, 5]. Convolutional Neural

Nets have also seen success in the problem of forecasting oscillations themselves us-

ing time-lagged Sea Surface Temperature (SST), Heat Content (HC) and/or Surface

Pressure gridded data in the case of the North Atlantic Oscillation (NAO), ENSO

and the Madden-Julian Oscillation [4, 3, 1, 6].

We also experimented with the Long-Short Term Memory (LSTM) model, which

is a Recurrent Neural Network with gradient-squashing properties, that typically

perform better on time-series data due to their recurrent properties (which take

advantage of sequential properties) [16]. Long-Short Term Memory models have

seen success in many other domains with time series forecasting [16]. The LSTM

has been used most notably in [3], which uses a Convolutional LSTM [24] approach

on the lagged NAO index signal to capture temporal dependencies in the dataset

[3]. A Convolutional LSTM uses convolutional layers rather than fully connected

layers in an LSTM to fully express the spatiotemporal relationships present in the

data [24].

Simply, we wish to predict a vector of future values of some oscillation over time from

grids of lagged Sea Surface Temperature, Heat Content and Pressure grid data. This

has been done using deep learning approaches (in [4, 3, 1, 6] as just discussed), and

we will discuss our proposed improvements to these approaches in Section (4.3.1).
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This work won’t have its own chapter but will be part of the discussion determining

the usefulness of derived SST grid embeddings.

1.1.4 Oscillation Discovery

The question we then examine is whether ML/statistical techniques can discover

the known oscillations that we have observed in climate research. The motivation of

course is that if known oscillators can be found in a kind-of “hindcast” framework,

then other oscillators that one might computationally find could be significant new

discoveries. They are useful in their own right, but additionally, may serve either as

a significant or useful part of an ensemble of clocks synchronizing long-range forecast

phases.

We hypothesize that there may be significantly more oscillation patterns that are

predictive of climate state yet to be discovered and that state of the art machine

learning tasks deployed correctly can help us identify these. This finding could

potentially have significant consequences for our understanding of what drives long-

term weather patterns from an atmospheric sciences perspective.

Most of the literature that we will refer to with respect to Oscillation Discovery are

within the fields of Dimensionality Reduction and Representation Learning. This

is the due to the lack of research surrounding the subject, but we will show the

parallels between the oscillation discovery problem and the classic representation

learning/dimensionality reduction problem in Chapter 4. We will not be going over

fully unsupervised approaches as they do not factor into our eventual approach.

We will be focusing on semi-supervised approaches as mentioned in [13, 14, 17].

We observe the following successes in using representation learning in a structured

manner towards deriving the underlying distributions:

• Representation learning has seen success in building word embeddings to ef-

fectively represent words in lower dimensional spaces from the original bag-of-

words representations using both traditional downstream tasks and transfer

learning tasks [20, 21, 22].
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• Representation learning has also seen success in many image recognition and

segmentation tasks [18, 19].

These successes are due to the ability of representation learning, and more specifi-

cally deep autoencoders, to identify useful underlying data-generating distributions

[17, 13].

Originally we formulated the problem as follows: Given a set of n uniformly spatially

distributed historical weather (temperature/precipitation) signals with T time ob-

servations, we have a matrix of observation vectors, Y ∈ RT×n, we want to identify

a set of K << n vectors, such that these signals are best representative of the phase

variables of the oscillations in the data. We additionally have a set of historical

climate model grids SST, HC and pressure grids with T observations as well, let’s

consider each grid to be M ×N , we can denote this dataset by X ∈ RT×M×N .

We will show that we can also formulate this problem as a Dimensionality Reduc-

tion/ Representation Learning problem of the form that we wish to learn some fixed

vector of size K, v̂t ∈ RK for each time step of the following form, with some loss

function to be minimized, L, where each row in v̂ ∈ RT×K represents one of K

signals over time steps 1 to T :

v̂ = [v̂t]
T
t=1 = f̂(X lagged), where f̂ = arg min

f
L[g(f(X lagged)), Y ]

Where X lagged is a lagged form of the signal X with lag of l and memory of s i.e.

where X lagged
t = [Xτ ]

t−l
τ=t−l−s. Therefore, this problem takes on the form of trying to

learn some representation learnable by some function f : RT×l×M×N 7→ RT×K in a

semi-supervised manner such that we can learn some other function g : RT×K 7→

RT×n that can best learn Y , our uniformly spatially distributed historical weather

signals. This would be consider semi-supervised because we have a signal for which

we want the output to best represent the distribution that’s driving the fed-in input

and output, without feeding in the exact distribution data that we want to learn,

though.

Due to data constraints, we run experiments using the formulation that the signal
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that we wish to predict, Y , is no longer a matrix of observation vectors, but a matrix

of the input signal at time t, to be further elaborated on in Chapter 4, but where

our function g takes on the form of g : RT×K 7→ RT×L×M×N , where L takes on the

value of 1 if just trying to predict a single time step and L > 1 if trying to predict

more than one time step outwards. This approach provides us with a formulation

towards using SST datasets to aid us in identifying important features in climate

signals.

In summary, in chapter 4, we developed and applied techniques as we just discussed

towards identifying these targeted underlying latent distributions that could help

in identifying temperature and precipitation in certain regions as well as help in

predicting oscillation values. We elaborate further in Chapter 4.
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Chapter 2

Phase Correction

2.1 Introduction

When forecasting time-series, researchers often use data from the past to predict

future values. This is done recursively such that, when extended well into the future,

predictions are made with a memory comprising of previously predicted values, as

those are, at the time, our history of values.

Errors compound in this process and for signals that are expected to have growth,

decay or cycles, such as a temperature timeseries, phase errors form. By phase

errors, we mean that features, such as the peak or point of high gradient, lags or

leads the actual data. For example, in Figure 2.1, we show what happens when a

recursively forecasted timeseries model is applied; and the phase error is evident.

A large part of the forecast error is phase error, as one can see that, when there

are sharp temperature increases or declines, even a small amount of phase error can

cause a huge error between the predicted and actual values.

One could correct errors merely by viewing them as amplitude errors, however, this

is a very nonlinear optimization problem. A small phase error produces a huge

amplitude error. If one can directly address phase error, the overall improvements

could be faster, better or easier. Simply ”shifting” the signal may be much easier.
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Irrespectively, correcting phase errors is easy to see as important, but known meth-

ods do not appear to do so effectively. Some work in this area can be found in

[23]1, where the researchers demonstrate the importance of phase errors in weather

forecasts and develop joint phase-amplitude correction models.

In spirit, this chapter pursues a similar approach. We will perform an initial time-

series prediction for a long time-range, then extract a feature that is relatively insen-

sitive to amplitude fluctuations. We perform this research by extracting the phase

of the analytic signal associated with the predicted time series. We then find a way

to correct the local phase feature, which is a tractable problem, in contrast to simul-

taneously correcting instantaneous amplitude and instantaneous phase errors. The

corrected and initially predicted Hilbert phase features also yield a time-correction

of the initial forecast that is easy to estimate using correspondence between features,

which we do using Time-domain warping. The above sequence of steps are novel and

lead to a new algorithm that factors the signal into amplitude and instantaneous

phase.

The models to correct the instantaneous phase from which the retardation or ad-

vancement in time of the predicted signal can be estimated are based on using the

“clocks” that large-scale climate indicators inherently contain. Using the instanta-

neous phases as an ensemble of climate indices together with the observed phases

from the past of the signal under consideration, a machine can be programmed to

estimate what the future Hilbert phases must be.

This breakthrough suggests that climate indicators can act as synchronizing clocks

over long time ranges. The approach we present here naturally recovers seasonal

cycles without any particular knowledge of them. Although doing so might seem

moot, what is not is that the methodology is applicable to other cyclical variability

where time does not provide a natural synchronizing mechanism.

In summary, we aim to use the phase of the analytic signals, found using the Hilbert

Transform of the global oscillation indices described in Chapter 1 to phase correct

our temperature forecasts 10 years out; see Chapter 1 for more detail on oscillation

1see http://stics.mit.edu
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indices. The remainder of this chapter details our approach.

2.2 Related Work

For the most part, weather predictions today are formed using numerical weather

prediction (NWP) methods. These approaches try to simulate the physical equations

that define weather. The issues with these approaches are two-fold: the accuracies

of these approaches are highly sensitive to initial conditions; and with demands

for higher resolution forecasts to improve accuracy, there exists a tradeoff between

computational demands for NWP methods and higher resolution forecasts, making

many advances the function of computational advances [28, 29]. Following this, re-

searchers have focused on the problem of weather prediction as a machine learning

problem as well and not just a numerical simulation problem. In [29], convolutional

approaches are used to improve the forecasting of precipitation up to 8 hours in

advance. Other papers have used Convolutional Neural Network (CNN) and Long-

Short Term Memory Network (LSTM) approaches for the long-term prediction of

oscillation indices such as [3, 4, 1, 6]. Data-driven approaches are often sought

because they capture elements of model error that are difficult to eliminate in nu-

merical weather prediction models, due to their reliance on physics; however, phase

correction can also be used as a feedback approach for phase error in those models.

There is significantly less published work on the prediction of temperature out fur-

ther than one year versus short and medium-term temperature prediction due to the

previously discussed relative difficulties of the problem. There is also little research

on the topic of the phase correction of signals.

2.3 The Approach

We will be adopting the following notation: Let T ∈ Z+ be the time steps and

y ∈ RT be the discrete-time temperature signal, xi ∈ RT be the oscillation signal

for each oscillation index i. Let H : RT 7→ RT be the Hilbert Transform. Let l and

s be the associated prediction lead time and history used with a model.
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2.3.1 Nominal Forecast Model (fθ)

The nominal temperature prediction model follows prior work [23], and is based on

an ensemble auto-regression approach. Adopting the notation currently used in this

paper, we use a tree bagging regressor model [27] with 7 ensemble trees that in order

to predict the temperature ŷ[n+ l] at time n+ l takes in ~Θn as input, where

~Θn = [Θ[n− s] . . .Θ[n]] , (2.1)

incoporates memory to the past s days and,

Θ[n] =

y[n], if measured

ŷ[n], otherwise

(2.2)

Or in words, the temperature signal from times n − s up until n, consisting of

initially measured then predicted values, once there are no more measured values.

In summary, we have the following model:

ŷ[n+ l] = fθ(~Θn; ~α) (2.3)

Therefore, when testing, the first l samples use only observed signals as input, but

then ŷ[·] is used as a variable and so forth, making it a recurrent model. We notice

in Figure 2.1 (and in [23]), that such models start to develop phase lags as we get

further in time as the errors propagate, which of course is relevant when performing

long-range weather forecasting. We can see this in Figure 2.1, as the actual values

in blue start to lag the predicted values in green. This model can be shown as fθ in

Figure 2.2.

2.3.2 Phase Prediction (fH,l)

This task involves predicting the phase of the analytic signal found using the Hilbert

Transform, which we will refer to as the “Hilbert phase,” of a temperature signal

l years into the future at some location using global oscillation signals as input.
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(a) Khulna 10-year forecast of daily temperature

(b) Rangpur 10-year forecast of daily temperature maxima.

Figure 2.1: Data-Driven temperature forecasts (in red) will lag behind truth (in
gray) at longer forecast lead times as a manifestation of nonlinear error growth.

Once again, adopting the notation as described above, we will let y ∈ RT be the

temperature signal, xi ∈ RT be the oscillation signal for each oscillation i. Let

H : RT 7→ RT be the Hilbert Transform. Let l and s be the associated lag and

history of the model, where the history is how far back we retain information from

the signal when training i.e. if we’re trying to predict time n+ l, we would use the

times n − s up until n. We will denote the Hilbert phase feature of the measured

signal to be:

h[n] = ∠H(y)[n] (2.4)
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To predict the phase of the analytic signal for a temperature signal at a time n+ l,

which we will denote as ĥ[n + l], we use the following as features: the observed

phases of the analytic signal found from the Hilbert transform for that temperature

signal from times n− s up until n, or ~hn, with

~hn = [h[n− s] . . . h[n]] (2.5)

as well as the phases of the analytic signal found by the Hilbert transform for the

global oscillation signals at the same lagged times, which we will denote as ~cn with

~cn = [o1[n− s] . . . oO[n− s] . . . o1[n] . . . oO[n]]

where O is the number of oscillators and oj[n] = ∠H(xj)[n] is the value of the phase

of the oscillator index j at index n. In summary, we have:

ĥ[n+ l] = fH,l(~hn,~cn; ~β) (2.6)

Then we run the model to predict the phase feature for n ∈ [0, 364] and l from 0 to

3285 every 365 values, which gives a 10 year forecast of the phase with 10 different

models. This, of course, can be easily adjusted to more or fewer years by changing

the l values used. We then use a gradient boosting tree model to represent each fH,l

for each l, which can capture the strong nonlinearities present in the data while also

being regularized [27]. We train a separate model for each year of lead time (we use

10 years), we then use each model for each year of predictions. This model can be

shown as fH,l in Figure 2.2.

We will also denote the phase feature (found using the Hilbert Transform) of the

nominal forecast as:

h′[n] = ∠H(ŷ)[n] (2.7)

The difference between ĥ and h′, for clarity, is as follows: ĥ represents the predicted

Hilbert phase signal of the temperature signal; while h′ represents the Hilbert phase

of the predicted signal. The latter is the signal containing the phase lag, while the

former is the predicted signal meant to correct it.
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2.3.3 Time-Lag Correction Model (f3)

We can see in Figure 2.5 that the phase correction model in (2.1) can predict a

phase from 10 years out using global oscillation data (the red line) that seems to

not be phase shifted to the degree that the model in (2.2) seems to be (the blue

line) relative to the actual values in green. We hope to be able to learn from this

towards generating a phase-corrected temperature signal, ŷPC.

The Approach: DTW

We use dynamic time warping to identify the time shift for our temperature signal

and we find the matching π∗ that minimizes the following equation:

π∗ = arg min
π

√√√√ ∑
(i,j)∈π

[
ĥ[i]− h′[j]

]2

+ λ
∑

(i,j)∈π

[i− j]2

s.t. |i− j| < γ1, |ĥ[i]− h′[j]| < γ2, i ≤ j (2.8)

Therefore, this matching seeks to find the most similar pairing, while using λ to

regularize for how far the indices are from one another and using γ1 and γ2 to

restrict how far matched points can be from another and how far in value points

can be from one another, respectively. We then use this matching to update our

predicted temperature signal, ŷ. Therefore, we get:

ŷPC = ŷπ∗

And we only use predicted quantities to obtain the signal.
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Figure 2.2: Provides a flow diagram of the model structure relating the preceding
sections.

2.4 Examples

2.4.1 Nominal Forecasting Model (fθ)

The bulk of the results for this section can be seen in confirming the phase lag in

Figure 2.1, when applying the model to Rangpur and Khulna, Bangladesh, respec-

tively.

2.4.2 Phase Prediction (fH,l)

The results can be seen in Figure 2.4 for Khulna and Rangpur.

2.4.3 Time-Lag Correction Model (f3)

We choose λ = .07, γ1 = 365 and γ2 = .2. We chose λ and γ2 through experi-

mentation and observation. We chose γ1 as a value of 365 ensures obvious correct

matching with a phase lag that doesn’t exceed one year after 10 years. See Figure

2.5 to observe the effects of phase correction. When testing an approach where we

Page 24



MEng Thesis Alexander Grossman

Figure 2.3: The instantaneous phase of the of the analytic temperature signals
(forecast-red and true-gray) also contain relative time lag. We discover that simple
regression machines can correct long range Hilbert phase errors, where we use the
Hilbert phase to denote the phase of the analytic signal.

Method MAE (µ, σ)
Phase Correction (PC) (2.207, 1.421)

No PC (3.626, 1.919)

Table 2.1: Khulna Errors (in Kelvin) when trained through 2005 over 500 Splits of
10 years starting from from random dates between 2006 and 2009.

train the model through 2006, then randomly sample 250 starting points for the

model within 2006-2009 and start our forecast from there, we yield Figure 2.6 where

we see that the relative error is reduced as our forecast moves outward. This method

also yields the results in Khulna in Table 2.4.3.

In cross-validation over a larger time frame, which should be considered more valid,

we still see a reduction of approximately 20-25% of the error. As can be seen in

Table 2.2.

Method MAE (µ, σ)
Phase Correction (PC) (2.097, 1.839)

No PC (2.706, 2.413)

Table 2.2: Khulna Errors (in Kelvin) Cross-Validated over 5 Splits from 1996-
Present
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(a) Khulna 10-year forecast of daily hilbert phase of temperature maxima

(b) Rangpur 10-year forecast of daily hilbert phase of temperature maxima.

Figure 2.4: Predicted ten-year corrections for the Hilbert-phase feature (green).
The predicted values match the true phase (gray) with no time-lag. The corrected
Hilbert-phase features and nominal temperature forecast. Hilbert-phase feature
analysis corrects temperature forecast phase errors.

2.5 Discussion

2.5.1 Extremes and bounds:

We also worked on the problem of testing “hot days,” or days that have a max

temperature beyond 95% of days. As visible in Figure 2.7, and from the large

reduction in mean square error (almost 60%!) we are able to improve significantly

the skillfulness of predicting extreme periods of heat.
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(a) Khulna phase corrected 10-year forecast of daily hilbert phase of tempera-
ture maxima

(b) Rangpur phase corrected 10-year forecast of daily temperature maxima.

Figure 2.5: To obtain this, we find the ideal ”path” from dynamically time warping
the Hilbert phase of the predicted temperature signal (Hilbert phase of output of
f2) onto the predicted Hilbert phase of the signal (output of f1). We then use this
path to transform the predicted temperature signal (output of f2) to get the output
of f3 above.

2.5.2 Site Network work

Now that we have forecasts for an individual location, we can once again use a site

network model previously developed to correct for these temperatures to an even

greater degree by using the predictions of surrounding locations. This site network

will be fully elaborated on in Chapter 3.
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Method MAE (µ, σ)
Phase Correction (PC) (2.133, 1.778)

No PC (2.774, 2.469)

Table 2.3: Rangpur Errors (in Kelvin) Cross-Validated over 5 Splits from 1996-
Present

Figure 2.6: Khulna Error Over Time, Forecast Lead Time is in Months

2.5.3 ENSO prediction:

We tried to apply this to the actual signals of oscillators (such as ENSO) as well and

of course, excluding itself from the training set of oscillators as a result. However,

the model didn’t seem to perform as well in the setting of monthly granularity, as

oscillation values are typically recorded on a monthly scale, rather than the daily

scale of temperature.

2.6 Conclusion

We have introduced a method for resolving phase error that can be applied to any

signal that is a function of time, including any temperature of interest at any location

worldwide. The results in Figure 2.6 seem to show that the phase error is a large

part of what makes long-range forecasting difficult, as the slope of the error (as
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(a) Khulna daily temperature maxima “hot days” forecast .

Figure 2.7: Hot days prediction over the past 10 years on Khulna. We can see that
the hot days forecast of the phase corrected model has much more usefulness 5-10
years down the line. Relative Mean Squared Errors above.

a function of lead time) noticeably decreases when applying our phase correction

techniques.

We believe that larger improvements are to come, as not all of the phase error has

been resolved, as well as the corrected signal having parts where it is excessively

“blocky,” as a result of the errors in dynamically time warping the signal. We do

believe that this is an informative study for the reduction of phase error in long-

term weather forecasting. We believe that an informative future project would be

the application of phase correction to NWP ensembles on medium and long range

forecasting problems, as well as exploring what portion of the deviations in those

ensembles lies with the “phase error.”
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Chapter 3

Global Correction

3.1 Introduction

This chapter develops a method using proximal context from neighborhoods of a

network of observing stations to improve temperature prediction at an individual

site. Specifically, we introduce a Gaussian Graphical Model [37] that is identified or

trained using spatial correlations of proxy data between stations to infer the marginal

posterior distributions (end expectations) of quantities of interest at a given site.

The correlations are not causal, but provide additional constraints. For example,

if this model was to be used over the whole of the United States and we had a

prediction such that some locations in interior states will be significantly colder

than locations in northeast states, then this model would look to either correct

the temperatures of the northeast states upwards or the interior states’ predictions

downward, depending on what all of the other locations around it point to as the

likely relationships and predictions in this context.

Referred to as a Graphical Model [37], the approach implements inference by message

passing between nodes. The messages are changes or updates that one node must

experience as other nodes are being constrained. Together, the messages between all

nodes equilibrates their posterior distributions. Graphical Models are well developed

and here we use Gaussian Graphical Models in particular [37]. We trained a Gaussian
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Graphical Model model that automatically weighs contextual corrections versus the

local predictions at a given site.

Throughout the rest of this chapter, we will further elaborate on how this method

works and show an example of it being applied on a dataset given to us by Lincoln

Laboratory regarding monthly temperatures in the New England region.

3.2 Data Processing

The data that we received from Lincoln Laboratory contained 10 different locations

and the monthly (daily) averages of the temperature and the monthly (daily) aver-

ages of rainfall and snowfall for each location from 1950-2018; where monthly (daily)

averages refers to the daily average value of the signal for each month. The data

was not completely “clean” so we first needed to clean it up. We used the Expec-

tation Maximization (EM) algorithm [32] to fill in the missing precipitation values

for each individual county separately, where precipitation refers to the sum of rain

and snow, where each is denoted by monthly average total inches. We found the

best results when rain and snow were combined for a single precipitation field. We

also found best results when the EM algorithm was used separately for each month

as there exist clear differences in the distribution of weather across different times

of the year, i.e. the natural distribution is multimodal.

3.2.1 Metric

Since the data is multivariate, we define a norm to compare two records (or vectors)

of the data. The distance between the individual locations is based on a Maha-

lanobis distance, where, in Q, x represents the location and t the time:

Qxt =

tempdiffxt

precipxt


d(i, j) =

1

T

T∑
t=1

(Qit −Qjt)
TCOV −1(Qit −Qjt) (3.1)
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COV is a 2x2 matrix that is a covariance matrix of Qit ∈ R2, 1 ≤ t ≤ T, 1 ≤ i ≤ L

with respect to itself. This is supposed to represent the covariances of the predictive

features with themselves across the datasets. We are using L to indicate the number

of locations in our system. We use T to represent the number of timesteps in our

training set.

We then use pairwise distances between sites to define a Kernel that establishes

the graph where whose edges are the distances the counties as nodes. We can then

perform message passing (Belief Propagation) to improve the accuracy of predic-

tions at the L sites. Note that, implicit in this approach is the interpretation of

the symmetric positive definite matrix, a kernel, emerging from pairwise distances,

as a high-dimensional Gaussian distribution, which is approximated by a sparse

Graphical model.

3.3 The Global Algorithm

We work on each indicator (Temp Diff and Precipitation) individually. This model

is to be for a certain time t and we will take our predictions for such a time t and

normalize them over the expected affinities between locations.

We have our input x ∈ RL×1 (e.g. temperature), which is our local prediction for

the time N in which we want to evaluate. We have our true values, fxt ∈ R1×1

for each time t and location x. Our local predictions f̂xt ∈ R1×1 for each time and

location, our locations, L, our kernel, Σ = J−1 ∈ RL×L where J is defined by

J = [d(i, j)]∀(i,j)∈L×L ∈ RL×L (3.2)

This gives us a kernel, Σ, such that locations with smaller distances from each other,

where distance is referred to as d(·, ·), will be highly correlated and vice versa.

µ = [µx]∀x∈L =
1

T

∑
t∈T

fxt (3.3)
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h− = Σ−1µ ∈ RL×1 (3.4)

We can then define our graphical model as

G = (J, δh−) (3.5)

Letting

δh− = h− h− (3.6)

Where

h = Σ−1x ∈ RL×1 (3.7)

and

x = [f̂xt∀x ∈ L] ∈ RL×1 (3.8)

δh− represents the “potential differences”. We can then run belief propagation

on the gram matrix J and the potential vector δh− to obtain δh+, which are the

normalized “potential differences” with respect to the global predictions. We can

see in Figure 3.1 what that looks like.

BP(J, δh−)⇒ δh+ ∈ RL×1 (3.9)

We then perform Belief Propagation [37], which is a method for computing the

marginal distribution of unobserved variable, conditional on observed variables, in a

graphical model through message passing. in this case we do to calculate an update

vector on our forecasts, through estimation of the marginal distributions on this

graphical model. We have to perform Loopy BP [37], to local convergence, which

doesn’t have an exact global solution, due to the cyclic nature of the graph.

ĥ = δh+ + h− (3.10)

x̂ = Σĥ ∈ RL×1 (3.11)

We now have obtained globally predicted values for each location x̂ that we adjusted

by our model from the locally predicted values x. We do this by learning an overar-
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Figure 3.1: A basic representation of what a model like when it goes through belief
propagation on a graphical level. This isn’t an exact representation of our model
from a nodal perspective but the edges represent the message passing structure that
our model takes on. Credits: Edited image from [36].

ching distribution using a “sum-product”-like algorithm from our observations and

our observed covariances which we essentially assume to be true.

The graphical model provides us with the insights on inference and is particularly

useful for high-dimensional problems. Under certain assumptions, the BP on a

Gaussian Graphical Model is equivalent to standard Linear-Gaussian Bayesian esti-

mation. The latter can be computationally simpler when the burdens of estimating

the information matrices are low. Given the cyclic nature of the grahical model, we
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would also have to use Loopy BP, which is an inexact approximation for BP.

Thus, for small networks, direct bayesian estimation can be performed for an exact

solution as a function of x. Both the solution that was just presented along with

the solution that we will present next are useful in different settings.

We simplified this mechanism to be able to optimize an output vector given our set

of predicted temperatures, x, as follows. We are interested in finding

x̂ = arg max
Y

P [Y |x] = arg max
Y

P [x|Y ]P [Y ] ∈ RL×1 (3.12)

Such that x̂ is the corrected temperatures of x ∈ RL×1, which are the inputs to the

correction, which is the predicted values of temperature for each location at some

timestep. We will use X and x interchangeably going forward in this chapter; using

X when doing algebra. We will also be using µ ∈ RL×1 as defined above to represent

the means of each locations’ values

P (Y |x) ∝ e(X−Y )T Σ−1
XX(X−Y )e(Y−µ)T Σ−1

Y Y (Y−µ) (3.13)

Which is saying that the likelihood function is equivalent to the likelihood of the

output Y given the mean values we have seen previously times the likelihood of the

output given the input values and their observed distributions.

Of course, when the derivative is zero is when the likelihood will have a stationary

point. We also know that since f(·) is a multivariate gaussian that we can take the

natural logarithm first and we will have an easier and equivalent function to set to

zero, giving us:

f(Y ) =
1

2
(X − Y )TΣ−1

XX(X − Y ) +
1

2
(Y − µ)TΣ−1

Y Y (Y − µ) (3.14)

df

dY
= 0 = −Σ−1

XX(X − Y ) + Σ−1
Y Y (Y − µ) (3.15)

Therefore,

Y = (Σ−1
XX + Σ−1

Y Y )−1[Σ−1
XXx+ Σ−1

Y Y µ] (3.16)
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We can now substitute our values that we defined before back in to give us a solution

for Y , plugging in ΣXX = J−1, as we approximated J above in the GGM. Please

note that ΣXX is not the covariance of X, but an alternate metric, based on the

kernel, has been chosen. We then define the (paramaterized) inverse covariance

matrix of the output to be Σ−1
Y Y = λI, which gives us a single parameter to optimize

over, λ, that represents the inverse of the variance for the predictions.

x̂ = Y = (J + λI)−1[Jx+ λIµ] (3.17)

Observing, our solution for x̂, we can see that when λ → 0, we get a solution of

x̂ that would be just predicting our input x. While if λ → ∞, then x̂ approaches

the mean values, since the inverse of the variance would now approach zero; this

provides us with a value of λ to optimize over, where are a larger value of λ shifts

the values towards the mean, µ. We can now easily see how shifting the value of λ

will achieve the effects of the graphical model by providing a normalization constant

for controlling how our forecasts will be normalized to what we’ve seen in the past,

while allowing us to optimize over the marginal distributions, exactly like we wanted

to do in the graphical model. Now, we can find the value of λ such that we maximize

the accuracy of our results on our set of training data. Given more data, we would

want to estimate λ and/or J as a function of time in order to account for temporal

differences across the spatial relationships.

In summary, the Gaussian Graphical Model can be constructed over a network-wide

Kernel defined from a metric on multivariate quantities. A simpler model is to

perform explicit Bayesian estimation, which we have done for each field separately.

3.4 Coupling with Local Prediction

To demonstrate usefulness, we use a simple xgboost [27] model (gradient boosting

tree) to predict a value (temp difference from the monthly mean, precipitation dif-

ference from the monthly mean), at time N , b time in the future at an individual

location. This model takes in |T |∗(k+1) values as input where T ∈ [N−b−T,N−b]
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as the timestep we wish to predict, N , is b months in the future and k is the number

of climate oscillators of interest, the additional value used for each time frame (since

we use k + 1 values) is the value of the signal itself that we wish to predict at each

time within T . We use mean squared error as our loss function. There are likely

better ways to preprocess the data but the purpose is to demonstrate the usefulness

of the global context provided by the oscillators and then the additional updates

from the site (global) model. Gradient boosting trees are a natural choice for prob-

lems using oscillators as inputs given their usefulnesses for different periods of the

year, as some oscillators have more importance in different areas in different seasons

than others, naturally, given that they are climate oscillators.

3.5 Results

First, we broke up the data into 7 year splits between 1948-2018. We tested on the

last 5 folds of the 10-fold cross-validation, training the local model and the global

parameters only up until the previous year. We then used the results over the splits

to generate Figure 3.2 below that best demonstrates the difference in errors when

using the global model.

3.6 Conclusion

This model has the goal of using the forecasts from the locations around a location,

along with the observed correlations and observations from these locations, to make

future updates towards “normalizing” these forecasts. We can see in our results, as

plotted in the Figure 3.2, that the model tends to reduce the error in our forecasts.

This approach would likely be even more effective over a larger site model with more

locations. We believe this would be more effective with more granular data as well,

which would also clarify the relationships among the sites.

We also believe the model could be much improved by adding a time component to

our Bayesian model. An Ensemble Kalman filter or Particle filter [33] are natural

Page 38



MEng Thesis Alexander Grossman

Figure 3.2: The “globally corrected” forecasts are teal and the local forecasts are
tan. This figure demonstrates the usefulness in the correction of the locations from
each other. This is trained and tested using a 12 month lag (b = 12) for temperature
prediction.

choices, however, our biggest limitation in training is the lack of data when using a

monthly time scale as we do in this problem.

Another approach could be to have the normalization constant and covariance ma-

trix that is seasonal or monthly. A linear approach could work in a limited data

setting with a one-hot vector under the form that would take time in as a 12-

dimensional one-hot; however, a system would need 12L2 weights to train if the

covariance matrix as a function of t, Σ
(t)
XX = ΣXX + β1(t), where β is the weights

matrix and 1
(t) represents the one-hot matrix of time. The issue thus still remains;

in our example of 10 locations and a few hundred samples then we are subject to

overfitting due to there being more weights than datapoints to represent this simple

problem; this makes it possible for the weights to memorize the data but not cap-

ture the underlying relationships, implying that we need daily data and/or a more

deparameterized problem formulation in order for this approach to be more reliable.
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Chapter 4

Oscillation Discovery and

Prediction

4.1 Introduction

In this chapter, we explore ways of improving the state-of-the-art convolutional

models [8] used in oscillation forecasting through the lens of data representation.

Furthermore, we aim to use insights from oscillation forecasting to help develop

models towards discovering new oscillations and vice versa. We hypothesize that

deep learning models can provide insights on large sets of simulation data for new

oscillator discoveries. We will further elaborate on the proposed models of choice

and why research has shown that these are appropriate in the following subsections.

We argue that if oscillations are the drivers behind observed or simulated tempera-

ture signals, then we can formulate a Representation Learning problem to identify

the latent subspaces driving long-term weather in individual regions. Represen-

tation learning has been used for time-lagged modeling [13], and offers substantial

advantages over Principal Component Analysis (PCA), and Kernel-PCA techniques.

Convolutional forms of representational learning appear to be particularly suited to

the gridded (here 2D) fields under study.

State of the art long-term oscillation forecasting models typically use SST, HC and
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surface pressure grid data [4, 3, 6]. Through the brief experiments in this chapter, we

aim to explore how SST grid data can be used for the understanding of oscillators.

In particular, we use the SST/pressure grids over time as input to an autoencoder

targeting a certain output. An advantage of this is to find latent oscillations that are

not immediately apparent in the gridded data itself as a function of the learned latent

autoencoder representation. This allows us to identify the “underlying distributions”

of long term temperature signal, providing a basis for an “oscillator index” similar

to indices with respect to specific global climate patterns [25].

The rest of this chapter discusses why a representation learning approach is a good

way to attempt to generate these oscillation indices, and the results that our ap-

proaches yield when attempting this problem.

4.2 Methods

The computational discovery of oscillators can lead to stable predictors for synchro-

nizing the observed signals across the earth. The discovery can be primed using

models or data itself, though the former lends itself much more easily to systematic

learning.

For this chapter, we retain our formulation framework from Chapter 1 such that

g(f(XLagged)) takes on the form of an Autoencoder. However, we have a large dif-

ference in how we use it here as we ran into cost constraints with Lincoln Laboratory

with respect to the spatially distributed temperature data. Therefore, in order to

run similar tests for identifying, or approximating, oscillators, we trained a model to

learn an underlying representation of the data-generating distribution of predicting

SST data from a lagged (or unlagged) version of itself. The function f in our work

will thus take on the form of a Convolutional encoder, while g will take on an inverse

convolutional decoder such that the internal layer will best represent the oscillators

of the data. The fundamental idea, to be sure, is to use representational learning to

learn the features that captures essential information to synchronize other observed

data. To that extent, the internal or latent features will themeselves function as
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oscillators.

In this chapter, we use three classes of auto- and lagged-encoders on Sea Surface

Temperature grids to develop insights into the prediction of oscillations. We will

demonstrate each of the experiments below along with the motivation for each. At

the end, we will show some surprising results. We use reanalysis grids of the surface

temperature from NOAA [25] that cover a 73 × 144 patch; we condense this to a

72× 144 patch for numerical ease. We will consider a grid at time t to be Xt going

forward.

4.2.1 Direct Autoencoder

The Direct Autoencoder [13] model that we use utilizes a similar but slightly more

complicated structure than what is shown in Figure 4.1. Similarly, this model takes

a 2d matrix as input and a 2d matrix as output, in this case, taking in the current

time SST grid, Xt, as both input and output, i.e. training f and g to optimize

||Xt − g(f(Xt))||22 with the goal of compressing it down to a k = 40-dimensional

representation, the output of f , for each time t that best represents the grid. This

is being explicitly learned via the downstream task of building this vector represen-

tation as an embedding layer for a convolutionally downstream task to learn this

vector that is being trained by the propagation of the losses from the upstream task

of re-learning the original SST grid from the information using an in identical, but

inverse, network. The network that we use for the downstream task consists of 4

convolutional layers, each of 5 filters and of filter sizes of 3 × 3, 5 × 5, 7 × 7, 5 × 5

in order. Each layer has a relu activation function along with max pooling, batch

normalization, gaussian noise and dropout layers. The upstream task has the same

layers in opposite orders, and the max pooling is inverted such that the same hy-

pothesis space used to encode the data is available to decode it; the only difference

with the upstreamed inverse is that the inverse has a final layer with 1 filter in order

to have a correctly formatted output, as we only have a single output channel.
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Figure 4.1: A generalization of the Direct Autoencoder model used.

4.2.2 Lagged Autoencoder

The Lagged Autoencoder takes on a similar structure to what we saw in the Direct

Autoencoder. The main difference is on the first input convolutional layer (also

consisting of the max pooling, batch normalization, gaussian noise and dropout

layers). Rather than having one of these layers, we have L of them. Then after that

layer (with a max pooling operation as well), the outputs of the layers are added

together and then fed into the model that we have in the direct autoencoder. The

difference here is that we have L 2D matrix inputs now. During training, when

trying to predict Xt as an output, we use X lagged = {Xt−L, ..., Xt−1} as inputs; or

more simply, it takes in the previous L SST grids ending with time step t−1 in order

to predict the SST grids at time step t. We optimize over ||Xt−g(f(X lagged))||22. This

optimization allows us to use previous information that accounts for the movements

of sea surface temperature to help differentiate these embeddings from the previous

embeddings, which don’t explicitly account for SST movement.

4.2.3 Skipgram Autoencoder

The Skipgram Autoencoder takes on a similar structure to what we saw in the

Lagged Autoencoder. The main difference is on the last output inverse convolu-

tional layer (also consisting of the max pooling, batch normalization, gaussian noise

and dropout layers). Rather than having one of these layers, we have M of them.
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Therefore, right before the last layer of the convolutional model, we have M different

layers, each with its own weights and each for a different 2D output. The difference

here is that we have M 2D matrix outputs now. During training, we now are trying

to predict Xt+1, ..., Xt+M as an output, we use X lagged = {Xt−L, ..., Xt−1} as inputs;

or more simply, it takes in the previous L SST grids ending with time step t − 1

in order to predict the following M SST grids starting with time step t + 1. We

optimize over
∑L

τ=1 ||Xt+τ − g(f(X lagged))t+τ ||22, or the sum of squares of the output

vector of size M .

This formulation allows us to similarly use previous information that accounts for

the movements of sea surface temperature to help differentiate our embeddings.

However; this type of model training is called skipgram training as we use surround-

ing values to build a representation for the current value and has become popular

when training word embeddings as it requires the knowledge of the intermediate

word in order to guess the next words [21, 20]. We think of this process similarly

but with respect to sea surface temperatures, as it must truly understand the grid

at time step t from the previous grids in order to be able to effectively predict the

future time steps after it, since we skip time step t in our model.

4.2.4 Results

We test how each of these encodings can do when trying to predict the ENSO index.

Since the ENSO is a monthly scale, we average our encodings for each month so that

we have embeddings on a monthly scale as well.

We needed some metric to determine which of these embeddings worked best. We

decided to use the explained variance when feeding only our embeddings into a

Gaussian Process (GP) Regressor to predict the ENSO values, to determine, on a

test set, how much of the variance of ENSO forecasts are explained when only having

these encodings as input. This gives us a measure of the embeddings’ usefulness in

an ENSO prediction setting. We use a GP model given that both our inputs and

outputs takes on the form of a gaussian, which makes it a natural approach for a

problem with limited data and non-negligible like this one.
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A GP Regressor is a nonparametric, bayesian approach to regression that tends to

work well on smaller datasets (which ours is since we converted it to monthly values).

Given a Gaussian Process Regression models ability to infer a similar distributional

structure (RBF kernel) over the outputs from the inputs, we chose to evaluate these

embeddings using the out-of-domain explained variance of each of these models;

when the smoothing factor of the gaussian kernel is optimized over the training

set. The training set is of course the same set in which the encoders that encode

the embeddings are trained. See [35] for more information on Gaussian Process

Regressors and why they’re useful in this context.

We then ran trained each of the above autoencoder formats on 100 epochs of training

with Adam on a training set consisting on the first 90% of samples. We then train a

Gaussian Process model on those encoding outputs on the same first 90% of samples.

We used a lag of 1 month and where α, which is the coefficient that determines

the smoothness of the Gaussian kernel that’s used for noise, was chosen through

cross-validation on the first 90%. We set the skipgram forward time in months to

be M = 6, and the lag time for the skipgram and lagged models to be L = 24; we

defined these parameters above. We use only the embedding generated at time t as

the input into the GP to predict the ENSO value at time t + 1. We see in Figure

4.2 the comparative results between the architectures.

4.2.5 Conclusions

From the figure, we can observe that that the Direct Autoencoder model can explain

60% of the variance one-month out and can still explain 30% of the variance a year

and a half out. This model is only trained on the SST grid itself, indicating the

impressive ability of an embedding to be able to capture so much information with

respect to the ENSO index, without any information to the ENSO index itself during

training, as the embedding is the only input into this model. It is surprising that

the Direct Autoencoder model appears to be the best given its lack of ability to

account for SST movement; however, it is also the only model to take in the grid as

input directly, so that may give future insights for further development.
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Figure 4.2: Explained variance by architecture. ”Mths” refers to the number of
lagged months. Explained Variance refers to the percentage of the variance of the
output explained by only the input embedding (percentage reduction of MMSE from
variance of Y).

In conclusion, we showed three different ways to predict the underlying embeddings

of Sea Surface Temperature grids that definitely contain information necessary to

predict oscillations and may contain unknown oscillators themselves.

4.3 Future Work

4.3.1 Oscillation Forecasting

We argue that the use of a convolutional learner for oscillation forecasting could

be improved through the use of residual blocks rather than the traditional convolu-

tional blocks used in [4]. A residual block is similar to a convolutional block with

relu activation function, but rather contains a skip connection as well as demon-

strated in Figure 4.3 [8]. We have seen in many research findings that residual

blocks provide CNNs with additional information as the addition of residual blocks

retains the fundamental network structure of our original model while also providing

skip connections to skip certain convolutional layers that may have filter sizes that

are not necessary towards learning. This makes it easy to see its potential use in

deep regresssion problems involving CNNs considering its’ flexible structure. We
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see in [9] that Residual connections tend to stabilize the results of deep regression

problems that naturally tend to be less stable due to the nature of “memorization”

involved because of the relative ratio of weights to data in these types of problems.

We propose that using residual networks could also lead to improvements to the

oscillation forecasting approaches seen in Nature and atmosphere [4, 3].

Figure 4.3: Resnet Block

Given that many of these CNN oscillation forecasting models use lagged gridded

data [4, 1, 6], or lagged versions of the signal itself [3], it seems natural that we

propose using a Convolutional LSTM as introduced by [24] as it takes advantage

of the spatial components of the grid take while also taking advantage of the time

components as seen in an LSTM [24]. We weren’t able to have the time or resources

to train one effectively in this work. We also propose additional transfer learning

[26], potentially on other oscillations, but the approach that we believe has the most

potential is as follows: We would replace the final output of each time step of the

LSTM with a new output set of layers, borrowing from the upsampling technique of

the CNN Regression Model introduced in [10]. We would give the model the task of

predicting SST from lagged SST, Heat Content and Pressure grids. This information

would provide context that would likely be useful when predicting oscillations. Since

transfer learning tasks have seen success with similar model structures and problems

in other fields as well as success with this same problem, we argue that additional
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transfer learning would help if focused on the correct task [26].

4.3.2 Oscillation Discovery

The Future Work is quite clear in this section given the data constraints that we had.

Given spatially distributed temperature signals, one would be able to perform the

complete experiment proposed in Chapter 1, while our arguments in Section (4.1)

would still hold with respect to its ability to bottleneck the desired information.

That would ultimately be an important source of transfer learning and additional

understanding in future work of this problem.

Also, continuing on our hypothesis in the preceding subsection, we also argue that

a model choice for the representation learning providing residual connections would

potentially enhance the features by essentially providing an adjustable hypothesis

space that exceeds the current hypothesis space of the model architectures. As

briefly mentioned in (4.1), our results that show that the direct autoencoder yields

better results may be due to a lack of LSTM structure when training the lagged

autoencoder and skipgram models. When using skipgram in [21], it wasn’t necessary

to use an LSTM to yield good results; however, give the size of the grids used, it

may be necessary in this problem to yield better results than the direct autoencoder

model.
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Chapter 5

Conclusion

The first two problems solved in this work come together naturally. The first problem

focuses on time-synchronization using phase variables derived from analytic signals.

A key contribution we’ve made is to use the phase features of global indices, in-

terpreted as oscillators, to provide a synchronization mechanism for correcting the

phase of the temperature forecasts. This was successful, leading to improvements

even when we considered “extreme” statistics of the temperature signals. The sec-

ond problem focuses on spatial-equilibration between sites that looks at the relative

correlations of primary and proxy variables; this is thus an amplitude correction

model. Both contributions adapt and recompose the forecast signal. Time and

space corrections can be applied as a post-processing step to any nominal forecast-

ing model that is localized in one or both of these dimensions. Thus, the proposed

approaches are general and not limited to long-range weather forecasting per se.

The follow on question for detecting oscillators from data or model simulations also

naturally emerges. Effectively synchronizing clocks of quantities of interest to latent

features are not just useful in their own right, but might lead to additional indicators

of climate dynamics. This was the subject of Chapter 4.

Looking forward to the future, we believe that the following areas can be expanded

on within this research with potential success. Adding a time-component to λ and

J within the site-correction model could have great benefits within site-prediction

networks on a daily or hourly scale. Adding more locations also should increase the
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site-correction models’ effectiveness given the models reliance on cross-correlations.

The application of phase correction to numerical weather simulation models [34] is

something that would be interesting to look at, as phase error is considered to be

a potentially large component of numerical weather prediction model errors. The

expansion of the work in Chapter 4 as it could be more complete given more time

and computational resources – as our resource precluded us from training the lagged

models for ideal periods of time – and there are endless tasks to experiment with

and evaluate given enough resources.

Applying these correction-techniques to precipitation forecasting would be inter-

esting as well; we were unable to develop a model accurate enough at long range

precipitation to be able to test our correction methods.
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