
Applying High Performance Computing to Early
Fusion Video Action Recognition

by

Matthew S. Hutchinson
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c○ 2020 Massachusetts Institute of Technology. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 12, 2020
Certified by. .

Charles E. Leiserson
Edwin Sibley Webster Professor of Computer Science and Engineering

Thesis Supervisor
May 12, 2020

Certified by. .
Vijay Gadepally

MIT Lincoln Laboratory Senior Scientist
Thesis Supervisor

May 12, 2020

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Applying High Performance Computing to Early Fusion Video

Action Recognition

by

Matthew S. Hutchinson

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Over the past few years, there has been significant interest in video action recognition
systems and models. However, direct comparison of accuracy and computational per-
formance results remain clouded by differing training environments, hardware speci-
fications, hyperparameters, pipelines, and inference methods. Additionally, the liter-
ature demonstrates a fixedness on late fusion approaches to audio-video multimodal
problems. This project provides a side-by-side comparison of several 2-Dimensional
Convolutional Neural Network (2D-CNN) video action recognition approaches and
investigates the effectiveness and efficiency of new audio-video early fusion, slicing,
and sampling methods. Model accuracy is evaluated using standard Top-1 and Top-5
metrics in addition to novel p-ROC metrics, and this project demonstrates the useful-
ness of the latter. Computational performance is measured via total training time and
training time per epoch on a variety of high-performance computing (HPC) training
configurations.

Thesis Supervisor: Charles E. Leiserson
Title: Edwin Sibley Webster Professor of Computer Science and Engineering

Thesis Supervisor: Vijay Gadepally
Title: MIT Lincoln Laboratory Senior Scientist

3

4

Acknowledgments

These are wild times, and I never expected my M.Eng. conclusion to be like this.

There are many people to thank for everything that has made this research and my

education possible even in these trying times.

I would first like to thank my parents, Scott and Lynn Hutchinson for everything

they have done to help me and sustain me. They were instrumental in helping push my

education forward through high school and onto MIT. While at MIT, they continued

to support me in many ways–financially, logistically, and emotionally.

Second, I would like to thank my supervisor, Dr. Vijay Gadepally. Dr. Gadepally

helped me find an interesting project and avenue of research. He has always been

helpful in refining problems, bouncing ideas around, and keeping me on track. I

appreciate how he finds time to meet with me even amid his busy schedule.

Third, I would like to thank my thesis advisor, Professor Charles Leiserson. Pro-

fessor Leiserson oversaw my research and allowed me conduct much of it through MIT

Lincoln Laboratory Supercomputing Center (LLSC) via the VI-A Program.

I would also like to thank everyone else who made this research and education

possible. The entire LLSC team helped answering my questions, providing awesome

computational resources, making the research process enjoyable, and letting me camp

out in their training room often. I will miss Wednesday afternoon tea. My friends also

helped me get through these five years. MIT is a tough place with seemingly endless

work, but it’s my friends that constantly found ways to make it fun. Additionally,

countless MIT professors, staff, and administrators made the MIT experience unfor-

gettable. I will wear my Brass Rat proud.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlim-
ited. This material is based upon work supported by the Under Secretary of Defense for
Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opin-
ions, findings, conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Under Secretary of Defense for
Research and Engineering.

5

6

Contents

1 Introduction 17

1.1 Video Action Recognition . 17

1.2 Modality Fusion . 19

1.3 High Performance Computing . 21

1.4 Training Pipeline . 22

1.5 Project Overview . 23

2 Background, Related Work, and Model Assessment 25

2.1 Action Recognition Datasets . 25

2.2 Machine Learning for Action Recognition 27

2.3 Moments in Time . 30

2.4 Model Assessment Techniques . 32

3 Comparison Study 37

3.1 Initial Comparison . 37

3.1.1 Experimental Design . 38

3.1.2 Accuracy Performance Results 39

3.1.3 Computational Performance Results 40

3.2 Expanded Comparison . 42

3.2.1 Experimental Design . 42

3.2.2 Accuracy Performance Results 43

3.2.3 Computational Performance Results 44

3.3 Discussion and Conclusions . 45

7

4 Exploration of Video Slicing and Sampling 47

4.1 Experimental Design . 48

4.2 Accuracy Performance Results . 51

4.3 Computational Performance Results 53

4.4 Discussion and Conclusions . 53

5 Experimentation with Early Fusion 55

5.1 Audio Representations . 55

5.2 Early Fusion Methods . 57

5.3 10-Class Experiment . 58

5.3.1 Experimental Design . 58

5.3.2 Accuracy Performance Results 60

5.3.3 Computational Performance Results 61

5.4 339-Class Experiment . 61

5.4.1 Experimental Design . 62

5.4.2 Accuracy Performance Results 64

5.4.3 Computational Performance Results 65

5.5 Discussion and Conclusions . 67

6 Conclusion 69

A Accuracy Performance Tables and Additional Figures 73

B Computational Performance Tables and Additional Figures 79

C Dataset Details 87

8

List of Figures

1-1 Example action recognition categories and video screenshots from the

Moments in Time dataset [54]. 18

1-2 Generic early fusion architecture (adapted from [68]). Multi-modal

features are extracted and fused prior to being used as input to a

supervised learner. 20

1-3 Generic late fusion architecture (adapted from [68]). Multi-modal fea-

tures are extracted and fed as inputs to separate supervised learned.

The outputs of those learners are fused and fed as inputs to another

supervised learner which typically consists of only a few dense layers

to do classification and end with softmax output. 20

1-4 Overview of the Training Pipeline. 22

2-1 Action Recognition Dataset Zoo. Two screenshots are taken from sep-

arate videos in each of the labeled datasets, giving a glimpse into the

quality and focus of each of each. 26

2-2 Four most common video action recognition approaches. Note that

these are simplified diagrams where icons for 2D-ConvNets, 3D-ConvNets,

dense classification networks, LSTM modules, and averaging/softmax

layers are used only as visual interpretation. Their actual design can

vary significantly. Similarly, the majority of action recognition ap-

proaches have 2-stream variants for RGB+Optical Flow. 29

9

2-3 Example p-ROC curve for a 15-class problem. Three model Top-𝐾

values are plotted (as well as a random chance line that represents an

uninformed guesser. 35

3-1 p-ROC curves for GPU-partition trained models. See Appendix A

Figure A-1 for p-ROC in the other training configurations. 39

3-2 Training time per epoch on three types of distributed training parti-

tions. Error bars indicate standard deviation. 40

3-3 Training time speedup curve for ResNet-50 backbone model. 41

3-4 p-ROC curve log-scaled with 𝑘/339 subtracted out for each value of 𝑘

to more easily show the peak 𝐽-statistic. 43

3-5 Training Time per Epoch across training configurations of 1, 2, 4, 8,

16, and 32 nodes where each node as 2 Volta V100 GPUs. 44

3-6 Plotting training time per epoch (in seconds) against p-ROC 𝐴𝑈𝐶𝑛𝑜𝑟𝑚

to show accuracy-computational performance trade-offs The best per-

forming models are in the bottom right: Inception-ResNet-v2, ResNet50,

MobileNet-v2, Xception, and DenseNet201. 45

4-1 Video ”cubes” are comprised of densely stacked frames. ”Slices” can be

taken (1) frame-wise by selecting a particular frame, (2) horizontally

by selecting a particular row of pixels across all frames, or (3) vertically

by selecting a particular column of pixels across all frames. 48

4-2 Examples of slice sampling techniques that can be applied along any

axis (slicing method) of the video cube. The left shows uniformly

sampling across the axis while the right shows preferentially sampling

the center of the axis using a Gaussian distribution. 49

10

4-3 Video slices are first passed through an ImageNet-pretrained VGG Fea-

ture Extractor which creates embedded feature vectors used as inputs

to a three layer network consisting of two 4096-unit fully connected

layers followed by a 10-unit fully connected layer that outputs softmax

predictions. The second version of the model includes two dropout

(𝑝 = 0.5) layers in between the fully connected layers. 50

4-4 Visualization of sampling distributions tested in this study. Here, they

are centered on 112 which is the center row/column on the video cube

when sliced horizontally or vertically. 51

4-5 p-ROC validation curves for slicing and sampling on the best perform-

ing architecture. With the frame slicing method, there was little to

no difference between sampling techniques. Horizontal slicing method

shows the most significant difference between sampling techniques. . . 52

4-6 Average training time per epoch (in minutes) for each slicing method

and sampling technique. Error bars indicate standard deviation across

epochs. Training times shown are using 2 NVIDIA Volta V100 GPUs

with PCIe connection. 54

5-1 The top diagram shows an example audio waveform with a sample

rate of 22050. The bottom diagram shows the transformation to a

Mel-Frequency Spectrogram with a log power scale, 128 mels, and a

maximum frequency of 8192 Hz. 56

5-2 Process of stitching early audio-video fusion between an RGB frame

and the log-mel spectrogram. The input to the ConvNet is a wider

3-channel image. 58

5-3 Process of stacking early audio-video fusion between an RGB frame

and the log-mel spectrogram. The input to the ConvNet is a 4-channel

image with the same pixel height and width as the original frame. . . 59

11

5-4 p-ROC curve for best and worst performing models using no fusion,

stitching fusion, and stacking fusion. "Best" and "Worst" in this figure

are referring only to the highest and lowest p-ROC 𝐴𝑈𝐶 values. . . . 60

5-5 10-Class Fusion Experiment Computational Performance Results when

training on 8 NVIDIA Volta 100 GPUs. Note that training time per

epoch is plotted on a log scale as horizontal and vertical slicing took

significantly longer than frame slicing. Results with Gaussian (𝜎 = 30)

sampling are analogous and the plot can be found in Appendix B, Table

B-1. 61

5-6 The Cross-v1 model architecture that utilizes vertical and horizontal

video slices. 63

5-7 The Cross-v2 model architecture that utilizes frame, vertical, and hor-

izontal video slices. 63

5-8 339-class experiment stitching fusion validation results. The colored

markers, as labeled in the legend to the right, indicate the various

stitching early fusion models. Grayed-out models dots respond to the

non-fusion baselines described in Chapter 3. 64

5-9 339-class experiment stacking fusion validation results. The colored

markers, as labeled in the legend to the right, indicate the various

stitching early fusion models. Grayed-out models dots respond to the

non-fusion baselines described in Chapter 3. 65

5-10 A comparison of stitching early fusion accuracy and computational

performance when trained on 64 Volta V100 GPUs (2 per node). The

colored markers, as labeled in the legend to the right, indicate the

various stitching early fusion models. Grayed-out models dots respond

to the non-fusion baselines described in Chapter 3. 66

12

5-11 A comparison of stacking early fusion accuracy and computational per-

formance when trained on 64 Volta V100 GPUs (2 per node). The col-

ored markers, as labeled in the legend to the right, indicate the various

stitching early fusion models. Grayed-out models dots respond to the

non-fusion baselines described in Chapter 3. 66

A-1 p-ROC curves for CPU partitions trained models. 73

B-1 10-Class Fusion Experiment Computational Performance Results (with

Gaussian 𝜎 = 30 sampling). Note that training time per epoch is

plotted on a log scale as horizontal and vertical slicing took significantly

longer than frame slicing. 83

13

14

List of Tables

1.1 MIT Supercloud TX-E1/GAIA Specifications (2019–spring 2020). [59] 21

2.1 A Brief History of Neural Network Architectures. 28

2.2 Moments in Time Challenge 2018 top-performing single model valida-

tion accuracies as described in optional report submissions by compe-

tition teams. 31

2.3 Moments in Time Challenge 2018 top-performing teams approaches as

described in optional report submissions by competition teams. 32

2.4 p-ROC curve statistics for the 15-class problem plotted in Figure 2-3. 34

3.1 Complexity of "Off-the-Shelf" C2D Model Backbones 38

3.2 Complexity of Models in Expanded Comparison Study 42

A.1 2D Model Comparison of Accuracy Performance. 74

A.2 Expanded Comparison - Accuracy Performance 75

A.3 Exploration of Video Slicing and Sampling: validation results each

slicing method (frame, horizontal, and vertical). 76

A.4 10-Class Early Fusion Study Validation Results. 77

A.5 339-Class Early Fusion Study Validation Results. 78

B.1 Video and audio parsing computational performance per class (minutes). 79

B.2 2D Model Comparison of Computational Performance. 80

B.3 Expanded Comparison - Computational Performance 81

B.4 Exploration of Video Slicing and Sampling: computational perfor-

mance results for each slicing method (frame, horizontal, and vertical). 82

15

B.5 10-Class Early Fusion Study Computational Performance Results. . . 84

B.6 339-Class Early Fusion Study Computational Performance Results (when

trained on 64 Volta V100 GPUs, 2 per node). Note that the last five

models in each category are trained as simple C2Ds but then used as

6-frame TSN models for validation video-level inference as described in

Chapter 5. Those models were trained for 65 epochs rather than 50 for

the other models which is why their total training times are generally

higher. 85

C.1 Moments in Time Dataset Statistics (at time of download). 87

C.2 Overview of Video Action Recognition Datasets. 88

C.3 Moments in Time Developers Validation Results [54]. 89

16

Chapter 1

Introduction

Over the last decade, advances in computing hardware and data availability have

yielded significant progress in machine learning and artificial intelligence [20]. For ex-

ample, applications such as object recognition in images have essentially reached, and

in some cases surpassed, the accuracy of human object recognition (e.g., 29 of 38 teams

in the 2017 ImageNet [15] Challenge achieving error rates <5%) [23]. However, other

applications such as the classification of actions in trimmed and untrimmed videos

remain a challenge due to the volume and complexity of analyzing video streams.

This project dived into the trimmed action recognition problem with two goals:

1. Presenting a comparison of existing approaches.

2. Testing novel early fusion methods.

Both aspects of the project were enabled by high performance computing (HPC)

resources and the availability of curated action recognition datasets.

1.1 Video Action Recognition

Action (or activity) recognition is the computer vision task of identifying what is

occurring in a video. Figure 1-1 displays several examples of video frames with their

corresponding action (verb) labels. An action recognition model takes a video as an

input and produces softmax probability predictions for the action class labels.

17

Figure 1-1: Example action recognition categories and video screenshots from the
Moments in Time dataset [54].

Early approaches to action recognition utilized Hidden Markov Models (HMM)

[92] and Dynamic Bayesian Networks (DBN) [91]. Later, Support Vector Machines

(SVM) [77] used visual bag-of-words with many hand-crafted spatial, temporal, and

spatio-temporal features: Histogram of Oriented Gradient (HOG), HOG3D [41],

Histogram of Optical Flow (HOF) [10], Motion Boundary Histogram (MBH) [14],

Speeded-Up Robust Features (SURF) [5], KLT Trajectories [51], SIFT Trajecto-

ries [71], Dense Trajectories (DT) [79], and Improved Dense Trajectories (iDT) [80].

However, since approximately 2014, Deep Neural Network (DNN) approaches have

eclipsed these traditional methods and yielded better accuracy results on a variety

of datasets. DNNs benefit from learning appropriate feature representations from

raw data rather than requiring carefully hand-crafted inputs. The successes of deep

learning in other computer vision problems such as image recognition, object detec-

tion, and scene segmentation, beg the question: can DNNs (and Deep Convolutional

Neural Networks in particular) follow a similar path with video?

In order to test action recognition approaches, large video datasets have been

collected, organized, and labeled. One such dataset is Moments in Time, a collec-

tion of approximately one million 3-second videos labeled by their actions [54]. The

18

Moments in Time dataset creators in collaboration with CVPR 2018 released the

Moments in Time Challenge which encouraged teams to develop models that yield

high Top-1 and Top-5 accuracies on the dataset. The top performing team produced

an ensemble model with a Top-1 accuracy of 38.64% and a Top-5 accuracy of 67.19%.

Clearly, there is significant room for improvement remaining in video action recog-

nition, particularly with the classification problem posed by the Moments in Time

dataset.

1.2 Modality Fusion

Action recognition is inherently a multi-modal problem with spatial, temporal, and

often auditory domain components. The spatial domain is commonly captured in a

visual Red-Green-Blue (RGB) modality. The temporal domain is commonly dealt

with relationing between spatial data or via video transformations such as to opti-

cal flow. Auditory domain information can be encoded in a raw (1D) form or via

transformations such as into a (2D) spectrogram.

DNN approaches to learning with multi-modal features can be generally catego-

rized as "early fusion" or "late fusion." In early fusion, multi-modal features are fused

prior to learning as shown in Figure 1-2. In late fusion, individual mode features are

learned in separate networks and then fused via an ensemble learner as shown in

Figure 1-3. Early fusion requires only a single session of learning while late fusion

requires two (one session for the individual mode features and one to ensemble).

In the video action recognition literature, essentially all best-performing current

models use late fusion rather than early fusion for several reasons. First, late fusion

benefits significantly from research and testing already completed on the individual

modality networks which can be pretrained on similar datasets. For example, a spatial

model which trains on video frames can be pretrained on images from ImageNet

[15]. Similarly, an audio model which trains on the video’s audio channels can be

pretrained on audio clips from AudioSet [22]. Pretraining can help these models

generalize beyond an individual dataset’s training data and can speed up training.

19

Figure 1-2: Generic early fusion architecture (adapted from [68]). Multi-modal fea-
tures are extracted and fused prior to being used as input to a supervised learner.

Figure 1-3: Generic late fusion architecture (adapted from [68]). Multi-modal features
are extracted and fed as inputs to separate supervised learned. The outputs of those
learners are fused and fed as inputs to another supervised learner which typically
consists of only a few dense layers to do classification and end with softmax output.

Second, data parsing, wrangling, and fusing necessary for early feature fusion on

large datasets is computationally costly. Without sufficient computational resources

for these data augmentation steps (often in the form of a distributed computing

system) or money to access one (such as Amazon Web Services), late fusion is more

appealing as it can often be done on smaller systems.

Third, it can be argued that late fusion research is more tried and true. With

early fusion, researchers must often take a "gamble" when designing new multi-modal

feature vectors with little to no guarantees of improved performance over late fusion

20

Table 1.1: MIT Supercloud TX-E1/GAIA Specifications (2019–spring 2020). [59]
Intel Xeon Intel Xeon AMD Intel Xeon Intel Xeon
E5-2650 E5-2683 Opteron E5-2680 G6-6248

Number of nodes 25 7 20 4 224
CPU cores/node 16 2 x 14 2 x 16 2 x 14 2 x 20

GPUs/node 0 0 0 2 or 4 2
GPU type N/A N/A N/A Volta V100 Volta V100
RAM (GB) 64 256 192 500 384

Local Disk (TB) 16 12 8 2 3.8

methods. Experimentation can be the only way of truly determining the effectiveness

of an early fusion approach. Meanwhile late fusion can take the best existing model

or models for each individual modality. Therefore, late fusing well-studied single-

modality models is the default that most action recognition research uses and this is

reflected in the Moments in Time Challenge 2018 results.

1.3 High Performance Computing

High performance computing (HPC) refers to employing aggregated computing power

to achieve performance not possible through normal workstation computing. HPC

was critical in this project because of the computational demands of working with

videos. Video data, consisting of dozens of frames and additional audio channels, is

orders of magnitude more data dense than image data. For example, ImageNet is

approximately 150 GB of raw data [65] while Moments in Time is 42 TB of data after

cropping to 224x224 frame size and parsing into NumPy [56] arrays.

Throughout this project, the HPC resources of TX-GREEN, TX-E1, and TX-

GAIA (Supercloud) via MIT Lincoln Laboratory were instrumental in speeding up

all aspects of the parse-wrangle-train-analyze pipeline. Parsing and wrangling were

easily parallelized by action class via a mapping function. Training and validation

were parallelized across compute nodes and/or GPUs via OpenMPI and Horovod [63].

An overview of the MIT Supercloud (TX-E1) infrastructure is provided in Table

1.1 and a detailed description can be found in [59].

21

Figure 1-4: Overview of the Training Pipeline.

1.4 Training Pipeline

The first phase of this project involved constructing a pipeline for working with video

data on the HPC systems described in section 1.3. Figure 1-4 describes the steps in

that parse-wrangle-train-analyze pipeline. Some prior, yet incomplete work had been

done on FFmpeg extraction of raw video frames by a previous LLSC intern, but the

bulk of the pipeline was created during this project.

Moments in Time dataset raw video frames (stored in .mp4, .gif, and other com-

mon video file formats) were extracted at 30 frames per second (fps) using FFM-

PEG and converted into three-channel (RGB) 224x224x3 pixel tensors and stored as

NumPy [56] arrays in HDF5 files (one per action class). Audio was parsed at both

sample rates of 37.9KHz and 15.2KHz, transformed into log-mel spectrograms with

224 mels and a max frequency of 8192 Hz, and saved as one-channel images. Further

audio parsing details can be found in section 5.1. Runtime statistics for parsing and

transforming the training and validation data can be found in Appendix B, Table

B.1. If those operations were performed serially on an Intel Xeon-e5 core, parsing the

videos would take over 55 days, but was reduced to less than one day by parallelizing

22

the job across 60 cores using MIT Supercloud HPC resources.

An optional wrangling stage occured when only particular aspects of the data

are required. This includes additional pre-processing (see Chapter 4 for examples).

Parsed/wrangled videos were then fed into a model which outputs softmax predictions

across the class options. Models were trained on a training set and evaluated on a

validation set.

1.5 Project Overview

At a high level, this project had two goals. The first was to present a comparison

of computational performance and accuracy of existing models using the Moments in

Time training and validation sets. The second was to attempt to approach or surpass

current performance and/or accuracy using novel features and architectures. The

project therefore involved (1) constructing a training pipeline for using the Moments

in Time dataset, (2) exploring feature engineering with early fusion of video and audio

modalities, (3) investigating video action recognition architectures and hyperparam-

eter selection, and (4) applying high performance computing methods to engineered

features and models.

Chapter 2 presents a background on action recognition datasets and machine

learning approaches. It also highlights research decisions made when designing these

studies including why 2D models are the centerpiece of this research and how the

action recognition approaches will be evaluated. Chapter 3 describes the compari-

son study implemented and conducted to baseline accuracy performance and com-

putational performance of some action recognition models. Chapter 4 describes the

slicing and sampling study implemented and conducted to investigate 2D spatial and

spatio-temporal features. Chapter 5 describes the early fusion study implemented

and conducted to investigate audio-video fusion using results obtained from the com-

parison study and the slicing and sampling study. Chapter 6 presents conclusions

from this project, both from the literature review and the experiments, as well as

recommendations for avenues to continue and expand upon this research.

23

24

Chapter 2

Background, Related Work, and

Model Assessment

This chapter presents a background on video datasets and machine learning ap-

proaches to the action recognition problem. It will then explain why the Moments

in Time dataset is used throughout these experiments and what model assessment

techniques are appropriate for adequately comparing accuracy performance and com-

putational performance.

2.1 Action Recognition Datasets

Datasets for video action recognition are defined by a set of qualities: source, pre-

processing, point-of-view, number of videos, length of each video, number of action

classes, classes per video (single-label or multi-label), annotation style, and purpose.

A myriad of datasets have been crafted and curated to span this spectrum of qualities.

The vast majority of these video datasets focus exclusively on human actions

for the obvious reason that human actions are extremely relevant to all aspects of

everyday life. Early datasets, KTH [62], Weizmann [6], GTEA [18], GTEA GAZE

[17], and GTEA GAZE+ [17], were created by research groups focused on daily human

activities. Spurred by the growth of online video, UCF101 [69] and HMDB51 [44],

with 13,000 and 7,000 videos, respectively, quickly became foundational benchmarks

25

Figure 2-1: Action Recognition Dataset Zoo. Two screenshots are taken from separate
videos in each of the labeled datasets, giving a glimpse into the quality and focus of
each of each.

26

in human action recognition. Thumos [36] and ActivityNet [29] had similar goals but

did not gain the same level of popularity in the literature.

While human actions and human activities continue to dominate the field of action

recognition datasets, slowly other purposes of these datasets emerged. Among them,

YouTube-8M [2] and Micro-Videos (MV) [55] focused on human and non-human

actions and visual entities. The Something-Something [24] dataset looks at low-level

action captions for intuitive physics and semantics.

Among the most current iterations of these datasets, only a few have the breadth

(action classes) and depth (videos per action class) that are comparable to ImageNet

and other object recognition datasets. Kinetics-600 [8] and VLOG [19] achieve this for

human actions and daily interactions. Moments in Time [54], which will be described

in further detail in section 2.3, also achieves this quality. For a more detailed timeline

of the creation of these datasets as well of information about dataset size and number

of classes, see Appendix C, Table C.2.

2.2 Machine Learning for Action Recognition

Deep CNNs for computer vision proved their worth in 2012 with the application of

AlexNet [43] to the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC).

Table 2.2 provides a timeline of major CNN architecture breakthroughs in computer

vision specifically emphasizing those useful in common action recognition approaches.

With these developments, action recognition model architectures can be broadly cat-

egorized into two groups: 2D approaches and 3D approaches.

2D action recognition models are categorized as 2D not because they ignore the

temporal domain aspect, but because they use 2-Dimensional convolutional kernels

generally in the form of 2D CNN model backbones. These approaches include tradi-

tional 2D Convolutional Neural Networks (C2D), Temporal Segment Networks (TSN)

[87], Long-term Recurrent Convolutional Neural Networks (LRCN) [16] sometimes

referred to as CNN+LSTMs, and Temporal Shift Modules (TSM) [49]. C2D carries

over directly from image recognition. A frame is extracted from the video and used

27

Table 2.1: A Brief History of Neural Network Architectures.
Accuracy (%)

Architecture Year Description U
C
F

H
M

D
B

K
in

et
ic

s

LeNet [45] 1998 pioneered CNNs
AlexNet [43] 2012 introduced ReLU & max pool

VGG [67] 2014 deeper net with smaller kernels
Inception [74, 75] 2014 inception cell convolves at

(GoogLeNet) multiple scales then aggregates
2-Stream CNN [66] 2014 late fusion of a spatial and 88.0 59.4

optical-flow based temporal nets
ResNet [28, 89] 2015 residual block learns a

residual function of the input
C3D [76] 2015 extended 2D convolution to 3D 90.4

𝐹𝑆𝑇𝐶𝑁 [72] 2015 factorized 3D kernel as 2D 88.1 59.1
spatial followed by 1D temporal

TDD [81] 2015 combined hand-crafted & deep- 91.5 65.9
learned features

CNN+LSTM [16] 2015 CNN followed by an LSTM for 82.7
(LRCN) sequence-based actions

SqueezeNet [31] 2016 decreased parameter-space
with AlexNet-level results

TSN [87] 2016 learns temporal structure via 94.2 69.4
segment/two-stream/consensus

ResNeXt [86] 2017 replaced residual blocks with a
“split-transform-merge” block

Xception [12] 2017 improved inception cell by
performing 1x1 convolution first
then channel-wise spatial

Two-Stream I3D [9] 2017 two-3D convolutional streams 97.9 80.2
on dense RGB and optical flow

DenseNet [32] 2017 connected every layer to every
successive network layer

SENet [31] 2018 modified residual block for
channel interdependencies

NL [82] 2018 introduced a non-local block for 77.7
long dependencies

TRN [93] 2018 used a temporal relations pool 83.8 63.2
instead of TSN’s average pool

MKAF [50] 2018 multi-modal keyless attention 77.0
fusion for fast LSTM

28

Figure 2-2: Four most common video action recognition approaches. Note that these
are simplified diagrams where icons for 2D-ConvNets, 3D-ConvNets, dense classifica-
tion networks, LSTM modules, and averaging/softmax layers are used only as visual
interpretation. Their actual design can vary significantly. Similarly, the majority of
action recognition approaches have 2-stream variants for RGB+Optical Flow.

as input to a 2D-ConvNet. After several convolution and pooling layers, the logits

are fed into one or more fully-connected layers which can produce a softmax output

predictions over the classes. TSN segments a video along its temporal dimension and

extracts a frame from each segment. The frames are used as inputs to a 2D-ConvNets

that share weights. The predictions from each segment are then averaged before the

softmax output. Variants and additions to a TSN baseline include Temporal Rela-

tions Networks (TRN) [93] which perform multi-scale segmentation and relationing.

LRCN similarly segments a video, extracts a frame from each segment and feeds

those frames into 2D-ConvNets. However, the ConvNet outputs are used as inputs

to a Long-Short Term Memory (LSTM) network. The LSTM’s output is used for

softmax predictions.

3D action recognition approaches include the temporal aspect in the convolution

via the use of 3-Dimensional convolutional kernels. C3D models were designed as the

3D analogy to 2D CNNs because of the widespread success of 2D CNNs [76]. However,

because of the difficulties of working with videos and the long-term dependencies

aspects of actions, C3D models often have had less success on action recognition than

29

their 2D counterparts on object recognition. To attempt to bridge the gap between

2D and 3D models, Inflated 3D (I3D) models were created by ”inflating” pretrained

2D kernels into 3D kernels [9]. This allows I3D models to benefit from pretraining on

2D image datasets like ImageNet. Some believe that, while still in their early days,

3D approaches will be able to retrace the successful history of their 2D siblings [27].

Both C3D and I3D work by using either the entire or a selected portion (often 16,

32, or 64 frames) as an input to a 3D-ConvNet. Similar to C2D, the 3D-ConvNet’s

output is then fed into a one or more layer classification network before outputting

softmax predictions across classes.

2.3 Moments in Time

Among action recognition datasets, Moments in Time uniquely offers high inter-

class and intra-class variation [54]. Inter-class variation refers to a large semantic

separation between the 339 action verb classes. Intra-class variation refers to various

levels of abstraction within each action verb class. For example, the "opening" class

can include videos of opening doors, drawers, curtains, flower petals, and more. The

actions can be performed by various agents: humans, animals, animations, or nature.

Each 3-second video in the dataset has a single action verb label from one of the

339 action classes. The training set consists of 802,264 videos with between 500 and

5,000 videos per class. The validation set consists of 33,900 videos with 100 videos

per class. High-level dataset statistics can be found in Appendix C, Table C.1.

The Moments in Time dataset creators tested a variety of existing action recogni-

tion model architectures on their dataset (see Appendix C, Table C.3) as well as ran

two challenges as a part of CVPR’18 and ICCV’19. The 2018 challenge tasked teams

to develop state-of-the-art methods for achieving top-1 and top-5 accuracies on the

dataset. Essentially all top-performing teams used late fusion approaches by training

a series of individual models and then ensembling their results. Table 2.2 highlights

the best-performing individual models used by teams in the challenge as described in

their reports. Table 2.3 highlights the types of models and modalities used by each

30

Table 2.2: Moments in Time Challenge 2018 top-performing single model validation
accuracies as described in optional report submissions by competition teams.

Accuracy (%)
Type Backbone Top-1 Top-5 report

Video

C2D

SENet-152 33.7 61.3 [47]
SEResNeXt 30.0 60.2 [47]
Xception 31.8 59.2 [47]
ResNet-50 28.3 53.2 [47]

TSN
ResNet-152 33.0 n/a [85]
DPN-107 31.1 n/a [85]
ResNet-50 27.4 53.2 [47]

TRN
SENet-154 31.9 58.8 [11]

Inception-v3 29.7 55.7 [11]
InceptionResNet-v2 29.3 55.6 [11]

I3D
ResNet-50 34.2 61.4 [47]

ResNet-101-NL 33.7 n/a [85]
Inception-v3 27.6 53.9 [11]

C3D InceptionResNet-v2 35.1 63.3 [46]
ResNet-101 33.6 61.2 [46]

Audio

C2D

VGGish 17.1 n/a [85]
SENet-50 16.8 n/a [85]
M34-res 14.8 27.4 [46]

ResNet-34 13.8 23.6 [46]
EnvNet+ResNet 13.2 25.9 [46]

NetVLAD 9.0 19.5 [11]
SoundNet 7.6 18.0 [48]

of the top-performing teams. While model architectures such as C3D, I3D and TRN

may intuitively be expected to provide significant accuracy performance advantages,

when applied to the Moments in Time dataset, these architectures barely outperform,

and in some cases underperform, conventional and less complex 2D CNN models. Ad-

ditionally, while the literature on action recognition lacks an adequate discussion of

computational performance and complexity of training these models, it is sometimes

hinted that 3D approaches requires significantly more computational resources and

time to train.

The Multi-Moments in Time Challenge 2019, conducted through ICCV’19, tasked

31

Table 2.3: Moments in Time Challenge 2018 top-performing teams approaches as
described in optional report submissions by competition teams.

Team Test Accuracy (%) Fusion Modalities # Models
Top-1 Top-5 Type Used Ensembled

1 DEEP [46] 38.6 67.2 late V+A 6+3
2 Megvii [47] 37.5 65.0 late V+F+A 7+1+1
3 Qiniu [85] 36.4 63.7 late V+F+A 12+6+3
4 Alibaba-Venus [11] 35.5 63.7 late V+F+A 9+1+2
5 Xtract AI [30] 32.0 57.6 late V+A 5+1
6 SSS [94] 32.0 57.6 late V+F 6+3
7 CM-AML [34] 31.0 58.4 late V+F+A 6+1+1
8 UNSW-DS [48] 30.4 54.9 late V+A 2+1
9 Fengwuxuan 28.6 54.9 n/a* n/a n/a
10 SYSU [26] 27.3 53.9 late V+A 5+1
*Team Fengwuxuan did not submit a report V = Visual (RGB)

F = Optical Flow
A = Audio

teams to develop state-of-the-art methods for detecting multiple event labels from

videos. Of the reports that teams submitted, few deviated from 2D CNN approaches

likely because they drew the same conclusions as described above in addition to the

difficulties that come with working on more complex models. For these reasons, the

studies conducted in this project also focus heavily on 2D CNN action recognition

methods.

The results of these challenges (demonstrating significant room for improvement),

the uniqueness of the dataset, and the potential for 2D approach improvements made

Moments in Time the focus of this project.

2.4 Model Assessment Techniques

Video action recognition models are primarily assessed along accuracy performance

and secondarily assessed along computational performance. Accuracy performance

refers to how effective a trained model is at the action recognition task. Compu-

tational performance refers to the compute required to perform the training. Both

are required to fully gauge a model’s effectiveness because of the common trade-off

32

between them. A model with high accuracy performance that takes hundreds of years

to train is not an effective model. Obviously, neither is a model that trains quickly

but has poor accuracy results. Therefore, while often overlooked in the literature,

including both aspects of the assessment together is instrumental in comparing video

action recognition approaches.

Canonically, Top-𝑘 accuracy is used to measure the effectiveness of action recog-

nition models. The model’s softmax output yields a probability for each of the |𝐶|

possible classes where 𝐶 is the set of action classes. If the correct class label is within

the 𝑘 highest probability predicted classes, the model has successfully classified the

video. Top-1 accuracy is intuitively useful because it describes the percentage of vali-

dation data cases in which the model’s top predicted classification is correct. However,

Top-5 is arbitrarily chosen and has unfortunately become a default in the literature.

This project demonstrates that plotting what will be referred to as a psuedo-

Receiver Operator Characteristic (p-ROC) curve is a better method of representing

accuracy performance. In this p-ROC, the Top-𝑘 accuracy is plotted against 𝑘 analo-

gous to plotting the true positive rate against the false positive rate for our classifier.

Even though it has been noted that the ROC area under the curve (𝐴𝑈𝐶) and the

maximum Youden index (𝐽𝑚𝑎𝑥), the curve height about the chance line, provide desir-

able properties as a classification metric [7, 33], the practice has not become standard.

These benefits easily transfer to our p-ROC curve and allow a user to quickly and

more intuitively select a model with accuracy characteristics that they desire. One

key difference between the p-ROC curve and a traditional ROC curve is that the hor-

izontal axis is discrete, not continuous. Hence the Youden index, sometimes referred

to as Youden’s 𝐽-statistic, is only defined at these discrete values of 𝑘. An additional

advantage p-ROC 𝐴𝑈𝐶 is that it can be normalized via dividing by the number of

classes |𝐶|. This allows model accuracy comparison across datasets with different

numbers of classes (which is common among the datasets mentioned in Section 2.1).

Equations 2.1, 2.2, and 2.3 show how to calculate p-ROC 𝐴𝑈𝐶, 𝐴𝑈𝐶𝑛𝑜𝑟𝑚, and 𝐽𝑚𝑎𝑥

where 𝑎𝑐𝑐(𝑘) refers to a function computing Top-𝑘 accuracy for a given 𝑘.

33

𝐴𝑈𝐶 =

|𝐶|−1∑︁
𝑘=0

𝑎𝑐𝑐(𝑘 + 1)− 𝑎𝑐𝑐(𝑘)

2
(2.1)

𝐴𝑈𝐶𝑛𝑜𝑟𝑚 =
𝐴𝑈𝐶

|𝐶|
(2.2)

𝐽𝑚𝑎𝑥 = max
𝑘∈{0,1,...,|𝐶|}

𝑎𝑐𝑐(𝑘)− 𝑘

|𝐶|
(2.3)

The example 15-class classification problem shown in Figure 2-3 is intended to

illustrate the usefulness of p-ROC curves in action recognition model accuracy per-

formance analysis. Shown in the figure are three models (𝐴, 𝐵, and 𝐶) as well as

what would be expected from a random chance guess (i.e. the 𝑘/15 line). Table 2.4

shows summary statistics for comparing these models along traditional Top-1 and

Top-5 accuracies as well as with p-ROC 𝐴𝑈𝐶 and 𝐽𝑚𝑎𝑥. The best-to-worst ordering

of these models along Top-1 accuracy is 𝐶, 𝐴, 𝐵. Along Top-5 accuracy, the order-

ing is 𝐴, 𝐵, 𝐶. Therefore, without using p-ROC 𝐴𝑈𝐶, one might naively conclude

that Model 𝐵 is worse at this classification task than models 𝐴 and 𝐶. However,

Model 𝐵 holds the highest p-ROC 𝐴𝑈𝐶 among the three models. Clearly, determin-

ing the "best" model is no longer straightforward. Because different applications of

action recognition problems might require different accuracy performance properties,

reporting a p-ROC curve instead of simply the canonical Top-1/Top-5 accuracies is

beneficial to the model user. Importantly, we claim that higher Top-5 accuracy does

not always correlate with higher p-ROC metrics. This project not only demonstrates

that this claim is sometimes true but rather it is fairly common.

Table 2.4: p-ROC curve statistics for the 15-class problem plotted in Figure 2-3.
Model Top-1 Accuracy Top-5 Accuracy p-ROC AUC 𝐽𝑚𝑎𝑥

Chance 0.067 0.333 7.50 0.0
𝐴 0.300 0.800 11.72 0.47 (𝑘 = 5)
𝐵 0.250 0.780 11.82 0.46 (𝑘 = 6)
𝐶 0.400 0.760 11.56 0.43 (𝑘 = 5)

34

Figure 2-3: Example p-ROC curve for a 15-class problem. Three model Top-𝐾 values
are plotted (as well as a random chance line that represents an uninformed guesser.

Because of the challenges with dealing with video as opposed to simpler uni-modal

classification problems such as image object recognition, computational performance

of training is a second important method of assessing models. Unfortunately the lit-

erature on action recognition model computational performance is extremely lacking

in detail. Almost all emphasis has been place on Top-1/Top-5 accuracy performance.

Throughout this project, computational performance is measured directly by train-

ing time and training time per epoch. Attention was also paid to how varying the

compute resources affects training (i.e. yields speedup curves).

Therefore, throughout this project, the accuracy performance and computational

performance metrics described above are used to assess models and training tech-

niques applied to the Moments in Time dataset.

35

36

Chapter 3

Comparison Study

Unlike the field of image classification, video action recognition lacks a thorough dis-

cussion of model and algorithm comparison. For example, it is difficult to compare

accuracy metrics of various algorithms which are often developed and tested on het-

erogenous datasets or lack sufficient details regarding model architectures. Further,

the race for higher Top-1 accuracies has sidelined discussions of the equally relevant

aspect of computational performance. Therefore, this set of experiments catalogs a

subset of state-of-the-art video action recognition models. The goal is to provide a

side-by-side comparison of these "off-the-shelf" models using the performance metrics

outlined in section 2.4.

Specifically, this study (1) utilized the Moments in Time dataset for action recog-

nition model comparison, (2) trained and evaluated a set of action recognition models

under similar hyperparameters, training methods, and hardware, and (3) discussed

both their accuracy performance and computational performance.

3.1 Initial Comparison

A first set of comparisons was between five “off-the-shelf” TensorFlow [1] C2D mod-

els: ResNet34 [28], ResNet50 [86], Inception-v3 [74], Inception-ResNet-v2 [73], and

Xception [12]. Table 2 shows a comparison of the complexity of these models, and

they are listed in increasing order of trainable parameters.

37

Table 3.1: Complexity of "Off-the-Shelf" C2D Model Backbones
Model Layers Trainable Parameters

ResNet34 34 21,471,379
Xception 71 21,501,563

Inception-v3 48 22,462,963
ResNet50 50 24,229,203

Inception-ResNet-v2 164 54,797,235

3.1.1 Experimental Design

Python 3.6.5 scripts trained and validated these off-the-shelf models in a distributed

fashion using Horovod 0.16.1 [63] and OpenMPI. Key package versions used were

NumPy 1.14.1 [56], H5py 2.7.1 [13], SciPy 1.1.0 [78], TensorFlow 1.13.1 [1], PyTorch

1.0.1 [57], Pillow 5.1.0 and FFmpeg 3.3.7.

To compare computational performance and the effects of batch size, three types

of distributed training situations were tested. The first used 8 NVIDA Tesla K40

GPU accelerators across two nodes. The second used 16 Intel Xeon-e5 nodes with 28

CPU cores per node. The third used 32 Intel Xeon-64c nodes with 64 cores per node.

The infrastructure used is described in detail in [59].

The Moments in Time pre-processed 30 frames per second (fps) videos resized to

224x224 cropped 3-channel frames were used as inputs. Videos were parsed at 15 fps

in addition to the 30 fps parsing described in section 1.4. This was completed for

training and validation sets that were defined by the Moments in Time creators.

With the exception of ResNet34, which was initialized with random weights, mod-

els were initialized with ImageNet pretrained weights. A dense classification layer

was added to the top of each of these CNNs. Each network was trained by randomly

sampling one frame from each 15 fps parsed video. A Horovod-wrapped distributed

stochastic gradient descent (SGD) optimizer and categorical cross-entropy loss metric

updated network weights. The learning rate started at 0.1 and decayed by a factor of

10 at 30 epochs. It was also adjusted during the first 5 (warmup) epochs, increased

by a factor of the total number of processes launched. Standard momentum of 0.5

was used.

38

Figure 3-1: p-ROC curves for GPU-partition trained models. See Appendix A Figure
A-1 for p-ROC in the other training configurations.

For proper comparison, other hyperparameters were held consistent across differ-

ent model training sessions. Each model was trained for 50 epochs with a batch size

of 32 per training process. One process was launched per Tesla K40 GPU yielding

an effective batch size of 256 on the GPU nodes partition. On each of the CPU node

partitions, one process was launched per node yielding effective batch sizes of 512 and

1024 on Xeon-e5 node partitions and a Xeon-64c node partitions, respectively.

Trained C2Ds were expanded into TSNs for validation inference. Video level

inference was therefore the averaged prediction across 6 evenly spaced frames from

the 90 frame (30 fps) video.

3.1.2 Accuracy Performance Results

After 50 epochs, models with pretraining averaged 22.1% Top-1 and 45.7% Top-

5 accuracy using the smallest effective batch size corresponding to the GPU nodes

partition. The ResNet34 model that did not benefit from pretraining performed worse.

The Inception-ResNet-v2 model, which has significantly higher complexity than the

39

Figure 3-2: Training time per epoch on three types of distributed training partitions.
Error bars indicate standard deviation.

other models, had the greatest Top-1 accuracy, Top-5 accuracy, p-ROC 𝐴𝑈𝐶, and

𝐽𝑚𝑎𝑥. The p-ROC curves are shown in Figure 3-1 and full validation results are shown

in Appendix A Table A.1.

3.1.3 Computational Performance Results

The computational performance of models averaged around 6 hours per epoch on

a 2-node GPU partition, 5 hours per epoch on a 16-node Xeon-e5 partition, and 6

hours per epoch on a 32 node Xeon-64c partition. On GPU nodes, model training

time fluctuated between 4 and 9 hours per epoch and saw higher variation than

models trained on Xeon-e5 or Xeon-64c nodes. As shown in Figure 3-2, the best

performing model in accuracy (with an Inception-ResNet-v2 backbone) had similar

computational costs to other models across partition types despite having twice as

many parameters and two to three times as many layers.

Across these five models, no significant correlations between number of layers nor

trainable parameters exists with training time per epoch. Across most training runs,

40

Figure 3-3: Training time speedup curve for ResNet-50 backbone model.

the standard deviation of training time per epoch varied by no more than 1.5 hours.

These results further show, as has been noted in the literature [38], that the number

of floating-point operations does not always directly correspond to computational

costs due to other training time activities. Further research is needed to identify

which aspects of training are contributing the most to the computational performance

costs. However, these results are still a valuable start to researchers working with

C2D models for action recognition who may not initially know what computational

resources and time are required for training models. This is particularly relevant

because of the monetary costs involved in using cloud-based resources like AWS.

Figure 3-3 shows the speedup curve for training a ResNet50 model. Other C2D

models should have analogous speedup curves. Across the three partitions, a 2x

increase in nodes directly yielded a 2x reduction in training time.

41

Table 3.2: Complexity of Models in Expanded Comparison Study
Model Type Model Backbone Layers Trainable Parameters

C2D

VGG19 19 20,198,291
MobileNet (M) 28 3,554,451

Inception-v3 (Iv3) 48 22,462,963
ResNet50 (R50) 50 24,229,203

MobileNet-v2 (Mv2) 53 2,658,131
Xception (X) 71 21,501,563

Inception-ResNet-v2 (IRv2) 164 54,797,235
DenseNet169 (D169) 169 13,048,915
DenseNet201 (D201) 201 18,744,147

LRCN n/a (16f) 38 9,788,915

C3D n/a (16f) 18 148,590,675
n/a (32f) 18 456,872,019

I3D Inception-v1 (Iv1) (16f) 27 12,279,984
Inception-v1 (Iv1) (64f) 27 12,279,984

3.2 Expanded Comparison

Due to increased computational resource availability later in this research, the com-

parison study was able to be expanded to include more TensorFlow action recognition

models and greater breath of computational performance testing. Table 3.2 lists de-

tails of the models compared.

3.2.1 Experimental Design

Python 3.6.5 scripts trained and validated these off-the-shelf models in a distributed

fashion using Horovod 0.18.2 [63] and OpenMPI 4.0. Key package versions used were

NumPy 1.16.5 [56], H5py 2.9.0 [13], SciPy 1.3.2 [78], and TensorFlow 1.14.0 [1].

C2D and I3D models were initialized with ImageNet pretrained weights while C3D

and LRCN models were initialized with random weights. On each pass through the

dataset during training, C2D inputs were randomly sampled frames from each video.

LRCN, C3D (f16), and I3D (f16) had inputs of 16 evenly spaced frames from the 30

fps videos. C3D (32f) and I3D (64f) randomly sampled 32 and 64 continuous frames,

respectively.

42

Figure 3-4: p-ROC curve log-scaled with 𝑘/339 subtracted out for each value of 𝑘 to
more easily show the peak 𝐽-statistic.

For proper comparison, other hyperparameters were held consistent across dif-

ferent model training sessions. A Horovod-wrapped distributed ADADELTA [90]

optimizer and categorical cross-entropy loss metric updated network weights. Five

warmup epochs slowly raised the learning rate to 1.0 which was subsequently decayed

at 20, 35, and 50 epochs. Each model was trained for 65 epochs.

For validation, LRCN, C3D, and I3D model inference was performing the same

as training. C2D model inference was performed in a TSN-style averaging across 6

evenly spaced frames for the 90 frame (30 fps) video.

3.2.2 Accuracy Performance Results

Validation accuracy results can be found in Figure 3-4 and in detail in Appendix A,

Table A.2. By our p-ROC, the top three performing models were all C2Ds: Inception-

43

Figure 3-5: Training Time per Epoch across training configurations of 1, 2, 4, 8, 16,
and 32 nodes where each node as 2 Volta V100 GPUs.

ResNet-v2, DenseNet169, and Xception with p-ROC 𝐴𝑈𝐶s of 310.99, 310.32, and

310.02, respectively.

3.2.3 Computational Performance Results

Computational performance results can be found in Figure 3-5 and in detail in Ap-

pendix B, Table B.3. As expected, LRCN, C3D, and I3D models had significantly

greater training times compared to the much simpler C2D models. When training

on 64 GPUs for 65 epochs, the quickest model was ResNet50 which had an average

training time of 335.4 seconds per epoch. Therefore, the model successfully trained

in just over six hours.

As expected, essentially all models approximately halved their training times when

trained on twice as many GPUs. Individual node differences and network lag fluctua-

44

Figure 3-6: Plotting training time per epoch (in seconds) against p-ROC 𝐴𝑈𝐶𝑛𝑜𝑟𝑚

to show accuracy-computational performance trade-offs The best performing models
are in the bottom right: Inception-ResNet-v2, ResNet50, MobileNet-v2, Xception,
and DenseNet201.

tions on the TX-GAIA system became more apparent in the larger (16 and 32 node)

training runs as evidenced by the increased variation on the right of Figure 3-5.

3.3 Discussion and Conclusions

Two comparison experiments comprised this study. The first looked at five off-the-

shelf C2D models trained in both GPU and CPU environments. The second expanded

the number of C2D models analyzed and incorporated more complex LRCN, C3D,

and I3D models. When combining accuracy and computational performance into a

single plot, as shown in Figure 3-6, the best performing models are in the bottom

right. Those correspond to high p-ROC 𝐴𝑈𝐶𝑛𝑜𝑟𝑚 and low trainings times per epoch.

Among the models tested, it is apparent that C2Ds are better performers than their

more complex counterparts. Among the C2Ds, those with greatest model depth stand

out. This hints that deeper is the direction to go with future model architecture

research.

45

46

Chapter 4

Exploration of Video Slicing and

Sampling

The use of 2D convolutional kernels in video action recognition models remains

widespread, yet the literature shows a functional fixedness on using frame-wise train-

ing methods. This study explored horizontal and vertical video cube slicing methods

as well as several sampling techniques for determining where along a given video axis

to "slice." In this study, frame slicing refers to extracting a frame (𝑝𝑖𝑥𝑒𝑙𝑠 x 𝑝𝑖𝑥𝑒𝑙𝑠 x

𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) from a video (𝑓𝑟𝑎𝑚𝑒𝑠 x 𝑝𝑖𝑥𝑒𝑙𝑠 x 𝑝𝑖𝑥𝑒𝑙𝑠 x 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) and then training the

2D kernel on that frame. The frame is a spatial representation for a portion of that

video. Horizontal and vertical slicing methods extract a spatio-temporal feature from

a video. Essentially, by taking a particular row or column of pixels across the entire

temporal domain (i.e. that row/column in every frame), a spatio-temporal ”image”

is extracted from the video "cube" with a shape (𝑓𝑟𝑎𝑚𝑒𝑠 x 𝑝𝑖𝑥𝑒𝑙𝑠 x 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠). The

video cube slicing methods are shown in Figure 4-1. Within each slicing method, it is

also possible to vary the sampling technique—how to select a given row/column/frame

from those available. Figure 4-2 shows example sampling techniques along a slicing

axis. One might presume that the center of the video is more likely to include the

action occurring. When a camera operator films an action, it is likely that they are

centering the action in the shot rather than intentionally keeping it on the edge of

the frame (especially in internet-sourced low-quality videos such as those found in the

47

Figure 4-1: Video ”cubes” are comprised of densely stacked frames. ”Slices” can be
taken (1) frame-wise by selecting a particular frame, (2) horizontally by selecting a
particular row of pixels across all frames, or (3) vertically by selecting a particular
column of pixels across all frames.

Moments in Time dataset).

Specifically, this study (1) compared horizontal and vertical cube slicing methods

to the traditional frame-wise slicing in 2D CNN action recognition models and (2)

compared six sampling techniques for determining where to slice the cube in each of

the methods.

4.1 Experimental Design

Training was conducted using 2 NVIDIA Volta 100 GPU accelerators on a single

compute node connected by PCIe. The node uses 2x14 Intel Xeon E5-2690v4 CPU

cores with 512 GB of RAM and 2 TB of local disk storage. Each validation run

was conducted on a single compute node using 2x16 AMD Opteron CPU cores with

a total of 128 GB of RAM and 8TB of local disk storage. Scripts were written in

Python 3.6.5 and distributed training used Horovod 0.16.1 [63]. Key package versions

used were NumPy 1.14.3 [56], H5Py 2.7.1 [13], SciPy 1.1.0 [78], TensorFlow 1.13.1

[1], and Pillow 5.1.0.

Due to the limited computational resources available during this study, only 10

48

Figure 4-2: Examples of slice sampling techniques that can be applied along any axis
(slicing method) of the video cube. The left shows uniformly sampling across the axis
while the right shows preferentially sampling the center of the axis using a Gaussian
distribution.

classes (applauding, baking, crashing, descending, eating, flooding, guarding, hitting,

inflating, jumping) of the 339 in the dataset were used. Therefore, this project made

the simplifying assumption that the results obtained from these slicing and sampling

comparisons will correlate with performances attained on the entire dataset. This

assumption is reasonable because of the high interclass variance in the Moments in

Time dataset [54]. Given this simplification, the training set includes 27,494 videos

and the validation set includes 1,000 videos. In their parsed form, the videos from

these 10 classes are over 1.4 Terabytes of data.

A feature embedding for each video frame slice, horizontal slice, and vertical slice

was created by passing each slice through an ImageNet pretrained VGG networks with

the top dense layers removed. This results in a (1 x 7068) vector for each horizontal

or vertical slice and a (1 x 25088) vector for each frame.

Two model architectures were used. The first was the standard VGG-top layers

(two 4096 unit fully-connected layers followed by a 10 unit fully connected layer with

softmax output). The second was the same VGG but with two dropout layers inserted

(𝑝 = 0.5) after each 4096 unit fully-connected layer. Both models were initialized with

random weights. This model is displayed in Figure 4-3.

For each model and slicing technique, the network was trained by sampling a

slice from the video. Six sampling techniques were tried for each model and slicing

49

Figure 4-3: Video slices are first passed through an ImageNet-pretrained VGG Feature
Extractor which creates embedded feature vectors used as inputs to a three layer
network consisting of two 4096-unit fully connected layers followed by a 10-unit fully
connected layer that outputs softmax predictions. The second version of the model
includes two dropout (𝑝 = 0.5) layers in between the fully connected layers.

method. Slices were sampled at random from either a Uniform distribution over

the pixels rows/cols or frames (depending on slicing method) or from a Gaussian

distribution centered on the center-row/col or center frame with a standard deviation

(𝜎) of 5, 10, 20, 30, or 40. These distributions when applied to horizontal/vertical

slicing are shown in Figure 4-4.

A Horovod wrapped distributed stochastic gradient descent (SGD) optimizer and

categorical cross-entropy loss metric update the network weights. The learning rate

starts at 0.01 and is decayed by a factor of 10 at 30 epochs. It is also adjusted during

the first five (warmup) epochs with respect to the number of processes launches. Stan-

dard momentum of 0.5 is used. Each model is trained for 50 epochs (or for 12 hours,

whichever occurs first) with a batch size of 32 per process yielded an effective batch

size of 64. Of the 36 training jobs, only three terminated before completing 50 epoch

(at the 49 epoch point). Validation video level inference is the averaged prediction of

50

Figure 4-4: Visualization of sampling distributions tested in this study. Here, they
are centered on 112 which is the center row/column on the video cube when sliced
horizontally or vertically.

6 slices sampling using the same sampling technique employed for training.

4.2 Accuracy Performance Results

The standard VGG-top model outperformed the modified model with dropout across

all slicing methods in both best and average sampling accuracy performance. This

indicates the models are not overfitting the training data, and the addition of dropout

for regularization is unnecessary in this context. Therefore, the results displayed in

the p-ROC curves in Figure 4-5 as well as expanded in Appendix A Table A.3 are for

training conducted in the model without dropout.

Across all accuracy metrics (top-1, top-5, p-ROC 𝐴𝑈𝐶, and 𝐽𝑚𝑎𝑥), frame slicing

methods outperformed horizontal and vertical slicing. This is to be expected for two

reasons. First, the VGG net that was used to extract the embedded features was

pretrained on images, not other spatio-temporal video slices. Second, each frame

slice has (224 x 224) = 50176 pixels while each horizontal or vertical slice has (224

51

Figure 4-5: p-ROC validation curves for slicing and sampling on the best performing
architecture. With the frame slicing method, there was little to no difference between
sampling techniques. Horizontal slicing method shows the most significant difference
between sampling techniques.

52

x 90) = 20160 pixels. Frames simply hold more data. However, the reasonable

performance of learning on horizontal and vertical slices relative to frame slices shows

that powerful transferability of the convolutional filters of the original VGG feature

extractor. Additionally, horizontal slicing marginally outperformed vertical slicing

with the best p-ROC AUCs of 7.12 and 6.90, respectively.

For frame slicing, wide Gaussians and uniform sampling performed the best. For

horizontal slicing, narrow and centrally located Gaussians performed the best. For

vertical slicing, Gaussian sampling methods outperformed uniform sampling methods,

but only marginally. Therefore, sampling method matters the most when training on

horizontal slices, and the center of the video is the most relevant area to select these

slices. This is to be expected if the videos are captured with the person shooting the

video keeping the action near the center of the frame.

4.3 Computational Performance Results

As shown in Figure 4-6, frame, horizontal, and vertical slicing training jobs averaged

14.28, 5.63, and 5.60 minutes per epoch, respectively. The frame slicing method

also showed the largest variation in training time per epoch. In order to achieve

such small training times, the embedded feature vectors for all frame, vertical, and

horizontal slices had to be precomputed which required approximately one week on

60 Xeon-e5-2650 cores operating in parallel.

4.4 Discussion and Conclusions

The results of this experiment demonstrated that frame-wise video slicing for action

recognition is not the only viable way to approach spatio-temporal learning using 2D

convolution. However, the sampling method matters significantly more for horizontal

and vertical slices than frame slices so careful consideration should go into this model

training aspect.

Also, this study empirically shows that the best Top-1 accuracy and Top-5 accu-

53

Figure 4-6: Average training time per epoch (in minutes) for each slicing method and
sampling technique. Error bars indicate standard deviation across epochs. Training
times shown are using 2 NVIDIA Volta V100 GPUs with PCIe connection.

racy are not always aligned with the best p-ROC 𝐴𝑈𝐶 and 𝐽𝑚𝑎𝑥. Therefore, p-ROC

curves and metrics that can be derived from it have validity to their usefulness in

assessing action recognition model accuracy performance.

54

Chapter 5

Experimentation with Early Fusion

After creating a parse-wrangle-train-analyze pipeline, conducting an initial bench-

marking study, and exploring the potential for alternate video slicing and sampling

methods, the foundation was set for incorporating audio to make the models multi-

modal. This set of studies explored two audio-video early fusion techniques applied

in a variety of ways.

5.1 Audio Representations

Intuitively, one way to bridge the gap between the effectiveness of 2D convolution

with spatial or spatio-temporal images and the inclusion of audio in these videos is

to convert the audio into an image. The method used in these studies was to convert

the raw audio waveform input into a Mel-Frequency Spectrogram. This is a four step

process nicely explained in [21] and summarized below:

1. Load the raw audio waveform.

2. Compute the fast fourier transform (FFT) on a rolling window to convert from

the time domain to the frequency domain for each window.

3. Transform the frequency axis into a mel axis.

4. Decompose the magnitude into the individual mels and log scale them.

55

Figure 5-1: The top diagram shows an example audio waveform with a sample rate
of 22050. The bottom diagram shows the transformation to a Mel-Frequency Spec-
trogram with a log power scale, 128 mels, and a maximum frequency of 8192 Hz.

The mel scale is a non-linear transformation on frequency to account for human

perception of the difference between frequencies [70]. 1000 mels corresponds to 1000

Hz as the reference point. Equal differences in perceived pitch correspond to equal

mel distances. An example audio transformation from waveform to Mel-Frequency

Spectrogram is shown in Figure 5-1. Mel-Frequency Spectrograms in these studies

were created using Librosa 0.7.1 [53]. Note that while it is displayed in color to

highlight the power spectrum difference, these spectrograms are effectively single

channel images.

56

The most common other audio transform undertaken to convert the audio into an

image is the mel-frequency cepstral coefficients (MFCC) which has one addition step

after creating the Mel-Frequency Spectrogram. It requires taking the discrete cosine

transform (DCT) of the mel log powers. This project uses Mel-Frequency Spectogram

instead of MFCC because the literature indicates that they lead to better learning

with CNNs used for classification [35].

5.2 Early Fusion Methods

These studies then fused the audio spectrogram images in one of two ways which

will be referred to as stitching or stacking. Not including the audio was used as the

baseline to compare the stitching and stacking early fusion methods.

At a high level, stitching refers to concatenating images side-by-side. Given an

RGB video slice (𝑝𝑖𝑥𝑒𝑙𝑠0 x 𝑝𝑖𝑥𝑒𝑙𝑠1 x 3), the audio spectrogram (𝑑𝑖𝑚0 x 𝑑𝑖𝑚1 x 1) is

then duplicated three times to ensure both are three-channel images. The two images

are then concatenated into a larger image with dimensions (max(𝑝𝑖𝑥𝑒𝑙𝑠0, 𝑑𝑖𝑚0) x

(𝑝𝑖𝑥𝑒𝑙𝑠1+𝑑𝑖𝑚1) x 3). By carefully crafting the spectrogram, it is possible to ensure

that 𝑝𝑖𝑥𝑒𝑙𝑠0 = 𝑑𝑖𝑚0; however, when they are not equivalent sizes, the smaller image

can be stretched for the stitching. The resulting image is larger than either original

image. A visual description of training via stacking audio-video early fusion can be

found in Figure 5-2.

Stacking refers to concatenating the 3-channel RGB images with the 1-channel

spectrogram along the channels dimension. In essence, the spectrogram is made into

the fourth "color" channel. Given an RGB video slice (𝑝𝑖𝑥𝑒𝑙𝑠0 x 𝑝𝑖𝑥𝑒𝑙𝑠1 x 3) and an

audio spectrogram (𝑑𝑖𝑚0 x 𝑑𝑖𝑚1 x 1), the resulting early fusion stack has dimensions

(𝑝𝑖𝑥𝑒𝑙𝑠0 x 𝑝𝑖𝑥𝑒𝑙𝑠1 x 4). Note that this requires 𝑝𝑖𝑥𝑒𝑙𝑠0 = 𝑑𝑖𝑚0 and 𝑝𝑖𝑥𝑒𝑙𝑠1 = 𝑑𝑖𝑚1.

The resulting image is only larger along the channels axis. A visual description of

training via stacking audio-video early fusion can be found in Figure 5-3.

An advantage of the stitching fusion method over stacking fusion is that models

can benefit from pretraining, such as on ImageNet. CNN model weights are not

57

Figure 5-2: Process of stitching early audio-video fusion between an RGB frame and
the log-mel spectrogram. The input to the ConvNet is a wider 3-channel image.

dependent on the size of the the input image, but rather on the number of channels.

Therefore when using the stacking fusion method, models weights must be randomly

initialized. An advantage to stacking is the ability to align domains. With horizontal

and vertical slices, the RGB images are spatio-temporal features. The time axis of

one of these slices can be aligned to the time axis of the spectrogram which could

lead to training benefits as audio and video.

5.3 10-Class Experiment

This study was conducted with only 10 classes (applauding, baking, crashing, de-

scending, eating, flooding, guarding, hitting, inflating, jumping) in order to test the

greatest spread of models, early fusion methods, and hyperparameters with the avail-

able computational resources in a reasonable amount of time. Therefore, as in the

slicing and sampling study described in Chapter 4, the training set used for this study

includes 27,494 videos and the validation set includes 1,000 videos.

5.3.1 Experimental Design

Training and validation were both conducted using 8 NVIDIA Volta 100 GPU accel-

erators across compute nodes. Scripts were written in Python 3.6.9 and distributed

58

Figure 5-3: Process of stacking early audio-video fusion between an RGB frame and
the log-mel spectrogram. The input to the ConvNet is a 4-channel image with the
same pixel height and width as the original frame.

training used Horovod 0.18.2 [63]. Key package versions used were NumPy 1.16.5

[56], H5Py 2.9.0 [13], SciPy 1.3.2 [78], and TensorFlow 1.14.0 [1].

Two model architectures (Inception-ResNet-v2, Inception-v3), three fusion meth-

ods (none, stitching, stacking), three slicing methods (frame, vertical, horizontal), and

two sampling techniques (uniform, Gaussian (𝜎 = 30)) were tested. Therefore, there

were 36 training combinations. Models were initialized with ImageNet pretrained

weights when the model input shape had only three channels (i.e. without fusion or

with stitching fusion). Otherwise, model weights were randomly initialized.

For each model and fusion method, the network was trained by sampling a slice

from the video and fusing as specified. Validation is performed in the same manner.

A Horovod wrapped distributed stochastic gradient descent (SGD) optimizer and

categorical cross-entropy loss metric updated the network weights. The learning rate

was set at 0.01 and was adjusted during the first five (warmup) epochs with respect to

the eight processes launches. Nesterov momentum was used. Each model was trained

for 30 epochs with a batch size of 32 per process yielding an effective batch size of

256.

59

Figure 5-4: p-ROC curve for best and worst performing models using no fusion,
stitching fusion, and stacking fusion. "Best" and "Worst" in this figure are referring
only to the highest and lowest p-ROC 𝐴𝑈𝐶 values.

5.3.2 Accuracy Performance Results

Figure 5-4 displays the p-ROC curves for the best and worst performing combina-

tions of backbone models and hyperparameters for each of the early fusion methods.

Full validation accuracy performance results can be found in Appendix A, Table A.4.

Stitching fusion outperformed stacking fusion across almost all training configura-

tions; however, it failed to show significant improvement over the no fusion baseline.

The highest top-1 accuracy (made by stitching fusion with an Inception-ResNet-v2

backbone, frame slicing, and uniform sampling) was 62.7%. By comparison, the high-

est no fusion top-1 accuracy achieved was 57.3%. However, that improvement is less

clear when looking at p-ROC 𝐴𝑈𝐶s and 𝐽𝑚𝑎𝑥 values (of which the best values are

split between stitching fusion and no fusion).

60

Figure 5-5: 10-Class Fusion Experiment Computational Performance Results when
training on 8 NVIDIA Volta 100 GPUs. Note that training time per epoch is plotted
on a log scale as horizontal and vertical slicing took significantly longer than frame
slicing. Results with Gaussian (𝜎 = 30) sampling are analogous and the plot can be
found in Appendix B, Table B-1.

5.3.3 Computational Performance Results

Full training time and training time per epoch results can be found in Appendix B,

Table B.5. Overall, stitching and stacking fusion methods had little effect on com-

putational performance because the video cube slicing became a bottleneck. Because

of this bottleneck, training times indicated that frame slicing was occurring quicker

than vertical slicing and significantly quicker than horizontal slicing. Because the

main training time bottleneck was on video slicing, almost no difference was observed

between model backbones either as they would wait on batches to be created.

5.4 339-Class Experiment

This study was conducted with the full 339 Moments in Time classes in order to verify

the results hinted at in the 10-Class experiment and test new and larger multi-slice

61

model architectures. Because of the benefits of pretraining obtained when looking at

the frame slicing over horizontal slicing, frame slices with uniform sampling were the

primary features used in this fusion experiment.

5.4.1 Experimental Design

Training and validation were both conducted using 64 NVIDIA Volta 100 GPU ac-

celerators across compute nodes. Language and package versions used in this study

were the same as described in Section 5.3.1.

Eleven models were also tested with stitching fusion and stacking fusion. The

first four have ResNet50, Xception, Inception-v3, and Inception-ResNet-v2 backbones

and fuse the uniformly sampled frame slices with the audio mel spectrograms. The

fifth model, named Cross-v1-X in this project, samples uniformly randomly both a

horizontal and vertical slice, fuses the mel spectrogram to both, runs each through

an Xception backbone model, and concatenates their logits as an input to a 339

neuron fully-connected layer that yields a softmax output. The sixth model, named

Cross-v2-X-IRv2 in this project, is similar to Cross-v1-X; however, it also uniformly

randomly samples a frame slice, passes that through an Inception-ResNet-v2 backbone

model, and concatenates the logits to the Xception models logits prior to the input to

the fully-connected layer. Cross-v1-X and Cross-v2-X-IRv2 are described further in

Figures 5-6 and 5-7. The last five models were ResNet50, Xception, Inception-ResNet-

v2, MobileNet-v2, and DenseNet201 which had slightly different training sessions

than the first four models listed here. They were also converted into 6-frame TSNs

for validation video-level inference.

The first six models trained with a Horovod-wrapped distributed stochastic gradi-

ent descent (SGD) optimizer and categorical cross-entropy loss metric that updated

the network weights. The learning rate was set at 0.01 and was adjusted during the

first five (warmup) epochs with respect to the eight processes launches. Nesterov mo-

mentum was used. Each model was trained for 50 epochs with a batch size of 32. The

five models to be used for TSN 6-frame averaging inference used a Horovod-wrapped

ADADELTA optimizer and trained for 65 epochs instead of 50.

62

Figure 5-6: The Cross-v1 model architecture that utilizes vertical and horizontal video
slices.

Figure 5-7: The Cross-v2 model architecture that utilizes frame, vertical, and hori-
zontal video slices.

63

Figure 5-8: 339-class experiment stitching fusion validation results. The colored
markers, as labeled in the legend to the right, indicate the various stitching early
fusion models. Grayed-out models dots respond to the non-fusion baselines described
in Chapter 3.

5.4.2 Accuracy Performance Results

Figures 5-8 and 5-9 display the modified p-ROC curves for stitching and stacking

fusion methods across the variety of models trained. Full validation accuracy perfor-

mance results can be found in Appendix A, Table A.5.

Overall, it is clear that stitching fusion is outperforming stacking fusion likely

due to the benefits of pretraining. As expected, across both stitching and stacking,

TSN validation-level inference improved accuracies by approximately 3-4%. While

Top-1 accuracies showed some minor improvements via stitching over a non-fusion

baseline, p-ROC 𝐴𝑈𝐶𝑛𝑜𝑟𝑚 and 𝐽𝑚𝑎𝑥 clearly indicated that audio-video fusion did

64

Figure 5-9: 339-class experiment stacking fusion validation results. The colored mark-
ers, as labeled in the legend to the right, indicate the various stitching early fusion
models. Grayed-out models dots respond to the non-fusion baselines described in
Chapter 3.

not produce better models. The top performing stitching fusion model was the TSN-

enabled MobileNet-v2 with a p-ROC 𝐴𝑈𝐶𝑛𝑜𝑟𝑚 of 0.917. The top performing stacking

fusion model was the TSN-enabled DenseNet201 with a p-ROC 𝐴𝑈𝐶𝑛𝑜𝑟𝑚 of 0.895.

Both Cross-v1 and Cross-v2 underperformed the 2D frame slicing models across all

accuracy metrics.

5.4.3 Computational Performance Results

Computational performance via training time per epoch is shown in Figures 5-10 and

5-11, and detailed results can be found in Appendix B, Table B.6. All stitching and

65

Figure 5-10: A comparison of stitching early fusion accuracy and computational per-
formance when trained on 64 Volta V100 GPUs (2 per node). The colored markers, as
labeled in the legend to the right, indicate the various stitching early fusion models.
Grayed-out models dots respond to the non-fusion baselines described in Chapter 3.

Figure 5-11: A comparison of stacking early fusion accuracy and computational per-
formance when trained on 64 Volta V100 GPUs (2 per node). The colored markers, as
labeled in the legend to the right, indicate the various stitching early fusion models.
Grayed-out models dots respond to the non-fusion baselines described in Chapter 3.

stacking fusion models had training times per epoch between 600 and 1000 seconds

and averaged around 50% longer to train than their non-fusion baselines. This com-

66

putational cost was expected due to the burdens of performing the early fusion prior

to model input as well as the increased size of the model inputs. Across both fusion

methods, Cross-v2, the most complex of models trained in this experiment, took the

longest to train.

5.5 Discussion and Conclusions

Unfortunately, early fusion did not produce any significant benefits over non-fusion

or late fusion methods. However, there are several important takeaways from these

two early fusion studies:

1. The application of stitching fusion may appear to yield moderate accuracy per-

formance improvements over similar non-fusion methods when viewing Top-1 ac-

curacy; however, other accuracy metrics with a broader view of the model, such

as p-ROC 𝐴𝑈𝐶𝑛𝑜𝑟𝑚, demonstrate no improvement. Stacking fusion yields worse

results than non-fusion likely due to the lost benefit of ImageNet-pretrained

weights.

2. Among 2D model backbones, Inception-ResNet-v2 continues to yield the highest

top-1 validation accuracies; however, accuracy performance comparison along

p-ROC 𝐴𝑈𝐶 and 𝐽𝑚𝑎𝑥 indicate that DenseNet and MobileNet-v2 may actually

be higher performing models. This also leads further credence to the claim that

Top-1 and Top-5 accuracy should not be the defining accuracy performance

metrics in video action recognition.

3. More complex models such as Cross-v1 and Cross-v2 are not effective at over-

coming the challenges faced by vertical and horizontal slicing methods. With

significantly more parameters, they are likely overfitting the training data lead-

ing to decreased accuracy performance. Model depth, not feature input width,

is the key to action recognition success.

4. By utilizing a large number of GPUs for each training session, total training

times were reduced from days and weeks to mere hours. Therefore, HPC re-

67

sources will continue to be necessary to perform these large comparison tests to

make incremental progress in the action recognition field.

68

Chapter 6

Conclusion

This project has presented a comparison of some existing action recognition ap-

proaches (Chapters 2 and 3) and tested two novel video-audio early fusion meth-

ods (stitching and stacking) across a variety of avenues: slicing methods, sampling

techniques, model backbones, etc. (Chapters 4 and 5).

Additionally, this project has addressed several issues within the current action

recognition literature. Mainly, the current literature generally lacks:

1. adequate descriptions of important training details including both hardware

and hyperparameter selections necessary for independent verification of state-

of-the-art results. Papers and reports focus heavily on model architecture often

to the detriment of these other important details.

2. any comparison of computational performance. Due to the data challenges asso-

ciated with video, computational performance should be a necessary component

of any action recognition model evaluation.

3. creativity to use accuracy metrics beyond Top-1/Top-5 which have become a

de facto standard in the field.

4. a true "apples-to-apples" comparison. Few papers and reports show more than

one or only a few model backbones tested with the same training settings.

69

5. any attempts at video-audio early fusion with the Moments in Time dataset.

More broadly, late-fusion (ensemble) approaches dominate the field.

This project has addressed these gaps and issues in the literature by:

1. carefully noting key training details for each experiment. These include hard-

ware specifications, software package versions, hyperparameter selections, and

training/validation details.

2. introducing training time and training time per epoch as a key comparison

metric of model computation performance in each experiment. As elaborated

throughout thesis project, computational performance should be a necessary

component of evaluating any video action recognition model.

3. introducing the novel p-ROC curves with 𝐴𝑈𝐶, 𝐴𝑈𝐶𝑛𝑜𝑟𝑚, and 𝐽𝑚𝑎𝑥 as alter-

native accuracy metrics. These experiments have demonstrated their potential

including examples when p-ROC 𝐴𝑈𝐶 does not directly correlate with the tra-

ditional Top-1/Top-5 accuracies.

4. applying a variety of "off-the-shelf" model backbones under very similar train-

ing and validation settings to make "apples-to-apples" comparisons. The HPC

resources allowed a significant breadth of comparison.

5. experimenting with two early fusion approaches with a variety of training tech-

niques. While neither showed significant improvements over non-fusion meth-

ods, it demonstrates that deeper model architectures are needed. Early fusion

with current architectures is unlikely to produce any significant improvements.

Future work can extend this research in several ways. One such way to extend this

research would be to utilize other video datasets to conduct additional pretraining.

This would be particularly helpful for models used in these studies that do not have

existing pretrained weight sets such as those needed for the 4-channel stacking fusion.

Based on the conclusions listed above, another way to extend this research, particu-

larly relevant to the early fusion, would be develop deeper new network architectures.

70

It is apparent that existing models, albeit useful, will not be able to tackle action

recognition problem posed by the Moments in Time dataset.

71

72

Appendix A

Accuracy Performance Tables and

Additional Figures

Figure A-1: p-ROC curves for CPU partitions trained models.

73

Table A.1: 2D Model Comparison of Accuracy Performance.
Val Acc (%) p-ROC

Model Top-1 Top-5 𝐴𝑈𝐶 𝐴𝑈𝐶𝑛𝑜𝑟𝑚 𝐽𝑚𝑎𝑥

random chance 0.29 1.47 169.5 0.5 0.0
effective batch size 256

ResNet34 11.8 28.0 287.0 0.847 0.532 (k=71)
Xception 20.8 43.8 309.7 0.914 0.670 (k=52)

Inception-v3 22.0 45.8 309.7 0.914 0.674 (k=50)
ResNet50 21.6 45.0 308.7 0.911 0.664 (k=51)

Inception-ResNet-v2 23.9 48.3 313.3 0.924 0.694 (k=42)
effective batch size 512

ResNet34 8.5 22.5 277.2 0.818 0.485 (k=72)
Xception 17.0 38.2 302.1 0.891 0.621 (k=57)

Inception-v3 19.3 42.1 307.1 0.906 0.653 (k=50)
ResNet50 18.7 41.3 307.9 0.908 0.658 (k=52)

Inception-ResNet-v2 20.0 43.4 307.1 0.906 0.653 (k=50)
effective batch size 1024

ResNet34 4.4 13.9 260.7 0.769 0.412 (k=92)
Xception 10.2 27.5 285.9 0.843 0.542 (k=69)

Inception-v3 14.5 34.6 296.4 0.874 0.596 (k=59)
ResNet50 14.3 41.3 301.5 0.889 0.617 (k=59)

Inception-ResNet-v2 14.9 35.0 296.4 0.874 0.596 (k=59)

74

Table A.2: Expanded Comparison - Accuracy Performance
Val Acc (%) p-ROC

Type Backbone Top-1 Top-5 𝐴𝑈𝐶 𝐴𝑈𝐶𝑛𝑜𝑟𝑚 𝐽𝑚𝑎𝑥

random chance 0.29 1.47 169.5 0.5 0.0

C2D

VGG19 16.45 36.41 301.74 0.891 0.616 (𝑘 = 59)
M 21.61 43.79 307.35 0.908 0.652 (𝑘 = 51)
Iv3 24.87 48.20 309.61 0.915 0.673 (𝑘 = 48)
R50 23.77 46.54 308.52 0.911 0.661 (𝑘 = 47)
Mv2 22.42 45.16 309.86 0.915 0.670 (𝑘 = 50)
X 24.84 47.58 310.02 0.919 0.683 (𝑘 = 41)

IRv2 26.83 50.50 310.99 0.919 0.683 (𝑘 = 41)
D169 25.13 48.63 310.32 0.917 0.674 (𝑘 = 45)
D201 25.52 48.62 309.76 0.915 0.672 (𝑘 = 46)

LRCN n/a (16f) 14.04 33.40 298.75 0.883 0.596 (𝑘 = 63)

C3D n/a (16f) 13.15 29.41 284.90 0.842 0.499 (𝑘 = 74)
n/a (32f) 11.36 25.58 278.98 0.824 0.499 (𝑘 = 74)

I3D Iv1 (16f) 19.33 42.36 308.26 0.911 0.661 (𝑘 = 52)
Iv1 (64f) 20.69 42.74 306.10 0.904 0.649 (𝑘 = 57)

Legend:
C2D = Traditional 2D ConvNet M = MobileNet
LRCN = Long-term Recurrent CNN Iv3 = Inception-v3
C3D = 3D ConvNet R50 = ResNet50
I3D = Inflated 3D ConvNet Mv2 = MobileNetv2

IRv2 = Inception-ResNet-v2
16f = 16 frame inputs D169 = DenseNet169
32f = 32 frame inputs D201 = DenseNet201
64f = 64 frame inputs Iv1 = Inception-v1

75

Table A.3: Exploration of Video Slicing and Sampling: validation results each slicing
method (frame, horizontal, and vertical).

Sampling Val Acc (%) p-ROC
Technique Top-1 Top-5 𝐴𝑈𝐶 𝐴𝑈𝐶𝑛𝑜𝑟𝑚 𝐽𝑚𝑎𝑥

random chance 10.0 50.0 5.0 0.5 0.0

Fr
am

e

Gaussian, 𝜎 = 5 43.0 86.5 7.72 0.772 0.415 (k=3)
Gaussian, 𝜎 = 10 45.1 87.4 7.81 0.781 0.431 (k=3)
Gaussian, 𝜎 = 20 43.8 87.3 7.81 0.781 0.432 (k=2)
Gaussian, 𝜎 = 30 43.1 88.0 7.79 0.779 0.421 (k=3)
Gaussian, 𝜎 = 40 42.7 88.1 7.85 0.785 0.441 (k=3)

Uniform 43.6 87.9 7.83 0.783 0.430 (k=3)

H
or

iz
on

ta
l Gaussian, 𝜎 = 5 30.1 80.2 7.12 0.712 0.316 (k=4)

Gaussian, 𝜎 = 10 29.3 79.9 7.12 0.712 0.315 (k=4)
Gaussian, 𝜎 = 20 29.8 77.7 6.98 0.698 0.299 (k=3)
Gaussian, 𝜎 = 30 28.9 75.3 6.87 0.687 0.278 (k=3)
Gaussian, 𝜎 = 40 27.2 74.0 6.77 0.677 0.263 (k=3)

Uniform 24.9 63.8 6.23 0.623 0.164 (k=3)

V
er

ti
ca

l

Gaussian, 𝜎 = 5 28.7 75.3 6.83 0.683 0.265 (k=4)
Gaussian, 𝜎 = 10 28.7 76.2 6.86 0.686 0.269 (k=4)
Gaussian, 𝜎 = 20 29.4 76.7 6.90 0.690 0.272 (k=3)
Gaussian, 𝜎 = 30 27.4 75.6 6.85 0.685 0.277 (k=3)
Gaussian, 𝜎 = 40 28.5 73.7 6.78 0.678 0.260 (k=3)

Uniform 28.0 72.4 6.70 0.670 0.253 (k=3)

76

Table A.4: 10-Class Early Fusion Study Validation Results.
Model Slicing Sampling Val Acc (%) p-ROC

Method Technique Top-1 Top-5 𝐴𝑈𝐶𝑛𝑜𝑟𝑚 𝐽𝑚𝑎𝑥

random chance 10.0 50.0 0.5 0.0

N
o

Fu
si

on

Iv3

Frame Uniform 50.1 87.0 0.768 0.461 (k=2)
Gaussian 54.4 88.9 0.784 0.495 (k=2)

Horizontal Uniform 25.3 70.1 0.639 0.229 (k=3)
Gaussian 31.5 78.4 0.688 0.295 (k=4)

Vertical Uniform 33.5 78.3 0.695 0.328 (k=3)
Gaussian 36.5 81.4 0.710 0.334 (k=4)

IRv2

Frame Uniform 55.2 93.0 0.806 0.536 (k=3)
Gaussian 57.3 93.5 0.808 0.527 (k=3)

Horizontal Uniform 25.3 67.7 0.627 0.227 (k=3)
Gaussian 32.9 79.8 0.702 0.325 (k=3)

Vertical Uniform 37.1 83.6 0.724 0.371 (k=3)
Gaussian 32.0 82.4 0.715 0.356 (k=3)

S
ti

tc
h

M
et

h
od

Iv3

Frame Uniform 52.5 88.3 0.781 0.511 (k=2)
Gaussian 52.7 91.2 0.798 0.507 (k=2)

Horizontal Uniform 35.2 75.8 0.677 0.302 (k=2)
Gaussian 38.1 82.4 0.718 0.364 (k=3)

Vertical Uniform 40.0 80.1 0.713 0.385 (k=3)
Gaussian 34.6 77.0 0.678 0.304 (k=2)

IRv2

Frame Uniform 62.7 89.6 0.794 0.527 (k=1)
Gaussian 57.8 91.2 0.802 0.552 (k=2)

Horizontal Uniform 36.1 75.2 0.677 0.292 (k=3)
Gaussian 36.7 74.6 0.679 0.317 (k=3)

Vertical Uniform 37.3 79.7 0.699 0.333 (k=3)
Gaussian 43.8 82.0 0.728 0.396 (k=2)

S
ta

ck
M

et
h
od

Iv3

Frame Uniform 30.0 78.1 0.681 0.305 (k=5)
Gaussian 29.9 76.7 0.684 0.297 (k=4)

Horizontal Uniform 30.1 76.8 0.669 0.284 (k=4)
Gaussian 31.2 75.8 0.672 0.280 (k=2)

Vertical Uniform 36.1 77.9 0.694 0.316 (k=2)
Gaussian 32.4 77.3 0.687 0.296 (k=2)

IRv2

Frame Uniform 37.1 84.0 0.727 0.373 (k=4)
Gaussian 39.4 81.0 0.712 0.354 (k=3)

Horizontal Uniform 27.7 72.3 0.646 0.238 (k=2)
Gaussian 34.6 77.0 0.686 0.304 (k=2)

Vertical Uniform 30.9 77.3 0.687 0.299 (k=4)
Gaussian 40.4 83.0 0.718 0.360 (k=4)

Iv3 = Inception-v3
IRv2 = Inception-ResNet-v2

77

Table A.5: 339-Class Early Fusion Study Validation Results.
Model Slicing Val Acc (%) p-ROC

Method Top-1 Top-5 𝐴𝑈𝐶 𝐴𝑈𝐶𝑛𝑜𝑟𝑚 𝐽𝑚𝑎𝑥

random chance 0.3 1.5 169.5 0.5 0.0

S
ti

tc
h

R50 F 21.5 41.6 301.7 0.890 0.619 (𝑘 = 55)
X F 22.9 45.2 309.6 0.913 0.667 (𝑘 = 52)
Iv3 F 23.0 43.3 304.6 0.899 0.643 (𝑘 = 50)

IRv2 F 24.0 45.2 307.3 0.906 0.658 (𝑘 = 51)
Cross-v1 H+V 12.6 27.6 285.4 0.842 0.522 (𝑘 = 76)
Cross-v2 F+H+V 14.2 31.5 293.2 0.865 0.567 (𝑘 = 70)
TSN-R50 6F 24.6 44.7 303.4 0.895 0.634 (𝑘 = 50)
TSN-X 6F 23.2 43.4 300.9 0.888 0.622 (𝑘 = 49)

TSN-IRv2 6F 27.0 47.4 304.2 0.897 0.639 (𝑘 = 48)
TSN-Mv2 6F 26.1 48.2 310.8 0.917 0.678 (𝑘 = 48)
TSN-D201 6F 26.7 47.5 307.4 0.907 0.659 (𝑘 = 51)

S
ta

ck

R50 F 13.8 30.3 290.7 0.858 0.549 (𝑘 = 71)
X F 16.5 33.4 293.9 0.867 0.570 (𝑘 = 60)
Iv3 F 15.4 33.4 295.6 0.872 0.580 (𝑘 = 72)

IRv2 F 15.7 33.5 294.8 0.870 0.573 (𝑘 = 66)
Cross-v1 H+V 11.7 25.2 277.8 0.819 0.484 (𝑘 = 79)
Cross-v2 F+H+V 16.0 33.5 296.4 0.874 0.580 (𝑘 = 57)
TSN-R50 6F 17.8 35.9 296.3 0.874 0.583 (𝑘 = 61)
TSN-X 6F 20.1 38.1 297.5 0.877 0.592 (𝑘 = 57)

TSN-IRv2 6F 19.0 37.8 298.0 0.879 0.594 (𝑘 = 61)
TSN-Mv2 6F 19.2 38.6 302.7 0.893 0.621 (𝑘 = 57)
TSN-D201 6F 21.1 41.0 303.5 0.895 0.627 (𝑘 = 53)

F = Frame
6F = 6 evenly spaced Frames
H = Horizontal
V = Vertical

78

Appendix B

Computational Performance Tables

and Additional Figures

Table B.1: Video and audio parsing computational performance per class (minutes).
Video Audio
90 fps 15.2KHz sr 37.9KHz sr

set E
xt

ra
ct

Tr
an

sf
or

m

Sa
ve

E
xt

ra
ct

Tr
an

sf
or

m

Sa
ve

E
xt

ra
ct

Tr
an

sf
or

m

Sa
ve

Total

trn avg 39.5 159.6 10.8 10.9 0.7 3.2 11.4 1.0 3.4 240.5
st dev 19.4 95.8 5.4 6.9 0.5 1.9 7.1 0.7 1.8 131.2

val avg 0.64 0.55 0.12 0.50 0.03 0.13 0.50 0.04 0.13 2.63
st dev 0.12 0.47 0.04 0.15 0.01 0.06 0.15 0.02 0.07 0.56

79

Table B.2: 2D Model Comparison of Computational Performance.
Total Training Per Epoch (s)

Model Time (s) AVG SD
effective batch size 256

ResNet34 1315136 26302.72 4955.08
Xception 923615 18472.30 1241.91

Inception-v3 1118826 22376.52 6944.31
ResNet50 1169589 23391.78 3585.26

Inception-ResNet-v2 934996 18719.92 1100.65
effective batch size 512

ResNet34 627129 12542.58 655.62
Xception 1036649 20731.98 693.79

Inception-v3 578917 11578.34 1881.93
ResNet50 937007 18740.14 998.07

Inception-ResNet-v2 1136617 22732.34 2105.14
effective batch size 1024

ResNet34 491343 9826.86 1311.86
Xception 1119828 22396.56 1039.20

Inception-v3 793462 15869.24 969.98
ResNet50 1077449 21548.98 329.75

Inception-ResNet-v2 1285862 25717.24 612.71

80

Table B.3: Expanded Comparison - Computational Performance
Training Time per Epoch (s) on 𝑔 Volta V100 GPUs

Type Backbone 𝑔 = 2 𝑔 = 4 𝑔 = 8 𝑔 = 16 𝑔 = 32 𝑔 = 64

C2D

VGG19 15256.1 8235.5 4135.0 2109.6 1106.4 580.8
M 15103.4 9693.4 4783.7 2585.2 895.6 642.5
Iv3 20920.4 10238.6 5253.3 2890.2 1509.8 493.0
R50 15261.6 9694.5 5298.6 2594.9 660.8 335.4
Mv2 15103.4 9687.1 4783.7 2592.3 1017.8 460.7
X 14997.3 8342.6 4177.8 2179.3 1120.7 502.1

IRv2 15831.6 9694.6 5019.1 2619.3 1473.0 413.5
D169 15399.2 9690.7 5019.1 3041.9 1627.4 666.6
D201 15399.4 8687.1 5019.1 3041.9 1141.9 478.9

LRCN n/a (16f) 37009.4 23740.9 10553.6 6388.7 2553.8 1835.8

C3D n/a (16f) 41622.7 21823.9 11485.8 6195.0 2851.1 2107.2
n/a (32f) 118738.2 64250.2 33911.3 18177.1 9505.5 5688

I3D Iv1 (16f) 36838.8 20456.2 14182.7 6331.1 3567.3 2303
Iv1 (64f) 85565.7 42697.6 23209.8 10864.0 5916.8 2991.8

Legend:
C2D = Traditional 2D ConvNet M = MobileNet
LRCN = Long-term Recurrent CNN Iv3 = Inception-v3
C3D = 3D ConvNet R50 = ResNet50
I3D = Inflated 3D ConvNet Mv2 = MobileNetv2

IRv2 = Inception-ResNet-v2
16f = 16 frame inputs D169 = DenseNet169
32f = 32 frame inputs D201 = DenseNet201
64f = 64 frame inputs Iv1 = Inception-v1

81

Table B.4: Exploration of Video Slicing and Sampling: computational performance
results for each slicing method (frame, horizontal, and vertical).

Sampling Total Training Per Epoch (s)
Technique Time (s) AVG SD

Fr
am

e

Gaussian, 𝜎 = 5 42961 852.22 43.22
Gaussian, 𝜎 = 10 43140 862.80 58.63
Gaussian, 𝜎 = 20 42495 867.24 47.69
Gaussian, 𝜎 = 30 43167 863.34 37.49
Gaussian, 𝜎 = 40 42900 858.06 48.68

Uniform 43006 860.12 36.50

H
or

iz
on

ta
l Gaussian, 𝜎 = 5 16793 335.86 6.82

Gaussian, 𝜎 = 10 16718 334.56 10.08
Gaussian, 𝜎 = 20 16793 335.86 8.19
Gaussian, 𝜎 = 30 16618 332.26 12.42
Gaussian, 𝜎 = 40 16493 329.86 8.80

Uniform 16509 330.18 3.95

V
er

ti
ca

l

Gaussian, 𝜎 = 5 16754 335.08 6.56
Gaussian, 𝜎 = 10 16600 332.00 4.19
Gaussian, 𝜎 = 20 16654 333.08 6.75
Gaussian, 𝜎 = 30 16844 336.88 10.30
Gaussian, 𝜎 = 40 16812 336.24 6.06

Uniform 16560 331.20 4.69

82

Figure B-1: 10-Class Fusion Experiment Computational Performance Results (with
Gaussian 𝜎 = 30 sampling). Note that training time per epoch is plotted on a log
scale as horizontal and vertical slicing took significantly longer than frame slicing.

83

Table B.5: 10-Class Early Fusion Study Computational Performance Results.
Model Slicing Sampling Total Training Training Time

Method Technique Time (s) Per Epoch (s)
N

o
Fu

si
on

Iv3

Frame Uniform 2255.92 75.20
Gaussian 6612.31 220.41

Horizontal Uniform 157684.87 5256.16
Gaussian 125018.97 4167.30

Vertical Uniform 36696.07 1223.20
Gaussian 35900.35 1196.68

IRv2

Frame Uniform 2533.86 84.46
Gaussian 6839.01 227.97

Horizontal Uniform 158155.13 5271.84
Gaussian 125072.40 4169.08

Vertical Uniform 36603.13 1220.10
Gaussian 35989.75 1199.66

S
ti

tc
h

M
et

h
od

Iv3

Frame Uniform 3797.94 126.60
Gaussian 6467.93 215.60

Horizontal Uniform 119238.54 3974.62
Gaussian 85951.04 2865.03

Vertical Uniform 24670.63 822.35
Gaussian 21221.88 707.40

IRv2

Frame Uniform 3921.33 130.71
Gaussian 6580.51 219.35

Horizontal Uniform 119851.21 3995.04
Gaussian 86454.05 2881.80

Vertical Uniform 24376.57 812.55
Gaussian 21388.96 712.97

S
ta

ck
M

et
h
od

Iv3

Frame Uniform 3719.47 123.98
Gaussian 6374.31 212.48

Horizontal Uniform 119407.69 3980.26
Gaussian 86075.06 2869.17

Vertical Uniform 24318.30 810.61
Gaussian 20907.78 696.93

IRv2

Frame Uniform 3825.68 127.52
Gaussian 6464.28 215.48

Horizontal Uniform 119521.00 3984.03
Gaussian 86241.92 2874.73

Vertical Uniform 24511.26 817.04
Gaussian 21185.52 706.18

Iv3 = Inception-v3
IRv2 = Inception-ResNet-v2

84

Table B.6: 339-Class Early Fusion Study Computational Performance Results (when
trained on 64 Volta V100 GPUs, 2 per node). Note that the last five models in
each category are trained as simple C2Ds but then used as 6-frame TSN models for
validation video-level inference as described in Chapter 5. Those models were trained
for 65 epochs rather than 50 for the other models which is why their total training
times are generally higher.

Model Slicing Total Training Training Time
Method Time (s) Per Epoch (s)

S
ti

tc
h

R50 F 37039.60 740.79
X F 36780.93 735.62
Iv3 F 39177.22 783.54

IRv2 F 43377.81 867.56
Cross-v1 H+V 35875.44 717.51
Cross-v2 F+H+V 47070.10 941.40

R50 F 45701.00 703.09
X F 47708.73 733.98

IRv2 F 45957.36 707.04
Mv2 F 43823.06 674.20
D201 F 44566.39 685.64

S
ta

ck

R50 F 34786.50 695.73
X F 34102.44 682.05
Iv3 F 35834.68 716.69

IRv2 F 80038.35 800.38
Cross-v1 H+V 40984.56 819.69
Cross-v2 F+H+V 48761.20 975.22

R50 F 42101.96 647.72
X F 41672.64 641.12

IRv2 F 44201.03 680.02
Mv2 F 57374.13 882.68
D201 F 43358.09 667.05

F = Frame
H = Horizontal
V = Vertical

85

86

Appendix C

Dataset Details

Table C.1: Moments in Time Dataset Statistics (at time of download).
Number Portion of Videos Videos
of Videos Videos Per Class Per Class

with Audio with Audio
Avg SD Avg SD

training set 802,224 61.84% 2366.5 973.8 1463.4 897.9
validation set 33,900 64.35% 100 0 64.35 17.83

87

Table C.2: Overview of Video Action Recognition Datasets.
Dataset Year Videos Classes Purpose

KTH [62] 2004 2,391 0 human actions
Weizmann [6] 2005 90 0 human actions

Hollywood2 [52] 2009 3,669 0 human actions in movies
GTEA [18] 2011 4 71 1st person actions

GTEA GAZE [17] 2012 14 40 actions w/ eyetracking
GTEA GAZE+ [17] 2012 6 44 actions w/ eyetracking

UCF101 [69] 2012 13,000 101 human actions
ADL [58] 2012 20 18 actions w/ object tracks

HMDB51 [44] 2012 7,000 51 human actions
CAD-120 [42] 2013 120 20 object affordances

JPL Interaction [61] 2013 57 7 actions at the observer
Sports-1M [39] 2014 1,000,000 487 sports

Thumos [36] 2014 20,700 101 untrimmed actions
MPII-MD [60] 2015 68,000 *N/A movie audio descriptions

Watch-n-Patch [84] 2015 458 21 human actions
ActivityNet [29] 2015 27,000 203 human actions
Instructions [3] 2016 150 5 instruction videos

YouTube-8M [2] 2016 8,00,000 *4,800 visual entities
MV [55] 2016 260,000 *58,000 visual entities & actions

Charades [64] 2016 9,848 157 human actions
Kinetics [40] 2017 306,245 400 human actions

DALY [83] 2017 510 10 daily human activities
MultiTHUMOS [88] 2017 400 65 multiple human actions

Something-Something [24] 2017 220,847 174 intuitive physics
VLOG [19] 2017 114,000 *N/A hand-object interactions

AVA [25] 2018 437 80 atomic visual actions
Moments in Time [54] 2018 1,000,000 339 human & non-human

*tags visual entities, not actions

88

Table C.3: Moments in Time Developers Validation Results [54].
Model Pretraining Domains Accuracy (%)

Top-1 Top-5
ResNet50 [28] None Spatial 23.65 46.73
ResNet50 [28] Places Spatial 26.44 50.56
ResNet50 [28] ImageNet Spatial 27.16 51.68

TSN [87] None Spatial 24.11 49.10
BNInception [37] None Temporal 11.60 27.40

TSN [87] None Temporal 15.71 34.65
TSN [87] None Temporal 15.71 34.65

2-Stream TSN [87] None Spatial+Temporal 25.32 50.10
TRN-Multiscale [93] None Spatial+Temporal 28.27 53.87

I3D-ResNet50 [9] ImageNet Spatial+Temporal 29.51 56.06
SoundNet [4] Flickr Auditory 7.60 18.00

BNInception = Batch-Normalized Inception-v1
TSN = 6 frame input Temporal Segment Network
TRN = Temporal Relations Network

89

90

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[2] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici,
Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan. Youtube-8m:
A large-scale video classification benchmark. arXiv preprint arXiv:1609.08675,
2016.

[3] Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan
Laptev, and Simon Lacoste-Julien. Unsupervised learning from narrated instruc-
tion videos. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4575–4583, June 2016.

[4] Yusuf Aytar, Carl Vondrick, and Antonio Torralba. Soundnet: Learning sound
representations from unlabeled video. arXiv preprint arXiv:1610.09001, 2016.

[5] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up
robust features (SURF). Computer Vision and Image Understanding (CVIU),
110(3):346–359, June 2008.

[6] M. Blank, L. Gorelick, E. Shectman, M. Irani, and R. Basri. Actions as space-
time shapes. 2005 IEEE International Conference on Computer Vision (ICCV),
1:1395–1402, 2005.

[7] Andrew P. Bradley. The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recognition, 30(7):1145–1159, July 1997.

[8] João Carreira, Eric Noland, Andras Banki-Horvath, Chloe Hillier, and Andrew
Zisserman. A short note about kinetics-600. arXiv preprint arXiv:1808.01340,
2018.

91

[9] João Carreira and Andrew Zisserman. Quo vadis, action recognition? A new
model and the kinetics dataset. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[10] Rizwan Chaudhry, Avinash Ravichandran, Gregory Hager, and René Vidal. His-
tograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical
systems for the recognition of human actions. 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), CVPR Workshops 2009, pages
1932–1939, 2009.

[11] Chen Chen, Xueyong Wei, Xiaowei Zhao, and Yang Liu. Alibaba-venus at ac-
tivitynet challenge 2018 – task C trimmed event recognition (moments in time).
http://moments.csail.mit.edu/challenge2018/Alibaba_Venus.pdf, 2018.

[12] François Chollet. Xception: Deep learning with depthwise separable convo-
lutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[13] Andrew Collette. Python and HDF5. O’Reilly Media, November 2013.

[14] Navneet Dalal, Bill Triggs, and Cordelia Schmid. Human detection using oriented
histograms of flow and appearance. 2016 European Conference on Computer
Vision (ECCV), 3952:428–441, 2006.

[15] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. Imagenet: A large-
scale hierarchical image database. 2009 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 248–255, 2009.

[16] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Sub-
hashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent
convolutional networks for visual recognition and description. 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2015.

[17] A. Fathi, Y. Li, and J. M. Rehg. Learning to recognize daily actions using Gaze.
2012 European Conference on Computer Vision (ECCV), pages 314–327, 2012.

[18] A. Fathi, X. Ren, and J. M. Rehg. Learning to recognize objects in egocentric
activities. 2011 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3281–3288, 2011.

[19] D. F. Fouhey, W. Kuo, A. Efros, and J. Malik. From lifestyle vlogs to everyday
interactions. 2018 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4991–5000, 2018.

[20] Vijay Gadepally, Justin Goodwin, Jeremy Kepner, Albert Reuther, Hayley
Reynolds, Siddharth Samsi, Jonathan Su, and David Martinez. AI enabling
technologies: a survey. arXiv preprint axXiv:1905.03592, 2019.

92

[21] D. Gartzman. Getting to know the mel spectrogram. towardsdatascience.
https://towardsdatascience.com/getting-to-know-the-mel-spectrogram-31bca3e2d
9d0, August 2019.

[22] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade
Lawrence, R. Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An
ontology and human-labeled dataset for audio events. 2017 IEEE International
Conference of Acoustics, Speech, and Signal Processing (ICASSP), pages 776–
780, 2017.

[23] D. Gershgorn. The Quartz guide to artificial intelligence:
What is it, why is it important, and should we be afraid?
https://qz.com/1046350/the-quartz-guide-to-artificial-intelligence-what-is-it-
why-is-it-important-and-should-we-be-afraid/, September 2017.

[24] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzyn-
ska, Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo Fründ, Peter Yianilos,
Moritz Mueller-Freitag, Florian Hoppe, Christian Thurau, Ingo Bax, and Roland
Memisevic. The "Something Something" video database for learning and evalu-
ating visual common sense. 2017 IEEE International Conference on Computer
Vision (ICCV), pages 5843–5851, 2017.

[25] Chunhui Gu, Chen Sun, David Ross, Carl Vondrick, Caroline Pantofaru, Yeqing
Li, Sudheendra Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Suk-
thankar, Cordelia Schmid, and Jitendra Malik. AVA: A video dataset of spatio-
temporally localized atomic visual actions. 2018 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6047–6056, 2018.

[26] S. Guan and H. Li. Team SYSU Submission to Moments in Time Challenge
2018. http://moments.csail.mit.edu/challenge2018/SYSU_isee.pdf, 2018.

[27] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal
3D CNNs retrace the history of 2D CNNs and ImageNet? 2018 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 6546–6555,
2018.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770–778, 2016.

[29] F C Heilbron, V Escorcia, B Ghanem, and J C Niebeles. ActivityNet: A large-
scale video benchmark for human activity understanding. 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 961–970, 2015.

[30] E. Holtham, M. R. Tora, K. Lensink, D. Begert, L. Meng, M. Holtham, E. Haber,
L. Horesh, and R. Horesh. Team XtractAI submission to Moments in Time chal-
lenge 2018. http://moments.csail.mit.edu/challenge2018/Xtract_AI.pdf, 2018.

93

[31] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7132–7141, 2018.

[32] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Weinberger.
Densely connected convolutional networks. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2261–2269, 2017.

[33] Jin Huang and Charles Ling. Using AUC and accuracy in evaluating learning
algorithms. IEEE Transactions on Knowledge and Data Engineering, 17:299–
310, March 2005.

[34] P. Y. Huang, X. Chang, and A. G. Hauptmann. Team
CMU-AML submission to Moments in Time challenge 2018.
http://moments.csail.mit.edu/challenge2018/CMU_AML.pdf, 2018.

[35] Muhammad Huzaifah. Comparison of time-frequency representations for en-
vironmental sound classification using convolutional neural networks. arXiv
preprint arXiv:1706.07156, June 2017.

[36] Haroon Idrees, Amir Roshan Zamir, Yu-Gang Jiang, Alex Gorban, Ivan Laptev,
Rahul Sukthankar, and Mubarak Shah. The THUMOS challenge on action recog-
nition for videos "in the wild". Computer Vision and Image Understanding
(CVIU), 155, April 2016.

[37] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. 2015 International Conference
on Machine Learning (ICML), 37:448–456, 2015.

[38] Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough.
Predicting the computational cost of deep learning models. 2018 IEEE Interna-
tional Conference on Big Data (Big Data), pages 3873–3882, 2018.

[39] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Fei Fei Li. Large-scale video classification with convolutional neural
networks. 2014 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1725–1732, 2014.

[40] Will Kay, João Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sud-
heendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev,
Mustafa Suleyman, and Andrew Zisserman. The Kinetics human action video
dataset. arXiv preprint arXiv:1705.06950, 2017.

[41] Alexander Kläser, Marcin Marszalek, and Cordelia Schmid. A spatio-temporal
descriptor based on 3D-gradients. 2008 British Machine Vision Conference
(BMVC), 2008.

94

[42] Hema Koppula, Rudhir Gupta, and Ashutosh Saxena. Learning human activi-
ties and object affordances from RGB-D videos. The International Journal of
Robotics Research, 32(8), July 2013.

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems (NIPS) 25, pages 1097–1105. Curran Associates, Inc., 2012.

[44] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A large
video database for human motion recognition. 2011 International Conference on
Computer Vision (ICCV), pages 2256–2563, 2011.

[45] Yann Lecun, Leon Bottou, Y. Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, November 1998.

[46] C. Li, Z. Hou, J. Chen, Y. Bu, J. Zhou, Q. Zhong, D. Xie, and
S. Pu. Team DEEP-HRI Moments in Time challenge 2018 technical report.
http://moments.csail.mit.edu/challenge2018/DEEP_HRI.pdf, 2018.

[47] Y. Li, Z. Xu, Q. Wu, Y. Cao, S. Zhang, L. Song, J. Jiang, C. Gan, G. Yu,
and C. Zhang. Team Megvii submission to Moments in Time challenge 2018.
http://moments.csail.mit.edu/challenge2018/Megvii.pdf, 2018.

[48] Z. Li and L. Yao. Team UNSW-Data Science
submission to the Moments in Time challenge 2018.
http://moments.csail.mit.edu/challenge2018/UNSW_Data_Science.pdf, 2018.

[49] Ji Lin, Chuang Gan, and Song Han. Temporal shift module for efficient video
understanding. 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pages 7082–7092, 2019.

[50] Xiang Long, Chuang Gan, Gerard Melo, Xiao Liu, Yandong Li, Fu Li, and Shilei
Wen. Multimodal keyless attention fusion for video classification. 2018 AAAI
Conference on Artificial Intelligence, pages 7202–7209, 2018.

[51] Bruce Lucas and Takeo Kanade. An iterative image registration technique with
an application to stereo vision. 1981 International Joint Conference on Artificial
Intelligence (IJCAI), 81:121–130, 04 1981.

[52] M. Marszalek, Ivan Laptev, and Cordelia Schmid. Actions in context. 2009
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
2929–2936, 2009.

[53] Brian McFee, Vincent Lostanlen, Matt McVicar, Alexandros Metsai, Stefan
Balke, Carl Thomé, Colin Raffel, Dana Lee, Frank Zalkow, Kyungyun Lee, Oriol
Nieto, Jack Mason, Dan Ellis, Ryuichi Yamamoto, Eric Battenberg, B M, Rachel

95

Bittner, Keunwoo Choi, Josh Moore, Ziyao Wei, Scott Seyfarth, nullmighty-
bofo, Pius Friesch, Fabian-Robert Stöter, Darío Hereñú, Thassilo, Taewoon
Kim, Matt Vollrath, Adam Weiss, and Adam Weiss. librosa/librosa: 0.7.1.
https://doi.org/10.5281/zenodo.3478579, October 2019.

[54] Mathew Monfort, Bolei Zhou, Sarah Adel Bargal, Alex Andonian, Tom Yan,
Kandan Ramakrishnan, Lisa M. Brown, Quanfu Fan, Dan Gutfreund, Carl Von-
drick, and Aude Oliva. Moments in Time dataset: one million videos for event
understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 42(2):502–508, February 2020.

[55] Phuc Xuan Nguyen, Grégory Rogez, Charless C. Fowlkes, and Deva Ramanan.
The open world of micro-videos. arXiv preprint arXiv:1603.09439, 2016.

[56] Travis Oliphant. Guide to NumPy, 2nd edition. CreateSpace Independent
Publishing Platform:. September 2015.

[57] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlche Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems (NIPS) 32, pages 8024–8035. Curran Associates, Inc., 2019.

[58] Hamed Pirsiavash and Deva Ramanan. Detecting activities of daily living in first-
person camera views. 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2847–2854, 2012.

[59] A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor, B. Bergeron,
V. Gadepally, M. Houle, M. Hubbell, M. Jones, A. Klein, L. Milechin, J. Mullen,
A. Prout, A. Rosa, C. Yee, and P. Michaleas. Interactive supercomputing on
40,000 cores for machine learning and data analysis. 2018 IEEE High Perfor-
mance extreme Computing Conference (HPEC), pages 1–6, 2018.

[60] Anna Rohrbach, Marcus Rohrbach, Niket Tandon, and Bernt Schiele. A dataset
for movie description. 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3202–3212, 2015.

[61] Michael Ryoo and Larry Matthies. First-person activity recognition: What
are they doing to me? 2013 IEEE Computer Vision and Pattern Recognition
(CVPR), pages 2730–2737, 2013.

[62] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local
SVM approach. 2004 International Conference on Pattern Recognition (ICPR),
3:32–36, 2004.

96

[63] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep
learning in TensorFlow. arXiv preprint arXiv:1802.05799, 2018.

[64] Gunnar Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and
Abhinav Gupta. Hollywood in Homes: Crowdsourcing data collection for ac-
tivity understanding. 2016 European Conference on Computer Vision (ECCV),
pages 510–526, 2016.

[65] Julien Simon. ImageNet — part 1: going on an adventure. Medium.
https://medium.com/@julsimon/imagenet-part-1-going-on-an-adventure-c0a629
76dc72, 2017.

[66] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for
action recognition in videos. 2014 International Conference on Neural Informa-
tion Processing Systems (NIPS), page 568–576, 2014.

[67] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. 2015 International Conference on Learning Rep-
resentations (ICLR), https://arxiv.org/abs/1409.1556. 2015.

[68] Cees Snoek, Marcel Worring, and Arnold Smeulders. Early versus late fusion
in semantic video analysis. 2005 ACM International Conference on Multimedia
(MM), pages 399–402, 2005.

[69] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A
dataset of 101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402, 2012.

[70] S. Stevens, J. Volkmann, and E. Newman. A scale for the measurement of the
psychological magnitude pitch. Journal of the Acoustical Society of America,
8:185–190, January 1937.

[71] Ju Sun, Xiao Wu, Shuicheng Yan, Loong-Fah Cheong, Tat-Seng Chua, and Jintao
Li. Hierarchical spatio-temporal context modeling for action recognition. 2009
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
2004–2011, 2009.

[72] Lin Sun, Kui Jia, Dit-Yan Yeung, and Bert Shi. Human action recognition using
factorized spatio-temporal convolutional networks (fstcn). 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 4597–4605, 2015.

[73] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, inception-
resnet and the impact of residual connections on learning. 2017 AAAI Conference
on Artificial Intelligence, pages 4278–4284, 2017.

[74] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1–9, 2015.

97

[75] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and ZB Wojna.
Rethinking the inception architecture for computer vision. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826,
2016.

[76] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spa-
tiotemporal features with 3D convolutional networks. 2015 IEEE International
Conference on Computer Vision (ICCV), pages 4489–4497, 2015.

[77] J Uijlings, I C Duta, E Sangineto, and N Sebe. Video classification with densely
extracted hog/hof/mbh features: An evaluation of the accuracy/computational
efficiency tradeoff. International Journal of Multimedia Information Retrieval
(IJMIR), 4(1):33–44, 2015.

[78] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods, 2020.

[79] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Dense tra-
jectories and motion boundary descriptors for action recognition. International
Journal of Computer Vision, 103:60–79, March 2013.

[80] Heng Wang and Cordelia Schmid. Action recognition with improved trajectories.
2013 IEEE International Conference on Computer Vision (ICCV), pages 3551–
3558, 2013.

[81] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition with trajectory-
pooled deep-convolutional descriptors. 2015 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 4305–4314, 2015.

[82] Xiaolong Wang, Ross Girshick, Harikrishna Mulam, and Kaiming He. Non-local
neural networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7794–7803, 2018.

[83] Philippe Weinzaepfel, Xavier Martin, and Cordelia Schmid. Human action local-
ization with sparse spatial supervision. arXiv preprint arXiv:1605.05197, 2016.

[84] Chenxia Wu, Jiemi Zhang, Silvio Savarese, and Ashutosh Saxena. Watch-n-
patch: Unsupervised understanding of actions and relations. 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 4362–4370,
2015.

98

[85] Zhang Xiaoteng, Bao Yixin, Zhang Feiyun, Hu Kai, Wang
Yicheng, Zhu Liang, He Qinzhu, Lin Yining, Shao Jie, and Peng
Yao. Team Qiniu submission to ActivityNet Challenge 2018.
http://moments.csail.mit.edu/challenge2018/Qiniu.pdf, 2018.

[86] Saining Xie, Ross Girshick, Piotr Dollar, Z. Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5987–5995, 2017.

[87] Y Xiong, Z Wang, Y Qiao, D Lin, X Tang, and L Van Gool. Temporal segment
networks: Towards good practices for deep action recognition. 2016 European
Conference on Computer Vision (ECCV), pages 20–36, 2016.

[88] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo Andriluka, Greg Mori,
and Fei Fei Li. Every moment counts: Dense detailed labeling of actions in
complex videos. International Journal of Computer Vision, 126:375–389, July
2015.

[89] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. 2016 British
Machine Vision Conference (BMVC), pages 87.1–87.12, September 2016.

[90] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

[91] Zhi Zeng and Qiang Ji. Knowledge based activity recognition with dynamic
bayesian network. 2010 European Conference on Computer Vision (ECCV),
pages 532–546, 2010.

[92] H. Zhang. Video action recognition based on hidden markov model combined
with particle swarm. International Journal on Computer Science and Informa-
tion Systems (IADIS), 7(2):1–17, 2012.

[93] B. Zhou, A. Andonian, A. Oliva, and A. Torralba. Temporal relation reasoning in
videos. 2018 European Conference on Computer Vision (ECCV), pages 803–818,
2018.

[94] Y. Zhou, P. Ma, and Y. Lu. Team SSS submission to Moments in Time challenge
2018. http://moments.csail.mit.edu/challenge2018/SSS.pdf, 2018.

99

