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Abstract

With growing concerns over how machine learning models behave in deployment, peo-
ple in academia and industry are more interested than ever in gaining insights into
the inner workings of these black-box models. Yet, the current toolbox to understand
neural networks is limited. In this work, | propose a new tool, called the Neuron
Activation Sorter (NAS), centered around a new paradigm in machine learning inter-
pretability. This new framing aims to use dataset examples as the main interaction
tool to learn about the model. The Neuron Activation Sorter (NAS) operates at
di Lerkent levels of granularity through two modes. The Individual Neuron mode oper-
ates at the neuron level, while the Layer Summary mode operates at the layer level.
The Layer Summary mode shows the distribution of di[erent classes over activation
values for each neuron of a specific layer through a histogram of stacked charts. The
Individual Neuron mode further explores that distribution by exposing all the dataset
images in the histogram visually. Together, they provide intuition about both micro
and macro behaviors. | explore how these tools can leverage dataset items to both
intuitively draw conclusions on the inner workings of a model and form hypotheses on
potential failures. | give concrete examples on the insights they provide by exploring
two neural networks: a basic 5-layer Convolutional Neural Network trained on the
Quickdraw dataset and a VGG-16 model trained on Imagenet. Both examples expose
a taxonomy of neurons and particular insights that are hard to access through other
tools like feature visualizations or saliency maps.
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Chapter 1

Introduction

Despite the many advances in machine learning in the past decade, most machine
learning models remain hard to understand. Great accuracies have been achieved in
many tasks. In some cases, even “superhuman” performance is observed. However,
our fundamental understanding of why these models work remains limited. They are
often referred to as “black boxes” as we do not understand how these models arrive

at their final outputs.

To address this problem, the field of interpretability (or explainable Al) has de-
veloped dilerknt techniques including feature visualization [1] [2], class activation
maps [3], and visual analytics systems [4]. However, a non-trivial understanding and
expertise of machine learning is often needed to use such techniques. Feature visu-
alization, for instance, cannot be generated purely by optimizing for the output of
neurons. The results of such straightforward optimizations are high-frequency images
full of noise. To achieve human-understandable output images, dilerent regulariza-
tion techniques are used [2]. Picking the right regularization techniques for a given
model and making educated guesses on appropriate initial hyperparameters requires
a lot of experience and expertise with feature visualization. Class activation maps
work for any Convolutional Neural Network. Both Selvaraju et. al [3] and Zhou et.
al [5] have demo code publicly available. However, the class activation maps are not

publicly browsable, so users need to download the demo, run code and write code to
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look at images of interest. Also, they do not provide software abstractions that other
researchers can easily reuse to generate class activations maps for other models and

datasets.

My thesis project proposes a new approach to interpretability of machine learning
models that is very intuitive and requires less expertise than current techniques. It
provides software abstractions for reuse with any deep learning model on GitHub !,
and the ImageNet VGG-16 demo model is open-access for interpretability researchers

to investigate and explore 2.

But first, what does interpretability mean? As Lipton explains in his survey pa-
per, interpretability is ill-defined within the research literature and the motivation
behind the research is very diverse [6]. However, the common thread for looking for
‘interpretability’ is due to a mismatch between the formal objectives of supervised
learning and the real world costs in a deployment setting [6]. Using Lipton’s frame-
work, this research project falls under the post-hoc and decomposability aspects of
interpretability. To be further precise in direction and evaluation, the tool aims to

help the user achieve the following two goals:

e Intuitively draw conclusions on the inner workings of a chosen model. These
conclusions can be on what features the neuron detects, on what “concept” a

neuron recognizes, or on what roles di [erent neurons play.

e Form hypotheses on potential failures. These failures can be misclassifications
by the model due to some biases, or failures in the dataset collection process
(mislabelled images or low-quality images). For example, | show in the results
section how a user can hypothesize that images of people holding objects with
a grass background can be misclassified as ‘tench’ by the model considered. |

also test the hypothesis to confirm it.

thttps://github.com /houssam7737/NAS
Zhttps://web.mit.edu/houssam /www /imagenet /viewer.html
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The main component the tool aims to make more transparent is the neuron. Lever-
aging dataset items achieves that transparency goal, as will be further explained. To
further scope the thesis project, the tool currently supports a single modality: vision.
Naturally, given the approach of using dataset items, image datasets were chosen
because images form a richer graphical primitive compared to other modalities like
text or audio. Research suggests that humans categorize images more easily and
faster [7]. | suspect humans are better at finding patterns across multiple images
than across multiple words or multiple audio snippets, although further study using
diLerknt datasets with diLerent modalities is needed. Because Convolutional Neural
Networks are the most successful in image classification tasks, all the examples con-
sidered are CNNs. The tool, however, supports any other neural network architecture

that can be used by the PyTorch library.

The Neuron Activation Sorter (NAS) has two modes: a summary view mode and
an individual neuron view mode. On a high-level, the tool’s pipeline works as follows

once the user has a trained model X on image dataset Y :

1. A small subset of images from the dataset Y is automatically chosen for each

class or a subset of classes of interest (e.g. 100 images per class)

2. The model X evaluates each image for each class, storing the output values of

each neuron for all chosen images

3. NAS then uses the output values to generate distribution plots for each neuron.
The user can then go through the generated histograms of frequency stacked
charts to identify neurons with interesting distributions (in summary mode), or
use code and specified filter functions to find neurons of interest. Once the user
identifies a neuron of interest, they use the individual neuron mode to further
investigate the behavior of the neuron and see the dataset images that belong
to dilerent ranges of the distribution.

Unlike saliency maps or tools like LIME, NAS does not treat the deep learning

model as one single unit, but rather enables the user to explore the behavior within
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the model. It also prevents users from overreading into particular dataset examples
(with their saliency maps) and accidentally treating noise as signal. By sampling
hundreds of images at once, NAS decreases the likelihood of having a pattern that is

a result of some random noise.

Another very popular interpretability technique is feature visualization. Feature
visualization provides a way to look into the internal mechanisms of a model, and is
very versatile in its composability. It can treat a neuron, a channel, a layer or even a
specific slice of a layer as a unit. Its limitation, however, lies in the fact that it repre-
sents each of these units (whether they are neurons or groups of neurons) by a single
generated image. In the related work section, | give examples of useful and ine [edtive
instances of these feature visualizations. NAS, with its hundreds of displayed images,

ensures that noise is seen as noise. NAS shows patterns more visually and intuitively.

NAS exposes the classes and images that not only result in the highest output
values, but also in other segments of the distribution. As a result, NAS helps the user
discover diLerknt types of neurons: specialized neurons, suppressing neurons, polyse-
mantic/bisemantic neurons, dierentiating neurons, zeroing neurons and potentially
other types that | have not discovered. The exposition of images also helps the user
form hypotheses on the features the model detects for each class, and biases it might
have. From a data science perspective, forming such hypotheses and testing them
could be the diLerkntiating factor between a successfully deployed model in the real
world and another incident involving an Al model (for example, see [8]).

The contributions of the Neuron Activation Sorter, and of the thesis project as a

whole, can be summarized as follows:

e Neuron Taxonomy: the beginning of a taxonomy of neurons is discovered

and proposed

e Data Science Tool: NAS helps the user form hypotheses on potential failures

intuitively with minimal technical knowledge, and helps find mislabelled or low
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quality dataset items quickly

e Interpretability Research: Shows to the broader research community the
value of leveraging dataset items for intepretability. Only image datasets are
explored by the thesis project, but many ideas can be reused for other modalities
like video, sound or text. Some of the software written for this thesis is general
enough to be reused with other interactive interfaces to explore these other

modalities.
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Chapter 2

Related Work

Olah et. al [1] treat dilerent interpretability methods as fundamental and compos-
able blocks. The focus is on applying this on hidden layers. One of their fundamental
ideas is to organize activation vectors and specific neurons or groups of neurons into
semantic dictionaries. Semantic dictionaries map every neuron (or group of neurons)
to its visualization with the activations sorted by magnitude. The goal is therefore to
see what the network sees. While feature visualization gives some visually interest-
ing results, we find that most feature visualizations are not intuitive to understand.
Consider figure 2-1. Is the neuron a fur detector or a floppy ear detector? To a lay

user, it is unclear which the image represents.

Figure 2-1: An example of feature visualization (Source: [1])
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Figure 2-2: Steps of feature visualization (Source: [2])
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Figure 2-3: Examples of useful feature visualizations (Source: [2])

Olah et. al’s paper on feature visualization [2] details how feature visualizations
are made and how they build an understanding of what a model sees. Feature vi-
sualization works by starting from a random noise image, and modifying that image
iteratively to optimize the objective: maximizing the output values of a single neuron,

a channel or even an entire layer (see Fig. 2-2).

When the image generated is human understandable (see Fig. 2-3), feature vi-
sualization tells a very clear story of what a particular neuron or groups of neuron
outputs a maximum or minimum value for. Fig. 2-3 clearly shows how one neuron
detects a specific ridge pattern while the other neuron detects balls.

In fact, visualizing by optimization has the added benefit of only showing features
that truly cause very high/very low output, while using dataset images does not
isolate away correlations between the images that are not responsible for the neuron
behavior [2]. However, a lot of feature visualization results in images that are not

easy to understand (see Fig. 2-4). Does the right image in Fig. 2-4 represent insects,
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Figure 2-4: Examples of unclear feature visualizations (Source: [2])

shrimps, or snakes with a very black eye?

Showing dataset images, along with their respective placement in the distribution
of output values, tells a clearer story of what the neuron does in that case. Another
issue of optimization is that it only shows us a limited facet of the neuron behavior at
the extremes - one extremely positive example and one extremely negative example.
By adding a “diversity term” to the optimization, many feature visualizations can
be generated which show a broader picture of the neuron behavior [2]. However,
exposing dataset images with the inherent distribution of output values in mind still
leads to a richer and more diverse picture of the neuron behavior. Showing these
dataset images, unlike feature visualization, will show features that are correlative
but not causative. But, while this limits NAS’s ability to pinpoint the exact features
that cause a behavior, it helps NAS better achieve other goals like making the user
more aware of the biases within the dataset and helping them formulate hypotheses

on potential failures.

OpenAl’s Microscope is a similar endeavor to NAS that aims to browse through
and look into the entire model and its neurons [9]. It enables users to interactively
explore 4 popular neural network architectures trained on ImageNet and Places, using
di Lerknt feature visualization techniques. Microscope treats those models as analo-
gous to “model organisms” in biology, and aims to shorten the feedback loop to seconds
for users who want to test a particular hypothesis about neurons’ interactions or what
a neuron detects. Our taxonomy of neurons is in line with that analogy, and NAS

also provides very quick feedback loops.

21



Cai et. al’s work further confirms our hypothesis around the power of show-
ing dataset examples to explain a neuron’s behavior [10]. 1150 users were asked to
draw di [erent objects that are part of the QuickDraw dataset. When the ML model
could not recognize the object (it misclassified it), users were shown two kinds of
explanations: normative explanations and comparative explanations. Comparative
explanations consisted of overlaying the drawn image over the most similar train-
ing examples from the top predicted classes. Normative explanations simply showed
many examples from the target class to establish an intuitive norm of how the model
views that class of objects. Users who received normative explanations expressed a
better understanding of the model, and perceived the model to have better capabil-
ity compared to their comparative counterparts. Their experiment suggests di Lerent
advantages and disadvantages for each explanation. To leverage those benefits, NAS
includes both normative and comparative aspects. Showing the dataset images is
similarly normative. The alignment of rows along the zero line and the juxtaposition
of the images along dilerent ranges of the distribution are both very comparative
aspects of the Neuron Activation Sorter. While the comparative aspects of NAS are
very diLerknt from the comparative aspect of the QuickDraw explanations, they sim-
ilarly aim to elicit surprise and ensure that the model is not overtrusted by the user.
NAS’s comparative aspects also aim to show the user the complexities of their model

and that some neurons simply do not seem to be human-interpretable.

One could argue that using labels to understand neurons’ behavior is not useful.
The literature strongly agrees that neurons in hidden layers do not detect labels,
but rather specific features [11]. However, the results achieved by models like Deep
k-Nearest Neighbors show that the intermediate representations by hidden layers of
models lead to more robust and interpretable machine learning [12]. Using the labels
of data and their intermediate representations by hidden layers, a hybrid classifier can
determine useful confidence estimates in predictions which help identify adversarial
examples. Papernot et. al also find that using intermediate representations, their

labels and nearest neighbors provide intuitive and useful explanations in interpreting
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failures of the model. Therefore, classification occurs much earlier than the final
layer, and looking into the labels of di [erknt output values leads to more robust and
intepretable models. NAS aims to similarly leverage its distribution of labels with

respect to neurons in hidden layers.
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Chapter 3

Methods

3.1 Data

The Neuron Activation Sorter expects image datasets. The tool has been successfully
used with all the following datasets: MNIST, SVHN, QuickDraw, and ImageNet. The
focus in my exploration of the tool is on QuickDraw and ImageNet since they are richer
and more complex datasets than simple digit datasets. All code for setting-up the

data properly for NAS can be found on GitHub , with Quickdraw used as an example.

The main abstraction for the data provided is a file and class called MyDataset.
The class is instantiated with a string, representing the directory holding the dataset,
and an integer n, representing the subset number of dataset images to pick per label.
The class’s main method is getitem which takes in a integer and returns a single
dataset item with its label. The integer represents the index of the dataset item. The
class can be repurposed for any dataset, and the method can be rewritten to serve
di Lerent dataset formats. In the Quickdraw example provided in the GitHub repos-
itory, the data is expected to be in .npy files representing the dilerknt class labels.
Another requirement for the Dataset class is to include a CLASSES variable which
holds the di[erent label names at their respective indexes. Since models output label
predictions as an index, the purpose of the variable is to easily map those indexes to

the label names in English.
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Note that the user has the freedom to choose the dataset they want. This could
be the training set, the test set, or even an an entirely di Lerent dataset built to detect

biases in the model.

3.2 Data Processing for the Neuron Activation Sorter

Once the Dataset class has been setup, the code will include a module that can keep
servicing a dataset image, along with its label. The next step is to set up the Model
class. The Model class needs an init method to load the pretrained model and to set
it up in eval mode. It also needs a forward method which takes in as inputs an integer
representing a layer and an image and outputs the model’s output at the specific layer

for that input image.

Using the Dataset module and the Model module, the user can now iterate through
the dataset images and get the output at di Lerknt layers. Some models might require
further preprocessing, in which case the user either needs to integrate that in the
Dataset module, or include that during the generation of neuron outputs. Once those
outputs have been generated, they can be reshaped to be mappings of neurons and
their activations for all dataset images. These values will then need to be saved as
.csv files, either locally or on the cloud. Each .csv file contains the output values of a
specific neuron at a specific layer. During my experimentation, | stored my generated

files on Amazon Web Services S3.

One optional step here is to use code to filter through neurons and preselect the
ones to look at and investigate. The Jupyter notebook in the GitHub repository in-
cludes some examples that can be used. More sophisticated functions that evaluate

distributions and look for statistical patterns could play an important role here.

Note that the process so far is completely dataset-agnostic. The abstraction allows
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Figure 3-1: The Layer Summary Mode. Legend in Fig. 3-3

Figure 3-2: The activation footprint of neuron 0 at layer 33. Model: Vgg-16. Dataset:
ImageNet

the neural network to be of any form, and the dataset to be of any modality. In theory,
the infrastructure mentioned so far can be reused later with a tool that targets text,

audio or other datasets. A more general NAS can be built in the future.

3.3 Layer Summary Mode

The Layer Summary Mode enables the user to see and scroll through the “footprint”
of the neurons of a chosen layer (Fig. 3-1). Each row represents a neuron (Fig. 3-2).

Looking at a single row, the left value is the smallest outputted value by the neu-
ron. The right value is the highest outputted value by the neuron. Together, these
values state the full range of the distribution. This full range is then divided into
m equal ranges. m is a variable that can be changed by the user, but I set it to 30
ranges for the experiments in this thesis. Each of these ranges is represented as a

cell in the row. These cells contain stacked charts which represent the distribution of
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Legend:
« tench

« casette player

« church

« golf ball

Figure 3-3: The 10 out of the 1000 classes used for the ImageNet experiments

classes within the range. In other words, the stacked chart embodies the distribution
of classes of images that caused output values within that range for the neuron. The
Layer Summary Mode includes a legend mapping the colors to the classes (Fig. 3-3).

NAS uses the usual categorical colors to easily di[erkntiate between classes.

Empty cells represent ranges with no output value by the neuron. Some stacked
charts are wider than others. While the stacked chart represents the percentage
distribution of the classes, the width communicates the ballpark number of the im-
ages belonging to that distribution. Therefore, a full-width stacked chart with a
single color is more telling than a thin stacked-chart with a single color. The first
is a stronger signal that many dataset items of a particular class have output values
within a specific range. Experimentally, some ranges can have only one or two output
values, while others can contain hundreds. Because of the small space within the
cell and the exponential di[erknce in the number of images within each range, NAS
does not use a continuous scaling of the width of the stacked charts to communicate
count. Instead, the tool uses three discrete widths. The smallest width is used for
ranges containing 1 to 3 outputs. The medium width is used for ranges containing 4
to 11 outputs. The full width is used for any number beyond that. Experimentally,
I have found that most ranges either include a couple images, around a dozen, or
beyond a hundred. Those findings motivated the decision to not use the traditional
stacked chart, where the height communicates count, and instead use the width. It is

much harder to see multiple colors on a short chart than on a longer one, and using
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a discrete system on the height would be very counter-intuitive. Those findings also
motivated the boundaries between the discrete widths. These specific boundaries can
be modified by the user and will depend on the setup of the Dataset module. In my
experiments, | used a subset of 100 to 200 images per class. In those cases, the above
thresholds seem to be useful. If a user uses a much higher subset of images per class,

I suspect the thresholds will need to be modified.

The full-width does not occupy the full cell; instead, some white space is present.
The goal of the white space is to help the user more easily discern between cells and
compare them horizontally. A major concern with the Layer Summary in particular,

and NAS in general, is not to cause cognitive overload.

Each row has a dilerknt range because each neuron has dilerent maximum and
minimum values. Since these values are multiplied by dilerent weights after the
hidden neuron outputs its value, the exact values do not particularly matter. The
distribution, and where di Lerknt images and labels fall, is what is indicative of signal.
Another potential major indication of signal, or rather lack thereof, are negative
values. Since many models use ReLU (Rectifier Linear Units) functions, negative
output values of a neuron will turn to 0 if the neuron has a ReLU activation function.

A ReLU function is defined as:

Relu(x) = maz(0, z)

In the Layer Summary Mode, the zero line is hence highlighted using a thicker
bar than the other separators between cells. To further emphasize its importance,
all rows are aligned according to the zero line. This alignment helps the user un-
derstand that what the network sees in further layers are the distribution to the
right, and that all values to the left are essentially turned to 0 if and only if a ReLU
function comes after the neuron. Because of the zero line and its importance, the
ranges are not exactly equal to each other. If they were, one cell would include values

both below 0 and above 0. For the zero line to be accurate, the range right before
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