
Chasing Zero Variability in Software Performance

by

Severyn Kozak

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 1, 2020

Certified by. .
Charles E. Leiserson

Professor
Thesis Supervisor

Certified by. .
Tao B. Schardl

Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Chasing Zero Variability in Software Performance

by

Severyn Kozak

Submitted to the Department of Electrical Engineering and Computer Science
on May 1, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The ability to understand and control software performance variability is important
for writing programs that reliably meet performance requirements. It is also crucial
for effective performance engineering because it allows the programmer to collect
fewer datapoints and still draw statistically significant conclusions. This wastes less
developer time and fewer resources, and additionally makes processes like autotuning
significantly more practical. Unfortunately, performance variability is often seen as
unavoidable fact of commodity computing systems. This thesis challenges that notion,
and shows that we can obtain 0-cycle variability for CPU-bound workloads, and
<0.3% variability for workloads that touch memory. It shows how a programmer
might take an arbitrary system and tease out and address sources of variability, and
also provides a comprehensive glossary of common causes, making it a useful guide
for the practical performance engineer.

Thesis Supervisor: Charles E. Leiserson
Title: Professor

Thesis Supervisor: Tao B. Schardl
Title: Research Scientist

3

4

Acknowledgments

Thank you Professor Charles E. Leiserson, Dr. Tao B. Schardl, and Tim Kaler for

their supervision.

Thanks to mom, dad, Tysia, and the rest of family for all the love and support.

Thanks to Tom, Jorge, Anton, Gannon, Pau, Collin, Elley, and all the rest for making

the year memorable.

5

6

Contents

1 Introduction 15

2 Background and Approach 19

2.1 A Sampler of Variability Sources . 19

2.2 Tackling Variability Step-by-Step . 21

2.3 The Environment . 22

2.4 Code and Time Measurement . 23

3 Zero Variability in CPU Workloads 25

3.1 CPU Workload . 26

3.2 Variability on a Busy System (Worst-Case) 27

3.3 Variability on a Quiet System (Average-Case) 28

3.4 What Causes Our Variability? . 29

3.5 Disabling Interrupts with a Kernel Module 30

3.6 Translating to Userspace . 33

3.6.1 isolcpus . 33

3.6.2 Workqueue Affinity . 35

3.6.3 Disabling Unnecessary Services 36

3.6.4 IRQ Affinity . 36

3.7 Timer Interrupts . 37

3.8 Dynamic Ticks . 37

3.9 Zero-Cycle Variability . 37

3.10 Branch Prediction . 39

7

3.10.1 Branch-Heavy Workload . 40

3.10.2 Zero-Cycle Variability via Branch Predictor Warmup 42

3.10.3 Resetting the Branch Predictor 44

4 𝜖 Variability in Memory Workloads 45

4.1 The Memory Subsystem . 45

4.1.1 Virtual Memory . 46

4.1.2 Translation Lookaside Buffer 46

4.1.3 Memory Caches . 46

4.1.4 Cache Coherence . 47

4.1.5 Memory Bandwidth . 47

4.2 Memory Benchmark . 48

4.3 L1, L2, DRAM variability . 51

4.4 Interference from Other Cores . 53

4.4.1 Interference Case Study: Lightweight User Script 53

4.4.2 Interference Case Study: Memory Intensive Workload 54

4.4.3 Mitigating System Activity . 55

5 Quiescing a System 57

5.1 Actionable Steps . 57

5.1.1 DVFS . 57

5.1.2 SMT . 59

5.1.3 Core Isolation . 60

5.1.4 IRQ Affinities . 61

5.1.5 Workqueue Affinities . 61

5.1.6 Reducing System Activity . 61

5.1.7 Reducing the Timer Tick . 62

5.1.8 ASLR . 62

5.2 Limitations . 63

5.2.1 Un-pinnable Interrupts and Workqueues 63

5.2.2 Global Memory Interference 63

8

6 Conclusion 65

A 69

A.1 Building A Custom Linux Kernel on AWS 69

9

10

List of Figures

2-1 lstopo visualization of the hardware on an a1.metal instance. . . . 23

3-1 Simple CPU benchmark. 26

3-2 The assembly corresponding to Figure 3-1. 27

3-3 Runtimes on a quiet system. 29

3-4 Contents of /proc/interrupts (some text omitted). 30

3-5 Kernel module wrapper for our benchmark code. 31

3-6 Runtimes from the kernel module. 32

3-7 Contents of /proc/sched_debug for core #15. 34

3-8 kworkers in ps -ef output. 35

3-9 Kernel command line that isolates CPUs and engages dynamic ticks. 38

3-10 Userspace runtimes on an isolated core demonstrating zero-cycle vari-

ability. 39

3-11 Implementation of a prime number sieve, an example of CPU-bound

code with heavy branching. 41

3-12 The assembly corresponding to Figure 3-11. 42

3-13 Branch-heavy code demonstrating eventual zero-cycle variability. . . . 43

4-1 A simple workload for assessing memory variability. 49

4-2 The assembly corresponding to the memory workload in Figure 4-1. . 50

4-3 Runtimes (with very tight error bars) for 300 trials of each of many

combinations of number of memory accesses and working-set size. Note:

logarithmic scale. 51

11

4-4 Running times of L1 Cache benchmark demonstrating intermittent in-

terference due to user script running on unrelated core. 54

4-5 Performance variability with and without intermittent interference. . 55

5-1 Running times of the same workload run for consecutive trials, with

and without clock-frequency scaling. 59

5-2 Running times of the same workload, with a twin hyperthreaded core

that is first busy and then idle. 60

A-1 The steps in compiling our kernel. 70

12

List of Tables

3.1 Variability obtained by each refinement of our testing environment. . 26

3.2 Runtimes on a busy system running make -j 28

4.1 Variability of 16x iterations for different working-set sizes. 53

13

14

Chapter 1

Introduction

Software performance variability is often seen as an unavoidable fact of commodity

computing environments. Run the same program ten times and you will likely see

ten (very) different running times. Researchers attribute this to the fact that modern

computing systems are full of complex features [1] designed to maximize the aver-

age throughput of dozens, if not hundreds, of programs running concurrently. While

these features improve overall system performance, they make it extremely difficult

to obtain consistent performance for a single program. Even the simplest computa-

tional workload faces interference from operating system preemption [2], interrupts [3],

memory bandwidth congestion, address space layout [4], clock frequency throttling,

and much more. More complicated programs have even more layers of variability,

including (but certainly not limited to) unpredictable disk-access latencies, filesystem

caches, and non-uniform memory access (NUMA).

The ability to understand and address sources of variability is important for sev-

eral reasons: obtaining performance guarantees, simplifying performance engineer-

ing, and knowing how to make our systems generally more performant. This thesis

demonstrates how we can obtain zero-cycle variability for CPU-bound workloads and

minimize variability for memory-bound workloads, and provides a glossary of different

sources of variability and how they can be addressed.

Understanding variability lets us write software that consistently meets perfor-

mance requirements. In the context of high-performance software, programmers gen-

15

erally care about a mixture of latency and throughput. For example, if a video game

plays at a rate of 60 frames per second, then each physics update step must more-or-

less reliably complete within 1
60

th of a second, and consequently minimizes latency.

Similarly, a middle-layer HTTP API within a large piece of web infrastructure might

have a Service Level Agreement that demands certain latency and jitter guarantees.

A database update running in the background might optimize more heavily for over-

all throughput if its result is not immediately required. Other code must equally

prioritize both latency and throughput. Understanding and controlling variability is

critical for ensuring these kinds of performance goals are met.

Obtaining consistent performance measurements means less noisy data, which

makes performance engineering tremendously easier. In a noisy environment, a pro-

grammer must collect many datapoints to have confidence that their code is indeed

getting faster. This wastes both computing resources and programmer time, and also

occasionally makes things like autotuning simply intractable because of the blowup

that occurs from combining high dimensionality with the large number of necessary

datapoints [5]. Reducing variability addresses all of these problems.

Controlling variability allows the programmer to improve the overall performance

of their system. Any kind of variability experienced by a program is often due to

avoidable noise. If we understand how to identify and mitigate this noise, we can

shield our programs from interference and secure a performance improvement across

the board.

Variability has been studied extensively, but existing research does not provide a

coherent guide for taking a commodity system and using it to obtain hyper-consistent

performance for deterministic workloads. Prior work has produced everything from

software suites for reproducing performance variations [6], to machine learning tech-

niques for diagnosing performance issues [7], to studies of how memory layouts impact

performance [4, 8]. Becker and Chakraborty [1] provide an excellent glossary of the

hardware and software features in an average computer that might cause variability.

Oliveira, Petkovich, and Fischmeister [8] investigate a specific source of variability,

memory layout. My research builds on existing work by providing a unified analysis

16

of many discrete sources of variability, the baseline amount of variability that we

can expect from each one, and how we address them individually, with the aim of

demonstrating an exploratory process of taking an arbitrary commodity system and

identifying its sources of variability one-by-one.

My thesis research provides a comprehensive glossary of sources of variability, and

demonstrates how one might go about mitigating variability for increasingly complex

workloads. Importantly, the target environment is a “commodity computing system”

– that is, general-purpose hardware paired with a general-use operating system, like a

desktop or cloud machine, rather than a niche setup like a supercomputing cluster or

a realtime operating system. In particular, I target bare-metal Amazon Web Services

(AWS) servers with ARM processors running the Linux operating system. In this

environment, I start off with a very simple CPU-bound workload, slowly scale it up

by adding features that use additional parts of the hardware and operating system

– branch prediction, memory accesses, etc. – and at each level see how well I can

cope with the new variables. I find that I can obtain zero-cycle variability for CPU-

bound workloads, and as low as 0.3% variability for workloads that touch memory. I

believe this approach is useful both because it shows how a programmer might take

an arbitrary new system and start teasing out the causes of noise, which otherwise

may feel like a daunting problem with no clear starting point, and because it provides

an extensive reference for sources of variability in general. This experimentation

involves the interrupt subsystem, branch predictor implementations, tickless kernels,

cross-machine memory interference, and more.

The structure of this thesis is as follows. Chapter 2 more thoroughly frames the

problem, enumerating a sample list of sources of variability, describing the hardware

and software used in my testing, and justifying my approach and testing methodology.

Chapter 3 describes how I obtain consistent performance for a workload that runs en-

tirely on the CPU without performing any data memory accesses. Chapter 4 describes

how I minimize variability for workloads that make extensive data memory accesses.

This concludes the hands-on story of how I reduced variability for increasingly com-

plicated workloads. Chapter 5 provides a thorough glossary of different sources of

17

variability, and takes a closer look at each individual one (interrupts, hyperthreading,

etc.). Chapter 6 concludes by summarizing my work.

18

Chapter 2

Background and Approach

The problem of variability is a daunting one, due to a large number of interleaved

sources of variability that may be difficult to identify and separate out. We present

examples of the kinds of variability we may see (Section 2.1), justify our experimental

approach (Section 2.2), describe our testing environment (Section 2.3), and discuss

our code and timing methods (Section 2.4).

2.1 A Sampler of Variability Sources

There are many orthogonal sources of variability in a typical computing environ-

ment. The following list enumerates some important ones, and gives a sense of the

complexity of the problem.

∙ CPU clock frequency scaling (e.g. Intel Turbo Boost): modern machines

support clock frequency scaling (i.e. lowering and raising the frequency of the

CPU clock), both to reduce power usage and to avoid overheating.

∙ Simultaneous multithreading (abbreviated as SMT; e.g. Intel Hyper-

Threading): many modern CPUs have cores that support simultaneous multi-

threading, or the semi-concurrent execution of two different instruction streams.

This offers a speedup that varies between that of having one and two separate

19

cores, but also introduces room for processes running on mutually multithreaded

cores to interfere with one another.

∙ Scheduler preemption: general-purpose operating systems are designed to

concurrently execute dozens of user processes. Without special care, a user

process will be frequently preempted by the operating system scheduler to allow

other processes to run.

∙ Interrupts: a program can be preempted by more than just competing pro-

cesses. At a lower level, interrupts are constantly getting delivered to each CPU,

preempting the running process regardless of whether it has been isolated from

preemption by other processes or not.

∙ Branch prediction: branch prediction revolves around maintaining a cache

of branch instructions and their histories (“taken”/“not taken”). This can lead

to variability depending on the initial state of the branch predictor cache when

the user program starts execution.

∙ Memory cache contention: on multi-core CPUs, higher levels of cache (L2,

L3) are generally shared between cores, which opens up the possibility of cache

contention from processes running on other cores.

∙ Memory bandwidth contention: similarly, memory bandwidth is limited,

and thus a memory-intensive process running on one core might be artificially

throttled by memory-intensive processes running on nearby cores.

∙ Address Space Layout Randomization (ASLR): ASLR is a security mech-

anism that randomizes the location of different segments of memory, making

attacks like buffer overflow exploits more difficult. Unfortunately, it also results

in potentially variable performance, in particular if it changes the way certain

memory addresses map into cache.

∙ Non-Uniform Memory Access (NUMA) effects: in NUMA architectures,

each core generally has its own physically proximal block of main memory,

20

and together these constitute a global view of main memory. The downside is

that any one core has varying access latencies to different chunks of memory,

depending on how far away they are, which introduces a source variability that

is difficult to control for.

∙ Unpredictable disk latencies and filesystem cache: reading/writing the

disk introduces a slew of additional problems. Disk latencies are relatively large

and unpredictable, and the operating system will often cache the contents in

memory to accelerate subsequent lookups.

∙ Memory refresh: DRAM constantly leaks charge and thus needs to period-

ically refresh itself by reading values from cells and writing them back. This

leaves it periodically unable to service requests and stalls the CPU, which can

potentially lead to large variability in micro-benchmarks.

This list conveys the sheer challenge of tackling performance variability. Where

do you begin? With so many interleaved sources, all of different magnitudes, how do

you know if you are progressing in the right direction when tweaking your system?

This thesis demonstrates that, while sources like clock frequency scaling or SMT

are trivial to disable or prevent, others, like memory cache/bandwidth contention or

branch prediction variability, are essentially unavoidable.

2.2 Tackling Variability Step-by-Step

Section 2.1 suggests that approaching the general problem of variability in our soft-

ware requires the ability to isolate individual variables (like hyperthreading, or system

calls, or network interrupts) so that we can investigate them independently. For that

reason, my thesis adopts the following methodology:

∙ I start off with a very simple CPU-bound workload that performs simple math

and logic operations on register values.

21

∙ I see how much I can reduce the variability of that workload. Any remaining

variability is a sort of “baseline variability” that will manifest in any workload

whatsoever on our system, because the workloads will only increase in complex-

ity and pull in more potential sources of variability.

∙ One by one, I make the workload “more variable” by adding in what I suspect is

a single additional source of variability. For example, first I add heavy use of the

branch predictor. Then, I add substantial use of memory (which unfortunately

pulls in several sources of variability that are hard to disentangle).

∙ At each step, I repeat the process of seeing how low I can get the variability.

This reveals the baseline variability of each source.

2.3 The Environment

The computing environment consists of a commodity server running Ubuntu, a Linux-

based operating system. I use the a1.metal instance type provided by Amazon Web

Services (AWS), a large cloud provider. Importantly, a1.metal instances are “bare-

metal” in that they provide complete, direct access to the hardware and memory of

the system – the machines are single-tenant and do not have a hypervisor. This is

important because we have no control over other users in multi-tenant setups and the

interference they can cause by utilizing the same underlying hardware.

Figure 2-1 shows the layout of an a1.metal instance. Each instance has 16 ARM c○

Cortex-A72 processors organized into 4 clusters of 4 cores each. Each core has a

private L1 instruction cache (48KB) and L1 data cache (32KB). Each cluster of 4

cores has a shared L2 cache (2048KB), and the machine as a whole has 31GB of main

memory. Note that the system does not have NUMA, i.e. all memory accesses go to a

single, monolithic block of main memory. Moreover, cores do not have simultaneous

multithreading (known as Hyper-Threading on Intel processors), nor does the system

have DVFS enabled. Thus, two potential sources of variability are already dealt with.

22

Figure 2-1: lstopo visualization of the hardware on an a1.metal instance.

The instance runs Ubuntu 18.04.3 LTS, with Linux kernel version 4.15.0-1056-aws

(an AWS patch of Linux 4.15.0).

2.4 Code and Time Measurement

All benchmark code is written in C, which allows us to easily cross-reference the code

we write with the assembly it generates. When we “benchmark” a piece of code, we

write that code into a function and run it some number of times (as few as ten and as

many as a few thousand) within the same process. The running time of each execution

is measured in CPU cycles, recorded by reading the CPU Cycles performance counter.

Timing code this way is extremely fast and unintrusive. Unless otherwise stated,

code samples are compiled with GCC version 7.5.0 and -O3 (maximal optimizations

enabled).

23

24

Chapter 3

Zero Variability in CPU Workloads

This chapter demonstrates how the variability of a CPU-bound workload can be

reduced from an almost unbounded worst-case value to exactly zero. The first step

is to devise a workload (Section 3.1) and establish both a worst-case variability by

running it on a busy system (Section 3.2), and a best-case variability by running it

on a quiet system (Section 3.3). We then hypothesize that interrupts are causing our

variability in both cases (Section 3.4), and test this by writing our benchmark into a

kernel module that disables interrupts and find that we obtain zero-cycle variability

(Section 3.5). Unfortunately, rewriting an arbitrary benchmark as a kernel module

is impractical, so we investigate whether we can translate our results to user space.

We find that by configuring the kernel via isolcpus , workqueue affinities, and IRQ

affinities, we can obtain an almost identical setup (Section 3.6). The last step is to

remove the timer tick, accomplished by building a Linux kernel with full “dynamic

ticks,” or support for tickless cores (Sections 3.7 and 3.8). With this configuration we

obtain zero-cycle variability for our CPU workload in user space. Finally, we explore

variability in a branch-heavy CPU-bound workload, and find that we can obtain zero-

cycle variability by warming up the branch predictor with trial runs (Section 3.10).

25

Table 3.1 shows the variability obtained by each refinement of our testing envi-

ronment.

version # variability

busy system 10,000%

quiet system 0.00001%

kernel module 0%

user space w/o dyn. ticks 0.001%

user space w/ dyn. ticks 0%

Table 3.1: Variability obtained by each refinement of our testing environment.

3.1 CPU Workload

We devise a workload that resides entirely on the CPU. That is, outside of pulling

instructions from memory, it performs no memory accesses and performs simple math-

ematical and logic operations on values residing in registers. Figure 3-1 shows the

C code. The “magic constants” are arbitrary and the whole function computes some

sort of hash value.

1 unsigned int cpu_workload(void){
2 unsigned int x = 0;
3 for(size_t ind = 0; ind < 61747800; ind++){
4 x = ((x ^ 0x123) + x * 3) % 123456;
5 }
6 return x;
7 }

Figure 3-1: Simple CPU benchmark.

26

1 +0: <cpu_workload>: // label
2 +0: mov x4, #0x6301 // data move
3 +4: mov x2, #0x3258 // data move
4 +8: movk x4, #0x78e6, lsl #16 // data move
5 +12: mov x3, #0xe240 // data move
6 +16: movk x4, #0x2ba9, lsl #32 // data move
7 +20: movk x2, #0x3ae, lsl #16 // data move
8 +24: mov x0, #0x0 // data move
9 +28: mov x5, #0x123 // data move

10 +32: movk x4, #0x43f, lsl #48 // data move
11 +36: movk x3, #0x1, lsl #16 // data move
12 +40: eor x1, x0, x5 // logical or
13 +44: add x0, x0, x0, lsl #1 // add
14 +48: add x1, x1, x0 // add
15 +52: subs x2, x2, #0x1 // subtract
16 +56: lsr x0, x1, #6 // right-shift
17 +60: umulh x0, x0, x4 // unsigned multiply
18 +64: lsr x0, x0, #5 // right-shift
19 +68: msub x0, x0, x3, x1 // multiply-subtract
20 +72: b.ne 0xfe8 <cpu_workload+40> // branch not-equal
21 +76: ret // function return

Figure 3-2: The assembly corresponding to Figure 3-1.

Annotated assembly code corresponding to Figure 3-1 is shown in Figure 3-2. Note

the singular branch instruction on line 20, and the otherwise simple data move/com-

putation instructions.

3.2 Variability on a Busy System (Worst-Case)

We first want to establish a sense of the magnitude of variability we can see on a loaded

system – after all, the average machine is often busy running background processes,

handling network requests, writing the disk, and more. We simulate heavy load by

building the Linux kernel from source [9] in the background with make -j [10],

which parallelizes the build across all available cores.

The running times of 10 trials of our benchmark program are shown in Table 3.2

27

and demonstrate tremendous variability. There is almost a 100x difference between

some of the runtimes.

Although our method of simulating “system load” is extreme in that few systems

are ever so busy on all cores for an extended period of time, it gives us a sense of what

can happen to individual trials of a benchmark in the face of even a momentary spike

in system activity. Without guarantees on how other work on the system interferes

with our benchmark, we almost have no upper bound on how much variability we

can exhibit.

trial # cycles

1 999,578,313

2 1,004,946,697

3 1,066,088,564

4 82,034,583,052

5 997,181,993

6 81,561,105,408

7 998,875,212

8 1,001,940,911

9 1,001,420,233

10 999,453,144

Table 3.2: Runtimes on a busy system running make -j .

3.3 Variability on a Quiet System (Average-Case)

Next, we aim to understand our best case variability, i.e. the variability observed

on a quiet system with minimal activity. Without the artifical make -j workload,

our system is not doing much at all besides running some low resource background

processes, many of which we can disable.

Running our benchmark on this relatively quiet system gives the extremely low

variability times in Figure 3-3. The range is only 256 cycles (between trials #9 and

28

#10), which corresponds to an approximately 2.6 ·10−5% difference. From the stand-

point of practical engineering, this is already very low, but it poses the question of

whether we can achieve exactly zero-cycle variability. Moreover, while this particu-

lar execution exhibited low variability, Section 3.2 demonstrates that an unexpected

spike in system load could dramatically increase it. In other words, without hard

guarantees of isolation, we cannot reliably expect low variability.

trial # cycles

1 987,973,224

2 987,973,261

3 987,973,227

4 987,973,261

5 987,973,201
...

...

996 987,973,261

997 987,973,183

998 987,973,279

999 987,973,124

1,000 987,973,435

percentile
cycle difference

from min.

90th 228

99th 250

100th 256

Figure 3-3: Runtimes on a quiet system.

3.4 What Causes Our Variability?

In the absence of simultaneous multithreading and clock frequency scaling, which are

the main culprits in CPU-bound variability, we turn to interrupts as the most likely

explanation of any variability we see. Processor interrupts by definition interrupt our

workload to allow other things to run [11, ch. 7].

We can roughly split interrupts into two categories: non-timer interrupts, which

are easy to get rid of, and timer interrupts, which are hard to get rid of. Timer

interrupts run at a regular frequency and kick the scheduler into action, which checks,

29

for example, whether the current process has exhausted its time slice or whether a

higher priority process is waiting to run. Timer interrupts also allow the system

to collect CPU utilization statistics and more. Thus, the way Linux works out-of-

the-box, per-core timer interrupts are unavoidable. All other frequent interrupts on

our system, however, can be conceivably moved to a small subset of “housekeeping”

cores [12], so that the cores running our benchmark code do not have to sporadically

process interrupts from the network card or disk controller.

We can get a sense of the interrupts occurring on our system by reading the

/proc/interrupts file, which tells us the number of each type of interrupt delivered

to each core in our system since boot [11, ch. 7]. For example, Figure 3-4 tells us that

core 15 has processed 4,434 arch_timer (the name of the timer interrupt) interrupts

since boot. We can also record the precise number of interrupts that arrive between

two points in our code by reading the relevant CPU performance counters [13].

1 $ cat /proc/interrupts
2 CPU0 ... CPU15
3 1: 0 ... 0 GICv3 25 Level vgic
4 2: 6455 ... 4434 GICv3 30 Level arch_timer
5 3: 0 ... 0 GICv3 27 Level kvm guest vtimer
6 5: 0 ... 0 GICv3 147 Level arm-smmu global
7 6: 0 ... 0 GICv3 149 Level arm-smmu-context-fault, ...
8 8: 0 ... 0 GICv3 23 Level arm-pmu
9 ...

Figure 3-4: Contents of /proc/interrupts (some text omitted).

3.5 Disabling Interrupts with a Kernel Module

We can test whether interrupts are the source of our variability by running our bench-

mark with interrupts disabled. Unfortunately, this is easier said than done. Interrupts

are a low-level feature of the computing stack and largely invisible to the user. Some,

30

like the timer interrupt, are hardwired into the kernel. Note that this is the case for

the Linux kernel – if we were using an operating system purpose built for e.g. real-

time software, this would likely not be the case, since that operating system would

optimize for exactly this usecase. Linux, on the other hand, requires taking intrusive

measures to obtain this level of isolation.

While disabling interrupts is not possible from user space, it is certainly possible

from kernel space [11, ch. 7]. Drivers and other critical sections of kernel code that

cannot stand interruption do it all the time. Thus, we can write our benchmark into

a kernel module. A kernel module is a piece of kernel code that can be loaded on

demand, meaning we can write kernel code without having to modify and recompile

the kernel.

1 #include <linux/init.h>
2 #include <linux/module.h>
3 #include <linux/kernel.h>
4 #include <linux/sort.h>
5 #include <linux/smp.h>
6 #include <linux/delay.h>
7
8 #include "cpu.h"
9

10 static DEFINE_SPINLOCK(lock);
11
12 static int __init lkm_example_init(void) {
13 unsigned long flags;
14 spin_lock_irqsave(&lock, flags);
15 runBenchmark();
16 spin_unlock_irqrestore(&lock, flags);
17 return 0;
18 }
19
20 static void __exit lkm_example_exit(void){}
21
22 module_init(lkm_example_init);
23 module_exit(lkm_example_exit);

Figure 3-5: Kernel module wrapper for our benchmark code.

31

Writing a kernel module requires a boilerplate Makefile taken from the ker-

nel documentation and some template code, as shown in Figure 3-5. The call to

spin_lock_irqsave(&lock, flags) disables interrupts, runBenchmark() runs

the benchmark code (exactly the same code that we run in user space), and

spin_unlock_irqrestore(&lock, flags) re-enables interrupts.

We find that the benchmark now exhibits zero-cycle variability. We compile and

load this kernel module via insmod [14], and view its output in the kernel ring buffer

via dmesg [15]. The runtimes are reported in Figure 3-6, and are essentially perfectly

consistent. Ignoring the first and last trial, each one runs for exactly 987,964,834 cy-

cles. The discrepancy in the first and last trial are likely due to a branch misprediction

in the first and last iteration of the for -loop running the trials of the benchmark

code – we can loosely verify this by increasing and decreasing the number of trials,

and observing that it is always the first and last iteration that differ from the others,

and also by looking at branch prediction performance counters.

trial # cycles

1 987,964,839

2 987,964,834

3 987,964,834

4 987,964,834

5 987,964,834
...

...

996 987,964,834

997 987,964,834

998 987,964,834

999 987,964,834

1000 987,964,830

percentile
cycle difference

from mode

90th 0

99th 0

100th 5

Figure 3-6: Runtimes from the kernel module.

32

We can conclude that interrupts were causing our variability, and that disabling

them lets us achieve zero-cycle variability in a CPU-bound workload.

3.6 Translating to Userspace

We investigate how to translate our results in Section 3.5 to user space, and find that

a number of kernel configuration options bring us close. This is important because

it is neither feasible nor recommended to convert every piece of benchmarkable code

into a kernel module that disables interrupts. At the very least, it is an abuse of Linux

and does not mirror the environment a user space application runs in. The options

that prove useful to us are isolcpus , workqueue affinities, and IRQ affinities.

3.6.1 isolcpus

Our first tool is isolcpus [16], a kernel parameter that isolates certain cores from

general scheduler activity. This allows us to prevent user processes from getting

scheduled on a core, though it does nothing about kernel processes (like kworkers,

for example, which perform work required by the kernel and are discussed in Sec-

tion 3.6.2).

Adding isolcpus=8-15 to our kernel commandline via /etc/default/grub

isolates all cores in the range 8-15. If we run something like make -j again, we

observe that that only cores 0-7 have make processes running on them.

We can consult /proc/sched_debug to see that the isolated cores only have

kernel processes scheduled on them. /proc/sched_debug provides a wealth of per-

core scheduling information, including a list of the processes scheduled on each core, as

shown in Figure 3-4. In this case, we see that core 15 has only cpuhp , migration ,

ksoftirqd , and kworker scheduled on it, all of which are instantiated by the

kernel.

33

1 $ cat /proc/sched_debug
2 ...
3 cpu#15
4 .nr_running: 0
5 ...
6 runnable tasks:
7 S task PID ...
8 ------------------------- ...
9 S cpuhp/15 98 ...

10 S migration/15 99 ...
11 S ksoftirqd/15 100 ...
12 I kworker/15:0 101 ...
13 I kworker/15:0H 102 ...
14 I kworker/15:1 367 ...
15 I kworker/15:1H 1264 ...

Figure 3-7: Contents of /proc/sched_debug for core #15.

34

3.6.2 Workqueue Affinity

We can partially isolate our cores from kernel threads by setting workqueue affinities.

The kernel often creates work that has to be deferred, or needs to sleep() , or that

simply needs to be fairly load balanced with all the other work that needs to be done.

It places this work into “workqueues.” Kernel worker threads called kworkers retrieve

the work placed in “workqueues” and perform it [11, ch. 8].

There are many kworkers on a given system. For example, ps -ef yields 67

different kworker threads, as shown in Figure 3-8. Threads are named in the format

kworker/cpu:idpriority ; for instance, kworker/15:0H runs on core 15 with

High priority.

1 $ ps -ef | grep -i kworker
2 ...
3 root 1757 2 0 Apr17 ? 00:00:00 [kworker/13:1H]
4 root 1758 2 0 Apr17 ? 00:00:00 [kworker/14:1H]
5 root 1759 2 0 Apr17 ? 00:00:00 [kworker/15:1H]
6 root 3670 2 0 03:34 ? 00:00:00 [kworker/u32:1-e]
7 root 4122 2 0 08:15 ? 00:00:00 [kworker/u32:0-e]
8 ...

Figure 3-8: kworkers in ps -ef output.

Some workqueues can be pinned to specific cores. In particular, workqueues cre-

ated with the WQ_SYSFS parameter are exposed to the user via sysfs and accept a

cpumask [17]. For example, the writeback workqueue can be pinned to cores 1 and

2 via echo 0003 > /sys/devices/virtual/workqueue/writeback/cpumask . Set-

ting workqueue affinities like so prevents them from being processed on the cores that

we want isolated.

However, not all workqueues are configurable by the user, and are an exam-

ple of an inherent kernel design choice that could lead to variability. For exam-

ple, a simple grep of the Linux kernel source code turns up hundreds of calls to

35

alloc_workqueue() , only a few of which are created with WQ_SYSFS and thus

exposed to the user. The rest could potentially be processed by kworkers on any

core, meaning that our isolated cores might not be truly isolated. Since Linux is not

specifically designed for our ultra low variability needs, it does not completely sup-

port full core isolation, and short of modifying the kernel we cannot obtain a perfect

guarantee of non-interference.

3.6.3 Disabling Unnecessary Services

Disabling unnecessary system services removes another potential source of variability.

Even if a system service run as a user processes and thus can be isolated to a subset of

cores via isolcpus (Section 3.6.1), it can trigger kernel work (like disk or network

I/O) that is processed via workqueues. As mentioned in Section 3.6.2, it is not possible

to isolate any core from all potential workqueue activity, and so it is important to

minimize the likelihood of it occurring. Examples of system services that are likely

superfluous for a benchmarking environment are update managers, package managers

(e.g. snap), and job execution services (e.g. cron). Running processes can be

easily viewed with tools like top or ps , and disabled via interfaces like service ,

systemctl , a kernel parameter, or others (it depends on the particular service).

3.6.4 IRQ Affinity

By default, hardware interrupts may be configured to arrive on any core in the system,

but can be restricted to a subset of them via IRQ affinities. For example, we would not

want one of our isolated cores processing network interrupts, so we can confine those

interrupts to a housekeeping core. These affinities live within the /proc/ filesystem

at /proc/irq/*/smp_affinity , where * is an IRQ number. As in Section 3.6.2,

we can write CPU masks to these files that specify the cores that should process

each IRQ. Better still is the irqaffinity kernel parameter [16], which specifies a

default CPU mask for all IRQs. Lastly, services like irqbalance , which distribute

interrupts across all processors on the system in the interest of improving performance,

36

must be disabled, because they will undo any manual IRQ pinning.

3.7 Timer Interrupts

Unfortunately, some interrupts, like the timer interrupt, cannot be reassigned to a

housekeeping core because they run on every core by design. The timer interrupt

allows Linux to periodically run the scheduler on each core, in addition to collecting

load statistics and updating global state. By default, the timer interrupt runs on

every core at a frequency specified by the kernel configuration setting CONFIG_HZ

(set at compile time).

3.8 Dynamic Ticks

The timer interrupt can be effectively removed for our use case by enabling “dynamic

ticks.” Dynamic ticks turn Linux into a partially “tickless” kernel, i.e. a kernel without

ticks occurring at regular intervals. Dynamic ticks can be enabled for a core via

the nohz_full kernel parameter, but require that the kernel was compiled with

CONFIG_NO_HZ_FULL=y [16]. A core placed under nohz_full will have the timer

tick omitted when it has at most one runnable task. Since our benchmark cores are

isolated from all user processes and most kernel processes, they only have one running

process at any given time – the benchmark program itself – meaning that they will

qualify for dynamic ticks.

The Linux kernel on our a1.metal instances (4.15.0-1056-aws) does not have

CONFIG_NO_HZ_FULL=y , so we compile our own kernel with all of the options nec-

essary to enable dynamic ticks. Appendix A.1 covers this process in detail.

3.9 Zero-Cycle Variability

Combining the core isolation techniques in Section 3.6 and the removal of the timer

interrupt in Section 3.8 gives us zero-cycle variability for our CPU workload in user

37

space. In other words, it perfectly mimics the results of using a kernel module to

disable interrupts, as in Section 3.5.

Figure 3-9 shows the final set of kernel parameters used in our tests. Additionally,

we disable non-critical system services as described in Section 3.6.3.

1 $ cat /etc/default/grub
2 ...
3 GRUB_CMDLINE_LINUX="isolcpus=nohz,domain,1-15 nohz_full=1-15
4 ...

Figure 3-9: Kernel command line that isolates CPUs and engages dynamic ticks.

Running the workload on an isolated core via taskset -c 13 ./benchmark

gives the running times observed in Figure 3-10. Moreover, by consulting the per-

formance counters for interrupts and exceptions, we can verify that our program was

not interrupted during its execution. Therefore, it achieved complete ownership of its

core.

38

trial # cycles

1 987,964,834

2 987,964,834

3 987,964,834

4 987,964,834

5 987,964,834
...

...

996 987,964,834

997 987,964,834

998 987,964,834

999 987,964,834

1,000 987,964,830

percentile
cycle difference

from mode

90th 0

99th 0

100th 4

Figure 3-10: Userspace runtimes on an isolated core demonstrating zero-cycle vari-
ability.

3.10 Branch Prediction

The next step is to replicate our zero-cycle variability in a more complicated workload,

one that branches heavily. Branching (in conditionals, loops, and more) is present

in virtually any meaningful piece of code, but, unfortunately, is difficult to reason

about because modern CPUs make liberal use of branch prediction. Rather than

waiting for a conditional value to evaluate completely before deciding which of the

true and false instruction streams to execute next, CPUs use a branch predictor

to determine which of the two streams is more likely to be chosen.

Modern branch predictors use complicated prediction mechanisms that get better

at predicting the same conditionals over time, meaning that a benchmark workload

is likely to see gradually improving performance the more trials are executed. Branch

predictors generally maintain a hardware cache of branch instructions indexed by

39

their address in memory, much like a data cache [18]. Designs vary and have many

undocumented features, as clever branch predictors are critical to fast processors

and thus are closely guarded intellectual property. In a simple branch predictor,

each branch might simply have a 2-bit saturating counter of {weakly, strongly} ×

{taken, not taken}. More complicated designs might combine the most-recent history

of branches taken globally with the most-recent history of the local branch being

predicted, and use that as an index into a two-dimensional table of counters, which

gives sensitivity to overarching patterns in branching [18].

The ARM Cortex-A72 processor on our a1.metal instances, for example, uses a

2-level global history-based direction predictor [19]. The precise details of how the

2-level prediction works, including any special enhancements on top of the generic

2-level prediction scheme, are undocumented. We note that obtaining a precise un-

derstanding of the branch predictor would amount to reverse engineering it, and would

be a research publication in its own right.

The fact that the branch predictor gets more accurate the more a piece of code

is executed makes it difficult to obtain consistent performance. Every time a piece

of code executes, it might run a little faster because there are more correct branch

predictions.

For our simple testcase, however, we find that a few warmup executions of the

code under test are enough to put the branch predictor into a consistent state, giving

zero-cycle variability in performance thereafter.

3.10.1 Branch-Heavy Workload

A new benchmark workload is necessary, one that makes liberal use of branching.

The workload used in our previous testing, Figure 3-1, had only a single branch – the

b.ne instruction in Figure 3-2 that corresponds to the boundary condition of the

for -loop in Figure 3-1. This branch is highly predictable right from the start and

consequently, as seen by the immediate zero-variability performance in Figure 3-6

and Figure 3-10, the branch predictor requires no warming up. To make heavy use

of harder-to-predict branching, we devise a new workload.

40

A prime number sieve is a good example of a CPU-bound workload that has

many difficult-to-predict branches. The C code of our sieve is shown in Figure 3-

11, with the corresponding assembly shown in Figure 3-12. Note the large number

of branch instructions in Figure 3-12. The branches are hard-to-predict because on

each iteration of the outer loop (line 3) the internal divisibility branch (line 6) acts

differently, which leads to many possible combinations of branch history that might

be used in the 2-level prediction scheme. Therefore, it is a reasonable assumption

that several executions of cpu_workload_branch() are necessary to fully prime

the branch predictor.

1 int cpu_workload_branch(void){
2 int numPrimes = 0;
3 for(int num = 3; num < 6000; num++){
4 int divisor;
5 for(divisor = 2; divisor < num; divisor++){
6 if (num % divisor == 0){
7 break;
8 }
9 }

10 if (divisor >= num){
11 numPrimes++;
12 }
13 }
14
15 return numPrimes;
16 }

Figure 3-11: Implementation of a prime number sieve, an example of CPU-bound
code with heavy branching.

41

1 +0: <cpu_workload_branch>: // label
2 +0: mov w3, #0x3 // data move
3 +4: mov w0, #0x0 // data move
4 +8: mov w4, #0x1770 // data move
5 +12: nop // no-op
6 +16: mov w1, #0x2 // data move
7 +20: nop // no-op
8 +24: udiv w2, w3, w1 // unsigned division
9 +28: msub w2, w2, w1, w3 // multiply-subtract

10 +32: cbz w2, 0x44 <cpu_workload_branch+68> // compare-branch-if-zero
11 +36: add w1, w1, #0x1 // add
12 +40: cmp w1, w3 // compare
13 +44: b.ne 0x18 <cpu_workload_branch+24> // branch-if-not-equal
14 +48: add w0, w0, #0x1 // add
15 +52: add w3, w3, #0x1 // add
16 +56: cmp w3, w4 // compare
17 +60: b.ne 0x10 <cpu_workload_branch+16> // branch-if-not-equal
18 +64: ret // function return
19 +68: cmp w3, w1 // compare
20 +72: b.gt 0x34 <cpu_workload_branch+52> // branch-if-greater-than
21 +76: b 0x30 <cpu_workload_branch+48> // branch

Figure 3-12: The assembly corresponding to Figure 3-11.

3.10.2 Zero-Cycle Variability via Branch Predictor Warmup

We manage to obtain zero-cycle variability for our branch-heavy workload the same

way that we did for the branch-light workload in Section 3.9. We run the branch-

heavy workload in the same environment.

Figure 3-13 contains the results of running our workload on an isolated core.

We can see that the running times are at first inconsistent, but appear to slowly

converge to a running time of 15,400,377 cycles, maintained for every subsequent run

through the end. The table contains two additional datapoints per row: “predictable

branches executed” and “mispredicted or non-predicted branches executed.” These

values were read from performance counters BR_PRED and BR_MIS_PRED [13], and

exactly track the cycles values in terms of converging to a consistent “steady state”

42

value. This convergence supports our hypothesis that the branch predictor needs

several executions of cpu_workload_bench() before it maximally learns how to

predict its branches, after which branches are predicted and mispredicted in exactly

the same way on each execution, granting a consistent running time.

trial # cycles
predictable
branch exec.

{mis,non}-
predicted

branch exec.

1 15,400,862 4,400,989 2,767

2 15,399,979 4,400,900 2,717

3 15,400,496 4,400,747 2,715

4 15,400,402 4,400,735 2,709

5 15,400,402 4,400,735 2,709

6 15,400,402 4,400,735 2,709

7 15,400,377 4,400,732 2,708

8 15,400,377 4,400,732 2,708
...

...
...

...

997 15,400,377 4,400,732 2,708

998 15,400,377 4,400,732 2,708

999 15,400,377 4,400,732 2,708

1,000 15,400,377 4,400,732 2,710

percentile
cycle difference

from mode

90th 0

99th 0

100th 486

Figure 3-13: Branch-heavy code demonstrating eventual zero-cycle variability.

43

3.10.3 Resetting the Branch Predictor

Resorting to “warming up” the branch predictor both wastes time on throwaway

executions of the code and is unscientific. How many times does a particular workload

need to be executed before the branch predictor is fully primed? Is it possible that

the branch predictor history table alternates between several different states after

each run, rather than converging to a single state? The answer will always depend

on the peculiarities of the code and the branch predictor design, making it difficult

to determine.

A better solution would be to reset the branch predictor before executing the

workload. This would ensure that each execution incurs branch predictions and mis-

predictions in the exact same deterministic way. Unfortunately, the Cortex-A72 pro-

cessor on our a1.metal instances does not support flushing the branch predictor, only

enabling/disabling it on boot via a processor control register. We attempted to sim-

ulate flushing the branch predictor by running through thousands of autogenerated

branch instructions between executions of our benchmark, but this proved unsuc-

cessful, and a correct implementation likely requires a keener understanding of the

branch predictor’s design. The most “correct” solution, therefore, would be flushing

the branch predictor in a way specifically supported by the processor in question.

44

Chapter 4

𝜖 Variability in Memory Workloads

In this chapter, we confront variability in workloads that read and write data memory.

Taming variability in CPU-bound workloads in Chapter 3 was an instructive starting

point with impressive zero-cycle variability results, but virtually any real-world work-

load will access memory, making it critical to address memory-related variability. We

first present an overview of the memory subsystem (Section 4.1). We then investigate

variability seen in workloads with working-sets that fit into L1 cache, L2 cache, and

system memory (Section 4.3), showing that we can obtain less than 0.3% variability

across thousands of trials of our memory benchmark under numerous different exe-

cution parameters. Unfortunately, memory is a global resource, and our experiments

demonstrate that a memory workload running on an isolated core can suffer interfer-

ence from other cores in the system, making it difficult to obtain ultra-low variability

(Section 4.4).

4.1 The Memory Subsystem

Understanding the hardware components of the memory subsystem, and how operat-

ing systems manage memory, is crucial for reasoning about memory-related variability.

This section summarizes the main parts.

45

4.1.1 Virtual Memory

Processes access data in memory by a virtual, rather than physical, address. For

example, a process accessing data located at address 0x00F0 in the physical memory

chip might actually access it via address 0xAAF0 or 0xBBF0 . Each process has a

separate virtual-to-physical address mapping as any two processes can access the exact

same virtual addresses; this mapping is called a “page table,” and is managed by the

kernel. The memory management unit (MMU) is a hardware component responsible

for translating virtual addresses to physical addresses on the fly by looking them up

in the currently loaded page table.

4.1.2 Translation Lookaside Buffer

Many CPUs cache virtual-to-physical address translations in a translation lookaside

buffer (TLB) to amortize the cost of address translation, which can be expensive due

to the multiple levels of indirection in the page table (generally implemented as a

2-level tree for 32-bit machines and a 4-level tree for 64-bit). The TLB has to be kept

in-sync with the current page table, meaning that its entries must be updated if the

underlying page table entries change. For example, if a page is shared across multiple

processors and its physical location changes, then its entry in all page tables must be

updated and the corresponding TLB entry invalidated – this process is called a “TLB

shootdown.”

4.1.3 Memory Caches

Memory is accelerated via hardware caches, which have small capacities but signifi-

cantly faster access latencies than main memory. Caches operate on the empirically

observed phenomenon of temporal and spacial locality.

Temporal locality implies that a piece of data read by the processor is likely to be

read again in a short period of time – for example, a function might access the same

variables and buffers multiple times. Spacial locality implies that the processor is

likely to operate on adjacent memory, as when iterating through a buffer or accessing

46

various parts of a large data structure represented sequentially in memory.

Caches cater to both of these access patterns. They account for temporal locality

by storing recently accessed blocks of data until they are evicted by many new ac-

cesses, so the processor is likely to read data from cache when repeatedly accessing

the same memory. Caches account for spatial locality since each cache line is often

larger than an individual memory access. Cache lines are generally 64 bytes wide,

meaning that after an initial access to one part of the cache line, accesses to any

other parts of the same line will use the cache rather than accessing main memory.

Hardware pre-fetchers further accommodate spatial locality by identifying patterns

in memory accesses and pre-fetching memory likely to be accessed next.

4.1.4 Cache Coherence

Multi-core processors have multiple data caches, which must be synchronized with

one another to maintain a single coherent view of memory. This synchronization is

carried out through a cache coherence protocol, like MESI, MOESI, or variants [20].

Depending on the particular protocol and hardware implementation, cache coherency

may involve messages exchanged between caches (for example, when one core modi-

fies a memory location in its cache that is currently present in other cores’ caches).

It is difficult to speak generally about the performance interference implications of

cache coherence, but it is conceivable that cache coherence traffic is present almost

constantly in a system (even if memory is not shared), and thus interferes with mem-

ory performance, due both to congesting chip buses and requiring caches to process

it.

4.1.5 Memory Bandwidth

Finally, both latency and throughput affect memory performance. While some mem-

ory accesses may well occur in parallel, a sudden burst of accesses may saturate the

memory controller and slow one another down. Moreover, memory has a limited

bandwidth, meaning that two processes with intensive memory activity will limit one

47

another’s performance. Therefore, any memory activity on our system, no matter the

core that it originates from, may interfere with the performance of our benchmark –

even if the benchmark runs on an otherwise isolated core.

4.2 Memory Benchmark

Investigating memory variability requires a benchmark that actually accesses memory,

unlike the benchmark programs used in Chapter 3.

Figure 4-1 contains the code for our workload, along with the accompanying as-

sembly in Figure 4-2. It accepts a buffer along with a number of accesses to per-

form, which allows us to investigate variability both as a function of the size of the

working-set, and the running time (proxied via the number of accesses). The func-

tion performs random accesses to the supplied buffer. Random accesses are critical

because sequential accesses are easily detected by the hardware prefetcher, which will

prefetch upcoming memory accesses into L1 and L2 caches before they actually occur.

It is then impossible to study variability in L2 and DRAM accesses because, even if

our benchmark uses a buffer much larger than the cache sizes, most accesses will hit

in L1 cache [21]. Random accesses subvert the prefetcher, letting us ensure that the

workload hits entirely in L1 cache, L2 cache, or goes to DRAM, by using a sufficiently

large buffer.

Note that we implement our own pseudorandom number generator (PRNG) in

custom_rand() . Using a handwritten PRNG instead of deferring to rand() in

the C standard library gives us tighter control over exactly what code our benchmark

executes, which is important when studying ultra-low variability. The actual PRNG

implementation is taken directly from the GNU standard library source code [22].

Moreover, note that in Figure 4-2, the call to custom_rand() is simply inlined into

cpu_workload_memory() .

48

1 uint64_t custom_rand(uint64_t *state){
2 uint64_t newVal = ((*state * 1103515245U) + 12345U) & 0x7fffffff;
3 *state = newVal;
4 return newVal;
5 }
6
7 int cpu_workload_memory(char *buf, size_t size, int numIterations){
8 unsigned long long x = 0;
9 uint64_t state = 1;

10 for(size_t blockNum = 0; blockNum < numIterations; blockNum++){
11 x = ((x ^ 0x123) + buf[custom_rand(&state) % size] * 3) %

123456;
12 }
13 return x;
14 }

Figure 4-1: A simple workload for assessing memory variability.

49

1 +0: cpu_workload_memory: //
2 +0: sxtw x2, w2 // signed extend
3 +4: cbz x2, 0x1070 <cpu_workload_memory+128> // cmp-branch-if-zero
4 +8: mov x8, #0x6301 // data move
5 +12: mov x12, #0x4e6d // data move
6 +16: movk x8, #0x78e6, lsl #16 // data move
7 +20: mov x7, #0xe240 // data move
8 +24: movk x8, #0x2ba9, lsl #32 // data move
9 +28: mov x4, #0x1 // data move

10 +32: mov x6, #0x0 // data move
11 +36: mov x3, #0x0 // data move
12 +40: movk x12, #0x41c6, lsl #16 // data move
13 +44: mov x11, #0x3039 // data move
14 +48: mov x10, #0x123 // data move
15 +52: mov w9, #0x3 // data move
16 +56: movk x8, #0x43f, lsl #48 // data move
17 +60: movk x7, #0x1, lsl #16 // data move
18 +64: madd x4, x4, x12, x11 // multiply-add
19 +68: eor x3, x3, x10 // exclusive-or
20 +72: add x6, x6, #0x1 // add
21 +76: and x4, x4, #0x7fffffff // add
22 +80: cmp x6, x2 // compare
23 +84: udiv x5, x4, x1 // unsigned-divide
24 +88: msub x5, x5, x1, x4 // multiply-subtract
25 +92: ldrb w5, [x0, x5] // load register byte
26 +96: umaddl x5, w5, w9, x3 // unsigned mult.-add
27 +100: lsr x3, x5, #6 // logical shift
28 +104: umulh x3, x3, x8 // unsigned multiply
29 +108: lsr x3, x3, #5 // shift right
30 +112: msub x3, x3, x7, x5 // multiply subtract
31 +116: b.ne 0x1030 <cpu_workload_memory+64> // branch-not-equal
32 +120: mov w0, w3 // data move
33 +124: ret // function return
34 +128: mov w0, #0x0 // data move
35 +132: ret // function return

Figure 4-2: The assembly corresponding to the memory workload in Figure 4-1.

50

4.3 L1, L2, DRAM variability

We investigate and compare the variability seen in accesses to L1 cache, L2 cache, and

DRAM. An easy method of approximating accesses to “only” L2 cache, for example,

is using a working-set size substantially larger than the size of L1 cache (32KB), but

still smaller than the size of L2 cache (2,048KB). For example, random accesses to a

buffer 2,000KB in size will, probabilistically speaking, almost always miss in L1 cache

but hit in L2 cache.

Figure 4-3: Runtimes (with very tight error bars) for 300 trials of each of many
combinations of number of memory accesses and working-set size. Note: logarithmic
scale.

Figure 4-3 shows our first attempt at understanding memory performance and

variability. Each point on the plot represents a particular combination of number

of memory accesses and working-set size. Note the logarithmic scale on the x-axis.

Points labeled “1x iterations” represent executions of the benchmark program with

1, 0242 memory accesses, those labeled “2x” had twice as many, and so on.

We can draw several conclusions about access times to the different tiers of mem-

ory (L1 cache, L2 cache, and DRAM), the impact of TLB misses, and fixed costs

51

associated with longer running times.

There is a distinct, consistent execution time for accesses to L1, L2, and DRAM.

The plateaus at working-sets of size <32KB, just below 2MB, and just above 2GB

appear to confirm that, at least at the extremes, we obtain predominantly accesses

to L1 cache, L2 cache, and DRAM. The gradual ramp-up in running time – i.e. the

fact that each plot appears smooth rather than like a step function – is likely due

to the fact that some accesses still hit in the the next lower cache. For example, all

working-sets less than 32KB in size have an essentially constant running time because

the best- and worst-case access time is that of L1 cache. Once the working-set size

exceeds 32KB, running time immediately increases because some accesses go to L2

cache. However, for a working-set of size 33KB, for example, a majority of accesses

will still hit in L1, meaning that the total running time will be closer to the steady-

state running time for L1 accesses than L2 accesses. Hence the gradual increase

towards a plateau at larger sizes, rather than a step-function behavior.

The middle plateau of running times of DRAM accesses, for working-set sizes

between 32MB and 512MB, likely occurs due to the TLB overflowing. At the end

of the plateau around 256MB, it’s likely that all memory accesses go to DRAM but

all page address translations hit in TLB. Past 256MB, TLB misses start occuring,

causing another uptick in execution time. Similar results are seen in the work of

Drepper [21].

Increasing the number of iterations scales the running time exactly proportionally,

implying there are no substantial hidden costs to a longer execution. For example,

the “2x” plot is exactly the “1x” plot scaled up by a factor of 2 with a very small error

margin.

The variability seen within each trial is less than 0.3%. Sample variabilities are

shown in Table 4.1. The general trend is increasing variability for higher tiers of

memory, but this is not always the case. Our testing occasionally demonstrates high

variability in L1 cache, for example, possibly because it is more substantially affected

by some kinds of cross-core interference than either L2 or DRAM.

52

working-set size 90th % 99th % max %

L1 Cache 0.00% 0.00% 0.00%

L2 Cache 0.01% 0.01% 0.01%

DRAM 0.09% 0.11% 0.11%

Table 4.1: Variability of 16x iterations for different working-set sizes.

4.4 Interference from Other Cores

We demonstrate that, unlike with a CPU-bound workload, we cannot fully isolate

our memory workload from other cores. This is due to the fact that memory is a

global resource shared by all cores, with common buses, memory chips, etc., unlike

the execution units of a core, which are used only by that core. It may be possible

to achieve a degree of isolation on a NUMA system, where memory is composed of

distinct physical blocks with affinities for specific CPUs, but there is no clear means

of isolating a chunk of memory on our UMA (Uniform Memory Access) system.

4.4.1 Interference Case Study: Lightweight User Script

Our first example occurred during experimentation due to an innocuous user config-

uration script, and clued us into the existence of universal cross-core interference.

Figure 4-4 shows the running times of our memory benchmark for a buffer that fits

comfortably in L1 cache. The otherwise consistent running times are punctuated by

regularly occurring spikes. These spikes occur at an interval of roughly 2 seconds. We

initially tried identifying the issue by observing performance counters, but these sim-

ply show the consequences of the root cause (in cache misses, etc.) rather than hinting

at what that cause might be. We ultimately deduced the culprit by inspecting system

scheduler activity, recorded via the perf sched tool, which showed that some user

configuration scripts related to tmux , a terminal multiplexer, were running exactly

once every 2 seconds. Removing them removed the spike from our running time. Of

course, due to our use of isolcpus (Section 3.6.1), the scripts were running not only

53

on a different core, but on a different core cluster, with its own L2 cache. Moreover,

each core has its own L1 cache and our workload used a buffer that fit comfortably

inside it, which made the interference even more confusing – we expected essentially

no interference from the rest of the system. It is not immediately clear why memory

activity on an unrelated core was affecting a largely L1 workload on our otherwise

quiet benchmark core. This phenomenon hints at the highly interconnected nature of

memory. Even though our benchmark core owns its own L1 cache, it is possible that

the cache periodically writes back to memory, which would be negatively impacted

by other memory load in the system. Or maybe other memory activity down-clocked

the memory subsystem. Or maybe there were TLB shootdowns involved.

Figure 4-4: Running times of L1 Cache benchmark demonstrating intermittent
interference due to user script running on unrelated core.

4.4.2 Interference Case Study: Memory Intensive Workload

Section 4.4.1 suggested that even an innocuous user process may cause cross-core

interference, so let us investigate a worse-case scenario with a memory-intensive

program running on another core. Figure 4-5 shows the results of running our

54

random-access benchmark on a quiet core, with and without intermittent interfer-

ence. We simulate intermittent interference by running the same benchmark peri-

odically on a distant core, hence the intermittent spikes in performance. Without

interference, the benchmark experiences a 90th/99th/100th-percentile variability of

0.02%/0.03%/0.03%; with interference, that variability increases to 1.31%/1.33%/1.34%.

Figure 4-5: Performance variability with and without intermittent interference.

4.4.3 Mitigating System Activity

Sections 4.4.1 and 4.4.2 demonstrates that we cannot match the ultra-low variability

of a CPU workload with a memory workload because of the highly interconnected

nature of memory, and the resulting cross-core interference.

An ideal solution would be to temporarily “lock” all cores on the machine and

prevent all other processes from running while our benchmark executes. This global

lock can be easily simulated by writing our benchmark into a kernel module again and

running it on all cores via the on_each_cpu() kernel method. On a single core, the

kernel module would execute the benchmark, and on all others, it would simply exe-

cute a busy-spin loop. However, an early attempt suggested that the kernel prevents

55

this code from running on all cores exactly simultaneously, and will defer the execution

of the on_each_cpu() code on at least one core until it finishes execution on an-

other core. This may be a mechanism to avoid global lockup – unfortunately, global

lockup is exactly what we want to achieve. Even beyond this one-core exception,

Linux has a host of anti-lockup mechanisms that dislike a long-running benchmark

with interrupts disabled, and thus trigger for our long-running performance tests.

A practical, if imperfect, strategy to mitigate interference is to simply strip down

the system as much as possible by removing unnecessary processes. Cross-core in-

terference is simply unlikely if there is almost nothing running. This strategy also

applies to CPU-bound workloads, as discussed in Section 3.6.3. Consultation of top

and ps shows a large number of processes running even on our quiet system, many

of which are unnecessary. Moreover, lsmod lists all currently loaded kernel modules,

some of which can be disabled.

Lastly, it may be easy to modify the Linux kernel source code to run kernel

workers and other threads less frequently, or to simulate the aforementioned global

lock. However, these changes would require a more intimate understanding of kernel

internals, and would be one-off and not very portable.

56

Chapter 5

Quiescing a System

This chapter refines the experimental results and conclusions of the preceding chapters

into a list of actionable steps for quiescing a system for low-variability performance.

Section 5.1 summarizes major sources of variability and corresponding mitigation

strategies. Section 5.2 discusses limitations to those strategies and identifies sources

of variability that are practically unavoidable without deep changes to the system.

5.1 Actionable Steps

There are several “actionable” steps that make huge impacts on performance variabil-

ity, including: removing DVFS, disabling simultaneous hyperthreading, and more. A

step is “actionable” if it is officially supported by the operating system and can be

taken with minimal effort.

5.1.1 DVFS

Processors with Dynamic Voltage and Frequency Scaling (DVFS) can scale their clock

frequency up and down. DVFS allows for reduced power consumption when there is

no work to be done – the processor will scale down the frequency when a core has

no scheduled work, and rapidly scale it back up when work appears. Similarly, the

processor may scale down its frequency to prevent over-heating, for example when all

57

cores are busy and generating excessive heat.

Unfortunately, DVFS can introduce performance variability because of the time

taken to ramp up a core to its maximum operating frequency, as shown in Figure 5-

1. This experiment was conducted on an AWS c5n.metal instance with Intel Xeon

8124M processors, which have DVFS enabled by default. The same benchmark was

run twice, once with the performance governor (which manages DVFS) set to a pow-

ersave configuration, and once with a performance configuration. As the names

imply, the powersave configuration aggressively reduces the clock frequency when

cores are idle in order to reduce power consumption, and the performance configu-

ration essentially keeps the cores running at their maximum clock frequency all the

time. When run under the powersave configuration, our benchmark exhibits a slow

“warmup” as the processor clock frequency increases from 1.2GHz (its idle frequency)

to 3.5GHz (its maximum frequency). The processor steps through several discrete

frequencies, hence the step behavior in the plot. Under the performance configura-

tion, on the other hand, the processor is always running at its maximum frequency, so

there is no equivalent warmup period. Thus, DVFS, as shown under the powersave

configuration, can massively skew performance numbers for certain trials, and should

be disabled for low-variability/high-performance use-cases.

58

Figure 5-1: Running times of the same workload run for consecutive trials, with
and without clock-frequency scaling.

5.1.2 SMT

Simultaneous Multithreading (abbreviated SMT, known as Hyper-Threading on In-

tel processors) improves the processing power of a single core by doubling up certain

execution units, allowing the core to process two instruction streams concurrently.

The core can take advantage of idle time in the execution of one instruction stream

– for example, due to a memory access stall – to execute instructions from the other

stream. SMT grants somewhere between a 1x and 2x increase in processor through-

put, depending on the nature of the workloads getting interleaved.

SMT can cause performance variability due to contention for the same hardware

resources. Since a core with SMT is not equivalent to two full individual cores, the

instruction streams on both halves compete for some of the same execution units.

Figure 5-2 demonstrates the running time of a CPU-bound workload on a core, both

when its twin hyperthreaded core is busy and idle. In either case the running time

of our benchmark is consistent, but there is a significant drop in running time when

the twin core goes idle. These results suggests that, if we are not careful to disable

59

hyperthreading, or otherwise prevent anything from running on the twin cores of the

cores running our performance-sensitive code, that code may exhibit interference and

variability.

Figure 5-2: Running times of the same workload, with a twin hyperthreaded core
that is first busy and then idle.

5.1.3 Core Isolation

Preventing other processes from running on our benchmark cores is an obvious and

critical means of obtaining low variability. As demonstrated extensively in Chap-

ter 3, interruption by other processes is a primary cause of performance variability

– they skew the wall-clock running time of our program, evict code and data from

caches, pollute the TLB, and more. Our tool of choice for isolating cores in our ex-

periments has been the isolcpus kernel parameter, though modern Linux suggests

cpusets [23], which are more flexible and can be configured at runtime without

rebooting. Isolating cores gives the programmer confidence that their program is not

getting unpredictably interrupted by competing processes, no matter how loaded the

system is.

60

5.1.4 IRQ Affinities

Interrupts can cause variability by unpredictably interrupting our workload for brief

periods of time. Certain interrupts, like network interrupts, can arrive very frequently

and may have no relation to our performance-sensitive process. By default, a given

core might process all manner of interrupts, but Linux fortunately allows the ad-

ministrator to assign core affinities to many of them. Thus, if we are running a

computational workload (for example, a matrix multiplication) on an isolated core,

we can offload all network, disk, and otherwise unrelated interrupts to housekeeping

cores and ensure that they do not interfere with the performance of our benchmark.

General interrupt activity can be seen via /proc/interrupts , and IRQ core affini-

ties can be assigned via /proc/irq/*/smp_affinity files.

5.1.5 Workqueue Affinities

The Linux kernel has several mechanisms for performing background work, one of

which is the workqueue system. Workqueues are queues that pieces of work are

placed into for deferred execution. The work itself is performed by kernel worker

threads called kworkers. A call to ps -ef will reveal a large number of kworker

processes – these vary in the cores they are bound to, and their priorities. The kernel

contains many different workqueues that, by default, can be processed by any kworker,

meaning that even if we have a core that is isolated from user processes, it may not

be isolated from interruption by a kernel worker. Linux allows us to assign CPU

affinities to some, but not all, workqueues, meaning that they will only be serviced

by kworkers bound to specific cores. For example, the writeback workqueue can be

pinned to cores 1 and 2 via echo 0003 > /sys/devices/virtual/workqueue/

writeback/cpumask . Further details are given in Section 3.6.2.

5.1.6 Reducing System Activity

A very busy system has two implications for performance variability: it will exhibit

substantial variability in memory performance, and kernel workers might spin up

61

even on isolated cores to process overflowing workqueues, thereby interrupting our

benchmark process. Thus, it is important to reduce all system activity to a bare

minimum. By consulting tools like ps , htop , and lsmod , we can identify services

that are unnecessary and can be disabled, and thus ensure that they do not cause

performance noise.

5.1.7 Reducing the Timer Tick

The timer tick can cause performance variability. By default, Linux has a timer tick

that fires at a constant rate (specified by CONFIG_HZ at kernel compile-time) – the

kernel uses this tick to run the scheduler, collect CPU utilization statistics, and more.

However, if we want to obtain hyper-consistent performance measurements for a sin-

gle program, a timer tick is unnecessary since running the scheduler is unnecessary.

Fortunately, Linux supports a tickless, or “dynamic tick,” mode, wherein the timer

tick is disabled for cores that have either a single runnable process scheduled or no

processes at all. A core can be made tickless via the nohz_full kernel parameter,

but requires that the kernel was compiled with CONFIG_NO_HZ_FULL=y . Moreover,

in earlier version of Linux, like 4.15, there existed a residual once-a-second tick even

on nohz_full cores; this tick was removed in later versions, and is not present by

5.3.0. Removing the timer tick not only allows completely interruption-free code exe-

cution in certain cases, but also reduces useless interruption in, e.g., a supercomputing

or batch-processing environment.

5.1.8 ASLR

Address Space Layout Randomization is a security measure that can cause variability

between executions of the same program. ASLR randomizes the memory locations of

different parts of a program (program instructions, heap, etc.), meaning that differ-

ent invocations of the same program may have different performance based on how

things map into cache, TLB, etc.. Such effects are studied by Mytkowicz et al. and

Oliveira et al. [4, 8]. ASLR can be disabled for a single invocation of a program via

62

setarch ‘uname -m‘ -R ./program , or globally via echo 0 > /proc/sys/

kernel/randomize_va_space . ASLR was not investigated in this thesis because

our work stops short of investigating variability between different executions of a pro-

gram, instead focusing on minimizing variability of the same piece of code within a

single program invocation.

5.2 Limitations

While Linux allows us to minimize variability tremendously, going so far as obtaining

0-cycle variablity for CPU-bound workloads, we must acknowledge inherent limita-

tions that would preclude its use in situations where low variability is absolutely

mission-critical. For example, while we can practically obtain extremely low variabil-

ity 99.9% of the time, we cannot scientifically guarantee it, which makes it unsuitable

for certain usecases.

5.2.1 Un-pinnable Interrupts and Workqueues

Certain interrupts and workqueues do not accept CPU affinity masks. For example,

the Linux kernel has hundreds of workqueue instantiations, but only a handful are

exposed via the /sys/devices/virtual/workqueue/ interface. Therefore, even

after isolating a core from user processes, disabling timer ticks, and affining most

workqueues and interrupts to housekeeping cores, it is still technically possible for a

core to get interrupted by either an interrupt or a kernel thread.

5.2.2 Global Memory Interference

While our experiments show that 0-cycle CPU variability is relatively easily obtained,

we discover that memory has inherent variability. It is a global resource that all cores

contend for, and is highly interconnected. In our experiments, we found that even an

L1 data cache private to a core is affected by memory activity on a totally unrelated

core (Section 4.4). Eliminating this variability would require eliminating all other

63

activity on the system, which does not appear doable in vanilla Linux without either

writing a kernel module that simultaneously executes a piece of code on all cores or

making changes to the kernel itself.

64

Chapter 6

Conclusion

Reducing performance variability has important benefits for high-performance com-

puting. The ability to mitigate variability is critical to writing software that meets

performance requirements; makes performance engineering faster and cheaper by re-

ducing measurement noise; and requires programmers to understand deep performance-

related system internals, enabling them to write generally higher-performance soft-

ware.

This thesis makes several contributions towards helping programmers contend

with variability in commodity computing systems. I demonstrate 0-cycle variability

for CPU-bound workloads and less than 0.3% variability for memory-bound work-

loads on a cloud machine running a Linux-based operating system, showing that

extremely low variability is entirely obtainable. I investigate and document many

different sources of variability, both at the hardware and software level, discussing

their origins and accompanying mitigation strategies. My experimentation strategy

demonstrates the problem-solving process of debugging performance variability, which

is often intimidating due to the sheer number of variables, and thus serves as a good

starting point for programmers working on variability problems. Finally, I present

concrete, actionable steps for programmers to reduce variability in their system –

these include isolating cores from user processes, pinning kernel work and interrupts

to housekeeping cores, enabling dynamic ticks (“tickless” mode), and reducing system

activity by removing unnecessary processes, daemons, and kernel modules.

65

My work leaves several starting points for further investigation.

While I obtain impressive results for CPU-bound workloads, unanswered questions

remain.

∙ A deeper investigation of variability due to branch prediction is warranted,

especially on a processor that supports flushing the branch predictor, or by

disabling branch prediction at boot on our instances.

∙ My work did not explore code that uses floating point or vector operations,

which involve more complicated hardware execution units that may introduce

their own variability.

∙ Finally, my tickless user space setup is practically interference-free, but I never

obtain a perfect guarantee that the kernel will not schedule kernel work on our

isolated cores since that is simply not supported in modern Linux.

Memory-related variability is currently a bigger unknown than CPU-related vari-

ability.

∙ We do not currently understand the reasons behind some of the cross-core in-

terference that we see, nor do we have a good understanding of how cache

coherence, TLB shootdowns, and more can affect our otherwise isolated work-

loads.

∙ Since we readily experience variability in workloads that only touch L1 data

cache, it is unclear why there is no related variability in our CPU-bound work-

load, since the instructions themselves reside in L1 instruction cache.

∙ Our experiments only investigate variability in trials run within a single invo-

cation of a program, meaning that code always operates on the same locations

in memory – variability between different executions of the same program is

equally important, but was not included in our investigation.

This thesis augments prior research by demonstrating impressive ultra-low vari-

ability results for both CPU and memory workloads, and by documenting various

66

sources of variability and how they can be mitigated. I believe it will serve as a useful

guide to software variability for the practical performance engineer.

67

68

Appendix A

A.1 Building A Custom Linux Kernel on AWS

We describe the steps involved in compiling a custom Linux kernel for AWS. The

a1.metal instances used in our experiments shipped with underlying Linux kernel

version 4.15.0-1056-aws, which appears to be Linux kernel 4.15.0 with AWS-specific

patches applied on top. Our tests required a newer version of Linux and we ultimately

used 5.3.0. We had concerns that successfully installing and running a personally-

compiled kernel on AWS would be challenging, if at all possible, but the process was

completely straightforward and documented in Figure A-1.

69

1 $ sudo cp /etc/apt/sources.list /etc/apt/sources.list~
2 $ sudo sed -Ei ’s/^# deb-src /deb-src /’ /etc/apt/sources.list
3 $ sudo apt-get update
4 $
5 $ sudo apt-get build-dep linux linux-image-$(uname -r)
6 $ sudo apt-get install build-essential libncurses-dev bison flex libssl-

dev libelf-dev
7 $ wget https://launchpad.net/ubuntu/+archive/primary/+sourcefiles/linux-

aws/5.3.0-1003.3/linux-aws_5.3.0.orig.tar.gz
8 $ tar -xvf linux-aws_5.3.0.orig.tar.gz
9 $ cd linux-5.3/

10 $
11 $ cp /boot/config .config
12 $ make menuconfig # edit the config
13 $ make -j12
14 $ sudo make modules_install
15 $ sudo make install

Figure A-1: The steps in compiling our kernel.

70

Bibliography

[1] Martin Becker and Samarjit Chakraborty. Measuring software performance on
linux. CoRR, abs/1811.01412, 2018.

[2] Hakan Akkan, Michael Lang, and Lorie M. Liebrock. Stepping towards noiseless
linux environment. In Proceedings of the 2nd International Workshop on Runtime
and Operating Systems for Supercomputers, ROSS ’12, New York, NY, USA,
2012. Association for Computing Machinery.

[3] P. De, V. Mann, and U. Mittaly. Handling os jitter on multicore multithreaded
systems. In 2009 IEEE International Symposium on Parallel Distributed Pro-
cessing, pages 1–12, 2009.

[4] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Pro-
ducing wrong data without doing anything obviously wrong! SIGARCH Comput.
Archit. News, 37(1):265–276, March 2009.

[5] Sudheer Chunduri, Kevin Harms, Scott Parker, Vitali Morozov, Samuel Oshin,
Naveen Cherukuri, and Kalyan Kumaran. Run-to-run variability on xeon phi
based cray xc systems. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’17, pages 52:1–
52:13, New York, NY, USA, 2017. ACM.

[6] Emre Ates, Yijia Zhang, Burak Aksar, Jim Brandt, Vitus Leung, Manuel Egele,
and Ayse Coskun. Hpas: An hpc performance anomaly suite for reproducing
performance variations. pages 1–10, 08 2019.

[7] Ozan Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt, Vitus J. Leung,
Manuel Egele, and Ayse K. Coskun. Diagnosing performance variations in hpc
applications using machine learning. In Julian M. Kunkel, Rio Yokota, Pavan
Balaji, and David Keyes, editors, High Performance Computing, pages 355–373,
Cham, 2017. Springer International Publishing.

[8] Augusto Oliveira, Jean-Christophe Petkovich, and Sebastian Fischmeister. How
much does memory layout impact performance? a wide study. In Proceedings of
the International Workshop on Reproducible Research Methodologies (REPRO-
DUCE), page 23–28, Orlando, USA, February 2014.

[9] Linux Kernel Source Code Archives. https://www.kernel.org/.

71

[10] GNU Make manual page. https://linux.die.net/man/1/make.

[11] Robert Love. Linux Kernel Development. Addison-Wesley Professional, 3rd
edition, 2010.

[12] Linux core developers. Linux Kernel IRQ Affinity. https://www.kernel.org/
doc/Documentation/IRQ-affinity.txt.

[13] Arm Holdings. ARM R○ Cortex R○-A72 MPCore Processor Technical Reference
Manual.

[14] insmod manual page. http://man7.org/linux/man-pages/man8/insmod.8.
html.

[15] dmesg manual page. http://man7.org/linux/man-pages/man1/dmesg.1.
html.

[16] Linux core developers. Linux Kernel Parameters. https://www.kernel.org/
doc/Documentation/admin-guide/kernel-parameters.txt.

[17] Linux Kernel Documentation: Reducing OS jitter due to per-
cpu kthreads. https://www.kernel.org/doc/Documentation/
kernel-per-CPU-kthreads.txt.

[18] Dynamic Branch Prediction. https://web.engr.oregonstate.edu/~benl/
Projects/branch_pred/.

[19] ARM Cortex-A72 Branch Predictor Reference. http://infocenter.arm.com/
help/topic/com.arm.doc.100095_0001_02_en/way1382448709518.html.

[20] ARM: MESI and MOESI protocols. http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.dai0425/ch03s12s01.html.

[21] Ulrich Drepper. What Every Programmer Should Know About Memory, 2007.

[22] C Standard Library Source Code. https://www.gnu.org/software/libc/
sources.html.

[23] Linux Kernel: cpusets. https://www.kernel.org/doc/Documentation/
cgroup-v1/cpusets.txt.

72

