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Abstract

Engineers design for an inherently uncertain world. In the early stages of design pro-
cesses, they commonly account for such uncertainty either by manually choosing a spe-
cific worst-case and multiplying uncertain parameters with safety factors or by using
Monte Carlo simulations to estimate the probabilistic boundaries in which their design
is feasible. The safety factors of this first practice are determined by industry and or-
ganizational standards, providing a limited account of uncertainty; the second prac-
tice is time intensive, requiring the development of separate testing infrastructure. In
theory, robust optimization provides an alternative, allowing set based conceptualiza-
tions of uncertainty to be represented during model development as optimizable design
parameters. The hybrid intelligent design perspective, considering the ways in which
humans and computers interact as teams in order to solve engineering design prob-
lems, prompts the question of how these theoretical benefits translate to design prac-
tice. In this work, we analyzed present use of geometric programs as design models
in the aerospace industry to determine the current state-of-the-art, then conducted a
human-subjects experiment to investigate how various mathematical representations
of uncertainty affect design space exploration. We found that robust optimization led to
far more efficient explorations of possible designs with only small differences in an ex-
perimental participant’s understanding of their model. Specifically, the Pareto frontier
of a typical participant using robust optimization left less performance “on the table”
across various levels of risk than the very best frontiers of participants using industry-
standard practices. This analysis perspective can be applied broadly to provide insight
on how design concept generation is affected by the inclusion of computational tools.

Thesis Supervisor: Maria C. Yang
Title: Professor
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Chapter 1

Introduction

Hybrid intelligence is an emerging field that analyzes the interaction between engineers

and the computational systems they work with to determine how best to mediate the

interfaces between them. Hybrid intelligent design specifically focuses on the processes

by which computational tools are employed by engineers to design complex systems.

Engineering designers use these complex computational models to represent a variety

of problems, despite an awareness that the results will not be perfectly recreatable in the

physical world. Even if a model were able to perfectly represent a specific problem, en-

vironmental conditions and physical realities are rarely stable or knowable; for example,

an engineer may declare the density of a metal as a particular value, but, in manufac-

turing, the metal supplied will vary from supplier to supplier and day to day. Beyond

material quantities, such uncertainty is also inevitable for environmental conditions,

assembly quality, and many other important components of performance. Account-

ing for uncertainty is therefore a necessity which designers often represent through the

manual implementation of conservative heuristics.

Convex Geometric Programs (GPs), sets of algebraic constraints globally optimizable

for a specific cost function, are capable of representing a variety of complex systems.

Historically, the inaccessibility of software used to create and solve GPs has restricted

their use in engineering design. The Python package GPkit provides a familiar and clear

syntax for geometric programs, reducing this barrier to entry [9]. Through GPkit, several

engineering design firms have adopted GPs for regular use in their processes, typically
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to validate the feasibility of innovative conceptual designs.

At present, GPkit models (along with most other design models) do not provide in-

terfaces specifically for the representation of uncertainty. Designers instead set some

parameters’ values to a “reasonable worst case”, often via multiplication by a blanket

“safety factor”. Robust optimization aims to address this by allowing specified uncer-

tainties to be set on parameters, then optimizing for the best worst-case performance

under a given uncertainty set [5]. This method provides more mathematical guarantees

than safety factors do and is more directly translatable to a simulation environment.

How much these mathematical details affect designers and design practice is un-

clear. The marginal improvement in design quality may or may not be worth the effort

of changing designer’s conceptualizations of their model. However, we argue that robust

optimization’s potential benefits come not only from its underlying mathematics, but

also from the novel “questions” it lets designers ask of their models. When uncertainty

is explicitly defined in robust GPs, it can be optimized for as if it were any other vari-

able. This provides a dynamic understanding of uncertainty, encouraging discussions

of robustness earlier in a design process. This study seeks to explore ways in which ro-

bust optimization can affect the practice of creating designs, and provides evidence that

robust GPs improve design space exploration, increasing designs’ quality, quantity, and

coverage relative to an underlying Pareto frontier of optimal tradeoffs. Ultimately, this

will increase GPkit’s accessibility and applicability to design optimization problems both

within conceptual airplane design and in a more diverse range of fields.

1.1 Research Questions

Previous work has shown that robust optimization provides a mathematically rigorous

method of accounting for uncertainty [41, 34]. However, its effects on the questions de-

signers ask of their models has not yet been analyzed. In this study, we ask the following

questions:

RQ1 How do designers conceptualize uncertainty? How do particular conceptualiza-
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tions change their comfort with robust optimization?

RQ2 How do different mathematical formulations of uncertainty, as represented in a

design model, affect designers’ explorations of possible designs?

RQ3 What design processes do robust optimization tools alter or automate?

Our study had two stages. The first, a series of practitioner field interviews, was used

to guide the design of the second, a human-subjects experiment in a controlled environ-

ment. We address RQ1 by summarizing how current users of GPkit account for uncer-

tainty in their design processes and looking at how experimental participants used ro-

bust optimization to account for uncertainty. RQ2 is addressed by analysis of the quality

and spread of experimental participants’ solutions. RQ3 is touched on in comparisons

between processes for uncertainty accounting described in interviews and those seen

experimentally, but we anticipate its full investigation to also require field studies of how

robust optimization affects organizational processes.

This thesis represents work that will be published in the ASME IDETC-CIE Design

Theory and Methodology Conference Proceedings and the Journal of Mechanical Design

[31, 32].
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Chapter 2

Background

A substantial amount of research has been conducted on software tools for design, anal-

ysis, and robust optimization, but the development of particular tools is not our focus.

Rather, coming from a hybrid intelligent design perspective, we are interested in how

designers use these tools and how the choice, application, and integration of these tools

can impact design process exploration. The set of tools designers use varies in their han-

dling and understanding of uncertainty and robustness [24]. To better specify this vari-

ety in our model, we define uncertainty as a set of possible values for a set of variables,

rather than each of those variables being a fixed constant. Robustness is defined as the

ability of the design to still function with small perturbations of these fixed variables; the

larger a perturbation that can be handled, the more robust the design is.

2.1 Hybrid Intelligent Design

Advances in electric engineering and computer science have allowed us to answer large

and complex questions; modern computational power has the capability to explore so-

lution spaces quickly to find an optimum. Computation excels at solving problems given

explicit definitions for quantitative objectives and constraints. These numeric delin-

eations require a reliance on humans to specify these metrics such that they represent

the complexity of the situation in a consistent and predictable fashion. Defining these

models requires the knowledge of lived experience and adaptability to combine infor-
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mation from disparate, and frequently unpredictable, areas. By being able to work with

abstract mental models, humans can consider possible solutions outside of the rigid

space a computer operates within. Effective cooperation and communication between

humans and computers is necessary for both to explore a broader design space.

These teams of humans and computers can outperform either humans or comput-

ers alone by leveraging the strengths of each side. The paradigm of these interactions

is using humanity’s applied knowledge to adaptively ask questions and using compu-

tational power to search for specific answers, which then can prompt more questions.

One of the earliest and most vivid examples is centaur chess, in which human and AI

teams were allowed to collaborate while playing chess. These competitions, organized

shortly after Deep Blue, an IBM AI, beat the reigning chess champion in 1997, showed

that human-computer teams could outperform both humans alone as well as comput-

ers alone. Importantly, it was also not the “all-star” team of the strongest AIs paired with

the strongest players that won. It was amateur players working with weaker AIs. The

necessity is not in optimizing the individual components of a human-computer system,

but rather optimizing the process of integration of humans and computers together,

known as hybrid intelligence [12].

While human-computer interaction (HCI) is similar conceptually to hybrid intelli-

gence, its perspective tends to focus on direct physical changes to improve surface level

interaction. For example, common HCI metrics of improvement would be a task com-

pletion rate or an error rate per task. Frequently, its goal is to make UI incorporate invis-

ibly and seamlessly into standard practices. However, this emphasis can unnecessarily

limit software design by preventing it from challenging conventional processes. Hybrid

intelligence aims to understand the back and forth, the give and take, of the interaction

between humans and computers [18, 20]. Hybrid intelligent design further specifies hy-

brid intelligence to answering engineering design questions, which involve unique, of-

ten ill-defined sets of constraints.
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2.2 Frameworks for Early Stage Design

Many frameworks exist for early stage design processes for products and engineered sys-

tems, including Pahl and Beitz’ systematic approach to engineering design and Ulrich,

et al.’s widely known process for product design and development [29, 37]. Underpin-

ning both approaches is the notion of a design specification and/or initial prototype

created by an engineering and design team. The initial prototypes being considered in

this study are Python codes using the GPkit library [9]. The current design specification

of these models does not include a method of accounting for uncertainty; we will refer

to the additional design specification of uncertainty as the conceptualization of uncer-

tainty within the model.

2.3 Design Models

Human participants in engineering organizations use software “design models” to enu-

merate parameters of their designs and implement interactions amongst these parame-

ters. Design models are often made from materials like parameterized CAD assemblies

(to construct a shape from geometric constraints) [21, 36], spreadsheets (to calculate

performance) [30, 27], and “mathematical programs” (to take in a desired performance

and put out a design that achieves it) [22].

Design models serve as loci for understanding what will be built, while encoding

(and sometimes concealing) decisions on why [33]. This makes them an important

arena for intra-organizational design politics, but just how participants’ perspectives

clash and coalesce around these models depends also on the structure they are part of

[21, 8]. Design models express their agency both by shaping the structure and, within a

structure, by determining their outsiders and insiders, spectators and maintainers, and

formal and informal power structures [21, 16].
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2.4 Design Tools and the Designer

Software tools, most notably CAD, are essential to creating design models, and a num-

ber of studies have considered the impact of these tools on early stage designs. In the

exploratory phases of design, studies with practicing engineers and student designers

have observed that the use of CAD too early in the design process can have a negative

effect on design creativity, known as "premature fixation" [33, 14]. High fidelity digital

tools require more time and effort on the part of the designer than lower fidelity tools,

making designers more invested in a design and less likely to discard it. This is an obser-

vation of not only the design tool, but the way that designers use the tools in practice.

Our study takes a similar designer-focused perspective on exploration using a design

tool by formulating a constrained but realistic design problem with minimal interface

complexity. Our design tool is GPkit, and we investigate the effect of a more detailed

but potentially confusing mathematical model of uncertainty on the ability of users to

find optimal solutions using this tool. The exact mathematics behind how uncertainty

is calculated will be referred to as the formulation of uncertainty.

2.5 Design Optimization and the Designer

An overarching goal of design optimization research is to create tools and systems that

can support designers by generating the “best” solutions by searching through the set of

all possible solutions, or the design space. The majority of research in design optimiza-

tion concentrates on the development of better and faster algorithms and strategies, and

only limited research has been conducted on how designers themselves reach globally

or locally optimal solutions, and how this is affected by their tools.

In an early study of how humans deal with coupled problems, Hirschi and Frey com-

pared the time to solve coupled and uncoupled parametric design problems [17]. For

uncoupled problems, the time to solve was of the order of O(n) where n is the number

of input variables, and increased dramatically to O(n3.4) for coupled problems. Notably,

coupled problems with more than four variables were found to be very difficult and frus-
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trating for the participants. Similarly, human studies by Flager et al. showed that an in-

crease in problem complexity caused a significant decrease in solution quality [15]. A

study by McComb et al. showed specifically that more complex 2D trusses led to worse

performance [23]. Austin-Breneman et al. found that, despite domain expertise and op-

timization training, graduate students asked to collaboratively design a simplified satel-

lite had trouble exploring the design space because of the complexity of subsystems

and subsystem interactions, and few teams found designs on the Pareto-optimal fron-

tier [2]. In interviews with space system designers, it was found that teams in industry

routinely restricted the information shared with each other in ways that made explo-

ration much more difficult both in practice and from the perspective of optimization

theory [3]. Yu’s study of desalination systems found that software choices could enable

novices to explore complex system designs almost as well as experts, with some caveats

[39]. Designer satisfaction with rapid prototyping process has been explored by Neeley,

et al., who found that designers tended to be more satisfied with design outcomes when

given the opportunity to explore more design space initially [28]. Specific questions of

how real-time interfaces affect design outcomes were present in the first direct manip-

ulation CAD software, [36] in early studies of the effect of analysis speed on structural

design exploration and outcomes, [7] and in more recent research on human-computer

optimization in circuit-routing [35] and in architectural design [26].

We hope to extend such studies by directly measuring the effects of real-time soft-

ware decisions and algorithms on design outcomes and process. Previous studies by

Barron et al. and Egan et al. [4, 13] have looked at the effects of visualization and search

techniques in custom tools that use different visual representations and search strate-

gies than designers may be accustomed to; in contrast, our study uses familiar visual

representations and interaction modalities but changes the conceptualization and for-

mulation of the design problem. Since this design problem has two goal parameters,

we define “optimality” in terms of the Pareto frontier—a subset of the possible solutions

such that each solution on the Pareto frontier is either better in the first goal parameter

or the second goal parameter compared to any other solution.
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2.6 Geometric Programs

Geometric programs are nonlinear optimization problems of a set of posynomial con-

straints and a cost function known as the objective. A posynomial is a sum of monomi-

als, where a monomial is a set of variables raised to any positive real power multiplied

together with a positive coefficient. Formally, a posynomial p(x) can be defined as

p(x) =
K∑

k=1
ck

n∏
j=1

x
a j ,k

j (2.1)

where x is a vector of all variables, n is the length of x and therefore the number of

variables, K is the number of monomials, all ck are positive real numbers, and all a j ,k

are real numbers [6].

A geometric program is defined by minimizing a posynomial objective function sub-

ject to posynomial constraints that must be less than or equal to some positive value.

Geometric programs have the practical feature that, when transformed logarithmically,

they become convex, guaranteeing only one local minimum exists—the global mini-

mum. This allows for gradient descent in log-space to always find the globally opti-

mal solution. GPkit serves as a Python interface for geometric program solvers such as

MOSEK and cvxopt [25, 1] that allows users to define these objectives and constraints in-

tuitively. It then can solve for the optimal solution and can visualize the structure of the

models and the feasible solution space. GPkit has enabled engineering designers who

are not experts in mathematical optimization to create, solve, and understand GP mod-

els by black-boxing computational details and providing diagramatic representations of

the underlying mathematics. If negative ck values are necessary, a signomial program

can be used, which can be optimized via multiple geometric program approximations.

2.7 Robust Convex Optimization

While geometric programs are highly generalizable, they run the risk of being overly spe-

cialized solutions relative to the uncertainty that exists. To account for that uncertainty,

Robust, an add-on GPkit package, allows for the inclusion of standard deviations on
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Figure 2-1: Elliptical Uncertainty
µr is the expected range, σr is the standard deviation of the possible ranges, µs is the
expected takeoff speed, σr is the standard deviation of the possible takeoff speeds. In
robust optimization, each design’s worst case of the range of possibilities of the ellipse
would be found, and the design with the optimal “worst case” would be chosen. Increas-
ing γ accounts for more uncertainty by scaling up the ellipse, as γ is a multiplier of the
standard deviations.

each variable, as well as an overall “Gamma” factor (γ) that scales the amount of uncer-

tainty accounted for, then optimizes the worst point of a region of uncertain parameters.

The region can either account for a certain number of standard deviations of each pa-

rameter ("rectangular" uncertainty) or of a combination of all parameters ("elliptical"

uncertainty). A visual explanation of elliptical uncertainty is in Figure 2-1. This process

is generally known as robust optimization. Work on Robust has shown that the current

standard of multiplying each uncertain variable by a margin does not actually take into

account the worst combined case mathematically, and that robust optimization is nec-

essary to fully account for uncertainty [41]. While the quantitative case for using Robust
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has been made, the question of how this affects the overall design process, particularly

in the context of design space exploration, has not yet been answered.
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Chapter 3

Practitioner Interviews

This study was divided into two stages. The first exploratory stage (practitioner inter-

views) produced qualitative data on Robust adoption’s benefits, risks, obstacles, and

conditions. From the information gathered in these interviews, we designed the experi-

mental second stage to address the concerns raised and to provide these users with fur-

ther guidance on how and when to incorporate robust optimization into their existing

models.

3.1 Methods

To understand current practices of accounting for uncertainty in design models, we in-

terviewed five GPkit users with a flexible questionnaire focusing on how they accounted

for uncertainty within their models. Each of the five interviews lasted for half an hour to

an hour and took place off campus, either at the interviewee’s place of work or at a pub-

lic location like a coffee shop. Interviewees varied in the extent of their experience with

GPkit, their interactions with GPkit (developers versus designers), and their affiliations

(academic versus commercial), though all were in the field of aerospace, where most

GPkit models are made; a detailed breakdown can be seen in Table 3.1. First, we asked

about each designer’s work to encourage engagement in the conversation and to under-

stand their background. We then explored the workflows of their projects before and

after using GPkit, asking them to speak of particular projects to ground their answers.
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Table 3.1: Practitioner Demographics
Each column represents an interviewed practitioner, each row a trait. An “X” indicates
that the practitioner has this trait. “Developer” means they have been involved in GPkit’s
development process; “Designer” means they have created GPkit models as a part of a
longer product development process. “Academic” and “Commercial” refer to the con-
texts in which the practitioner has worked with GPkit. “Experienced” refers to having
multiple years of experience using GPkit.

1 2 3 4 5

Developer X X

Designer X X X X

Academic X X X X

Commercial X X X

Experienced X X X X

We then asked more targeted questions about uncertainty, looking for specific methods.

Finally we asked broadly about inefficiencies they had encountered while modeling, to

understand how salient issues surrounding uncertainty are relative to other concerns.

These interviews were the backbone of our experimental design for the second stage,

for we based its guiding questions on the concerns expressed by those interviewed.

3.2 Results

When we asked interviewees how they accounted for uncertainty during conceptual

stages of design, we received two responses: either they 1) multiplied uncertain param-

eters by a margin or safety factor of 20% (considered an industry standard) or 2) did not

account for uncertainty at those stages. Some interviewees mentioned checking if their

design was robust to small perturbations in environmental conditions via Monte Carlo

simulation, but usually as a final check of a model’s solution, not during model develop-

ment. Most interviewees believed they should be accounting for uncertainty, but did not

consider it a priority due to a perceived lack of social pressure to do so; if none of their

peers were trying to account for uncertainty, why should they? Almost everyone inter-

viewed considered uncertainty quantification an important problem, but also thought
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of it as intractable and impractical.

Interviewees discussed how safety factors can lead a design to be incorrectly seen as

infeasible. One talked in particular about electric airplanes, much of whose mass rests

in their battery. Putting a safety factor on total airplane weight increases the amount of

battery needed, which increases the total airplane weight; the process converges, but

often leaves a design looking impossible. Therefore, instead of weight safety factors, this

interviewee accounted for excess weight by making the allowable payload a maximized

free variable, even though this makes it more difficult to design for an exact payload.

Deciding on a model’s objective function (the parameter it optimizes for) was de-

scribed as the “single most important choice” of modeling. In robust optimization, un-

certainty can be the optimized parameter. This allows for different conceptualizations

of a design problem. With the electric aircraft above, instead of calculating the battery

size required to handle 20% extra weight, designers might use robust optimization to

calculate the maximum level of uncertainty allowable for an airplane capable of carry-

ing a specific payload.

That our interviewees used GPkit primarily during conceptual design stages made

the detailed accounting for uncertainty of robust optimization seem less necessary to

them. In order to use robust optimization, they would have to create models with in-

creased complexity in both concept and form, more difficult to interpret and to code.

Some practitioners were additionally skeptical that doing so would significantly improve

conceptual designs, as the uncertainties known at such an early stage felt more “made

up” than other design parameters. While they found current uncertainty accounting

practices to be more arbitrary, they felt that the specific uncertainty values they would

choose in robust optimization might be just as arbitrary without the benefit of following

industry standards. This formed the question for our human-subjects experiment: can

robust optimization be useful (in comparison to current practices) even with guessed

parametrizations of uncertainty?
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Chapter 4

Human-Subjects Experiment

This experiment was held to provide a direct comparison between methods of account-

ing for uncertainty with different computational models. We wanted in particular to see

how additional uncertainty information mathematically encapsulated in models might

shape designer’s practices.

4.1 Methods

Forty-three graduate and undergraduate students in science and engineering at a US

university were recruited to individually participate in a design challenge using a cus-

tom built graphical interface for a GPkit design model. Participants were prompted to

choose parameters for an airplane design which led to designs with both as low a failure

rate and as low a fuel consumption as possible. They were tasked with finding designs in

three “reward regions” and to find designs on the final combined Pareto frontier; partici-

pants received greater compensation depending on their performance on these metrics.

Each participant was given a ten minute tutorial, thirty minutes to complete the design

challenge, and ten minutes to complete a short survey about their experience using the

tool after the experiment.
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Table 4.1: Participant Demographics (self-reported)
Each participant was randomly assigned to an experimental condition upon arrival; no
stratification was used to split participants.

Control Margin
Gamma

Slider

Perf.

Slider

n = 10 11 11 11

Gender

Female 4 4 4 9

Male 6 7 7 2

Education

Freshman 0 2 0 1

Sophomore 4 2 2 1

Junior 1 2 0 1

Senior 1 1 3 3

Masters 2 2 3 2

PhD 2 2 3 4

Department

CS 3 4 3 3

Aero 4 3 4 3

Mech E 2 3 3 4

Other/None 1 1 1 1

4.1.1 Experimental Interface

The graphical interface shown in Figure 4-1 allowed users to directly modify a small set

of parameters with sliders (A), then optimized a design based on those parameters and

presented its fuel consumption (performance) and simulated failure rate. Participants

kept track of the history of their designs with a plot of each design’s fuel consumption

and failure rate (B), a list of parameter combinations they’d tried that led to infeasible de-

signs (C). The three reward regions were also shown on (B), providing a visual reminder

of their goals. Additionally, participants saw the planform of their most recent airplane

design (D). Fuel consumption was evaluated by solving the GPkit design model for the

input slider values, while failure rate was determined by checking the model’s feasibil-
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Figure 4-1: Diagram of Experimental UI
The three reward regions highlighted in the plot are designs with a fuel consumption
below 1100 lbs (in blue), designs with failure rate below 10% (in yellow), and designs
with both a fuel consumption below 1200 lbs and a failure rate below 30% (in green).
The ordering of participant’s designs was tracked through a line, with the most recent
points in bright pink and older points in dark purple.

ity across a set of one hundred randomized conditions; conditions were sampled from

a multivariate truncated Gaussian probability distribution. A fixed set was used for all

participants to enable comparability between the failure rates of various designs. This

method of determining failure rates is similar to best-practices Monte Carlo simulations.

The design model underlying this graphical interface was based on the “SimPleAC” GP-

kit model for passenger aircraft, [40] itself a condensed version of previous GPkit models

for commercial aircraft [19, 38] that had been co-developed with the robust optimiza-

tion library [41].
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4.1.2 Experimental Conditions

Subjects were randomly partitioned into the four experimental conditions: two condi-

tions similar to existing practices (Control and Margin), and two using robust optimiza-

tion (Gamma Slider and Performance Slider). A breakdown of participant demographics

can be found in Table 4.1. Participants using Control chose design parameters such as

wing size; those using Margin chose safety factors, those using Gamma Slider chose the

precise shape and scale of the uncertainty region they were optimizing for, while those

using Performance Slider, chose the shape of that region and a desired performance, let-

ting the optimizer maximize the scale of the uncertainty region. The uncertainty region

was set to be elliptical, which represents a percentage of combined uncertainty being

accounted for. Both Control and Margin represent current design practices: Control

simulates common practices with non-optimizing design models, while Margin simu-

lates common practices with GPkit models. Gamma Slider and Performance Slider rep-

resent the intended design practices Robust enables. We expected to see improvements

to design space exploration coverage and quality with these uses of robust optimization.

More specifically, Control users directly manipulated four physical design parame-

ters of the airplane (wing length, wing area, fuel volume available, and lift coefficient).

Margin, Gamma Slider, and Performance Slider users directly manipulated parameters

which accounted for uncertainty (margins or percentages of uncertainty on wing weight,

fuel quality, takeoff speed, and range). Control users saw the fuel consumption of their

designed airplane in the context it was optimized for, while users of the other design

models saw performances which “priced in” uncertainty. Since the reward regions were

identical across conditions, a larger fraction of possible designs Control users were able

to find appeared in these regions. This kind of biased comparison is common in robust

optimization practice. To compare performance across conditions during the analysis,

designs made in non-Control conditions were “nominalized” by recalculating perfor-

mance of each design in the nominal conditions Control designs had seen.
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4.2 Results

Prior to analyzing the quantitative data of the experiment, we assessed our overall im-

pressions of each of the conditions from piloting and from post-experimental conversa-

tions with participants. Participants in the Control condition seemed to have the most

direct understanding of how or why their parameter changes affected performance and

failure rate, especially if they had some experience with airplane design. Participants

in the Margin condition found their designs highly sensitive to even small parameter

changes; it seemed easy to accidentally go to extremes with this tool. For both Perfor-

mance Slider and Gamma Slider participants it seemed difficult to find designs far away

from the Pareto frontier. Performance Slider participants could, by keeping the perfor-

mance slider consistent, constrain their motion on the results plot to a single vertical

line, allowing them to separate dimensions inextricably linked for other users. Gamma

Slider participants could, by keeping their standard deviations constant and only mod-

ifying the size of their uncertainty set, move along a single curve. Being able to act in

only one “dimension” in these ways seemed to make the challenge less stressful for both

Gamma Slider and Performance Slider participants.

To see if these impressions were validated by our data, we analyzed qualitative results

from the post-experiment survey, which gave participants a set of statements and asked

them to rate how much they agreed or disagreed with each on a six point Likert scale

(Figure 4-2). Comparisons between Control and other conditions were biased by Con-

trol’s easier access to the goal regions; given this, the fact that Control felt less stressed

and frustrated than most other conditions is unsurprising. Between other conditions,

we saw differences in the amount participants felt like they “had a plan”, were “in con-

trol”, were “frustrated”, or were “stressed”. As expected, robust optimization conditions

were mildly less stressful and frustrating than Margin. However, Gamma Slider partici-

pants felt the least like they had a plan and were in control. This may indicate confusion

about the “Gamma” parameter, which, as a robust optimization specific term, was un-

familiar. Despite this, Gamma Slider participants had the highest quality solutions of all

conditions. Even without feeling they understood what they were doing, Gamma Slider
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"You felt like you were choosing new design points arbitrarily, without a plan."

"You felt fully in control during the design task."

"You felt frustrated during the design task."

"You felt stressed during the design task."

Figure 4-2: Results from Post-Experimental Survey
A six point Likert scale was used to evaluate the emotional reaction of participants to the
experimental set up. Participants filled out the post-experimental survey immediately
after finishing the experiment.

participants were able to find high quality designs.

The rest of this section quantitatively compares solutions across all four conditions.

The design challenge incentivized participants not to find an optimal solution given a

single goal, but rather to find a Pareto frontier of optimal solutions in terms of two goal

parameters, performance and failure rate. To statistically analyze the influence condi-

tions had on design outcomes, we compare the quantity of high quality points found

in Figure 4-3. The metrics of Pareto points and combined Pareto points serve as prox-

ies for how much of the space was covered; the percent inside reward regions serves as

a proxy for design quality. We see significant differences between robust optimization

methods and standard methods in these metrics, providing evidence for the hypothesis

that robust optimization encourages more exploration of optimal designs and increases
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Figure 4-3: Summary Statistics
Significant differences (Welch’s t-test) indicated by an asterisk (significance defined as
p < 0.05). “Points” refers to the number of feasible designs generated by each partici-
pant within thirty minutes. “% in R.R.” refers to the percent of nominalized designs per
participant that were in any of the regions with financial incentive. “Pareto” refers to
the average number of points found by each participant in each condition that were on
the combined experimental Pareto frontier across all conditions. n = 11 for all condi-
tions except Control, in which n = 10. Shaded region shows the distribution for each
condition, darker between the 25th and 75th percentiles. Black dots show medians.

the quality of each design explored.

The number of points metric is an indication of how much exploration participants

were willing to do given specific tools; the large number of points in robust conditions

indicates that exploration was faster and/or participants more willing to explore. To dis-

ambiguate this, we looked at the average time between points for each condition. We

did see a statistically significant difference here, but this was likely due to the abun-

dance of points produced decreasing the threshold required for significance. As the

overall end times did not show significant differences, the number of points produced

may be best explained by participants’ willingness to explore under each condition. Ro-

bust optimization is not the sole factor here: the Control condition, in which the reward

regions were the easiest to achieve, provided less financial incentive to explore, which
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may have discouraged exploration. However, the Margin condition was rated as slightly

more stressful and frustrating, and participants may have been disincentivized to ex-

plore by their stress and frustration. One of the benefits of robust optimization might be

a reduction of this stress and frustration, leading to increased exploration.

We parametrize a design’s quality with two dimensions: the improvement in fail-

ure rate that could have been achieved for that design’s performance (vertical distance

on the following plots), and the improvement in performance that could have been

achieved for its failure rate (horizontal distance). In both cases, designs were compared

to the final combined Pareto frontier achieved by other participants. Figures 4-4 and

4-5 show the distribution of these distances across participants’ Pareto frontiers. Be-

cause we used the same reward regions across conditions, the difficult central region

became therefore a focal point for some participants, as can be seen in the compres-

sion of their distribution at that point. With normalized performance, Control and the

least-performant half of Margin participants are clearly separated from the combined

frontier, while other participants are quite close.

To see the differences between the Pareto frontiers achieved by participants under

condition, we summarize each individual frontier by its average vertical distance (Figure

4-6) and horizontal distance (Figure 4-7). We consider individual’s frontiers all together

instead of each of their points because such frontiers are the primary output of design

model use, not a particular design point. That is, our simplified framework for the use of

these models in a design process is 1) a condition is selected, 2) a Pareto frontier created,

and 3) a condition is chosen from that Pareto frontier based upon the whole frontier.

Figure 4-6 shows the distributions of excess failure rates (average vertical distance)

across the frontiers made with each condition. There is a clear distinction between Con-

trol and Margin, and between both of them and the two robust conditions. Figure 4-

7 shows the distribution of excess fuel consumption (average vertical distance) across

conditions. The frontiers of median users of the robust models perform better by this

metric than the best users of Margin and Control, and every user of robust models per-

forms better than three quarters of Control users.
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Figure 4-4: Distribution of Fuel Consumptions
Solid lines show median of participants’ Pareto frontiers after nominalization. Shaded
regions extend above it to the 75th percentile and below to the 25th. The black dashed
line shows the combined final Pareto frontier, while solid black lines indicate reward
regions.
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Figure 4-5: Distribution of Failure Rates
Solid lines show median of participants’ Pareto frontiers after nominalization. Shaded
regions extend to its right to the 75th percentile and to its left to the 25th. The black
dashed line shows the combined final Pareto frontier, while solid black lines indicate
reward regions.
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Figure 4-6: Average Excess Failure Rates
Shaded region shows the distribution for each condition, darker between the 25th and
75th percentiles. Black dots show medians.
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Figure 4-7: Average Excess Fuel Consumptions
Shaded region shows the distribution for each condition, darker between the 25th and
75th percentiles. Black dots show medians.
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Chapter 5

Discussion

These results are evidence that robust optimization can increase design quality. Re-

turning to our fundamental research questions, what do they imply about the effects of

conceptualizations and formulations of uncertainty, and what current design practices

might robust optimization alter or automate?

5.1 RQ1: Conceptualization of Uncertainty

From practitioner interviews we found that uncertainty conceptualization in the early

stages of airplane design is minimal, partly because uncertainty is considered fruitless

to estimate by our interviewees when the overall design is rapidly changing. However,

we found two types of uncertainty were being mixed together: 1) uncertainty related

to changes that were part of the design process, and 2) uncertainty related to the range

of possibilities the final design might face. The conceptual merging of these meant that

designers who did not think they could account for the first type, also thought they could

not account for the second. For robust optimization to be used in conceptual design, it

must make clear it is formulated for the second type.

Given that designers at this stage do not often conceptualize this second type of un-

certainty, how might they adopt robust optimization? Experimental participants in the

robust Performance Slider condition felt most like they “had a plan”; Gamma Slider par-

ticipants felt least like they had a plan. This implies that, for non-expert users, the termi-
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nology of robust optimization (present in Gamma Slider as the “Gamma” factor, but ab-

sent in Performance Slider) may be a barrier to entry. However, the concept of optimiz-

ing for uncertainty, present in both conditions, did not seem to hinder understanding

(using “felt like they had a plan” as a proxy). For GPkit users trying robust optimization,

we would expect the transition to be eased by parallels between the conceptualization

of uncertainty in robust optimization and uncertainty questions already asked later in

the design process. The Performance Slider condition is analogous to finding the most

robust design possible for a certain performance; the Gamma Slider condition is analo-

gous to finding the most performant design possible for a specific uncertainty set. The

additional complexity of design models in practice and the lack of GUI-based abstrac-

tion may limit the generality of these results.

5.2 RQ2: Formulation of Uncertainty

The current process of GPkit model creation does not encourage a rigorous formula-

tion of uncertainty. Practitioners discussed multiplying uncertain fixed variables with

industry-standard safety factors, but this method seemed more of a default practice

rather than one engaged with a conceptualization of uncertainty.

In our experiment, the Control condition had no formulation of uncertainty, the

Margin condition encapsulated uncertainty in safety factors, and the robust optimiza-

tion conditions encapsulated uncertainty in relative standard deviations. Results showed

participants in Control and Margin were far worse at finding Pareto optimal points than

participants in robust optimization conditions: 75% of robust optimization frontiers

were better than the median frontier of the other conditions. Additionally, formulat-

ing uncertainty as a directly controllable variable seems to have reduced the quantity of

suboptimal designs explored.

In this simplified design challenge, the model’s formulation was abstracted away

from the participants. In practice, users of GPkit would need to understand robust opti-

mization well enough to create these models on their own. While Robust was designed

to only require a small amount of additional code, the mathematical increase in un-
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derstanding needed to create such syntax was not accounted for within this study. It

remains to be investigated as a possible obstacle to usage of robust optimization in GP-

kit.

5.3 RQ3: Automated Design Processes

Our experiment was designed to represent both designers’ present design exploration

processes and the potential processes of robust optimization. Our failure rate simu-

lation was meant to mimic a designer testing their design, either through Monte Carlo

simulation, more complex computational modeling, or prototype creation. In this study,

this failure rate simulation formed the “ground truth” of the participants involved; in

practice, the ground truth could not be so easily discovered at this stage. A simulation

similar to ours would serve as an early check in the design process, rather than the final

one.

Current design processes were emulated by the Control and Margin conditions. Con-

trol emulated the process of manually setting design parameters without use of opti-

mization, as is common in conceptual aerospace design. Our results find that, while it

is possible to find high quality solutions this way, it is difficult to do so consistently. Our

Margins participants emulated the process of specifying safety factors within an opti-

mization framework such as GPkit. Margins are not so flexibly set in practice. Instead,

they are generally fixed at an industry-standard value. Similarly, simulations to check

failure rates are more generally performed after a solution has been decided upon, not

during a single designer’s rapid iteration through designs. Both the Margin and Control

conditions of our experiment put current practices on a much faster timescale; caution

should be taken equating these results with current design practices. The optimization

involved in Margin, as well as the ability to control uncertainty parameters, led to higher

quality designs than those of Control participants, though Margin participants were still

able to find poor quality designs far away from the Pareto frontier.

Judging just by what participants saw on their screen, the Control case had an easier

time reaching the reward regions. However, this is due to the method in which uncer-

41



tainty is incorporated into the mathematical model—since the uncertain variables are

directly modified to be in their worst case of the uncertainty accounted for, the perfor-

mance given by the model is the performance under worst case conditions. We pre-

sented this performance to participants to better simulate how designers would view

each tool. To be able to compare the underlying data however, we needed to “nominal-

ize” the data, which meant rerunning the model with optimized fixed design parameters

with uncertainty parameters set to the nominal values used by the Control condition.

This workflow on the experimenter’s part implies the need for an automated function-

ality to compare designs optimized for various conditions; practitioners also noted the

need to easily test performance on “off-design” cases.

The Gamma Slider and Performance Slider conditions mimic two ways designers

could use robust optimization to explore the design space, and the consistent quality of

their Pareto frontiers implies that the methods can produce a high likelihood of Pareto

optimality without requiring much skill. Given the mathematical formulation of robust

optimization, this is no surprise. A random sample of conditions is an approximation

of the bounds robust optimization is designed to optimize for; the failure rate returned

by the random sample is a less accurate representation of how much uncertainty is ac-

counted for than the robust optimization’s own parameter bounds. This turns the ex-

periment into a game of finding uncertainty parameters that overfit the controlled set

of one hundred random samples. A designer mimicking this process in practice would

set the bounds of both the Monte Carlo simulation and the uncertainty parameters of

robust optimization; however, a probabilistic simulation analysis does not make sense if

the designer can choose the space of uncertainty optimized for. Robust optimization au-

tomates away the mathematical necessity of performing Monte Carlo simulations over

direct design parameters. In practice, we would expect Monte Carlo simulations to still

be used to provide additional legitimacy to designs for stakeholders with less familiar-

ity with robust optimization practices, and for uncertain parameters not representable

within a convex model.

Robust optimization’s most apparent advantage becomes clearer later in the design

process—the expressivity it provides designers to build models that are detailed mir-
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rors of their project-specific conceptions of uncertainty. However, this potential benefit

would require a change in how GPkit is used; while some designers wanted to contin-

uously update GPkit models as their designs proceeded past the conceptual stage, they

felt little ability or incentive to do so, as their coworkers usually trusted more complex

“high-fidelity” to be more legitimate.

Trust in GPkit models of various designs does need to be built; not many designers

would be willing to use the values determined as optimal directly from a GPkit solve

without first validating the model in other software. However, late-stage GPkit models

have been able to accurately predict the performance of an airplane prototype, such as

with the Jungle Hawk Owl [11, 10], whose designers built a plane fully modelled in GP-

kit, and found their built performance remarkably close to model estimates. However,

to encourage adoption of robust optimization in GPkit, improvements in design qual-

ity must be evident even at early conceptual stages. This study provides evidence that

robust optimization can have a dramatic effect, even with a simple conceptual model.
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Chapter 6

Conclusions

This study provides evidence for the importance of accounting for uncertainty early in

the design process. A lack of uncertainty formulation within a design model can require

external, imperfect metrics of uncertainty testing, such as Monte Carlo simulations, and

the iteration modeling process is thus less likely to produce high quality designs. Sim-

ple uncertainty formulation within a design model, such as multiplying a variable by a

safety factor, can create overly conservative designs or make worthwhile designs appear

infeasible. However, most designers do not know alternative methods of accounting for

uncertainty, or consider those methods to be impractical for conceptual design.

Robust optimization provides stronger protections against uncertainty than safety

factors, making it difficult for even inexperienced users to create non-robust designs.

This is seen through the high quality of almost all our experimental participants’ final

designs relative to the combined Pareto frontier. We also provide two conceptualiza-

tions of uncertainty GPkit users could use robust optimization to represent. The first,

represented by Performance Slider, is optimizing for the largest scaled uncertainty, cre-

ating an airplane that is as robust as possible for a particular performance. The second,

represented by Gamma Slider, is optimizing for performance, creating an airplane that

maintains a particular level of robustness while spending little on fuel. GPkit users who

already consider uncertainty via Monte Carlo simulations of their designs will find ro-

bust optimization essentially automates the function of Monte Carlo simulation within

it, reducing the necessity of running additional simulations on designs.
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The human-subjects experiment was a game for novices, and so does not allow us to

draw conclusions about how designers in practice might behave. However, even though

robust optimization uncertainty parameters were difficult to understand conceptually,

this barrier did not prevent novice participants from finding high quality solutions. The

experiment also provides questions for future field studies: Do explicit formulations of

uncertainty enable better conversations about it during conceptual design? How do

multiple stakeholders interact with these tools and solutions to reach an agreement?

Do the benefits found in this study extend to more complex solutions? How difficult is

it for designers to transition from formulating uncertainty as safety factors to skillfully

using robust optimization? Answering these questions will allow us to understand the

potential of robust optimization as a method for accounting for uncertainty.
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Appendix A

Questionnaire for Interviews

Questions were grouped into three broad categories:

(A) Background/General

(B) Integration/Communication

(C) Robustness

Questions were given approximately in this order, allowing for flexibility given the

natural flow of conversation.

1. Tell me about the projects you are working on and your role within them. (A)

2. How and why did you start using GPkit? (A)

3. Think about a project you did that could have used GPkit, but didn’t.

(a) Why did the project not use GPkit? (A)

(b) How did you integrate and optimize your systems? What tools did you use to

integrate and optimize your systems? (B)

(c) How long did the design process take? How many early stage iterations (i.e.

early simulations) did you go through? How many late stage iterations (i.e.

more detailed simulations, built objects) did you go through? (C)
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(d) How closely did early simulations match the final object? (C)

(e) How many people were involved? How were they organized? (B)

(f) How did you evaluate the quality of your design during the process? After it

was complete? (C)

4. Think about the last project you did with GPkit.

(a) What stages of the project did you use GPkit during? (B)

(b) How did you use GPkit to integrate and optimize your systems? What pro-

cesses did GPkit replace, and which ones did it not replace? (B)

(c) What tools did you use in addition to/before/after GPkit? (B)

(d) How long did the design process take? How many early stage iterations (i.e.

early simulations) did you go through? How many late stage iterations (i.e.

more detailed simulations, built objects) did you go through? (C)

(e) How closely did early simulations match the final object? (C)

(f) How many people were involved? How were they organized? (B)

(g) How did you evaluate the quality of your design during the process? After it

was complete? (C)

5. Of the differences in the two projects we mentioned, which ones were related to

GPkit? (A)

6. If you haven’t used GPkit in major projects, why? (A)

7. What do you view as benefits of GPKit? (A)

8. What do you find to be lacking in GPkit? What features would you like to be added?

(A)

9. What qualities of a project do you find make it better suited for GPkit? (A)

10. How do you moderate uncertainty? (i.e. do you prioritize accuracy in measure-

ments of certain components versus others?) (C)
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11. How do you encode uncertainty information into GPkit? (C)

12. How does your initially designed model translate into the final built structure?

What things change? How often are you re-solving your model/modifying the de-

sign? (C)
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