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Abstract

This thesis work involves the deposition and characterization of undoped
and in situ doped Si;_.Ge, layers as well as the studies of Si;_.Ge, growth kinetics
and thermal stability.

A procedure has been developed and optimized for the deposition of high
quality heteroepitaxial Si;_.Ge, layers at temperatures from 570 to 750°C using
a very low pressure (3 - 10 mTorr) chemical vapcr deposition (VLPCVD) reactor
with silane and germane as source gases with or without plasma enhancement. The
surface morphology, crystaliine perfection and purity of the deposited films were
characterized by Nomarski microscopy, ion channeling/Rutherford backscatter-
ing specirometry, scanning electron microscopy, transmission electron microscopy,
double-crystal X-ray diffractometry, Raman scattering spectroscopy, and secondary
ion mass spectrometry. The temperature and germanium dependencies of Si,_,Ge,
growth modes, i.e., two- and three-dimensional growth, at temperatures 570 -
750°C were investigated, and the range for smooth morphology has been mapped
out for VLPCVD Si;_.Ge. heteroepitaxy. It was demonstrated that high quality
strained layers of Si,_,Ge,, including single layers, sandwiched layers, and multi-
ple layers, with germanium contents of < 0.25 could be grown on non-patterned
and oxide patterned silicon substrates at temperatures > 620°C. At deposition
temperatures below 620°C, the film quality is severely degraded by carbon and
oxygen contamination. The examination of growth mode and film purity indicates
the fundamental limits of low-temperature Si;_.Ge_ heteroepitaxy in VLPCVD.

A sublinear relationship was observed between germanium incorporation
and germane fraction. The amount of incorporated germanium slightly increases
with increasing temperature, but decreases by raising the flow rates of source gases
and hydrogen carrier gas. The Si;_.Ge. deposition rate measured in the tempera-
ture range from 570 - 700°C exhibits different dependencies on germanium content
at different temperatures. The growth rate decreases with increasing germanium
content at 700°C, but increases monotonically with germanium at 570°C; exhibit-
ing a peak in growth rate at intermediate temperatures. The measured activation



energy in Si;_.Ge, deposition rate was found to decrease by the addition of ger-
manium, suggesting that the rate-limiting step was modified by germanium. By
varying temperature and gas flow rates, we have examined the 5i,_.Ge. deposition
process, and a model is proposed to account for the observed growth behaviors.

In situ doping of Si;_.Ge_ layers was carried out by using diborane, arsine,
and phosphine as dopant sources. Very high boron (2x10?° c¢cm™) and arsenic
(5% 10" cm™?) concentrations have been achieved in Sig.s7Geo3 using 1000 ppm
diborane and arsine without degrading film quality. The amount of boron atoms
incorporated into Si;_.Ge, layer is independent of germanium composition. No
change in Si;_.Ge, growth rate due to boron incorporation was measured. It was
observed that, for n-type doping, the germanium incorporation is independent of
phosphine. However, the phosphorus incorporation appears to be enhanced by the
addition of germanium. Moreover, a dramatic improverent of phosphorus depth
profile was observed and the magnitude of growth rate inhibition due to n-type
doping was found to decrease with increasing germanium content. The observed
germanium enhanced phosphorus doping process is thought to be a result of re-
duced surface passivation of phosphorus dopants. We speculate that germanium
might have two important effects on the doping process: the disruption of P-P
dimerization and the enhancement of phosphorus desorption. A model is proposed
to explain the experimental data.

The critical thickness of VLPCVD Si;_.Ge_ strained layers grown at 750
and 620°C has been measured, and the thermal stability of Si;_.Ge, strained layers
was investigated. We have measured the dislocation density in uncapped 1240 A-
thick Sig.92Geo.0s and 600A-thick Sips7Gep.1s after 30 min annealing at 750 - 950°C
and found that the misfit dislocations in these structures inzreased rapidly at 750
- 800°C and became saturated at temperatures of 850°C ~ 950°C. Strain relief in
annealed ~1400A Si/520-700A Si,_.Ge,/Si heterostructures (z=0.09 - 0.16) has
been quantitatively measured and it was found that the strain relaxed gradually
at temperatures < 950°C but relaxed rapidly at temperatures > 950°C, showing a
transition point and different mechanisms in the relaxation process. The possible
mechanisms, involving the generation of misfit dislocation and Si-Ge interdiffusion,
have been studied to explain the relaxation behaviors. Finally, a thermal budget
has been mapped out for strained-layer growth (temperature < 750°C and time
< 10 min) and for thermal annealing (temperature > 750°C and time = 30 min)
without strain relaxation.

Thesis Supervisor: Professor L. Rafael Reif
Title: Professor of Electrical Engineering
Director, Microsystems Technology Laboratories
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Chapter 1

Introduction

1.1 Introduction

Although many elements and intermetallic compound exhibit semiconducting prop-
erties, silicon is presently the most important semiconductor for the electromics
industry, with VLSI technologies relying almost entirely on silicon. The dominant
position of silicon can be attributed to a number of factors: silicon is the second
element in abundance only to oxygen on earth and can be refined to ultrahigh
purity and grown into nearly perfect crystals, silicon oxide provides the superb
properties for planar processing technologies, and silicon has unique etching prop-
erties and excellent mechanical properties [1, 2]. However, on its electronic merits
alone, silicon is not an optimum choice. For éxa.mple, silicon has only average
high-field breakdown characteristics, free carrier mobility, and carrier saturation
velocity. Moreover, the high minority-carrier lifetimes of silicon are offset by its
indirect bandgap. As a consequence, many important eiectro-optical applications
are not possible with silicon devices or microcircuits [3].

Since silicon-based technology is used almost exclusively in the fabrication of
modern integrated circuit, new options and impacts would be possible for the huge
and fast-growing integrated-circuit market if we can combine silicon fwith other

semiconducting materials which provide the unique properties allowing functions
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Figure 1.1: Band gap of semiconducting materials as a function of lattice constant

[4].

that cannot be performed by silicon alone. Furthermore, it may even become possi-
ble to custom design novel artificial structures, such as strained-layer superlattices
and quantum well structures, using silicon processing for specific applications. To
date, most approaches to this technological challenge are based on growing epitax-
ial layers of novel materials on the silicon substrate. These intense efforts have in
fact opened an exciting area in both fundamental studies and device applications:
heteroepitazial growth on silicon.

Because most semiconductor devices depend on crystailine perfection and
excess lattice mismatch can lead to strain reﬁef via the generation of defects, one
must use the materials with similar crystal structures and nearly identical lattice
constants to achieve high-quality heteroepitaxial growth on silicon substrate. Fig-
ure 1.1 compares the lattice constant of silicon with a number of semiconductors [4].

Relatively few semiconductor lattices match to silicon except GaP, AlP, and ZnS.
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1.2 Literature Review

1.2.1 Growth Principles

Starting from metallic systems, heteroepitaxial growth has been studied as a fun-
damental problem for over six decades. Only in the past two decades, however, has
there existed a practical interest in understanding the phenomena more completely.
This recent practical interest has arisen from the great need of the semiconductor
industry for high-quality thin films. As the use of electronic devices became more
demanding and sophisticated, the need for films free of defects has increased. This
section will discuss two major problems associated with heteroepitaxial growth:

two/three dimensional growth and coherent/incoherent growth.

Two/Three Dimensional Groewth

On the basis of thermodynamics, the epitaxial growth can be classified as (i) Frank
and van der Merwe growth (monolayer-by-monolayer, two-dimensional growth),
(ii) Volmer-Weber growth (island, three-dimensional growth), and (iii) Stranski-
Krastanov growth (island on top of a few monolayers, growth mode changes from
two-dimensional to three dimensional), as illustrated in Fig. 1.2 [9]-[12]. If epitax-
ial growth occurs via the Frank and van der Merwe mode, the two-dimensional
growth by the motion of mono-atomic steps yield smooth layers. Furthermore,
in absence of diffusion or exchange effects, one can expect an atomically abrupt
interface. While island growth and coalescence of islands take place, the sur-
face will become rough and defects may form during island coalescence. Since
the formation of smooth and planar interfaces and of uniform epilayers are re-
quired for heterostructure devicés, particularly for devices based on superlattices,
two-dimensional growth is highly desirable. Unfortunately, in lattice mismatched
systems, where high interfacial energy and strain energy are expected, island for-

mation is energetically favored. This would be the situation if there were a high
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.

Figure 1.2: Possible growth modes of Si,_.Ge, heteroepitaxial growth on silicon

energy associated with the hetero-interface which affects the wetting angle of epi-
layer and substrate or if islanding facilitated relaxation of the strain energy within
the epilayer [13, 14}. The sirong tendency towards three-dimensional grewth due
to lattice mismatch in the Ge/Si systems had been shown by Cullis and Booker
[15]).

Coherent/Incoherent Growth

In addition to island formation, another fundamental problem associated with
heteroepitaxial growth is the limit of layer thickness. It has long been recognized
that in lattice-mismatched heteroepitaxy, there exists a characteristic thickness h.
only below which lattice mismatch between substrate and epilayer can be accom-
modated entirely by layer strain. The epilayer is strained such that the lattice

parameters parallel to the hetero-interface are identical and and the growth is
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described as pseudomorphic or commensurate. Figure 1.3 shews a schematic illus-
tration of heteroepitaxial growth on a Si substrate. When the thickness is under k.,
the deposited heteroepitaxial layer can be strained under biaxial stress to match
the substrate and a defect-free interface will be formed, as shown schematically
in Figure 1.3 (2). This result gives elastic strain energy stored in the epilayer. If
the thickness of the growing layer exceeds k., it becomes energetically favorable
for misfit dislocations to relieve elastic strain energy and the lattice parameter
of epilayer will relax toward its own free value, as depicted in Figure 1.3 (b).
The modeling of critical thickness for heteroepitaxy began as early as 1949 with
the pioneering work of Frank and van der Merwe [16]-[18] and was extended by
Matthew in the 1960’s [19]-[21]. Although these models based on thermodynamic
equilibrium and mechanical equilibrium theories were original developed for met-

als, they can be applied to the Ge-Si system as reported by Kasper et al. [22]. In
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Figure 1.4: Plot of Si;_.Ge, growth mode with respect to Ge composition and
growth temperature [13].

their early experimental studies, Kasper et al. indicated that the critical thickness
of Si;_,Ge, strained layers grown on Si was in approximate agreement with the
theories suggested by Matthews [19]-[21] though small discrepancies were noted.
Also, they found Si;_.Ge;. islanding on Si could be eliminated at 750°C. Unfor-
tunately, the smooth layer could only be grown for alloys with Ge fractions less
than 15-20% and the measured critical thicknesses were quite small that would be
of little use in current devices. Encouraged by Manasevit et al.’s work in 1982 [23]
describing the anomalous carrier mobility in Si;_.Ge./Si superlattices in which
strained layer heteropeitaxy was not claimed, Bean et al. gave Si;..Ge, another
try by refining state-of-the-art MBE and sample preparation. From the growth
of Si;_»Ge, on Si for all compositions (z = 0-1) over a wide range of deposition
temperatures (400-750°C), Bean et al. demonstrated in 1984 that: (1) Pseudomor-
phic growth of Si,_.Ge, on Si was confirmed with Ge composition up to 50%. (2)

Pseudomorphic growth was maintained for layer thicknesses up to 0.25xm. (Such
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thicknesses are approximately an order of magnitude larger than those predicted by
equilibrium theories.), and (3) A Si;_.Ge./Si stra.ix;ed-layer superlattice was grown
(13, 14, 24]. The exciting results showed that, although island formation is energet-
ically favored in Si;_.Ge, growth on Si, three-dimensional growth can be avoided
by lower temperature deposition where atomic surface migration lengths are so
short that macroscopic islands cannot form. In other word, the smooth growth
was achieved by incorporation of “frozen-out” surface atoms. Figure 1.4 indicates
the transition from two-dimensional to three-dimensional growth as functions of
growth temperature and Ge fraction. Note that the limited surface migration can
reduce the crystal quality at lower temperature. Thus the deposition tempera-
ture for Si;_.Ge, growth should be optimized to maintain both two-dimensional
growth and high-quality epitaxy. Another iraportant conclusion from Bean et al.’s

study is that, at low temperature, the Si;..,Ge, strained layer can be grown up to
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the thickness well beyond the predicted equilibrium limits, as shown in Figure 1.5
[25]. The discrepancy suggests the existence of a kinetic barrier to the formation
or motion of misfit dislocations which allows the growth of metastable Si;_.Ge,
layer in excess of equilibrium h.. Further, interdiffusion can also be minimized at
low temperatures.

The enhancement of two-dimensional growth and the increase of strained-
layer thickness by low-temperature deposition is very encouraging and allows fab-
rication of Si;_.Ge./Si heterostructures for practical applications. Since then, the
Sij--Ge;-Si system has drawn much attention for its great potential. The follow-
ing section will summarize the state-of-the-art léw-temperature growth techniques

that have been applied in recent years to the growth of Si,_.Ge, on Si.

1.2.2 CVD Techniques for Si;_.Ge, Deposition

Although initiated by MBE, recent progress with the heteroepitaxial growth of
Si1—zGe; on Si using CVD has been reported. Compared with MBE, which is
much more expensive and complicated, CVD is of great interest since this tech-
nique appears to be compatible with manufacturing requirements such as high
throughput, conformal coverage, and low cost. Table 1.1 summarizes the CVD-
related techniques that have been employed for Si;_.Ge, growth on Si [26]-[38].
The source gases and deposition temperatures for different technique are also in-
dicated. |
Among these demonstrated CVD reactors for Si;_, Ge, heteroepitaxial growth,

limited reaction processing (LRP) is one of the first CVD-related techniques that
demonstrated a rapid thermal processing for strained layer Si;_,Ge, growth. In
this system (Fig. 1.6 [39]), the substrate is supported by three quartz pins and the
substrate temperature can be rapidly changed at the heat up and cool down rates
of 1-5 ms°C~* by two banks of six air-cooled 1.2 kW tungsten halogen lamps acti-

vated by a microprocessor that. provides a desired temperature versus time profile
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Research Group | Technique Process Gases Carrier gas Temperature Reference
Stanford LRP SiH,Cl,, GeH, H, 625°C, 900°C [26]
IBM UHVCVD SiH,, GeH, no 550°C [27]
NTT LPCVD SioHg, GeH, H, 550-700°C (28]
Princeton RTCVD SiH,Cl,, GeH,4 H, 625°C [29]
CMU UHVCVD SiH,, GeH,4 Hj 877-665°C [30]
UT, Austin RTCVD SiH,Clp, GeH,4 H, 1000°C [31)
IBM APCVD SiH,Cl,, GeH, Ha 625°C [32]
NCSU RTCVD SiH,Cl;, GeH, H, 500-800°C {33]
Spire APCVD SiH,, SiHCl;3, GeCl, H, 800-1000 [34]
AT&T RTCVD SiH,Cl;, GeH, H, 900°C (35]
RSRT LPCVD SiH,, GeH4 H, 610-750°C [36]
Philips & ASM | APCVD SiH,;Cla, GeHy H, 625°C [37]
HP & ASM APCVD SiH,Cl,, GeH, Ha  600-800°C [38]

Table 1.1: CVD techniques demonstrated for Si;_.Ge,/Si heteroepitaxy:
LRP:limited reaction processing, UHVCVD:ultrahigh Vacuum CVD, LPCVD:low
pressure CVD, RTCVD:rapid thermal CVD, APCVD:atmospheric pressure CVD,
VLPCVD:very low pressure CVD [26]-[38].
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Figure 1.6: Schematic of the Stanford LRP reactor [39].

[26]. This reactor design is very similar to that used by Tedrow et al. for the growth
of silicide layers [40]. Such tight temperature control translates to precise control
over a thermally driven surface reaction, such as chemical vapor deposition, and
epitaxdial growth occurs and stops when the lamps are on and off. Thus, this tech-
nique is also referred to as limited reaction processing. In LRP, gas is introduced
into the chamber while the substrate is cool, in between two high temperature cy-
cles. By changing the gas flows between high-temperature cycles, layers of different
compositions can be produced. (This idea is very similar to that proposed by Reif
and Fonstad for using a plasma as an on/off switch for heteroepitaxial depositions
[41]). As a result of rapid temperature changes that turn a surface reaction on
and off, Si;_,Ge,/Si interfaces are abrupt to within approximately 20A. Based
on a similar configuration, another type of rapid thermal process, RTCVD, was
developed to deposit thin films at low temperatures.

Rapid thermal chemical vapor deposition (RTCVD) also uses two banks
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Figure 1.7: Schematic of the AT&T RTCVD reactor [42].

of six 1.2 kW tungsten lamps with substrate mounting on three quartz pins, as
shown in Fig. 1.7 [42]. However, unlike LRP, the films are grown by means of gas
switching and the lamps are not turned off between the two deposition steps. In
both systems, native oxide is removed by a H; bake or HCl/H; etch in a short time
above 1000°C, followed by rapid cooling of substrate before epitaxial growth begins.
By allowing brief excursions to higher deposition temperatures, thermal budget is
minimized and autodoping and dopant distribution are suppressed. Processing
gases used are SiH,Cl; and GeHy in a Hj carrier gas.

Taking advantage of hydrogen passivation by HF pretreatment and ther-
mal desorption of oxide in ultrahigh vacuum, UHVCVD makes Si;_.Ge, epitaxal
growth possible at 425<T<650°C and T>750°C. Fig 1.8 shows the schematic of
the IBM UHVCVD reactor [43]. Before loading, substrates were subjected to a
45 sec, 10:1 HF dip, and then mounted on a substrate carrier placed coaxial with

the tube centerline. A ioadlock is utilized to eliminate contamination upon load-
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Figure 1.8: Schematic of the IBM UHVCVD reactor [43).

ing. The substrate carrier received a 30 min prebake at 100°C prior to its tranefer
into the ultrahigh vacuum chamber. A 5 min purge with 600 sccm H, hydrogen
was then carried out, followed by the deposition cycle. No in situ surface clean
is employcd and the epitaxial growth relies upon stringent adherence to ultrapure
environment to maintain an atomically bare silicon surface before deposition be-
gins. The high-purity environment during growth ensures minimal contamination.
Typical deposition temperature for Si;_.Ge, growth is 550°C with SiH4 and GeH,
as processing gases. Abrupt interiaces and excellent thickness and composition
uniformity have been achieved [27).

Low pressure chemical vapor deposition (LPCVD) has also been investi-
gated for Si;_.Ge. growth [36]. The pr. osed epitaxial process was carried out
in a UHV compatible cold-wall reactor and the substrate is radiantly heated by a
graphite filament in close proximity to the back surface of the substrate. The sur-

face oxide is desorbed at 900°C in H, immediatedly prior to epitaxy. The reactant
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Figure 1.9: Schematic of the ASM Epsilon One APCVD reactor [44].

gas is a Hy-GeHy- SiH; mixture at a constant pressure of about 1 Torr. Just like
in VLPCVD, the combination of a cold-wall reaction chamber and low pressure
favor heterogeneous reaction kinetics.

APCVD is by far the reactor holding greatest promise for widespread com-
mercial use of Si;_.Ge, heteroepitaxy because it is available commercially and it
is relatively simple. In the commercially available reactor, the Epsilon One reactor
of ASM Epitaxy (Fig. 1.9 [44]), the bake conditions are similar to what is used
for conventional high-temperature CVD: 3 min 1180°C in H; and 30 sec in HCI
[38]. Following surface clean, the susceptor takes a few minutes to cool before the
temperature stabilizes. The deposition is initiated and terminated by switching
the silicon and germanium source gases into and out of the reactor chamber while
the substrate temperature remains essentially constant. SiH,Cl;, GeH,4, and H;
are routinely employed in APCVD. Since deposition is carried out at atmospheric

pressure, gas purification, load lock, and rigorously clean operating procedures are




il s el s s bl i

CHAPTER 1. INTRODUCTION 29

utilized to insure low levels of oxygen and moisture contamination. The substrate
resides on a SiC coated graphite susceptor and heated radiantly. Native oxide may
also be removed in a prebake before deposition at 850°C for 10 min in hydrogen
[45]. Using APCVD, epitaxial Si;_.Ge. growth temperatures as low as 550°C has
been reported. In addition, Si;_,Ge, exhibits good turn-on and turn-off transients.

Although high quality films can be obtained using CVD. The kinetic pro-
cesses in Si;_.Ge, growth is still not clear. Moreover, confusing results have been
reported in the literature. For example, the first cooperative phenomenon was ob-
served by Meyerson et al. where the addition of GeHy4 to the gas source was found
to enhance the Si;_.Ge, growth rate at 550°C in SiH4 and GeH, reactant gases [27].
Using more recent ultrahigh vacuum chemical vapor deposition (UHV/CVD) with
H,-SiH4-GeH4 mixtures in the temperature range of 577°C - 665°C, another study
showed a peak of growth rate as a function of GeH,/H, flow rate [30]. The same
behavior has also been reported later by Robbins et al. using LPCVD at 750°C
with H,-SiH4-GeH4 mixtures [36]. In that paper, the ternperature dependencies of
Si;_.Ge, growth rates at 650°C and 610°C were also investigated and found to be
similar to the recent UHV/CVD data. However, using H,-SiH;Cl;-GeH4 mixtures
in limited reaction processing (LRP) in the temperature range of 625°C-800°C,
studies showed a monotonic increase in Si;_,Ge, growth rate with the increase of
GeH; flow rate [29, 46]. Careful analysis indicated that, using SiH;Cl,, GeH,, and
H,, the growth rate is not limited by hydrogen desorbtion [29]. A model account-
ing for the peak in growth rate was proposed by Robbins et al. by considering the
competition between an increasing rate for hydrogen desorption and a decreasing
sticking probability for reactive hydrides as z increases [36]. But the details are

still not clear.
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1.2.3 Thermal Stability

In this section, an extremely important issue, thermal relaxation, associated with
the post-deposition processing of Si;_,Ge, strained layers will be discussed.

It has been shown that, through MBE or CVD, a pseudomorphic strained
Si;—.Ge,/Si heterostructure can be grown at low temperatures to a thickness well
beyond the critical thickness predicted by thermodynamic or mechanical equi-
librium theories. The existence of a kinetic barrier to strain relaxation at low
deposition temperature give rise to the metastable Si;_.Ge./Si heterostructures
in excess of the equilibrium h.. However, the strained as-grown layers in the
metastable state may relax if the thermal budget associated with device fabrica-
tion is too high. Strain relaxation may occur either via misfit dislocation formation
or via Ge diffusion [47]. .

In recent years, the strain relaxation of the metastable Si;_.Ge./Si het-
erostructures upon annealing have been widely studied [47]-[60]. One important
issue associated with the relaxation of misfit strain is the sources for dislocation
generation. The mechanisms for dislocation nucleation, that determine the criti-
cal thickness, have been widely studiad. In addition to homogeneous nucleation
mechanisms, which the majority of critical thickness research is based on (includ-
ing direct or internal dislocation nucleation, dislocation half-loop nucleation at the
free surface or at the surface containing irregularities producing local stress concen-
trations), heterogeneous nucleation mechanisms have also been investigated. The
proposed possible heterogeneous nucleation sources involve local stress concentra-
tions at surface heterogeneities, precipitate-induced defects, and oxygen/carbon
contamination [52].

Besides dis