
Approximating the noise sensitivity of a monotone Boolean
function

by

Arsen Vasilyan

B.S., Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 15, 2020

Certified by .
Ronitt Rubinfeld

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by. .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Approximating the noise sensitivity of a monotone Boolean function

by

Arsen Vasilyan

Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

The noise sensitivity of a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is one of its fundamental
properties. For noise parameter 𝛿, the noise sensitivity is denoted as 𝑁𝑆𝛿[𝑓]. This quantity
is defined as follows: First, pick 𝑥 = (𝑥1, . . . , 𝑥𝑛) uniformly at random from {0, 1}𝑛, then
pick 𝑧 by flipping each 𝑥𝑖 independently with probability 𝛿. 𝑁𝑆𝛿[𝑓] is defined to equal
Pr[𝑓(𝑥) ̸= 𝑓(𝑧)]. Much of the existing literature on noise sensitivity explores the follow-
ing two directions: (1) Showing that functions with low noise-sensitivity are structured in
certain ways. (2) Mathematically showing that certain classes of functions have low noise
sensitivity. Combined, these two research directions show that certain classes of functions
have low noise sensitivity and therefore have useful structure.

The fundamental importance of noise sensitivity, together with this wealth of structural
results, motivates the algorithmic question of approximating 𝑁𝑆𝛿[𝑓] given an oracle access
to the function 𝑓 . We show that the standard sampling approach is essentially optimal
for general Boolean functions. Therefore, we focus on estimating the noise sensitivity of
monotone functions, which form an important subclass of Boolean functions, since many
functions of interest are either monotone or can be simply transformed into a monotone
function (for example the class of unate functions consists of all the functions that can be
made monotone by reorienting some of their coordinates [22]).

Specifically, we study the algorithmic problem of approximating 𝑁𝑆𝛿[𝑓] for mono-
tone 𝑓 , given the promise that 𝑁𝑆𝛿[𝑓] ≥ 1/𝑛𝐶 for constant 𝐶, and for 𝛿 in the range
1/𝑛 ≤ 𝛿 ≤ 1/2. For such 𝑓 and 𝛿, we give a randomized algorithm that has query com-
plexity of 𝑂

(︁
min(1,

√
𝑛𝛿 log1.5 𝑛)

𝑁𝑆𝛿[𝑓] poly
(︁

1
𝜖

)︁)︁
and approximates 𝑁𝑆𝛿[𝑓] to within a multiplica-

tive factor of (1 ± 𝜖). Given the same constraints on 𝑓 and 𝛿, we also prove a lower bound
of Ω

(︁
min(1,

√
𝑛𝛿)

𝑁𝑆𝛿[𝑓]·𝑛𝜉

)︁
on the query complexity of any algorithm that approximates 𝑁𝑆𝛿[𝑓] to

within any constant factor, where 𝜉 can be any positive constant. Thus, our algorithm’s
query complexity is close to optimal in terms of its dependence on 𝑛.

We introduce a novel descending-ascending view of noise sensitivity, and use it as a
central tool for the analysis of our algorithm. To prove lower bounds on query complexity,
we develop a technique that reduces computational questions about query complexity to
combinatorial questions about the existence of “thin" functions with certain properties.

3

The existence of such “thin" functions is proved using the probabilistic method. These
techniques also yield new lower bounds on the query complexity of approximating other
fundamental properties of Boolean functions: the total influence and the bias.

Thesis Supervisor: Ronitt Rubinfeld
Title: Professor of Electrical Engineering and Computer Science

4

Acknowledgments

I am indebted to Ronitt Rubinfeld for suggesting the problem and supervising this work.

I also would like to express my sincere gratitude to my family for their unconditional

trust and encouragement.

5

6

Contents

1 Introduction 11

1.1 Results . 14

1.2 Algorithm overview . 16

1.3 Lower bound techniques . 21

1.4 Possibilities of improvement? . 24

2 Preliminaries 27

2.1 Definitions . 27

2.1.1 Fundamental definitions and lemmas pertaining to the hypercube. . 27

2.1.2 Fundamental definitions pertaining to Boolean functions 28

2.1.3 Influence estimation. 29

2.1.4 Bounds for 𝜖 and 𝐼[𝑓] . 30

3 An improved algorithm for small 𝛿 31

3.1 Descending-ascending framework . 31

3.1.1 The descending-ascending process. 31

3.1.2 Defining bad events . 32

3.1.3 Defining 𝑝𝐴, 𝑝𝐵 . 33

3.1.4 Bad events can be “ignored” . 35

3.2 Main lemmas . 35

3.3 Lemmas about descending paths hitting influential edges 36

7

3.4 Sampling descending and ascending paths going through a given influential

edge. 42

3.5 The noise sensitivity estimation algorithm. 53

4 Lower bounding the query complexity. 57

4.1 Proof of Lemma 4.0.3 . 61

4.2 Proof of Lemma 4.0.4 . 64

4.3 Proof of (a) . 64

4.4 Proof of b) . 65

4.5 Proof of c) . 66

4.6 Proof of d) . 68

A Appendix A 75

B A query complexity lower bound for general Boolean functions 77

C Proofs of technical lemmas pertaining to the algorithm 81

C.1 Appendix C . 81

C.2 Proof of Lemma 2.1.1 . 81

C.3 Proof of Lemma 3.1.3 . 83

C.4 Proof of Lemma 3.5.3 . 84

C.5 Proof of Lemma 3.5.4 . 84

D Proofs of technical lemmas pertaining to query complexity lower bounds 87

D.1 Proof of Lemma 4.0.1 . 87

D.2 Proof of Lemma 4.0.2 . 88

8

List of Figures

1-1 The noise process . 17

1-2 Algorithm for sampling an influential edge 19

1-3 Algorithm 𝒲 . 20

1-4 Algorithm ℬ . 21

1-5 Algorithm for estimating noise sensitivity. 22

3-1 The noise process (restated) . 32

3-2 Algorithm for sampling an influential edge (restated) 37

3-3 Algorithm 𝒲 (restated) . 44

3-4 Algorithm ℬ (restated) . 50

3-5 Algorithm for estimating noise sensitivity (restated). 53

9

10

Chapter 1

Introduction

Noise sensitivity is a property of any Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} defined as

follows: First, pick 𝑥 = (𝑥1, . . . , 𝑥𝑛) uniformly at random from {0, 1}𝑛, then pick 𝑧 by

flipping each 𝑥𝑖 independently with probability 𝛿. Here 𝛿, the noise parameter, is a given

positive constant no greater than 1/2 (and at least 1/𝑛 in the interesting cases). With the

above distributions on 𝑥 and 𝑧, the noise sensitivity of 𝑓 , denoted as 𝑁𝑆𝛿[𝑓], is defined as

follows:

𝑁𝑆𝛿[𝑓] def= Pr[𝑓(𝑥) ̸= 𝑓(𝑧)] (1.1)

Noise sensitivity was first explicitly defined by Benjamini, Kalai and Schramm in [3], and

has been the focus of multiple papers: e.g. [3, 7, 8, 10, 11, 13, 18, 23]. It has been applied

to learning theory [4, 7, 8, 9, 11, 12, 16], property testing [1, 2], hardness of approxima-

tion [14, 17], hardness amplification [20], theoretical economics and political science[10],

combinatorics [3, 13], distributed computing [19] and differential privacy [7]. Multiple

properties and applications of noise sensitivity are summarized in [21] and [22]. Much of

the existing literature on noise sensitivity explores the following directions: (1) Showing

that functions with low noise-sensitivity are structured in certain ways. (2) Mathematically

showing that certain classes of functions have low noise sensitivity. Combined, these two

research directions show that certain classes of functions have low noise sensitivity and

therefore have useful structure.

The fundamental importance of noise sensitivity, together with this wealth of structural

11

results, motivates the algorithmic question of approximating 𝑁𝑆𝛿[𝑓] given an oracle access

to the function 𝑓 . It can be shown that standard sampling techniques require 𝑂
(︁

1
𝑁𝑆𝛿[𝑓]𝜖2

)︁
queries to get a (1 + 𝜖)-multiplicative approximation for 𝑁𝑆𝛿[𝑓]. In Appendix B, we show

that this is optimal for a wide range of parameters of the problem. Specifically, it cannot

be improved by more than a constant when 𝜖 is a sufficiently small constant, 𝛿 satisfies

1/𝑛 ≤ 𝛿 ≤ 1/2 and 𝑁𝑆𝛿[𝑓] satisfies Ω
(︁

1
2𝑛

)︁
≤ 𝑁𝑆𝛿[𝑓] ≤ 𝑂(1).

It is often the case that data possesses a known underlying structural property which

makes the computational problem significantly easier to solve. A natural first such property

to investigate is that of monotonicity, as a number of natural function families are made

up of functions that are either monotone or can be simply transformed into a monotone

function (for example the class of unate functions consists of all the functions that can be

made monotone by reorienting some of their coordinates [22]). Therefore, we focus on

estimating the noise sensitivity of monotone functions.

The approximation of the related quantity of total influence (henceforth just influence)

of a monotone Boolean function in this model was previously studied by [25, 24]1. In-

fluence, denoted by 𝐼[𝑓], is defined as 𝑛 times the probability that a random edge of the

Boolean cube (𝑥, 𝑦) is influential, which means that 𝑓(𝑥) ̸= 𝑓(𝑦). (This latter probabil-

ity is sometimes referred to as the average sensitivity). It was shown in [25, 24] that one

can approximate the influence of a monotone function 𝑓 with only �̃�
(︁ √

𝑛
𝐼[𝑓]poly(𝜖)

)︁
queries,

which for constant 𝜖 beats the standard sampling algorithm by a factor of
√

𝑛, ignoring

logarithmic factors.

Despite the fact that the noise sensitivity is closely connected to the influence [21, 22],

the noise sensitivity of a function can be quite different from its influence. For instance, for

the parity function of all 𝑛 bits, the influence is 𝑛, but the noise sensitivity is 1
2(1 − (1 −

2𝛿)𝑛) (such disparities also hold for monotone functions, see for example the discussion of

influence and noise sensitivity of the majority function in [22]). Therefore, approximating

the influence by itself does not give one a good approximation to the noise sensitivity.

The techniques in [25, 24] also do not immediately generalize to the case of noise

1[24] is the journal version of [25] and contains a different algorithm that yields sharper results. However,
our algorithmic techniques build on the conference version [25].

12

sensitivity. The result in [25, 24] is based on the observation that given a descending2 path

on the Boolean cube, at most one edge in it can be influential. Thus, to check if a descending

path of any length contains an influential edge, it suffices to check the function values at

the endpoints of the path. By sampling random descending paths, [25, 24] show that one

can estimate the fraction of influential edges, which is proportional to the influence.

The most natural attempt to relate these path-based techniques with the noise sensitivity

is to view it in the context of the following process: first one samples 𝑥 randomly, then one

obtains 𝑧 by taking a random walk from 𝑥 by going through all the indices in an arbitrary

order and deciding whether to flip each with probability 𝛿. The intermediate values in

this process give us a natural path connecting 𝑥 to 𝑧. However, this path is in general not

descending, so it can, for example, cross an even number of influential edges, and then the

function will have the same value on the two endpoints of this path. This prevents one from

immediately applying the techniques from [25, 24].

We overcome this difficulty by introducing our main conceptual contribution: the

descending-ascending view of noise sensitivity. In the process above, instead of going

through all the indices in an arbitrary order, we first go through the indices 𝑖 for which

𝑥𝑖 = 1 and only then through the ones for which 𝑥𝑖 = 0. This forms a path between 𝑥 and

𝑧 that has first a descending component and then an ascending component. Although this

random walk is more amenable to an analysis using the path-based techniques of [25, 24],

there are still non-trivial sampling questions involved in the design and analysis of our

algorithm.

An immediate corollary of our result is a query complexity upper bound on estimating

the gap between the noise stability of a Boolean function and one. The noise stability of a

Boolean function 𝑓 depends on a parameter 𝜌 and is denoted by Stab𝜌[𝑓] (for more infor-

mation about noise stability, see [22]). One way Stab𝜌[𝑓] can be defined is as the unique

quantity satisfying the functional relation 1
2(1 − Stab1−2𝛿[𝑓]) = 𝑁𝑆𝛿[𝑓] for all 𝛿. This im-

plies that by obtaining an approximation for 𝑁𝑆𝛿[𝑓], one also achieves an approximation

for 1 − Stab1−2𝛿[𝑓].

2A path is descending if each subsequent vertex in it is dominated by all the previous ones in the natural
partial order on the Boolean cube.

13

1.1 Results

Our main algorithmic result is the following:

Theorem 1 Let 𝛿 be a parameter satisfying:

1
𝑛

≤ 𝛿 ≤ 1
√

𝑛 log1.5 𝑛

Suppose, 𝑓 : {0, 1}𝑛 → {0, 1} is a monotone function and 𝑁𝑆𝛿[𝑓] ≥ 1
𝑛𝐶 for some constant

𝐶.

Then, there is an algorithm that outputs an approximation to 𝑁𝑆𝛿[𝑓] to within a multi-

plicative factor of (1 ± 𝜖), with success probability at least 2/3. In expectation, the algo-

rithm makes 𝑂
(︁√

𝑛𝛿 log1.5 𝑛
𝑁𝑆𝛿[𝑓]𝜖3

)︁
queries to the function. Additionally, it runs in time polynomial

in 𝑛.

Note that computing noise-sensitivity using standard sampling3 requires 𝑂
(︁

1
𝑁𝑆𝛿[𝑓]𝜖2

)︁
samples. Therefore, for a constant 𝜖, we have the most dramatic improvement if 𝛿 = 1

𝑛
, in

which case, ignoring constant and logarithmic factors, our algorithm outperforms standard

sampling by a factor of
√

𝑛.

As in [25], our algorithm requires that the noise sensitivity of the input function 𝑓 is

larger than a specific threshold 1/𝑛𝐶 . Our algorithm is not sensitive to the value of 𝐶 as

long as it is a constant, and we think of 1/𝑛𝐶 as a rough initial lower bound known in

advance.

We next give lower bounds for approximating three different parameters of monotone

Boolean functions: the bias, the influence and the noise sensitivity. A priori, it is not clear

what kind of lower bounds one could hope for. Indeed, determining whether a given func-

tion is the all-zeros function requires Ω(2𝑛) queries in the general function setting, but only

1 query (of the all-ones input), if the function is promised to be monotone. Nevertheless, we

show that such a dramatic improvement for approximating these quantities is not possible.

3Standard sampling refers to the algorithm that picks 𝑂
(︁

1
𝑁𝑆𝛿[𝑓]𝜖2

)︁
pairs 𝑥 and 𝑧 as in the definition of

noise sensitivity and computes the fraction of pairs for which 𝑓(𝑥) ̸= 𝑓(𝑧).

14

For monotone functions, we are not aware of previous lower bounds on approximating

the bias or noise sensitivity. Our lower bound on approximating influence is not comparable

to the lower bounds in [25, 24], as we will elaborate shortly.

We now state our lower bound for approximating the noise sensitivity. Here and every-

where else, to “reliably distinguish" means to distinguish with probability at least 2/3.

Theorem 2 For all constants 𝐶1 and 𝐶2 satisfying 𝐶1−1 > 𝐶2 ≥ 0, for an infinite number

of values of 𝑛 the following is true: For all 𝛿 satisfying 1/𝑛 ≤ 𝛿 ≤ 1/2, given a monotone

function 𝑓 : {0, 1}𝑛 → {0, 1}, one needs at least Ω
(︁

𝑛𝐶2

𝑒
√

𝐶1 log 𝑛/2

)︁
queries to reliably distin-

guish between the following two cases: (i) 𝑓 has noise sensitivity between Ω(1/𝑛𝐶1+1) and

𝑂(1/𝑛𝐶1) and (ii) 𝑓 has noise sensitivity larger than Ω(min(1, 𝛿
√

𝑛)/𝑛𝐶2).

Remark 1 For any positive constant 𝜉, we have that 𝑒
√

𝐶1 log 𝑛/2 ≤ 𝑛𝜉.

Remark 2 The range of the parameter 𝛿 can be divided into two regions of interest. In

the region 1/𝑛 ≤ 𝛿 ≤ 1/(
√

𝑛 log 𝑛), the algorithm from Theorem 1 can distinguish the

two cases above with only �̃�(𝑛𝐶2) queries. Therefore its query complexity is optimal up

to a factor of �̃�(𝑒
√

𝐶1 log 𝑛/2). Similarly, in the region 1/(
√

𝑛 log 𝑛) ≤ 𝛿 ≤ 1/2, the stan-

dard sampling algorithm can distinguish the two distributions above with only �̃�(𝑛𝐶2)

queries. Therefore in this region of interest, standard sampling is optimal up to a factor of

�̃�(𝑒
√

𝐶1 log 𝑛/2).

We define the bias of a Boolean function as 𝐵[𝑓] def= Pr[𝑓(𝑥) = 1], where 𝑥 is chosen

uniformly at random from {0, 1}𝑛. It is arguably the most basic property of a Boolean

function, so we consider the question of how quickly it can be approximated for monotone

functions. To approximate the bias up to a multiplicative factor of 1 ± 𝜖 using standard

sampling, one needs 𝑂(1/(𝐵[𝑓]𝜖2)) queries. We obtain a lower bound for this task similar

to the previous theorem:

Theorem 3 For all constants 𝐶1 and 𝐶2 satisfying 𝐶1−1 > 𝐶2 ≥ 0, for an infinite number

of values of 𝑛 the following is true: Given a monotone function 𝑓 : {0, 1}𝑛 → {0, 1},

15

one needs at least Ω
(︁

𝑛𝐶2

𝑒
√

𝐶1 log 𝑛/2

)︁
queries to reliably distinguish between the following two

cases: (i) 𝑓 has bias of Θ(1/𝑛𝐶1) (ii) 𝑓 has bias larger than Ω(1/𝑛𝐶2).

Finally we prove a lower bound for approximating influence:

Theorem 4 For all constants 𝐶1 and 𝐶2 satisfying 𝐶1−1 > 𝐶2 ≥ 0, for an infinite number

of values of 𝑛 the following is true: Given a monotone function 𝑓 : {0, 1}𝑛 → {0, 1},

one needs at least Ω
(︁

𝑛𝐶2

𝑒
√

𝐶1 log 𝑛/2

)︁
queries to reliably distinguish between the following two

cases: (i) 𝑓 has influence between Ω(1/𝑛𝐶1) and 𝑂(𝑛/𝑛𝐶1) (ii) 𝑓 has influence larger than

Ω(
√

𝑛/𝑛𝐶2).

This gives us a new sense in which the algorithm family in [25, 24] is close to optimal,

because for a function 𝑓 with influence Ω(
√

𝑛/𝑛𝐶2) this algorithm makes �̃�(𝑛𝐶2) queries

to estimate the influence up to any constant factor.

Our lower bound is incomparable to the lower bound in [25], which makes the stronger

requirement that 𝐼[𝑓] ≥ Ω(1), but gives a bound that is only a polylogarithmic factor

smaller than the runtime of the algorithm in [25, 24]. There are many possibilities for algo-

rithmic bounds that were compatible with the lower bound in [25, 24], but are eliminated

with our lower bound. For instance, prior to this work, it was conceivable that an algo-

rithm making as little as 𝑂(
√

𝑛) queries could give a constant factor approximation to the

influence of any monotone input function whatsoever. Our lower bound shows that not

only is this impossible, no algorithm that makes 𝑂(𝑛𝐶2) queries for any constant 𝐶2 can

accomplish this either.

1.2 Algorithm overview

Here, we give the algorithm in Theorem 1 together with the subroutines it uses. Addition-

ally, we give an informal overview of the proof of correctness and the analysis of running

time and query complexity, which are presented in Section 3.

First of all, recall that 𝑁𝑆𝛿[𝑓] = Pr[𝑓(𝑥) ̸= 𝑓(𝑧)] by Equation 1.1. Using a standard

pairing argument, we argue that 𝑁𝑆𝛿[𝑓] = 2 · Pr[𝑓(𝑥) = 1 ∧ 𝑓(𝑧) = 0]. In other words,

we can focus only on the case when the value of the function flips from one to zero.

16

Process 𝐷

1. Pick 𝑥 uniformly at random from {0, 1}𝑛. Let 𝑆0 be the set of indexes 𝑖 for
which 𝑥𝑖 = 0, and conversely let 𝑆1 be the rest of indexes.

2. Phase 1: go through all the indexes in 𝑆1 in a random order, and flip each
with probability 𝛿. Form the descending path 𝑃1 from all the intermediate
results. Call the endpoint 𝑦.

3. Phase 2: start at 𝑦, and flip each index in 𝑆0 with probability 𝛿. As before,
all the intermediate results form an ascending path 𝑃2, which ends in 𝑧.

4. Output 𝑃1, 𝑃2, 𝑥, 𝑦 and 𝑧.

Figure 1-1: The noise process

We introduce the descending-ascending view of noise sensitivity (described more for-

mally in Section 3.1), which, roughly speaking, views the noise process as decomposed

into a first phase that operates only on the locations in 𝑥 that are 1, and a second phase that

operates only on the locations in 𝑥 that are set to 0. Formally, we describe the noise process

in Figure 1.2. This process gives us a path from 𝑥 to 𝑧 that can be decomposed into two

segments, such that the first part, 𝑃1, descends in the hypercube, and the second part 𝑃2

ascends in the hypercube.

Since 𝑓 is monotone, for 𝑓(𝑥) = 1 and 𝑓(𝑧) = 0 to be the case, it is necessary,

though not sufficient, that 𝑓(𝑥) = 1 and 𝑓(𝑦) = 0, which happens whenever 𝑃1 hits an

influential edge. Therefore we break the task of estimating the probability of 𝑓(𝑥) ̸= 𝑓(𝑧)

into computing the product of:

∙ The probability that 𝑃1 hits an influential edge, specifically, the probability that

𝑓(𝑥) = 1 and 𝑓(𝑦) = 0, which we refer to as 𝑝𝐴.

∙ The probability that 𝑃2 does not hit any influential edge, given that 𝑃1 hits an influ-

ential edge: specifically, the probability that given 𝑓(𝑥) = 1 and 𝑓(𝑦) = 0, it is the

case that 𝑓(𝑧) = 0. We refer to this probability as 𝑝𝐵.

The above informal definitions of 𝑝𝐴 and 𝑝𝐵 ignore some technical complications. Specif-

ically, the impact of certain “bad events" is considered in our analysis. We redefine 𝑝𝐴 and

17

𝑝𝐵 precisely in Section 3.1.3.

To define those bad events, we use the following two values, which we reference in our

algorithms: 𝑡1 and 𝑡2. Informally, 𝑡1 and 𝑡2 have the following intuitive meaning. A typical

vertex 𝑥 of the hypercube has Hamming weight 𝐿(𝑥) between 𝑛/2 − 𝑡1 and 𝑛/2 + 𝑡1. A

typical Phase 1 path from process 𝐷 will have length at most 𝑡2. To achieve this, we assign

𝑡1
def= 𝜂1

√
𝑛 log 𝑛 and 𝑡2

def= 𝑛𝛿(1 + 3𝜂2 log 𝑛), where 𝜂1 and 𝜂2 are certain constants.

We also define 𝑀 to be the set of edges 𝑒 = (𝑣1, 𝑣2), for which both 𝐿(𝑣1) and 𝐿(𝑣2)

are between and 𝑛/2−𝑡1 and 𝑛/2+𝑡1. Most of the edges in the hypercube are in 𝑀 , which

is used by our algorithm and the run-time analysis.

Our analysis requires that only 𝛿 ≤ 1/(
√

𝑛 log1.5 𝑛) as in the statement of Theorem

1, however the utility of the ascending-descending view can be most clearly motivated

when 𝛿 ≤ 1/(
√

𝑛 log2 𝑛). Specifically, given that 𝛿 ≤ 1/(
√

𝑛 log2 𝑛), it is the case that

𝑡2 will be shorter than 𝑂(
√

𝑛/ log 𝑛). Therefore, typically, the path 𝑃1 is also shorter than

𝑂(
√

𝑛/ log 𝑛). Similar short descending paths on the hypercube have been studied before:

In [25], paths of such lengths were used to estimate the number of influential edges by

analyzing the probability that a path would hit such an edge. One useful insight given by

[25] is that the probability of hitting almost every single influential edge is roughly the

same.

However, the results in [25] cannot be immediately applied to analyze 𝑃1, because (i)

𝑃1 does not have a fixed length, but rather its lengths form a probability distribution, (ii)

this probability distribution also depends on the starting point 𝑥 of 𝑃1. We build upon the

techniques in [25] to overcome these difficulties, and prove that again, roughly speaking,

for almost every single influential edge, the probability that 𝑃1 hits it depends very little

on the location of the edge, and our proof also computes this probability. This allows us to

prove that 𝑝𝐴 ≈ 𝛿𝐼[𝑓]/2. Then, using the algorithm in [25] to estimate 𝐼[𝑓], we estimate

𝑝𝐴.

Regarding 𝑝𝐵, we estimate it by approximately sampling paths 𝑃1 and 𝑃2 that would

arise from process 𝐷, conditioned on that 𝑃1 hits an influential edge. To that end, we first

sample an influential edge 𝑒 that 𝑃1 hits. Since 𝑃1 hits almost every single influential edge

18

Algorithm 𝒜 (given oracle access to a monotone function 𝑓 : {0, 1}𝑛 → {0, 1}
and a parameter 𝜖)

1. Assign 𝑤 = 𝜖
3100𝜂1

√︁
𝑛

log 𝑛

2. Pick 𝑥 uniformly at random from {0, 1}𝑛.

3. Perform a descending walk 𝑃1 downwards in the hypercube starting at 𝑥.
Stop at a vertex 𝑦 either after 𝑤 steps, or if you hit the all-zeros vertex.
Query the value of 𝑓 only at the endpoints 𝑥 and 𝑦 of this path.

4. If 𝑓(𝑥) = 𝑓(𝑦) output FAIL.

5. If 𝑓(𝑥) ̸= 𝑓(𝑦) perform a binary search on the path 𝑃1 and find an influential
edge 𝑒𝑖𝑛𝑓 .

6. If 𝑒𝑖𝑛𝑓 ∈ 𝑀 return 𝑒𝑖𝑛𝑓 . Otherwise output FAIL.

Figure 1-2: Algorithm for sampling an influential edge

with roughly the same probability, we do it by sampling 𝑒 approximately uniformly from

among influential edges. For the latter task, we build upon the result in [25] as follows:

As we have already mentioned, the algorithm in [25] samples descending paths of a fixed

length to estimate the influence. For those paths that start at an 𝑥 for which 𝑓(𝑥) = 1 and

end at a 𝑧 for which 𝑓(𝑧) = 0, we add a binary search step in order to locate the influential

edge 𝑒 that was hit by the path.

Thus, we have the algorithm 𝒜 in Figure 1.2, which takes oracle access to a function 𝑓

and an approximation parameter 𝜖 as input. In the case of success, it outputs an influential

edge that is roughly uniformly distributed:

Finally, once we have obtained a roughly uniformly random influential edge 𝑒, we

sample a path 𝑃1 from among those that hit it. Interestingly, we show that this can be

accomplished by a simple exponential time algorithm that makes no queries to 𝑓 . However,

the constraint on the run-time of our algorithm forces us to follow a different approach:

An obvious way to try to quickly sample such a path is to perform two random walks of

lengths 𝑤1 and 𝑤2 in opposite directions from the endpoints of the edge, and then concate-

nate them into one path. However, to do this, one needs to somehow sample the lengths 𝑤1

19

Algorithm 𝒲 (given an edge 𝑒
def= (𝑣1, 𝑣2) so 𝑣2 ⪯ 𝑣1)

1. Pick an integer 𝑙 uniformly at random among the integers in [𝐿(𝑣1), 𝐿(𝑣1)+
𝑡2 − 1]. Pick a vertex 𝑥 randomly at level 𝑙.

2. As in phase 1 of the noise sensitivity process, traverse in random order
through the indices of 𝑥 and for each index that equals to one, flip it with
probability 𝛿. The intermediate results form a path 𝑃1, and we call its end-
point 𝑦.

3. If 𝑃1 does not intersect Λ𝑒 go to step 1.

4. Otherwise, output 𝑤1 = 𝐿(𝑥) − 𝐿(𝑣1) and 𝑤2 = 𝐿(𝑣2) − 𝐿(𝑦).

Figure 1-3: Algorithm 𝒲

and 𝑤2. This problem is not trivial, since longer descending paths are more likely to hit an

influential edge, which biases the distribution of the path lengths towards longer ones.

To generate 𝑤1 and 𝑤2 according to the proper distribution, we first sample a path 𝑃1

hitting any edge at the same layer4 Λ𝑒 as 𝑒. We accomplish this by designing an algorithm

that uses rejection sampling. The algorithm samples short descending paths from some

conveniently chosen distribution, until it gets a path hitting the desired layer.

We now describe the algorithm in more detail. Recall that we use 𝐿(𝑥) to denote the

Hamming weight of 𝑥, which equals the number of indices 𝑖 on which 𝑥𝑖 = 1, and we

use the symbol Λ𝑒 to denote the whole layer of edges that have the same endpoint levels

as 𝑒. The algorithm 𝒲 described in Figure 1.2 takes an influential edge 𝑒 as an input and

samples the lengths 𝑤1 and 𝑤2. Recall that 𝑡2 has a technical role and is defined to be equal

𝑛𝛿(1 + 3𝜂2 log 𝑛), where 𝜂2 is a certain constant. 𝑡2 is chosen to be long enough that it is

longer than most paths 𝑃1, but short enough to make the sampling in 𝒲 efficient. Since

the algorithm involves short descending paths, we analyze this algorithm building upon the

techniques we used to approximate 𝑝𝐴.

After obtaining a random path going through the same layer as 𝑒, we show how to

transform it using the symmetries of the hypercube, into a a random path 𝑃1 going through

4We say that edges 𝑒1 and 𝑒2 are on the same layer if and only if their endpoints have the same Hamming
weights. We denote the layer an edge 𝑒 belongs to as Λ𝑒.

20

Algorithm ℬ (given an influential edge 𝑒
def= (𝑣1, 𝑣2) so 𝑣2 ⪯ 𝑣1)

1. Use 𝒲(𝑒) to sample 𝑤1 and 𝑤2.

2. Perform an ascending random walk of length 𝑤1 starting at 𝑣1 and call its
endpoint 𝑥. Similarly, perform a descending random walk starting at 𝑣2 of
length 𝑤2, call its endpoint 𝑦.

3. Define 𝑃1 as the descending path that results between 𝑥 and 𝑦 by concate-
nating the two paths from above, oriented appropriately, and edge 𝑒.

4. Define 𝑃2 just as in phase 2 of our process starting at 𝑦. Consider in ran-
dom order all the zero indices 𝑦 has in common with 𝑥 and flip each with
probability 𝛿.

5. Return 𝑃1 ,𝑃2, 𝑥, 𝑦 and 𝑧.

Figure 1-4: Algorithm ℬ

𝑒 itself. Additionally, given the endpoint of 𝑃1, we sample the path 𝑃2 just as in the process

𝐷.

Formally, we use the algorithm ℬ shown in Figure 1.2 that takes an influential edge 𝑒

and returns a descending path 𝑃1 that goes through 𝑒 and an adjacent ascending path 𝑃2,

together with the endpoints of these paths. We then use sampling to estimate which fraction

of the paths 𝑃2 continuing these 𝑃1 paths does not hit an influential edge. This allows us

to estimate 𝑝𝐵, which, combined with our estimate for 𝑝𝐴, gives us an approximation for

𝑁𝑆𝛿[𝑓].

Formally, we put all the previously defined subroutines together into the randomized

algorithm in Figure 1.2 that takes oracle access to a function 𝑓 together with an approxi-

mation parameter 𝜖 and outputs an approximation to 𝑁𝑆𝛿[𝑓].

1.3 Lower bound techniques

We use the same technique to lower bound the query complexity of approximating any of

the following three quantities: the noise sensitivity, influence and bias.

For concreteness, let us first focus on approximating the bias. Recall that one can

21

Algorithm for estimating noise sensitivity. (given oracle access to a monotone
function 𝑓 : {0, 1}𝑛 → {0, 1}, and a parameter 𝜖)

1. Using the algorithm from [25] as described in Theorem 5, compute an
approximation to the influence of 𝑓 to within a multiplicative factor of
(1 ± 𝜖/33). This gives us 𝐼 .

2. Compute 𝑝𝐴 := 𝛿𝐼/2.

3. Initialize 𝛼 := 0 and 𝛽 := 0. Repeat the following until 𝛼 = 768 ln 200
𝜖2 .

∙ Use algorithm 𝒜 from Lemma 3.3.1 repeatedly to successfully sample
an edge 𝑒.

∙ From Lemma 3.4.3 use the algorithm ℬ, giving it 𝑒 as input, and sam-
ple 𝑃1, 𝑃2, 𝑥, 𝑦 and 𝑧.

∙ If it is the case that 𝑓(𝑥) = 1 and 𝑓(𝑧) = 0, then 𝛼 := 𝛼 + 1.

∙ 𝛽 := 𝛽 + 1.

4. Set 𝑝𝐵 = 𝛼
𝛽

.

5. Return 2𝑝𝐴𝑝𝐵.

Figure 1-5: Algorithm for estimating noise sensitivity.

22

distinguish the case where the bias is 0 from the bias being 1/2𝑛 using a single query.

Nevertheless, we show that for the most part, no algorithm for estimating the bias can do

much better than the random sampling approach.

We construct two probability distributions 𝐷𝐵
1 and 𝐷𝐵

2 that are relatively hard to dis-

tinguish but have drastically different biases. To create them, we fix some threshold 𝑙0 and

then construct a special monotone function 𝐹 𝐵, which has the following two properties:

(1) It has a high bias. (2) It equals to one on only a relatively small fraction of points on the

level 𝑙0. We refer to functions satisfying (2) as “thin" functions. We will explain later how

to obtain such a function 𝐹 𝐵. We pick a function from 𝐷𝐵
2 by taking 𝐹 𝐵, randomly per-

muting the indices of its input, and finally “truncating" it by setting it to one on all values

𝑥 for on levels higher than 𝑙0.

We form 𝐷𝐵
1 even more simply. We take the all-zeros function and truncate it at the

same threshold 𝑙0. The threshold 𝑙0 is chosen in a way that this function in 𝐷𝐵
1 has a

sufficiently small bias. Thus 𝐷𝐵
1 consists of only a single function.

The purpose of truncation is to prevent a distinguisher from gaining information by

accessing the values of the function on the high-level vertices of the hypercube. Indeed, if

there was no truncation, one could tell whether they have access to the all-zeros function

by simply querying it on the all-ones input. Since 𝐹 𝐵 is monotone, if it equals to one on at

least one input, then it has to equal one on the all-ones input.

The proof has two main lemmas: The first one is computational and says that if 𝐹 𝐵 is

“thin" then 𝐷𝐵
1 and 𝐷𝐵

2 are hard to reliably distinguish. To prove the first lemma, we show

that one could transform any adaptive algorithm for distinguishing 𝐷𝐵
1 from 𝐷𝐵

2 into an

algorithm that is just as effective, is non-adaptive and queries points only on the layer 𝑙0.

To show this, we observe that, because of truncation, distinguishing a function in 𝐷𝐵
2

from a function in 𝐷𝐵
1 is in a certain sense equivalent to finding a point with level at most

𝑙0 on which the given function evaluates to one. We argue that for this setting, adaptivity

does not help. Additionally, if 𝑥 ⪯ 𝑦 and both of them have levels at most 𝑙0 then, since 𝑓

is monotone, 𝑓(𝑥) = 1 implies that 𝑓(𝑦) = 1 (but not necessarily the other way around).

Therefore, for finding a point on which the function evaluates to one, it is never more useful

23

to query 𝑥 instead of 𝑦.

Once we prove that no algorithm can do better than a non-adaptive algorithm that only

queries points on the level 𝑙0, we use a simple union bound to show that any such algorithm

cannot be very effective for distinguishing our distributions.

Finally, to construct 𝐹 𝐵, we need to show that there exist functions that are “thin" and

simultaneously have a high bias. This is a purely combinatorial question and is proven

in our second main lemma. We build upon Talagrand random functions that were first

introduced in [26]. In [18] it was shown that they are very sensitive to noise, which was

applied for property testing lower bounds [2]. A Talagrand random DNF consists of 2
√

𝑛

clauses of
√

𝑛 indices chosen randomly with replacement. We modify this construction

by picking the indices without replacement and generalize it by picking 2
√

𝑛/𝑛𝐶2 clauses,

where 𝐶2 is a non-negative constant. We show that these functions are “thin", so they are

appropriate for our lower bound technique.

“Thinness" allows us to conclude that 𝐷𝐵
1 and 𝐷𝐵

2 are hard to distinguish from each

other. We then prove that they have drastically different biases. We do the latter by em-

ploying the probabilistic method and showing that in expectation our random function has

a large enough bias. We handle influence and noise sensitivity analogously, specifically

by showing that that as we pick fewer clauses, the expected influence and noise sensitivity

decrease proportionally. We prove this by dividing the points, where one of these random

functions equals to one, into two regions: (i) the region where only one clause is true and

(ii) a region where more than one clause is true. Roughly speaking, we show that the con-

tribution from the points in (i) is sufficient to obtain a good lower bound on the influence

and noise sensitivity.

1.4 Possibilities of improvement?

In [24] (which is the journal version of [25]), it was shown that using the chain decompo-

sition of the hypercube, one can improve the run-time of the algorithm to 𝑂
(︁ √

𝑛
𝜖2𝐼[𝑓]

)︁
and

also improve the required lower bound on 𝐼[𝑓] to be 𝐼[𝑓] ≥ exp(−𝑐1𝜖
2𝑛 + 𝑐2 log(𝑛/𝜖)) for

24

some constant 𝑐1 and 𝑐2 (it was 𝐼[𝑓] ≥ 1/𝑛𝐶 for any constant 𝐶 in [25]). Additionally, the

algorithm itself was considerably simplified.

A hope is that techniques based on the chain decomposition could help improve the

algorithm in Theorem 1. However, it is not clear how to generalize our approach to use

these techniques, since the ascending-descending view is a natural way to express noise

sensitivity in terms of random walks, and it is not obvious whether one can replace these

walks with chains of the hypercube.

25

26

Chapter 2

Preliminaries

2.1 Definitions

2.1.1 Fundamental definitions and lemmas pertaining to the hyper-

cube.

Definition 1 We refer to the poset over {0, 1}𝑛 as the 𝑛-dimensional hypercube, view-

ing the domain as vertices of a graph, in which two vertices are connected by an edge

if and only if the corresponding elements of {0, 1}𝑛 differ in precisely one index. For

𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑦 = (𝑦1, . . . , 𝑦𝑛) in {0, 1}𝑛, we say that 𝑥 ⪯ 𝑦 if and only if for all 𝑖

in [𝑛] it is the case that 𝑥𝑖 ≤ 𝑦𝑖.

Definition 2 The level of a vertex 𝑥 on the hypercube is the hamming weight of 𝑥, or in

other words number of 1-s in 𝑥. We denote it by 𝐿(𝑥).

We define the set of edges that are in the same “layer" of the hypercube as a given edge:

Definition 3 For an arbitrary edge 𝑒 suppose 𝑒 = (𝑣1, 𝑣2) and 𝑣2 ⪯ 𝑣1. We denote Λ𝑒 to

be the set of all edges 𝑒′ = (𝑣′
1, 𝑣′

2), so that 𝐿(𝑣1) = 𝐿(𝑣′
1) and 𝐿(𝑣2) = 𝐿(𝑣′

2).

The size of Λ𝑒 is 𝐿(𝑣1)
(︁

𝑛
𝐿(𝑣1)

)︁
. The concept of Λ𝑒 will be useful because we will deal with

paths that are symmetric with respect to change of coordinates, and these have an equal

probability of hitting any edge in Λ𝑒.

27

As we view the hypercube as a graph, we will often refer to paths on it. By referring to

a path 𝑃 we will, depending on the context, refer to its set of vertices or edges.

Definition 4 We call a path descending if for every pair of consecutive vertices 𝑣𝑖 and 𝑣𝑖+1,

it is the case that 𝑣𝑖+1 ≺ 𝑣𝑖. Conversely, if the opposite holds and 𝑣𝑖 ≺ 𝑣𝑖+1, we call a path

ascending. We consider an empty path to be vacuously both ascending and descending.

We define the length of a path to be the number of edges in it, and denote it by |𝑃 |. We

say we take a descending random walk of length 𝑤 starting at 𝑥, if we pick a uniformly

random descending path of length 𝑤 starting at 𝑥.

Descending random walks over the hyper-cube were used in an essential way in [25]

and were central for the recent advances in monotonicity testing algorithms [5, 6, 15].

Lemma 2.1.1 (Hypercube Continuity Lemma) Suppose 𝑛 is a sufficiently large positive

integer, 𝐶1 is a constant and we are given 𝑙1 and 𝑙2 satisfying:

𝑛

2 −
√︁

𝐶1𝑛 log(𝑛) ≤ 𝑙1 ≤ 𝑙2 ≤ 𝑛

2 +
√︁

𝐶1𝑛 log(𝑛)

If we denote 𝐶2
def= 1

10
√

𝐶1
, then for any 𝜉 satisfying 0 ≤ 𝜉 ≤ 1, if it is the case that

𝑙2 − 𝑙1 ≤ 𝐶2𝜉
√︁

𝑛
log(𝑛) , then, for large enough 𝑛, it is the case that 1 − 𝜉 ≤ (𝑛

𝑙1)
(𝑛

𝑙2)
≤ 1 + 𝜉

Proof: See Appendix C, Section C.2.

2.1.2 Fundamental definitions pertaining to Boolean functions

We define monotone functions over the 𝑛-dimensional hypercube:

Definition 5 Let 𝑓 be a function {0, 1}𝑛 → {0, 1}𝑛. We say that 𝑓 is monotone if for any

𝑥 and 𝑦 in {0, 1}𝑛, 𝑥 ⪯ 𝑦 implies that 𝑓(𝑥) ≤ 𝑓(𝑦)

Influential edges, and influence of a function are defined as follows:

Definition 6 An edge (𝑥, 𝑦) in the hypercube is called influential if 𝑓(𝑥) ̸= 𝑓(𝑦). Addi-

tionally, we denote the set of all influential edges in the hypercube as 𝐸𝐼 .

28

Definition 7 The influence of function 𝑓 : {0, 1}𝑛 → {0, 1}, denoted by 𝐼[𝑓] is:

𝐼[𝑓] def= 𝑛 · Pr𝑥∈𝑅{0,1}𝑛,𝑖∈𝑅[𝑛][𝑓(𝑥) ̸= 𝑓(𝑥⊕𝑖)]

Where 𝑥⊕𝑖 is 𝑥 with its 𝑖-th bit flipped.1 Equivalently, the influence is 𝑛 times the probability

that a random edge is influential. Since there are 𝑛 · 2𝑛−1 edges, then |𝐸𝐼 | = 2𝑛−1𝐼[𝑓].

Definition 8 Let 𝛿 be a parameter and let 𝑥 be selected uniformly at random from {0, 1}𝑛.

Let 𝑧 ∈ {0, 1}𝑛 be defined as follows:

𝑧𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝑥𝑖 with probability 1 − 𝛿

1 − 𝑥𝑖 with probability 𝛿

We denote this distribution of 𝑥 and 𝑧 by 𝑇𝛿. Then we define the noise sensitivity of 𝑓 as:

𝑁𝑆𝛿[𝑓] def= Pr(𝑥,𝑧)∈𝑅𝑇𝛿
[𝑓(𝑥) ̸= 𝑓(𝑧)]

Observation 2.1.2 For every pair of vertices 𝑎 and 𝑏, the probability that for a pair 𝑥, 𝑧

drawn from 𝑇𝛿, it is the case that (𝑥, 𝑧) = (𝑎, 𝑏), is equal to the probability that (𝑥, 𝑧) =

(𝑏, 𝑎). Therefore,

Pr[𝑓(𝑥) = 0 ∧ 𝑓(𝑧) = 1] = Pr[𝑓(𝑥) = 1 ∧ 𝑓(𝑧) = 0]

Hence:

𝑁𝑆𝛿[𝑓] = 2 · Pr[𝑓(𝑥) = 1 ∧ 𝑓(𝑧) = 0]

2.1.3 Influence estimation.

To estimate the influence, standard sampling would require 𝑂
(︁

𝑛
𝐼[𝑓]𝜖2

)︁
samples. However,

from [25] we have:

1We use the symbol ∈𝑅 to denote, depending on the type of object the symbol is followed by: (i) Picking
a random element from a probability distribution. (ii) Picking a uniformly random element from a set (iii)
Running a randomized algorithm and taking the result.

29

Theorem 5 There is an algorithm that approximates 𝐼[𝑓] to within a multiplicative factor

of (1 ± 𝜖) for a monotone 𝑓 : {0, 1}𝑛 → {0, 1}. The algorithm requires that 𝐼[𝑓] ≥ 1/𝑛𝐶′

for a constant 𝐶 ′ that is given to the algorithm. It outputs a good approximation with

probability at least 0.99 and in expectation requires 𝑂
(︁√

𝑛 log(𝑛/𝜖)
𝐼[𝑓]𝜖3

)︁
queries. Additionally,

it runs in time polynomial in 𝑛.

2.1.4 Bounds for 𝜖 and 𝐼[𝑓]

The following observation allows us to assume that without loss of generality 𝜖 is not too

small. A similar technique was also used in [25].

Observation 2.1.3 When 𝜖 < 𝑂(
√

𝑛𝛿 log1.5(𝑛)) there is a simple algorithm that accom-

plishes the desired query complexity of 𝑂
(︁√

𝑛𝛿 log1.5(𝑛)
𝑁𝑆𝛿[𝑓]𝜖3

)︁
. Namely, this can be done by

the standard sampling algorithm that requires only 𝑂
(︁

1
𝑁𝑆𝛿[𝑓]𝜖2

)︁
samples. Thus, since

we can handle the case when 𝜖 < 𝑂(
√

𝑛𝛿 log1.5(𝑛)), we focus on the case when 𝜖 ≥

𝐻
√

𝑛𝛿 log1.5(𝑛) ≥ 𝐻 log1.5 𝑛√
𝑛

, for any constant 𝐻 .

Additionally, throughout the paper whenever we need it, we will without loss of gener-

ality assume that 𝜖 is smaller than a sufficiently small positive constant.

We will also need a known lower bound on influence:

Observation 2.1.4 For any function 𝑓 : {0, 1}𝑛 → {0, 1} and 𝛿 ≤ 1/2 it is the case that:

𝑁𝑆𝛿[𝑓] ≤ 𝛿𝐼[𝑓]

Therefore it is the case that 𝐼[𝑓] ≥ 1
𝑛𝐶 .

A very similar statement is proved in [18] and for completeness we prove it in Appendix

A.

30

Chapter 3

An improved algorithm for small 𝛿

In this section we give an improved algorithm for small 𝛿, namely 1/𝑛 ≤ 𝛿 ≤ 1/(
√

𝑛 log 𝑛).

We begin by describing the descending-ascending view on which the algorithm is based.

3.1 Descending-ascending framework

3.1.1 The descending-ascending process.

As we mentioned, it is be useful to view noise sensitivity in the context of the noise process

in Figure 3.1.1. We will use the following notation for probabilities of various events: for

an algorithm or a random process 𝑋 we will use the expression Pr𝑋 [] to refer to the random

variables we defined in the context of this process or algorithm. It will often be the case

that the same symbol, say 𝑥, will refer to different random random variables in the context

of different random processes, so Pr𝑋 [𝑥 = 1] might not be the same as Pr𝑌 [𝑥 = 1].

By inspection, 𝑥 and 𝑧 are distributed identically in 𝐷 as in 𝑇𝛿. Therefore from Obser-

vation 2.1.2:

𝑁𝑆𝛿[𝑓] = 2 · Pr𝐷[𝑓(𝑥) = 1 ∧ 𝑓(𝑧) = 0]

Observation 3.1.1 Since the function is monotone, if 𝑓(𝑥) = 1 and 𝑓(𝑧) = 0, then it has

to be that 𝑓(𝑦) = 0.

31

Process 𝐷

1. Pick 𝑥 uniformly at random from {0, 1}𝑛. Let 𝑆0 be the set of indexes 𝑖 for
which 𝑥𝑖 = 0, and conversely let 𝑆1 be the rest of indexes.

2. Phase 1: go through all the indexes in 𝑆1 in a random order, and flip each
with probability 𝛿. Form the descending path 𝑃1 from all the intermediate
results. Call the endpoint 𝑦.

3. Phase 2: start at 𝑦, and flip each index in 𝑆0 with probability 𝛿. As before,
all the intermediate results form an ascending path 𝑃2, which ends in 𝑧.

4. Output 𝑃1, 𝑃2, 𝑥, 𝑦 and 𝑧.

Figure 3-1: The noise process (restated)

Now we define the probability that a Phase 1 path starting somewhere at level 𝑙 makes

at least 𝑤 steps downwards:

Definition 9 For any 𝑙 and 𝑤 in [𝑛] we define 𝑄𝑙,𝑤 as follows:

𝑄𝑙;𝑤
def= Pr𝐷[

⃒⃒⃒
𝑃1

⃒⃒⃒
≥ 𝑤|𝐿(𝑥) = 𝑙]

This notation is useful when one wants to talk about the probability that a path starting on

a particular vertex hits a specific level.

3.1.2 Defining bad events

In this section, we give the parameters that we use to determine the lengths of our walks,

as well as the “middle” of the hypercube.

Define the following values:

𝑡1
def= 𝜂1

√︁
𝑛 log 𝑛 𝑡2

def= 𝑛𝛿(1 + 3𝜂2 log 𝑛)

Here 𝜂1 and 𝜂2 are large enough constants. Taking 𝜂1 =
√

𝐶+4 and 𝜂2 = 𝐶+2 is sufficient

for our purposes (recall that we were promised that 𝑁𝑆𝛿[𝑓] ≥ 1/𝑛𝐶 for a constant 𝐶).

32

Informally, 𝑡1 and 𝑡2 have the following intuitive meaning. A typical vertex 𝑥 of the

hypercube has 𝐿(𝑥) between 𝑛/2 − 𝑡1 and 𝑛/2 + 𝑡1. A typical Phase 1 path from process

𝐷 will have length at most 𝑡2.

We define the “middle edges" 𝑀 as the following set of edges:

𝑀
def= {𝑒 = (𝑣1, 𝑣2) : 𝑛

2 − 𝑡1 ≤ 𝐿(𝑣2) ≤ 𝐿(𝑣1) ≤ 𝑛

2 + 𝑡1}

Denote by 𝑀 the rest of the edges.

We define two bad events in context of 𝐷, such that when neither of these events hap-

pen, we can show that the output has certain properties. The first one happens roughly

when 𝑃1 (from 𝑥 to 𝑦, as defined by Process D) is much longer than it should be in expecta-

tion, and the second one happens when 𝑃1 crosses one of the edges that are too far from the

middle of the hypercube, which could happen because 𝑃1 is long or because of a starting

point that is far from the middle. More specifically:

∙ 𝐸1 happens when both of the following hold (i) 𝑃1 crosses an edge 𝑒 ∈ 𝐸𝐼 and (ii)

denoting 𝑒 = (𝑣1, 𝑣2), so that 𝑣2 ⪯ 𝑣1, it is the case that 𝐿(𝑥) − 𝐿(𝑣1) ≥ 𝑡2.

∙ 𝐸2 happens when 𝑃1 contains an edge in 𝐸𝐼 ∩ 𝑀 .

While defining 𝐸1 we want two things from it. First of all, we want its probability to be

upper-bounded easily. Secondly, we want it not to complicate the sampling of paths in

Lemma 3.4.1. There exists a tension between these two requirements, and as a result the

definition of 𝐸1 is somewhat convoluted.

3.1.3 Defining 𝑝𝐴, 𝑝𝐵

We define:

𝑝𝐴
def= Pr𝐷[𝑓(𝑥) = 1 ∧ 𝑓(𝑦) = 0 ∧ 𝐸1 ∧ 𝐸2]

𝑝𝐵
def= Pr𝐷[𝑓(𝑧) = 0|𝑓(𝑥) = 1 ∧ 𝑓(𝑦) = 0 ∧ 𝐸1 ∧ 𝐸2]

33

Ignoring the bad events, 𝑃𝐴 is the probability that 𝑃1 hits an influential edge, and 𝑃𝐵 is the

probability that given that 𝑃1 hits an influential edge 𝑃2 does not hit an influential edge.

From Observation (3.1.1), if and only if these two things happen, it is the case that 𝑓(𝑥) = 1

and 𝑓(𝑧) = 0. From this fact and the laws of conditional probabilities we have:

Pr𝐷[𝑓(𝑥) = 1∧𝑓(𝑧) = 0∧𝐸1∧𝐸2] = Pr𝐷[𝑓(𝑥) = 1∧𝑓(𝑦) = 0∧𝑓(𝑧) = 0∧𝐸1∧𝐸2] = 𝑝𝐴𝑝𝐵

(3.1)

We can consider for every individual edge 𝑒 in 𝑀 ∩ 𝐸𝐼 the probabilities:

𝑝𝑒
def= Pr𝐷[𝑒 ∈ 𝑃1 ∧ 𝐸1 ∧ 𝐸2]

𝑞𝑒
def= Pr𝐷[𝑓(𝑥) = 1 ∧ 𝑓(𝑧) = 0|𝑒 ∈ 𝑃1 ∧ 𝐸1 ∧ 𝐸2] = Pr𝐷[𝑓(𝑧) = 0|𝑒 ∈ 𝑃1 ∧ 𝐸1 ∧ 𝐸2]

The last equality is true because 𝑒 ∈ 𝑃1 already implies 𝑓(𝑥) = 1. Informally and ignoring

the bad events again, 𝑝𝑒 is the probability that 𝑓(𝑥) = 1 and 𝑓(𝑦) = 0 because 𝑃1 hits 𝑒

and not some other influential edge. Similarly, 𝑞𝑒 is the probability 𝑓(𝑥) = 1 and 𝑓(𝑧) = 0

given that 𝑃1 hits specifically 𝑒.

Since 𝑓 is monotone, 𝑃1 can hit at most one influential edge. Therefore, the events of

𝑃1 hitting different influential edges are disjoint. Using this, Equation (3.1) and the laws of

conditional probabilities we can write:

𝑝𝐴 =
∑︁

𝑒∈𝐸𝐼∩𝑀

𝑝𝑒 (3.2)

Furthermore, the events that 𝑃1 hits a given influential edge and then 𝑃2 does not hit any are

also disjoint for different influential edges. Therefore, analogous to the previous equation

we can write:

𝑝𝐴𝑝𝐵 = Pr𝐷[(𝑓(𝑥) = 1) ∧ (𝑓(𝑧) = 0) ∧ 𝐸1 ∧ 𝐸2] =
∑︁

𝑒∈𝐸𝐼∩𝑀

𝑝𝑒𝑞𝑒 (3.3)

34

3.1.4 Bad events can be “ignored”

In the following proof, we will need to consider probability distributions in which bad

events do not happen. For the most part, conditioning on the fact that bad events do not

happen changes little in the calculations. In this subsection, we prove lemmas that allow us

to formalize these claims.

The following lemma suggests that almost all influential edges are in 𝑀 .

Observation 3.1.2 It is the case that:

(︂
1 − 𝜖

310

)︂
|𝐸𝐼 | ≤ |𝑀 ∩ 𝐸𝐼 | ≤ |𝐸𝐼 |

Proof: This is the case, because:

|𝑀 ∩ 𝐸𝐼 | ≤ |𝑀 | ≤ 2𝑛𝑛 · 2 exp(−2𝜂2
1 log(𝑛))

= 2𝑛−1 · 4/𝑛2𝜂2
1−1 ≤ 2𝑛−1𝐼[𝑓]/𝑛 = |𝐸𝐼 |/𝑛 ≤ 𝜖

310 |𝐸𝐼 |

The second inequality is the Hoeffding bound, then we used Observations 2.1.4 and

2.1.3.

Lemma 3.1.3 We proceed to prove that ignoring these bad events does not distort our

estimate for 𝑁𝑆𝛿[𝑓]. It is the case that:

𝑝𝐴𝑝𝐵 ≤ 1
2𝑁𝑆𝛿[𝑓] ≤

(︂
1 + 𝜖

5

)︂
𝑝𝐴𝑝𝐵

Proof: See Appendix C, Section C.3.

3.2 Main lemmas

Here we prove the correctness and run-time of the main subroutines used in our algorithm

for estimating noise sensitivity. For completeness, we will repeat all the algorithms.

35

3.3 Lemmas about descending paths hitting influential edges

Here we prove two lemmas that allow the estimation of the probability that a certain de-

scending random walk hits an influential edge. As we mentioned in the introduction, ex-

cept for the binary search step, the algorithm in Lemma 3.3.1 is similar to the algorithm

in [25]. In principle, we could have carried out much of the analysis of the algorithm in

Lemma 3.3.1 by referencing an equation in [25]. However, for subsequent lemmas, in-

cluding Lemma 3.3.2, we build on the application of the Hypercube Continuity Lemma to

the analysis of random walks on the hypercube. Thus, we give a full analysis of the algo-

rithm in Lemma 3.3.1 here, in order to demonstrate how the Hypercube Continuity Lemma

(Lemma 2.1.1) can be used to analyze random walks on the hypercube, before handling the

more complicated subsequent lemmas, including Lemma 3.3.2.

Lemma 3.3.1 There exists an algorithm 𝒜 that samples edges from 𝑀 ∩ 𝐸𝐼 so that for

every two edges 𝑒1 and 𝑒2 in 𝑀 ∩ 𝐸𝐼:

(︂
1 − 𝜖

70

)︂
Pr𝑒∈𝑅𝒜[𝑒 = 𝑒2] ≤ Pr𝑒∈𝑅𝒜[𝑒 = 𝑒1] ≤

(︂
1 + 𝜖

70

)︂
Pr𝑒∈𝑅𝒜[𝑒 = 𝑒2]

The probability that the algorithm succeeds is at least 1
𝑂(

√
𝑛 log1.5 𝑛/𝐼[𝑓]𝜖) . If it succeeds, the

algorithm makes 𝑂(log 𝑛) queries, and if it fails, it makes only 𝑂(1) queries. In either

case, it runs in time polynomial in 𝑛.

Remark 3 Through the standard repetition technique, the probability of error can be de-

creased to an arbitrarily small constant, at the cost of 𝑂(
√

𝑛 log1.5 𝑛
𝐼[𝑓]𝜖) queries. Then, the

run-time still stays polynomial in 𝑛, since 𝐼[𝑓] ≥ 1/𝑛𝐶 .

Remark 4 The distribution 𝒜 outputs is point-wise close to the uniform distribution over

𝑀 ∩ 𝐸𝐼 . We will also obtain such approximations to other distributions in further lemmas.

Note that this requirement is stronger than closeness in 𝐿1 norm.

Proof: We restate the algorithm in Figure 3.3.

36

Algorithm 𝒜 (given oracle access to a monotone function 𝑓 : {0, 1}𝑛 → {0, 1}
and a parameter 𝜖)

1. Assign 𝑤 = 𝜖
3100𝜂1

√︁
𝑛

log 𝑛

2. Pick 𝑥 uniformly at random from {0, 1}𝑛.

3. Perform a descending walk 𝑃1 downwards in the hypercube starting at 𝑥.
Stop at a vertex 𝑦 either after 𝑤 steps, or if you hit the all-zeros vertex.
Query the value of 𝑓 only at the endpoints 𝑥 and 𝑦 of this path.

4. If 𝑓(𝑥) = 𝑓(𝑦) output FAIL.

5. If 𝑓(𝑥) ̸= 𝑓(𝑦) perform a binary search on the path 𝑃1 and find an influential
edge 𝑒𝑖𝑛𝑓 .

6. If 𝑒𝑖𝑛𝑓 ∈ 𝑀 return 𝑒𝑖𝑛𝑓 . Otherwise output FAIL.

Figure 3-2: Algorithm for sampling an influential edge (restated)

Note that 𝑃1 is distributed symmetrically with respect to a change of indexes. Pick an

arbitrary edge 𝑒0 in 𝑀 ∩ 𝐸𝐼 and let 𝑒0 = (𝑣1, 𝑣2), so 𝑣2 ⪯ 𝑣1. Recall that Λ𝑒0 was the set

of edges in the same “layer" of the hypercube and that |Λ𝑒0| equals 𝐿(𝑣1)
(︁

𝑛
𝐿(𝑣1)

)︁
.

For any 𝑒′ in Λ𝑒0 , 𝑒0 and 𝑒′ are different only up to a permutation of indexes. This per-

mutation of indexes induces a bijection between the set of descending paths going through

𝑒0 and those going through 𝑒′. Furthermore, since 𝑃1 is distributed symmetrically with re-

spect to a change of indexes, this bijection is between paths that have the same probability

to be 𝑃1. Therefore, the probability that 𝑃1 passes through 𝑒′ equals to the probability of it

passing through 𝑒0. Additionally, since 𝑃1 is descending it can cross at most one edge in

Λ𝑒0 , which implies that the events of 𝑃1 crossing each of these edges are disjoint. Thus, we

can write:

Pr𝒜[𝑒0 ∈ 𝑃1] = Pr𝒜[𝑃1 ∩ Λ𝑒0 ̸= ∅]
𝐿(𝑣1)

(︁
𝑛

𝐿(𝑣1)

)︁
But 𝑃1 will intersect Λ𝑒0 if and only if 𝐿(𝑣1) ≤ 𝐿(𝑥) ≤ 𝐿(𝑣1) + 𝑤 − 1. This allows us to

express the probability in the numerator as a sum over the 𝑤 layers of the hypercube right

37

above Λ𝑒0 .

Pr𝒜[𝑒0 ∈ 𝑃1] =
∑︀𝐿(𝑣1)+𝑤−1

𝑙=𝐿(𝑣1)
1

2𝑛

(︁
𝑛
𝑙

)︁
𝐿(𝑣1)

(︁
𝑛

𝐿(𝑣1)

)︁ (3.4)

Observation 2.1.3 allows us to lower-bound 𝜖 and argue that for sufficiently large 𝑛 we

have:

(︂
1 − 𝜖

1300

)︂ 2
𝑛

≤ 2
𝑛

1
1 + 2𝑡1/𝑛

≤ 1
𝐿(𝑣1)

≤ 2
𝑛

1
1 − 2𝑡1/𝑛

≤
(︂

1 + 𝜖

1300

)︂ 2
𝑛

(3.5)

Since 𝑒 ∈ 𝑀 , it is the case that 𝑛
2 − 𝑡1 ≤ 𝐿(𝑣2) ≤ 𝐿(𝑣1) ≤ 𝑛

2 + 𝑡1. This allows us to use

Lemma 2.1.1 and deduce that 1 − 𝜖/310 ≤
(︁

𝑛
𝑙

)︁
/
(︁

𝑛
𝐿(𝑣1)

)︁
≤ 1 + 𝜖/310. This and Equation

(3.5) allow us to approximate Pr𝒜[𝑒0 ∈ 𝑃1] in Equation (3.4) the following way:

(︂
1 − 𝜖

150

)︂
𝑤

𝑛2𝑛−1 ≤ Pr𝒜[𝑒0 ∈ 𝑃1] ≤
(︂

1 + 𝜖

150

)︂
𝑤

𝑛2𝑛−1 (3.6)

The algorithm outputs an influential edge if and only if 𝑃1 hits an influential edge in 𝑀∩𝐸𝐼 .

At the same time, these events corresponding to different edges in 𝑀 ∩𝐸𝐼 are disjoint since

𝑃1 can hit only at most one influential edge. This together with Bayes rule allows us to

express the probability that the algorithm outputs 𝑒0, conditioned on it succeeding:

Pr𝑒∈𝑅𝒜[𝑒 = 𝑒0] = Pr𝒜[𝑒𝑖𝑛𝑓 = 𝑒0]

= Pr𝒜

⎡⎣𝑒0 ∈ 𝑃1

⃒⃒⃒⃒
⃒ ⋁︁

𝑒′∈𝑀∩𝐸𝐼

(𝑒′ ∈ 𝑃1)
⎤⎦ = Pr𝒜 [𝑒0 ∈ 𝑃1]

Pr𝒜
[︁⋁︀

𝑒′∈𝑀∩𝐸𝐼
(𝑒′ ∈ 𝑃1)

]︁ (3.7)

Substituting Equation (3.7) into Equation (3.6) we get:

(︂
1 − 𝜖

150

)︂
𝑤

𝑛2𝑛−1 · Pr𝒜

⎡⎣ ⋁︁
𝑒1∈𝑀∩𝐸𝐼

(𝑒1 ∈ 𝑃1)
⎤⎦ ≤ Pr𝑒∈𝑅𝒜[𝑒 = 𝑒0] ≤

(︂
1 + 𝜖

150

)︂
𝑤

𝑛2𝑛−1 · Pr𝒜

⎡⎣ ⋁︁
𝑒1∈𝑀∩𝐸𝐼

(𝑒1 ∈ 𝑃1)
⎤⎦

Substituting two different edges 𝑒1 and 𝑒2 in 𝐸𝐼 ∩ 𝑀 in place of 𝑒0 and then dividing

38

the resulting inequalities gives us:

1 − 𝜖/150
1 + 𝜖/150Pr𝑒∈𝑅𝒜[𝑒 = 𝑒2] ≤ Pr𝑒∈𝑅𝒜[𝑒 = 𝑒1] ≤ 1 + 𝜖/150

1 − 𝜖/150Pr𝑒∈𝑅𝒜[𝑒 = 𝑒2]

From this, the correctness of the algorithm follows. In case of failure, it makes 𝑂(1) queries

and in case of success, it makes 𝑂(log 𝜖 + log(𝑛/ log 𝑛)) = 𝑂(log 𝑛) queries, because of

the additional binary search. In either case, the run-time is polynomial.

Now, regarding the probability of success, note that the events of 𝑃1 crossing differ-

ent edges in 𝐸𝐼 ∩ 𝑀 are disjoint since the function is monotone. Therefore, we can sum

Equation (3.6) over all edges in 𝑀 ∩ 𝐸𝐼 and get that the probability of success is at least

Θ
(︁

|𝐸𝐼∩𝑀 |𝑤
𝑛2𝑛−1

)︁
. Applying Lemma 3.1.2 and substituting 𝑤, the inverse of the success proba-

bility is:

𝑂

(︃
𝑛2𝑛−1

|𝐸𝐼 ∩ 𝑀 |𝑤
· log 𝑛

)︃
= 𝑂

(︃
𝑛

𝐼[𝑓]𝑤 · log 𝑛

)︃
= 𝑂

(︃
log1.5(𝑛)

√
𝑛

𝐼[𝑓]𝜖

)︃

The following lemma, roughly speaking, shows that just as in previous lemma, the

probability that 𝑃1 in 𝐷 hits an influential edge 𝑒 does not depend on where exactly 𝑒 is,

as long as it is in 𝑀 ∩ 𝐸𝐼 . The techniques we use are similar to the ones in the previous

lemma and it follows the same outline. However here we encounter additional difficulties

for two reasons: first of all, the length of 𝑃1 is not fixed, but it is drawn from a probability

distribution. Secondly, this probability distribution depends on the starting point of 𝑃1.

Note that unlike what we have in the previous lemma, here 𝑃1 comes from the ascending-

descending view of noise sensitivity.

Lemma 3.3.2 For any edge 𝑒 ∈ 𝑀 ∩ 𝐸𝐼 it is the case that:

(︂
1 − 𝜖

310

)︂
𝛿

2𝑛
≤ 𝑝𝑒 ≤

(︂
1 + 𝜖

310

)︂
𝛿

2𝑛

Proof: Let 𝑒 = (𝑣1, 𝑣2), so 𝑣2 ⪯ 𝑣1. We can use the same argument from symmetry as in

39

the proof of Lemma 3.3.1. We get:

𝑝𝑒 = Pr𝐷[(𝑒 ∈ 𝑃1) ∧ 𝐸1 ∧ 𝐸2] = Pr𝐷[(𝑒 ∈ 𝑃1) ∧ 𝐸1]

= Pr𝐷[(𝑒 ∈ 𝑃1) ∧ (𝐿(𝑥) − 𝐿(𝑣1) < 𝑡2)] = Pr𝐷[(𝑃1 ∩ Λ𝑒 ̸= ∅) ∧ (𝐿(𝑥) − 𝐿(𝑣1) < 𝑡2)]
𝐿(𝑣1)

(︁
𝑛

𝐿(𝑣1)

)︁

Above we did the following: Recall that 𝐸2 is the event that 𝑃1 crosses an edge in 𝐸𝐼 ∩ 𝑀 .

The first equality is true because 𝑒 ∈ 𝐸𝐼 ∩𝑀 and 𝑃1 can cross at most one influential edge,

which implies that 𝐸2 cannot happen. For the second equality we substituted the definition

of 𝐸1. For the third equality we used the symmetry of 𝐷 with respect to change of indexes

just as in the proof of Lemma 3.3.1.

Recall that we defined:

𝑄𝑙;𝑤
def= Pr𝐷[

⃒⃒⃒
𝑃1

⃒⃒⃒
≥ 𝑤|𝐿(𝑥) = 𝑙]

This allows us to rewrite:

𝑝𝑒 =
∑︀𝑡2

𝑖=1
1

2𝑛

(︁
𝑛

𝐿(𝑣1)+𝑖−1

)︁
𝑄𝐿(𝑣1)+𝑖−1;𝑖

𝐿(𝑣1)
(︁

𝑛
𝐿(𝑣1)

)︁ (3.8)

Above we just looked at each of the layers of the hypercube and summed the contributions

from them.

To prove a bound on 𝑝𝑒 we will need a bound on 𝑡2. Observation 2.1.3 implies that for

any 𝐻 we can assume that
√

𝑛𝛿 ≤ 𝜖
𝐻 log1.5 𝑛

using which we deduce

𝑡2 = 𝑛𝛿(1 + 3𝜂2 log(𝑛)) ≤ 4𝜂2𝑛𝛿 log(𝑛) ≤ 4𝜂2𝜖

𝐻

√︃
𝑛

log 𝑛

Furthermore, we will need a bound on the binomial coefficients in Equation (3.8). By

picking 𝐻 to be a large enough constant, this allows us to use Lemma 2.1.1 to bound the

40

ratios of the binomial coefficients. For any 𝑖 between 1 and 𝑡2 inclusive:

1 − 𝜖

1300 ≤

(︁
𝑛

𝐿(𝑣1)+𝑖−1

)︁
(︁

𝑛
𝐿(𝑣1)

)︁ ≤ 1 + 𝜖

1300 (3.9)

Equation (3.5) is valid in this setting too. Substituting Equation (3.5) together with Equa-

tion (3.9) into Equation (3.8) we get:

(︂
1 − 𝜖

630

)︂ 1
𝑛2𝑛−1

𝑡2∑︁
𝑖=1

𝑄𝐿(𝑣1)+𝑖−1;𝑖 ≤ 𝑝𝑒 ≤
(︂

1 + 𝜖

630

)︂ 1
𝑛2𝑛−1

𝑡2∑︁
𝑖=1

𝑄𝐿(𝑣1)+𝑖−1;𝑖 (3.10)

Observe that a vertex on the level 𝑙 + 1 has more ones than a vertex on level 𝑙. So for

a positive integer 𝑤, the probability that at least 𝑤 of them will flip is larger. Therefore,

𝑄𝑙,𝑤 ≤ 𝑄𝑙+1,𝑤. This allows us to bound:

𝑡2∑︁
𝑖=1

𝑄𝐿(𝑣1);𝑖 ≤
𝑡2∑︁

𝑖=1
𝑄𝐿(𝑣1)+𝑖−1;𝑖 ≤

𝑡2∑︁
𝑖=1

𝑄𝐿(𝑣1)+𝑡2−1;𝑖 (3.11)

Then, using Observation 2.1.3:

𝑡2∑︁
𝑖=1

𝑄𝐿(𝑣1)+𝑡2−1;𝑖 ≤
𝑛∑︁

𝑖=1
𝑄𝐿(𝑣1)+𝑡2−1;𝑖 = 𝐸𝐷[𝐿(𝑥) − 𝐿(𝑦)|𝐿(𝑥) = 𝐿(𝑣1) + 𝑡2 − 1]

= 𝛿(𝐿(𝑣1) + 𝑡2 − 1) ≤ 𝛿(𝑛/2 + 𝑡1 + 𝑡2) ≤
(︂

1 + 𝜖

630

)︂
𝑛𝛿

2 (3.12)

Now, we bound from the other side:

𝑡2∑︁
𝑖=1

𝑄𝐿(𝑣1);𝑖 =
𝑛∑︁

𝑖=1
𝑄𝐿(𝑣1);𝑖 −

𝑛∑︁
𝑖=𝑡2+1

𝑄𝐿(𝑣1);𝑖 ≥
𝑛∑︁

𝑖=1
𝑄𝐿(𝑣1);𝑖 − 𝑛 · 𝑄𝐿(𝑣1);𝑡2 (3.13)

We bound the first term just as in Equation (3.12), and we bound the second one using a

41

Chernoff bound:

𝑛∑︁
𝑖=1

𝑄𝐿(𝑣1);𝑖 = 𝛿𝐿(𝑣1) ≥ 𝛿(𝑛/2 − 𝑡1) ≥
(︂

1 − 𝜖

1300

)︂
𝛿𝑛

2 (3.14)

𝑛 · 𝑄𝐿(𝑣1);𝑡2 ≤ 𝑛 · exp(−1
3𝑛 · 𝛿3𝜂2 log 𝑛) ≤ 1

𝑛𝜂2−1 (3.15)

Substituting Equations (3.14) and (3.15) into Equation (3.13) and using Observation 2.1.3

we get:
𝑡2∑︁

𝑖=1
𝑄𝐿(𝑣1);𝑖 ≥

(︂
1 − 𝜖

1300

)︂
𝛿𝑛

2 − 1
𝑛𝜂2−1 ≥

(︂
1 − 𝜖

630

)︂
𝛿𝑛

2 (3.16)

Substituting Equations (3.16) and (3.12) into Equation (3.11) we get:

(︂
1 − 𝜖

630

)︂
𝛿𝑛

2 ≤
𝑡2∑︁

𝑖=1
𝑄𝐿(𝑣1)+𝑖−1;𝑖 ≤

(︂
1 + 𝜖

630

)︂
𝛿𝑛

2

Combining this with Equation (3.10) we deduce that:

(︂
1 − 𝜖

310

)︂
𝛿

2𝑛
≤ 𝑝𝑒 ≤

(︂
1 + 𝜖

310

)︂
𝛿

2𝑛

3.4 Sampling descending and ascending paths going through

a given influential edge.

While we will use Lemma 3.3.2 in order to estimate 𝑝𝐴, we will use the machinery devel-

oped in this section to estimate 𝑝𝐵 in Section 3.5. To that end, we will need to sample from

a distribution of descending and ascending paths going through a given edge. The require-

ment on the distribution is that it should be close to the conditional distribution of such

paths 𝑃1 that would arise from process 𝐷, conditioned on going through 𝑒 and satisfying

�̄�1 and �̄�2. See a more formal explanation in the statements of the lemmas.

In terms of resource consumption, the algorithms in this section require no queries to

𝑓 but only run-time. Note that the following simple exponential time algorithm achieves

42

the correctness guarantee of Lemma 3.4.3 and still does not need to make any new queries

to the function: The algorithm repeatedly samples 𝑃1 and 𝑃2 from the process 𝐷 until

it is the case that 𝑃1 crosses the given edge 𝑒 and neither 𝐸1 nor 𝐸2 happen. When this

condition is satisfied the algorithm outputs these paths 𝑃1 and 𝑃2. The resulting distribution

would exactly equal the distribution we are trying to approximate in Lemma 3.4.3, which

is the ultimate goal of the section. The polynomial run-time constraint compels us to do

something else. Furthermore, this is the only part of the algorithm for which the polynomial

time constraint is non-trivial.

A first approach to sampling 𝑃1 would be to take random walks in opposite directions

from the endpoints of the edge 𝑒 and then concatenate them together. This is in fact what

we do. However, difficulty comes from determining the appropriate lengths of the walks

for the following reason. If 𝑃1 is longer, it is more likely to hit the influential edge 𝑒.

This biases the distribution of the descending paths hitting 𝑒 towards the longer descending

paths. In order to accommodate for this fact we used the following two-step approach:

1. Sample only the levels of the starting and ending points of the path 𝑃1. This is

equivalent to sampling the length of the segment of 𝑃1 before the edge 𝑒 and after

it. This requires careful use of rejection sampling together with the techniques we

used to prove Lemmas 3.3.1 and 3.3.2. Roughly speaking, we use the fact that 𝑃1 is

distributed symmetrically with respect to the change of indices in order to reduce a

question about the edge 𝑒 to a question about the layer Λ𝑒. Then, we use the Lemma

2.1.1 to answer questions about random walks hitting a given layer. This is handled

in Lemma 3.4.1.

2. Sample a path 𝑃1 that has the given starting and ending levels and passes through

an influential edge 𝑒. This part is relatively straightforward. We prove that all the

paths satisfying these criteria are equally likely. We sample one of them randomly

by performing two random walks in opposite directions starting at the endpoints of

𝑒. This all is handled in Lemma 3.4.3.

Lemma 3.4.1 There is an algorithm 𝒲 that takes as input an edge 𝑒 = (𝑣1, 𝑣2) in 𝑀 ∩𝐸𝐼 ,

so that 𝑣2 ⪯ 𝑣1, and samples two non-negative numbers 𝑤1 and 𝑤2, so that for any two

43

Algorithm 𝒲 (given an edge 𝑒
def= (𝑣1, 𝑣2) so 𝑣2 ⪯ 𝑣1)

1. Pick an integer 𝑙 uniformly at random among the integers in [𝐿(𝑣1), 𝐿(𝑣1)+
𝑡2 − 1]. Pick a vertex 𝑥 randomly at level 𝑙.

2. As in phase 1 of the noise sensitivity process, traverse in random order
through the indices of 𝑥 and for each index that equals to one, flip it with
probability 𝛿. The intermediate results form a path 𝑃1, and we call its end-
point 𝑦.

3. If 𝑃1 does not intersect Λ𝑒 go to step 1.

4. Otherwise, output 𝑤1 = 𝐿(𝑥) − 𝐿(𝑣1) and 𝑤2 = 𝐿(𝑣2) − 𝐿(𝑦).

Figure 3-3: Algorithm 𝒲 (restated)

non-negative 𝑤′
1 and 𝑤′

2:

(︂
1 − 𝜖

70

)︂
Pr𝒲(𝑒)[(𝑤1 = 𝑤′

1) ∧ (𝑤2 = 𝑤′
2)]

≤ Pr𝐷[(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′
1) ∧ (𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′

2)|(𝑒 ∈ 𝑃1) ∧ 𝐸1 ∧ 𝐸2]

≤
(︂

1 + 𝜖

70

)︂
Pr𝒲(𝑒)[(𝑤1 = 𝑤′

1) ∧ (𝑤2 = 𝑤′
2)] (3.17)

The algorithm requires no queries to 𝑓 and runs in time polynomial in 𝑛.

Remark 5 the approximation guarantee here is similar to the one in Lemma 3.3.1. It

guaranteed that the relative distance should be small point-wise. This guarantee is stronger

than closeness in either 𝐿1 and 𝐿∞ norms. We also employ an analogous approximation

guarantee in Lemma 3.4.3.

Proof: We restate Algorithm 𝒲 in Figure 3.4 (recall that we used the symbol Λ𝑒 to denote

the whole layer of edges that have the same endpoint levels as 𝑒).

To prove the correctness of the algorithm, we begin by simplifying the expression

above. If 𝑒 ∈ 𝑃1, then 𝑃1 cannot contain any other influential edge, so 𝐸2 cannot hap-

pen and we can drop it from notation. Additionally we can substitute the definition for 𝐸1

44

so:

Pr𝐷[(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′
1) ∧ (𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′

2)|𝑒 ∈ 𝑃1 ∧ 𝐸1 ∧ 𝐸2]

= Pr𝐷

[︃
(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′

1) ∧ (𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′
2)
⃒⃒⃒⃒
⃒𝑒 ∈ 𝑃1 ∧ (𝐿(𝑥) − 𝐿(𝑣1) < 𝑡2)

]︃

Now we can use the fact that 𝐷 is symmetric with respect to the change of indices, so

we can substitute 𝑒 with any 𝑒′ in Λ𝑒. Therefore:

Pr𝐷[(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′
1) ∧ (𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′

2)|(𝑒 ∈ 𝑃1) ∧ 𝐸1 ∧ 𝐸2]

= 1
|Λ𝑒|

·
∑︁

𝑒′∈Λ𝑒

Pr𝐷

[︃
(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′

1) ∧ (𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′
2)
⃒⃒⃒⃒
⃒

𝑒′ ∈ 𝑃1 ∧ (𝐿(𝑥) − 𝐿(𝑣1) < 𝑡2)
]︃

=
∑︁

𝑒′∈Λ𝑒

Pr𝐷

[︃
𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′

1 ∧ (𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′
2)
⃒⃒⃒⃒
⃒𝑒′ ∈ 𝑃1 ∧ (𝐿(𝑥) − 𝐿(𝑣1) < 𝑡2)

]︃

× Pr𝐷

[︃
𝑒′ ∈ 𝑃1

⃒⃒⃒⃒
⃒𝑃1 ∩ Λ𝑒 ̸= ∅

]︃

= Pr𝐷

[︃
(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′

1) ∧ (𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′
2)
⃒⃒⃒⃒
⃒

(𝑃1 ∩ Λ𝑒 ̸= ∅) ∧ (𝐿(𝑥) − 𝐿(𝑣1) < 𝑡2)
]︃

(3.18)

Observation 3.4.2 The algorithm never returns 𝑤1 ≥ 𝑡2, which is appropriate since the

distribution being approximated is conditioned on 𝐿(𝑥) − 𝐿(𝑣1) < 𝑡2. In what follows we

consider 1 ≤ 𝑤1 < 𝑡2 and 1 ≤ 𝑤′
1 < 𝑡2. Additionally, recall that 𝑤′

2 is non-negative.

Before we continue, we derive the following intermediate results. Because of how 𝑃1 is

chosen in 𝒲 , we can use the notation:

𝑄𝑙;𝑤 = Pr𝐷[
⃒⃒⃒
𝑃1

⃒⃒⃒
≥ 𝑤|𝐿(𝑥) = 𝑙] = Pr𝒲(𝑒)[

⃒⃒⃒
𝑃1

⃒⃒⃒
≥ 𝑤|𝐿(𝑥) = 𝑙]

The last equality is true because after picking 𝑥 both process 𝐷 and algorithm 𝒲(𝑒) pick

the path 𝑃1 exactly the same way. Therefore, the path 𝑃1 is distributed the same way for

45

the both processes if we condition on them picking the same starting point 𝑥.

We can express:

Pr𝒲(𝑒)[(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′
1) ∧ (𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′

2)] =
1
𝑡2

Pr𝒲(𝑒)[𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′
2|𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′

1]

= 1
𝑡2

Pr𝐷[𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′
2|𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′

1]

= 1
𝑡2

𝑄𝐿(𝑣1)+𝑤′
1;𝑤′

1+1Pr𝐷

[︃
𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′

2

⃒⃒⃒⃒
⃒(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′

1) ∧ (|𝑃1| ≥ 𝑤′
1 + 1)

]︃
(3.19)

Above: (i) The first equality uses the fact that in 𝒲(𝑒) the level of 𝑥 is chosen uniformly

between the 𝑡2 levels, and therefore Pr𝒲(𝑒)[𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′
1] = 1/𝑡2. (ii) The second

inequality uses the fact that after picking 𝑥, both 𝑊 (𝑒) and 𝐷 pick 𝑃1 and consequently 𝑦

identically. (iii) The third inequality is an application of the law of conditional probabilities

together with the definition of 𝑄𝑙,𝑤.

Building on the previous equality we have:

Pr𝒲(𝑒)[(𝑤1 = 𝑤′
1) ∧ (𝑤2 = 𝑤′

2)] =

Pr𝒲(𝑒)

[︃
(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′

1) ∧ (𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′
2)
⃒⃒⃒⃒
⃒𝑃1 ∩ Λ𝑒 ̸= ∅

]︃

= Pr𝒲(𝑒)[(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′
1) ∧ (𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′

2) ∧ (𝑃1 ∩ Λ𝑒 ̸= ∅)]
Pr𝒲 [𝑃1 ∩ Λ𝑒 ̸= ∅]]

= Pr𝒲(𝑒)[(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′
1) ∧ (𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′

2)]
Pr𝒲 [𝑃1 ∩ Λ𝑒 ̸= ∅]]

=
𝑄𝐿(𝑣1)+𝑤′

1;𝑤′
1+1Pr𝐷

[︃
𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′

2

⃒⃒⃒⃒
⃒(𝐿(𝑥) = 𝐿(𝑣1) + 𝑤′

1) ∧ (|𝑃1| ≥ 𝑤′
1 + 1)

]︃
∑︀𝑡2

𝑖=1 𝑄𝐿(𝑣1)+𝑖−1;𝑖

(3.20)

Above: (i) At step (5) of the algorithm, we have 𝑤1 = 𝐿(𝑥)−𝐿(𝑣1) and 𝑤2 = 𝐿(𝑣2)−𝐿(𝑦),

46

but this happens only after the condition on step (4) is satisfied. This adds a conditioning at

the first equality. (ii) The second equality comes from Observation 3.4.2 since 𝑤′
1 ≥ 1 and

𝑤′
2 ≥ 0, hence Λ𝑒 starts above Λ𝑒 and ends below it. Thus, the first two clauses imply the

last one, so we drop it. (iii) Regarding the third equality, in the numerator we substituted

Equation (3.19) whereas in the denominator we computed Pr𝒲 [𝑃1 ∩ Λ𝑒 ̸= ∅] by breaking

it into contributions from the 𝑡2 levels above Λ𝑒. Finally, we canceled 1
𝑡2

from both the

numerator and the denominator.

Back to Equation (3.18). Analogous to how we derived Equation (3.19), we have:

Pr𝐷[(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′
1) ∧ (𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′

2)]

= Pr𝐷[𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′
1] · Pr𝐷

[︃
𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′

2

⃒⃒⃒⃒
⃒𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′

1

]︃

= 1
2𝑛

(︃
𝑛

𝐿(𝑣1) + 𝑤′
1

)︃
𝑄𝐿(𝑣1)+𝑤′

1;𝑤′
1+1 · Pr𝐷

[︃
𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′

2

⃒⃒⃒⃒
⃒

(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′
1) ∧ (|𝑃1| ≥ 𝑤′

1 + 1)
]︃

In addition to the steps analogous to the ones involved in getting Equation (3.18), above we

used the fact that the layer 𝐿(𝑣1) + 𝑤′
1 has

(︁
𝑛

𝐿(𝑣1)+𝑤′
1

)︁
𝑄𝐿(𝑣1)+𝑤′

1;𝑤′
1+1 vertices out of the 2𝑛

vertices overall.

Again, the same way we derived Equation (3.20) from Equation (3.19) using Bayes

rule, we get:

47

Pr𝐷

[︃
(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′

1) ∧ (𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′
2)
⃒⃒⃒⃒
⃒

(𝑃1 ∩ Λ𝑒 ̸= ∅) ∧ (𝐿(𝑥) − 𝐿(𝑣1) < 𝑡2)
]︃

= 1
Pr𝐷[(𝑃1 ∩ Λ𝑒 ̸= ∅) ∧ (𝐿(𝑥) − 𝐿(𝑣1) < 𝑡2)]

· Pr𝐷

[︃
(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′

1)∧

(𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′
2) ∧ (𝑃1 ∩ Λ𝑒 ̸= ∅) ∧ (𝐿(𝑥) − 𝐿(𝑣1) < 𝑡2)

]︃

= Pr𝐷[(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′
1) ∧ (𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′

2)]
Pr𝐷[(𝑃1 ∩ Λ𝑒 ̸= ∅) ∧ (𝐿(𝑥) − 𝐿(𝑣1) < 𝑡2)]

= 1∑︀𝑡2
𝑖=1

1
2𝑛

(︁
𝑛

𝐿(𝑣1)+𝑖−1

)︁
𝑄𝐿(𝑣1)+𝑖−1;𝑖

· 1
2𝑛

(︃
𝑛

𝐿(𝑣1) + 𝑤′
1

)︃
𝑄𝐿(𝑣1)+𝑤′

1;𝑤′
1+1

× Pr𝐷

[︃
𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′

2

⃒⃒⃒⃒
⃒(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′

1) ∧ (|𝑃1| ≥ 𝑤′
1 + 1)

]︃
(3.21)

In the second equality we dropped the clauses (𝑃1 ∩ Λ𝑒 ̸= ∅) and (𝐿(𝑥) − 𝐿(𝑣1) < 𝑡2)

because by Observation 3.4.2 they are implied by the first two clauses.

Since by Observation 3.4.2 it is the case that 1 ≤ 𝑖 ≤ 𝑡2 and 0 ≤ 𝑤′
1 < 𝑡2, the same

way we proved Equation (3.9) we have:

1 − 𝜖

150 ≤

(︁
𝑛

𝐿(𝑣1)+𝑖−1

)︁
(︁

𝑛
𝐿(𝑣1)+𝑤′

1

)︁ ≤ 1 + 𝜖

150 (3.22)

Combining Equations (3.21) and (3.22) we get:

(︂
1 − 𝜖

70

)︂ 𝑄𝐿(𝑣1)+𝑤′
1;𝑤′

1+1∑︀𝑡2
𝑖=1 𝑄𝐿(𝑣1)+𝑖−1;𝑖

× Pr𝐷[𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′
2|(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′

1) ∧ (|𝑃1| ≥ 𝑤′
1 + 1)]

≤ Pr𝐷[(𝐿(𝑥)−𝐿(𝑣1) = 𝑤′
1)∧(𝐿(𝑣2)−𝐿(𝑦) = 𝑤′

2)|(𝑃1 ∩Λ𝑒 ̸= ∅)∧(𝐿(𝑥)−𝐿(𝑣1) ≤ 𝑡2)]

≤
(︂

1 + 𝜖

70

)︂ 𝑄𝐿(𝑣1)+𝑤′
1;𝑤′

1+1∑︀𝑡2
𝑖=1 𝑄𝐿(𝑣1)+𝑖−1;𝑖

× Pr𝐷[𝐿(𝑣2) − 𝐿(𝑦) = 𝑤′
2|(𝐿(𝑥) − 𝐿(𝑣1) = 𝑤′

1) ∧ (|𝑃1| ≥ 𝑤′
1 + 1)] (3.23)

48

Substituting Equations (3.18) and (3.20) into Equation (3.23) proves the correctness of the

algorithm.

Now, we consider the run-time. Since 𝐿(𝑥) ∈ [𝐿(𝑣1), 𝐿(𝑣1) + 𝑡2 − 1] and 𝐿(𝑣1) ≥

𝑛/2 − 𝑡1 ≥ 𝑛/4, then 𝐿(𝑥) ≥ 𝑛/4. In expectation at least 𝛿𝑛/4 of these indices, which

equal to one, should flip. We can use a Chernoff bound to bound the probability of less

than 𝛿𝑛/8 of them flipping by exp
(︁
−1/4·𝑛𝛿/4

2

)︁
= exp

(︁
−𝑛𝛿

32

)︁
≤ exp(− 1

32). Therefore:

Pr𝒲 [|𝑃1| ≥ 𝑛𝛿/8] ≥ Θ(1)

If this happens, it is sufficient for 𝑙 to be less than 𝐿(𝑣1) + 𝑛𝛿/8 for 𝑃1 to intersect Λ𝑒.

The probability of this happening is at least 𝑛𝛿/8
𝑡2

. Therefore, we can conclude:

Pr𝒲 [𝑃1 ∩ Λ𝑒 ̸= ∅] ≥ Ω
(︃

𝑛𝛿

𝑡2

)︃

Then, the number of time the algorithm goes through the loop is 𝑂(𝑡2/(𝑛𝛿)) = �̃�(1). Thus,

the algorithm runs in polynomial time.

Lemma 3.4.3 There exists an algorithm ℬ with the following properties. It takes as input

an edge 𝑒 = (𝑣1, 𝑣2) in 𝑀 ∩ 𝐸𝐼 , so that 𝑣2 ⪯ 𝑣1 and outputs paths 𝑃1 and 𝑃2 together with

hypercube vertices 𝑥, 𝑦 and 𝑧. It is the case that 𝑥 is the starting vertex of 𝑃1, 𝑦 is both the

starting vertex of 𝑃2 and the last vertex of 𝑃1, and 𝑧 is the last vertex of 𝑃2. Additionally,

𝑃1 is descending and 𝑃2 is ascending. Furthermore, for any pair of paths 𝑃 ′
1 and 𝑃 ′

2 we

have:

⃒⃒⃒
Prℬ(𝑒)[(𝑃1 = 𝑃 ′

1) ∧ (𝑃2 = 𝑃 ′
2)] − Pr𝐷[(𝑃1 = 𝑃 ′

1) ∧ (𝑃2 = 𝑃 ′
2)|(𝑒 ∈ 𝑃1) ∧ 𝐸1 ∧ 𝐸2]

⃒⃒⃒
≤ 𝜖

70Prℬ(𝑒)[(𝑃1 = 𝑃 ′
1) ∧ (𝑃2 = 𝑃 ′

2)] (3.24)

It requires no queries to the function and takes computation time polynomial in 𝑛 to

draw one sample.

Proof: Below we restate the algorithm in Figure 3.4. Now, we analyze the algorithm.

49

Algorithm ℬ (given an influential edge 𝑒
def= (𝑣1, 𝑣2) so 𝑣2 ⪯ 𝑣1)

1. Use 𝒲(𝑒) to sample 𝑤1 and 𝑤2.

2. Perform an ascending random walk of length 𝑤1 starting at 𝑣1 and call its
endpoint 𝑥. Similarly, perform a descending random walk starting at 𝑣2 of
length 𝑤2, call its endpoint 𝑦.

3. Define 𝑃1 as the descending path that results between 𝑥 and 𝑦 by concate-
nating the two paths from above, oriented appropriately, and edge 𝑒.

4. Define 𝑃2 just as in phase 2 of our process starting at 𝑦. Consider in ran-
dom order all the zero indices 𝑦 has in common with 𝑥 and flip each with
probability 𝛿.

5. Return 𝑃1 ,𝑃2, 𝑥, 𝑦 and 𝑧.

Figure 3-4: Algorithm ℬ (restated)

Without loss of generality we assume that 𝑃 ′
1 is descending and starts at a vertex 𝑥′ and

ends at a vertex 𝑦′. 𝑃 ′
2, in turn, is ascending, starts at 𝑦′ and ends at 𝑧′. For all the other

paths all the probabilities in (24) equal to zero. We have that:

Pr𝐷

[︃
(𝑃1 = 𝑃 ′

1) ∧ (𝑃2 = 𝑃 ′
2)
⃒⃒⃒⃒
⃒(𝑒 ∈ 𝑃1) ∧ 𝐸1 ∧ 𝐸2

]︃

= Pr𝐷

[︃
(𝐿(𝑥) = 𝐿(𝑥′)) ∧ (𝐿(𝑦) = 𝐿(𝑦′))

⃒⃒⃒⃒
⃒(𝑒 ∈ 𝑃1) ∧ 𝐸1 ∧ 𝐸2

]︃

×Pr𝐷

[︃
(𝑃1 = 𝑃 ′

1) ∧ (𝑃2 = 𝑃 ′
2)
⃒⃒⃒⃒
⃒(𝑒 ∈ 𝑃1) ∧ 𝐸1 ∧ 𝐸2 ∧ (𝐿(𝑥) = 𝐿(𝑥′)) ∧ (𝐿(𝑦) = 𝐿(𝑦′))

]︃
(3.25)

Similarly, we can write:

Prℬ(𝑒)[(𝑃1 = 𝑃 ′
1) ∧ (𝑃2 = 𝑃 ′

2)] = Prℬ(𝑒)[(𝐿(𝑥) = 𝐿(𝑥′)) ∧ (𝐿(𝑦) = 𝐿(𝑦′))]

× Prℬ(𝑒)

[︃
(𝑃1 = 𝑃 ′

1) ∧ (𝑃2 = 𝑃 ′
2)
⃒⃒⃒⃒
⃒(𝐿(𝑥) = 𝐿(𝑥′)) ∧ (𝐿(𝑦) = 𝐿(𝑦′))

]︃
(3.26)

50

By Lemma 3.4.1 we know that:

(︂
1 − 𝜖

70

)︂
Prℬ(𝑒)[(𝐿(𝑥) = 𝐿(𝑥′)) ∧ (𝐿(𝑦) = 𝐿(𝑦′))]

≤ Pr𝐷

[︃
(𝐿(𝑥) = 𝐿(𝑥′)) ∧ (𝐿(𝑦) = 𝐿(𝑦′))

⃒⃒⃒⃒
⃒(𝑒 ∈ 𝑃1) ∧ 𝐸1 ∧ 𝐸2

]︃

≤
(︂

1 + 𝜖

70

)︂
Prℬ(𝑒)[(𝐿(𝑥) = 𝐿(𝑥′)) ∧ (𝐿(𝑦) = 𝐿(𝑦′))] (3.27)

Considering Equations (3.25), (3.26) and (3.27) together, for the lemma to be true, it is

enough that:

Pr𝐷[(𝑃1 = 𝑃 ′
1) ∧ (𝑃2 = 𝑃 ′

2)|𝑒 ∈ 𝑃1 ∧ 𝐸1 ∧ 𝐸2 ∧ (𝐿(𝑥) = 𝐿(𝑥′)) ∧ (𝐿(𝑦) = 𝐿(𝑦′))]

= Prℬ(𝑒)[(𝑃1 = 𝑃 ′
1) ∧ (𝑃2 = 𝑃 ′

2)|(𝐿(𝑥) = 𝐿(𝑥′)) ∧ (𝐿(𝑦) = 𝐿(𝑦′))] (3.28)

Since 𝑒 is in 𝑀 ∩ 𝐸𝐼 , if 𝑒 ∈ 𝑃1 then 𝐸2 cannot happen. If 𝐿(𝑥′) ≥ 𝐿(𝑣1) + 𝑡2 or 𝐿(𝑥′) <

𝐿(𝑣1) both sides are zero. Otherwise, 𝐸1 cannot happen either and Equation (3.28) is

equivalent to:

Pr𝐷[(𝑃1 = 𝑃 ′
1) ∧ (𝑃2 = 𝑃 ′

2)|(𝑒 ∈ 𝑃1) ∧ (𝐿(𝑥) = 𝐿(𝑥′)) ∧ (𝐿(𝑦) = 𝐿(𝑦′))]

= Prℬ(𝑒)[(𝑃1 = 𝑃 ′
1) ∧ (𝑃2 = 𝑃 ′

2)|(𝐿(𝑥) = 𝐿(𝑥′)) ∧ (𝐿(𝑦) = 𝐿(𝑦′))] (3.29)

We first argue that:

Pr𝐷[𝑃1 = 𝑃 ′
1|(𝑒 ∈ 𝑃1) ∧ (𝐿(𝑥) = 𝐿(𝑥′)) ∧ (𝐿(𝑦) = 𝐿(𝑦′))] =

Prℬ(𝑒)[𝑃1 = 𝑃 ′
1|(𝐿(𝑥) = 𝐿(𝑥′)) ∧ (𝐿(𝑦) = 𝐿(𝑦′))] (3.30)

This comes from the fact that in both 𝐷 and ℬ(𝑒) the distribution of 𝑃1 is symmetric with

51

respect to exchange of coordinates. Now we argue that:

Pr𝐷[𝑃2 = 𝑃 ′
2|(𝑒 ∈ 𝑃1) ∧ (𝐿(𝑥) = 𝐿(𝑥′)) ∧ (𝐿(𝑦) = 𝐿(𝑦′)) ∧ (𝑃1 = 𝑃 ′

1)]

= Prℬ(𝑒)[𝑃2 = 𝑃 ′
2|(𝐿(𝑥) = 𝐿(𝑥′)) ∧ (𝐿(𝑦) = 𝐿(𝑦′)) ∧ (𝑃1 = 𝑃 ′

1)] (3.31)

This is true because given 𝑃1, both 𝐷 and ℬ(𝑒) choose 𝑃2 the same way. Combining

Equation (3.31) with Equation (3.30) we get Equation (3.29) which completes the proof of

correctness.

The claims about run-time follow from the run-time guarantee on 𝒲 .

52

Algorithm for estimating noise sensitivity. (given oracle access to a monotone
function 𝑓 : {0, 1}𝑛 → {0, 1}, and a parameter 𝜖)

1. Using the algorithm from [25] as described in Theorem 5, compute an
approximation to the influence of 𝑓 to within a multiplicative factor of
(1 ± 𝜖/33). This gives us 𝐼 .

2. Compute 𝑝𝐴 := 𝛿𝐼/2.

3. Initialize 𝛼 := 0 and 𝛽 := 0. Repeat the following until 𝛼 = 768 ln 200
𝜖2 .

∙ Use algorithm 𝒜 from Lemma 3.3.1 repeatedly to successfully sample
an edge 𝑒.

∙ From Lemma 3.4.3 use the algorithm ℬ, giving it 𝑒 as input, and sam-
ple 𝑃1, 𝑃2, 𝑥, 𝑦 and 𝑧.

∙ If it is the case that 𝑓(𝑥) = 1 and 𝑓(𝑧) = 0, then 𝛼 := 𝛼 + 1.

∙ 𝛽 := 𝛽 + 1.

4. Set 𝑝𝐵 = 𝛼
𝛽

.

5. Return 2𝑝𝐴𝑝𝐵.

Figure 3-5: Algorithm for estimating noise sensitivity (restated).

3.5 The noise sensitivity estimation algorithm.

We restate our algorithm in Figure 3.5.

We analyze the algorithm by combining all the lemmas from the previous section. First,

we prove that:

Lemma 3.5.1 It is the case that:

(︂
1 − 𝜖

150

)︂
𝛿𝐼[𝑓]/2 ≤ 𝑝𝐴 ≤

(︂
1 + 𝜖

150

)︂
𝛿𝐼[𝑓]/2

Proof: Summing Lemma 3.3.2 over all the edges in 𝐸𝐼 ∩ 𝑀 we get that:

(︂
1 − 𝜖

310

)︂
𝛿 · |𝐸𝐼 ∩ 𝑀 |

2𝑛
≤

∑︁
𝑒∈𝐸𝐼∩𝑀

𝑝𝑒 ≤
(︂

1 + 𝜖

310

)︂
𝛿 · |𝐸𝐼 ∩ 𝑀 |

2𝑛

Substituting Equation (3.2) we get:

53

(︂
1 − 𝜖

310

)︂
𝛿𝐼|𝐸𝐼 ∩ 𝑀 |

2|𝐸𝐼 |
≤ 𝑝𝐴 ≤

(︂
1 + 𝜖

310

)︂
𝛿𝐼|𝐸𝐼 ∩ 𝑀 |

2|𝐸𝐼 |

With Observation 3.1.2 this implies the lemma.

Now, we proceed to prove that 𝑝𝐴 and 𝑝𝐵 are good approximations for 𝑝𝐴 and 𝑝𝐵

respectively.

Corollary 3.5.2 With probability at least 0.99:

(︂
1 − 𝜖

16

)︂
𝑝𝐴 ≤ 𝑝𝐴 ≤

(︂
1 + 𝜖

16

)︂
𝑝𝐴

Proof: From the correctness of the influence estimation algorithm we have that with

probability at least 0.99:

(︂
1 − 𝜖

33

)︂
𝐼 ≤ 𝐼[𝑓] ≤

(︂
1 + 𝜖

33

)︂
𝐼

Which together with our lemma implies that:

(︂
1 − 𝜖

16

)︂
𝛿𝐼

2 ≤ 𝑝𝐴 ≤
(︂

1 + 𝜖

16

)︂
𝛿𝐼

2

Definition 10 We call an iteration of the main loop successful if 𝑓(𝑥) = 1 and 𝑓(𝑧) = 0.

We also denote by 𝜑 the probability of any given iteration to be successful.

In the following two lemmas, we show that 𝑝𝐵 is a good approximation to 𝜑 and that 𝜑,

in turn, is a good approximation to 𝑝𝐵. This will allow us to conclude that 𝑝𝐵 is a good

approximation to 𝑝𝐵.

Lemma 3.5.3 With probability at least 0.99 we have that:

(︂
1 − 𝜖

16

)︂
𝑝𝐵 ≤ 𝜑 ≤

(︂
1 + 𝜖

16

)︂
𝑝𝐵

54

Additionally, the expected number of iterations of the main loop is 𝑂(1/(𝜑𝜖2)).

Proof: See Appendix C, Section C.4.

Lemma 3.5.4 It is the case that:

(︂
1 − 𝜖

16

)︂
𝜑 ≤ 𝑝𝐵 ≤

(︂
1 + 𝜖

16

)︂
𝜑

Proof:

See Appendix C, Section C.5.

Corollary 3.5.2 with Lemmas 3.5.3 and 3.5.4 together imply that with probability at

least 2/3:

(︂
1 − 𝜖

5

)︂
𝑝𝐴𝑝𝐵 ≤ 𝑝𝐴𝑝𝐵 ≤

(︂
1 + 𝜖

5

)︂
𝑝𝐴𝑝𝐵

Combining this with Lemma 3.1.3 and Equation (3.3) we get that:

(︂
1 − 𝜖

2

)︂
2𝑝𝐴𝑝𝐵 ≤ 𝑁𝑆𝛿[𝑓] ≤

(︂
1 + 𝜖

2

)︂
2𝑝𝐴𝑝𝐵

This proves the correctness of the algorithm. Now consider the number of queries:

∙ Estimating the influence requires 𝑂
(︁√

𝑛 log(𝑛/𝜖)
𝐼[𝑓]𝜖3

)︁
queries and polynomial time. Since

by Observation 2.1.3 it is the case that 𝜖 ≥ 1/𝑛, this is at most 𝑂
(︁√

𝑛 log(𝑛)
𝐼[𝑓]𝜖3

)︁
.

∙ By Lemma 3.3.1, successfully sampling an edge requires 𝑂
(︁√

𝑛 log1.5 𝑛
𝐼[𝑓]𝜖

)︁
queries and

polynomial time. By Lemma 3.4.3 for each edge we willl additionally spend a poly-

nomial amount of extra time.

∙ By Lemmas 3.5.3 and 3.5.4 we will have 𝑂
(︁

1
𝜑𝜖2

)︁
= 𝑂

(︁
1

𝑝𝐵𝜖2

)︁
iterations of the loop.

Therefore, the overall run-time is polynomial, and the overall number of queries made

is:

𝑂

(︃√
𝑛 log 𝑛

𝐼[𝑓]𝜖3

)︃
+ 𝑂

(︃√
𝑛 log1.5 𝑛

𝐼[𝑓]𝜖

)︃
𝑂

(︃
1

𝑝𝐵𝜖2

)︃
= 𝑂

(︃√
𝑛 log1.5 𝑛

𝐼[𝑓]𝜖 · 1
𝑝𝐵𝜖2

)︃

55

Finally, using Lemmas 3.5.1 and 3.1.3 together with Equation (3.3) we get the desired

bound:

𝑂

(︃√
𝑛𝛿 log1.5 𝑛

𝑝𝐴𝜖
· 1

𝑝𝐵𝜖2

)︃
= 𝑂

(︃√
𝑛𝛿 log1.5 𝑛

𝑁𝑆𝛿[𝑓]𝜖3

)︃

56

Chapter 4

Lower bounding the query complexity.

We begin our proof of Theorems 2, 3 and 4 by first defining the distributions 𝐷𝐵
1 , 𝐷𝐼

1 and

𝐷𝛿
1 to consist of a single function 𝑓0: {0, 1}𝑛 → {0, 1}:

𝑓0(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝐿(𝑥) > 𝑛/2 + 𝑘

√
𝑛 log 𝑛

0 otherwise

And here 𝑘 is chosen so that 𝑛/2 + 𝑘
√

𝑛 log 𝑛 is the smallest integer larger than 𝑛/2 for

which 𝐵[𝑓0] ≤ 1/𝑛𝐶1 .

For our lower bounds we will need to show that 𝑓0 and ORs of 𝑓0 with other functions

have useful properties. For this we will need the following lemma. Informally, it says that

𝐵[𝐹], 𝐼[𝐹] and 𝑁𝑆𝛿[𝐹] are continuous functions of 𝐹 in the sense that changing 𝐹 a little

bit does not change them drastically.

Lemma 4.0.1 For any monotone function 𝐹 : {0, 1}𝑛 → {0, 1}, denote by 𝐹 ′ the OR of 𝐹

and 𝑓0. Then:

a)

𝐵[𝐹] ≤ 𝐵[𝐹 ′] ≤ 𝐵[𝐹 ′] + 1
𝑛𝐶1

b) ⃒⃒⃒⃒
⃒𝐼[𝐹] − 𝐼[𝐹 ′]

⃒⃒⃒⃒
⃒ ≤ 2𝑛

𝑛𝐶1

57

c) For any 𝛿: ⃒⃒⃒⃒
⃒𝑁𝑆𝛿[𝐹] − 𝑁𝑆𝛿[𝐹 ′]

⃒⃒⃒⃒
⃒ ≤ 2

𝑛𝐶1

Proof: See Appendix D, Section D.1.

Lemma 4.0.2 It is the case that:

a) 𝑘 ≤
√︁

𝐶1
8 , and hence 𝑘 is also a constant.

b) 𝐵[𝑓0] = 1/Θ(𝑛𝐶1)

c) Ω(1/𝑛𝐶1) ≤ 𝐼[𝑓0] ≤ 𝑂(𝑛/𝑛𝐶1)

e) For any 𝛿, it is the case that Ω(1/𝑛𝐶1+1) ≤ 𝑁𝑆𝛿[𝑓0] ≤ 𝑂(1/𝑛𝐶1).

Proof: See Appendix C, Section D.2.

We will use the two following main lemmas, that we will prove in two separate subsections.

The first one is a computational lemma that says that any function family that is “thin" at

the level 𝐿(𝑥) = 𝑛/2 + 𝑘
√

𝑛 log 𝑛 can be transformed into two distributions that are hard

to distinguish. By “thin" we mean that they have few positive points at the level right below

the threshold of 𝑓0. The second lemma says that there exist function families that are both

“thin" in the sense the first lemma requires and have a large amount of bias, influence and

noise sensitivity.

Lemma 4.0.3 Suppose 𝐹 : {0, 1}𝑛 → {0, 1} is a monotone Boolean function with the

property that:

Pr𝑥∈𝑅{0,1}𝑛 [𝐹 (𝑥) = 1|𝐿(𝑥) = 𝑛/2 + 𝑘
√︁

𝑛 log 𝑛] ≤ 1/𝑞0

Additionally, suppose 𝒞 is an algorithm that makes 𝑜(𝑞0) queries given access to the fol-

lowing random function:

∙ With probability 1/2 it is drawn from 𝐷1 that consists of only 𝑓0.

∙ With probability 1/2 it is drawn from 𝐷2 that consists of an OR of the following:

58

– The function 𝑓0.

– 𝐹 (𝜎(𝑥)), where 𝜎 is a random permutation of indices.

Consequently, suppose that 𝒞 outputs a guess whether its input was from 𝐷1 or 𝐷2. Then

𝒞 has to err with probability more than 1/3.

Lemma 4.0.4 There exist functions 𝐹 𝐵: {0, 1}𝑛 → {0, 1}, 𝐹 𝐼 : {0, 1}𝑛 → {0, 1} and for

every 1/𝑛 ≤ 𝛿 ≤ 1/2 there exists 𝐹 𝛿: {0, 1}𝑛 → {0, 1} such that:

∙ Any 𝑓 in {𝐹 𝐵, 𝐹 𝐼} ∪ {𝐹 𝛿 : 1/𝑛 ≤ 𝛿 ≤ 1/2} has the property that:

Pr𝑥∈𝑅{0,1}𝑛 [𝑓(𝑥) = 1|𝐿(𝑥) = 𝑛/2 + 𝑘
√︁

𝑛 log 𝑛] ≤ Θ
(︂

1/𝑛𝐶2 · 𝑒
√

𝐶1 log 𝑛/2
)︂

∙ 𝐵[𝐹 𝐵] ≥ Ω(1/𝑛𝐶2).

∙ 𝐼[𝐹 𝐼] ≥ Ω(
√

𝑛/𝑛𝐶2).

∙ For any 1/𝑛 ≤ 𝛿 ≤ 1/2, it is the case that:

𝑁𝑆𝛿[𝐹 𝛿] ≥

⎧⎪⎪⎨⎪⎪⎩
Ω(𝛿

√
𝑛/𝑛𝐶2) if 1/𝑛 ≤ 𝛿 ≤ 1/

√
𝑛

Ω(1/𝑛𝐶2) if 1/
√

𝑛 < 𝛿 ≤ 1/2

Recall that we defined 𝐷𝐵
1 , 𝐷𝐼

1 and 𝐷𝛿
1 to be composed of only the function 𝑓0. Now

we also have functions that are thin and have large bias, influence and noise sensitivity.

Therefore, we use them to define distributions we can use with Lemma 4.0.3:

∙ 𝐷𝐵
2 as the OR of 𝑓0(𝑥) and 𝐹 𝐵(𝜎(𝑥)). Where, recall, 𝜎 is a random permutation of

indices.

∙ 𝐷𝐼
2 as the OR of 𝑓0(𝑥) and 𝐹 𝐼(𝜎(𝑥)).

∙ For each 1/𝑛 ≤ 𝛿 ≤ 1/2, we define 𝐷𝛿
2 as the OR of 𝑓0(𝑥) and 𝐹 𝛿(𝜎(𝑥)).

Observation 4.0.5 Permuting the indices to an input of a function preserves its bias, in-

fluence and noise sensitivity. That, together with Lemma 4.0.1 and Lemma 4.0.4, implies

that:

59

a) For any 𝑓 in 𝐷𝐵
2 , we have 𝐵[𝑓] ≥ Ω(1/𝑛𝐶2).

b) For any 𝑓 in 𝐷𝐼
2, we have 𝐼[𝑓] ≥ Ω(

√
𝑛/𝑛𝐶2) − 𝑂(𝑛/𝑛𝐶1) = Ω(

√
𝑛/𝑛𝐶2). The last

equality is true because 𝐶1 − 1 > 𝐶2.

c) For all 1/𝑛 ≤ 𝛿 ≤ 1/2 and for all 𝑓 in 𝐷𝛿
2:

𝑁𝑆𝛿[𝑓] ≥

⎧⎪⎪⎨⎪⎪⎩
Ω(𝛿

√
𝑛/𝑛𝐶2) − 𝑂(1/𝑛𝐶1) if 1/𝑛 ≤ 𝛿 ≤ 1/

√
𝑛

Ω(1/𝑛𝐶2) − 𝑂(1/𝑛𝐶1) if 1/
√

𝑛 < 𝛿 ≤ 1/2
=

⎧⎪⎪⎨⎪⎪⎩
Ω(𝛿

√
𝑛/𝑛𝐶2) if 1/𝑛 ≤ 𝛿 ≤ 1/

√
𝑛

Ω(1/𝑛𝐶2) if 1/
√

𝑛 < 𝛿 ≤ 1/2

Here, again, the last equality is true because 𝐶1 − 1 > 𝐶2

Now, we are ready to prove our main theorems. Let us first consider the case of es-

timating the bias. We will prove it by contradiction, showing that the negation of Theo-

rem 3 implies we can reliably distinguish two distributions that Lemma 4.0.3 prevents us

from distinguishing. Suppose ℒ𝐵 is an algorithm, taking as input a monotone function

𝑓 : {0, 1}𝑛 → {0, 1} and with probability at least 2/3 distinguishing whether 𝑓 (i) has

a bias of Θ(1/𝑛𝐶1) or (ii) has a bias of at least Ω(1/𝑛𝐶2). For the sake of contradiction,

assume that it makes 𝑜
(︁

𝑛𝐶2

𝑒
√

𝐶1 log 𝑛/2

)︁
queries.

By Lemma 4.0.2 every function in 𝐷1 has a bias of Θ(1/𝑛𝐶1) and by Observation

4.0.5, the bias of every function in 𝐷𝐵
2 is at least Ω(1/𝑛𝐶2). Therefore, ℒ𝐵 can distinguish

between them with probability at least 2/3 making 𝑜
(︁

𝑛𝐶2

𝑒
√

𝐶1 log 𝑛/2

)︁
. But by Lemma 4.0.3,

such an algorithm has to err with probability more than 1/3. We have a contradiction and

Theorem 3 follows.

Theorems 4 and 2 follow analogously.

60

4.1 Proof of Lemma 4.0.3

Suppose 𝒞 is an adaptive algorithm that makes at most 𝑞 queries and distinguishes a ran-

dom function in 𝐷2 from 𝐷1. We denote the number of queries it makes as 𝑞. Without

loss of generality, we assume that it always makes precisely 𝑞 queries. The algorithm is

adaptive and in the end it outputs 1 or 2. Then, the probability that the algorithm correctly

distinguishes equals:

𝑝𝒞
def= 1

2Pr[𝒞 returns 1|𝑓 ∈𝑅 𝐷1] + 1
2Pr[𝒞 returns 2|𝑓 ∈𝑅 𝐷2]

We call the difference above the distinguishing power of 𝒞.

Observation 4.1.1 For any 𝑓 in 𝐷1 ∪ 𝐷2 it is the case that if 𝐿(𝑥) > 𝑛/2 + 𝑘
√

𝑛 log 𝑛,

then 𝑓(𝑥) = 1. Therefore, without loss of generality we can assume that 𝒞 never queries

any point in that region.

Observation 4.1.2 If 𝒞 is randomized, we can think of it as a probability distribution over

deterministic algorithms. The distinguishing powers of 𝒞 then will be the weighted sum of

the distinguishing power of the deterministic algorithms, weighted by their probabilities.

Therefore, the distinguishing power of the best of these deterministic algorithms is at least

that of 𝒞. Thus, without loss of generality we can assume that 𝒞 is deterministic.

Now, since 𝒞 is deterministic and it makes 𝑞 queries, it can be represented as a decision tree

of depth 𝑞. At each node, 𝒞 queries a point and proceeds to the next node. In the end, after

𝑞 queries, the algorithm reaches a leaf and outputs the label of the leaf, namely 1 or 2. We

can divide this decision tree into two regions:

∙ A path 𝐴 that the algorithm takes if at every query it receives zero.

∙ The rest of the decision tree. We call this region 𝐵.

By Observation 4.1.1 and the definition of 𝑓0, when the algorithm is given access to

a member of 𝐷1, namely 𝑓0, all the points 𝑥 that it queries will have 𝑓(𝑥) = 𝑓0(𝑥) = 0.

61

Therefore, the algorithm will follow the path 𝐴 on the decision tree and end up on the

single leaf there.

Suppose now the algorithm is given access to a function in 𝐷2. There are two cases:

∙ All the queries 𝑥𝑗 it makes, will have 𝑓(𝑥𝑗) = 0. Then, on the decision tree it will

follow the path 𝐴 and end up at the single leaf on it.

∙ After making query 𝑥𝑗 for which 𝑓(𝑥𝑗) = 1, the algorithm ends up in the subset of

the tree we call 𝐵. We call the probability that this happens 𝑝get1.

If the single leaf in 𝐴 is not labeled with 1, then the algorithm will always err, given

access to 𝐷1. Similarly, the algorithm can reach a leaf in 𝐵 only if it was given access

to 𝐷2. Thus, labeling all such leaves with 2 can only increase the distinguishing power.

Therefore, without loss of generality, we assume that this is the labeling used in 𝒞. Then,

the distinguishing power 𝑝𝒞 equals 1
2(1 + 𝑝get1).

The following lemma shows that we can assume that the algorithm is non-adaptive and

only makes queries on the level 𝑛/2 + 𝑘
√

𝑛 log 𝑛.

Lemma 4.1.3 There exists an algorithm 𝒟 that satisfies all of the following:

∙ It is deterministic and non-adaptive.

∙ Its distinguishing power between 𝐷1 and 𝐷2 is at least 𝑝𝒞 .

∙ Just as 𝒞 it makes 𝑞 queries. We call them 𝑧1, ..., 𝑧𝑞.

∙ For each of these 𝑧𝑗 , it is the case that 𝐿(𝑧𝑗) = 𝑛/2 + 𝑘
√

𝑛 log 𝑛.

Proof: Consider the queries that 𝒞 makes along the path 𝐴. Call them 𝑦1, ..., 𝑦𝑞. We

define 𝑧𝑗 as an arbitrary point that satisfies (i) 𝐿(𝑧𝑗) = 𝑛/2 + 𝑘
√

𝑛 log 𝑛 and (ii) 𝑦𝑗 ⪯ 𝑧𝑗 .

At least one such point has to exist since 𝐿(𝑦𝑗) ≤ 𝑛/2 + 𝑘
√

𝑛 log 𝑛.

The algorithm 𝒟 queries each of these 𝑧𝑗 and returns 2 if for at least one of them

𝑓(𝑧𝑗) = 1. Otherwise it returns 1.

62

Since 𝑦𝑗 ⪯ 𝑧𝑗 and the functions are monotone, whenever 𝑓(𝑦𝑗) = 1, then 𝑓(𝑧𝑗) = 1.

At least one of 𝑓(𝑦𝑗) equals one with probability 𝑝get1, and therefore at least one of 𝑓(𝑧𝑗)

equals one with probability at least 𝑝get1.

Thus, 𝒟 has a distinguishing power of at least 1
2(1 + 𝑝get1). This implies that the distin-

guishing power of 𝒟 is at least that of 𝒞.

Now, we can bound the distinguishing power of 𝒟, which we call 𝑝𝒟. We have:

1
2Pr[𝒟 returns 2|𝑓 ∈𝑅 𝐷2] = Pr𝑓∈𝑅𝐷2

⎡⎣ 𝑞⋁︁
𝑗=0

𝑓(𝑧𝑗) = 1
⎤⎦ ≤

𝑞∑︁
𝑗=0

Pr𝑓∈𝑅𝐷2

[︁
𝑓(𝑧𝑗) = 1

]︁

=
𝑞∑︁

𝑗=0
Pr𝜎 is a random permutation

[︁
𝐹 (𝜎(𝑧𝑗)) = 1

]︁
=

𝑞 · Pr𝑥∈𝑅{0,1}𝑛

[︃
𝐹 (𝑥) = 1

⃒⃒⃒⃒
⃒𝐿(𝑥) = 𝑛/2 + 𝑘

√︁
𝑛 log 𝑛

]︃
≤ 𝑞

𝑞0

Above we used (i) a union bound and the fact that by Lemma 4.1.3, the algorithm 𝒟 is

non-adaptive (ii) The fact that by definition 𝑓(𝑥) = 𝐹 (𝜎(𝑥)). Recall that 𝜎 is the random

permutation 𝐹 was permuted with. (iii) For any constant 𝑥, 𝜎(𝑥) is uniformuly distributed

among the vertices with the same level. (iv) Lemma 4.1.3 together with the condition on

the function 𝐹 .

Therefore, we get that:

𝑝𝒟
def= 1

2Pr[𝒟 returns 2|𝑓 ∈𝑅 𝐷2] + 1
2Pr[𝒟 returns 1|𝑓 ∈𝑅 𝐷1] ≤ 𝑞

𝑞0
+ 1

2

Since 𝑞 = 𝑜(𝑞0), then 𝑝𝒟 has to be less than 2/3. Since 𝑝𝒞 is at most 𝑝𝒟 by Lemma

4.1.3, then 𝑝𝒞 also has to be less than 2/3. This proves the lemma.

63

4.2 Proof of Lemma 4.0.4

Consider the distribution1 𝐻 of functions, which is OR of 1/𝑛𝐶2 · 2
√

𝑛 AND clauses of

uniformly and independently chosen subsets of
√

𝑛 indices, chosen without replacement.

We will prove that:

a) Any 𝑓 in 𝐻 has the property that:

Pr𝑥∈𝑅{0,1}𝑛 [𝑓(𝑥) = 1|𝐿(𝑥) = 𝑛/2 + 𝑘
√︁

𝑛 log 𝑛] ≤ Θ
(︂

1/𝑛𝐶2 · 𝑒
√

𝐶1 log 𝑛/2
)︂

b) 𝐸𝑓∈𝑅𝐻 [𝐵[𝑓]] ≥ Ω(1/𝑛𝐶2).

c) 𝐸𝑓∈𝑅𝐻 [𝐼[𝑓]] ≥ Ω(
√

𝑛/𝑛𝐶2).

d) For any 1/𝑛 ≤ 𝛿 ≤ 1/2, it is the case that:

𝐸𝑓∈𝑅𝐻 [𝑁𝑆𝛿[𝑓]] ≥

⎧⎪⎪⎨⎪⎪⎩
Ω(𝛿

√
𝑛/𝑛𝐶2) if 1/𝑛 ≤ 𝛿 ≤ 1/

√
𝑛

Ω(1/𝑛𝐶2) if 1/
√

𝑛 < 𝛿 ≤ 1/2

Then, the corresponding claims of the lemma will follow by an application of the proba-

bilistic method. We have divided into subsections the proofs of the claims above.

4.3 Proof of (a)

Here we treat the clauses as fixed and look at the probability over the randomness of choos-

ing 𝑥 to satisfy any of them. For a given clause, the probability that 𝑥 will satisfy it equals:

1There are two differences between this distribution and Talagrand random functions: (i) Here we choose
1/𝑛𝐶2 · 2

√
𝑛 clauses, whereas Talagrand functions have just 2

√
𝑛 clauses. (ii) In Talagrand functions the

indices in each clause are sampled with replacement, whereas here we sample them without replacement.

64

√
𝑛−1∏︁

𝑖=0

𝑛/2 + 𝑘
√

𝑛 log 𝑛 − 𝑖

𝑛
≤
(︃

𝑛/2 + 𝑘
√

𝑛 log 𝑛

𝑛

)︃√
𝑛

= 1
2

√
𝑛

(︃
1 + 2𝑘

√
log 𝑛√
𝑛

)︃√
𝑛

≤ 1
2

√
𝑛

Θ
(︁
𝑒2𝑘

√
log 𝑛

)︁
≤ 1

2
√

𝑛
· Θ(𝑒

√
𝐶1 log 𝑛/2)

In the very end we used that by Lemma 4.0.2 it is the case that 𝑘 ≤
√︁

𝐶1/8.

Now, that we know the probability for one clause, we can upper-bound the probability

𝑥 satisfies any of the 1
𝑛𝐶2 · 2

√
𝑛 using a union bound. This gives us an upper bound of

Θ
(︂

1/𝑛𝐶2 · 𝑒
√

𝐶1 log 𝑛/2
)︂

.

4.4 Proof of b)

It is the case that:

𝐸𝑓∈𝑅𝐻 [𝐵[𝑓]] = 𝐸𝑓∈𝑅𝐻 [𝐸𝑥∈𝑅{0,1}𝑛 [𝑓(𝑥)]] = 𝐸𝑥∈𝑅{0,1}𝑛 [𝐸𝑓∈𝑅𝐻 [𝑓(𝑥)]] ≥

1
2𝐸𝑥∈𝑅{0,1}𝑛

⎡⎣𝐸𝑓∈𝑅𝐻 [𝑓(𝑥)]

⃒⃒⃒⃒
⃒⃒𝐿(𝑥) ≥ 𝑛

2

⎤⎦

If we fix a value of 𝑥 for which 𝐿(𝑥) ≥ 𝑛/2, and randomly choose a single AND of
√

𝑛 indices, the probability that it evaluates to one on 𝑥 is:

𝐿(𝑥)
𝑛

· 𝐿(𝑥) − 1
𝑛 − 1 · ... · 𝐿(𝑥) −

√
𝑛 + 1

𝑛 −
√

𝑛 + 1 ≥
(︃

𝐿(𝑥) −
√

𝑛 + 1
𝑛 −

√
𝑛 + 1

)︃√
𝑛

≥
(︃

𝑛/2 −
√

𝑛 + 1
𝑛 −

√
𝑛 + 1

)︃√
𝑛

≥
(︃

1
2 −

√
𝑛/2 − 1/2

𝑛 −
√

𝑛 + 1

)︃√
𝑛

≥ 1
2

√
𝑛

(︃
1 − 1

Θ(
√

𝑛)

)︃√
𝑛

= 1
Θ(2

√
𝑛)

Then, since we have 2
√

𝑛/𝑛𝐶2 clauses and they are chosen independently:

65

𝐸𝑥∈𝑅{0,1}𝑛

⎡⎣𝐸𝑓∈𝑅𝐻 [𝑓(𝑥)]

⃒⃒⃒⃒
⃒⃒𝐿(𝑥) ≥ 𝑛

2

⎤⎦ ≥ 1 −
(︃

1 − 1
Θ(2

√
𝑛)

)︃2
√

𝑛/𝑛𝐶2

≥ 1
Θ(𝑛𝐶2)

This implies that 𝐸𝑓∈𝑅𝐻 [𝐵[𝑓]] ≥ 1/Θ(𝑛𝐶2).

4.5 Proof of c)

We have that:

𝐸𝑓∈𝑅𝐻 [𝐼[𝑓]] = 𝐸𝑓∈𝑅𝐻

[︁
𝑛 · Pr𝑥∈𝑅{0,1}𝑛,𝑖∈𝑅[𝑛][𝑓(𝑥) ̸= 𝑓(𝑥⊕𝑖)]

]︁
=

𝑛 · Pr𝑓∈𝑅𝐻,𝑥∈𝑅{0,1}𝑛,𝑖∈𝑅[𝑛][𝑓(𝑥) ̸= 𝑓(𝑥⊕𝑖)] (4.1)

The probability of an event is the expectation of its indicator random variable. Using this

twice, gives us the second equality above.

From Hoeffding’s inequality, it follows that with probability at least 0.95 it is the case

that 𝑛/2 −
√

𝑛 ≤ 𝐿(𝑥) ≤ 𝑛/2 +
√

𝑛. From this and Equation (4.1) it follows:

𝐸𝑓∈𝑅𝐻 [𝐼[𝑓]] ≥ 𝑛 · Pr𝑓∈𝑅𝐻,𝑥∈𝑅{0,1}𝑛,𝑖∈𝑅[𝑛]

[︃
𝑓(𝑥) ̸= 𝑓(𝑥⊕𝑖)

⃒⃒⃒⃒
⃒

𝑛/2 −
√

𝑛 ≤ 𝐿(𝑥) ≤ 𝑛/2 +
√

𝑛

]︃
· Pr𝑥∈𝑅{0,1}𝑛 [𝑛/2 −

√
𝑛 ≤ 𝐿(𝑥) ≤ 𝑛/2 +

√
𝑛]

≥ 0.95𝑛Pr𝑓∈𝑅𝐻,𝑥∈𝑅{0,1}𝑛,𝑖∈𝑅[𝑛]

[︃
𝑓(𝑥) ̸= 𝑓(𝑥⊕𝑖)

⃒⃒⃒⃒
⃒𝑛/2 −

√
𝑛 ≤ 𝐿(𝑥) ≤ 𝑛/2 +

√
𝑛

]︃
(4.2)

Now we will lower-bound Pr𝑓∈𝑅𝐻,𝑖∈𝑅[𝑛][𝑓(𝑥) ̸= 𝑓(𝑥⊕𝑖)] for any 𝑥, for which 𝑛/2 −
√

𝑛 ≤ 𝐿(𝑥) ≤ 𝑛/2 +
√

𝑛. Name the clauses in 𝑓 as ∧1, ∧2, ..., ∧ 1
𝑛𝐶2

2
√

𝑛 . For any clause ∧𝑗

we have:

Pr𝑓∈𝑅𝐻 [∧𝑗 is satisfied] = 𝐿(𝑥)
𝑛

· 𝐿(𝑥) − 1
𝑛 − 1 · ... · 𝐿(𝑥) −

√
𝑛 + 1

𝑛 −
√

𝑛 + 1

66

And since 𝑛/2 −
√

𝑛 ≤ 𝐿(𝑥) ≤ 𝑛/2 +
√

𝑛:

1
2

√
𝑛

(︃
1 − 1

Θ(
√

𝑛)

)︃√
𝑛

≤
(︃

𝐿(𝑥) −
√

𝑛 + 1
𝑛 −

√
𝑛 + 1

)︃√
𝑛

≤ Pr𝑓∈𝑅𝐻 [∧𝑗 is satisfied] ≤
(︃

𝐿(𝑥)
𝑛

)︃√
𝑛

≤ 1
2

√
𝑛

(︃
1 + 1

Θ(
√

𝑛)

)︃√
𝑛

This implies that:

Pr𝑓∈𝑅𝐻 [∧𝑗 is satisfied] = 1
Θ(2

√
𝑛) (4.3)

For every 𝑖, so that 1 ≤ 𝑖 ≤ 2
√

𝑛/𝑛𝐶2 , consider the following sequence of events, which we

call 𝑀𝑖:

∙ 𝑥 satisfies ∧𝑖. By Equation (4.3) the probability of this happening is 1/Θ(2
√

𝑛).

∙ 𝑥 does not satisfy all the other 1
𝑛𝐶2 2

√
𝑛 − 1 clauses.

Since the clauses are chosen independently, by Equation (4.3) we have that the prob-

ability of this is
(︁
1 − 1/Θ(2

√
𝑛)
)︁2

√
𝑛/𝑛𝐶2 −1

, which is at least Θ(1).

∙ 𝑖 is one of the inputs that are relevant to ∧𝑖. The probability of this is 1/
√

𝑛.

Since these three events are independent:

Pr𝑓∈𝑅𝐻 [𝑀𝑖] ≥ 1
Θ(2

√
𝑛) · Θ(1) · 1√

𝑛
= 1

Θ(
√

𝑛2
√

𝑛)

If 𝑀𝑖 happens, then 𝑓(𝑥) ̸= 𝑓(𝑥⊕𝑖). Additionally for different values of 𝑖, the 𝑀𝑖 are

disjoint and the probability of 𝑀𝑖 is the same for all 𝑖 by symmetry. Thus we have:

Pr𝑓∈𝑅𝐻,𝑖∈𝑅[𝑛]
[︁
𝑓(𝑥) ̸= 𝑓(𝑥⊕𝑖)

]︁
≥ Pr𝑓∈𝑅𝐻,𝑖∈𝑅[𝑛]

[︃⋁︁
𝑖

𝑀𝑖

]︃
= 2

√
𝑛

𝑛𝐶2
Pr𝑓∈𝑅𝐻,𝑖∈𝑅[𝑛] [𝑀1]

≥ 2
√

𝑛

𝑛𝐶2
· 1

Θ(
√

𝑛2
√

𝑛) = 1
Θ(

√
𝑛 · 𝑛𝐶2) (4.4)

Combining Equations (4.2) and (4.4):

𝐸𝑓∈𝑅𝐻 [𝐼[𝑓]] ≥ 0.95𝑛 · 1
Θ(

√
𝑛 · 𝑛𝐶2) = Ω

(︃√
𝑛

𝑛𝐶2

)︃

67

4.6 Proof of d)

Recall that in the definition of noise sensitivity, 𝑥 is chosen uniformly and 𝑦 is chosen by

flipping each bit of 𝑥 with probability 𝛿. We have:

𝐸𝑓∈𝑅𝐻 [𝑁𝑆𝛿[𝑓]] = 𝐸𝑓∈𝑅𝐻

[︁
Pr(𝑥,𝑦)∈𝑅𝑇𝛿

[𝑓(𝑥) ̸= 𝑓(𝑦)]
]︁

= Pr𝑓∈𝑅𝐻,(𝑥,𝑦)∈𝑅𝑇𝛿
[𝑓(𝑥) ̸= 𝑓(𝑦)]

(4.5)

Consider the following three “good" events, which are similar to the ones introduced in

[18] to analyze the noise sensitivity of Talagrand random functions:

∙ 𝐺1 is when 𝑛/2−
√

𝑛 ≤ 𝐿(𝑥) ≤ 𝑛/2+
√

𝑛. By Hoeffding’s inequality, its probability

is at least 0.95.

∙ 𝐺2 is when 𝑛/2 −
√

𝑛 ≤ 𝐿(𝑦) ≤ 𝑛/2 +
√

𝑛. Since 𝑦 is also distributed uniformly,

its probability is also at least 0.95.

∙ Denote by 𝑆𝑥 the set of indices 𝑖 for which 𝑥𝑖 = 1. By the definition of noise

sensitivity, in expectation 𝛿|𝑆𝑥| of them become zero in 𝑦. The event 𝐺3 happens

when at least 𝛿|𝑆𝑥|/2 of them are zero in 𝑦. By the Chernoff bound, the probability

of this is at least 1 − exp(−𝛿𝑛/8) ≥ 1 − exp(−1/8) ≥ 0.11.

By a union bound, with probability at least 0.01 all the events 𝐺1, 𝐺2 and 𝐺3 happen.

Therefore:

𝐸𝑓∈𝑅𝐻 [𝑁𝑆𝛿[𝑓]] ≥ Pr𝑓∈𝑅𝐻,(𝑥,𝑦)∈𝑅𝑇𝛿

[︃
𝑓(𝑥) ̸= 𝑓(𝑦)

⃒⃒⃒⃒
⃒𝐺1 ∧ 𝐺2 ∧ 𝐺3

]︃

× Pr(𝑥,𝑦)∈𝑅𝑇𝛿
[𝐺1 ∧ 𝐺2 ∧ 𝐺3] ≥ 0.01 · Pr𝑓∈𝑅𝐻,(𝑥,𝑦)∈𝑅𝑇𝛿

[︃
𝑓(𝑥) ̸= 𝑓(𝑦)

⃒⃒⃒⃒
⃒𝐺1 ∧ 𝐺2 ∧ 𝐺3

]︃
(4.6)

Now, suppose we are given values of 𝑥 and 𝑦 that satisfy 𝐺1 ∧ 𝐺2 ∧ 𝐺3, we will lower

bound Pr𝑓∈𝑅𝐻 [𝑓(𝑥) ̸= 𝑓(𝑦)]. Using 𝐺1 and 𝐺2, just as in the proof of equation (5), we

68

have that for any clause ∧𝑗:

Pr𝑓∈𝑅𝐻 [∧𝑗 is satisfied by 𝑥] = 1
Θ(2

√
𝑛) Pr𝑓∈𝑅𝐻 [∧𝑗 is satisfied by 𝑦] = 1

Θ(2
√

𝑛) (4.7)

Now, analogous to how we lower bounded the expected influence while proving part

c), consider the following sequence of events, which we call 𝑁𝑖:

∙ 𝑥 satisfies ∧𝑖. By Equation (4.7), the probability of this is at least 1/Θ(2
√

𝑛).

∙ All the ∧𝑗 for 𝑗 ̸= 𝑖 are unsatisfied by both 𝑥 and 𝑦. By Equation (4.7) and a union

bound, for each individual clause the probability of being unsatisfied by both 𝑥 and

𝑦 is at least 1 − 2 · 1/Θ(2
√

𝑛) = 1 − 1/Θ(2
√

𝑛). By independence, the probability of

the overall event is at least
(︁
1 − 1/Θ(2

√
𝑛)
)︁2

√
𝑛/𝑛𝐶2 −1

, which is at least Θ(1).

∙ Given that 𝑥 satisfies ∧𝑖, it happens that at least one of the coordinates relevant to ∧𝑖

is zero in 𝑦. We call the probability of this happening 𝑝flip.

The third event is conditioned on the first one, so the probability that both happen equals to

the product of their probabilities. In addition, The first and third event depend only on the

randomness in choosing ∧𝑖, and the second event only on the randomness in choosing all

the other clauses. Therefore the second event is independent from the first and third, and

thus:

Pr𝑓∈𝑅𝐻 [𝑁𝑖] ≥ 1
Θ(2

√
𝑛) · Θ(1) · 𝑝flip = 𝑝flip

Θ(2
√

𝑛) (4.8)

We now lower-bound 𝑝flip. Because of 𝐺3, at least 𝛿|𝑆𝑥|/2 of the indices in 𝑆𝑥 become

zero in 𝑦. Let 𝑆∧𝑖
be the set of

√
𝑛 indices relevant to ∧𝑖. Since they were chosen uniformly

at random then, conditioning on ∧𝑖 being satisfied, 𝑆∧𝑖
has equal probability of being any

subset of 𝑆𝑥 of size
√

𝑛. Therefore, the probability that at least one of them ends up among

the indices in 𝑆𝑥 that become zero in 𝑦:

𝑝flip = 1 −
√

𝑛−1∏︁
𝑗=0

(︃
1 − 𝛿|𝑆𝑥|/2

|𝑆𝑥| − 𝑗

)︃
≥ 1 − (1 − 𝛿/2)

√
𝑛 ≥

⎧⎪⎪⎨⎪⎪⎩
Θ(𝛿

√
𝑛) if 1/𝑛 ≤ 𝛿 ≤ 1/

√
𝑛

Θ(1) if 1/
√

𝑛 < 𝛿 ≤ 1/2

69

Combining this with Equation (4.8), we get:

Pr𝑓∈𝑅𝐻 [𝑁𝑖] ≥ 𝑝flip

Θ(2
√

𝑛) ≥

⎧⎪⎪⎨⎪⎪⎩
Θ(𝛿

√
𝑛/2

√
𝑛) if 1/𝑛 ≤ 𝛿 ≤ 1/

√
𝑛

Θ(1/2
√

𝑛) if 1/
√

𝑛 < 𝛿 ≤ 1/2
(4.9)

We now combine (i) Equation (4.6) (ii) The fact that if 𝑁𝑖 happens then 𝑓(𝑥) ̸= 𝑓(𝑦) (iii)

The fact that the different 𝑁𝑖 are disjoint and the probability of 𝑁𝑖 is the same for all 𝑖 by

symmetry (iv) Equation (4.9):

𝐸𝑓∈𝑅𝐻 [𝑁𝑆𝛿[𝑓]] ≥ 0.01 · Pr𝑓∈𝑅𝐻

[︃⋁︁
𝑖

𝑁𝑖

]︃
= 0.01 · 2

√
𝑛

𝑛𝐶2
Pr𝑓∈𝑅𝐻,𝑖∈𝑅[𝑛] [𝑁1] ≥

⎧⎪⎪⎨⎪⎪⎩
Θ(𝛿

√
𝑛/𝑛𝐶2) if 1/𝑛 ≤ 𝛿 ≤ 1/

√
𝑛

Θ(1/𝑛𝐶2) if 1/
√

𝑛 < 𝛿 ≤ 1/2

70

Bibliography

[1] Maria-Florina Balcan, Eric Blais, Avrim Blum, and Liu Yang. Active property testing.
In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on,
pages 21–30. IEEE, 2012.

[2] Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing mono-
tonicity. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pages 1021–1032. ACM, 2016.

[3] Itai Benjamini, Gil Kalai, and Oded Schramm. Noise sensitivity of boolean functions
and applications to percolation. Publications Mathématiques de l’Institut des Hautes
Études Scientifiques, 90(1):5–43, 1999.

[4] Eric Blais, Ryan O’Donnell, and Karl Wimmer. Polynomial regression under arbitrary
product distributions. Machine learning, 80(2-3):273–294, 2010.

[5] Deeparnab Chakrabarty and Comandur Seshadhri. An o(n) monotonicity tester for
boolean functions over the hypercube. SIAM Journal on Computing, 45(2):461–472,
2016.

[6] Xi Chen, Rocco A Servedio, and Li-Yang Tan. New algorithms and lower bounds for
monotonicity testing. In Foundations of Computer Science (FOCS), 2014 IEEE 55th
Annual Symposium on, pages 286–295. IEEE, 2014.

[7] Mahdi Cheraghchi, Adam Klivans, Pravesh Kothari, and Homin K Lee. Submodular
functions are noise stable. In Proceedings of the twenty-third annual ACM-SIAM sym-
posium on Discrete Algorithms, pages 1586–1592. Society for Industrial and Applied
Mathematics, 2012.

[8] Ilias Diakonikolas, Prasad Raghavendra, Rocco A. Servedio, and Li-Yang Tan. Av-
erage sensitivity and noise sensitivity of polynomial threshold functions. SIAM J.
Comput., 43(1):231–253, 2014.

[9] Adam Tauman Kalai, Adam R Klivans, Yishay Mansour, and Rocco A Servedio.
Agnostically learning halfspaces. SIAM Journal on Computing, 37(6):1777–1805,
2008.

[10] Gil Kalai et al. Noise sensitivity and chaos in social choice theory. Technical report,
2005.

71

[11] Daniel M. Kane. The gaussian surface area and noise sensitivity of degree-d polyno-
mial threshold functions. Computational Complexity, 20(2):389–412, 2011.

[12] Daniel M. Kane. The average sensitivity of an intersection of half spaces. In Sympo-
sium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03,
2014, pages 437–440, 2014.

[13] Nathan Keller and Guy Kindler. Quantitative relation between noise sensitivity and
influences. Combinatorica, 33(1):45–71, 2013.

[14] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inap-
proximability results for MAX-CUT and other 2-variable CSPs? SIAM Journal on
Computing, 37(1):319–357, 2007.

[15] Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean
isoperimetric type theorems. In Foundations of Computer Science (FOCS), 2015
IEEE 56th Annual Symposium on, pages 52–58. IEEE, 2015.

[16] Adam R Klivans, Ryan O’Donnell, and Rocco A Servedio. Learning intersections and
thresholds of halfspaces. Journal of Computer and System Sciences, 68(4):808–840,
2004.

[17] Rajsekar Manokaran, Joseph Seffi Naor, Prasad Raghavendra, and Roy Schwartz.
SDP gaps and UGC hardness for multiway cut, 0-extension, and metric labeling. In
Proceedings of the fortieth annual ACM symposium on Theory of computing, pages
11–20. ACM, 2008.

[18] Elchanan Mossel and Ryan O’Donnell. On the noise sensitivity of monotone func-
tions. Random Structures & Algorithms, 23(3):333–350, 2003.

[19] Elchanan Mossel and Ryan O’Donnell. Coin flipping from a cosmic source: On error
correction of truly random bits. Random Structures & Algorithms, 26(4):418–436,
2005.

[20] Ryan O’Donnell. Hardness amplification within NP. In Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing, pages 751–760. ACM, 2002.

[21] Ryan O’Donnell. Computational applications of noise sensitivity. PhD thesis, Mas-
sachusetts Institute of Technology, 2003.

[22] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[23] Yuval Peres. Noise stability of weighted majority. arXiv preprint math/0412377,
2004.

[24] Dana Ron, Ronitt Rubinfeld, Muli Safra, Alex Samorodnitsky, and Omri Weinstein.
Approximating the influence of monotone boolean functions in 𝑂(

√
𝑛) query com-

plexity. TOCT, 4(4):11:1–11:12, 2012.

72

[25] Dana Ron, Ronitt Rubinfeld, Muli Safra, and Omri Weinstein. Approximating the
influence of monotone boolean functions in 𝑂(

√
𝑛) query complexity. In Approxima-

tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 664–675. Springer, 2011.

[26] Michel Talagrand. How much are increasing sets positively correlated? Combinator-
ica, 16(2):243–258, 1996.

73

74

Appendix A

Appendix A

In this section we use Fourier analysis of boolean functions. We will use the notation of

[22].

The following lemma is very similar to a statement from [18]:

Lemma A.0.1 For any function 𝑓 : {0, 1}𝑛 → {0, 1} and a parameter 𝛿 ≤ 1/2 it is the

case that:

𝑁𝑆𝛿[𝑓] ≤ 𝛿𝐼[𝑓]

Proof: We will use the Fourier expressions for both of the above (see [22]):

𝐼[𝑓] =
∑︁
𝑆

|𝑆|𝑓 2(𝑆) 𝑁𝑆𝛿[𝑓] = 1
2
∑︁
𝑆

(1 − (1 − 2𝛿)|𝑆|)𝑓 2(𝑆)

We can now use Bernoulli’s inequality (1 − 2𝛿)|𝑆| ≥ 1 − 2𝛿|𝑆|. Therefore:

𝑁𝑆𝛿[𝑓] ≤ 1
2
∑︁
𝑆

2𝛿|𝑆|𝑓 2(𝑆) = 𝛿
∑︁
𝑆

|𝑆|𝑓 2(𝑆) = 𝛿𝐼[𝑓]

This completes the proof.

Lemma A.0.2 For a fixed function 𝑓 : {0, 1}𝑛 → {0, 1} and for values of 𝛿 satisfying

0 < 𝛿 ≤ 1/2, 𝑁𝑆𝛿[𝑓] is an increasing function of 𝛿.

Proof: This follows immediately from the Fourier formula for noise sensitivity.

75

76

Appendix B

A query complexity lower bound for

general Boolean functions

Recall that standard sampling approach requires 𝑂(1
𝑁𝑆𝛿[𝑓]𝜖2) queries to estimate noise sen-

sitivity. Here we will show that for sufficiently small constant 𝜖, the standard sampling

algorithm is optimal up to a constant for all values of 𝑁𝑆𝛿[𝑓] ≥ 1/2𝑛.

For any 𝛼 we define 𝐻𝛼 to be the uniform distribution over all functions 𝑓 : {0, 1}𝑛 →

{0, 1} for which it is the case that Pr𝑥∈𝑅{0,1}𝑛 [𝑓(𝑥) = 1] = 𝛼.

Lemma B.0.1 For any sufficiently large 𝑛, any 𝛼, satisfying 106/2𝑛 ≤ 𝛼 ≤ 1/2 and any

𝛿, satisfying 1/𝑛 ≤ 𝛿 ≤ 1/2, it is the case that:

Pr𝑓∈𝑅𝐻𝛼 [0.1𝛼 ≤ 𝑁𝑆𝛿[𝑓] ≤ 3𝛼] ≥ 0.99

Proof: 𝑥 = 𝑦 implies that 𝑓(𝑥) = 𝑓(𝑦), hence:

𝐸𝑓∈𝑅𝐻𝛼 [𝑁𝑆𝛿[𝑓]] = Pr𝑓∈𝑅𝐻𝛼;(𝑥,𝑦)∈𝑅𝑇𝛿
[𝑓(𝑥) ̸= 𝑓(𝑦)]

= Pr(𝑥,𝑦)∈𝑅𝑇𝛿
[𝑥 ̸= 𝑦] · Pr𝑓∈𝑅𝐻𝛼;(𝑥,𝑦)∈𝑅𝑇𝛿

[𝑓(𝑥) ̸= 𝑓(𝑦)|𝑥 ̸= 𝑦] (B.1)

77

Since 𝛿 ≥ 1/𝑛, we have that:

Pr(𝑥,𝑦)∈𝑅𝑇𝛿
[𝑥 ̸= 𝑦] = 1 − (1 − 𝛿)𝑛 ≥ 1 − (1 − 1/𝑛)𝑛 ≥ 1 − 𝑒−1 ≥ 0.25 (B.2)

Additionally, we have:

Pr𝑓∈𝑅𝐻𝛼;(𝑥,𝑦)∈𝑅𝑇𝛿
[𝑓(𝑥) ̸= 𝑓(𝑦)|𝑥 ̸= 𝑦] = 2𝛼 · 2𝑛 · (1 − 𝛼)

2𝑛 − 1 (B.3)

Combing equations (B.1), (B) and (B.3), we get:

𝐸𝑓∈𝑅𝐻𝛼 [𝑁𝑆𝛿[𝑓]] = Pr(𝑥,𝑦)∈𝑅𝑇𝛿
[𝑥 ̸= 𝑦] · 2𝛼 · 2𝑛 · (1 − 𝛼)

2𝑛 − 1 ≥ 0.20𝛼 (B.4)

At the same time, for sufficiently large 𝑛 we have that:

𝐸𝑓∈𝑅𝐻𝛼 [𝑁𝑆𝛿[𝑓]] = Pr(𝑥,𝑦)∈𝑅𝑇𝛿
[𝑥 ̸= 𝑦] · 2𝛼 · 2𝑛 · (1 − 𝛼)

2𝑛 − 1 ≤ 2.5𝛼 (B.5)

Now, we will bound the variance. We have:

𝐸𝑓∈𝑅𝐻𝛼 [(𝑁𝑆𝛿[𝑓])2] = Pr𝑓∈𝑅𝐻𝛼;(𝑥1,𝑦1)∈𝑅𝑇𝛿;(𝑥2,𝑦2)∈𝑅𝑇𝛿
[(𝑓(𝑥1) ̸= 𝑓(𝑦1))∧(𝑓(𝑥2) ̸= 𝑓(𝑦2))]

= (Pr(𝑥,𝑦)∈𝑅𝑇𝛿
[𝑥 ̸= 𝑦])2·Pr𝑓∈𝑅𝐻𝛼;(𝑥1,𝑦1)∈𝑅𝑇𝛿;(𝑥2,𝑦2)∈𝑅𝑇𝛿

[︃
(𝑓(𝑥1) ̸= 𝑓(𝑦1))∧(𝑓(𝑥2) ̸= 𝑓(𝑦2))

⃒⃒⃒⃒
⃒

(𝑥1 ̸= 𝑦1) ∧ (𝑥2 ̸= 𝑦2)
]︃

(B.6)

We have the following three facts:

1. For arbitrary 𝑥1, 𝑦1, 𝑥2 and 𝑦2, we have

Pr𝑓∈𝑅𝐻𝛼 [(𝑓(𝑥1) ̸= 𝑓(𝑦1)) ∧ (𝑓(𝑥2) ̸= 𝑓(𝑦2))]

≤ Pr𝑓∈𝑅𝐻𝛼 [(𝑓(𝑥1) ̸= 𝑓(𝑦1)] ≤ 2𝛼 · 2𝑛(1 − 𝛼)/(2𝑛 − 1)

2. Suppose we further given that no two of 𝑥1, 𝑥2, 𝑦1 and 𝑦2 are equal to each other. We

78

call this event 𝐾. If 𝐾 is the case then

Pr𝑓∈𝑅𝐻𝛼 [(𝑓(𝑥1) ̸= 𝑓(𝑦1))∧(𝑓(𝑥2) ̸= 𝑓(𝑦2))] = 4𝛼·2
𝑛(1 − 𝛼)
2𝑛 − 1 ·2

𝑛𝛼 − 1
2𝑛 − 2 ·2

𝑛(1 − 𝛼) − 1
2𝑛 − 3

3. If (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are picked independently from 𝑇𝛿 conditioned on 𝑥1 ̸= 𝑦1

and 𝑥2 ̸= 𝑦2, then 𝐾 happens unless 𝑥1 = 𝑥2 or 𝑥1 = 𝑦2 or 𝑦1 = 𝑥2 or 𝑦1 = 𝑦2.

By independence and a union bound, the probability of any of these happening is at

most 4/2𝑛.

Therefore:

Pr𝑓∈𝑅𝐻𝛼;(𝑥1,𝑦1)∈𝑅𝑇𝛿;(𝑥2,𝑦2)∈𝑅𝑇𝛿
[(𝑓(𝑥1) ̸= 𝑓(𝑦1))∧(𝑓(𝑥2) ̸= 𝑓(𝑦2))

⃒⃒⃒⃒
⃒(𝑥1 ̸= 𝑦1)∧(𝑥2 ̸= 𝑦2)]

≤ Pr𝑓∈𝑅𝐻𝛼;(𝑥1,𝑦1)∈𝑅𝑇𝛿;(𝑥2,𝑦2)∈𝑅𝑇𝛿

[︃
(𝑓(𝑥1) ̸= 𝑓(𝑦1)) ∧ (𝑓(𝑥2) ̸= 𝑓(𝑦2))

⃒⃒⃒⃒
⃒

(𝑥1 ̸= 𝑥2) ∧ (𝑥1 ̸= 𝑦1) ∧ (𝑦1 ̸= 𝑥2) ∧ (𝑦1 ̸= 𝑦2) ∧ (𝑥1 ̸= 𝑦1) ∧ (𝑥2 ̸= 𝑦2)
]︃

+
(︃

Pr𝑓∈𝑅𝐻𝛼;(𝑥1,𝑦1)∈𝑅𝑇𝛿;(𝑥2,𝑦2)∈𝑅𝑇𝛿

[︃
(𝑓(𝑥1) ̸= 𝑓(𝑦1)) ∧ (𝑓(𝑥2) ̸= 𝑓(𝑦2))

⃒⃒⃒⃒
⃒

(𝑥1 = 𝑥2) ∨ (𝑥1 = 𝑦1) ∨ (𝑦1 = 𝑥2) ∨ (𝑦1 = 𝑦2)
]︃

× Pr(𝑥1,𝑦1)∈𝑅𝑇𝛿;(𝑥2,𝑦2)∈𝑅𝑇𝛿
[(𝑥1 = 𝑥2) ∨ (𝑥1 = 𝑦1) ∨ (𝑦1 = 𝑥2) ∨ (𝑦1 = 𝑦2)]

)︃

≤ 4𝛼 · 2𝑛(1 − 𝛼)
2𝑛 − 1 · 2𝑛𝛼 − 1

2𝑛 − 2 · 2𝑛(1 − 𝛼) − 1
2𝑛 − 3 + 2𝛼 · 2𝑛 1 − 𝛼

2𝑛 − 1
4
2𝑛

(B.7)

Combining this with (B.4) and (B.6) we get a bound for the variance:

𝑉 𝑎𝑟𝑓∈𝑅𝐻𝛼 [𝑁𝑆𝛿[𝑓]] = (Pr(𝑥,𝑦)∈𝑅𝑇𝛿
[𝑥 ̸= 𝑦])2 ·

(︃
4𝛼· 2𝑛(1 − 𝛼)

2𝑛 − 1 · 2𝑛𝛼 − 1
2𝑛 − 2 · 2𝑛(1 − 𝛼) − 1

2𝑛 − 3 +

2𝛼
2𝑛 · (1 − 𝛼)

2𝑛 − 1
4
2𝑛

−
(︃

2𝛼 · 2𝑛 · (1 − 𝛼)
2𝑛 − 1

)︃2)︃

≤ 4𝛼2(1 − 𝛼)2

(1 − 1/2𝑛) · (1 − 2/2𝑛) · (1 − 3/2𝑛) + 𝛼(1 − 𝛼)
(1 − 1/2𝑛) · 8

2𝑛
− 4𝛼2(1 − 𝛼)2 ≤

48
2𝑛

𝛼2(1 − 𝛼)2 + 16
2𝑛

𝛼(1 − 𝛼) ≤ 100𝛼

2𝑛
(B.8)

79

(B.8) implies that 𝑁𝑆𝛿[𝑓] has standard deviation of at most 10
√︁

𝛼/2𝑛. Since 𝛼 ≥ 106/2𝑛,

this standard deviation of 𝑁𝑆𝛿[𝑓] is at most 𝛼/100. By Chebyshev’s inequality, 𝑁𝑆𝛿[𝑓]

is within 𝛼/10 of its expectation with probability 0.99. Together with equations (B.4) and

(B.5) this implies the statement of the lemma.

Theorem 6 For any sufficiently large 𝑛, any 𝛿 satisfying 1/𝑛 ≤ 𝛿 ≤ 1/2 and any 𝛼0

satisfying 105/2𝑛 ≤ 𝛼0 ≤ 1/1200, let 𝒢 be an algorithm that given access to a function

𝑓 : {0, 1}𝑛 → {0, 1} with probability at least 0.99 outputs NO if it is given access to a

function 𝑓 : {0, 1}𝑛 → {0, 1}, satisfying

𝛼0 ≤ 𝑁𝑆𝛿[𝑓] ≤ 30𝛼0

and with probability at least 0.99 outputs YES, given a function satisfying:

60𝛼0 ≤ 𝑁𝑆𝛿[𝑓] ≤ 1800𝛼0

Then, there is a function 𝑓0 given which 𝒢 makes Ω
(︁

1
𝛼0

)︁
= Ω

(︁
1

𝑁𝑆𝛿[𝑓]

)︁
queries.

Proof: Consider distributions 𝐻10𝛼0 and 𝐻600𝛼0 . One needs Ω
(︁

1
𝛼0

)︁
= Ω

(︁
1

𝑁𝑆𝛿[𝑓]

)︁
queries

to distinguish between them with any constant probability. Both values 10𝛼0 and 600𝛼0

are within the scope of Lemma B.0.1. Therefore, from Lemma B.0.1 it is the case that:

Pr𝑓∈𝑅𝐻𝛼0/𝐵1 [𝛼0 ≤ 𝑁𝑆𝛿[𝑓] ≤ 30𝛼0] ≥ 0.99

Pr
𝑓∈𝑅𝐻

2𝐵2𝛼0/𝐵2
1

[60𝛼0 ≤ 𝑁𝑆𝛿[𝑓] ≤ 1800𝛼0] ≥ 0.99

Since 𝒢 is correct with probability at least 0.99, by a union bound it will distinguish be-

tween a random function from 𝐻𝛼0/𝐵1 and 𝐻2𝐵2𝛼0/𝐵2
1 with probability at least 0.98. But

one needs at least Ω
(︁

1
𝛼0

)︁
= Ω

(︁
1

𝑁𝑆𝛿[𝑓]

)︁
queries to distinguish them. This implies the lower

bound on the number of queries 𝒢 makes.

80

Appendix C

Proofs of technical lemmas pertaining to

the algorithm

C.1 Appendix C

C.2 Proof of Lemma 2.1.1

We distinguish three cases:

1. 𝑙1 ≥ 𝑛
2

2. 𝑙1 ≤ 𝑛
2 ≤ 𝑙2

3. 𝑙2 ≤ 𝑛
2 .

We first prove the case 1. Since here
(︁

𝑛
𝑙1

)︁
≥
(︁

𝑛
𝑙2

)︁
, the left inequality is true. We proceed

to prove the right inequality. So, for sufficiently large 𝑛:

81

(︁
𝑛
𝑙1

)︁
(︁

𝑛
𝑙2

)︁ = 𝑙2!(𝑛 − 𝑙2)!
𝑙1!(𝑛 − 𝑙1)!

=
𝑙2−𝑙1−1∏︁

𝑖=0

𝑙2 − 𝑖

𝑛 − 𝑙1 − 𝑖
≤
(︃

𝑙2
𝑛 − 𝑙2

)︃𝑙2−𝑙1

≤

⎛⎝ 𝑛
2 +

√︁
𝐶1𝑛 log(𝑛)

𝑛
2 −

√︁
𝐶1𝑛 log(𝑛)

⎞⎠𝑙2−𝑙1

≤

⎛⎝1 + 5
√︃

𝐶1 log(𝑛)
𝑛

⎞⎠𝑙2−𝑙1

≤

⎛⎝1 + 5
√︃

𝐶1 log(𝑛)
𝑛

⎞⎠𝐶2𝜉
√

𝑛
log(𝑛)

≤ 𝑒5𝐶2
√

𝐶1𝜉 = 𝑒0.5𝜉 ≤ 1+𝜉

This completes the proof for case 1. We note that this method of bounding the product

above was inspired by the proof in [25]. There it was used to bound probabilities of random

walks directly, whereas we are using it to proof this Continuity Lemma first and then apply

it later for random walks.

Now, we derive case 3 from it. Suppose 𝑙1 ≤ 𝑙2 ≤ 𝑛
2 , then,

(︁
𝑛
𝑙1

)︁
≤
(︁

𝑛
𝑙2

)︁
which gives us

the inequality on the right. To prove the left one, define 𝑙′
2 = 𝑛 − 𝑙1 and 𝑙′

1 = 𝑛 − 𝑙2. 𝑙′
1 and

𝑙′
2 will satisfy all the requirements for case 1, thus we have:

(︁
𝑛
𝑙′1

)︁
(︁

𝑛
𝑙′2

)︁ ≤ 1 + 𝜉

This implies:

(︁
𝑛
𝑙1

)︁
(︁

𝑛
𝑙2

)︁ =

(︁
𝑛
𝑙′2

)︁
(︁

𝑛
𝑙′1

)︁ ≥ 1
1 + 𝜉

≥ 1 − 𝜉

This completes the proof for case 3. For case 2, together cases 1 and 3 imply that the

following are true:

1 ≤

(︁
𝑛

𝑛/2

)︁
(︁

𝑛
𝑙2

)︁ ≤ 1 + 𝜉 1 − 𝜉 ≤

(︁
𝑛
𝑙1

)︁
(︁

𝑛
𝑛/2

)︁ ≤ 1

Multiplying these together, we show the lemma in case 2.

82

C.3 Proof of Lemma 3.1.3

Recall that we have 𝑁𝑆𝛿[𝑓] = 2 · Pr𝐷[𝑓(𝑥) = 1 ∧ 𝑓(𝑧) = 0] and 𝑝𝐴𝑝𝐵 = Pr𝐷

[︃
𝑓(𝑥) =

1 ∧ 𝑓(𝑧) = 0 ∧ 𝐸1 ∧ 𝐸2

]︃
, which implies the left inequality. We now prove the right one.

We have:

𝑁𝑆𝛿[𝑓]
2 = Pr𝐷[𝑓(𝑥) = 1∧𝑓(𝑧) = 0] ≤ Pr𝐷[𝑓(𝑥) = 1∧𝑓(𝑧) = 0∧𝐸1∧𝐸2]+Pr𝐷[𝐸1∨𝐸2]

(C.1)

By Chernoff bound we have:

Pr𝐷[𝐸1] ≤ exp(−1
3𝑛 · 𝛿3𝜂2 log 𝑛) ≤ 1

𝑛𝜂2
(C.2)

Now using the Hoeffding bound together with the fact that since 𝛿 ≤ 1/(
√

𝑛 log 𝑛) we

have 𝑡2 ≤
√

𝑛/ log 𝑛 · (1 + 3𝜂2 log(𝑛)) ≤
√

𝑛 log 𝑛:

Pr𝐷[𝐸2|𝐸1] ≤ Pr𝐷[|𝐿(𝑥)−𝑛/2| ≥ 𝑡1−𝑡2] ≤ 2 exp(−2(𝜂1−1)2 log 𝑛) = 2
𝑛2(𝜂1−1)2 (C.3)

Thus, combining Equations (C.1) and (C.2) with Observation 2.1.3 we have:

Pr𝐷[𝐸1 ∨ 𝐸2] ≤ Pr𝐷[𝐸1] + Pr𝐷[𝐸2|𝐸1] ≤ 1
𝑛𝜂2

+ 1
𝑛2(𝜂1−1)2 ≤ 𝜖

15𝑛𝐶
(C.4)

Combining Equations (C.1) and (C.4) we get:

1
2𝑁𝑆𝛿[𝑓] ≤ Pr𝐷[𝑓(𝑥) = 1 ∧ 𝑓(𝑧) = 0 ∧ 𝐸1 ∧ 𝐸2] + 𝜖

15𝑛𝐶

Since 𝑁𝑆𝛿[𝑓] ≥ 1
𝑛𝐶 and 𝑝𝐴𝑝𝐵 = Pr𝐷[𝑓(𝑥) = 1 ∧ 𝑓(𝑧) = 0 ∧ 𝐸1 ∧ 𝐸2], this implies the

lemma.

83

C.4 Proof of Lemma 3.5.3

Recall that the probability of any given iteration to be successful is 𝜑. We can upper-bound

the probability that the inequality fails to hold by the sum of probabilities the two following

bad events: (i) after (1−𝜖/16)·768 ln 200/(𝜖2𝜑) iterations there are more than 768 ln 200/𝜖2

successes. (ii) after (1+ 𝜖/16) ·768 ln 200/(𝜖2𝜑) iterations there are less than 768 ln 200/𝜖2

successes.

By Chernoff bound:

Pr[(i) happens] ≤ exp
⎛⎝−1

3

(︃
1

1 − 𝜖/16 − 1
)︃2

(1 − 𝜖/16)768 ln 200
𝜖2

⎞⎠ ≤ 0.005

Pr[(ii) happens] ≤ exp
⎛⎝−1

2

(︃
1 − 1

1 + 𝜖/16

)︃2

(1 + 𝜖/16)768 ln 200
𝜖2

⎞⎠ ≤ 0.005

This proves the correctness.

To bound the expected number of iterations, we first observe that from a similar Cher-

noff bound, after 𝑂(1/(𝜖2𝜑)) iterations with probability at lest 1/2 we exit the main loop.

Each further time we make the same number of iterations, the probability of exiting only

increases. This implies that the expected number of iterations is 𝑂(1/(𝜖2𝜑)).

C.5 Proof of Lemma 3.5.4

Recall that by Equation (3.3):

𝑝𝐴𝑝𝐵 =
∑︁

𝑒∈𝐸𝐼∩𝑀

𝑝𝑒𝑞𝑒

By Lemma 3.3.2:

(︂
1 − 𝜖

310

)︂
𝛿

2𝑛

∑︁
𝑒∈𝐸𝐼∩𝑀

𝑞𝑒 ≤ 𝑝𝐴𝑝𝐵 ≤
(︂

1 + 𝜖

310

)︂
𝛿

2𝑛

∑︁
𝑒∈𝐸𝐼∩𝑀

𝑞𝑒

Dividing this equation by the equation in Lemma 3.5.1 and substituting |𝐸𝐼 | = 2𝑛−1𝐼[𝑓]:

84

(︂
1 − 𝜖

70

)︂ 1
|𝐸𝐼 |

∑︁
𝑒∈𝐸𝐼∩𝑀

𝑞𝑒 ≤ 𝑝𝐵 ≤
(︂

1 + 𝜖

70

)︂ 1
|𝐸𝐼 |

∑︁
𝑒∈𝐸𝐼∩𝑀

𝑞𝑒

Now applying Observation 3.1.2 :

(︂
1 − 𝜖

33

)︂ 1
|𝐸𝐼 ∩ 𝑀 |

∑︁
𝑒∈𝐸𝐼∩𝑀

𝑞𝑒 ≤ 𝑝𝐵 ≤
(︂

1 + 𝜖

33

)︂ 1
|𝐸𝐼 ∩ 𝑀 |

∑︁
𝑒∈𝐸𝐼∩𝑀

𝑞𝑒 (C.5)

Define Ψ to be the set of pairs of paths (𝑃 ′
1, 𝑃 ′

2) for which the following hold:

∙ 𝑃 ′
1 is a descending path and 𝑃 ′

2 is an ascending path.

∙ The endpoint of 𝑃 ′
1 is the starting point of 𝑃 ′

2.

∙ The value of 𝑓 at the starting point of 𝑃 ′
1 is one, and it is zero at the endpoint of 𝑃 ′

2.

If and only if (𝑃1, 𝑃2) is in Ψ, we have that 𝑓(𝑥) ̸= 𝑓(𝑧), therefore these are the only paths

contributing to 𝜑.

Using this definition, we have:

𝜑 =
∑︁

𝑒∈𝐸𝐼∩𝑀

⎛⎝Pr𝑒′∈𝑅𝒜[𝑒′ = 𝑒]
∑︁

(𝑃 ′
1,𝑃 ′

2)∈Ψ:𝑒∈𝑃 ′
1

Prℬ𝑒 [(𝑃1 = 𝑃 ′
1) ∧ (𝑃2 = 𝑃 ′

2)]
⎞⎠ (C.6)

𝑞𝑒 =
∑︁

(𝑃 ′
1,𝑃 ′

2)∈Ψ:𝑒∈𝑃 ′
1

Pr𝐷[(𝑃1 = 𝑃 ′
1) ∧ (𝑃2 = 𝑃 ′

2)|((𝑒 ∈ 𝑃1)) ∧ 𝐸1 ∧ 𝐸2] (C.7)

Combining Equation (C.7) and Lemma 3.4.3 we get:

(︂
1 − 𝜖

70

)︂ ∑︁
(𝑃 ′

1,𝑃 ′
2)∈Ψ:𝑒∈𝑃1

Prℬ(𝑒)[(𝑃1 = 𝑃 ′
1) ∧ (𝑃2 = 𝑃 ′

2)] ≤ 𝑞𝑒

≤
(︂

1 + 𝜖

70

)︂ ∑︁
(𝑃 ′

1,𝑃 ′
2)∈Ψ:𝑒∈𝑃1

Prℬ(𝑒)[(𝑃1 = 𝑃 ′
1) ∧ (𝑃2 = 𝑃 ′

2)] (C.8)

85

Now, if in Lemma 3.3.1 we fix an 𝑒2 and sum over 𝑒1 in 𝐸 ∩ 𝑀 we get that for all 𝑒:

(︂
1 − 𝜖

70

)︂
Pr𝑒′∈𝑅𝒜[𝑒′ = 𝑒] ≤ 1

|𝐸 ∩ 𝑀 |
≤
(︂

1 + 𝜖

70

)︂
Pr𝑒′∈𝑅𝒜[𝑒′ = 𝑒] (C.9)

Combining Equation (C.6) with Equation (C.8) and Equation (C.9) we get:

(︂
1 − 𝜖

33

)︂
𝜑 ≤ 1

|𝐸𝐼 ∩ 𝑀 |
∑︁

𝑒∈𝐸𝐼∩𝑀

𝑞𝑒 ≤
(︂

1 + 𝜖

33

)︂
𝜑 (C.10)

Equations (C.5) and (C.10) together imply the lemma.

86

Appendix D

Proofs of technical lemmas pertaining to

query complexity lower bounds

D.1 Proof of Lemma 4.0.1

If we make the function equal to one on inputs it possibly equaled zero, the bias of the

function cannot decrease. Additionally, 𝐹 ′ can be constructed from 𝐹 by changing less

than 1/𝑛𝐶1 fraction of its points. Such a transformation cannot increase the bias by more

than 1/𝑛𝐶1 . This proves (a).

Regarding (b) and (c), we start we the following observation: suppose only one point

𝑓(𝑥0) of an arbitrary function is changed. By union bound the probability for a randomly

chosen 𝑥 that either 𝑥 = 𝑥0 or 𝑥⊕𝑖 = 𝑥0 is at most 1/2𝑛−1. Therefore, the probability that

𝑓(𝑥) ̸= 𝑓(𝑥⊕𝑖) cannot change by more than 1/2𝑛−1. This implies that the influence cannot

change by more than 𝑛/2𝑛−1.

Regarding noise sensitivity, the situation is analogous. For any 𝛿, the probability that

any of 𝑥 and 𝑦 equals 𝑥0, on which the value of the function is changed, is at most 1/2𝑛−1

by a union bound. Therefore, 𝑁𝑆𝛿[𝑓] cannot change by more than 1/2𝑛−1.

Using the observation and a triangle inequality we get:

⃒⃒⃒
𝐼[𝐹] − 𝐼[𝐹 ′]

⃒⃒⃒
≤ 2𝑛

𝑛𝐶1
· 𝑛

2𝑛−1 = 2𝑛

𝑛𝐶1

87

⃒⃒⃒
𝑁𝑆𝛿[𝐹] − 𝑁𝑆𝛿[𝐹 ′]

⃒⃒⃒
≤ 2𝑛

𝑛𝐶1
· 1

2𝑛−1 = 2
𝑛𝐶1

This completes the proof of (b) and (c).

D.2 Proof of Lemma 4.0.2

Now, we proceed to proving (a). By our condition on 𝑘, it has to be the case that:

Pr𝑥∈𝑅{0,1}𝑛 [𝐿(𝑥) ≥ 𝑛/2 + 𝑘
√︁

𝑛 log 𝑛] ≥ 1
𝑛𝐶1

(D.1)

Then, by Hoeffding’s bound, it is the case that:

1
𝑛𝐶1

≤ Pr𝑥∈𝑅{0,1}𝑛 [𝐿(𝑥) ≥ 𝑛/2 + 𝑘
√︁

𝑛 log 𝑛] ≤ exp
⎛⎝−2𝑛 ·

(︃
2𝑘

√
𝑛 log 𝑛

𝑛

)︃2
⎞⎠

= exp(−8𝑘2 log 𝑛) = 1
𝑛8𝑘2

And therefore, 𝑘 ≤
√︁

𝐶1
8 , which proves (a).

Since 𝑛/2 + 𝑘
√

𝑛 log 𝑛 is an integer, then 𝑓0(𝑥) equals one if and only if 𝐿(𝑥) ≥

𝑛/2 + 𝑘
√

𝑛 log 𝑛 + 1. Therefore, we can rewrite Equation (D.1) as:

𝐵[𝑓0] + 1
2𝑛

·
(︃

𝑛

𝑛/2 + 𝑘
√

𝑛 log 𝑛

)︃
>

1
𝑛𝐶1

(D.2)

Additionally, for sufficiently large 𝑛 we have:

𝐵[𝑓0] = 1
2𝑛

𝑛∑︁
𝑙=𝑛/2+𝑘

√
𝑛 log 𝑛+1

(︃
𝑛

𝑙

)︃
≥ 1

2𝑛
·
(︃

𝑛

𝑛/2 + 𝑘
√

𝑛 log 𝑛 + 1

)︃

= 1
2𝑛

·
(︃

𝑛

𝑛/2 + 𝑘
√

𝑛 log 𝑛

)︃
· 𝑛 − (𝑛/2 + 𝑘

√
𝑛 log 𝑛 + 1) + 1

𝑛/2 + 𝑘
√

𝑛 log 𝑛 + 1

=
⎛⎝1 − 𝑂

⎛⎝√︃ log 𝑛

𝑛

⎞⎠⎞⎠ · 1
2𝑛

(︃
𝑛

𝑛/2 + 𝑘
√

𝑛 log 𝑛

)︃
≥ 1

2 · 1
2𝑛

(︃
𝑛

𝑛/2 + 𝑘
√

𝑛 log 𝑛

)︃
(D.3)

Above, we used the fact that 𝑘 is at most a constant. Combining Equations (D.2) and (D.3)

88

we get that for sufficiently large 𝑛:

3𝐵[𝑓0] ≥ 1
𝑛𝐶1

− 1
2𝑛

(︃
𝑛

𝑛/2 + 𝑘
√

𝑛 log 𝑛

)︃
+ 2 · 1

2 · 1
2𝑛

(︃
𝑛

𝑛/2 + 𝑘
√

𝑛 log 𝑛

)︃
= 1

𝑛𝐶1

This together with the fact that 𝐵[𝑓0] ≤ 1/𝑛𝐶1 , proves (b).

Consider (c) now. We have that:

1
3𝑛𝐶1

≤ 𝐵[𝑓0] = 1
2𝑛

𝑛∑︁
𝑙=𝑛/2+𝑘

√
𝑛 log 𝑛+1

(︃
𝑛

𝑙

)︃
≤ 𝑛

2𝑛

(︃
𝑛

𝑛/2 + 𝑘
√

𝑛 log 𝑛 + 1

)︃

This implies that:

Pr𝑥∈𝑅{0,1}𝑛 [𝐿(𝑥) = 𝑛/2 + 𝑘
√︁

𝑛 log 𝑛 + 1] = 1
2𝑛

(︃
𝑛

𝑛/2 + 𝑘
√

𝑛 log 𝑛 + 1

)︃
≥ 1

3𝑛𝐶1+1

At the same time, given that 𝐿(𝑥) = 𝑛/2 + 𝑘
√

𝑛 log 𝑛 + 1, if one flips an index 𝑖 for which

𝑥𝑖 = 1, then it will result that 𝑓0(𝑥⊕𝑖) = 0. And since the number of such indices is at least

half:

𝐼[𝑓0] = 𝑛 · Pr𝑥∈𝑅{0,1}𝑛;𝑖∈𝑅[𝑛][𝑓(𝑥) ̸= 𝑓(𝑥⊕𝑖)] ≥

𝑛 · Pr𝑥∈𝑅{0,1}𝑛 [𝐿(𝑥) = 𝑛/2 + 𝑘
√︁

𝑛 log 𝑛 + 1] · 1
2 ≥ 𝑛 · 1

3𝑛𝐶1+1 · 1
2 = Ω

(︂ 1
𝑛𝐶1

)︂

This proves the left inequality in (c). The right inequality is also correct, because it follows

from Lemma 4.0.1 by picking 𝐹 to be the all-zeros function. Thus, (c) is true.

Regarding noise sensitivity, a known lemma (stated in Appendix A as Lemma A.0.2)

implies that noise sensitivity is an increasing function of 𝛿. Therefore, it is enough to con-

sider 𝛿 = 1/𝑛. Then, for any 𝑥, if we flip each index with probability 1/𝑛, the probability

that overall exactly one index will be flipped equals 𝑛 · 1
𝑛
(1 − 1/𝑛)𝑛−1 = Ω(1). Addi-

tionally, given that only one index is flipped, it is equally likely to be any of the 𝑛 indices.

89

Therefore, we can lower-bound the noise sensitivity:

𝑁𝑆𝛿[𝑓0] ≥ 𝑁𝑆1/𝑛[𝑓0] = Pr(𝑥,𝑦)∈𝑅𝑇1/𝑛
[𝑓0(𝑥) ̸= 𝑓0(𝑦)]

≥ Ω(1) · Pr𝑥∈𝑅{0,1}𝑛,𝑖∈𝑅[𝑛][𝑓0(𝑥) ̸= 𝑓0(𝑥⊕𝑖)] = Ω(1) · 1
𝑛

· 𝐼[𝑓0]

Together with (c), this implies the left inequality in (d).

Regarding the right inequality, it follows from Lemma 4.0.1 by picking 𝐹 to be the

all-zeros function. Thus, (d) is true.

90

