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Abstract

Despite much recent progress in image-to-image translation, it remains challenging
to apply such techniques to medical images. We develop a novel parameterization
of conditional generative adversarial networks that achieves high image fidelity when
trained to transform magnetic resonance images (MRIs) conditioned on a patient’s
age and disease severity. The spatial-intensity transform generative adversarial net-
work (SIT-GAN) constrains the generator to a smooth spatial transform composed
with sparse intensity changes. This technique improves image quality and robust-
ness to artifacts, and generalizes to different scanners. Our model achieves state of
the art predictions of longitudinal brain MRIs without supervised training on paired
scans. We also demonstrate SIT-GAN on a large clinical image dataset of stroke pa-
tients, where it captures associations between ventricle expansion and aging, as well
as between white matter hyperintensities and stroke severity. Additionally, SIT-GAN
provides a disentangled view of anatomical and textural changes with each transfor-
mation, making it easier to interpret the model’s predictions in terms of physiological
phenomena. As conditional generative models become increasingly versatile tools for
data exploration, visualization and forecasting, such techniques for improving robust-
ness are critical for their translation to clinical settings.

Thesis Supervisor: Polina Golland
Title: Henry Ellis Warren (1894) Professor of Electrical Engineering and Computer
Science
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Chapter 1

Introduction

Many common tasks in computer vision and medical image analysis require mapping

images in one distribution to images in another distribution. In medical contexts,

models that can change an input image along a set of controlled attributes (e.g., imag-

ing modality or patient phenotype) are useful for a wide range of tasks including data

augmentation [4], super-resolution [32], MR-to-CT translation [42], and prediction of

disease trajectories [33]. With the development of conditional generative adversarial

networks (cGANs), it became possible to tackle such image-to-image translation tasks

with a single approach.

cGANs achieve state of the art results in applications as diverse as sketch to

photo conversion [25], image colorization [46], image inpainting [44], and style trans-

fer [22]. However, medical image-to-image translation remains a challenging problem,

and cGANs have seen less success in this domain. Their application has been largely

restricted to large datasets of high-quality research scans. When the target distri-

bution is underrepresented in the training data or the data consists of lower quality

clinical scans, such models may introduce artifacts as we illustrate in this work.

We seek to address this shortcoming by exploring a novel parameterization for

generators based on spatial and intensity transforms. These transforms are commonly

used in other areas of medical image analysis including data augmentation and image

registration [4, 48]. In many medical applications, transformations between images

can be well represented by a smooth deformation and a sparse intensity difference

7



Figure 1-1: Synthetic fluid-attenuated inversion recovery (FLAIR) MRIs of acute
ischemic stroke patients generated by the spatial-intensity transform generative ad-
versarial network (SIT-GAN). The images in the red boxes were transformed into
their neighboring images by conditioning on changes in age (top) and stroke severity
(bottom). Our model replicates known physiological phenomena: age correlates with
increasing ventricular volume and widening of the sulci, and stroke severity correlates
with increasing volume of white matter hyperintensities around the ventricles (the
bright spot near the red arrow).
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transform, suggesting that a network that is parameterized by such transformations

will be less likely to introduce spurious distortions. Indeed, even GANs that produce

perceptually convincing outputs have been found to introduce subtle artifacts into

their images [26, 47]. Thus, finding appropriate priors to constrain the transforms of

image-to-image translation models is particularly important for their application to

medical problems, where it may be more difficult to spot artifacts and where such

artifacts could influence radiological findings.

In order for our model to learn to translate images conditioned on a particular

attribute, it is sufficient for the training dataset to contain patient scans for various

values of that attribute, even when those images belong to different subjects. For

example, conditioning on age does not require supervised learning with longitudinal

imaging from the same patient. This enables our model to be applied to a wide range

of imaging datasets and conditioning attributes.

The main contributions of this thesis are as follows:

∙ We introduce SIT-GAN, a novel parameterization of conditional generative ad-

versarial networks that leverages spatial-intensity transforms to improve image

fidelity and robustness to artifacts in medical image-to-image translation tasks.

∙ We achieve state of the art performance on prediction of aging trajectories in T1-

weighted brain magnetic resonance images (MRIs) without supervised training

on paired scans.

∙ After training on clinical images of stroke patients, SIT-GAN is able to highlight

the expansion of the ventricles associated with aging, as well as the growth

in white matter hyperintensities associated with stroke severity. The model

additionally provides a disentangled view of morphological and intensity changes

associated with each transformation.

Roadmap Chapter 2 presents a brief overview of central concepts in deep learning,

focusing on its applications in computer vision. We describe generative adversarial

networks and their extension to image-to-image translation in unpaired and multi-
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domain settings. We also outline previous uses of the spatial-intensity transform for

medical image registration. Chapter 3 introduces SIT-GAN, specifying its network ar-

chitecture, loss functions, and the use of spatial-intensity transforms to parameterize

the generator. Chapter 4 reports two experiments comparing SIT-GAN with pre-

vious models to demonstrate that spatial-intensity transforms are an effective prior

for medical image-image translation tasks. The first experiment, involving clinical

quality scans of stroke patients from multiple sites, shows our method’s robustness

to low quality scans and its ability to generalize to unseen scanners. The second ex-

periment, involving longitudinal scans, demonstrates our method’s ability to predict

the trajectories of subjects’ brain scans. Finally, we provide concluding remarks in

Chapter 5 and discuss possible applications and directions for future work.
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Chapter 2

Background

In this chapter, we describe previous work that is relevant to understanding our model

and its context. We offer a brief review of deep learning and convolutional neural

networks, highlighting some modeling choices that appear in our network. We outline

the evolution of image-to-image translation models in computer vision, focusing on

techniques that we also use in our model. Finally, we discuss the use of spatial and

intensity transforms in medical image analysis, which motivates our development of

the spatial-intensity transform generative adversarial network (SIT-GAN).

2.1 Deep Learning

Deep learning is a powerful class of data-driven techniques for learning functions on

high-dimensional data, with diverse applications in processing and generating images,

videos, music, natural language, and many other types of data. In deep learning, a

function of interest is parameterized as a neural network: the composition of a series

of parameterized linear transforms (called layers) alternating with non-linear trans-

forms (called activations). The parameters of all layers are optimized simultaneously

via stochastic gradient descent (SGD) to match a set of input-output pairs that

demonstrate the desired behavior of the function. Neural networks often have tens

to hundreds of layers, giving rise to the name of deep learning.

Many networks have millions to hundreds of millions of parameters, in stark con-
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trast to previous machine learning methods in which the number of model parameters

was often kept relatively low, and almost certainly less than the number of datapoints

to train on. But many studies have found that the over-parameterization of neural

networks is key to their success: in the limit of infinite parameters, a neural network is

capable of approximating any continuous function to arbitrary precision [28]; neural

networks with a large number of parameters have improved theoretical guarantees on

their convergence to the global optimum of the training data [1, 29].

This capacity for neural networks to train millions of parameters simultaneously

has enabled their application in high dimensional domains where previous techniques

required feature engineering: the manual selection of a small number of statistics

that are (“mostly") sufficient with respect to a particular modeling task. Such a

set of sufficient statistics was challenging to find on real-world tasks, and neural

networks have surpassed these traditional modeling techniques on many computer

vision, natural language processing, and audio processing tasks [16].

Almost all neural networks implement some form of normalization on either the

intermediate values or parameters of the network, which can help training by making

the optimization landscape smoother [38], making gradient magnitudes more con-

sistent throughout the network [37], or providing smoothness guarantees about the

network function throughout training [31]. Batch normalization [24], the most fre-

quently used form of normalization, rescales the outputs of a specified layer to have

the same (learned) mean and standard deviation within each minibatch.

2.1.1 Convolutional Neural Networks

The most common type of neural network for image processing is the convolutional

neural network (CNN), which constrains the weight matrices of each layer in the net-

work to correspond to convolutions with learned patches. Without any constraints

on the weight matrix (in which case the layer is called fully connected), there are too

many parameters to even store in memory. For example, just a single network layer

between two RGB images of size 256×256 would require 38.7 billion parameters. Be-

yond this practical limitation, convolutions are a natural choice for image processing
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applications, where features of interest are often shift-invariant1: if a noisy image

is shifted, the output of a denoising algorithm should appear shifted by the same

amount (modulo boundary effects); if objects are shifted in a scene, their bounding

boxes and segmentations are translated by the same amount. It is well known that

every linear shift-invariant system can be represented as a convolution with some

impulse response. In neural networks, the impulse response is constrained to have

small width (typically no larger than 5×5 in size), in analogy to the human visual

system where each neuron receives stimuli from only a neighborhood of neurons at

the previous level.

CNNs often feature several other types of layers. Strided convolutions or pooling

layers are used to reduce the spatial resolution of their inputs, which may make it

easier to learn global image features in a manner reminiscent of image pyramids. To

increase spatial resolution, interpolation or deconvolution layers are often used. Other

important innovations in the design of CNNs include dropout [39], which randomly

zero out layer outputs, residual blocks [19], which parameterize layer outputs as a

residual that is added to the layer input, and skip connections [21], where a signal

passes through multiple layers before being concatenated with itself.

2.2 Image-to-Image Translation

Image-to-image translation, a term popularized in [25], refers to a broad category of

tasks that learn a mapping from images in one distribution to images in another distri-

bution, where the distributions and desired properties of the function depend on the

underlying task. This includes a broad range of tasks including style transfer, photo

enhancement, image super-resolution, synthesizing images from segmentations, object

transfiguration, image colorization, image denoising, and image reconstruction. With

the development of neural networks, these disparate tasks were able to be unified into

a single problem: given pairs of example images from both domains, teach a convolu-

1Sometimes the property described here is called shift covariance, and shift invariance is instead
used to refer to outputs that are independent of translations of the input.
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tional neural network to map the input images to the output images. Although simple

CNN architectures tended to produce blurry images, the development of U-Nets [34]

and generative adversarial networks (GANs) [17] led to dramatic improvements in

performance.

U-Net Prior to the U-Net, the typical architecture for building image-to-image

mappings was an encoder-decoder. The encoder is a series of convolutional layers

alternating with pooling or strided convolutional layers that reduce the spatial di-

mensions of the feature space, while the decoder is a series of convolutional layers

alternating with deconvolutional or upsampling layers that increase the spatial di-

mensions of the feature space until they match the target image resolution (which

is usually the same as the input image resolution, but may differ for tasks like im-

age super-resolution). The U-Net incorporates skip connections between layers of

the encoder and decoder at the same spatial resolution, which allows the network

to propagate information about local details in the input image that are otherwise

discarded by the encoder as it progressively downsamples its features. With only a

pixel-wise loss in image space however, the U-Net outputs still suffer from blurry or

unrealistic outputs, which would be addressed with the development of GANs.

Generative adversarial networks GANs were a major advancement for image

synthesis, yielding the first models that could produce photorealistic images from

random noise. A GAN consists of a generator network that outputs images, and a

discriminator network that is trained to distinguish between the outputs of the gener-

ator and real images from the distribution of interest. The generator is simultaneously

trained to output images that prevent the discriminator from making this distinction.

When trained successfully, this adversarial approach can help the generator produce

realistic outputs, as a good discriminator will be able to correctly classify images with

artifacts as synthetic. In addition, GANs have a unique Nash equilibrium at which

the generator will sample exactly from the target distribution. A generator that over-

samples particular regions of the target distribution would allow the discriminator

14



to classify these regions as synthetic. In practice however, mode collapse remains

a notoriously difficult problem to overcome, although many works have developed

techniques to combat this phenomenon [18,30]. Although we described GANs in the

context of image synthesis, the input to the generator can be an arbitrary distribution,

making it suitable for image-to-image translation tasks. When adversarial training

is incorporated into the loss function of the U-Net we described earlier, its outputs

become photorealistic [25]. The resulting model is sometimes referred to as pix2pix

or a conditional GAN.

Cycle consistency loss In many image-to-image translation tasks, it may be dif-

ficult to find paired data from the source and target image distributions, but much

easier to obtain independent samples from the distributions. Without paired data,

there is no ground truth for the output image given an input image from our dataset.

This problem was circumvented by CycleGAN [50], which pioneered the cycle con-

sistency loss. In CycleGAN, two GANs are trained, with one generator mapping the

source domain to the target domain and the other learning the reverse mapping. The

cycle consistency loss minimizes the pixel-wise change in samples that pass through

both generators.

Multi-domain translation Pix2pix and CycleGAN models were constrained to

translation tasks between two distinct domains, such as day to night, horses to ze-

bras, or sketches to photos. These models are unable to condition on continuous or

categorical variables, e.g., changing a face to match an age, or modifying the size of

objects in a photo. StarGAN [6] addresses this issue by modifying pix2pix in several

ways. A single generator learns mappings between all domains, by receiving a set

of conditional attribute values associated with the target image distribution. The

discriminator is modified to produce a second output: the predicted values of the

conditional attributes for input images. This predictor is trained on images from

the training dataset, and the generator has an additional loss term that encourages

it to generate images that the predictor matches to the target attribute values. To
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allow StarGAN to learn from unpaired data, it adopts CycleGAN’s cycle consistency

loss, which is now computed by passing images through the same generator twice.

The first pass can be conditioned on any set of target attribute values, while the

second pass conditions on the ground truth attribute values associated with the im-

age. ModularGAN [49] tackles the multi-domain translation problem with a different

approach: instead of a single network that learns all mappings, it encodes input im-

ages and learns how to map latent vectors between different domains. However, this

approach is difficult to adapt to continuous conditional variables. Later works such

as StarGAN v2 [7] designed improved architectures for style transfer applications

and image-to-image translation between categorical domains, although the original

StarGAN remains the most suitable architecture for domains represented by multiple

continuous, partially observed variables. With some tuning of the architecture and

hyperparameters, StarGAN serves as the baseline (unconstrained model) for our ex-

periments as it represents the state of the art in continuous-domain image-to-image

translation.

2.3 Spatial and Intensity Transforms

Spatial deformation models have been a staple of medical image registration, which

seeks to align the anatomical structures of medical images in order to establish a com-

mon coordinate system for downstream tasks such as segmentation and voxel-based

analysis. For nonrigid image registration, the spatial transform is usually parame-

terized as a smooth deformation field, as most anatomical variation does not involve

large local changes in shape. In these settings, the transform can be optimized inde-

pendently for each input image [2, 35], or generated by a neural network trained for

this task [3,27]. Some works will also constrain the transform to be diffeomorphic [9],

which guarantees that the topology of the original image is preserved.

In general, neural networks outperform optimization methods for estimating such

deformation fields. FlowNet [13] and its successors [23] significantly advanced the

state of the art on optical flow estimation: the task of estimating the displacement
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of pixels between two frames of a video. The parameterization of GANs with spatial

transforms has also found success in video-to-video translation [40]. To our knowledge,

their application to image-to-image translation has not yet been explored.

Spatial transforms have been coupled with intensity transforms to improve med-

ical image registration when there is variation in both anatomy and texture. Active

Appearance Models [8] build statistical models of shape and intensity that can be

used to register images with different tissue intensities. In more recent works, neural

networks were used to learn spatial and intensity transforms mapping a fixed at-

las image to any given input image [48]. Further work introduces atlases that are

conditioned on a particular attribute and constructed using spatial transforms [11].

Spatial-intensity transforms have also been applied as a learned data augmentation

technique for semi-supervised segmentation [4].

In the next chapter, we introduce SIT-GAN. Its design draws on many of the deep

learning techniques we described for image-to-image translation: U-Nets, adversarial

training, cycle consistency loss, and multi-domain translation. By additionally con-

straining our model to generate images using spatial and intensity transforms, we are

able to improve its robustness and image fidelity on radiographic data.
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Chapter 3

Spatial-Intensity Transform

Generative Adversarial Network

In this chapter, we describe SIT-GAN, our novel parameterization of medical image-

to-image translation models. First, we outline the overall components and training

scheme of our model, which allow us to learn from unpaired data containing multiple

partially observed conditional attributes. We then parameterize the model generator

as a smooth deformation and sparse intensity difference transform. Lastly, we provide

details about the architecture and implementation of our network.

3.1 Unpaired Image-to-Image Translation with Par-

tially Observed Attributes

Given a dataset 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 of images 𝑥𝑖 ∈ 𝒳 : Ω → R and conditional attributes

𝑦𝑖 ∈ 𝒴 (e.g., age and stroke severity), we would like to train a generator to transform

images such that their conditional attributes are shifted by a specified amount. Our

network consists of a generator 𝐺 : 𝒳×𝒴 → 𝒳 , discriminator 𝐷 : 𝒳 → R (logits), and

regressor 𝑅 : 𝒳 → 𝒴 . Here we consider continuous vector attributes 𝑦𝑖 = (𝑦𝑖,1, ..., 𝑦𝑖,𝑚)

that may have missing values. Categorical attributes can be included by adding a

classifier to the network.

19



Generator The generator 𝐺 transforms a given input image such that the trans-

formed image appears to take on different attribute values from the input image, but

preserves aspects of the input image that are unrelated to the conditional attributes,

such as non-pathological anatomy. Define 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖), 𝑧𝑗 = (𝑥𝑗, 𝑦𝑗), ∆𝑦 = 𝑦𝑗 − 𝑦𝑖.

During training, the generator is updated using the following loss terms:

ℓ𝑎𝑑𝑣 = −𝐷(𝐺(𝑥𝑖,∆𝑦)) Wasserstein adversarial loss (3.1)

ℓ𝑎𝑡𝑡𝑟 =
1

𝑚

⃦⃦(︀
𝑅(𝐺(𝑥𝑖,∆𝑦)) −𝑅(𝑥𝑖)

)︀
− ∆𝑦

⃦⃦2

2
relative attribute loss (3.2)

ℓ𝑐𝑐 = ‖𝐺(𝐺(𝑥𝑖,∆𝑦),−∆𝑦) − 𝑥𝑖‖1 cycle consistency loss (3.3)

Parameterizing 𝐺 in terms of ∆𝑦 enables evaluation of the cycle consistency loss even

when images have missing attributes [43]. To compute ∆𝑦 in such cases, we introduce

the convention that 𝑦𝑗,𝑘 − 𝑦𝑖,𝑘 = 0 if the kth attribute is missing. Putting the terms

together, the total generator loss is:

ℒ𝐺 = E𝑧𝑖,𝑧𝑗

[︀
ℓ𝑎𝑑𝑣 + 𝜆𝑎𝑡𝑡𝑟ℓ𝑎𝑡𝑡𝑟 + 𝜆𝑐𝑐ℓ𝑐𝑐

]︀
(3.4)

where 𝜆𝑎𝑡𝑡𝑟 and 𝜆𝑐𝑐 are empirically determined weights.

Discriminator We simultaneously train the discriminator 𝐷 with the Wasserstein

GAN losses and gradient penalty [18].

ℒ𝐷 = E𝑧𝑖,𝑧𝑗

[︀
𝐷(𝐺(𝑥𝑖,∆𝑦))

]︀
− E𝑧𝑖

[︀
𝐷(𝑥𝑖)

]︀
− E𝑥̂

[︀
𝜆𝐺𝑃 (‖∇𝑥̂𝐷(𝑥̂)‖2 − 1)2

]︀
(3.5)

where 𝑥̂ is obtained by interpolating real and translated images as described in [18],

and 𝜆𝐺𝑃 is a weight.

Regressor The regressor 𝑅 is trained to predict the attributes of real images, using

a mean squared error loss.

20



ℒ𝑅 = E𝑧𝑖

[︀ 1

𝑚
‖𝑅(𝑥𝑖) − 𝑦𝑖‖22

]︀
(3.6)

We share layers between the discriminator and regressor, so a single optimizer is

assigned to both subnetworks and updated using ℒ𝐷 + 𝜆𝑅ℒ𝑅.

3.2 Spatial-Intensity Transform Generator

To constrain the generator to spatial-intensity transforms, we define its outputs as

the deformation field 𝐹 : Ω → R𝑑 for image dimensionality 𝑑, with corresponding

transform 𝑇𝐹 : 𝒳 → 𝒳 , and the intensity difference map ∆𝑥 : Ω → R.

Rather than requiring the generator to produce the target image, it outputs 𝐹

and ∆𝑥, then transforms the input image as 𝑇𝐹 (𝑥𝑖𝑛 + ∆𝑥). In addition, we add

regularization terms to the generator’s loss function that encourage the deformation

field to be smooth and the intensity difference map to be sparse. Specifically, we

used the discrete total variation norm [5] to regularize the deformation field and the

L1-norm to regularize the intensity change:

‖𝐹‖𝑇𝑉 =
1

|Ω|
∑︁
𝜔∈Ω

‖∇𝐹 (𝜔)‖2 (3.7)

‖∆𝑥‖1 =
1

|Ω|
∑︁
𝜔∈Ω

|∆𝑥(𝜔)| (3.8)

where ‖∇𝐹 (𝜔)‖2 is approximated using finite differences. The total generator loss

now becomes:

ℒ𝐺 = E𝑧𝑖,𝑧𝑗

[︀
ℓ𝑎𝑑𝑣 + 𝜆𝑎𝑡𝑡𝑟ℓ𝑎𝑡𝑡𝑟 + 𝜆𝑐𝑐ℓ𝑐𝑐 + 𝜆𝐹‖𝐹‖𝑇𝑉 + 𝜆Δ𝑥‖∆𝑥‖1

]︀
(3.9)

for empirically determined weights 𝜆𝐹 and 𝜆Δ𝑥.
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Figure 3-1: The generator takes in an image and the desired change in each attribute.
In SIT-GAN, the generated image is obtained by applying a intensity difference map
and deformation field to the input image. The parameters of the generator are up-
dated from three loss terms: a cyclic consistency loss that discourages unnecessary
changes to the input image, an attribute loss that encourages the generated image to
match the desired attribute values, and an adversarial loss that penalizes unrealistic
outputs.
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3.3 Network Architecture and Implementation

SIT-GAN’s generator was implemented as a 2D U-Net that takes in ∆𝑦 by replicat-

ing each dimension spatially and concatenating channel-wise to 𝑥𝑖. It has 4 spatial

resolutions, with 200 channels and 6 residual blocks at the lowest resolution. The

discriminator and regressor share 5 down-sampling blocks, then split into fully con-

nected layers of the appropriate dimension (1 output for the discriminator, 𝑚 outputs

for the regressor).

Batch normalization is used for all convolutional layers. Down-sampling blocks

in the U-Net use convolutional layers alternating with max blur pooling [45]. Up-

sampling blocks in the U-Net use bilinear upsampling between convolutional layers.

The generator uses ReLU activations and the discriminator/regressor uses leaky ReLU

activations. We use He initialization for the weights of all convolutional layers and

set all biases to zero.

The subnetworks were trained with Adam optimizers, with one step in 𝐺’s opti-

mizer for every two steps in 𝐷/𝑅’s optimizer. 𝐷/𝑅 were trained for 50K iterations

with a learning rate of 1.2×10−5, and 𝐺 was trained for 25K iterations with a learning

rate of 1.5 × 10−4. Both optimizers used a minibatch size of 4, and moving average

parameter 𝛽1 = 0.86. We used the following loss weights: 𝜆𝑅 = 18, 𝜆𝑎𝑡𝑡𝑟 = 3.5,

𝜆𝑐𝑐 = 2.1, 𝜆𝐹 = 16, 𝜆Δ𝑥 = 49, and 𝜆𝐺𝑃 = 1.1.

The following chapter will present experimental evaluation of the proposed SIT-

GAN model. We evaluate the network on a dataset of clinical MRIs from acute

ischemic stroke patients, where we measure the image fidelity and proximity of syn-

thesized images to the target domain. We compare its performance to networks that

do not transform the input image or use alternative transforms. We then test SIT-

GAN’s ability to forecast future scans using a dataset of longitudinal research scans

from patients with various degrees of cognitive decline.
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Chapter 4

Experiments

We conducted experiments on two cohorts: a set of clinical quality MRIs from patients

with acute ischemic stroke obtained from the MRI-GENetics Interface Exploration

(MRI-GENIE) study [15], and a set of research scans obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The stroke co-

hort tests our model’s performance on lower quality scans and its ability to generalize

to different clinical sites, while the longitudinal data of ADNI allows us to assess our

model’s ability to predict a person’s aging trajectory.

4.1 Image-to-Image Translation of Stroke MRIs

4.1.1 Data

We used axial brain fluid-attenuated inversion recovery (FLAIR) MRIs obtained

within 48 hours of symptom onset from the MRI-GENIE study. After excluding

repeat scans as well as scans with extreme artifacts, we had 1821 scans from across

12 clinical sites. 418 images acquired from the largest site were used for 5-fold cross

validation. Our models were then tested on the 1403 scans from all other clinical

sites. Age was available for all patients, and stroke severity (measured on a scale

from 0-36 called NIHSS) was available for 746 patients.

MRIs were preprocessed with resampling to isotropic 1mm resolution, N4 bias
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Table 4.1: Parameterizations of the generator output.
Parameterization 𝐺 Outputs Generated Image Regularizers
Unconstrained 𝑥𝑜𝑢𝑡 𝑥𝑜𝑢𝑡 N/A
Difference Transform ∆𝑥 𝑥𝑖𝑛 + ∆𝑥 ‖∆𝑥‖1
Optical Flow 𝐹 𝑇𝐹 (𝑥𝑖𝑛) ‖𝐹‖𝑇𝑉

Weighted Flow 𝐹,𝑤 𝑤 ⊙ 𝑇𝐹 (𝑥𝑖𝑛) + (1 − 𝑤) ⊙ 𝑥𝑖𝑛 ‖𝐹‖𝑇𝑉

SIT-GAN 𝐹,∆𝑥 𝑇𝐹 (𝑥𝑖𝑛 + ∆𝑥) ‖𝐹‖𝑇𝑉 , ‖∆𝑥‖1

field correction, ANTS registration to a FLAIR atlas, normalization of the white

matter intensity, and cropping to 224 × 192. Native resolution varies, but is typically

around 1mm × 1mm × 6mm. The thick slices introduce significant partial volume

effects. The 15 middle axial slices of each subject were used, and all slices from the

same subject were grouped into the same validation fold. We scaled age and stroke

severity so that the empirical distribution of each attribute within the training data

has a mean of 0 and a standard deviation of 1. The images were also augmented

using horizontal flips and random affine transformations.

4.1.2 Baseline Methods

We compare SIT-GAN to several baseline methods, including a network whose gen-

erator does not transform the image, as well as several networks whose generators

use alternate transformations of the input image. The different parameterizations are

summarized in Table 4.1.

In the unconstrained network, the generator follows the standard practice of di-

rectly synthesizing a new image [6, 25, 50]. In practice, the skip connections of the

U-Net and the cycle consistency loss tend to produce output images that are similar

to the input images.

In the difference transform network, the generator is constrained to a sparse inten-

sity difference transform of the input image. While it has the same expressiveness as

the unconstrained network, it uses explicit regularization to penalize output images

that differ significantly from their inputs, making it a suitable parameterization for

capturing image-to-image translations that only involve small regions of the image.

The optical flow network is constrained to smooth deformations of the input image.
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It assumes that every point in the output image originates from some nearby point in

the input image [13], allowing it to capture morphological variation, but not intensity

changes within anatomical structures.

The weighted flow network outputs a weighted sum of the input image and a

smooth deformation of it, with pixel-wise weights output by the generator. It is

the type of model used to synthesize successive frames in video-to-video translation

models [40].

We trained two variants of the unconstrained model: one that has identical hy-

perparameters to SIT-GAN and the other networks, and one in which we tuned the

number of layers, types of layers, loss term weights, and type of optimizer to make

it as competitive with SIT-GAN as possible. In the tuned model, the discriminator

and regressor were trained with a learning rate of 8.6 × 10−5, and the generator was

trained with a learning rate of 1.1 × 10−4. The U-Net had 3 spatial resolutions with

96 channels and 3 residual blocks at the lowest resolution. Strided convolutions were

used for downsampling. The discriminator/regressor had 6 downsampling blocks us-

ing max blur pooling. The tuned network used loss weights of 𝜆𝑅 = 21, 𝜆𝑎𝑡𝑡𝑟 = 1,

𝜆𝑐𝑐 = 4, and 𝜆𝐺𝑃 = 8. The Adam optimizer had moving average parameter 𝛽1 = 0.46.

4.1.3 Evaluation

To quantify the quality of model outputs in the absence of paired data, we computed

the Fréchet Inception Distance (FID) [20] between the distribution of generated im-

ages and the distribution of validation or test images. We also used Precision and

Recall for Distributions (PRD) [36] to compute the precision (𝐹1/8) and recall (𝐹8)

of our generator. A high 𝐹1/8 suggests that most modes of the generated distribution

belong to the true distribution, whereas a high 𝐹8 suggests that most modes of the

true distribution belong to the generated distribution. Modes are estimated by find-

ing clusters of images in Inception v3 embedding space. Note that because our goal

is not to find a bijection between image distributions, these distributional metrics

should not be interpreted as key measures of performance, but rather as indicators

about whether a network may suffer from mode collapse or other issues.

27



Table 4.2: Performance metrics for translation of FLAIR MRIs conditioned on age
and stroke severity (NIHSS), averaged over 5 runs. FID = Fréchet Inception Distance,
P/R = Precision (𝐹1/8) and Recall (𝐹8) as defined in [36].

Model Type FID P/R Age
MSE

NIHSS
MSE

Cross-validation
Unconstrained 152.1 0.01/0.01 1.51 2.18

Unconstrained (tuned) 61.4 0.07/0.21 0.51 1.12
Difference Transform 57.2 0.38/0.59 1.37 1.14

Optical Flow 59.5 0.30/0.52 0.71 1.09
Weighted Flow 60.6 0.23/0.46 0.85 1.31

SIT-GAN 38.6 0.35/0.59 0.85 1.16
Test

Unconstrained 180.5 0.07/0.02 1.11 1.21
Unconstrained (tuned) 51.0 0.41/0.21 0.99 1.01
Difference Transform 68.4 0.53/0.68 1.25 1.12

Optical Flow 28.4 0.62/0.69 1.16 1.11
Weighted Flow 35.0 0.56/0.59 1.32 1.14

SIT-GAN 27.6 0.53/0.66 1.28 1.12

We also evaluated the effectiveness of each model in transforming the target at-

tribute by measuring the performance of an Inception v3 regressor on our generated

images. This regressor was pre-trained on ImageNet [12] and fine-tuned to predict

age and stroke severity from FLAIR MRIs. We emphasize that this regressor is dif-

ferent from the regressor used during training of the GAN, as the generator may have

learned to exploit pecularities in the particular regressor it is trained alongside. By

using a separately trained regressor with a different architecture, we expect that any

gains that the generator accrued in this manner can be mitigated. We measure the

mean squared error (MSE) of age and stroke severity (NIHSS) respectively, normal-

ized to the empirical standard deviation of the attribute. The MSE of the Inception

regressor on held out subjects in the cross-validation set is 0.24 on age and 0.70 on

NIHSS, while it is 0.34 on age and 0.62 on NIHSS in the test set.
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Figure 4-1: Comparison of stroke MRIs translated to a different age using the un-
constrained model and our model. While both models change the ventricle shape
appropriately, the unconstrained model blurs the ventricles (top rows) and exces-
sively darkens the gray matter (bottom rows).
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Figure 4-2: Uncurated examples of outputs from all models on the MRI-GENIE test
set. Target attribute values are sampled from 𝒩 (0, 4) to show the artifacts induced
by larger transformations. (By comparison, target attribute values are distributed
with mean 0 and standard deviation 1 during training.)
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4.1.4 Results

Even after tuning, the unconstrained model suffers from high FID and low preci-

sion/recall as shown in Table 4.2. Figure 4-1 illustrates its tendency to introduce

artifacts in translated images such as dark streaking of the gray matter with increas-

ing age, and partial volume-like filling of the ventricles with decreasing age. With

large translations, it often changes the intensity of large areas of the brain, as Figure

4-2 shows. However, the tuned unconstrained model performs well at target domain

transfer for both age and NIHSS. Morphological changes of the ventricles and sulci

are highly visible in its outputs.

The difference transform model dramatically improves precision and recall, but at

a significant cost to its ability to match the target domain. Both of these effects can

be explained by the close similarity of its outputs to the input images, as observed in

Figure 4-2.

We see a similar pattern with both optical flow and weighted flow models. They

perform well on distributional metrics but underperform the unconstrained model on

target domain transfer, although the gap here is smaller than in the case of the differ-

ence transform model. Qualitatively, they induce noticeable morphological changes

in the ventricles, although they also cause undesired distortions to the rest of the

image.

SIT-GAN attains the best image fidelity, and performs similarly to the optical and

weighted flow models in matching output images to their target domain. Often it is

overly conservative in transforming input images. But when it succeeds, it is able to

capture the expansion of the ventricles correlated with aging as well as the increase in

white matter hyperintensities associated with stroke severity (see Figure 1-1), while

producing much less severe artifacts than the unconstrained model as seen in Figure

4-1.

These results suggest that an unconstrained generator sacrifices image quality to

capture more variation in the conditional attribute, while the constrained generators

tend to be overly conservative in their transformations of input images.
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Figure 4-3: The magnitude of the deformation field and intensity difference map of
SIT-GAN for an example transformation. The shrinkage of the ventricles and sulci are
well captured by the deformation field, while tissue appearance changes are reflected
in the difference map.

4.1.5 Disentangled Visualization

The deformation field and intensity difference map used in SIT-GAN to transform

each input image can also be visualized separately. Figure 4-3 shows that the de-

formation highlights changes in morphology associated with age, while the intensity

difference map show subtle changes in apparent tissue intensity that are not immedi-

ately apparent from the generated image. These effects, which would be inseparable

with other parameterizations, are able to be visualized separately with our model.

This may be valuable for detecting artifacts in generated images, as well as for find-

ing and visualizing true correlations.
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4.2 Predicting Aging Trajectories

4.2.1 Data

We performed image-to-image translation on longitudinal T1-weighted MRIs from

ADNI conditioned on age and baseline diagnosis. The diagnostic categories were

control, mild cognitive impairment, or Alzheimer’s disease, encoded as -1, 0 and 1

respectively. The training set consisted of 3228 scans drawn from 77 subjects with

unpaired data (i.e., a single timepoint scan) as well as 609 subjects with multiple

timepoints (5.2 scans on average, separated by 0.79 years on average). The test

set consisted of 749 scans from 149 subjects with multiple timepoints (4.7 scans on

average, separated by 0.81 years on average).

Each scan was preprocessed with resampling to 1mm isotropic voxels, affine spatial

normalization using FreeSurfer [14], and cropping to 224 × 192 slices [10]. The 15

middle axial slices of each subject were used. We scaled age so that its empirical

distribution within the training data has a mean of 0 and a standard deviation of 1.

During training, the images were augmented using horizontal flips and random affine

transformations.

4.2.2 Evaluation

The architecture and hyperparameters of all models were kept identical to those used

on the stroke dataset, so no separate validation set was needed. For every subject, we

randomly select up to 5 pairs of timepoints. For each pair, we take the most central

slice of the scan at the earlier timepoint 𝑥1 and have our trained model predict the

later timepoint image 𝑥2. We compare the output image 𝑥̂2 to the actual scan obtained

at the second timepoint, using the root mean square error (RMSE) of pixel intensities
1√
𝑁
‖𝑥̂2 − 𝑥2‖2 as well as their structural dissimilarity (DSSIM) [41] which compares

images based on their patch statistics. The DSSIM of identical images is 0, and the

DSSIM of images in which every patch is uncorrelated is 0.5.

Because RMSE and DSSIM do not distinguish between errors from target domain
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Table 4.3: Performance metrics for longitudinal MRI prediction in ADNI, averaged
over 5 runs. RMSE = pixel-wise root mean square error, DSSIM = structural dis-
similarity.

Model Type RMSE DSSIM Age
MSE

Unconstrained 0.067 0.211 0.96
Unconstrained (tuned) 0.038 0.113 0.52
Difference Transform 0.030 0.098 0.83

Optical Flow 0.036 0.123 0.62
Weighted Flow 0.034 0.094 0.63

SIT-GAN 0.033 0.097 0.81

mismatch or from artifacts, we also evaluate whether the generated images match the

target age. We use an Inception v3 regressor to evaluate the MSE with respect to

age, similarly to the case of stroke scans. The regressor MSE on held out subjects in

ADNI is 0.48.

4.2.3 Results

After tuning, the unconstrained model achieves the lowest regressor error as shown in

Table 4.3, and some cases it best captures changes in ventricle morphology (e.g., the

4th column of Figure 4-5). However, it is somewhat inconsistent and often introduces

significant artifacts, usually in the form of global intensity changes. As a result, its

pixel-wise errors and structural dissimilarity from ground truth scans are relatively

high.

The outputs of the difference transform network are more similar to ground truth

scans, although generally they appear very similar to the input image, resulting in

a poor match to the target domain. Additionally, the output images contain bright

spot artifacts.

Although the optical flow does not improve on the unconstrained network, the

weighted flow network achieves superior similarity to the ground truth, at a small

cost to regressor accuracy. Because aging trajectories are dominated by morphological

changes, the weighted flow network is able to perform relatively well at target domain

transfer. Still, under large translations, it occasionally induces significant distortions,
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Figure 4-4: True and predicted longitudinal MRIs from the unconstrained model and
SIT-GAN.
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Figure 4-5: Uncurated examples of outputs from all models on the ADNI dataset.
Target attribute values sampled from 𝒩 (0, 4).
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as seen in the 6th column of Figure 4-5.

SIT-GAN performs similarly to the difference transform model, but avoids intro-

ducing severe artifacts even under large translations. In general it is overly conserva-

tive, but it is capable of matching longitudinal scans quite closely. In Figure 4-4, the

unconstrained model simulates increasing age by darkening the ventricles and white

matter relative to the background, whereas SIT-GAN properly widens ventricles and

sulci as reflected in the ground truth.

We note that most of our models outperform the DSSIM score of the current

state of the art model (0.19 ± 0.08, [33]) on longitudinal MRI prediction in ADNI.

SIT-GAN’s DSSIM of 0.097 ± 0.020 is almost half of that, although our results are

not directly comparable as our data processing pipelines differed.
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Chapter 5

Conclusion

We presented the spatial-intensity transform generative adversarial network, a novel

parameterization of GANs for medical image-to-image translation that improves im-

age fidelity and robustness to artifacts. We demonstrated our model on a challenging

dataset of clinical quality MRIs of stroke patients from multiple clinical sites, where

it outperformed an unconstrained model on distributional metrics at the cost of more

conservative transformations. Our model can visualize the correlation between age

and ventricle expansion, as well as between the volume of white matter hyperinten-

sities and stroke severity. The network additionally provides a disentangled view of

changes in anatomical shape and tissue appearance through the deformation field and

intensity difference image respectively. Without further hyperparameter tuning, SIT-

GAN can achieve the state of the art on predicting longitudinal T1-weighted brain

MRIs from unpaired data.

In each dataset, we saw that SIT-GAN and other types of constrained models

could achieve superior image fidelity by sacrificing their ability to match the tar-

get domain. This consistent trade-off suggests that SIT-GAN should be applied in

scenarios where robustness is particularly important, for example where the output

images are directly used for data visualization, exploration or forecasting, but that

an unconstrained model may be more powerful for applications such as data augmen-

tation. Our work leaves open questions about how to navigate or circumvent this

trade-off. For example, there may be opportunities to compensate the target domain
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transfer by carefully relaxing the constraint (reducing the regularization weights) over

the course of training, or by incorporating priors over anatomical structures.

We demonstrated our technique on two modalities of brain MRIs, yet SIT-GAN

may offer even more potential for analyzing other organs and disease processes without

a standard coordinate frame. For example, it is challenging to visualize the radio-

graphic progression of lesions, abscesses, aneurysms, and many other pathologies on

either a patient-specific or population-wide basis, despite a large amount of existing

longitudinal data. In many cases, the progression of these pathologies is dominated

by a combination of localized morphological and textural changes, making SIT-GAN

a suitable model for learning to visualize such disease progression. Indeed, training

high-quality unconstrained models on unaligned images of faces or people remains a

difficult problem in computer vision, and so the robustness offered by SIT-GAN may

be particularly important in applications to pathologies with variable locations.

As suggested by our stroke experiment, SIT-GAN may also be valuable in visualiz-

ing morphological and textural variation of organs or radiological findings conditioned

on patient phenotype. It can provide a visual representation of counterfactuals and

known correlations on a patient-specific basis, and because spatial transforms prop-

agate segmentations from the original image to the synthetic image, one could also

characterize and compare changes across different anatomical structures. These capa-

bilities may even be helpful for generating hypotheses for clinical research, although

it remains unclear how to best integrate such a model into a clinical research pipeline

in order to identify promising directions.

Another key question of ongoing study in image-to-image translation is how to

quantify and visualize uncertainty in model outputs, as well as identify distinct modes

in the output distribution. This remains a difficult task for conditional GANs, and

is particularly relevant in many clinical applications such as prediction of patient-

specific as well as population-wide disease trajectories. Spatial-intensity transform

constraints may be useful in this context as a way to constrain the search space, since

probabilistic formulations of image-to-image translation may be less likely to penalize

unrealistic outputs over the course of training.
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The development of robust conditional GANs is particularly crucial in the context

of the unpredictable ways that such models can induce artifacts, as well as the need for

reliable and reproducible methods in clinical research and practice. Image-to-image

translation is increasingly important for medical image analysis and clinical research

as large, multi-site and longitudinal imaging datasets become available for a wider

range of diseases and modalities. With their long history of success in medical image

registration, it seems likely that spatial-intensity transforms will continue to play a

key role as a prior for models in medical image-to-image translation.
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