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Abstract

Electronic healthcare records are the new standard for storing healthcare data due
to their ability to be easily and quickly accessed. Additionally, a new class of fit-
ness records have been created in recent years due to the rise of wearable devices by
companies like Fitbit, Apple, and Google. Yet these fitness records are all stored in
different formats and can be difficult to extract from the proprietary systems in which
they are stored. There are great potential benefits for individuals, healthcare profes-
sionals, and researchers to combine this new source of fitness data with traditional
patient records in a secure way. The Solid project offers a solution to this problem
by allowing individuals to store and manage their health data through the use of per-
sonal data stores. The main contributions of this thesis are extending Solid libraries
to support the development of mobile Solid applications, developing the functionality
to integrate sensor data from phones and wearables into Solid and model it using the
FHIR RDF specification, and creating Solid Health, a proof-of-concept decentralized
mobile health application.
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Chapter 1

Introduction

In an increasingly digital world, electronic healthcare records have come to replace

paper documents [1]. This opens up new possibilities for healthcare, as multiple

institutions can now share and collaborate on medical records with ease. It is clear

that when data becomes easier to create and easier to share, many new things are

possible.

While this increased collaboration between medical institutions is beneficial, the

current system is far from perfect. Between 2009 and 2019, healthcare data breaches

have resulted in the theft or loss of over 230 million healthcare records in the United

States [2]. Additionally, in order to improve the usefulness of electronic medical

records, it is necessary to give patients more authority to decide who to trust with

access to their highly sensitive records [3]. Allowing patients to have authority and

unrestricted access to their medical records would be a profound step toward maxi-

mizing the security and utility of healthcare records.

A variety of systems have been proposed with the goal of addressing this problem.

More often than not, they feature a highly technical solution to make healthcare

data widely available but still secure, involving the use of a decentralized blockchain,

cryptographic keys, or both. While these solutions may address the issue of data

availability and security, they do not necessarily make this data easy and simple to

use, since it may be difficult for patients and institutions to efficiently navigate such

complex systems.
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There exist other decentralized solutions that are much easier to comprehend. The

Solid project has created a distributed data platform that allows users to exhibit real

ownership of their data without the need for a blockchain or related technologies [4].

This is done through the use of Solid pods, which are personal data storage servers

that individuals can host for themselves, or delegate to a trusted third party. Solid

is designed to let users decide exactly who else should have access to this data on a

granular level, so that trusting someone with access to data is not an all-or-nothing

dilemma. Solid has been used in a growing number of Web applications that protect

users’ privacy by taking advantage of its unique data ownership abilities [5].

One area that Solid is not yet capable of operating in is native mobile applications.

Over the past few years, mobile devices have emerged as the most popular way for

users to access the Web [6]. It is therefore essential to provide a mobile-first solution

to address the issue of health data ownership and usability. In this thesis, I present

Solid Health as a proof-of-concept mobile application to manage, record, and share

health and fitness data in a secure and useful way. Through the use of smartphone

sensors and wearable devices, Solid Health can make health observations and upload

them to a user’s Solid pod. These records are formatted using an open standard

for healthcare records, and the user has the option to share some of their data with

others, such as family, coaches, and doctors on a case by case basis.

In this thesis, I discuss the following contribution I have made:

1. Extended Solid libraries to support the development of Solid apps in React

Native.

2. Developed functionality to integrate sensor data from phones and wearables

into Solid and model it in FHIR RDF.

3. Created Solid Health, a proof-of-concept decentralized mobile health applica-

tion.

The motivating use case for this project is a distributed electronic health record

storage system that can be used by researchers to conduct studies involving the col-
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lection of individuals’ health and fitness data while preserving the privacy of all par-

ticipants. The SNAPSHOT study is an example of an existing study which has

collected a variety of health data about users in order to examine relationships be-

tween mood, stress, social interactions, sleep, and other factors related to well-being

[7]. Participants in the SNAPSHOT study used a wearable device to measure sleep-

wake patterns and installed a mobile application that recorded information about

their text messages, phone calls, and application usage. Enabling such a study to be

conducted with guaranteed privacy measures would significantly reduce the potential

for data misuse and hopefully incentivize more users to participate in such studies

that require sensitive information but provide benefits to individuals and society at

large.
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Chapter 2

Background

2.1 Solid

Solid is a proposed set of conventions and tools for building decentralized social

applications [4]. Solid builds on the standards and protocols of the Web in order to

offer users secure storage and sharing of information. In the Solid ecosystem, a user

is represented by a WebID, which is a Uniform Resource Identifier (URI) that can be

accessed using the Hypertext Transfer Protocol (HTTP). A user’s WebID represents

a retrievable document containing that user’s public profile, which may include their

name, picture, and other public information about them [8]. This document also

indicates the location of their Personal Online Datastore, or pod, which is a server

that stores all of that user’s information in the Solid ecosystem. For example, my

WebID is https://jas0n.solid.community/profile/card#me, and my Solid pod is

located at https://jas0n.solid.community. The Solid project has defined a set of

protocols that determine how Solid pod servers and Solid client applications interact.

The details of each of these components are discussed below.

2.1.1 Server

The decentralized nature of Solid originates from the ability for a user to host their

Solid pod anywhere that is accessible on the Web. For instance, a pod can be hosted
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on a Raspberry Pi1 in the user’s home, on a virtual machine rented from a data

center by the user, or on a multi-user pod provider that is professionally managed

by an organization; the possibilities are not limited in any way, and each user has

the ability to change where their pod is hosted at any time without consequence.

This is in contrast to existing platforms such as Facebook which store all user data

in a centralized database, leaving users without any control over how their data is

managed. Regardless of where a pod is hosted, that pod must communicate with

clients according to well defined protocols. The Solid project maintains an open

source reference implementation of a pod server called node-solid-server that is

freely available for anyone to use to host their own Solid pods [9]. Additionally, the

Solid project also maintains a list of third party pod providers, which are organizations

that host Solid pods for users on infrastructure that the organization manages [10].

A user’s pod acts as a repository of data for that user and their Solid applications.

Data in a Solid pod is arranged as a file system, where each directory and each file

has permissions that specify which Solid users can perform certain actions, such as

reading or modifying a file. Solid pods use the Web Access Control specification,

which is a decentralized cross-domain access control system that enables the owner

of a pod to have precise control over who has access to each part of their pod [11].

This use of strict access control is how Solid secures a user’s data and enables users

to control exactly who they choose to share their data with.

2.1.2 Client

The security benefits of storing data in a Solid pod would be meaningless without a

way to generate and apply that data. That is the purpose behind the solid-auth-

client JavaScript library, which allows Web applications running in a user’s browser

to read and write data residing in that user’s pod [12]. This is possible through

the use of the WebID-OIDC authentication specification created by Solid [13]. This

specification is based on the OAuth 2.0 and OpenID Connect protocols, which are

1A Raspberry Pi is a credit card–sized computer used for education and digital making. More
information can be found at https://www.raspberrypi.org/documentation/.
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open standards for identify verification on the Web [14, 15]. WebID-OIDC differs in

that it is designed to operate in a fully decentralized ecosystem like Solid, where there

are many different identify providers and resource servers that must work together.

In order to authenticate a user, a Solid Web application offers users the ability

to sign in using Solid, similar to how websites like Google and Facebook can act

as OAuth identity providers to third party websites. However, since Solid is a dis-

tributed ecosystem, there is no single Solid server that can authenticate every user.

Rather, users must also specify the location of their pod provider that will be able

to perform authentication for them. Once a user specifies and is authenticated by

their pod provider, the application receives session data for the current user. This

data includes the user’s WebID as well as cryptographic tokens that are used by

solid-auth-client to prove the identify of the user and application when accessing

resources on a Solid pod.

When a user’s pod is the only storage destination for an application, that user is

able to control all of the data that the application has created. This gives the user

the ability to easily export and import application data at any time between any

two compatible applications, thereby avoiding walled garden ecosystems that deprive

the freedom to choose preferred applications or devices. For example, consider the

situation where two messaging applications on Solid use the same ontology to store

data (ontologies are described in Section 2.2.2). As a result, if a user decides they no

longer prefer their current messaging application, they can switch to the other one

without losing any contacts, message history, or existing conversations. Furthermore,

this change would not even be noticeable to other users in their conversations. When

users are able to choose applications based on their personal preferences without

consequence, everyone benefits.

2.2 Linked Data

Linked Data is a set of principles that can be used to transform the web from a

distributed file server into a distributed database [16]. Currently, it is common for
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resources on the Web to reference other resources by their URI. For example, the

homepage of a website written in HTML may contain links to the website’s other

pages, links to images, and a link to a style sheet defining the appearance of the site.

This scheme allows the Web to be viewed as a graph of interconnected resources,

where each node is a URI that represents a retrievable resource. This graph does not

provide much information about the relationship between resources, only that they

either exist or they do not. In contrast, Linked Data resources describe exactly their

relationships to other resources [17]. These relationships are defined by URIs as well.

Ontologies define the URIs that can be used as relationships between resources, as

well as the meaning of these relationships. The Resource Description Framework is

a language used to describe these concepts and their relationships [18]. Linked Data

graphs can be queried using the SPARQL Protocol and RDF Query Language [19].

2.2.1 Resource Description Framework

The Resource Description Framework (RDF) is an abstract framework for creating a

directed, labeled graph of information on the Web [18]. RDF documents contain a set

of statements, where each statement consists of a subject, a predicate, and an object.

These statements are called triples. The presence of a triple is an assertion that the

subject has a one-way relationship with the object, and this relationship is described

by the predicate, as shown in Figure 2-1. A predicate must be a URI, while subjects

and objects may be a URI, a literal, or a blank node. A literal is a definite value,

such a number, string, or date. A blank node is an embedded RDF document that

contains more triples describing it. The power of Linked Data lies in the fact that

each URI used as a subject or object represents a document on the Web that can be

retrieved to further expand the graph of information created by the RDF document.

Figure 2-1: The graph of an RDF triple [18]
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Serializations

The RDF specification describes the type of data that is contained in an RDF doc-

ument, but not the exact format of this data. This is because RDF can be used in

many different contexts, each of which might have a convenient but different way to

represent RDF data. As a result there are several serialization formats for RDF, some

of which are:

∙ RDFa, which embeds RDF triples into HTML documents [20].

∙ JSON-LD, which represents triples in JavaScript Object Notation [21].

∙ Turtle, a format designed to be compact and natural [22]. An example of a

Turtle document is shown in Figure 2-2.

<#me> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person>.

<#me> <http://xmlns.com/foaf/0.1/name> "Jason Paulos".
<#me> <http://xmlns.com/foaf/0.1/image> <me.jpeg>.

Figure 2-2: A Turtle RDF document

The remainder of this thesis will focus on Turtle, since that is the most common

RDF serialization used by Solid. In Turtle, triples are formed by statements that end

with a period. The Turtle document from Figure 2-2 asserts three RDF triples. The

subject of these triples is the relative URI #me. Assuming the document is accessed

from https://jas0n.solid.community/profile/card, the absolute URI that the

subject refers to is https://jas0n.solid.community/profile/card#me2. The first

triple asserts that the object #me conforms to the type http://xmlns.com/foaf/0.

1/Person. This is a type from the Friend of a Friend (FOAF) ontology, discussed in

Section 2.2.2. Using this same ontology, the second triple asserts the name of #me is

Jason Paulos, and the last triple asserts that https://jas0n.solid.community/

profile/me.jpeg is an image representing #me.
2This URI is my WebID, as shown in Section 2.1. In fact, Figures 2-2 and 2-3 are a subset of the

triples asserted by my Solid profile.
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@prefix foaf: <http://xmlns.com/foaf/0.1/>.

<#me>
a foaf:Person;
foaf:name "Jason Paulos";
foaf:img <me.jpeg>.

Figure 2-3: An equivalent Turtle RDF document

Figure 2-2 is a basic example of three triples, but it is quite repetitive. Figure

2-3 is a more compact Turtle document that contains the exact same triples. This

compact forms takes advantage of a few shortcuts in the Turtle syntax:

∙ A namespace can be defined using the keyword @prefix, followed by a name

for the namespace and the URI it is describing. The name of a namespace

is arbitrary, and elsewhere in the document, the namespace can be referenced

using its name followed by first a colon, then an identifier. This reference is

equivalent to the URI formed by the namespace’s URI followed by the identifer,

so foaf:Person is equivalent to http://xmlns.com/foaf/0.1/Person.

∙ The predicate "a" may be used as a shortcut for the URI http://www.w3.org/

1999/02/22-rdf-syntax-ns#type. This predicate states that the subject con-

forms to the type indicated by the object. This predicate is extremely common,

so using "a" generally improves the readability of a Turtle document.

∙ If multiple triples have the same subject, they can be combined into a compound

statement. This statement begins with the common subject, then the predicate

and object of the first triple, followed by the predicates and objects of the

remaining triples. A semicolon indicates the end of one triple in the compound

statement and the beginning of another. After the final triple, a period marks

the end of the compound statement.
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2.2.2 Ontologies

Ontologies, also known as vocabularies, specify the predicates and classes that RDF

documents can contain. Classes are types that have specific attributes or uses. An

instance of a class is any RDF subject in a triple where the predicate is http:

//www.w3.org/1999/02/22-rdf-syntax-ns#type and the object is the class itself.

Attributes are predicates defined by an ontology to assert relationships where the

subject is an instance of a class. Ontologies are typically domain specific, and many

ontologies can be used together in an RDF document.

Friend of a Friend

The Friend of a Friend (FOAF) ontology defines relationships and classes useful in

a social network [23]. All of its definitions follow the prefix http://xmlns.com/

foaf/0.1/. Figure 2-4 shows a subset of the classes and attributes defined by the

FOAF ontology. Note that attributes may be applied to classes multiple times. For

example, multiple triples with the same foaf:Person as the subjects, foaf:knows as

the predicates, and different foaf:Persons as objects express that the subject knows

multiple other people.

Fast Healthcare Interoperability Resources

The Health Level Seven Fast Healthcare Interoperability Resources (HL7 FHIR, or

just FHIR) specification is a standard for representing and exchanging electronic

healthcare records [24]. The FHIR specification defines an RDF ontology that can

be used to represent electronic healthcare records [25]. This ontology follows the pre-

fix http://hl7.org/fhir/. Figure 2-5 shows a subset of the classes and attributes

defined by the FHIR ontology. The most relevant part of the ontology for the re-

mainder of this thesis is the fhir:Observation class, which records a measurement

made about a patient. Observations are extremely flexible and can represent arbitrary

information, and they typically have an associated time or duration which describe

when the observation took place.
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FOAF ontology

Person: represents a real person

name (string) the name of the person

img (Image) an image of the person

age (integer) how old the person is in years

mbox (a mailto URI) an email that the person owns

page (Document) a web page that the person owns

knows (Person) a friend of acquaintance of the person

...

Document: the URI of a document on the web

Image: a subclass of Document; must represent an image

...

Figure 2-4: A subset of the FOAF ontology. Classes are bolded and attributes are
slanted.

2.2.3 SPARQL

The SPARQL Protocol and RDF Query Language is a general-purpose query language

for RDF, and it has a similar syntax to Structured Query Language (SQL) [19].

SPARQL queries can filter and select specifc parts of triples from an RDF document,

making it possible to form powerful and precise queries. Figure 2-6 shows an example

of a simple SPARQL SELECT query that can be used to find the title for a book. In

addition to querying triples, SPARQL can also be used to modify the set of triples

in an RDF document, through the use of INSERT and DELETE queries [26]. This

functionality is useful for application which store state as RDF data, as it allows an

RDF document to be used similarly to a SQL database. In Section 2.2 I mentioned

that one of the benefits of using Linked Data is that the Web becomes a distributed

database of information. SPARQL offers the ability to query and add new information

to that database.
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FHIR ontology

Observation: a measurement made about a patient

subject (Reference to Patient) the subject of the observation

code (CodeableConcept) the type of observation

effectiveDateTime (dateTime) when the observation happened

valueQuantity (Quantity) a quantity associated with the observation

...

Reference: a reference to a Patient or other resource

link (URI) a link to the referenced resource

...

Patient: an individual or animal receiving care
...

CodeableConcept: reference to a terminology or just text

coding (CodeableConcept.coding) code defined by a terminology system

text (CodeableConcept.text) textual representation of the concept

CodeableConcept.coding: Code defined by a terminology system
...

dateTime: represents a date and time
...

Quantity: a quantity with a unit

value (decimal) the value of the measured amount

unit (string) a human-readable form of the unit

system (URI) the identification of the system for the unit

...
...

Figure 2-5: A subset of the FHIR ontology. Classes are bolded and attributes are
slanted.
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RDF triple:

<http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title>
"SPARQL Tutorial" .

SPARQL query:

SELECT ?title
WHERE
{
<http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title>

?title .
}

Result:

title="SPARQL Tutorial"

Figure 2-6: A SPARQL select query

2.3 React Native

React Native is an open source framework created by Facebook for building cross-

platform native applications [27]. React Native allows developers to write iOS and

Android application using JavaScript and React, another open source framework cre-

ated by Facebook for creating user interfaces (UI). React Native applications have

an embedded JavaScript runtime where this cross-platform JavaScript code is exe-

cuted, but unlike traditional Web applications, the user interface of React Native

applications is rendered with native UI components, not HTML. As a result, React

Native applications are often indistinguishable from completely native applications.

Since core application logic is often written in JavaScript for React Native apps,

the framework exposes many native APIs and components to the JavaScript runtime.

Additionally, to increase compatibility with JavaScript applications and libraries that

run in web browsers, the framework also supports a limited number of Web APIs in

its JavaScript runtime as well.

In addition to the native APIs that React Native exposes by default, the framework

also allow applications to incorporate 3rd party native modules, which are libraries

written using the platform’s native environment and APIs, such as Objective-C in iOS
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or Java in Android [28, 29]. Native modules expose JavaScript bindings to their native

code, allowing it to be called from the JavaScript runtime. This allows React Native

apps to access all resources available to traditional native apps, thereby removing any

limitations from a React Native app.

2.3.1 Web APIs

React Native provides some existing browser APIs to its JavaScript runtime. Among

them are:

∙ HTTP Requests: React Native provides support for the XMLHttpRequest API

and the Fetch API, which are existing standards for executing network requests

from JavaScript [30, 31]. This is vital for compatibility with browser JavaScript,

as many existing browser application and libraries make extensive use of these

APIs.

∙ Sockets: React Native supports the WebSocket Protocol [32]. This protocol

allows applications to open a two way communication channel with a WebSocket

server. This channel can stay open indefinitely and can encode text and binary

data.

Notice that React Native does not support the Document Object Model (DOM)

API. This API defines an extensive list of types, functions, and events related to

the rendering and structure of Web pages [33]. This API is not compatible with the

native UI components React Native uses to render applications. This means that

any user interface code in an existing web application is incompatible with React

Native. Therefore, to port most web applications to React Native would require at

least rewriting all of the code related to its user interface.
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Chapter 3

Related Work

3.1 Healthcare Solutions

This section focuses on current attempts at distributed medical records systems with

access control and how they compare to the distributed storage guarantees offered by

Solid.

3.1.1 MedRec

MedRec is a proof-of-concept decentralized record management system that uses an

Ethereum blockchain as a means of keeping track of electronic health records [34].

The system is designed to integrate with institutions that already have a large number

of medical records to allow them to exchange records securely on behalf of patients,

such as when a patient switches to a new doctor. A blockchain is used to provide

an immutable record of where data is located and who has access to it, and smart

contracts are used to enforce cooperation between institutions; the records are still

stored in institutions’ databases. Patients are given access to their records through

the use of a custom client, which downloads a copy of the blockchain to look up

where their records are located, then queries the institutions that house the requested

records. MedRec solves the complex problem of getting separate medical institutions

to exchange health records quickly and securely, yet the records are still stored by
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institutions, not the patients. As a result, if an institution’s database becomes un-

available or compromised, it could result in data theft or even complete data loss.

This also leaves institutions as a large target for potential data breaches. In contrast,

Solid offers users the ability to store their data in their own pods, which are not tied

to large institutions.

3.1.2 Medicalchain

Medicalchain is a decentralized medical platform [35]. It offers the ability to store

and manage medical records, as well as a system to bill patients for medical services.

It uses operates using two blockchains: the first is a Hyperledger Fabric blockchain

used to store medical records, and the second is an Ethereum blockchain used for

billing and smart contracts. The storage blockchain stores encrypted medical records

and offers a way for the record’s owner to share encryption keys with others, such as

doctors or family members. There is also a way to revoke a user’s access, which is done

by re-encrypting records with a new key. This means that past records may always be

available to someone even if they were only given access for a brief period of time. In

contrast, access control in Solid is able to stop others from accessing data immediately

after the user has decided to stop sharing with them. Medicalchain is additionally

complicated by the MedToken, which is a cryptocurrency used in Ethereum smart

contracts for patients to pay for medical services. The use of a cryptocurrency may be

a high barrier to entry for patients and hospitals to adopt the Medicalchain system.

3.2 Distributed Data Platforms

This section focuses on distributed platforms for data storage and how they compare

to Solid.
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3.2.1 InterPlanetary File System

The InterPlanetary File System (IPFS) is a distributed data storage network that pri-

oritizes data availability and immutability [36]. This is achieved through redundant

data storage and content hash verification. IPFS also provides the ability for stored

data objects to link to other objects, thereby creating the ability to form a large net-

work of related information. However it is important to note that data objects can

be distributed among any number of nodes in the IPFS network. This redundancy

greatly increases the availability of objects, but this means that updating data is

more complicated than simply editing and saving an existing document. In contrast,

Solid pods are the single source of truth for a user’s data; this makes updating data

extremely simple. Solid also offers a way for clients to subscribe to real-time notifi-

cations of changes to documents using WebSockets, so that updates can immediately

be noticed. The same cannot be said of IPFS at this time.

3.2.2 Blockstack

Another framework for creating decentralized applications is Blockstack [37]. Block-

stack applications use personal data lockers, similar to Solid pods, to store users’ data.

The user has complete control over where their locker is hosted, and they have the

ability to move their locker and add or remove apps from accessing their locker at any

time. A blockchain is used to record references to users’ lockers, which facilitates new

users joining the system and users changing where their lockers are located. Unlike

Solid pods which store data in plaintext, Blockstack has support for full encryption

of the contents of lockers. In fact, this is how access control is enforced: plaintext

data is readable by everyone, and data must be encrypted for it to be private. This

may incur performance issues, especially on mobile devices, as searching for specific

objects or files could require an application to download every object from a locker,

decrypt them, then verify if the documents contain what the application is searching

for. In contrast, because Solid uses a robust permissions system in place of data

encryption for access control, it allows for efficient analysis and filtering of remote

29



files for clients with appropriate access rights through the use of SPARQL queries.

In terms of interoperability features, Blockstack differs from Solid in that it does not

prioritize a way to supported Linked Data or similar schemes. Collaboration between

groups of users is possible through the use of a service called Radiks, however this

introduces a centralized component to the system. In these groups, one administrator

has complete control over membership, and each group exists in a completely isolated

environment. This means that if a user wishes to share the same file with multi-

ple groups, they need to copy the file into each group’s space and encrypt it using

each group’s public key. Because Solid does not rely on encryption to regulate access

control, it has no such restrictions.

3.3 Mobile Linked Data Applications

This section explores the use of Linked Data in past mobile applications and how

they compare to Solid mobile application.

3.3.1 DBPedia Mobile

DBPedia Mobile is a client application for mobile devices that allows users to ex-

plore geospatial Linked Data objects on a map [38]. Locations for points of interest

are obtained from DBPedia, which contains a collection of Linked Data information

gathered from Wikipedia. The application makes use of a device’s GPS sensors to

show a map of the nearby area and any points of interest from DBPedia which fall

in that area. The user can filter which type of locations they are interested in seeing

and the map will show new points of interest that match that filter. By selecting a

specific point of interest, more details are shown about it, including a description and

pictures. All of the data in DBPedia Mobile is populated with Linked Data obtained

a remote server that executes SPARQL queries. DBPedia Mobile shows how the util-

ity of a data set increases greatly when it is easier to access. It is a great example

of how mobile devices and sensors bring utility and convenience to extensive Linked

Data data sets. However, DBPedia Mobile runs in a mobile device’s Web browser,
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and the only way it can obtain sensor data is when a companion application passes in

readings from the device’s sensors when starting DBPedia Mobile. In contrast, Solid

mobile applications are in a better place to benefit from the combination of local

sensors and Linked Data because they are able to access device APIs directly at any

time.

3.3.2 RDF on the Go

RDF on the Go is an Android application that implements a full-fledged RDF data-

store and SPARQL query processor [39]. RDF on the Go showcases this by showing

a map of points of interest that are stored in its internal RDF datastore. Like DBPe-

dia Mobile, the user’s location is obtained through the device’s GPS sensors so that

nearby points of interest are displayed. But unlike DBPedia Mobile, querying for

nearby points of interest is done directly on the device. RDF on the Go also allows

users to directly compose and execute SPARQL queries locally. This is particularly

useful because it minimizes the application’s reliance on central servers to operate,

as well as allows the application to continue to work without network access. Addi-

tionally, RDF on the Go shows that mobile device processors are powerful enough to

manipulate and contribute to RDF datastores. Many years later, Solid mobile appli-

cations take this idea even further by having a ready-to-use remote location to export

data: Solid pods. Both RDF on the Go and Solid show that since mobile applica-

tions are so prevalent and have a range of onboard sensors, they have the potential

to greatly increase the content and quality of existing Linked Data data sets.
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Chapter 4

System Overview

My main contributions in this thesis are:

1. Extended Solid libraries to support the development of Solid apps in React

Native.

2. Developed functionality to integrate sensor data from phones and wearables

into Solid and model it in FHIR RDF.

3. Created Solid Health, a proof-of-concept decentralized mobile health applica-

tion.

The following sections discuss and evaluate these contributions in detail. Ad-

ditionally, the source code for the Solid Health app is available in the repository

https://github.com/jasonpaulos/solid-health.

4.1 Purpose

Solid Health is a decentralized application that can record and manage a user’s health

and fitness activity. Solid Health uses the Solid framework to store all health data

in a user’s Solid pod. However, unlike previous Solid applications, Solid Health does

not run in a user’s browser, but rather is installed as a native application on a user’s

phone. As a result, Solid Health can access platform-specific APIs and interact with
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low-level system components that would otherwise be impossible to do from a web

browser. This enhanced execution environment makes it possible for Solid Health

to gather health and fitness data from the sensors in a user’s mobile device and any

connected smartwatches or fitness trackers.

The purpose of the Solid Health application is to provide a decentralized way

to record and manage a user’s health and fitness activity. All data collected from

a user is stored on that user’s Solid pod according to the FHIR RDF specification

for interoperability and ease of use [25]. This is consistent with the central ideas of

Solid, as it gives the user complete control over the location and accessibility of their

data. Additionally, since the fitness data is stored in an open format, Solid Health

avoids vendor lock-in so individual users are free to incorporate other apps or service

that read or modify their fitness data, unlike the proprietary formats of other mobile

fitness services.

Currently Solid Health is able to collect the number of steps walked per day, the

distance walked per day, and the heart rate of a user. Since this data is generally

unable to be collected from existing Web APIs, Solid Health must be implemented as

a mobile application in order to function. As a result, it is possible for the application

to collect any health or fitness data that is available to the user’s device.

4.2 Environment

Solid Health has been developed to run as a mobile application on an Android phone.

It has been tested on a Google Pixel phone running version 10 of the Android operat-

ing system. Android was chosen as the target platform because of its widespread use

and open development standards. In contrast, the development of iOS applications

must take place on macOS and requires a paid Apple developer account to test on

devices.

I have chosen to use the React Native framework to develop Solid Health. React

Native exposes some Web APIs and allows portions of an application to be written

in JavaScript. It is possible to use existing JavaScript Web libraries in React Native,
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although there are many restrictions since React Native does not provide every API

available in a modern web browser. Despite this, React Native serves as a great

starting point to using existing Solid JavaScript libraries on a mobile device.

As a result of using React Native to develop Solid Health, many of the existing

JavaScript libraries used by Solid Web applications can be used directly by a mobile

application. This was preferable to using Java or Kotlin to develop a native Android

application, since I would have had to rewrite all of the existing Solid libraries in a

new language, and each Solid Web application that wanted to be ported to a mobile

application would also have to be rewritten in another language.

4.3 Functionality

This section describes the three major functions that make up the Solid Health ap-

plication.

4.3.1 User Authentication

It is essential for any Solid application to obtain permission to read and write data to

a user’s pod. This is done through the Web-OIDC authentication protocol, in which

the Solid application asks the user to specify their pod provider, and then requests

permission to read and write data to the user’s pod from this provider. This is often

done by redirecting the user to their pod provider’s website, having the user log in

with their pod provider credentials, then confirming that they want to trust this Solid

app to access their pod. Once that is complete, the pod provider redirects the user

back to the application and providers the WebID of the user and tokens that can be

used to perform that actual reading and modifying of resources on the pod.

Problem

Solid provides a library called solid-auth-client that allows users to authenticate

with their Solid provider and grant an application access to their pod [12]. Unfor-

tunately, the authentication mechanisms used by solid-auth-client are unable to
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be used in a React Native environment, since the library relies on opening a popup

browser window where the user is redirected to their pod provider. Furthermore,

it is not advisable to modify an existing OAuth library to comply with Web-OIDC

because the this protocol is under active development and may change at any time.

Therefore, it is beneficial to be able to use the original solid-auth-client library

so that future updates are incorporated into applications as easily and quickly as

possible.

Workaround

In order to authenticate users from a mobile application, I chose to implement au-

thentication through a proxy website. In this scheme, when a user wants to sign

in to Solid Health, the application opens a web browser directed to a proxy web-

site. For Solid Health, the proxy website is https://jasonpaulos.github.io/

solid-health/. This website uses the solid-auth-client library to authenticate

as a normal website would. Once authentication is successful and the user’s session in-

formation, including their WebID and authentication tokens, is available to the proxy

website, the website redirects the user back to Solid Health using deep linking1, and

the session information is included in this redirect.

Consequences

This method of authentication works with an unmodified version of the solid-auth-

client library running on the proxy website, which makes any future updates easy

to incorporate. However, it does have some drawbacks. Mainly, every app must

have a hosted proxy website in order to perform authentication. This is contrary to

the decentralized nature of Solid, although because of free static website hosting by

GitHub2 it is not as much of a burden as it would have been years ago.

1Deep linking is the ability for web pages to open links in a supported native application. See
https://developer.android.com/training/app-links for more details.

2GitHub offers free static website hosting for public repositories through a feature called GitHub
Pages. See https://pages.github.com for more details. This is how the proxy website for Solid
Health is hosted.
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A larger drawback is the issue of security. There is a separate set of OAuth best

practices for native applications [40]. These recommendations are put in places to

ensure that attackers cannot gain access to sensitive information during the authen-

tication redirect back to the application. Unfortunately, this workaround does not

follow these guidelines. As an additional measure, security could be increased by the

application generating a public and private key pair, then including the public key in

the redirect to the proxy website. Once the proxy website obtains the user’s session

information, it could encrypt it with the public key before sending it to back to the

application. This would prevent any other apps intercepting the redirect with session

information, but does not prevent other apps from arbitrarily redirecting to the app

and injecting unwanted session information.

4.3.2 Data Collection

The most important feature of Solid Health is the ability to use Android APIs to

collect and transmit fitness data to a user’s Solid pod. This section discusses how

the fitness data is collection from the user, transmitted to the user’s pod, and the

format in which it is stored. I have tested Solid Health’s data collection abilities with

a Fossil Sport Smartwatch running Wear OS by Google. This watch has GPS and

heart rate sensors that are able to produce data that is eventually recorded as health

observations in the Solid Health app.

Collection

Solid uses the Google Fit APIs to access fitness information for the current user of

the device. The Google Fit APIs are part of Android’s Google Play services and are

supported in Android 2.3 and higher [41]. The APIs are able to collect raw data from

a variety of sensors on and off the device, then process this data into concrete fitness

actions and store it on Google’s servers, as shown in Figure 4-1. Solid Health uses the

react-native-google-fit native module, which exposes several Google Fit APIs as

JavaScript functions [42]. The Solid Health application is able to call these methods
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to read the number of steps taken and the distance walked by the user on a given

day, as well as the user’s heart rate values for a time range.

Figure 4-1: Google Fit architecture [41]

Google Fit APIs collect fitness data for a user in several ways, as described below:

∙ The user’s phone detects fitness activity through its sensors. This can include

accelerometer and GPS sensors which detect motion when a user is walking or

running. This data is then used to calculate how many steps the user has taken

in a specific time frame as well as the actual distance travelled.

∙ A dedicated fitness device records activity. If the user has paired a device with

additional sensors, such as a smartwatch, that device’s sensors will be used
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to record fitness data as well. Many smartwatches have an accelerometer or

even GPS senors that can provide more information for the Google Fit APIs

to estimate the user’s movements. Additionally, some smartwatches have the

ability to measure heart rate, and when possible this data is also collected by

the Google Fit APIs.

∙ One of the user’s applications submits fitness records, with the user’s permission.

For instance, the user might use an exercise app to log runs taken without their

device.

∙ The user manually enters fitness records through the official Google Fit app or

website.

Since most phones have senors capable of measuring movement, Solid Health is

able to collect the number of daily steps taken and distance travelled for most users.

For users who also have a wearable device capable of measuring heart rate, Solid

Health is able to collect those heart rate measurements as well.

Transmission

Once the Google Fit APIs have collected fitness data about a user, the Solid Health

application must query the APIs to read this data.

Currently, Solid Health queries the APIs for new data every time it is launched. It

asks the Google Fit API for records within the current month, and if the application

sees that there is data it has not already stored in the user’s pod, it converts the data

to a valid RDF document and uploads it so the user’s pod. Once the data for that

month has been uploaded, the app asks the Google Fit APIs for records from the

previous month and then uploads any new data from that month, continuing until it

finds a month with no new data. The next section describes the exact format and

location of the uploaded data in a user’s pod.

Since Solid servers require the use of TLS, all pod locations should be only acces-

sible through HTTPS. As a result, uploading the fitness records to a user’s Solid pod
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is secure because it happens in an encrypted channel. However, Solid Health can-

not guarantee the security of any data transferred from a smartwatch to the user’s

Android device. It is possible for the data to be transferred over Bluetooth, WiFi,

or a cellular connection. Bluetooth specifically may be vulnerable to snooping and

Man-in-the-Middle exploits. Unfortunately Solid Health has no way to secure this

transfer. It can only trust the Google Play services in the Android operating system

to perform this transfer as securely as possible. However, even if such a breach were

to occur, an attacker would only become aware of data currently being sent from the

smartwatch; the user’s entire fitness history would not be compromised.

Storage

Once the Solid Health application has collected fitness data, it must convert the data

to RDF and it must find the correct location in the user’s pod to store the data.

The data is converted to RDF so that, like many other Solid resources, it can

add to the user’s Linked Data network. For the highest level of interoperability

with other healthcare applications and data, Solid Health serializes fitness data as

objects that adhere to the FHIR ontology. Specifically, every point of data that

the application collects is made into an instance of the RDF class with URI http:

//hl7.org/fhir/Observation, as required by the FHIR specification. As a result,

other healthcare applications that understand FHIR Observations will be able to

read and operate with the fitness data created by Solid Health. This makes the

utility of the application almost limitless, as there are no restrictions on how the user

is able to share or consume their fitness data outside of the application.

Figure 4-2 shows an example of single fitness record encoded into a FHIR RDF

Observation. The record measures the distance walked on March 3rd, 2020, and has

a value of nearly 3457 meters.

Once the data has been serialized in the proper format, Solid Health must save

the data to a specific location in the user’s pod. Since users’ preferences may vary

with regard to where they want their health information to live on their pod, Solid

Health consults the user’s Type Index Registry to determine where it should up-
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@prefix : <#>.
@prefix fhir: <http://hl7.org/fhir/>.
@prefix rd: <http://loinc.org/rdf#>.
@prefix XML: <http://www.w3.org/2001/XMLSchema#>.
@prefix c: </profile/card#>.

:distance_20200309
a fhir:Observation;
fhir:nodeRole fhir:treeRoot;
<http://hl7.org/fhir/Observation.code>

[
<http://hl7.org/fhir/CodeableConcept.coding>

[
a rd:41953-1;
<http://hl7.org/fhir/Coding.code>
[ fhir:value "41953-1" ];
<http://hl7.org/fhir/Coding.display>
[ fhir:value "Distanced walked" ];
<http://hl7.org/fhir/Coding.system>
[ fhir:value "http://loinc.org" ];
fhir:index 0

];
<http://hl7.org/fhir/CodeableConcept.text>
[ fhir:value "Distanced walked" ]

];
<http://hl7.org/fhir/Observation.effectiveDateTime>
[ fhir:value "2020-03-09"^^XML:date ];
<http://hl7.org/fhir/Observation.status> [ fhir:value "final" ];
<http://hl7.org/fhir/Observation.subject> [ fhir:link c:me ];
<http://hl7.org/fhir/Observation.valueQuantity>

[
<http://hl7.org/fhir/Quantity.code> [ fhir:value "/d" ];
<http://hl7.org/fhir/Quantity.system>
[ fhir:value "http://unitsofmeasure.org" ];
<http://hl7.org/fhir/Quantity.unit> [ fhir:value "m/d" ];
<http://hl7.org/fhir/Quantity.value>
[ fhir:value 3456.911376953125 ]

].

Figure 4-2: A FHIR RDF record for distance walked
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load health records. The Solid Type Index Registry is a map of resources types to

locations in the user’s pod [43]. The resource type that Solid Health looks for is

http://hl7.org/fhir/Observation, since the data it creates always has this value

as its class type. If this resource type is mapped to a file location, then Solid Health

will append its health data to the file through the use of a SPARQL-based HTTP

PATCH request, which is a SPARQL INSERT or DELETE query that runs in a user’s

Solid pod. If the resource type is mapped to a directory location, then Solid Health

will append its health data to the file fitness.ttl within that directory, creating

it if it does not exist. If the resource type is not registered in the Type Index Reg-

istry, then Solid Health will add it to the registry with the location being the folder

/private/health/. The application will also create this folder as well as a file called

fitness.ttl inside of the folder.

Since there are currently no best practices with regard to storing health records in

Solid pods, I created the above approach specifically for the Solid Health application.

I believe this approach is reasonable, since multiple applications following it can

coexist without losing any data, as files are never overwritten and existing triples

are never deleted. Since SPARQL-based PATCH requests are executed on the server,

appending records happens atomically and data races are not a concern. Additionally,

since this approach allows the user to customize the location of their health records

in their pod, I believe users will find it reasonable as well.

4.3.3 Data Sharing

The Observations that Solid Health stores in a user’s Solid pod are, by default,

viewable only by the user. However, because these observations are in a Solid pod,

users are able to take advantage of Solid’s data sharing features. This means that users

can give trusted individuals such as coaches, doctors, or family members permission to

read their Solid Health observations. Once permission has been given, those permitted

will see the latest observations as soon as they are uploaded. Additionally, read

permission can be easily revoked from anyone at any time, allowing the user to have

the most control possible of their data. It is even possible to give users the permission
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to write observations as well, in case two users want to store their fitness data in a

single combined location. Thanks to the social capabilities of Solid, all of these

scenarios are possible without modifying or reconfiguring the Solid Health application.

Furthermore, other users are not forced to use the Solid Health app in order to

view shared observations. They are free to use any Solid application or website that is

able to understand FHIR Observations. The choice to store fitness data in an open

format allows Solid Health’s data to be as interoperable and impactful as possible.

4.4 Evaluation

In this section, I evaluate the contributions of this thesis:

1. Extended Solid libraries to support the development of Solid apps in React

Native.

2. Developed functionality to integrate sensor data from phones and wearables

into Solid and model it in FHIR RDF.

3. Created Solid Health, a proof-of-concept decentralized mobile health applica-

tion.

Section 4.4.1 evaluates contributions 2 and 3, and Section 4.4.2 evaluates contri-

bution 1 by converting an existing Solid browser application to a mobile application.

4.4.1 Solid Health Features

This section evaluates contributions 2 and 3 of this thesis by showcasing the features

of the Solid Health app.

Figure 4-3 shows the many different screens of the Solid Health app and how the

user navigates between them. Each screen and its features are described below:

A. This page is displayed when no user is logged into Solid Health. When the app

is first installed, this is what users see. Pressing "Sign in with Solid" will open
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Figure 4-3: Solid Health application screens and features

44



the proxy website, https://jasonpaulos.github.io/solid-health/, which

is screen B in the figure.

B. This is the proxy website opened in the device’s default web browser. It runs

an unmodified copy of the solid-auth-client JavaScript library. When the

user presses log in, the Solid authentication popup opens, which is screen C

in the figure. When the popup finishes authenticating the user successfully, it

opens the Solid Health app again using a deep link which contains the Solid

session data as a parameter. This session data includes the user’s WebID and

authentication tokens used to create subsequent requests to Solid pods.

C. This is the popup authentication screen provided by solid-auth-client [12].

It asks the user for the location of their pod provider, then authenticates the

user with that provider. After authentication is successful, the popup screen

sends the obtained Solid session data to screen B and closes.

D. This is the home page of the app when a user is logged in. The user’s picture

and name are fetched from their profile and displayed above their WebID. I

chose to display the user’s WebID as an additional security measure to make it

clear if the wrong account is being used, either as an accident or as a data theft

attempt. From here, the user can navigation to the data summary screen, E,

or sign out of the application and return to screen A.

E. This is the data summary screen. It shows the user’s steps, distance, and heart

rate range for the current day, if available. From here, each of the three statistics

can be pressed to open a data history screen, which is one of screens F, G, or

H, depending on which record type is selected. The user can also press the back

button in the app’s header or press the physical Android back button to return

to the home screen. Additionally, the top of this screen displays synchronization

information about the user’s data. In Figure 4-3, it displays a full loading bar

and the message "Done" to indicate that all syncing has finished. When the

app has received new data from Google Fit that it must sync with the user’s
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pod, the blue loading bar is updated in real time to display the percent of new

data that has been uploaded so far, and the message will change to indicate

that new data is being uploaded to a Solid pod.

F. This is the data history screen for steps. When it is first opened, it shows the

user’s step history for the current week. The top half of the screen shows a bar

graph of the current week’s history, and the bottom half shows the numerical

values for each day. Additionally, the buttons labelled "Month" and "Year"

can be pressed to change the period of data being shown. When changing to

a monthly view, the number of total steps taken in each week of the current

month are shown on this screen. When changing to a yearly view, the number

of total steps taken in each month for the past 12 months are shown on this

screen. The user can return to the data summary screen by pressing the back

button.

G. This is the data history screen for distance, where values are shown in meters.

Like screen F, this screen shows a bar graph and numerical values for the current

week, month, and year. The user can return to the data summary screen by

pressing the back button.

H. This is the data history screen for heart rate. It is similar to screens F and G,

except it displays the average heart rate for each period that can be viewed.

The user can return to the data summary screen by pressing the back button.

From Figure 4-3, it is clear that the Solid Health app offers enough features to

be a useful app. In addition to displaying the user’s fitness history for three different

metrics, this history is kept in sync with data on the user’s pod and is updated every

time the application is opened. As a result of syncing fitness records obtained from

mobile sensors to the user’s Solid pod, it is now possible for other Solid applications

to read and understand this data since it is stored according to the FHIR RDF

standard. This makes it possible to create Solid Health companion applications in

the Solid ecosystem that consume this fitness data in order to offer additional benefits.
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4.4.2 Porting an Existing App

In order for the Solid Health app to run on a mobile device, I had to extend some

Solid JavaScript libraries to be compatible with React Native. This section evaluates

this contribution by applying the steps I took to make Solid Health work in React

Native on Android to an existing Solid web application, Mark Book.

(a) Browser application (b) Mobile application

Figure 4-4: Mark Book applications for browser and mobile

Mark Book is a Solid web application that manages a user’s list of bookmarked

websites [44]. The list of websites is stored in an RDF document on the user’s pod.

Mark Book is relatively simple, since it consists of only a single page of HTML with

embedded JavaScript. When creating a mobile version of this app, I was able to

reuse large portions of the JavaScript data fetching and uploading code, however I

had to recreate the entire user interface for the app using React Native components.

Figure 4-4 shows screenshots of the preexisting Mark Book browser application and
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the mobile application I created for it. Since both application store their list of

bookmarks in the same place in user’s Solid pod, this list is always up to date in both

applications.

The code for the mobile application is available in the repository https://github.

com/jasonpaulos/markbook-app. An Android APK application bundle is also avail-

able to download from https://github.com/jasonpaulos/markbook-app/releases

and install on a supported device.

It is important to note that while Mark Book was able to be converted to a mobile

application without much hassle using the mechanisms I had already created for Solid

Health, the same cannot be said for every Solid web app. This is because I have

made modifications and created workaround for the solid-auth-client and rdflib

libraries only [12, 45]. These two libraries are essential in many Solid applications,

but applications are free to use other JavaScript libraries as well, many of which

are not compatible with React Native. So while my methods work to create mobile

applications using those two libraries, converting other existing Solid apps may require

altering their dependencies to work with React Native as well.
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Chapter 5

Future Work

5.1 Native Authentication

As I mentioned in Section 4.3.1, the current way authentication works in the mobile

Solid applications I have created has some security issues. The OAuth best practices

for native applications should be followed to create a login flow that is as secure

as possible [40]. Unfortunately it is currently very difficult to follow these guidelines

because Solid does not offer an authentication mechanism that can be used from React

Native. Either through the use of Solid libraries for Android and iOS, or by changing

the current authentication workflow of solid-auth-client to be more compatible

with React Native, the Solid project should provide a solution so that authentication

is as secure as possible.

5.2 Direct Data Transmission

As I mentioned in Section 4.3.2, when an Android wearable records fitness data, it

sends this data to the paired Android phone, which then eventually stores this data in

the user’s Google Fit account on a remote server. Ideally the Solid Health application

would be able to collect fitness data without the system uploading data to Google’s

servers, since there are additional privacy concerns if the data resides outside of a

user’s pod.
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5.3 Offline Support

One major difference between mobile applications and Web applications are that mo-

bile apps can be used without internet access. However, the Solid mobile applications

I have created are not usable without an internet connection. According to the Solid

project, the "long term vision includes local first and a flexibility of different topolo-

gies of patch-passing sync networks. However, there are no implementations yet"

[46]. The applications I have created would benefit greatly from the ability to cache

information from Solid pods for offline use and to make changes to RDF documents

that are later relayed to the pod when network connectivity is available.

5.4 iOS Support

I have chosen to develop mobile applications for Android for this project. Since

React Native applications can also run on iOS, it is possible to make the applications

I have created work on iOS as well, probably without much difficulty. However, since

the Google Fit APIs are only available on Android, Solid Health would need to be

modified to support Apple’s HealthKit API as the source of fitness activity [47].

5.5 Extending Solid Health

The Solid Health app brings together three components that have not been combined

before: the Solid ecosystem, wearable devices and sensors, and the FHIR RDF on-

tology. I hope that more applications and systems will be built in this intersection

as well, as there are many use cases for applications to build upon the work I have

done with Solid Health. For instance, an application similar to Solid Health could be

created that uses federated learning1 to train and test models with health data from

multiple users.

1Federated learning is a machine learning technique in which multiple parties create a collabora-
tive model without revealing any of their data points. https://federated.withgoogle.com/
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Chapter 6

Conclusion

Data ownership and privacy are extremely important, especially with respect to

healthcare data. The Solid platform provides a general decentralized application

framework capable of offering these features. In this thesis, I investigated the ability

for Solid to act as a decentralized manager of health and fitness data. My contribu-

tions include extending Solid libraries to support the development of Solid applications

in React Native, developing functionality to integrate sensor data from phones and

wearable into Solid and model it in FHIR RDF, and creating Solid Health, a proof-of-

concept decentralized mobile health application. I have evaluated these contributions

by showcasing the features and screens of Solid Health, as well as porting an existing

Solid application to a mobile app. Bringing healthcare data and devices with onboard

sensors into the Solid ecosystem represents an exciting collision of opportunities that

I hope will continue to be explored.
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