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Abstract

An approximate model is created and analyzed for a selective automatic-repeat-
request (ARQ) protocol. The ARQ protocol uses a window to control the number of
multiple-block messages that have access to the channel at one time. Messages must
first be admitted into the window before being allowed to use the channel to send
transmissions. The protocol is also block-selective in that the blocks that compose a
message can be acknowledged individually, thus allowing following retransmissions of
the message to include only the blocks that have not yet been received correctly. The
stochastic model is developed as a particular Markov chain known as a quasi-birth-
death process. The matrix-geometric method based on Neuts’ Theorem is used to
obtain the steady-state probability density function of the message cccupancy. These
results are compared to those found from a simulation of the protocol. The model
is also used to observe the relationship between the maximum allowable offered load
and the window size.
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Chapter 1

Introduction

The Motorola Integrated Radio System (MIRS) is a 64 kbps digital mobile radio
system that represents the merging of cellular and trunking technologies [4] [16].
MIRS is being developed to meet the increasing demand for radio systems that provide
a variety of new services such as telephone interconnection and data transmission.
MIRS uses TDMA as its multiple access mode because, among other reasons, it can
support full-duplex operation and has lower base station costs than FDMA. The
system also uses a variation of the 16Q AM modulation scheme that is more resistant
to time dispersion. This new modulation scheme allows high speed signaling without
the use of an equalizer. By incorporating TDMA, the new modulation scheme, and
digital speech coding, MIRS is designed to support several hundred mobile and fixed-
end users efficiently.

The purpose of the data link layer of the Motorola Integrated Radio System
(MIRS) [5] is to ensure error-free delivery of packet data in the form of messages
from a source node to a destination node. Transmitted data is not time critical but
often requires error-free reception, unlike voice which must be sent in real time with
or without errors.

Some of the various services that the data link layer can prcvide to the network
layer include unconfirmed connectionless service, confirmed connectionless service,
and confirmed connected service. In the unconfirmed service, the source node (sender)

sends blocks continuously without expecting acknowledgments from the destination



node (receiver). In the confirmed services, the destination node sends acknowledg-
ments to the source to inform it about which blocks have been received correctly and
which need to be retransmitted due to errors. In the connected mode, the sequence of
the packets must be preserved when sent to the network layer. Sequence preservation
is not a concern in the connectionless mode.

Confirmed services require the destination node to request a retransimission when
a message or part of a message is received in error. Retransmission protocols, also
known as automatic repeat request (ARQ) schemes, vary in service (connectionless
versus connected), efficiency, and complexity. The stop-and-wait protocol, the sim-
plest confirmed-service ARQ protocol, requires the source to transmit a block, then
stop transmitting to wait for an acknowledgment message. If a positive acknowledg-
ment (ACK) is received, then the next block is transmitted. If a negative acknowl-
edgment (NAK) is received, the previous block is retransmitted. The stop-and-wait
protocol ensures error-free reception and correct sequence delivery but at a large cost
in efficiency, since the channel is idle while waiting for an acknowledgment message.
This can be a significant factor, especially for communication systems with long prop-
agation delays.

The go-back-N ARQ protocol is a continuous transmission scheme that also pro-
vides confirmed connected operation. The source continually sends blocks, not waiting
for their acknowledgments. An acknowledgment for a block is expected at most N
blocks after it has been transmitted. When an ACK arrives for a previously sent block,
the source sends the next block waiting to be transmitted. But when a NAK arrives
(or no acknowledgment arrives), the source restarts transmission from the point in
the sequence of the NAKed block which was the one sent N blocks previously. Thus,
the N —1 blocks after the NAKed packet are automatically retransmitted. The factor
N is determined by the round trip delay from the time of a block transmission to
the time of reception of its acknowledgment message at the source. The continuous
transmission feature of this protocol yields greater efficiency than the stop-and-wait
procedure, but also adds complexity. Note that this protocol has some inefficiency

because N — 1 additional blocks are retransmitted automatically after a NAK or



time-out, even if some of these blocks were received correctly the first time.

The selective ARQ (S-ARQ) protocol is an even more efficient, but more complex,
confirmed-service ARQ scheme. In this protocol, blocks are sent continuously, and,
when a NAK arrives for a previously transmitted block, oniy that block is retrans-
mitted. The added complexity includes the necessity of a resequencing buffer at the
destination node, wherc blocks correctly received can be out of order and must wait
for the preceding blocks before they can be sent to the network layer. In the ideal
case, with infinite transmit and resequencing buffers, this protocol can achieve the
maximum possible throughput of 1 — p, where p is the block error rate. This ideal
case, however, cannot be achieved in practice due, in part, to the finite buffers and

overhead data in the blocks and acknowledgments.

1.1 The Block-Selective Buffered S-ARQ Proto-
col

In the data link layer protocol considered for MIRS, data messages arrive at the
source and are packetized into multiple-block messages consisting of a header block
followed by data blocks. An arriving message must first gain admission to the win-
dow (or buffer) before it can use the channel. If there is an open position in the
window at the time of its arrival, the message is immediately admitted. If there is
no position available upon its arrival, the message must wait in a queue outside the
window. After gaining admission, a message requests a transmission. Since there
are other admitted messages using the channel, and only one transmission can be
sent a time, a line of transmission requests forms. After a transmission has been
sent, the message waits for an acknowledgment. Meanwhile, the channel continues to
send transmissions from other admitted messages. The block-selective buffered ARQ
protocol is a unique selective ARQ scheme in that the multiple-block messages are
sent continuously from the source to the destination while bitmap acknowledgments,
indicating which blocks of a received message (or partial message) were in error, are

being sent from the destination to the source. Upon receiving the bitmap acknowl-
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edgment, the message requests a new transmission consisting only of the blocks in
error. This retransmission waits in line to be sent over the channel as before. If an
acknowledgment has not arrived after a certain time period, a time-out occurs and
the message requests its previous transmission again. This process continues until the
entire message has been received correctly or a retry limit is reached. When either
of these events happens, the message leaves the system creating an open position in
the window for another message to gain admission. The block-selective ARQ scheme
offers an improvement in efficiency over the normal selective ARQ scheme by reducing
the overhead required for transmissions and acknowledgment messages compared to
blocks being sent and acknowledged individually. The window is a mechanism of flow
control and is used at the source node to limit the number of messages that can use
the channel. Consequently, the receiver also needs a window of the same size to hold
partial messages.

Various selective ARQ protocols have been analyzed in existing literature, but
analysis on block-selective ARQ schemes with window buffering is limited. Konheim
[11] creates an exact model of a slotted system with single-block messages. Unfortu-
nately, with his model, obtaining numerical results quickly becomes unwieldy because,
as the round tnp delay increases, the number of states in his model grows exponen-
tially. As a result of Konheim’s work, later analyses focus on creating approximate
models. Kaul [9], Anagnostou et al. [2], Saeki et al. [15], and Lee et al. [12] each
develop distinct approximate models for a slotted system with single-block messages.
Ahmadi [1] analyzes the Checkpoint Mode (CPM) protocol which is a selective ARQ
scheme that has a checkpoint block, sent periodically from the receiver to the sender,
that positively or negatively acknowledges a fixed number of blocks. Unfortunately,
only the throughput of this protocol is studied in the paper. The block-selective
buffered ARQ protocol studied here differs from the analyzed protocols mentioned
above, except CPM, in that the messages contain multiple blocks that are acknowl-
edged concurrently, as opposed to being acknowledged individually. This protocol
differs from CPM in that the acknowledgment messages can acknowledge a variable

number of blocks at one time, whereas in CPM, only a fixed number of blocks can be
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acknowledged with one checkpoint block.

This thesis presents the background, development, and analysis of an approximate
queueing model for the block-selective buffered ARQ protocol. The first few sections
discuss relevant queueing theory tools and results. The developed S-ARQ model is
explained and used to obtain statistics on message occupancy as it varies with the
window size. These results are compared to those obtained from simulation. Finally,
the model is used to find a relation between the offered load and the window size

which may be useful in determining efficient dynamic bandwidth allocation.

12



Chapter 2

Preliminaries

Queueing systems are a class of a more general group of systems known as flow
systems. In a flow system, some commodity moves from a source to a destinaticn
through one or more finite-capacity channels. In a queueing system, the commodity
is a customer that requires some service, and the channels provide that service. Cus-
tomers arriving while the server or servers are busy join a queue and wait for a server
to become free. One simple example is the teller service at a bank where an arriving
customer requires service to complete his or her desired transactions. If a teller is free
upon arrival, the customer is served immediately. Otherwise the customer must wait
in line. In a communications system, the commodity is packet data and the service
is the transmission of these packets from a source to a destination. In most queueing
systems, the arrival times and service time of each customer are random variables.
Cousequently, the number of waiting customers in a system (also known as the queue
length) at any given time is random. Occupancy will be used to denote the number
of customers both waiting and being served. The objective of queueing theory is to
provide analytic tools to obtain statistics about the occupancy and other random
variables associated with the system. In addition, queueing analysis can often give
insight into the behavior of a system than cannot be gained from simulation.

The understanding of stochastic processes is essential to the study of queueing
theory because the random variables of interest are dependent on time. A stochastic

process is a sequence of random variables which may also depend on the parameter
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indexing the sequence. A particular queueing system has many relevant stochastic
processes each of which has its own random variables. For example, the queue length
process measures the occupancy of a system as it changes with time and for this
reason, the queue length process is often referred to as the occupancy process. An-
other process is the arrival process which measures the number of customer arrivals
to the system over time. In this chapter, a short introduction to stochastic processes,
specifically Markov chains, is given with emphasis on those processes pertinent to
queueing theory. Certain properties and types of Markov chains that will be useful
for subsequent analysis are explained. Also a special class of probability distributions,
known as phase-type distributions, are discussed. The hyperexponential distribution,
which is a particular phase-type distribution, will be used later in the modeling of

the buffered S-ARQ scheme.

2.1 Markov Chains

In a communications system, statistics on the number of messages in the system,
of message occupancy, are necessary to determine approximately how much space is
required to store the messages waiting to be sent. The message occupancy varies
randomly with time and can, therefore, be described by a stochastic process. The
message occupancy at any time ¢ is considered as a random variable, X(¢). A stochas-
tic (or random) process is classified by the set of random variables X () (which may
be vectors) and the statistical dependencies among the variable X(¢) for different
values of time ¢{. The sample space is the set of possible values that X(¢) may take
on. When the number of possible values in this sample space is finite or countable,
then the random process is a discrete random process. Although the index parameter
may be either discrete or continuous, all stochastic processes discussed here will have
continuous time as an index parameter.

Markov chains are an important class of random processes. A random process is a
Markov chain if the state space is discre.= and the probability of the next state value

being X(t.4+1) depends only on the current state X(¢,) and not on previous state
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Figure 2-1: The State-Transition Diagram for a Birth-Death Process.
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values. In other words, the state of a Markov chain summarizes the effect of the past

on the future. The Markov property [10] can be expressed analytically as:

Definition 1 The random process X(t) forms a continuous-time Markov chain if,

for all integers n and for any sequence t; <ty < -+ < ipy1,

P[X(tngr) = § | X(t1) = i1, X(t2) = gy o, X(tn) = in] = PIX(tnsa) = 5 | X(8a) = ]
(2.1)

Every continuous-time Markov chain has a transition matrix Q(t) associated with
it. The elements g;;(t), i#j, of Q(t) are the transition rates from state ¢ to state j
given that the system is currently in state i. By definition, —g:i(t) = (X;x: ¢;), is
the departure rate from state ¢ given that the system is currently in state i. As a
result of this definition, the elements in each row of a transition matrix sum to zero
and the diagonal terms are non-positive. A homogeneous Markov chain is defined
to have a transition matrix Q(¢) = @ that is independent of time. As a result, the
individual transition rates and departure rates of a homogeneous Markov chain are
also independent of time.

Birth-death processes are a class of Markov chains that restrict state transitions
to occur only between neighboring states. A partial state-transition diagram of a
birth-death process is shown in Figure 2-1. A birth occurs with an arrival of a new
customer, so that the state (or queue length) increases by one. A death occurs when
a customer currently in the system exits, decreasing the state by one. Only one event,

either a single birth or a single death, is allowed to occur at a time. In Figure 2-1,
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the bubbles represent the states of the process, and the values in the bubbles indicate
the queue length of the system. When the queue length is K, the rate at which a
new customer will arrive is Ag, and the rate at which the customer in service will
exit is px. The queue length process of the simplest queue, the M/M/1 queue, is
a birth-death process. An M/M/1 queue has interarrival times and service times of
customers that are exponentially distributed (but not always with the same mean).
To illustrate an example of a transition matrix, consider a homogeneous birth-
death process. Since transitions are only allowed between neighboring states, ¢;; = 0
for |i — j| > 1. A birth from state ¢ occurs with rate ¢;; = A; for ¢ = j —1,:>0, and a
death from state ¢ occurs with rate ¢;; = p; for ¢ = j + 1, :>1. Since —qi; = 3_;4; ¢j»

gii = —(Ai + p;) for 1>0. The transition matrix is tridiagonal

(2 o )
o =M1+ ) M
K2 —(A2 + p2) Az
Q= bo —Qatps) - (22)

\ ' ‘ /
The death rate po equals zero since, when the state is zero, no customers are in the
system so no deaths can occur.

As mentioned earlier, in analyzing queueing systems, buffer occupancy is of great
interest. Ideally, one would like to obtain the probability density of this random
variable in steady state. The matrix differential equation for the state probability

vector, z(t), and a Markov chain with transition matrix Q(t),
dz(t
=0 _ oo (23)

is called Kolmogoroff forward equation. To find the stationary probability vector z,
which yields the steady-state probability density of the random variable, the left-

16



hand side of the above equation must be zero. Assuming that the Markov chain is

homogeneous, equation (2.3) reduces to
zQ =0 (2.4)

The solution for z in the above equation must be normalized so that the elements of
z sum to one.

Earlier it was mentioned that, for a Markov chain, —g;; is the departure rate from
state 7 given that the current state is 2. Consider the random variable that describes
the length of time the stochastic process stays in a particular state before making
a transition to a different state. From the Markov property, recall that the entire
previous history of the process relevant to its future is summarized in the specification
of its current state but not in the specification of the length of time the process has
been in that state. As a result, it can be seen that the distribution for the time spent
in a particular state must be “memoryless.” The only continuous distribution with
this memoryless property is the exponential distribution. The memoryless property
implies that if the time between the moment the process enters a state and the
moment the process exits the state is exponentially distributed, and if the process
has not left the state after some time 7, then the time remaining until the process
leaves the state is still exponentially distributed with the same mean. The fact that
T time units have expired since the process has entered the current state does not
change the distribution of the time to departure from that state. At the time 7,
the process behaves as if it had just entered the state. Using equation (2.1), the

memoryless property can be stated as

PX(t) =7 | X(t1+7) =k, X(t1) = k] = P[X(t2) =7 | X(t147) = k], ta>tb+7> 1
(2.5)
Poisson processes are a special class of birth-death processes that have a constant
(state-independent) birth rate and a zero death rate and play an important role in

queueing theory. If A, = X and pi = 0 for £ > 0 in Figure 2-1, the process would
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be a Poisson process. Since a Poisson process is a Markov chain, it must also exhibit
the memoryless property which means that the time spent in a specific state before
a transition is exponentially distributed. Because a Poisson process is a pure birth
process with a zero death rate, the time spent in each state is also the time between
two consecutive arrivals. In most queueing systems, the arrival process is assumed
to be a Poisson process. This leads to an important result in queueing theory that,
if the arrival process is a Poisson process, then the interarrival times (times between

two consecutive arrivals) are exponentially distributed.

2.2 Phase-Type Probability Distributions

Due to the memoryless property of Markov chains, any queueing system with in-
terarrival times and service times exponentially distributed (not necessarily all with
the same mean) can be represented by a Markov chain and its stationary probabil-
ity vector may be found from existing methods!. Rarely, however, does a queueing
system have such compatible distributions. Imposing such severe restrictions such as
exponential interarrival and service time distributions on the models for these sys-
tems often yields inadequate results. On the other hand, modeling complex queueing
systems with their exact distributions, if they are even known, is usually futile. Phase-
type (PH) distributions, which are a special class of probability distributions, allow
for the modeling of some complex queueing systems by creating Markov chains that
can be analyzed.

Consider the queueing system shown in Figure 2-2. The arrival process is Poisson
and the server has two stages. The two stages are cascaded together where the first
stage is an exponential server of mean s; = ;11— and the second stage is an exponential
server of mean s; = u—lz The two stages are also said to be in series.

At the beginning of its service, the customer enters the first stage. While the

customer is in the first stage, the second stage remains idle. After some length of

1KJeinrock discusses methods for solving the stationary probability vectors of Markov chains in
[10]
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Figure 2-2: The Two-Stage Cascaded Server Queueing System.
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Figure 2-3: The State-Transition Diagram for the Joint Queue Length-Service Stage
Process of the Two-Stage Cascaded Server Queueing System.

time that is exponentially distributed with mean s;, the customer leaves the first
stage and enters the second stage to continue its service. At this moment, the first
stage becomes idle. The first stage does not begin service on the next customer in
line, so there is never more than one customer in the two-stage server. After the
second stage service is completed, the customer leaves the system, and only now is
the next customer permitted to enter its first stage of service. One possible state-
transition diagram for this queueing system is shown in Figure 2-3. The first value
in each bubble is the occupancy of the system. The second value is the stage of the
current customer in service. When a new customer arrives, the occupancy increases
by one, but the stage stays the same. When a customer ends stage one, it moves to
stage two without changing the occupancy. But when a customer leaves stage two, it
also leaves the system, so the occupancy decreases by one, and the customer at the
head of the line (if there is one) begins its service by entering stage one. The state
of the process is not a scalar quantity but is a two-dimensional vector that maintains
the customer occupancy and the stage of the customer currently being served. The

process is a Markov chain because the Markov property is satisfied. That is, the effect
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Figure 2-4: The Two-Stage Hyperexponential Server.

of the history of the process on the future is summarized in the current occupancy
and the current stage of service because all state departure times are exponentially
distributed. In joint processes, the first quantity of the state vector is usually the
occupancy of the system, and the second quantity is often referred to as the phase of
the system.

The two-stage-in-series service distribution described above where each stage fol-
lows an exponential distribution is an example of a phase-type distribution. By
allowing the state variable to be a vector that keeps track of the occupancy and the
current service stage, a Markov chain is created. This example exhibits the power of
phase-type distributions in stochastic modeling. The cascaded server queue will be
discussed in more detail in the next chapter.

The hyperexponential distribution is another kind of phase-type distribution. If
the service time distribution is a two-stage hyperexponential distribution, then a
customer requiring service chooses a type one service with probability a; or a type
two service with probability a; = 1—a;. Type one service is exponentially distributed
with mean s, and type two service is exponentially distributed with mean s,. This
server is depicted in Figure 2-4. Similar to the queueing system with the cascaded
server, a queueing system with the hyperexponential server can be modeled as a
Markov chain by allowing the state vector to maintain the occupancy and the current

type of service being performed. This kind of parallel server will be used in the S-ARQ

model.
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The common characteristic of both the cascaded server and the parallel server
is that each stage of the servers is individually exponentially distributed. In fact,
a new server with a more complex PH distribution can be created by forming any
combination of cascaded and/or parallel servers as long as each stage by itself is
exponentially distributed. This requirement makes phase-type distributions useful in
queueing analysis because, due to the memoryless property, an appropriate Markov
chain and state vector can be found.

Before proceeding, the distinction between the phase of the system and a phase-
type distribution must be made clear. The phase is the second variable in the state of
a two-dimensional vector Markov chain. The phase does not exist for scalar Markov
chains. As explained above, a phase-type distribution is any distribution that can
be constructed from exponentially distributed stages in series and/or in parallel. Al-
though there is a relation between the phase and a phase-type distribution, it is not

necessary to know this relation to understand the model to be discussed here.
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Chapter 3

The Matrix-Geometric Method

The arrival and service rates of simple queueing systems such as the M/M/1 queue
depend only on the queue length (or customer occupancy) of the system. But in more
complex systems, the arrival and service rates depend on other factors as well. In
the example of the cascaded server queue, the departure rates depend on the service
stage. In another example, the arrival and service rates of a queueing system may
depend on the time of day. In the course of the day, there may be busy periods and
slow periods. During busy periods, customers arrive and are served at higher rates.
During slow periods, customers arrive at a lower rate, and their service rates may
also be reduced. The current customer arrival rate and service rate depend on the
current phase, busy or slow, f the system.

The matrix-geometric method is an approximate method that allows for the anal-
ysis of a certain queueing models by incorporating the phase, which follows a phase
process, with the queue length to create a vector random process known as a quasi-
birth-death (QBD) process. A QBD process is a Markov chain that can be analyzed
using Markov chain theory. This chapter begins by discussing the phase and QBD
processes. The mat:ix-geometric method is then outlined leading to Neuts’ Theorem.
Next, an application of Neuts’ Theorem, developed by Katz, is explained. Finally,

the use of phase-type distributions in QBD processes is explained.
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Figure 3-1: A State-Transition Diagram for a Possible Phase Process.
3.1 The Phase Process and Quasi-Birth-Death Pro-
cess

The queue length (or occupancy) process has as its state the number of customers
in the system. Some models of queueing systems also include a phase process, which
is a continuous-time finite-state Markov chain with a transition matrix S. A state-
transition diagram of a possible phase process in shown in Figure 3-1. If the phase
process has K +1 possible phases, then S has dimensions of (K +1)x(K +1). In order
to use the matrix-geometric method, the number of phases must be finite. Although
the example of the phase process depicted in Figure 3-1 is a finite-state birth-death
process, in general, the phase process can be any finite-state Markov chain. That is,
the matrix-geometric method can still be used when transitions are allowed between
non-neighboring phases.

The joint occupancy-phase vector process of a queueing system with the arrival
and service rates that depend both on the occupancy and the phase is called a quasi-
birth-death (QBD) process’. A QBD process is a vector process on the state space
E = {(3,7) : i« > 0,0 < j < K} where i is the current occupancy and j is the
current phase. Since the QBD process is a Markov chain, the memoryless property

holds and the residency times (the time the process spends in a state before departing

1 Daigle [6] gives a good introductory treatment of quasi-birth-death processes. Neuts [13] cover-
age is more advanced.
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from that state) are exponentially distributed for all states. A partial state-transition
diagram for a QBD process having the same phase process in Figure 3-1 is illustrated
in Figure 3-2. The first component of each bubble is the occupancy of the system and
the second component is the phase. For the QBD process of Figure 3-2, the phase
transitions (horizontal changes) are independent of the occupancy and the occupancy
transitions (vertical changes) are independent of the phase. In general, however, this

need not be true for a QBD process. The transition matrix Q of a QBD process has

the form
( By Ao \
B, A A
A Ay Ao
. Ay A Ao
Q= (3.1)
A, A
\ Co /
The elements of each row of Q must sum to zero so
(Bo -+ Ao)e = (Bl + A1 -+ Ao)e = (Ao + A1 + Az)e =0 (32)

For brevity in notation, e denotes a column vector of ones of the appropriate length
for valid multiplication. In equation (3.2), ’0’ is a column vector of zeros. Later, '0’
will be used to denote the scalar zero, a vector of zeros, or a matrix of zeros, and
its exact usage should be clear from the context of the equation. Each element of Q
shown in equation (3.1) is a matrix and is referred to as a block matrix or submatrix.
Q is considered a block-partitioned matrix.

The key characteristic of a QBD process, which can be observed from Q, is that
transitions can only take place within an occupancy state (a phase transition alone) or
between two neighboring occupancy states. Although the QBD process of Figure 3-2

does not have any simultaneous transitions in occupancy and phase, such trarsitions
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Figure 3-2: A Partial State-Transition Diagram for a Possible Quasi-Birth-Death
Process.
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are allowed and will be discussed later in the chapter. @ is a block tridiagonal
matrix, which parallels the tridiagonal transition matrix of an ordinary birth-death
process. Similar to a birth-death process, where the element g¢;;;; on the upper
diagonal of Q represents the transition rate that increases the occupancy from ¢ to
i + 1, the upper diagonal block matrix Ao of Q contains the rates for all transitions
that increase the occupancy from % to 2 + 1. Thus, the birth-death aspect of a quasi-
birth-death process can be seen. The (v,w)th submatrix of Q holds the rates of
transitions from any phase of occupancy v to any phase of the occupancy w. For
example, the (1,3)th submatrix of Q is the zero matrix indicating that there is no
allowed state transition that can change the occupancy from one to three. Unlike a
simple birth-death process, the diagonal block matrices of Q will not have all negative
elements because it is possible to have transitions in which only the phase changes
while the current occupancy stays the same. The diagonal elements of the diagonal
block matrices will, however, be negative because these elements make up the main
diagonal of Q. Since, at most, K + 1 phases exist at each occupancy level, the block
matrices are of size (K +1)x(K +1). It will later be seen that when complex behavior
exists for some boundary occupancy states, some of the phases are extraneous, and
the corresponding block matrices may be reduced in size. In the most general QBD

process, each block matrix is of size (K + 1)x(K + 1).

3.2 Neuts’ Theorem

As stated earlier, a QBD process is a vector Markov chain on the state space £ =
{(3,7) :4>0,0 < j7 < K} where 7 is the occupancy and j is the phase and K is the
maximum phase. Therefore, the stationary probability vector satisfies the equilibrium

equation,

zQ =0, (3.3)

where, in steady-state,

T = ((Boo, ZO1y +ery LOK 9 L109 L11y +++9y L1Ky ...) (3.4)
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and

z;=P(X=4Y=j), i20, 0<j<K. (3.5)

The stationary probability vector, z, can also be partitioned as
r = ($o,w1,$2,...) (36)

where

T = (wko’wkly"'a a:kK), k > 0. (37)

Suppose there exists a matrix R such that
z, = xR, k>0 (3.8)

A solution of the form of equation (3.8), is called a matrix-geometric solution. Neuts’
Theorem [13] states criteria that must be satisfied by the QBD process for a matrix

geometric solution to exist.

Theorem 1 (Neuts) The process Q is positive recurrent if and only if the minimal

nonnegative solution R to the matriz-quadratic equation
R?A; + RA; + Ao =0 (3.9)
has all its eigenvalues inside the unit disk and the finite system of equations
zo(Bo + RB1) =0 (3.10)

zo(I — R)le=1 (3.11)

has a unique positive solution zo. If the matriz A = Ao+ Ay + A, is irreducible, then
sp(R) < 1 if and only if
wAse > 7 Age, (3.12)
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where T is the stationary probability vector of A. The stationary probability vector

z = (20, 21,...) of Q is given by

z, = zoR*, for k> 0. (3.13)

The matrices Ag, A1, A2, By, and B; refer to the submatrices of Q shown in equation
(3.1). The notation sp(R) denotes the spectral radius of the matrix R which is the
magnitude of the largest eigenvalue of R. For the steady-state probability vector to
exist, all of the eigenvalues of R must have a magnitude of less than one.

Positive recurrence means that there are no transient states. For all states that
the process can start in, the probability of returning to that state is one. A process
is irreducible if any state can be reached from any other state (but not necessarily
directly). As long as the transition matrix @ cannot be written in triangular form,
the process is irreducible. Since the S-ARQ model to be presented will meet the
criteria for positive recurrence and irreducibility, these criteria will not be discussed
further. Equation (3.10) is a boundary condition for the first two occupancy levels,
and equation (3.11) is the normalization constraint that requires the sum of all steady-
state probabilities in z to equal unity. Condition (3.12) is a stability requirement and
is equivalent to stating that the maximum average service rate must be greater than

the average arrival rate.

3.3 An Example of a Stochastic Matrix-Geometric

Model

Sharlene Katz [8], in her Ph. D. dissertation, models a multi-access communications
system in which multiple users share a channel and a buffer (or window) to send
activities of random length. In her analysis, Katz uses the matrix-geometric method
to study the effects of session admission control on the multiple access channel.

The session admission control is a window that limits the number of users that

can share the channel at any one time. A user arrives randomly and, if there is an
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open position in the window, enters the window. If no position is open, the user
joins a queue outside the window, waiting for a spot in the window to open so that
it can use the channel. Queued users are admitted into the window on a first-come-
first-serve basis. Once a user has been admitted to the window, it can generate
an activity to send over the channel. The channel can only send one activity at a
time, so when the channel is busy, newly generated activities from other admitted
users must wait in line and receive service on a first-come-first-serve fashion by the
channel. An admitted user is allowed to have at most one outstanding activity, which
is either currently being handled by the channel or is waiting in line for the channel.
Consequently, if the maximum window size is M, there can be no more than M
outstanding messages. A user with an outstanding activity is considered active and
cannot generate additional activities. Once the user’s activity has been completely
sent, the user becomes inactive and can either exit the system or generate another
message to send over the channel. When an admitted user exits the system, its

position in the window is filled by a user at the head of the outside queue if the queue

is not empty.

3.3.1 Description of the Model

Katz models the system described above by considering it as a combination of an
external system and an internal system. The user occupancy of the external system
(or external user occupancy) is the number of users in the entire system. The user
occupancy includes the users admitted in the window as well as those queued waiting
to enter the window. The phase of the internal system (or internal phase) is the
number of outstanding activities (or active user occupancy of) in the window waiting
to be served including the one currently being served by the channel. Because each
outstanding activity comes from one active user in the window, the internal phase
is also the number of active users in the window. Since the window size is fixed,
the number of active users is finite and bounded by the size of the window. The
external and internal queueing systems are shown in Figure 3-3. Katz assumes that

all interarrival and service times are exponentially distributed (but not with the same
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Figure 3-3: The External and Internal Systems of Katz’s Model.
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Figure 3-4: The State-Transition Diagram for Katz’s Phase Process with a full window
(i > M).

mean). Consequently, Katz finds a QBD process that maintains the user occupancy
and active user occupancy (which is the phase). Katz uses a variation of Neuts’
Theorem to analyze the system and find a matrix-geometric solution.

Let the window size be M so that a maximum of M users can share the channel at
one time. The window is considered full when all M slots are occupied, which occurs
when the external user occupancy is at least M. The arrival rate of new users to the
external system is ;. An admitted user can exit the system (and the window) only
when it is inactive and does so at a rate of y;. Also, an admitted user can generate
a new activity only when it is inactive at a rate of A,. When the internal phase is
j, and the window is full (so the external user occupancy is ¢ > M), the overall user
departure rate is (M — j)p1 because there are M —j inactive users in the window, each
behaving independently. For the same reason, the overall activity generation rate is
(M — j)A; when the window is full and the internal phase is 7. The state-transition
diagram for the phase process when the window is full is shown in Figure 3-4. When
the external user occupancy i is less than M, however, the window is not full, and the
number of inactive users in the window is only i — 7. Consequently, the user departure
rate and activity generation rate are (i — j)u: and (i — 7))\, respectively. Because the
internal system exhibits different behavior when 0 < i < M, these occupancy states
are called boundary states. A partial state-transition diagram of Katz’s QBD process
is illustrated in Figure 3-5. In the next section, it is shown that slight modifications
are required to do the analysis of Katz’s QBD process to find a matrix-geometric

solution due to the existence of the boundary states.
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Figure 3-5: The Partial State-Transition Diagram for Katz’s Quasi-Birth-Death Pro-
cess.
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3.3.2 Analysis of the Model

The quasi-birth-death process of Figure 3-5 is a two-dimensional Markov chain with a
state space of E = {(¢,7) :7 > 0,0 < 7 < M}, where i is the external user occupancy
(both in the window and in the queue), and the phase j is the number of outstanding
activities (or active users) in the internal system.

Let = be the stationary probability vector, where

Z = {T00y L01y ++ry TOM T10y +oey 1My ooy MOy +ory TMMs EMA+1,0y ooy EMA1, My ooey ity ooey TiMy oe

(3.14)
so that z;; equals the stationary probability of the system having a user occupancy 2
and active user occupancy (or phase) j. As can be seen from Figure 3-5, j can never
exceed i since each admitted user is allowed at most one outstanding activity at any
time. As a result, the steady-state probabilities associated with these states will be
zero in the matrix-geometric solution. As before, the vector z can also be partitioned
as

T = {wo,zl,...,:BM_l,.’BM,...} (3.15)

where

T = {Thos Th1y -y TkM} (3.16)

The stationary probability vector £ must satisfy the steady-state matrix equation
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zQ = 0, where

( Boo Bo )
Byo By;; B
B21 322 B23
B32 B33

Q= (3.17)
Bym-1,m-2 Bm_im-1 Bm_im
A, A, Ao
A: A A
A, A

\ Co /

is the transition matrix of the QBD process. The submatrices B;;, 4, A,, Ao are
(M + 1)x(M + 1) matrices. This transition matrix has a different form than that
shown in equation (3.1) to account for the boundary states of Katz’s QBD process.
The (m,n)th element of By, is the transition rate from the external user occupancy
g and the internal phase m to the external user occupancy k and the internal phase
n. Similarly, the (m,n)th elements of A;, A;, and Aq are the transition rates from
the external user occupancy ¢ to the external user occupancy ¢ — 1, 7, and 2 + 1,
respectively, for ¢ > M and from the internal phase m to the internal phase n. For a
submatrix, m refers to the (m+1)th row of the submatrix, and n refers to the (n+1)th
column of the submatrix for 0 < m,n < M. The elements of the submatrices of Q
can be found from the state-transition diagram in Figure 3-5. The submatrices are

(for 0 <m,n < M)

—A =n=0
Boo(mym)=4{ 0 =" (3.18)
0, otherwise
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A, m=n=20
Boi(m,n) = (3.19)
0, otherwise
k—m m=n<k
Bip_i(m,n) = ( i forl<k<M (3.20)
0, otherwise
(k= m)Aq, m=n-1, 1<n<k+1
M2, m=n+1, 1SmSk
—(M+ps r(k=m)(p1+ X)), m=m, 1<m<k
Bk,k(m,n) = {
—(A1 + k(g1 + A2)), m=n=20
0, otherwise
{ for1<k<M
(3.21)

Al, m=n S k
Bk'k.,,l(m,n) = fO’I' 1< k < M (3.22)
0, otherwise

Also, Ag = BM,M+1, A, = BM,M7 and 4, = BM,M—I-

In Katz’s dissertation [8], she gives a variation of Neuts’ Theorem to account for

the boundary occupancy states.

Theorem 2 Provided
wAze > 7ere, (3.23)

where T is the stationary probability vector of A = Ao + A1 + A,, the queue is stable.

The steady-state vector
z = {zo,T1,T2,...} (3.24)

is given by
T = a:M_le_(M_l), k> M, (325)

where R is the unique solution in the set of non-negative matrices of spectral radius

less than one of the equation

R’A; + RA; + Ao =0 (3.26)
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The matriz T, given by

( Boo Ba \
By B B
B,y B»; B,
B. B
T 32 33 (3.27)
\ Byoam-2 BM-1,M-1+RA2)

15 an irreducible square matriz of size M(M + 1). The vector {zo,21,...,Tp_1} is the

left eigenvector corresponding to the zero eigenvalue of T. It is normalized so that,

zoe+ ...+ zpm_ze+zpma(I — R)le=1 (3.28)
The matrix R is found iteratively from the following equation:
.RNEW' == "‘AOA;I - R%LDA2A1.1 (3.29)

where, initially, Rorp = 0. Since A; = Bag,u, from equation (3.21), A; has full rank
and is invertible. The number of iterations required to achieve a certain tolerance
6R = Rygpw — Rorp increases with the size of R and as the ratio of 1 A,e and wApe
approaches one from below. As this ratio reaches one, the system becomes marginally
stable and the spectral radius of R appreaches one. Once R is found, the matrix T
can be formed and (zo,%;,...2p_1) can be determined by finding the appropriate
left eigenvector and normalizing it. Then, by Theorem 2, z, for & > M, form a
matrix-geometric solution and can be generated from zps_; and R.

In doing queueing analysis of communications systems, it is often desired to obtain
a probability distribution of the queue length of the system. For the system modeled

by Katz, this is the external user occupancy. Once the joint probability distribution
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z = (2o, &1, ...) has been found, the marginal probability distribution of the external
user occupancy can be found by summing over the phases of the internal system. Let

P(X = i) be the steady-state probability of having  users in the external system.

P(X = 2) = %zﬁ = T;€. (330)

3=0

3.4 Phase-Type Distributions in QBD Processes

The QBD process depicted in Figure 3-5 allowed transitions in occupancy alone (ver-
tical transitions) or in phase alone (horizontal transitions), but not in both. A more
complex QBD process would allow simultaneous transitions in occupancy and phase.
A matrix-geometric solution for the stationary probability vector of such a process
can be found from Theorem 2. One way to create a QBD process with simultaneous
changes in occupancy and phase is to include service times that follow a phase-type
distribution. In this instance, a service completion results in a decrease in occupancy
and a change in phase as the server begins servicing the next customer. The under-
lying vector process is a Markov chain because the residency times for all states are
exponentially distributed. Therefore, the memoryless property holds, and the future
of the process only depends on the current value of the state vector.

The model of the two-stage server queue is a simple example of a QBD process with
a phase-type distribution. The state vector keeps track of both the occupancy and
the stage of service of the current customer being served. A partial state-transition
diagram for this queueing system that is different than the earlier one is shown in
Figure 3-6. An example of a simultaneous transition occurs when the customer cur-
rently being served leaves the system while other customers are waiting in the queue
for the server. Let the occupancy be ¢ (¢ > 1) at the instant before departure. The
customer must be in stage two immediately before his exit. Upon that customer’s
departure from stage two (and, therefore, from the entire system), the next customer
in line enters stage one of the server. Therefore, this transition causes the occupancy

to decrease by one and the stage to change from phase two to phase one.
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Figure 3-6: The Partial State-Transition Diagram for the Quasi-Birth-Death Process
of the Two-Stage Cascaded Server.
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Chapter 4

Design of the Buffered S-ARQ
Model

Previous analyses of selective ARQ schemes have led to the conclusion that it is
infeasible, and in many cases impossible, to develop an exact Markov-state model for
any selective ARQ protocol because the number of possible states grows exponentially
with the window size or round trip delay [2] [11] [12]. As a result, approximate models
for some selective ARQ protocols have been created [2] [12]. In order to create models,
certain simplifications and assumptions of the original protocol are necessary.

In this chapter, an approximate model for the buffered S-ARQ protocol is devel-
oped. First, the buffered S-ARQ protocol will be summarized and compared with the
multi-access communications system studied by Katz. Next, the assumptions and
simplifications that were necessary to create the model of the S-ARQ protocol are
explained. Then, the design of the model is discussed. The model uses a hyperexpo-
nential distribution instead of the real transmission service time distribution. Finally,
the derivation of the actual service time distribution for a random transmission and
the method used to find a suitable hyperexponential distribution are discussed. In
the next chapter, the model will be used to find a matrix-geometric solution which

will 1 .- 1 a steady-state occupancy distribution.
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4.1 Buffered S-ARQ and its Similarities with Katz’s
Multi- Access System

Recall that the buffered S-ARQ scheme is a block-selective protocol. The data is
formed into messages of multiple fixed-length blocks. The message transmissions are
sent continuously while bitmap acknowledgments are sent back to the source from
the destination for each received transmission stating which of its blocks arrived
at the destination in error and must be retransmitted. Upon receiving the bitmap
acknowledgment, the source resends a partial message transmission consisting of only
the blocks that require a retransmission. A message keeps requesting retransmissions
until the entire message has been received correctly or the retry limit has been reached.
The retry limit is the maximum number of transmissions a message can attempt before
it is forced to leave the system.

The S-ARQ protocol resembles the multi-access communications system modeled
by Katz discussed in the previous chapter. In Katz’s communications system, users
enter the system in order to send activities through a shared channel. Before being
allowed to use the channel, a user must first be admitted into a window. Once
admitted, the user can generate an activity of random length. After generating an
activity, the user is considered active until its outstanding activity is completely sent
over the channel. Because an active user is not allowed to generate a new activity,
an admitted user can have at most one outstanding activity (either waiting for the
channel or currently being sent over the channel) at any one time. After an activily
is completed, the user that generated the activity enters an inactive period of random
length. The inactive period ends with the generation of a new activity or the departure
of the user from the system.

In the buffered S-ARQ queueing system, messages arrive at the source node to
send transmissions over a channel shared by multiple messages. A message must
first be admitted into the buffer (or window). After being admitted, the message
requires an initial transmission of random length. Since a retransmission cannot be

issued for a particular message until an acknowledgment for that message’s previous
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transmission has been received, each message in the window can have, at most, one
outstanding transmission at any time. After a transmission has been sent, there is a
round trip delay for that transmission during which the message that generated the
transmission is inactive and waits for an acknowledgment. The channel meanwhile
continues to send transmissions, if there are any, from other admitted messages. Upon
receiving an acknowledgment, the inactive message either becomes active by request-
ing another transmission (if the acknowledgment is negative) or exits the system (if
the acknowledgment is positive or the retry limit is reached).

The S-ARQ model, like Katz’s model, considers the protocol to have an external
system which keeps track of the overall message occupancy and an internal system
that maintains the status of the window. In the QBD process to be developed,
the occupancy variable will be called the external message occupancy referring to
the occupancy of the external system, and the phase will be called the internal phase
referring to the status of the internal system. The internal system of the S-ARQ model
is more complicated than that of Katz’s model. In Katz’s model, generated activities
are exponentially distributed in length, whereas, in the S-ARQ model, transmission
lengths follow a hyperexponential distribution, as mentioned earlier. The internal
phase of Katz’s model is simply the number of active users in the window. The
internal phase of the S-ARQ model is not only the number of active messages in the
window (or, equivalently, the number of outstanding transmissions), but also the type
of the transmission currently being sent as will be discussed later.

One shortcoming of Katz’s model is that when a user is admitted into the window,
it is immediately inactive. Therefore, since an inactive user decides either to leave
the system or to generate a new activity, it is possible tkat a user may enter the
window and leave the system without requesting a single activity. Clearly, in the
S-ARQ protocol, this course of events is not allowed. An admitted message must
immediately request a transmission and become active. Fortunately, incorporating
such a modification does not add any difficulty when creating a matrix-geometric
model. A message is admitted into the window either when it arrives and finds

an open position or when an already admitted message exits the system leaving an
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open position in the window. In the former case, the external message occupancy
and active message occupancy (the number of active messages in the window) both
increase by one because a newly admitted message generates a transmission. In the
latter case, the external message occupancy decreases by one, but the active message
occupancy increases by one because the departing message was inactive at the time.
Note the difference between the external message occupancy and the active message
occupancy. Therefore, both transitions involve a simultaneous change in the external

message occupancy and the internal phase.

4.2 Assumptions and Simplifications of the S-ARQ
Protocol

In this chapter, an approximate matrix-geometric model is created to analyze the
buffered S-ARQ scheme. As with any model, this model requires simplifying assump-
tions about the protocol, some of which are discussed in this section.

Clearly, the lengths of retransmissions for a particular message become shorter and
shorter since only the erred blocks of the last transmission are resent. Consequently,
there is a strong correlation among the lengths of a message’s initial transmission and
its retransmissions. For a window size of one, this correlation is exhibited between the
lengths of consecutive transmissions sent over the channel because the transmission
requests are generated from the single admitted message until that message leaves the
system and a new message enters the window. For a large window size in steady-state,
however, the correlation between the lengths of consecutive transmissions sent over
the channel is small since consecutive transmission requests are generated from dif-
ferent messages most of the time. This observation leads to an important assumption
used in the development and analysis of the S-ARQ model. The lengths of trans-
missions over the channel (which are also the service times) are assumed to follow
a hyperexponential distribution and to be independent and identically distributed.
As was discussed in Chapter 2, the hyperexponential distribution is a phase-type
distribution. This assumption permits the S-ARQ system to be modeled as a QBD
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process while allowing some flexibility in the random transmission length distribu-
tion by not restricting it to follow an exponential distribution. Recall that a QBD
process is memoryless. This assumption effectively ignores the memory required in
the actual protocol to keep track of the previous transmission lengths of messages.
Because of this assumption, the S-ARQ model will not be valid for light loads, but
may be appropriate for moderate to heavy loads.

Another assumption that is made to create a QBD process for the S-ARQ model is
that the round trip delay, which is the delay between the end of a transmission and the
reception of its acknowledgment at the source, is exponentially distributed. For the
same reason the assumption regarding hyperexponentially distributed transmission
service times is necessary, the round trip delay assumption is required to maintain
the memoryless property of the QBD process. Unfortunately, this assumption imposes
severe restrictions on the model because often, in communications systems, the round
trip delay is not exponentially distributed. The round trip delay in the real S-ARQ
system represents the sum of the random access delay experienced at the medium
access control (MAC) sublayer’ and the acknowledgment turn-around time. The
mode] presented here does not explicitly model the MAC sublayer, but appropriate
values for the round trip delay obtained from existing simulations of the MAC sublayer
will be used for the analysis.

The buffered S-ARQ protocol is based on a discrete-time system where one block
of a message is sent per time slot. The model developed in this chapter is, however,
a continuous-time model. The justification for creating a continuous-time model is
that most times of importance in the real system, such as the transmission service
times and round trip delays, contain many time slots and can appear as continuous
variables. Although discrete-time matrix-geometric models exist, developing one for
the S-ARQ protocol would be difficult because the required state vector would have

an unmanageable state-space.

1Tanenbaum [17] gives a detailed discussion of the function of the MAC sublayer.
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4.3 Description of the Buffered S-ARQ Model

Arrivals of messages which wish ‘o be admitted to the window correspond to the
arrivals to the external system. These messages arrive at a rate of A\;. The interarrival
times between consecutive messages are exponentially distributed with mean ,\—11 If
there are less than M messages in the system, where M is the window size, a new
message is admitted upon arrival. If M messages are already admitted, the arriving
message waits outside the window in a queue. The queued messages are admitted
into the window on a first-come-first-serve basis. When a message is admitted, it
generates a transmission request immediately and is considered active. Only after
its transmission has been sent, does the message become inactive. This ensures that
every message generates at least one transmission before exiting the system. While
inactive, a message leaves the system at a rate of ;. Since there can be no more than
M inactive messages at any time, a finite population creates the message departure
process.

The internal system models the generation and sending of transmissions from ad-
mitted messages. Each admitted message is allowed at most one outstanding trans-
mission. When a message is inactive, it generates a transmission request at a rate of
Az. Similar to message departures from the external system, the actual transmission
arrival process depends on the number of inactive messages and is created by this
finite population. The generated transmissions are serviced by a single channel on a
first-come-first-serve basis. The transmission lengths (which are the service times) fol-
low a hyperexponential distribution and are independent and identically distributed.
Upon seizing the channel, a transmission can be one of two types. With probability
ai, the transmission is of type one and requires a service time exponentially dis-
tributed with mean s; = t With probability @; = 1 — oy, the transmission is of

type two and requires a service time exponentially distributed with mean s, = -

H22°
Since the size of the finite population for the internal system is a random variable
that depends on, among other things, the external system, conventional analysis of

finite population queueing systems cannot be used.
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Figure 4-1: The Partial State-Transition Diagram for the Internal Phase Process of
the S-ARQ Model with a Full Window (z > M).

The underlying vector stochastic process is a QBD process. The state vector can
be partitioned into a two-dimensional vector, where the first variable is the external
message occupancy i, and the second variable (or phase) is both the number of out-
standing transmissions (or the active message occupancy) j and the type k of the

current transmission being served. The state-space for this vector process is
E ={(3,(5,k):0<:,0<j< M,k=1o0r k=2} (4.1)

Although the state-transition diagram of the entire S-ARQ model is too complicated
to illustrate, a partial state-transition diagram of the internal system is given in Figure
4-1 where it is assumed that the window is full with M admitted messages. Only
the transitions where the external message occupancy stays the same (which occurs
when no message enters or exits the external system) are shown in the figure.

Recall that in order to use the matrix-geometric method, the process of the internal
system must have a finite number of phases. If M is the window size of the system,
then there can be m active messages in the window, where 0 < m < M. For
0 < m < M, the transmission currently being sent can be of type one or of type
two. When m = 0, however, no transmission is being sent so the type is not needed.
Consequently, the number of possible internal phases is 2M + 1. Actually, because
the number of active messages cannot exceed the external message occupancy, when

the external message occupancy is ¢ < M, only 2i + 1 possible internal phases exist.
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4.3.1 Summary of Model Parameters

Before discussing the model for the S-ARQ protocol further, it is useful to find the
roles of the various model parameters in the real system. First, A; is the new message
arrival rate to the external system which is the offered load to the system.

Immediately after the transmission of a message has been completed, the message
becomes inactive and waits for an acknowledgment to come from the receiver. Af-
ter a round trip delay, the message decides either to leave the system (if a positive
acknowledgment or ACK arrives) or request another transmission (if a negative ac-
knowledgment or NAK arrives). Unlike the real S-ARQ protocol which has bitmap
acknowledgments that can acknowledge parts of a transmission, the acknowledgments
in the model positively or negatively acknowledge the entire transmission due to the
assumption that transmission lengths are independent and identically distributed.
For an inactive message in the model, a negative acknowledgment comes at a rate of
), because this is the rate at which a retransmission is generated. Likewise, a positive
acknowledgment arrives at a rate of p; because this is the rate at which an inactive
message leaves the system. The interarrival times of both kinds of acknowledgments
are exponentially distributed.

In order to complete the model, a relationship between the round trip delay (the
time taken for either an ACK or NAK to arrive), and the rates, A, and py;, is necessary.
The round trip delay is a random variable that is the minimum of the ACK time
(exponentially distributed with rate p;) and the NAK time (exponentially distributed
with rate );). The minimum of two exponentially distributed random variables with
rates a and b is an exponentially distributed random variable with a rate a + b.

Therefore, the round trip delay is exponentially distributed with mean

1

4.2
Az + (4.2)

Trrp =

Also,

H1
= = 4.3
Pack o+ p1TrrD (4.3)
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is the probability that the arriving acknowledgment is an ACK and
Pyax =1 — Pyox = A2TrrD (4.4)

is the probability that the arriving acknowledgment is a NAK. In the analysis of the
real transmission service time distribution, the expected number of required transmis-
sions per message, E[T], will be determined for a specific block error rate and initial
message size distribution. The probability of a random transmission being successful
is simply E%T‘] To find appropriate values for A, and g; to use in the model, specify
the mean round trip delay Trrp, calculate E[T], set

1
Pyckx = I-"ITRTD = E_[T-] (4-5)
and
1
PNAK = AzTRTD = 1 —_ E—[T,‘] (4.6)

and solve for A, and p;.

4.3.2 Explanation of Permitted Transitions in the Model

This section explains the state transitions that are allowed in the QBD process of
the S-ARQ model. The first M + 1 external message occupancy states of the QBD
process are boundary states, and their transitions must be considered separately.
Katz’s model only had M boundary occupancy states. The additional boundary
state of the S-ARQ model, which is for the external message occupancy M, is a result
of the modification needed to require newly admitted messages to become active

immediately and request a transmission. Because the underlying Markov process of
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the model is a QBD process, the transition matrix is block tridiagonal

{ Boo Bo )
Blo Bll Bl2
B3y Bz Bss
B32 B33

(4.7)

Lal)
i

Bup-1 Bum Bummsr

Although, all the above submatrices could be (2M + 1)x(2M + 1), many of the rows
and columns of the B;; submatrices are zeros. By deleting these rows and columns,
the computation time required for analysis is reduced. The forms and sizes of each
of the submatrices used in the final implementation are described below.

The rows and columns of the submatrices in Q refer to different phases of the
internal system. For example, the first row of the (r,s)th submatrix of Q holds all
the transition rates from the internal phase of zero outstanding transmissions as the
external message occupancy changes from r to s. Similarly, the first column of the
(7,s)th submatrix of Q holds all the transition rates to the internal phase of zero
outstanding transmissions as the external message occupancy changes from r to s. In
general, row 2g +h —1,for 1 < g < M and h = 1 or 2, of the (7, s)th submatrix of
Q holds the transition rates from the internal phase of (g,h) where g is the number
of active messages in the window and h is the type of transmission currently being

sent over the channel as the external message occupancy changes from r to s. Also,

48



column 2g+h—1,for 1 < g < M and h =1 or 2, of the (r, s)th submatrix of Q holds
the transition rates to the internal phase of (g, k) as the external message occupancy
changes from r to s.

First, consider the transitions that can occur when the external message occupancy
is ¢ > M. The relevant submatrices are Aoy, A;, and A;. The submatrix A, holds
the rates for all transitions that increase the external message occupancy by one.
The submatrix A; holds the transition rates that do not change the external message
occupancy. The elements of A; are the rates of transitions that decrease the external
message occupancy by one. All three submatrices are square of size 20 + 1. The
message occupancy can only increase from an external message arrival which occurs
at an average rate of \;. When ¢ > M, some messages are already queued waiting for
an open position in the window. Because a newly arriving message will go to the end
of the queue in the external system, the internal phase will not be disturbed upon its
arrival. Therefore, the submatrix A, is diagonal because a positive off-diagonal term

would represent a transition in which the internal phase changes as well. That is,

( )
A1

Ao = . (4.8)

A

\ M)

A decrease in the external message occupancy occurs when an inactive message in

the window exits the system. If there are m active messages, then the departure rate
is (M — m)p, because the window is full when ¢ > M. Unlike the transitions for an
external message occupancy increase, when a message exits the system with : > M,
the state of the internal system also changes. Upon a message departure, the message
at the head of the queue is admitted into the window filling the vacant position

and immediately becomes active by requesting an initial transmission. Therefore, a
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message departure decreases the message occupancy by one and increases the number
of active messages in the internal system by one. If an inactive message leaves the
system when all M admitted messages are inactive, the newly admitted active message
will generate a transmission that will immediately begin service because it is the only
outstanding transmission. This transmission is type one with probability a; or type
two with probability of a;. The submatrix associated with a decrease in the external

message occupancy is

(0 Majp, Mogp, )
T,
T,
Az v . (4.9)
Tr-a
0
\ 0
where
M-k 0

.= e forl<k<M-1 (4.10)

0 (M - k)[lq
When ¢ > M, the transitions in which only the internal phase changes and the

message occupancy stays the same are more complicated. Refer to Figure 4-1 for a
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partial state-transition diagram. The submatrix that holds the transition rates is

A,

where

and, for 1<k< M,

( Cy Do
F C
F,

Co

D,
C.
F;

D,
Cs
Fy

D
Cs

Froy

Crm—
Fun

(M + Mz + 1))

)

(4.11)

Dpr—y

(4.12)

c ~(A1 + g2 + (M — k)2 + p1)) 0
k —1
0 ~(M + paz + (M — k)(A2 + 1))
(4.13)
Also,
DO = ( MQ1A2 Mazz\z ) (4.14)
M — k) 0
Dy = ( s for1<k<M-1 (4.15)
0 (M = k)X
and
m=| (4.16)
H22
Fo=| @2 @ a<k< M (4.17)
Qiflzz Qafi22

Recall that the rows in A; that correspond to the rates of transitions starting with
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k active messages in the window are row 2k (the transmission currently being served
is type one) and row 2k + 1 (the transmission currently being served is type two).
Likewise, the columns in A; corresponding to the rates of transitions ending with &
active messages are column 2k (the transmission that will be served is type one) and
column 2k + 1 (the transmission that will be served is type two). The first row and
column of A; correspond to the rates of transitions starting and ending with zero
active messages, respectively.

The Dy matrices hold the transition rates of transmission generations from inactive
messages. Messages do not enter or exit the system during these transitions, so the
external message occupancy does not change. Since the elements in the first row of A,
are the rates for transitions starting with zero active messages in the window (i.e. all
M admitted messages are inactive), the rate of a transmission generation is M),. But
any transmission that is generated in this case will be served immediately and must
choose between type one service or type two service. Therefore, the transition rate is
Moy ), for the generation of a type one transmission and is Mas )\, for a generation
of a type two transmission. When k active messages (k > 0) reside in the window,
the rate for a transmission generation is (M — k));. The new transmission will wait
for the channel and does not choose its type of service yet.

The elements of the F), matrices are the transition rates of transmission comple-
tions by the channel. A message does not lea,\;e the system after its transmission has
been finished. Instead, the message becomes inactive, and the external message occu-
pancy remains the same. If there is only one active message (k = 1), its transmission
is currently being served, and, upon its completion, the number of active messages
reduces to zero which is why the element appears in the first column of A4;. If the
service is type one, the transition rate is p,;. If the service is type two, the transition
rate is py2. When k active messages (k > 1) exist in the window, a transmission
completion (which will occur at a rate of p,; if it is of type one or at a rate of p,, if
it is of type two) reduces the number of active messages by one and also allows for
the service of the next transmission in line to begin. The transmission at the head of

the line is type one with a probability a; or type two with a probability of a,.
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Finally, the diagonal elements of A;, which are held in the C) matrices where &
is the number of active messages, are also diagonal elements of Q. Therefore, these
elements are the negative sums of the non-diagonal elements in their row of Q which
include some elements of 4y and A,.

For the boundary external message occupancy states, ¢ < M, the transition sub-
matrices are different. First, since there can be, at most, 7 active messages, there
are only 2¢ + 1 internal phases, and, consequently, the size of these submatrices can
be smaller than (2M + 1)x(2M + 1). The submatrix B;;, which is reduced to a
(2¢ + 1)x(25 + 1) matrix after removing the extraneous rows and columns of zeros,
holds the transition rates from an external message occupancy ¢ to an external mes-
sage occupancy j. For ¢ < M, a newly arriving message sees an open position in
the window and is immediately admitted and active. Therefore, unlike the case of
it > M, the active message occupancy of the internal system increases by one, when
the message occupancy increases by one. On the other hand, when an inactive mes-
sage departs, with ¢ < M, no message is waiting to enter the window, so the internal
phase (the number of active messages and the type of service) remains the same.

The submatrix By; describes the possible transitions from an external message
occupancy of zero to an external message occupancy of one. When the external
message occupancy is zero, the channel is idle. Consequently, not only is an arriving
message admitted into the window right away, but its transmission is also immediately
handled by the channel. Again, the transmission can be of type one or type two. By,
a scalar that is a diagonal element of the transition matrix Q, is the negative of the

sum of the remaining elements in that row of Q.
Boo = = (4.18)

By, = ( 0 alAl azAl ) (419)

A transition that changes the external message occupancy from one to zero occurs only
when the number of active messages (or outstanding transmissions) is zero because,

if the sole message were active, it could not exit the system. When the message is
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inactive, it exits the system at a rate of y,.

Bo=]| 0 (4.20)

Transitions that do not change the external message occupancy can occur in a
few ways. When the external message occupancy is one, an inactive message can
generate a transmission that will be handled immediately by the channel since there
are no transmissions before it. This new transmission may be type one or type two.
These transitions correspond to elements B;;(1,2) and B;;(1,3). A transition is
also possible when the transmission of the admitted message is completed, so that
the message becomes inactive. If the transmission is type one, the rate of such a
transition is p2;. If the transmission is type two, the rate is uj;. These transitions
are elements By;(2,1) and By;(3,1). The diagonal terms of B;; are the negative sum

of the remaining elements in that row of Q.

—(M 4+ p1+A2) a3y )y
By = H21 —(M + pn) 0 (4.21)
M2 0 —(A1 + p22)

Transiticns that increase the external message occupancy from one to two occur
only when a new message arrives. If M > 1, the new message becomes active and
changes the internal phase. If there are no outstanding transmissions before the
arrival, the new transmission is served immediately and chooses type one or two
(elements B;5(1,2) and Bja(1,3)). If, however, there is an outstanding transmission,
the new transmission waits in line for service (elements B12(2,4) and B;3(3,5)). In

all of these transitions, the number of active messages is increased by one.

0 C!1A1 azz\l
By, = A (4.22)
A
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The remaining B;; submatrices for ¢ < M can be found in a similar manner by
carefully considering all possible transitions. For brevity, these matrices are not shown
here, but the Mathematica code in Appendix A shows how to find them recursively.

The external message occupancy state : = M is also a boundary state. In this
case, when an inactive message exits the system, no message is waiting to be admitted,
so the internal phase stays the same as it does when ¢ < M. Unlike the case where
i < M, when a new message arrives with z = M, the window is full, and the new
message begins a queue for admittance. The internal phase remains the same here
as well. Consequently, both matrices Basar—1 (which is of size (2M + 1)x(2M — 1))
and Bm 41 (which is a square matrix of size 2M + 1) have nonzero elements only

on their diagonals. In fact, By,p+1 = Ao, and Byar-1 =

( My, )
(M — 1)
(M — 1)
(M — 2)ps
(M = 2)pa
I
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0
\ 0
(4.23)

For transitions ‘where the external message occupancy does not change, the system

behaves like the case when 7 > M and By p = A;.
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4.4 Derivation of the Service Time Distribution
for a Random Transmission

Before analyzing the S-AR(Q model with the matrix-geometric method, a hyperex-
ponential distribution that approximates the real service distribution must be found.
First, the real service time distribution for a random transmission as seen as by the
channel must be determined.

Assume the initial distribution of the number of blocks in a message is a geometric
distribution with mean f, and the block error rate is a constant p with block errors
occurring independently. The length of a transmission (or the number of blocks in
the transmission) is equal to the service time the transmission requires. The analysis
can be done easily in the Z-transform domain.

Let NP(z) be the Z-transform of the geometric distribution of the length of an

initial message transmission?®.

“nin

(4.24)

Nf(z)zl—f;—lzzf—(f—nz

Consider the random variable g that describes the number of blocks that must be
retransmitted after a single block has been transmitted once. Clearly, g can only
take on a value of one (if the block was in error) or zere (if the block was received

correctly). Let G(z) be the Z-transform for the distribution of g, so
G(z)=1—-p+pz (4.25)

Let NJ(z) be the Z-transform of the distribution for the number of blocks that
need to be resent in the second transmission (or first retransmission) of a message.
For each block sent in the initial message, the random variable g describes whether or
not that block has to be retransmitted. Since there is a random number of blocks in

the initial transmission, the total number of blocks that must be retransmitted in the

2Drake [7] gives a good treatment of Z-transforms.
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second transmission is a random sum of random variables g. From a known theorem

for the Z-transform of a random sum of random variables [7],
N3 (z) = N{(G(z)) (4.26)

The probability of not needing the second transmission is N$(0), which is the coeffi-
cient of the 2° term in the Z-transform. By definition, this coefficient is the probability
that zero blocks need to be retransmitted.

The argument for finding the Z-transform of the distribution of the length of the
second transmission can be extended to finding the Z-transform of the distribution

of the length of the :th transmission, N?(z), for ¢ > 2. In general,
N{(2) = N2,(G(2)) = N(p" 'z +1 - p) (4.27)

N?(0) is the probability that the i¢th transmission is not needed, and 1 — N?(0)
is the probability that the ith transmission is needed. In fact, it is easy to see
that N?(0) — N2_,(0) is the probability that the (i — 1)th transmission is the last
transmission required for the entire message to be sent correctly.

Let N;(z) be the Z-transform of the distribution of the length of the ith trans-
mission of a message given that the length is not zero. N;(z) can be found explicitly
from N?(z) using a generalization of Bayes’ Theorem

N2(z) — N2(0)
1= W3(0)

Ni(2) = (4.28)
Also, let P(RT = 1) be the probability that a random transmission is the ith trans-
mission of a message. P(RT = i) is the probability of needing the ith transmission,
1 — NP(0), divided by the average number of transmissions required for complete
successful reception of a message.

1 N(0)

BT (4.29)

P(RT =i) =
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Two formulas for E[T] are given below.

oo

E[T] = 32 i(N%1(0) — N2(0)) = 33(1 — N2(0)) (4.30)

=1 i=1

The Z-transform of the distribution of the length of a random trarsmission is

N(z) = ZP(RT = 1) Ny(2) (4.31)
i=1
N(z) is the weighted sum of the Z-transforms of the distributions of the length of
first, second, third, etc. transmissions given that the lengths of these transmissions
are not zero. The weight of the ¢th term is the probability of a random transmission
being the ith transmission of a message. After the appropriate substitutions, equation
{4.31) simplifies to
1 o0
N(z) = = D_(N?(z) — N} 4.32)
() = g7y S (VP() — NE(0)) (432)

i=1
The above formulas for E[T] and N(z) are not in closed form but can be solved
by a computer by assuming an upper limit on the number of transmissions allowed
per message. To impose a retry limit of R (which includes the initial transmission of
a message), after which the message is dropped, let N3, (z) = 1. Equations (4.30)
and (4.32) reduce to

E[T]=R - f: N2(0) (4.33)
1 R
N(z) = g S (NE(=) = B2(0) (4.34)

=1

After finding N(z), the first three noncentral moments can be calculated easily.

sy = 22 (435)
mvy = TN e (4.36)
E[N? = gs—é\}ﬁ |:=1 +3E[N?] — 2E[N] (4.37)
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A hyperexponential distribution that approximates the real service time distribution
can now be found by matching these first three moments using an iterative method to
solve a system of three nonlinear equations and three unknowns. This method along
with the Mathematica code that performs the iterations are explained in Appendix
B. The iterations converge to yield four parameters a;, a3, $1, and s;, where a; is
the probability the service time for a transmission is exponentially distributed with
mean s; and a; = 1 — a; is the probability the service time for a transmission is
exponentially distributed with mean s;. This server is shown in Figure 2-4, where

-1 -1
p1 = ;- and pp = -
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Chapter 5

Analysis of the S-ARQ Model

Finding the matrix-geometric solution to a QBD process is usually computationally
intensive. To obtain statistics on the external message occupancy, the S-ARQ model
developed in the previous chapter was implemented in Mathematica. The Mathe-
matica code with documentation is included in Appendix A. This chapter begins by
describing a simulation of the buffered S-ARQ protocol. The analytical external mes-
sage occupancy (referred to hereafter as the message occupancy) results are compared
with those acquired from the simulation. Statistics on the message occupancy as a
function of the window size are also presented. The S-ARQ model can also be used to
study the effects of other parameters such as the message arrival rate, the block error
rate, and the round trip delay on the message occupancy, but these results will not
be presented here. Finally, the S-ARQ model is used to perform stability analysis of
the queueing system by finding a relationship between the maximum message arrival

rate (or offered load) and the window size.

5.1 Occupancy Analysis and Simulation of the
Buffered S-ARQ Protocol

A simulation of the S-ARQ protocol was created with the General Purpose Simulation
Software (GPSS) package. The simulation code is included in Appendix C. GPSS is
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a flexible package that simulates basic queueing systems quickly and efficiently. The
GPSS simulation of the S-ARQ protocol includes some of the assumptions made
in the development of the S-ARQ model such as restricting the round trip delay
to follow an exponential distribution. This assumption was kept in the simulation
model so that the validity of the independent-transmission-length assumption could
be tested when comparing the analytical and simulation results. The simulation,
however, uses the real service time distribution for transmission lengths rather than
the hyperexponential assumption used in the model. In other words, the simulation
has a memory of the size of and the number of transmissions each message in the
system has generated. In the simulation, a retry limit of eight is used but is not
significant for the results shown here because the number of messages that reached
this limit is negligible.

In the results presented in this chapter, the analytical model uses a hyperexpo-
nential service distribution that approximated the length of a random transmission
given that a message’s initial transmission is geometrically distributed with a mean
of 20 blocks and block error rate of 10 percent. The simulation derives this geomet-
ric distribution by discretizing an exponentially distributed random variable of mean
19.496 instead of 20. The continuous random variable is converted to a discrete ran-
dom variable by adding one to the integer part of the continuous random variable.
For example, if a message has an initial size of 5.14 blocks, in order to have an integer
number of blocks, the simulation uses an initial size of 6 blocks for that transmission.
It can be shown that discretizing an exponentially distributed random variable with

mean 19.496 in this manner yields a geometric distribution of mean 20.

5.1.1 Message Occupancy Analysis

The underlying Markov chain of the S-ARQ model is a quasi-birth-death process with
boundary occupancy states and, therefore, a matrix-geometric solution can be found

by applying Theorem 2. The T inatrix of the S-ARQ model differs slightly from that
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of Katz’s model.

( B Bo \
By Bii Bi
By1 B Bss
B.. B .

T = 32 33 (5.1)

\ Bum-1 Buum + RA; )

The matrix R is found iteratively from the equation

Rnew = —AoA7' — Ry pAxAT! (5.2)

The left eigenvector, zp, associated with the zero eigenvalue of T is determined and
normalized, where

Tp = (:co, L1y eeey :BM._l,:l:M) (5.3)

As a result of the deletion of the extraneous rows and columns of zeros from the
submatrices B;;, T is a square matrix of size (M + 1)2. Consequently, zp is a row
vector of length (M + 1)%, and =;, for 0 < ¢ < M, are row vectors of size 2; + 1. The
normalization equation of Theorem 2 which assumes all ; sre the same size requires
a slight modification. After normalization, the remaining part of the steady-state

distribution is found from
zp = sy R*M, fork>M (5.4)

The matrix-geometric solution yields the joint probability density for the exterrnal
message occupancy and the internal phase (the active message occupancy and type of

transmission being sent). The row vector z; holds the stationary probabilities for all

internal phases for an external message occupancy i. The external message occupancy
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density is just the marginal density

2i41

P(X =i) = Zl zi(7) (5.5)
i=
where X is the message occupancy and z;(j) is the jth term of the row vector z;.

The values for the parameters used in most of the analysis are presented here.
As mentioned earlier, the initial message length is geometrically distributed with a
mean of 20 blocks. Block errors are independent and occur at a rate of i0 percent.
The message arrival rate is 0.02 messages/slot. The round trip delay is assumed to
be exponentially distributed with a mean duration of 40 slots.

The message occupancy density functions for both the analysis and the simulation
are shown in Figure 5-1 for a window size of eight. The mean message occupancy
from the analysis was 2.4347 which underestimated the simulation mean of 2.6430
by 7.88 percent. One explanation for the underestimate is that the S-ARQ model
does not keep track of how many transmissions a particular message has had and,
therefore applies the same probability of success, Pscx, to each transmission. As a
result, many messages exit the system after the initial transmission, spend less time
in the system, and reduce the message occupancy. Explained in a different way, the
model has a transmission success probability that is independent of the length of the
transmission so long transmissions may be successful in the model more frequently
than they are in the simulation. Clearly, in the real protocol and the simulation, there
is a correlation between the transmission length and the probability of its success.

The window is the distinctive feature of this S-ARQ protocol. It is of interest to
observe the effects the window size has on the message occupancy. Figure 5-2 shows
the mean message occupancy as it varies with the window size. The 99th percentile of
the occupancy distribution versus the window size is graphed in Figure 5-3. From this
graph, a rough estimate (even though it would be an underestimate) can be made
for the amount of storage space is required at the source to hold messages in the
window and the queue. In Figure 5-4, the probability of the queue length (message

occupancy) X being less than or equal to the window size M is shown versus the
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Figure 5-1: Message Occupancy Density Functions from Analysis (the S-ARQ Model)
and Simulation: Avg. Initial Message = 20 Blocks, Block Error Rate = 0.1, Offered
Load = 0.02 Messages/Slot, Trrp = 40 Slots, M = 8.
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Figure 5-2: Mean Message Occupancy versus Window Size: Avg. Initial Message =
20 Blocks, Block Error Rate = 0.1, Offered Load = 0.02 Messages/Slot, Trrp = 40

Slots.
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Figure 5-3: 99th Percentile of Message Occupancy Distribution versus Window Size:
Avg. Initial Message = 20 Blocks, Block Error Rate = 0.1, Offered Load = 0.02

Messages/Slot, Trrp = 40 Slots.
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window size. This graph is useful in determining the probability of having a window
overflow. The results from the model shown in Figures 5-2, 5-3, 5-4 are as expected.
At small window sizes, there is a great deal of congestion because the channel is
shared by only a few messages at a time and is often idle even though messages may
be waiting in the queue to use the channel. At first, an increase in the window size
alleviates the traffic congestion in the system significantly. At large window sizes,

however, further increases in the window size has diminishing returns.

5.2 Stability Analysis

Sta,bi].ity. is an important issue in the study of queueing systems. If customers (or
messages) arrive at a faster rate than they can be serviced on the average, the system
becomes unstable as the occupancy of the system grows to infinity. Neuts’ Theorem
provides a condition for stability for a quasi-birth-death process. A queueing system

described by a QBD process with matrices A, and Ay is stable if

wAse > wApe (5.6)
where
7I'A=0, A=A0+A1+A2, (57)
and
2M+1
Z T = 1 (58)
1=0

The vector 7 is the normalized left eigenvector for the zero eigenvalue of A and is the
steady-state probability vector of the phase process (with the state-transition diagram
shown in Figure 4-1 when the message occupancy is greater than ). The left-hand
side of the inequality is simply the average message service rate of the system, and
the right-hand side is the average message arrival rate of the system. Therefore,
the system remains stable if the message arrival rate ); is less than 7w Ase (which is
independent of A;). The maximum allowable offered load is 7 A,e and is graphed as

a function of window size in Figure 5-5. As the window size increases, the maximum
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Figure 5-4: Probability that Message Occupancy < Window Size versus Window
Size: Avg. Initial Message = 20 Blocks, Block Error Rate = 0.1, Offered Load = 0.02
Messages/Slot, Trrp = 40 Slots.
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Figure 5-5: Maximum Stable Offered Load versus Window Size: Avg. Initial Message
= 20 Blocks, Block Error Rate = 0.1, Trrp = 40 Slots.
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offered load reaches a theoretical threshold value of 17"3, where p is the block error
rate and f is the mean initial message size. For p = 0.1 and f = 20, the threshold
value is 0.045 which is confirmed by Figure 5-5. To check the results of Figure 5-5,
for a given window size, the message arrival rate in the model was increased so that it
exceeded the maximum for that window size, and, as predicted from the analysis, the
probability of the message occupancy staying finite dropped to near zero indicating
the system had become unstable.

One possible application of the stability analysis of the S-ARQ protocol is that
the relationship found between the maximum stable offered load and the window size
may be useful in allocating bandwidth to multiple users. If the MAC sublayer has a
global buffer that holis reservation requests from two users, C and D and it is desired
to allow user C' to give more requests than user D (and consequently, to give C' more
bandwidth than D), then perhaps this can be achieved by setting the window size
of user C to a value greater than that of user D so that user C’s throughput at the
Data Link layer is more than user D’s throughput. Future study may concentrate on

the possibilities of this dynamic bandwidth allocation application.
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Chapter 6

Conclusion

In comparing the analytical results with the simulation results, the validity of the
independent-transmission-length assumption is checked. In other words, the results
from a memoryless QBD model are being com pared to those of a simulation that has
a memory of the status of every message in the system. For the parameters chosen
in the previous chapter, the analytical results underestimate, but are close to, the
simulation results. Unfortunately, the analytical results are reasonable only for low
error rates and large window sizes. When the error rate is too high, the model uses
a value for Pscx = 3£~ that is an unrealistic approximation. The model cannot
emulate the real system because the model permits too many initial transmissions to
be successful. Consequently, the messages associated with these transmissions leave
the system too early and the analytical message occupancy further underestimates the
simulation results. When the window size is small and under light load assumptions,
the independent-transmission-length assumption also loses its validity because there
is a high correlation between the lengths of successive transmissions.

The phase of the S-ARQ QBD process contained two variables, the number of
active messages in the window and the type of transmission being served. At first, it
may seem attractive to develop a more accurate model by creating a more complex
phase. This could be done by adding a third variable to the phase or increasing the

number of transmission types. Such a model, however, quickly becomes unmanageable

as the phase becomes more detailed. Deciding what variable to add to the phase and
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how to model that variable accurately are additional issues that have to be considered.

Some of the other assumptions required in developing the S-ARQ model may
be unrealistic. For example, rarely is it a reasonable approximation to require the
round trip delay of a communications system to be exponentially distributed. This
assumption was necessary in the model to maintain the memoryless property of the
QBD process. In many systems, the round trip delay actually is more or less de-
terministic and not very stochastic. Neuts [13] [14] has done a great deal of work
in the development of stochastic matrix models for complex queueing systems, in-
cluding models that are not restricted to QBD processes and can, therefore, deal
with non-exponential distributions. These models are more general but are also more
computationally intensive.

In conclusion, although a reasonably accurate model for the buffered S-ARQ pro-
tocol was developed, the range of the parameters for which the model remains valid
is restricted. It may be possible to create a more accurate model, but one must seri-
ously consider if the additional insight gained outweighs the computational costs and
complexity of this new model when a simulation can often mimic the real protocol

more easily and accurately.
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Appendix A

Implementation of the S-ARQ
Model in Mathematica

The Mathematica code in this appendix performs the matrix-geometric method on
the S-ARQ model. The first program creates the matrix T and finds the matrix R that
is required to obtain a matrix-geometric solution. The second section of code explains
how to find the steady-state probabilities for the boundary message occupancy levels.
The third section is a program that finds the entire message occupancy distribution
as well as other statistics. The code uses W, instead of M, to denote the window
size and z; and xz,, instead of s; and s;, to denote the mean service times of the

exponential distributions in a hyperexponential distribution.

(* This program calculates the matrix R for the matrix-geometric

solution:
x(k) = x(W)*(R~“(k-W)) for k > W where W is the Window Size.
This program does not calculate x(k); that calculation is done in the

next section of code. *)

(* Need to include this file to use the BlockMatrix command *)

<<LinearAlgebra‘MatrixManipulation®
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(* W is the window size of the system. *)

W= 8;

(* al, a2, x1, x2 are parameters that yield an approximate
distribution for the actual distribution of the length of a random
transmission. The actual distribution depends upon the block error
rate and the initial message length distribution and is found
numerically. The values of these parameters were determined by
iteration scheme for solving simultaneous nonlinear equations; see

Appendix B. *)

(* The approximate distribution is a hyperexponential distribution
which is a weighted sum of two exponential distributions.
al is the probability of choosing the server of mean xi,

a2 is the probability of choosing the server of mean x2 *)

al
a2
x1
x2

(* u21 is the service rate of server one

u22 is the service rate of server two *)

u21

it

N[1/x1, 20];

u22 = N[1/x2, 20];

(* ul is the message departure rate, exponentially distributed (i.e.

ACK rate)

12 is the message retransmission request rate, exp. dist.(i.e. NAK rate)
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11 is the external message arrival rate, exp. dist. *)

(* ul and 12 are related to the round trip delay which is also assumed
to be exponentially distributed in this model. Let RTD be the mean
interarrival time of the acknowledgments (either ACKs or NAKs). Then,
RTD = 1/(ul + 12) because the random variable that is the minimum of
two exponential random variables is also exponential with the rate
being the sum of the rates of the initial two random variables. Also,
ui/(ui+l2) is the probability of an acknowledgment being an ACK, and
12/(u1+12) is the probability of an acknowledgment being a NAK.

Et is the expected number of transmissions per message and is found

from the code in Appendix B. *)

RTD = 120;
ul = 1/Et/RTD;
12 = (1~ 1/Et)/RTD;

11

0.005;

(* e is a column vector of size 2W+1 with all elements being one *)

e = Table[1,{2 W+1},{1}];

(* z is a function that creates a zero matrix of size i,j *)

z[i_,j_] := Table[0,{i},{j}];

(* The matrix T is a square matrix of size (W+1)"2 and has the

following form:

T = |Bi1 B12 |
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IB21 B22 B23 I
I B32 B33 B34 I
I B43 | B44 B45 l
| . . . |
| . . . |
I . . . I
I BW(W-1) BWW+R*A2 |

Bij is a matrix of size 2i-1 by 2j-1 that holds the transition rates

for all transitions from occupancy state i-1 to occupancy level j-1.

Note that transitions are only allowed between neighboring occupancy
levels since the matrix T is block tridiagonal.

For all |i-ji>1, Bij is a zero matrix.

In the last block row of T shown above, the matrix R and A2 are found
first, then multiplied and added to BWW. *)

{{-11 3}

{{ 0, a1*1i, a2+11 }}

(* B11
B12

f = B21
g = B22
h = B23 *)

Hh
]

{{u1},{0},{0}};
{{-(11+u1+12) ,a1 12,a2 12},{u21,-(11+u21),03},{u22,0,-(11+u22)}};
{{0,21 11,a2 11,0,0},{0,0,0,11,0},{0,0,0,0,11}};

[~ ]
[} 1

(* The next two lines are creating the first two block rows of T *)

(* First, create the following matrix

| Bi1 B12 0 |
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| B21 B22 B23 | *)

T = BlockMatrix[{{{{-11,0,a1 11,22 11,0,0,0,0,0}}},{f,g,h}}];

(* Padding the first two block rows with the necessary number of

columns of zeros *)

T = BlockMatrix[{{T,z[4, (W+1)~2-9]}}]1;

(* The following for loop calculates the remaining B matrices and
appends them to the exist matrix T, adding another block row to T
every time it goes through the loop except for the last time. m
starts from 3 because the first two block rows for T have already been
found and ends with W+1 because this corresponds to an occupancy level

of W. *)

For [m=3, m<(W+2), m++,

(* Creates Bm(m-1) from B(m-1) (m-2) which is stored in f *)

BlockMatrix [{{f,z[2 m-3,2]}}];

Btemp

Btemp = Btemp + ui IdentityMatrix[2 m-3];
(* Sets f to Bm(m-1) for next run through loop *)
f = BlockMatrix[{{Btemp},{z[2,2 m-3]}}];

(* Creates Bmm from B(m-1)(m-1) which is stored in g *)

Btemp = g - (12+ul) IdentityMatrix[2 m -3];
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temp = BlockMatrix[{{z[2 m-3,2], 12 IdentityMatrix[2 m-3]1}}];

temp[[1,2]] = temp[[1,2]] + a1l 12;
temp[[1,3]] = temp[[1,3]] - a1l 12;
Btemp = BlockMatrix[{{Btemp, z[2 m-3,2]}}] + temp;
temp2 = {{al u2i, a2 u2i, -(11+u21), O},

{al u22, a2 u22, 0, -(11+u22)}};
temp2 = BlockMatrix[{{z[2,2 m -5], temp2}}];

(* Sets g to Bmm for next run through loop *)

g = BlockMatrix[{{Btemp},{temp2}}];

(* Creates Bm(m+1) from B(m-1)m which is stored in h *)

(* Sets h to Bm(m+1) for next run through loop *)

h = BlockMatrix[{{h,z[2 m-3,2]1}, {z[2,2 m -1], 11 IdentityMatrix[2]}}];

(* If m does not equal W+1i, then append next block row to T, but if m

equals W+i, skip this step and exit the for loop *)

If[m<(W+1),T = BlockMatrix[{{T},
{z[2 m-1, (m-2)~2],f,g,h,z[2 m-1, (W+1)"2-(m+1)"2]}}]];

1;

(* Done with for loop. *)

(* Now calculate AO, Al, and A2 *)

A0 = 11 IdentityMatrix[2 W+1];
Al g

temp3 = BlockMatrix[{{z[2 W+1,2],£}}];
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temp3[[1,2]] = temp3[[1,2]] + W al ui;
temp3[[1,3]] = temp3[[1,3]] - W al ui;
A2 = temp3;

(* A is the sum of A0, A1, and A2 *)

A= A0 + Al + A2;

(* Need to find the zero left eigenvector of A which is just the
transpose of the zero right eigenvector of the transpose of A. So

first let AT be the Transpose of A. *)

AT = Transpose[A];

(* Calculating the following two matrices now as opposed to during the

iterations for R will reduce the computation time. *)

Cl1 = -AO . Inverso[Al]l;

C2 = -A2 . Inverse[Al];

1]

(* For initial iteration, set R equal to a matrix of zeros *)

R = z{2 W+1,2 W+1];

(* The following for loop finds R iteratively. One thing to know is
that as 11 (external message arrival rate) approaches the maximum
allowable offered load for the given conditions, the number of
iterations required for convergence increases. This means, in heavy
traffic, you need to do more iterations on R to get good results.

Currently, 250 iterations are performed. *)
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For[k=1, k<251, k++,

Rold = R;
R=Ci+R.R . C2;
1;

(* Finding Rdif allows one to tell if the solution for R has

converged. Rdif should be a matrix of zeros. *)

Rdif = R - Rold;

(* Adding R*A2 to BWW *)

temp4d = g + R . A2;

(* Appending BW(W-1) and BWW + R*A2 to T which yields the desired form
of T. *)

T = BlockMatrix[{{T},{z[2 W+1,(W-1)"2], £, temp4}}];

(* Need to find the zero left eigenvector of T which is just the
transpose of the zero right eigenvector of the transpose of T. So

first let V be the Transpose of T. *)

V = Transpose[T];
{pysd, pys} = Eigensystem[AT];
{Tvals, Tvecs} = Eigensystem[V];

(* After running this program in Mathematica, the eigenvalues of AT

are stored in pysd, and the eigenvalues of V will be stored in Tvals.
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At this point, the lists pysd and Tvals have to be searched to find
the zero eigenvalue. The corresponding eigenvector can then found as
the kth row of pys or Tvecs, if the kth eigenvalue is zero. Note that
the way Mathematica stores the eigenvectors, they are already in row
form, so no transpose is needed to get the zero left eigenvector of A
or T. As a check, let X be the determined zero left eigenvector.

Then doing the following command should yield a result of a zero row

vector. *)

(* Type 'X . A’ (without the quotes) if X is found from AT.

Type X . T’ (without the quotes) if X is found from V. *)

The next section of code must be performed from the command line in Mathe-

matica because the position of the zero eigenvalue of A and T has to be found by

inspection.

(* This code will discuss how to use the data from the previous
program to do two things. *)

(* First, it explains how to find the maximum stable offered load from
the matrix A calculated above. The left eigenvector of the zero
eigenvalue of A must be found and normalized. Second, the left
eigenvector X of the zero eigenvalue of the matrix T found above must
also be calculated. *)

(* In order to find the maximum stable offered load, first the left
eigenvector of A that corresponds to the eigenvalue of zero must be
found. Mathematica only finds the right eigenvectors of a square
matrix. It is easy to show that the left eigenvectors are the
transposes of the right eigenvectors of the transpose of the original
matrix. *)

(* The following command was performed in the previous program but is
included here for reference. *)

{pysval, pysvec} = Eigensystem[AT];
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(* Now list pysval to find out where in the list the zero eigenvalue
is. (i.e. is it the first, second, third, etc.) This can be done by

typing: *)
pysval

(* After finding its spot (say it in the ith place), let py be the ith
right eigenvector of AT which can be done as follows: (Note that i in

the statement below should be replaced by the integer corresponding to
the position of the zero eigenvalue.) *)

py = {pysl[[ill}

(* Note that the way Mathematica stores the eigenvectors, py is
already a row vector and does not need to be transposed. Now the py
vector has to be normalized. Set up a column vector of ones of size
oW+1 if it is not already made. *)

ones = Table[1, {2 W+1i}, {1}]
{{temp}} = py . e
py = py / temp

(* The last statement divides py by its length so that the new py has
length unity. At this point, all the elements of py should be positive. *)

(* To find the maximum offered for which the message occupancy
remains stable, type the following command: *)

{{maxt}} = py . A2 . e

(* Also, as a verification, the following command yields the current
external message arrival rate (which is the offered load): *)

{{curt}} = py . AO . e

(* If curt > maxt, then the buffer occupancy is unstable (i.e. has a
non-zero probability of being infinity). This implies that the
external message arrival rate (which is the reciprocal of the mean
interarrival time) should be reduced so that curt < maxt *)

(* The rest of the code here explains how to find the vector X which
is the left eigenvector of the zero eigenvalue of T. *)

(* In order to find the vector X that can be used to find the message
occupancy distribution and other statistics, the position of the zero
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eigenvalue of V (which is the transpose of T) has to be found by
listing them as follows (If there is no zero eigenvalue then the
current system is unstable and the external message arrival rate
should be reduced.): First, list the eigenvalues of V (and T) by

typing *)
Tvals

(* After finding the zero eigenvalue of V, the corresponding right
eigenvertor of V needs to be extracted from the matrix Tvecs of the
right eigenvectors of V (which are stored as a row vectors so the
transpose does not have to be taken):

Note: i in the formula below should be replaced by the integer
corresponding to the place of the zero eigenvalue. *)

X = {Tvecs([[i]]}

(* At this point, X may be a negative row vector, in which case the
following command should be typed: *)

X=-X

(* Once X is a positive row vector, it can be used in the following
program to find statistics like the message occupancy distribution and
mean waiting time. *)

The last program in the appendix takes the unnormalized vector X, which is the
steady-state probability vector for the boundary occupancy states, and the matrix R
to find the matrix-geometric solution and the message occupancy distribution. Other

statistics of interest are also calculated.

(* This code is a function that finds various statistics such as
message occupancy distribution, mean message occupancy, mean waiting
delay, mean system time (total time in the system), and probability of
the message occupancy not exceeding the window size. *)

(* A function that makes zero matrices of various sizes has been

created in mgm.m *)

(*» z[i_,j_] := Table[0, {i}, {j}]; *)

(* Create a function that creates a matrix of ones *)
ofi_,j_] := Tablel1, {i}, {j}1;

83



(* N ic a temporary vector that is used to find the normalizing factor *)

NV = z[1,2 W+1];
Q = BlockMatrix[{{ X[[Range[1,1], Range[1,1]]], z[1,2 W]}}];
NV = NV + Q;

(* In this loop, the vector X is partitioned into W+1 row vectors
each of size 2W+1. Q is a matrix that stores these row vectors. *)

For[k=2, k<(W+2), k++,
temp = BlockMatrix[{{ X[[Range[1,1], Range[(k-1)-2+1,k~2]1],
z[1,2 W+1-(2 k-1)1}}];
NV = NV + temp;
Q = BlockMatrix[{{Q}, {temp}}];
1;

(* e is a column vector of size 2W+1 with all entries equal to one. *)
(* e = Table{1, {2 W+1}, {1}1; *)

(* NF is the normalizing factor. temp holds the value of the last row
(i.e. buffer occupancy of W). *)

NF = (NV - temp) . e + temp . Inverse[IdentityMatrix[2 W+i] - R] . e;
(* Scale Q by NF which is a scalar. *)
Q = Q/NF[[1,11];

(* Z is the probability that message occupancy does not exceed the
window size. *)

Z =o[1,4+1] . Q . e;
(* S will be the probability that the message occupancy does not
exceed the parameter chosen in the next for loop for maximum k. To

goet a good approximation on expected buffer occupancy, S should be
near one at the end of the for loop. *)

S = Z;

(* Scale and use temp in deterni:iing S ond future rows of Q. *)
temp = temp/NF[[1,1]]

(* In this for loop, the remainder of the Q matrix and the message
occupancy digtribution are found up to the maximum message occupancy
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used in the for loop. Here it is set at 101, so all calculations are
done through message occupancy of 100. *)

For [k=W+2, k<101, k++,
temp = temp . R;
Q = BlockMatrix[{{Q},{temp}}];
S=85 + temp . e;

1;
{{2}} = Z;
{{s}} = s;

(* S should be close to one. If not, the maximum k has to be
increased to get accurate results on message occupancy moments. *)

(* QD is a row vector that maintains the probability distribution of
the system’s message occupancy. *)

QD = Transpose[Q . e];

(* Need to find the mean message occupancy, mean delay, and mean system
time. To find the mean message occupancy, S must he very close to one. *)

temp = O;
For [k=1, k<101, k++,
temp = temp + (k-1) QD[[1,k]];
1;
EBG = temp;
(* Let EY be the expected number of messages in the window. *)
temp2 = 0;
For [k=1, k<W+2, k++,
temp2 = temp2 + (k-1i) QD[[1,k]];

1;
temp2 = temp2 + W (1-Z);
EW = temp2;

(* Let EQ be the expected number of messages waiting to enter the
queue. Then, EQ = EBC - EW. *)
EQ = EBO - EW;

(* Now we can find the expected waiting time and system time. *)

Wait = EQ/11;
Syst = EB0/11;
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Appendix B

Calculation of the Real Service
Time and Hyperexponential

Distributions using Mathematica

This appendix describes the procedure and Mathematica code for finding a hyper-
exponential distribution that approximates the actual service time distribution for
a random transmission. First, the code that calculates the first three moments of
the actual random transmission service time distribution is given. Then, an iterative
method for solving a system of nonlinear equations used to match these moments to
those of a hyperexponential distribution. Finally, the Mathematica code that per-
forms this iteration method is included. In the first program, the mean initial message

transmission length is denoted by m, instead of f which was used in Chapter 4.

{* This program will find the distribution of the length of a random
transmission with a block error rate of p and an initial message
transmission length that is geometrically distributed with mean m.
Although the actual distribution is messy and cannot be found in
closed form, the first three moments can be solved for (as shown
below) which can be used to get an approximate distribution, which is
a weighted sum of two exponential distributions by matching these

moments. *)

(* Actually, the Z-Transform of the distribution is found, from which

86



the moments can easily be calculated. *)
(* Mean initial message size in blocks *)

m = 20;

(* Block error rate, where errors are independent
The block error rate can either be set before running the program or

set here *)

P
(* Z-T for the random variable g of a block being in error *)
G[z_] = 1-p + p z;

(* Z-T for an initial message transmission, assumed to be a geometric
distribution *)

NO[z_] = z/(m (1-(z (m-1)/m)));

(* Z-T for the length of a message before its (i+1)th transmission
given that no transmissions have been made yet *)

Tli_,p_,z_] := T[i,p,z] = Compose[NO, Nest[G,z,il];
(* To find the probability of the message being done by the ith
transmission, use the following command: (note that i should be

replaced by desired integer) (Also note that this answer does not give
the probability of success of the ith transmission) *)

i=1Tl,p,0]

(* Let R be the maximum number of transmissions allowed for a message
before being dropped. (This is the retry limit.) *)

R = 8;

(* Formula for the expected number of transmissions for a message with
a retry limit of R *)

Et = R - Sum[T[k,p,0], {k,0,R-1}];

(* Z-T for the length of a random transmission, the derivation of
which is included in Chapter 4 *)
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RT[z_] = Sum[T[k,PsZ]‘T[k,P,O], {k,O,R-i}]/Et;

(* Finding the first three noncentral moments of RT[z], saved in
Mi, M2, M3 *)

DRT1[z_] = DIRT[z], z];
M1 = DRT1i[1];

DRT2(z_] = D[DRT1[z], z];
M2 = DRT2[1]+M1;

DRT3[z_] = D[DRT2([z], z];
M3 = DRT3[1] + 3 M2 -2 Mi;

Let a system of nonlinear equations be described by
f@)=0 (B.1)

where f is a vector of equations, and @ is a vector of unknowns. An iterative method
for finding the solution @ of the above system is outlined here.
Select an initialization vector #o. Then, perform the following series of calculations

with &£ = 0 to find ;.

yi = — (i) (B.2)

Dy, = V(i) (B.3)

, = Dy (DeDi) " wi (B.4)
fpgr = B + ik (B.5)

Repeatedly increment k& by one and perform the calculations (B.2), (B.3), (B.4),
(B.5) until @ converges to the solution 4. The necessary requirements to guarantee
convergence of this method were not studied in detail. A basic observation is that
the method is not guaranteed to converge if the number of unknowns is greater than
the number of equations. Also, if the number of unknowns is less than the number

of equations, there may be multiple solutions, and the solution the method yields
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will depend on the point of initialization. The method is used here to find the four
parameters a;, as, €1, and =, of a hyperexponential distribution that matches the
first three moments, u, 12, and p3, of the real transmission service distribution. The
parameter «; is the probability of the transmission being of type one and having an
exponentially distributed service time with mean z;. Likewise, a;, is the probability
of the transmission being of type two having an exponentially distributed service time
with mean z,.

The system of nonlinear equations that need to be solved is found by subtracting
the first three moments of the hyperexponential distribution by those of the real

service distribution to yield

a1Ty + asTy — M1
flar,@2,21,22) = | 20422 + 2032 —py | =0 (B.6)

6a;z? + 6azz3 — pa

Note that a; = 1 — @; so that there are only three independent parameters of the
hyperexponential distribution, and the problem reduces to finding the solution to
three equations with three unknowns. The Mathematica code for performing the

iterations follows.

(* This file calculates the parameters al, a2, x1, x2 for a
hyperexponential service distribution that matches the first three
(non-central) moments of the actual service distribution. *)

(* Need to put initial values here *)

mul = Mi;

mu2 = M2;

mu3 = M3;

u = {{0.2}, {25}, {1}};
al = ul[1,1]];

x1 = u[[2,1]];

x2 = u[[3,1]];

a2 = N[1 - a1,30];

(* Start iterations. Here, 100 iterations performed. The necessary
P
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number of iterations depends on the nonlinear system. *)

For[k=1, k<101, k++,

f = {{a1 x1+a2 x2 - mui}, {2 al x1 x1+2 a2 x2 x2 - mu2},
{6 a1l x1 x1 x1+6 a2 x2 x2 x2 - mu3}};

y = -f;

Dee = {{x1-x2,a1,a2},{2 x1 x1-2 x2 x2,4 al x1,4 a2 x2},
{6 x1 x1 x1-6 x2 x2 x2,18 al x1 x1,18 a2 x2 x2}};

uadd = Transpose[Dee] . Inverse[Dee . Transpose[Deel] . y;

u = u + uadd;

al = u[[l,il];
x1 = u[[2,1]];
x2 = u[[3,1]];
a2 =1 - al;
1;
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Appendix C

GPSS Simulation Code for the
Buffered S-ARQ Protocol

The simulation for the buffered S-ARQ protocol used to obtain an external message

occupancy distribution is given below with comments.

SIMULATE
REALLOCATE COM,50000

* SET WINDOW SIZE BY SETTING LAST OPERAND IN NEXT LINE
* CURRENTLY WINDOW SIZE = &

STORAGE S(WINDOW),8
QDIST TABLE Q(BUFFER),0,1,102

* SET MEAN INTERARRIVAL TIME WHICH IS THE RECIPROCAL OF THE MEAN
ARRIVAL RATE BY CHANGING THE SECOND OPERAND IN THE PARENTHESES IN
* THE NEXT LINE

CURRENTLY THE MEAN ARRIVAL RATE = 0.02 = 1/50

%

*

GENERATE RVEXPO(1,50),,,,,1PF,2PL

* TABULATING THE QUEUE SIZE SEEN BY ARRIVING MESSAGES YIELDS THE SAME
RESULTS AS THOSE TAKEN OVER TIME AVERAGES BECAUSE THERE ARE POISSION

ARRIVALS

* ¥

TABULATE QDIST
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COUNT KEEPS TRACK OF THE NUMBER OF TRANSMISSIONS A MESSAGE HAS HAD

*

ASSIGN COUNT, 0,PF

ERRBLOC KEEPS TRACK OF THE NUMBER OF BLOCKS IN ERROR DURING A
* MESSAGE TRANSMISSION

*

ASSIGN ERRBL0C,0.0,PL

CURBLOC KEEPS TRACK 2¢ THE NUMBER OR BLOCKS YET TO BE TRANSMITTED IN
* THE CURRENT MESSAGE TRANSMISSION

*

ASSIGN CURBLOC,RVEXP0(2,19.496) ,PL

ARRIVING MESSAGES ENTER THE BUFFER

*

LINE QUEUE BUFFER

* WHEN A SPOT IN THE WINDOW IS OPEN THE NEXT WAITING MESSAGE GETS THAT
* SPOT AND DOES NOT LEAVE IT UNTIL THE ENTIRE MESSAGE IS RECEIVED
* CORRECTLY OR THE RETRY LIMIT IS REACHED

BWINDOW ENTER WINDOW
* ONLY ONE MESSAGE CAN OCCUPY THE CHANNEL AT A TIME

SERVER SEIZE CHANNEL

* TEST TO SEE IF THERE ARE ANY MORE BLOCKS TO BE SENT IN THE CURRENT
* TRANSMISSION

NEXTB TEST GE PL(CURBLOC),0.0,TDONE

* IF THERE ARE REMAINING BLOCKS, THEN DECREMENT CURBLOC BY ONE AND
* SEND IT EACH BLOCK TAKES A FIXED yIME UNIT OF LENGTH ONE FOR
* TRANSMISSION

ASSIGN CURBLOC-,1.0,PL
ADVANCE 1

THE BLOCK ERROR RATE IS ONE MINUS THE FIRST OPERAND OF THE NEXT

STATEMENT
IF BLOCK SUCCESSFUL, GO SEND THE NEXT BLOCK

* X *

TRANSFER .9, ,NEXTB
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IF THE BLOCK IS IN ERROR, THEN INCREMENT ERRBLOC AND GO SEND THE NEXT
* BLOCK

*

ASSIGN ERRBLOC+,1.0,PL
TRANSFER ,NEXTB

* RELEASE THE CHANNEL WHEN THE CURRENT TRANSMISSION IS FINISHED AND
* INCREMENT COUNT TO SHOW THAT THE MESSAGE HAS GONE THROUGH ONE MORE
* TRANSMISSION

TDONE RELEASE CHANNEL
ASSIGN COUNT+,1,PF

* THE MESSAGE THAT HAS JUST BEEN SENT WILL GO THROUGH A ROUND TRIP
* DELAY WHICH HERE IS ASSUMED TO BE EXPONENTIAL WITH MEAN LENGTH
* EQUAL TO THE SECOND OPERAND IN THE PARENTHESES

RTDELAY ADVANCE RVEXP0(3,40)

* CHECK TO SEE IF ALL THE BLOCKS OF THE TRANSMISSION WERE SUCCESSFUL
* IF SO, THE MESSAGE IS DONE AND MUST LEAVE THE SYSTEM

TEST G PL (ERRBLOC) ,0.0,MESSDON

* IF NOT, THEN CHECK TO SEE IF THE RETRY LIMIT HAS BEEN REACHED
* IF SO, THEN THE MESSAGE MUST LEAVE THE SYSTEM

TEST L PF (COUNT) ,8,MESSDON

IF NOT, THEN CURBLOC SHOULD BE SET TO ERRBLOC AND ERRBLOC SHOULD BE
SET TO ZERO TO GET READY FOR THE NEXT TRANSMISSION

* *

ASSIGN CURBLOC,PL (ERRBLOC) ,PL
ASSIGN ERRBLO0C,0.0,PL

THE MESSAGE WILL GO BACK AND WAIT FOR THE CHANNEL FOR A RETRY

*

TRANSFER ,SERVER

* ONLY WHEN A MESSAGE LEAVES THE SYSTEM DOES IT FREE UP A SPOT IN THE
* WINDOW
MESSDON LEAVE WINDOW

DEPART BUFFER

TERMINATE 1

93



START
RESET
START
END

10000

1000000
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