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ABSTRACT

Control or protocol information must generally accompany messages

in a communications network in order to keep track of the

beginning, end and destination of each message. Such additional

data constitutes a network overhead, and occupies valuable

network resources. For economic reasons it is important to keep
this overhead to a necessary minimum. An efficient method for
encoding protocol information, based on source coding, is applied
to the coding of the beginning, end and destination of a message,
and the results are compared to existing schemes.

The relationship between protocol information for specifying the
beginning and end of a message and its length is illustrated by a
single source/receiver network. A Huffman encoding of message
length is devised and compared to fixed packet and terminal flag
strategies.

A communication link with identical sources is used to demonstrate
how start-stop protocols for messages are sufficient to convey
destination information in addition to the beginning and end of

each message.

The protocol strategies developed from a source coding approach
come close to meeting the lower bounds proposed recently for
such information.
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Section 1

Introduction

1.1 What is a network protocol?

The function of a communications network is to provide a temporary

link between an information source (human voice, data terminal, computer)

and the appropriate destination. A set of rules are necessary in order

to establish and terminate such a connection, and are called network

protocols. These rules generally necessitate control information to be

transmitted through the network in addition to message data. The control

information may be considered as a network overhead, and is called

protocol information.

Examples of protocol information include the beginning, the end

and the destination of a message, all of which are discussed in this

work. Other protocols are associated with network operation, and

include routing and supervision.

1.2 Why are network protocols important?

A communications network has finite resources including channel

bandwidth and buffer storage, with which to service potential users.

Overheads, including protocol data, have an associated cost relating

to the bandwidth they occupy and the transmission delays that messages

incur due to the accompanying control data. In order to allocate

network resources efficiently, overheads must be kept to a necessary



minimum, and this research is directed towards such an end.

In addition to reducing overheads in existing networks, the

theoretical study of network protocols can offer some insight on

how to improve system design, as will be illustrated in the discussion

on addressing information.

1.3 Data communication networks

Data communication networks will be used to illustrate the design

and evaluation of network protocols. These will be assumed to consist

of a finite collection of nodes, to which computers are attached, inter-

connected by two way noiseless channels of fixed capacity. The nodes

are store and forward centers for messages passing through the network.

Messages originate at the computers with random arrival times

and data lengths. The network capacity will be assumed sufficient to

ensure that despite heavy loading, messages will not incur delays in

excess of a specified time during transmission.

In order to concentrate on specific protocols concerned with

message lengths and destinations, it is necessary to subdivide the

protocols in a network into hierarchical levels including:

(i) Process to process (programs within computers)

(ii) Host to host (computer locations)

(iii) Interconnecting networks3

(iv) Subnetworks or line protocols4

Interest in this thesis will be directed towards the fourth



cateqory which includes the transmission of messages between nodes.

1.4 Background to network protocols

The theoretical study of network protocols can be separated

into two components; the derivation of lower bounds for protocol information,

and the construction of coding schemes to achieve these bounds. Recent

work has concentrated on the problem of constructing lower bounds, and

has used information theory to represent protocol information by a

source code . Based on the results of this work, protocol encoding

schemes will be presented which are close to the lower bounds.

The pratical developement of distributed computer networks

originated in the 1960's with the ARPA NETWORK . This system uses a

packet switching approach, in which messages are subdivided into

packets, each containing address and length information. The packets

are independently routed through the network and assembled at the

destination. A more recent system replaces the packet by a statistical

multiplexor technique (as used by Codex). This allocates to each

source sharing a common channel, a separate variable length time slot

for its contents.

These two approaches will be used to illustrate how an under-

standing of the nature of protocol information can suggest systems

which have practical application in existing and future networks.

-12-



1.5 Outline of research

The following section will indicate which results from information

theory have application to the understanding of protocol information.

Sections 3,4 and 5 present a detailed discussion of start-stop protocols

for a single source and receiver communicating over a channel. This

information allows the receiver to identify the beginning and end of a

message in a continuous stream of binary data.

Three protocol strategies for conveying start-stop information

are described and comparedin section 4. These include modified examples

of existing schemes including fixed and variable length packets, and

terminal flags.

The concept of address information is introduced in section 6,

when many source/receiver pairs communicate over a single channel.

Two coding strategies for start-stop and destination information are

described and compared, including a Huffman and Universal coding

scheme.

Finally in sections 6.8 and 7, mention is made of the application

of the protocol strategies to practical networks, together with some

comments on the success of the source coding approach.

-13-



Section 2

A source coding approach to protocol information

2.1 Introduction

The necessity for protocol information in a communications network

is essentially to resolve the statistical uncertainties associated with

incoming messages; including arrival times, message length and destina-

tion. Information theory helps derive a lower bound on such information,

and suggests in some cases an encoding scheme which achieves that

415
bound4 '5

Two concepts from information theory which include source codes and

source entropy will be discussed briefly, before passing onto practical

coding schemes for encoding protocol information.

2.2 A source code

Consider the protocol information which describes message length.

If the length is a random variable, then each element, ak, belonging to

the set of all possible lengths, X, can be described by its probability

of occurrence PX(ak). The probability function, PX, forms a complete

statistical characterization of the information source, X. The protocol

information describing message length is, to the information theorist,

a source.

For any information source, X, there is a quantity called the source

entropy or self information, H(X). The entropy represents a lower bound

for the average number of binary digits, n, required to encode each
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source letter, a. For a source with K elements,

K
H(X) = E X(ak) log ) (2.2.1)

k=l k

The lower bound is expressed in a source coding theorem which

states that for a source, X, it is possible to assign prefix codewords to

the source letters, ak, in such a way that the average length of a code-

word, n, satisfies

n < H(X) + 1 (2.2.2)

and for a uniquely decodable set of codewords

n > H(X) (2.2.3)

The theoretical limit of (2.2.3) can be approached by employing efficient

6,7
coding techniques including the Huffman code

2.3 Start-stop information

A source of binary data can exist in either of two states; the idle

state during which it generates idle characters, and the busy state during

which it generates messages. The start-stop information need only express

the lengths of each consecutive state, i.e., the idle and busy periods.

To appreciate this, consider a receiver which is informed of the initial

state of the source, and the lengths of all subsequent states. It will

then be able to reconstruct from the incoming data stream the idle and

busy periods.

Coding of start-stop information involves two independent informa-

tion sources; one belonging to the idle period, and one to the busy



period. The source elements are the different lengths of the idle or

busy states. According to the inter arrival time and message length

statistics, the entropy of the sources can be calculated using (2.2.1),

and an efficient coding scheme designed to meet bounds (2.2.2&3).

Poisson arrivals and geometric length statistics will be assumed

in the discussion of start-stop information which follows.

-16-



Section 3

Start-Stop Protocols

3.1 Single source/receiver model

The model proposed to investigate start-stop protocols consists

of a single data source communicating with a receiver through a fixed

capacity (one digit/second) channel. Between the source and the channel

is placed a node (data processor) acting as a buffer for incoming

messages, and able to generate protocol information necessary for communi-

cation (Fig. 3.1).

The source generates messages with interarrival times modelled by

the poisson process, and lengths described by a geometric probability dis-

tribution. Each message, upon arrival from the source, joins a queue at

the source node.

3.2 Encoding start information

To appreciate the significance of start-stop information, consider

the above system in an idle state (i.e., the source node contains no

messages). After a random interval of time, a message is generated by

the source and joins the empty queue, awaiting transmission. The node

must communicate the change of state to the receiver before transmitting

data.

It is not possible to predetermine the length of the idle period

until the next arrival occurs, so the source must send frequent state

information to the receiver. Any attempt to encode this information into

-217-



Protocol

Is

Dat M B=M+S Ma a

Buffer Channel Buffer

Source Receiver

node node

Figure 3.1

Single source/receiver link

-8l-



a reduced form will result in probable message delays.

For example, consider sending only one idle character (say a 0)

for every L seconds spent in the idle state. Should a message arrive

during the intervening period, a delay of up to L seconds will be in-

curred before the receiver is informed of the change of state.

To avoid such a delay, the following strategy is an obvious

choice. During the idle period, idle characters (for example, binary

zeros) are transmitted every second. On arrival of a message to the

source node, a busy character is transmitted (say a binary one). This

strategy ensures minimum delay for message data at the expense of a less

efficient encoding of idle characters.

Accepting the idle characters as a necessary cost for avoiding

delays, the single start bit (indicating the transition to the busy

state) must be included as part of the start protocol information accom-

panying each message.

3.3 Encoding stop information

Once the source node enters the busy state, it remains there for

at least one message. Protocol information must be sent to the receiver

to indicate the end of the message. It is sufficient to send an encoding

of the message length itself as stop information. An efficient coding

scheme exists for this purpose, and is discussed as a possible optimal

strategy for stop protocol information.

Two other approaches exist in practical networks, and are com-

pared in efficiency with the proposed optimal scheme. The first employs
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packets of fixed length, and the second places a unique flag at the end

of the message data. The method of comparison is based on the estimation

of mean message delays at the source node. An M/G/1 queueing process is

used to analyze the model on account of the special source statistics.

On completed transmission of a message, the receiver awaits state

information from the source before accepting a following message.

3.4 M/G/1 Queues

Messages arriving at the source node form a Poisson input queue

with mean arrival rate of X. An addition of S bits of protocol informa-

tion is made to each message of length M, generating a combined block

length of B bits.

B = M + S (3.4.1)

The channel, considered as a server, takes B seconds to transmit

each message in the queue, and has an arbitrary service rate of E(B) 1

-i
seconds , dependent on the protocol strategy used to generate S. The

queueing process is therefore described by an M/G/1 model; poisson input

and general service time.

The Pollcaczek-Khintchine formula provides a value for expected

system size, E(Q), that is the number of messages in the queue and in

service, in terms of traffic intensity, p, arrival rate, X, and variance

of service time, var(B).8

p = X E(B) < 1 (3.4.2)

E(Q) + X2 var(B)
E( = P + 2 (l-p)



The expected system size, E(Q), may be expressed in terms of the

first and second moments of service time, by expanding the variance of

(B).

X2E(B2
E(Q) = A E(B) + 2(1-XE(B)) (3.4.4)

The expected waiting time, E(W), in the queue and in service, can

be obtained by Little's formula.

E(W) = E(Q)/X (3.4.5)

The dependence of waiting time on first and second moments of

block length carries some implications for an efficient protocol strategy.

It should employ a minimal average number of bits, E(S), and have a small

variance associated with this mean. Mean waiting time is given by:

2
XE(B )

E(W) = E(B) + 2(E(B (3.4.6)

3.5 Minimizing protocol information

Associated with all protocol strategies discussed herein, there

appears an independent parameter, L, associated with the function, S.

For example, L is the length of a packet in the fixed packet strategy.

Block length is dependent on L through variable S,

B(L) = M + S(L) (3.5.1)

To ensure a meaningful comparison between queue delays in differ-

ent protocol strategies, it is necessary to optimize the value of L. A

suitable criterion for optimization, is to choose L to minimize expected

block length, or equivalently mean protocol information, S(L).
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dE(B)L = 0
dL

0L=L

dE (M)+ dE(S(L)) (

dL dL

L=LO . 1L=L

The moments of service time, B, can then be calculated in terms of

LO , allowing a meaningful comparison of E(W) between strategies.

3.6 Summary of the analytical technique

It is proposed to compare three protocol strategies for transmit-

ting start-stop information across a single channel, by calculating mean

waiting time of messages arriving at the source node. Waiting time is

of practical significance in data networks and is a useful indication of

the efficiency of a protocol scheme.

In order to calculate waiting times, the first and second moments

of block length, B, must be derived (block length, B, includes both

message and protocol data).

The three protocol strategies of interest are the fixed packet

strategy in which messages are subdivided into fixed length sections,

the terminal flag strategy, and a scheme based on Huffman encoding. The

last strategy corresponds to a variable length packet approach, and has

similarities to schemes implemented in packet switched networks.



Section 4

Three start-stop protocol strategies

4.1 Introduction

In the previous section, a single source/receiver model was pro-

posed on which to evaluate different start-stop protocols, together with

a criterion for assessing their relative efficiencies in terms of

queueing delay. This section will examine three different strategies

all of which have practical counterparts, although in somewhat modified

forms. One strategy, the Huffman encoding of length, is based on source

coding ideas.

The comparison between the three strategies is intended to illus-

trate the performance of schemes devised as practical solutions in oper-

ating networks against a theoretical solution advanced in the thesis.

4.2 Fixed length packet strategy

Each message is transmitted in a sequence of fixed length packets,

of L bits. For a message of M bits, the number of packets employed, N,

is given by:

N = (4.2.1)

The message length, a random variable, is not usually an integer

multiple of L, causing redundancy in the last fixed packet of R bits.

A length specifier, placed at the end of the message, encodes the useful

* The integer value greater or equal to (M/L)

-23-
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number of message bits, (L-R), in the last packet. If L is an integer

power of 2, then a fixed codeword of length log2L is sufficient to

encode these bits. Otherwise a set.of variable length words, some shorter

and some longer than log2L but having the same mean value, must be employed.

Each packet is preceded by a busy bit, or binary one, to indicate

the arrival of another packet. A binary zero is placed inbetween the

last packet and length specifier to indicate the end of the packet se-

quence. The receiver can then identify the following variable length

codeword, and subsequently return to the idle state (Fig. 4.1).

4.3 Block length statistics

Define the sequence of data which includes both the message and

protocol data as a single block, of length B bits. Some statistics of B

must be derived in order to determine queueing delays (see equation

3.4.6).

The number of packets, N, has a geometric probability distribution

(see Appendix 4a). The protocol information in each block is coded into

S bits which include N busy bits, a length specifier with a zero pre-

ceding it, and R bits of redundant data in the final packet

S(L) = N + log 2L + 1 + R (4.3.1)

where R = NL - M (4.3.2)

From (3.5.1)

B(L) = (L+1)N + log 2L + 1 (4.3.3)

The first moment of B is obtained from (4.3.3), with L as a fixed

parameter
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E(B) = (L+l)E(N) + log2 L + 1 (4.3.4)

In Appendix 4b, the parameter L is chosen to minimize the expected

block length, E(B), according to (3.5.2). The optimum packet length, L ,

and number of packets, E(N), were found to be;

1 1

L© = (2E(M))2 - 1.782 + O(E(M) ) (4.3.5)

E(N) = -- | (Appendix 4a)

l-a L=LO

1 1
1-2 -7
(-E(M)) + 1.39 + O(E(M) ) (4.3.6)

In data networks, typical message lengths are confined to the

range 10 < E(M) < 105 . It is thus reasonable to neglect terms of order
1

-7
E(M) and below. Table (1) confirms the following approximations to

be acceptable for L and E(N) (as given in (4.3.5), (4.3.6)), in the

5
range 10 < E(M) < 10 ,

1

L © (2E(M)) - 1.782 (4.3.7)

1

E(N) 1 ( E(M)) + 1.39 (4.3.8)

Values for the first and second moments of B can now be obtained

as functions of E(M) alone. Consider the square of block length, B, as

given in (4.3.3). The expected value of this expression is the second

moment;

2 2 2 log2 LIlE(B ) = (L+l) E(N2 ) + 2(L+l)E(N)(log2L + 1)

+ (logL + 1)2 (4.3.9)

From Appendix 4a, E(N2 ) = 2E(N) - E(N)
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Substituting values of L° and E(N) found above, into the moments, E(B)

and E(B2 ) given in (4.3.4) and (4.3.9);

1 1

E(B) ; E(M) + 1.43E(M) + log2 (2E(M))
2 (4.3.10)

1

E(B2) z 2E(M)2 + E(M)(4.3E(M)2 + 0.47

1

+ 2 log2((2E(M)) - 1.8) )

1 1

+ E(M)2 (2.86 log2((2E(M))
2 - 1.78) - 0.74)

1

- 2.2 log2((2E(M)) - 1.78) - 2.2

+ (1 + log2((2E(M)) 1.78) (4.3.11)

Although it has been necessary to approximate some of the coeffi-

cients in the above expressions, the functional relationships have been

preserved sufficiently well to illustrate later that this strategy has

considerably larger moments, E(B) and E(B ), than the other strategies.

4.4 Concluding remarks for the fixed length strategy

The major inefficiency in this strategy is the redundancy in the

last packet. By removing the necessity for fixed packet length on the

final packet, and rearranging the length specifier, this redundancy could

be avoided. Such an observation suggested a strategy which corresponds

to the Huffman encoding of message length, as will be seen in the next

paragraphs.
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4.5 Huffman length encoding strategy

By employing a direct encoding of message length, M, to supply

the stop information for each message block, B, an efficient protocol

strategy can be achieved. The integer, M, is assumed to have a geometric

probability distribution and can be encoded by a Huffman coding proce-

dure , to give an average word length, n , which exceeds the source

entropy, H(S), by an average of 0.03 bits.

The entropy of message content and length, H(S), may be expressed

as a function of the mean length of a busy period, 1/s.

H(S) = 1/s + 1/£ Hs(E) bits/message (4.5.1)

where - H(x) = -x log(x) - (l-x)log(l-x)

The first term contains the entropy of message content, and the

second the entropy of message length or stop information. The Huffman

encoding of length achieves an average redundancy of 0.03 bits above the

source entropy. Average codeword length of stop information encoded by

the Huffman scheme is ns, where

n = 1/s 1f(c) + 0.03 bits/message (4.5.2)

The binary encoding of message data achieves on average E(M) bits/

message, by definition, and thus

E(M) = 1/£ = 1-a bits/message (4.5.3)

The start information is coded in the same manner as the fixed

packet strategy, with binary zeros transmitted during the idle period,

and a binary one transmitted to indicate the beginning of a busy period.
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As no information about the length of the idle period is available in

advance, like the length of messages (which arrive instantaneously), no

economy in coding can be achieved.

Although the separate encoding of length and message information

closely approaches the sum of the first two terms in (4.5.1), an improve-

ment can be made by using a joint encoding scheme. The construction of

a Huffman code for the joint alphabet is particularly difficult, and has

not been performed because of the insignificant saving of a fraction of

a bit, i.e., under the present scheme of separate encoding, only 0.03

bits are wasted on average. The separate and joint source trees are

illustrated in (Fig. 4.2).

The codeword specifying message length is constructed as follows.

Let L be the integer which satisfies the in-equality:

L L+1 L L-l
a + a < 1 < a + a (4.5.4)

The mean message length, E(M), falls in the range 10 < E(M) < 105 in

L
most networks. An approximate value for a may be found under this

assumption; where a is defined'in (4.5.3),

L 1 - (4.5.5)
a = + O(E(M) ) (4.55)

2 2

The integer, M, may be represented by the expression:

M = (N-1)L + [M]mod(L) (4.5.6)

The integer, N, is defined by equation (4.2,1). The length

encoding becomes the concatenation of a unary code of N-l binary ones

followed by a zero, and a variable length codeword, of length log2L,
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which encodes [M]mod(L).

4.6 Implementing the length encoding strategy

The similarity between the fixed length strategy and the one

described above becomes apparent when the Huffman code is implemented in

the following way.

A message of length M bits is decomposed into N-1 packets of

length L, and a final packet of length less than L. A busy bit is trans-

mitted in front of each of the first N-1 packets (a binary one, correspon-

ding to the unary code in the Huffman scheme). A binary zero is placed

after these packets to indicate the arrival of the length specifier, which

encodes the number of bits in the final packet. The remaining message

bits, [M]mod(L), follow the length specifier (see Fig. 4.3). The set of

N-1 busy bits and the length specifier are equivalent to the two words in

the Huffman scheme, although they are placed apart.

A start bit is placed in front of the first busy bit in order to

avoid confusion when only one packet is transmitted in a message (i.e.,

M < L), and no busy bit is included before the length specifier.

The protocol information, S(L), includes a start bit, N-1 busy

bits ('l's), a 'O' placed before the length specifier, and the specifier,

length log2 (L)

S(L) = 1 + (N-1) + 1 + log 2(L) (4.6.1)

The total length of the message and protocol information, B,

becomes

B M + S = M + N + 1 + log2(L) (4.6.2)
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The expected value of integer, N, is obtained from the approxima-

tion, (4.5.5) and equation (A4) from Appendix (4a).

E(N) = 1/(1-a ) = 2.0 + 0(E(M) - ) 2.0 (4.6.3)

The expected block length, E(B) becomes

E(B) = E(M) + E(N) + 1 + log2 (L) (4.6.4)

The optimum value for L is obtained from the constraint imposed

upon a , (4.5.4). From (4.5.3) and (4.5.5),

L = ln(2)E(M) + O(E(M)- l ) (4.6.5)

The expected block length, E(B), given in (4.6.4) can be expressed

in terms of E(M)

E(B) =E(M) + 3.0 + log2(E(M)ln2) + O(E(M)- 1)

:E(M) + 3.0 + log2(E(M)ln2) (4.6.6)

4.7 Optimality of the Huffman scheme

The Huffman encoding of length information provides a set of code

words whose average length is close to the source entropy (0.03 bits

larger than H(S))o From information theory, the Huffman coding is more

efficient in this sense than other coding schemes which can be devised.

If the objective of a protocol strategy is to minimize the average over-

head in a network, the Huffman scheme will satisfy this condition.

A more practical measure of protocol coding efficiency in a net-

work is the transmission delay incurred by messages operating under a

specific protocol. Transmission delay in data communication networks is
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related to queueing time at nodes, which have been shown to depend both

on first and second moments of block length, B (Eq. 3.4.6).

4.8 Second moment of block length, E(B2 )

Squaring the value for B, given in (4.6.2), and taking the mean,

E(B2 ) = E(M+N)2 + 2E(M+N) (log 2L + 1) + (log 2L + 1)2

(4.8.1)

In order to evaluate this expression, the joint moments of (M+N)

must be derived. This has been done in Appendix (4c) in terms of a

new random variable, C, where

C = M + N (4.8.2)

The moment generating function of C allows the moments E(C) and

E(C2 ) to be derived as follows (see Appendix 4c):

E(C) = E(M+N) = E(M) + E(N) (C5)

E(C2 ) = E(M+N) = 2E (M) + 2E (N) + 2E(M)E(N) - E(M)

- E(N) + 2L.var(N) (C13)

Choosing the parameter L, as in (4.6.5), and the corresponding

value of E(N), as in (4.6.3), the above moments may be expressed in

terms of E(M) alone.

For L° = E(M) ln2 and E(N) = 2.0

then E(M+N) = E(M) + 2.0 (4.8.3)

and E(M+N)2 s 2E (M) + 5.7724E(M) + 6.0 (4.8.4)

The second moment, E(B 2 ), can now be expressed as a function of
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E(M),

E(B ) 2 2E2(M) + E(M)(7.7724 + 2 log2 (E(M)ln2))

2
+ 4 log2(E(M)l n2) + (log2(E(M)ln2) + 1) + 10.0

(4.8.5)

4.9 Terminating flag strategy

A unique bit pattern of r+l digits (a flag) is used to indicate the

end of a message. When the receiver identifies the flag, it assumes that

transmission of the current data is complete, and awaits either a new

message or idle bits. To prevent premature terminations, the source must

recognize and modify any r bit pattern which is identical to the first

r bits of the flag. The encoding consists of an insertion of a single

bit after the pattern, which is complementary to the r+l flag bit (see

Fig. 4.4).

The receiver is constantly looking for the flag pattern. On

receiving the first r of these bits, it inspects the following bit. If

it is identical to the final flag bit, the receiver terminates the mes-

sage. If the two are different, the receiver deletes the bit from the

message, and continues to accept the incoming message.

The first r bits of the flag are referred to as a recurrence

pattern. The insertions caused by the occurrence of this pattern in the

message constitute a component of the length protocol information.

To illustrate this strategy, consider the flag of a zero followed

by r ones. If the source identifies a zero followed by r-l ones in the

message, it inserts a zero after the pattern. When the receiver iden-
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tifies the same r bit pattern, it inspects the next bit. If this is a

zero, it assumes an insertion which can be deleted. If it is a one, it

assumes the end of a message.

Flag pattern: 01111 ..... 11

Message data: M.M011O .... 10ML

with insertion.

4.10 Choosing an optimal flag pattern

A flag pattern must be found which minimizes the mean number of

protocol bits, E(S), whilst conforming to the strategy described earlier.

The protocol data is related to the number of insertions, I, whose mean

depends on the likelihood of the r bit recurrence pattern. The flag may

be constructed from two classes of recurrence pattern, each with a dif-

ferent probability of occurrence.

(1) Identification of the recurrence pattern does not depend on

preceding message bits. An example of such a pattern is the earlier

flag pattern (4.9) of 0111.-..11. The probability of occurrence, pl of

the first r digits of this pattern within the message is

= lr (4.10.1)
i 2

P1 is also the probability of an insertion.

(2) Identification of the recurrence pattern does depend on pre-

ceding message data. Consider the success run of r ones occurring at

the Mj+r bit in a message:

MiM 111 .. 111 M +r+1
]3 j +r+l '
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The event is conditioned on the value of M1. It will occur only

if M. is a zero, or itself the last bit of an earlier r bit success run.

The probability of a success run at the Mj+r bit is P2' where, in the

limit as j - a,

1 r+l

P2 Lr (4.10.2)

2

Under the flag strategy outlined in section 4.9, both the flag

pattern of r+l bits and the recurrence pattern must be uniquely distin-

guishable to the receiver. Any such patterns which depend on preceding

message data are unsuitable candidates for this strategy. For example

consider a recurrence pattern of r binary ones, and a flag of r binary

ones followed be a zero, 1111....10. If the final bit of message data is

a binary one, the receiver will falsely recognize an insertion in the

second to last bit of the flag, i.e., it will count r binary ones fol-

lowed by another one, indicating an insertion.

Although pattern (2) above is less likely than pattern (1) and

would thus have a lower average number of insertions associated with the

recurrence pattern, it does not give unique decoding, as illustrated in

the previous example. Only patterns of the first category are suitable

for the flag strategy, with a probability of insertion P1.

The flag strategy is currently adopted by IBM in their Synchronous

9
Data Link Control . The SDLC line protocol places both messages and

control data in similar blocks, or frames, whose format is shown in

Fig. 4.4. The flag (of 8 bits) consists of a 01111110 pattern, and an
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insertion is made into the message stream if the source finds five conse-

cutive binary cubs in the outgoing data. The insertion is a binary zero.

If the receiver finds five consecutive ones followed by a zero, it

deletes the last bit. If however it finds six consecutive ones, then

it recognizes the flag pattern.

For example, a message contains data M.M.Olllll0ML. An insertion

is made of a binary zero in bit position Mk. The receiver counts five

binary ones, i.e., M.M.01OllllO, and deletes the next zero. If M is

the last bit of a message, the source sends a flag after ML, i.e.,

Mllllll 01111110. The receiver then counts six consecutive ones, and terminates

the message. The last binary zero in the flag is quite unnecessary

because the 0111111 pattern is uniquely identifiable alone. Mention will

be made in the next section about how large an optimal flag pattern must

be.

4.11 First moment of block length, E(B)

The protocol data, S, for the flag strategy consists of a flag of

r+l bits, a start bit, and I insertions, where

S = r+l + 1 + I1.1)

and the expected block length, E(B) = E(M) + E(S), is

E(B) = E(M) + E(I) + r+2 (4.11.2)

An insertion is made in the message data when an r bit pattern

occurs, which is identical to the first r bits of the flag pattern. The

probability of such an event, P(I), is from (4.10.1),



-40-

P(I) = (r (4.11.3)

A message of length E(M) bits can only have insertions in E(M)-r

positions, each with probability P(I). The mean number of insertions,

E(I), is the sum of the expectations of an insertion at each possible

location, and is given by

E (M)-r
E(I) = (4.11.4)

2r

To obtain a minimum block length whilst employing the flag

strategy, the value of r+l may be chosen as

r+l = [log2 (E(M) l n2)1 (4.11.5)

This result is derived by differentiating E(B) with respect to r, and

equating to zero. The resemblance of the flag strategy to the Huffman

encoding becomes apparent when the flag is compared to the length speci-

fier.

A further constraint is made upon E(M)ln2 in order to simplify

comparison between strategies. For E(M)ln2 an integer power of 2, the

expected insertions, E(I), becomes

2 log2 (E(M)ln2) 1

E(I) = ln2 E(M)ln2 + E(M)ln2 (4.11.6)

Neglecting ends effects which are negligible for E(M) >> r

E(I) - 2.886 ; E(M) > r (4.11.7)

E(B) t E(M) + log2 (E(M)ln2) + 3.886 (4.11.8)

The terms omitted in (4.11.8) are of order log(E(M)ln2)/E(M) and



1/E(M). For large values of E(M), these do not contribute significantly

to the mean value, E(B).

4.12 Second moment of block length, E(B )

The second moment of B is complicated by the presence of M+I terms

whose statistics are not independent. In Appendix 4d the moment gener-

2
ating function of this sum is derived, and E(M+I), E(M+I) is calculated.

E(M+I) = E(M) + E(I) (4.12.1)

E(M+I)2 = 2E2 (M) - E(M) + 2E 2 (I) - E(I)

+ 2(r-1)E(I) + 4E(M)E(I) (4.12.2)

The moments of I are also obtained in Appendix 4d, where

E(I) s 2.886 ; E(M) >> r (4.12.3)

E(I2) = E(I) + ()r (1 - 1/E(M)
2

= 2.886 (1 + 1 (1 - O(logE(M)/E(M))
1n2

E(I2 ) = 19.542 + O(logE(M)/E(M)) (4.12.4)

The second moment of block length can now be evaluated as a func-

tion of E(M); from (4.11.2)

E(B2 ) = E(M+I)2 + 2E(M+I) (r+2)+ (r+2) (4.12.5)

Inserting the moments of (M+I) given in (4.12.1) and (4.12.2),

E(B2 ) = 2E 2(M) + E(M)(3 + 2r + 4E(I))

+ 2E 2(I) + E(I)(1 + 4r) + (r+2)2 (4.12.6)

where E(I) is given in (4.12.3).



Appendix 4a

Probability distribution of N

The number of packets required to transmit a message of length M

bits, is given by the random variable, N;

The probability distribution of variable M is geometric,

m-i
PM(m) = (l-a)a ; m > 1 (Al)

With a mean value, E(M);

E(M) = (1-a) 1 (A2)

The definition of N in (Al) may be rewritten as

(N-1)L < M < NL

which gives a probability mass function

PN(n) = Pr((n-l)L < M < nL)

L (n-l)L
PN(n) = (1-a )a ; n > 1 (A3)

The moments of N are simply calculated from (A3);

E(N) = (1-aL ) (A4)

E(N2 ) = 2E2(N) - E(N) (A5)

and Var(N) = E (N) - E(N) (A6)
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Appendix 4b

Optimal packet length, L , for the

fixed packet strategy

An expression was obtained in section (4.3) for the expected block

length of a message together with its protocol information. The block

length was found to be functionally related to expected message length,

E(M), through variable a, and also to packet length, L. It is possible

to minimize block length with respect to L, as described in section

(3.5). An exact relationship between L and E(M) is difficult to obtain;

however a useful approximation can be made and tested.

The block length of a single message is given by equation (4.3.4).

The expected number of packets, E(N), employed in one message is derived

in Appendix (4a). Taking the first derivative of E(B), and equating

to zero to find the minimum value:

dE(B) (l+L)a ln(a) 1 1
dL ( a L 2 a L) Lln (2) (Bl)

Defining an additional variable, x, to obtain a parametric equation

pair between L and a; from Appendix (4a)

a = 1 - 1/E(M) (B2)

L -x
x = -L.ln(a) or a = e (B3)

At the minimum of E(B), as given in (B1),

-43-
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0=i )xe1 ln(a)x)e n(a)
O ~ + - -- _ +

(1e-X) 2 l-e-X xln(2)

Multiplying the last expression by e (1-e-x )2

O = ln(a) - x + eX-l exln(a)(l-e-x)2
xln(2)

which simplifies into an expression for -ln(a);

eXl-x
-In(a) = (B4)

l-(eX+e-x-2)/xln(2)

By expanding terms in e and e , it is possible to obtain an

approximate result for -ln(a) as a series of decreasing terms in x ;

x being less than unity.

2 3r 1 4 1
-ln(a) = x + 2 1n(2) + x + 61n(2) + x

4 5
Ignoring terms in x , x and higher powers, the following approxi-

mation can be made for ln(a):

x 3 1 1
-ln(a) 2- + x [ + 21n(2) (B5)

This approximate expression gives a value for x which may be sub-

stituted back into (B3) to obtain L.

1
-21n(a) 2

X l+x (l/3+1/ln (2)

= 7-21n(a) [E1 - /-21n(a) (1/6+1/21n(2))] (B6)
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o X
L -ln(a)

1 1

(2E(M))2 - 1.782 + O(E(M) ) (B7)

Table (1) evaluates (B4) directly to gain an accurate numerical

correspondence between parameter, x, and L© . The approximate expression

for L° is also evaluated for the same values of x, and listed beside

the results achieved without approximation. In the range 10 < E(M)< 10 ,

the correspondence is close, especially as E(M) grows larger. Beyond

this range, the higher powers of x are negligible, and improve the

correspondence further.

In practice the values of L1 and L2 listed in table (1) are

integer valued and so there is no real difference between the approxima-

tion, L2, and the exact value, L1.2~~~~~~~~
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Table 4-1

Fixed Packet Length, L

x E(M) L0 E(N) L' E(N') A

0.3 11.8 3.4 3.846 4 3.353 0.077

0,.2 33.7 6.64 5.516 7 5.260 0.012

0.1 166.0 16.55 10.508 17 10.244 0.01

0.09 208.9 18.76 11.616 19 11.476 0.006

0.08 269.6 21.53 13.006 22 12.739 0.008

0.07 358.9 25.09 14.790 26 14.291 0.04

0.06 497.8 29.84 17.171 30 17.082 0.001

0.05 730.5 36.40 20.559 37 20.234 0.008

0.04 1.2x103 46.49 26.304 47 26.025 0.05

0.03 2.lx103 63.14 33.754 64 33.307 0.02

0.02 4.8x103 96.47 50.253 97 49.981 0.05

0.01 1.96x104 196.5 100.244 197 99.991 0.001

4
0.005 7.93x104 396.5 200.500 397 200.250 0.014

Notes:

E(M) Message length

L° Packet length calculated from (B3) and (B4); the optimum

value.

E(N ) The number of mean packets associated with packet length,LO

L' Packet length calculated from approximation (4.3.7), and

integer rounded for practical purposes.

E(N') The mean number of packets associated with packet length,L'

Numerical difference between block lengths derived from

(4.3.4), using L ,E(N°) for E(B° ) and L',E(N') for E(B'),

A = E(B')-E(B° )



Appendix 4c

Second moment of the sum of two dependent

random variables, M and N

A message of length M bits is transmitted in N packets where both

M and N have a geometric probability distribution (see Appendix 4a).

The sum of the two variables forms a new random variable, C, whose

probability mass function is Pc(c) and characteristic function, C(s).

C = M + N (C1)

00

C(s) = E P (c)sc (C2)
c=2

The probability mass function, Pc(C), may be obtained by consid-

ering (Al) and (C1), and gives an expression for C(s) as follows:

00 iL-

C(s) = E p(m)s+i (C3)
i=l m=(i-l)L+i

Performing the double summation in (C3), the characteristic func-

tion may be evaluated into the expression:

L 2
C(s) = (l-a)(l-(as) )s (C4)

(1-as) (l-a s )

The first moment of C is obtained by taking the first derivative of

C(s), and putting (s=l)

E(C) = dC(s) 1 1
= s=l (1-a) (la L)

-47-
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E(C) = E(M) + E(N) (C5)

The second moment of C is obtained by taking the second derivative

of the characteristic function, C(S)

d2C(S)2 = E(C2 ) - E(C) (C6)
ds s=1

Consider the factorization of C(s) into two components

C(s) = Q(s)s2 (C7)

where the derivatives of Q(s) may be easily calculated

(l-a)(l-(as) )
Q(s) = (C8)

(1-as) (-a Ls L+)

L
dQ(s) a aI + (C9)

d s= l (l-a) (-a )

d 2O(s) 2a2 2a
2 L

ds 2 L
(l-a) (l-a)

s=l

L L
2La (2a) (a

+ + (C10)
(1-aL 2 (l-a) (1-aL)

The second derivative in (C6) becomes

dd c(s) Q(s) 4d Q(s1)
ds ds ds

s=l s=l s=l

2a 2 a2 L (2a)(a) +
-a) + (l 2 + 

(-a)2 (la )2 (-a)(-a)L



2L(a L 4a ' 4aL

L2 + (1) L + 2 (Cl)
(1-a) (1-a

The second moment, E(C 2 ), may be obtained from (Cll) in terms of

E(M) and E(N), where the following identities are required:

E(M) = (l-a) 1

E(N) = (1-aL)

E(M2 ) = E(M) E(M)

E(N2) = E2 (N) - E(N) (as in App. 3a)

The second derivative at (s=l) becomes

d2 C(s) 2E2(M) + 2E (N) + E(M)E(N)

ds s=1

+ 2Lvar(N) - 2E(M) - 2E(N) (C12)

Combining (C12) with (C6), the second moment becomes:

E(C2 ) = 2E 2 (M) + 2E (N) + 2E(M)E(N) - E(M) - E(N) + 2Lvar(N)

(C13)

No approximations have been made in deriving this result.
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Appendix 4d

The second moment of the sum of two

dependent random variables, M, I

The results associated with the theory of recurrent events1 0

may be applied to the flag strategy described in section (4.9). The

recurrent event is taken here to be the possible replication of the flag

pattern within the message data. Upon each replication, an insertion of

an extra bit is made into the message data. The total number of inser-

tions, Im, in a message of m bits will thus correspond to the number of

recurrent events, N .

Specifically, by observing a source which produces one bit of data

per instant of time, when busy, a recurrent event, E, is defined to occur

at the (j+r)t h instant if the message sequence between the jth and

(j+r) instants corresponds to the first r bits of the flag pattern.

Before considering the sum of message length, M, and number of in-

sertions, I, it is necessary to derive the probability mass function of

I . The probability distribution of message length is assumed to be
m

geometric, with mean value (1-a)- 1. The distribution function for I is

related to the conditional distribution for I by
m

PI( i) E= PI (imP(m) (Dl)m=l m
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The probability mass function, P
Im

Let the 0 instant of time be coincident with the occurrence of

an event, E, during the busy state of a source. The waiting time up to

the next recurrent event, E, is defined by a random variable, T1. Sub-

sequent waiting times between adjacent events are defined by T2, T3, etc.

The combined waiting time from the zeroth instant to the rth

event is defined by T(r), whose value is the sum of adjacent waiting

times, each assumed to be independent;

(r)T )= T + T + T + ... T (D2)
1 2 3 r

th
Two probability assignments can be made for the n time instant,

f and u , where
n n

n > 0 f = Pr (event E occurs for the first time at the

n instant) (D3)

u = Pr (event occurs at nth instant)
n

n = 0 , f = O ; O = 1 (D4)

Generating functions may also be defined for f and u,

F(s) = E fk (D5)
k=l

U(s) = E s (D6)
k=O

A relationship between F(s) and U(s) may be derived by considering

th
the probability of an event E at the n instant,
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u =f + f u + f3U +* fu
n 1 n-1 2Un-2 3n-3n O

which transforms into the s domain easily, by considering the

right hand side of the expression as a convolution.

U(s)-l
F(s) = Us_ (D7)U(s)

It is known from the flag strategy that the probability of an

Ir
insertion is (C-) , which is the same as u for n > r;

U2 n

(2-) # n > r
u = (D8)
n i ; < n < rr<n<r

The characteristic function, U(s) may be evaluated using

(D4, 6, 8);
1 r r

1-s+ (-- s
U(s) = ( (D9)

The characteristic function of F(s) can now be evaluated from

(D9, 7);
1 rr
(-) s

F(s) = - - (Dl0)
lrr

l-s+(1)r s

There is a simple relationship between waiting time, T1, and

probability of a first event, fn;
n

Pr(T = n) = f (Dll)

th
If a recurrent event, E, occurs for the second time at the n

(2)
instant, a probability, f , is assigned, where from (D2);

n
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(2) (2)
Pr(T1 +T2 = T = n) = f (D12)

n

th th
Similarly, if the q event occurs at the n instant

Pr(T (q=n) = f (q) (D13)

The probability assignment, f ( , is the convolution of f with
n n

itself; this suggests that its characteristic function is F (s). The

th
result extends to the q case above:

(2)
n 1n-l 2n-2 n-l 1

Then F (s) = F (s)

th Cq4
q case: f ( ) f*f * f (D14)

n nn n

0co

and F q (s) = Fq(s) = f q sP (D15)
p=l P

These results may now be used to obtain PI (i).

m
The probability mass function may be written as

(i+l) (i)
P (i) = Pr(T (i) > m) - Pr(T > m) (D16)

m

Using the relationship between T and f ( in (D13), (D16)

becomes
m m

P (i) (i) f (l)(D17)
p =l P p=l

The probability mass function, PI(i), as defined in (D1) can be

evaluated using (D17) and a geometric distribution for m, and also (D15);

co

PI(i) = P (i) (1-a)a1

m=l m
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F (a) (1-F(a))
P(i) ; i > 1 (D18)

F(a)
1 ; i= O

Moments of I, E(I), E(I 2 )

Having derived the probability mass function of I, a characteristic

function may be found, using (D18);

I(s) = E P (i)s
i=0

F (a) (s-l)
I(s) = + a(lF(a)s) (D19)a(1-F (a) s)

The first moment is obtained from the first derivative of I(s),

setting s = 1

EI) = dI(s) i F(a)

ds s a (l-F(a))
s=l

1 r r-l

E(1l-a) (D20)

An approximation of the first moment, E(I), can be made using the

substitution suggested in section (4.11) for r

(r + 1) = log2 (E(M)ln2)

where E(M) = (l-a)- 1

E (M) r-l r / E !$))then E(I) = E(M_) (-1r/E (M))r
2r E(M)1n2

2 2log2(ln2E(M))

1n2 ln2 E(M)
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Terms of order l/E(M) and lower magnitudes are ignored. The

second moment of I is obtained from the second derivative of I(s),

d2I(s) 2 2
dI(s) = E(I ) - E (I) (D22)

s=l

(2) = F(a) (l+F(a))
E(I ) =

a(l-F(a))

The sum of two dependent variables, M+I

Having obtained Pi (i) and knowing the distribution of M, PM(m),
m

the characteristic function of a new random variable, C, defined as the

sum of M and I, can be found.

C =M+ I

00

(c) P(c-m)PM (m) ; c > 1 (D23)
MC=l

The characteristic function of C, C(s), is defined as

00

C(s) = Pc (c)sc (D24)
c=l

Substituting Pc(c), as given in (D23), into (D24) and rearranging

the summations,

00 co0

C(s) = P(m)sm E P (n)s (D25)
mi=l n=O Im

Using the expression for PI (i) given in (D17) and using
m

(D15),
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F (as) = ~ f )(as) (D26)

n=O

The summation in (D25) may be simplified to

om=l n (n)C (S) = E (m, s a (s -1) E f 
m=l n=l

E f (n+l)| + M(s)

(l-a)F(as) (s-l)
C(s) = (l-as)a(l-F(as)s) + M(s) (D27)

where the characteristic function of M being M(s). The first moment of

C,E(C), is found by taking the first derivative of C(s)

dC(s) F(a)

ds = a(l-F(a))

s=l

Using (D20),

E(c) = E(I) + E(M) (D28)

The second derivative of C(s) gives the second moment,

d C(s) = E(C2 ) - E(C) (D29)
ds

s=l

Using (D27) 2 [(F (a)) 

aF(a) 2 + M'-'(s) (D30)

(1-F(a))' (

From (D10), the first derivative, F'(a), can be found.



Then
lr r-l l r r
(rl) (-) a

2Fa (l-a) + 2
(l-F(a)) (1-a)

= (r-1)E(I) + E(I)E(M) (D31)

where we have used (D20).

Substituting (D31) back into (D30) and rearranging to obtain E(C 2 ),

and using the mean value of E(C) in (D28),

E(C,) = 2E (M) + 2E (I)-E(M)-E(I) + 2(r-l)E(I) + 4E(I)E(M)

-2E2 (I)
(D32)

E (M)

No approximations have been made in obtaining the result (D32). However

in section 4, the final term in E (I)/E(M) will be neglected when using

this result because it is of order less than unity in the range

102< E(M)< 105.
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Section 5

Conclusions for Stop Protocols

5.1 Introduction

A criterion for evaluating protocol strategies in terms of waiting

time, W, in the source node queue and in transmission was discussed in

section (3), where

AE (B
E(W) = E(B) + 2(1-kE(B)) (5.1.1)

In the fourth section first and second moments of block length, B,

were derived for three protocol strategies; the fixed packet, flag and

Huffman encoding of length schemes. To prove that the waiting time, Wi,

th .th
for the ith strategy is shorter than that of the j strategy, Wj, it is

sufficient to show that the two conditions are met:

2 2
E(Bi) < E(Bj) and E(B.) < E(B.) (5.1.2)

so that from (5.1.1)

W. < W. (5.1.3)
1 3

In comparing the three strategies analyzed in section 4 condition

(5.1.2) may be employed to give a simple ordering of efficiencies.

5.2 Comparing the first moments, E(B)

The first moment is especially important in the analysis of proto-

col information, because it relates directly to the entropy of the

-58-
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information (section 4.5). In comparing expected block length between

strategies, it is only necessary to compare average protocol data, E(S),

because E(M) is common to all schemes.

E(B) = E(M) + E(S) (5.2.1)

The first moments of block length were found in section 4 to have

the values: (4.3.10), (4.11.8), (4.6.6),
1 1

Fixed Packet: E(B1 ) = E(M) + 1.43E
2 (M) + log2 (2E(M))2

Flag: E(B2) = E(M) + log2 (E(M)ln2) + 3.886

Huffman: E(B3) = E(M) + log2 (E(M)ln2) + 3.0

For purpose of comparison, it is convenient to introduce the common

parameter, r+l, from the flag strategy (4.11.5), providing the parametric

equation for all schemes
1

E(S.) = a.E2(M) + b.r + c. (5.2.2)

where r+l = log2(E(M)ln2) (5.2.3)

2r+l
and E(M) = (5.2.4)

ln2

Table 5.1 below lists the coefficients for the three strategies,

and graph 5ol plots E(S.) over the range 3 < r < 13, or 23 < E(M) < 2.104

Table 5.1 Mean value of protocol data

1

Fixed packet: E(S1) = 1.4E
2(M) + 0.5r + 1.26

Flag: E(S2) = 0 + r + 4.89

Huffman: E(S3) = 0 + r + 4.00

~;h.....~ . -. ~ ---------· ·~~--~~-~~"~--3
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Protocol data, E(S), has been derived from E(B) - E(M), in the

equations of section 4. Substitution has been made for E(M) according

to Equation (5.2.4).

From the graph, and table it can be seen that

E(S1) E(S) > E(S2) > ) (5.2.5)

E(B1) > E(B2 ) > E(B3) (5.2.6)

5.3 Discussion of first moments

The fixed packet strategy contains a non zero E (M) coefficient,

which dominates E(S1) for large values of E(M). This term is associated

with the redundancy of.the final packet, which is eliminated in the Huff-

man scheme by relocating the length specifier. Similarly in the flag

strategy there is no equivalent redundancy.

The Huffman length encoding and flag strategies are remarkably

close, and there is a simple explanation for this similarity. The Huff-

man scheme employs two concatenated code words: one a unary encoding of

packets, N, and the second a variable length codeword expressing final

packet redundancy. The second codeword has the same expected value as

lr
the flag length (5.2.3). Each insertion has probability (.-) , which is

equivalent to an insertion per 2 bits, on average. This corresponds to

the busy bit preceding each packet in the Huffman code (the unary code-

word contains N+i bits).

The Huffman code is marginally more efficient that the flag

strategy (by 0.89 bits), but both schemes vary widely from the fixed
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packet strategy.

5.4 Comparing second moments, E(B 2 )

The second moment gives a measure of the dispersion of block length

about its mean value, and influences the waiting time of messages in the

source queue (see 5.1.1).

Employing the parameter r+l, a general equation may be written for

the second moment, E(B2 );

E(B.) = 2E2 (M ) + a E3/2 (M) + (b.r+c.)E(M)

2 2
+ (d.r+e.)E (M) + f.r + gir + h. (5.4.1)1 1 1 1i r

Each strategy has a second moment defined by the set of coeffi-

cients (a, b, c, d, e, f, g, h), as listed in Table 5.2 below. Graph

5.2 plots E(B.) over the range of r, 3 < r < 13. The term in E (M) is

omitted in the graphical values, being common to each strategy.

Table 5.2 Second moments of block length

Omitting the common term in 2E (M) from E(B2 ), the second moments

for the fixed packet, flag and Huffman schemes are:
1

E(B) = 4.3E /2 (M)+(r+3)E(M)+(1.43r+2.88)E (M)+0 .25r +1.16r+0.15

2 2
E(B2 ) = 0 + (2r+14.54)E(M) + 0 + r + 15.54r + 23.55

2 2
E(B ) = 0 + (2r+9.77) E(M) + 0 + r + 8.0r + 18.0

The results above were taken from (4.3.11), (4.12.6) and (4.8.5)
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respectively, where log2E(M) is replaced by f(r) defined in (5.2.3).

From the graph, and coefficients above, it can be seen that

2 2 2
E(B ) > E(B2) > E(B ) (5.4.2)

The magnitude of first moments have a similar ordering (5.2.6),

such that condition (5.1.2) is applicable to the three strategies under

discussion. The order of magnitude of waiting times becomes

W1 > W2 >W 3 (5.4.3)

where the waiting time of the fixed packet strategy is W1, that of the

flag strategy is W2, and the Huffman length encoding strategy is W3.

5.5 Discussion of second moments

The redundancy in the final packet of the fixed packet strategy

contributes a term in E 3 /2 (M) which is not present in the other strate-

gies. This term causes E(B ) to greatly exceed the other moments, for

larger values of E (M).

The flag and Huffman encoding strategies contain terms of similar

order, but with different coefficient values. The difference between

2 2
E(B2 ) and E(B3), for large values of E(M), becomes 4.77E(M) which increases

as an exponent of r. This is a more significant difference than 0.89

bits in the first moment, and illustrates the greater uncertainty of the

number of protocol bits in the flag strategy.



-65-

5.6 Conclusion

In the context of a single source/receiver link, three protocol

strategies for transmitting start-stop information were analyzed for

messages with geometrically distributed lengths. The mean waiting time

of messages in the source node queue and transmission was taken as a per-

formance measure under which the strategies could be compared. Queueing

and service time in store and forward networks is directly related to

transmission delay, which is of practical importance in any network.

Three strategies were taken from existing networks, including fixed

packet , flag and variable length packet strategies. The latter was based on

ideas from information theory, and was found to be the most efficient

in terms of queueing delays, and average codeword length for the protocol

data.

The queueing problem was simplified by assuming geometric message

length statistics, which although not generally equivalent to practical

cases, do exhibit an extremal property. Such statistics maximize the

amount of protocol information required to encode message length, and the

most efficient encoding for this case satisfies the minimax condition,

i.e., the most economic coding under the worst source statistics.

The queueing problem was analyzed according to an M/G/1 process,

where the waiting and service time was found to depend only on first and

second moments of block length (message and protocol data). The first

moment, E(B), also has significance from a source coding viewpoint. An

efficient coding scheme, in an information theoretic sense, is one that
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has an average codeword length close to the source entropy. The Huffman

scheme has a mean redundancy above the source entropy of 0.03 bits/

message.

The first moments of the three strategies are presented in table

5.1. Both the Huffman and flag strategies achieve a coding redundancy

of less than one bit/message, and have some close similarities. For

instance, the flag closely resembles the length specifier and the inser-

tions (occurring every 2r bits, on average) resemble the busy bits

placed before each packet of length L. The fixed packet strategy is less

efficient due to the redundancy in the final packet, which is eliminated

in the Huffman scheme. 

The second moments are listed in table 5.2. The variance of pro-

tocol data for each scheme is directly related to second moments. The

block length of message and protocol data in the Huffman case has a lower

variance than under the flag strategy. This may be understood by con-

sidering the appearance of insertions in the flag strategy in contrast

with the busy bits of the Huffman scheme. The former are subject to

greater statistical uncertainty, and contribute to the higher overall

variance of the flag strategy. The redundancy in the final packet of the

fixed packet strategy makes the second moment considerably larger than

the other schemes.

The main theoretical result to emerge from the study is the close

relationship between stop information and message length. This was used

to advantage by devising a protocol strategy using an efficient encoding
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of message length. The source coding approach was shown to be efficient

in a practical sense by minimizing queueing and transmission delays in

data networks, as well as reducing average protocol data to a minimum

level.

Some practical results from the analysis include optimum packet

and flag lengths for the appropriate strategies. For example, in the

fixed packet strategy, packet length which minimizes protocol data was

found to be approximately (2E(M)) , where expected message length is

E(M). In the Huffman scheme, packet size was E(M)ln2. In the flag

strategy, optimum flag length was [log2E(M)ln27.

Applying these results to the IBM line protocol described in sec-

tion 4.10, assuming an average message length of 103 bits, flag length

would be ten bits. Also flag structure would be modified by omitting the

final binary zero, i.e., 0111111111.

Having completed the discussion on start-stop protocol for a single

source/receiver pair, attention will be given to devising a source code

for start-stop information for many sources and receivers sharing a single

channel.



Section 6

Protocol for a single link with identical sources

6.1 Introduction

Previous sections have been concerned with protocol for a single

link with one source and receiver. Protocol was necessary to specify

the beginning and end of each message. This required start-stop infor-

mation to be transmitted together with the message data. Discussion is

extended here to a single link with identical sources and receivers.

Naively one would expect that in addition to start-stop information

there would need to be additional data conveying destination information

to the receiver node. It will be shown that start-stop protocols are

sufficient to express destination as well as the beginning and end of

messages.

A simple model of a link with identical sources will be devel-

oped. Two coding strategies for protocol information will be presented

and compared: the Huffman and universal 2 coding schemes. Redundancy

of the coding schemes over source entropy will be considered as a per-

formance measure for making comparisons, and estimating efficiency.

One consequence of this section will be to demonstrate that addressing

information in a data network can be avoided by selecting the appropriate

encoding of protocol information.
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6.2 Model of a single link with identical sources

A set of K identical independent synchronous sources share a

binary channel to a corresponding number of receivers. Each source, k,

(1 < k < K) communicates only with its receiver, k. The source node

resembles a concentrator which serves all K sources by inspecting their

contents at each instant of time (see Figure 6.1.)

Each source can exist in either one of two states: the idle and

busy states. Transitions between states take place in a synchronous

manner with changing time instants. Each source is represented by a

markov process (see Figure 6.2), where the probability of being idle is

Prob. (idle) = s+6

and the probability of being busy is

Prob.(busy) =
s+6

When idle, the source delivers idle characters, i, and when busy

it delivers binary O's and l's, corresponding to the message data.

Information relating to state and message data in a two state

markov source may be quantified by the source entropy, H(S), where

H(S) = + 6 + + (£) + 6 6) bits/unit time

and 8l(x) = -xlog(x) - (l-x)log(l-x) (6.2.1)

The entropy of the source provides a lower bound on the average

length of codewords required to transmit all information relating to
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source chtnnel receiver

SK / 

Figure 6.1

Identical synchronous source/receiver oairs

(1-E) ?

(I-E) - i

Busy Idle 

Figure 6.2

Markov information source
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that source, including state and message data (see source coding theo-

rem, section 3). For K identical independent sources, each with entropy

H(S), the minimum capacity of the binary channel must be greater than

the total entropy of the combined sources, KH(S), in order that reliable

transmission can take place.

The entropy for the combined sources, KH(S), contains three terms

(see equation (6.2.1)). The first, K E + 6 is the average message

data per time instant. The second, K + ¥ H(E), is the stop informa-

tion per unit time for all the sources, and the third is the start

information, K H(6).

A meaningful performance measure which is concerned with mini-

mizing overhead data is the coding redundancy of a protocol over the

source entropy. Huffman encoding of stop information has been shown

to be efficient in this sense, and will be used again for start-stop

12
protocols. A second scheme involving universal coding will also be

discussed as an alternative approach.

6.3 Huffman encoding of start-stop information

Let KI(j) and KB(j) denote the number of sources in the idle and

busy states respectively, during the jth time instant. The total num-

ber of sources is K. As the system enters the j+l time instant, a

finite number of sources, q, change from the idle to busy state

(0 < q < KI(j)), and a finite number, p, become idle after completing

a message, (O < p < KB(j)). The new state contains KI(j+l) idle and
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KB(j+l) busy sources.

If initially all sources are assumed idle, and both the source

and receiver nodes maintain a list of idle and busy sources at all

time instants, only information conveying those sources in transition

need be transmitted at any one time instant to update the lists. The

start (and stop) information is the location of the sources in the idle

(and busy) list which become active (inactive). This information is

sufficient to allow the receiver to update lists, and allocate the

received message bits to the appropriate receivers corresponding to

active sources.

For a time instant, j, a possible format for transmitted data

could be

- (t=j-1)--- start info. stop info. message bits *<-(t=j+l)-

(t=j)

Before being able to devise a coding scheme for the start-stop

protocol information, it is necessary to identify the structure of the

information source. This may be done for the start information by

considering those idle sources which become active during one time

instant, j. They are chosen randomly out of the list of idle sources,

KI(j-l), where the probability of q transition is given by the binomial

distribution

/K 0j-l)\ K (j-l)-q
Pr(q) = (6)

q (1-6) (6.3.1)

(a-b) a!
b (a-b) !b!
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and o < q < KI(j-l)

A similar distribution applies to busy sources which become idle

(p of them) where

l B (-l)\K (j-l)-p
Pr(p) = (s) (l-s) (6.3.2)

and O< p < K(j-l)

The set of all possible outcomes for transitions in either

direction may be enumerated with the help of a coding tree, where each

terminal node represents a unique outcome (Figure 6.3). To construct

a Huffman code for such a finite tree would require an accurate know-

ledge of s, 6, together with much computation. The coding problem may

be simplified by considering the distances between sources in transi-

tion (i.e., run length coding), in the idle and busy lists.

For sources in the idle state, the probability of a transition

is 6. The probability distribution of the distance, d, between two

transitions is geometric, providing that the list is infinitely long,

where

Pr(d) =6 (1-6) d
- and 1 < d < co (6.3.3)

The condition of infinite length may be realized by concatenating

the lists of idle sources at different time instants into one infinitely

long list. In such a case, the distance between transitions is des-

cribed exactly by (6.3.3). The position of time markers corresponding

to the division between lists at different times j-l, j, etc., can be
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a=0 (1- 8) one outcome

Ki-1
(- )outcomes

2 K 1-26 (1- 8 )I

a,=2 8 (!- KI(KK-l)/2:

(26 - .> I: I outcomes1K 8'

tone outcome=i (- .).I..

transitions probability outcomes

Fiure 6.3

Coding tree for transitions to the busy state (KT sources)
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indicated to the receiver node by an extra bit in the length encoding

of those distances which include the markers (see Figure 6-.4).

To demonstrate the encoding of a distance between sources in

transition, by the Huffman coding scheme, consider a typical distance,

d. Define a fixed parameter L which depends on mean distance between

transitions; in the idle list, 1/6. From (4.6.5)

L = (1/6) ln(2) (6.3.4)

Define a second integer variable, N, such that

N=

The codeword for d is constructed in two parts. The first is a

unary code of N-1 binary ones followed by a binary zero. The second

is a variable length encoding of [d] Mod(L), whose mean length is

log 2 (L), resembling the coding employed in section 4.6. The distance,

d, may be expressed as

d = (N-1)L + [d]Mod(L) (6.3.6)

The coding of distance between transitions in two different

lists, i.e., at times j, j+l, introduces an undetermined future event.

For example, when coding start information at time j, no information

is yet available about transitions at time j+l.

If the last source to become active in the list of idle sources

at time j is Sk(O < k < K), which is at distance dk from the end of the

list, the source node can only indicate to the receiver node that the
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S'- 0 1i

idle 0j-l O
list S0-j
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idle 0S O d

ist j 1 
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O

Sj+l 0 

~J"J+1 10t+ 1 +1 d

idle Sj+l 3 d
list i+1 1_

t-j+l j +1 1o

Figure 6.4
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next source in transition is beyond the last source in the idle list,

SK·

The final codeword in the start information field for the jth

instant of time will consist of N = binary ones. The receiver

will count NL source positions down its own idle list, which will take it

beyond the final element. The receiver will assume that all start

information for time j is complete, and will look for stop information.

The first codeword for the start (or stop) information in the

th j+l
j+lth time instant records the position, d1 , of the first source in

transition from the top of the idle (or busy) list (see Figure 6.5).

The redundancy incurred by specifying the distance between the last

source at time j and the first source at time j+l as two codewords in-

stead of one is found in Appendix 6 to be 0.614 bits. The distances

j+ l

d1 and dJ still have a geometric distribution owing to the special

property of the source statistics, i.e., regardless of where one starts

to count to the next source in transition, the distance, d, remains

geometrically distributed.

The encoding of transitions in the busy source list proceeds in

the same manner, except that parameter L is redefined as

L = (1/S)ln(2) (6.3.6)

On receiving all start-stc- information, the receiver can compute

the number of message bits originating at the active source at the par-

ticular instant of time. These bits are transmitted in the same order
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Length encoding between lists, t= ,j1+

source tran siti on distnQ e

0o

s j o

s j 1

sJ o

idle S0 11

list Sj

t-=j
t j 0

S o

S j + l C I

Sj+l 0 d+1 1010

idle ; log=
list -

t=j+l Sj+l 1

0

Sj+l 0

Coding table (L=4; log2 T=2)

[x] mod(l) codeword

0 00

1 01

2 10

3 11

Fi ,mure 6.5
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as the sources appear in the busy list so that they may be routed to

the appropriate receiver pairs, in corresponding positions in the

receiver node list.

In the case of no idle (or busy) transitions in one time instant,

an appropriate number of binary ones are sent to indicate that the

distance between sources in transition exceeds the idle (or busy) list

size.

6.4 Performance of the Huffman coding scheme

In order to reduce cost in a network, i.e., minimize channel

capacity (allocated on a unit cost basis), it is necessary to design

protocol strategies with small coding redundancy. A further objective

of practical importance is to design protocols which minimize trans-

mission delays, including queueing time at nodes. The single source/

receiver link illustrated how queueing delays are related to the ex-

pected value of overhead data as well as the second moment.

The arrival of message bits at the source node of a link with

K identical sources does present a queueing problem if the number of

sources is small, and the channel capacity only sufficient to transmit

an average message load. In order to eliminate second moments of pro-

tocol data from this discussion, it has been assumed that the value

of K is large enough to allow the statistical law of large numbers to

operate, ensuring that the load at all times corresponds with channel

capacity. This assumption implies that a protocol strategy which
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minimizes expected overhead data is to be considered the most effi-

cient scheme for conveying protocol information.

It is convenient to analyze the expected overhead or protocol

data associated with a single message delivered by one of the K

identical sources. This will allow us to compare the coding redundancy

of protocol information for the single source/receiver model with the

link with identical sources model.

The entropy of a single message from a markov source, with mean

length 1/S, and idle period 1/6, is H(S),

H(S) = 1/c H(£) + 1/ (6) + 1/ (6.4.1)

The first term represents message length, or stop information,

the second represents idle or start information, and the third is

message content. One bit of message data is delivered by the source,

when busy, each instant of time.

The statistics of a single source over many time instants are

identical to those of a chain of markov sources at one time instant.

For example, consider the list of busy sources at time j. The length

between two sources in transition in the list has the same geometric

distribution as the busy period of a single markov source over many

instants of time. The mean distance between transitions, and busy

period length is 1/C . The Huffman coding of stop information in

earlier sections was for a single source over many time instants. Here

the encoding is performed for sources in transition in the busy list at

one time instant (see Figure 6.6).



List of identical sources at time j,i+l

Sources Time( ) TiMe ( j +l )

S3 "-- transition

4

S 6 -

S 7 transition

s 8

S(r+l) S(r+2) S(r+3) S(r+4) S(r+5) S(r+6) S(r+7)

.--busy period -

Single source over many time instants

Figure 6.6
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The coding described in Section 6.3 achieves a redundancy of mean

value about 0.03 bits (this fluctuates between 0.02 and 0.04 bits de-

pending on expected message length) above the source entropy, for each

encoded distance between transitions 7, excluding the extra 0.614 bits

required to indicate the time marker (see Appendix 6).

The redundancy incurred by specifying the end of the busy and idle

lists amounts to 1.288 bits (on average) per instant of time. Over a

long time period, the average number of messages per instant averages out

to be s£K/(£ + 6), where the length of a message and preceding idle

period is 1/s + 1/6. The weak law of large numbers gives an average

bit redundancy per message, R, of

(s + 6)
R = 0.06 + 1.288 ( (6.4.2)

Define n as the ratio of the coding redundancy, R, to the length

of a message, 1/s. Then

1.288 1.288 s
n = SR = 0.06S + K + K 6 (6.4.3)

Consider the case for large values of K, and infrequent message

arrivals, such that the idle period is much greater than the busy

period, 1/6 >> 1/s. In the range 1 < 6K < 100, the approximation for

fl can be made, where

(n 6288K + 0.06) (6.4.4)

and 6KI 6K

Graph 6.1 illustrates how the coding redundancy ratio depends on



i;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

c;
0

X m3

oX l ~~~~~~~~ [10~~~~-.Gra -'I

XII~~~~~ ~~~~~~~~~~~~~~~~~ i Ir I-Fo, li 10 2 - l i [ i 0 a l ~~Rai o of co rig edundancy ¢ r S t vl-a - ~ . 1= =- T·II ii :: -i.- , i - - - Tt i-- I _: = C( =_C |~ i-7-~-·---C
0

z

tj~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i-0·. _E.- T- C1'l 1 I- ::t:·-".i ir(tI l Hins--T--- --- trsitions t &:-__ r

z

lIJ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

X

01
Q
r I ¢, , -- 1 4·I I -! t--= == ;

io

u 0 01X0]0 1 X 4r~

z ~~~~~~~~~~~~~~~~~~~~~~astins 0i =-l 1 _ =3T-
o ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ : l 1 I .Ie .,r _ I.o I I I I 1 I~~L_.II 1 1 I I ~ i I I I 1 I I I i -7 I I I I i I I I 1 1 I 1 i i~ ii I ii r-

z Twr~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

o ° J iii E 



-84-

message length, 1/E, and number of transitions, per time instant for

both start and stop protocols. The effect of the time marker on a

message becomes negligible in the upper range ofSK transitions. In

such a case, the redundancy of protocol encoding corresponds to that of

the single source/receiver model, i.e., 0.06 bits on average per message.

6.5 A universal coding approach

A second approach to the coding of start-stop information can be

made using a universal coding scheme . Again lists of idle and busy

sources are maintained at each node, and updated each instant of time.

The coding of source transitions in the two lists may best be explained

by an example.

Consider a list of eleven idle sources at time j-l. Two sources

th
become active before the j time instant, say at the second and fifth

positions in the list. A binary word is constructed to represent this

change, where sources which remain idle are represented by a binary zero,

and those which become active by a binary one. The information for this

event would then by 01001000000 where the first bit of the word refers

to the first source in the list, etc.

The universal code proceeds by transmitting the number of transi-

tions, in this case two, as a run length code word, i.e., 110. Having

conveyed the number of transitions, the possible number of eleven bit

binary words are reduced from 212 to (11) = 55. Each outcome is equally

likely, and may be encoded by a fixed length word of [log 2(55)1 = 6 bits.
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The receiver has a decoding table for each of the possible transitions.

Listed below are some possible codewords for two transitions in an

eleven source list:

List Codeword (6 bits)

11000000000 000000

10100000000 000001

10010000000 000010

10001000000 000011 etc.

01001000000 001110

The codeword for 01001000 is the concatenation of 110 (two transitions),

and 001110 (location of the transitions).

The universal scheme is most efficient for small numbers of

transitions. It has one advantage over the Huffman scheme in that it

is constructed for a finite coding tree, and does not need to specify

time markers between lists. Inspecting the coding tree in Figure 6.3,

it is seen that the universal scheme, by specifying the number of transi-

tions, reduces the tree to one branch with ( KIequally likely outcomes.

KI is the number of sources in the list, and q the number of transitions.

6.6 Performance of the universal code

Assuming that the lists, KI and K , are very long, and the number

of transitions are large, sterlings approximation may be employed to

give an estimate of the average codeword length for start and stop
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information, nI, nB. The distribution of transitions in the lists has

been given in (6.3.1) and (6.3.2). The length of the run length code-

word conveying the number of transitions is q + 1. The codeword

conveying position is log 2 (qI) .

ni = E(q+l) + E(og (6.5.1)

Sterling's approximation gives

log 2 (i) KI H(q/KI) + 1 log 

For sufficiently large KI, q/Ki 6, so that

nI 6 SKI + 1 + K H(6) (6.5.2)

To evaluate the number of protocol bits per message required to

transmit start-stop information, nI represents the jointly encoded start

information for SKI transitions. For each transition,

(Ki) ~ 1 + 1/6 H(6) (bits/message); 6K >> 1 (6.5.3)

The second term is the entropy of the start information, inferring

that one bit of redundant code per message is required for start infor-

mation. Similarly, one bit of redundancy occurs in the stop information

giving a total of two bits of redundant protocol data per message in

the universal coding scheme.
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6.7 Conclusions on protocol strategies

The protocol information necessary to communicate independent

messages over a binary channel between K source/receiver pairs includes

the beginning, the end and the destination of the messages. By con-

sidering the source node as a simple concentrator serving K sources,

it is sufficient to convey only start-stop information from the source

to receiver node, in addition to message data.

The coding of start-stop information was performed by Huffman

and universal coding schemes, independently, to illustrate two separate

and efficient source codings. The performance of each scheme was

measured by comparing average codeword lengths to source entropy (the

lower bound, according to the source coding theorem of Section 3).

Efficient source coding of protocol information ensures that average

overhead data is kept to a necessary minimum.

The coding redundancy of the Huffman scheme, R, has three com-

ponents,

0.614 0.614
R = 0.06 + 6K14 + 0614 (6.7.1)

6KI F-KB

The constant first term is associated with the coding of distances

between transitions, i.e., idle and busy period lengths (0.03 bits

according to Ref. 6). The other terms occur because an additional bit is

generally required each time instant in both the start and stop infor-

mation fields to indicate the end of each set of codewords. This bit is

averaged out over all length encodings per time instant, and becomes
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negligible for large values of K (see Graph 6.1).

The universal scheme is less efficient when several transitions

take place per time instant, with a bit redundancy per message of two.

It is also considerably less practical due to the large number of de-

coding tables which must be kept at the receiver node to identify the

position of source transitions. The Huffman scheme, a run length

coding technique, is simple to implement, and efficient in terms of

average length of codewords.

6.8 System design implications

A concentrator, as incorporated into our simple K source/

receiver network, is an efficient means of allocating channel bandwidth

to many users. It avoids the need for address information, as do time

division multiplexing systems, but also allocates channel space dynami-

cally thus ensuring no empty time slots.

Simple time division multiplexing systems provide regular time

slots for all sources sharing a link. If one or more sources are idle,

the time slot will be empty. The concentrator keeps a list of all

active sources, and allocates one time slot to each of these per time

instant. No channel space is allocated to idle sources. The statistical

allocation of bandwidth by a concentrator is as efficient as transmitting

messages in a single queue, but in addition eliminates address informa-

tion which would be necessary under a single server approach (see

Figure 6.7).
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Three source/receiver network
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S 2 je rr2R 2

S 3 R 3
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.. 111 2 3 11 2 3 1 2 31 1 2 3...
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B. Con entrator 

... l 2 1 3 2 3 1 2 3

(busy S/Rs only allocated a slot)

C. Single server

S re Buffer 
S 3 Buffer R3

Transmitted data:

... essage (i)llAddress (i)lliessage (i)jjAddrees (O) .

I = idle state

B = bust state
Figure 6.7
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Appendix 6

Encoding distance between sources at time instants j, j+l

Consider the start information for time instant j. In the list

of idle sources, the last source to become active is distance d from

the end of the list. There may be no transition at time j in which

case, dk is the total number of sources in the list. For positive

integers N1 = L1 and RE (O < R <L), the coding of dk is performed

according to the procedure of Section 6.3 where L = 1/6 ln2 and

dJ = (N1 - 1)L + R (6a)

The codeword for d4 consists of N1 binary ones, which indicates

to the receiver that the next transition is distance (N1 )L sources from

the previous one, which will be beyond the final element of the idle

list at time instant j. In the next time instant, j+l, the first code-

word of the start information will give the position of the first

j+l
source in transition from the top of the idle list, d1 . If there are

no sources in transition in this list, then a similar procedure used

for the final codeword at time j is adopted. For positive integers N2

and R2, where 0 < R2 < L, distance

d1 = (N2 - 1)L + R2 (6b)

j+l will consist of N2The coding of d1 will consist of N - 1 binary ones followed

by a zero, and a variable length encoding of R2 , average length log 2 (L).



In the case of no transitions, N2 ones are sent alone. The number of

sources between the two sources in transition (in lists t=j, j+l) is d,

d = d (N+ + N2- 2)L + + R (6c)

(see Figure 6.5).

The mean lengths of the codewords for dk and d1 together exceed

the mean length of d, as coded directly by the Huffman scheme, by a

fraction of a bit, x. This fraction is the redundancy caused by the

additional specification of a new list at time j+l in addition to the

distance to the next source in transition, d.

3 j+l
Having defined the procedure for encoding distances 1 and d 

it is now possible to calculate x by comparing the mean lengths of the

two codewords to that of d (coded as an integer by the Huffman scheme).

Consider the event A which occurs when R1 + R2 < L; the codeword for d

has length nd, where

nd = N1 + N2 - 1 + log2 (6d)

A second event, B, occurs when R1 + R2 > L, such that the length of the

codeword for d becomes

nd = N1 + N + + log2L (6e)

j j+1
The combined lengths of the two codewords for dk and d1 are

1 2
nd and nd , where

1 d
nd + n2 = (N1) + (N2 + log 2 L) (6f)

Only during event A is the coding of d performed more efficiently
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by one codeword rather than two, comparing (6f) with (6d, 6e). In

event A, a single bit must be included in the start information to

indicate the time division between lists. Thus the mean value of the

bit redundancy is x, where

x = l.Pr (event A) + O.Pr (event B)

= Pr (event A)

= Pr (R1 + R < L) (6g)

The integers R and R2 are random variables with distributions

of the form

P (r) = (6h)
R l-(l-5)L

where

0 <r <L

The two variables are statistically independent. As

Pr(A) = 1-Pr(B)

L-1

-1 -O PR (r> L- r2)PR (r2 )

r2=0 PR1 2-



-93-

Evaluating the previous expression,

L-2 L-1
Pr(A) = 1- 6L(1-6)L - 2 + (1-6 )

L- (6i)

21- (1-6) 1- (1-)

For large values of L, ie: long idle periods, the approximation below

can be made,

(1-6)L T 1/2

where L = (l/6)ln(2)

The probability of event A, for long idle periods (1/6 >N 1), becomes

x = Pr(A) = 0.614 bits (6j)

In the case where no transitions occur at time j, the analysis remains

unchanged, although dk covers the entire list of KI(j) elements rather

than the final part.



Section 7

The Conclusion

7.1 Summarizing the network protocol problem

Three categories of protocol information have been discussed at

length here in order to illustrate a design procedure based on source

coding. These include the beginning, end, and destination of messages.

The objective in each case was to find a protocol strategy which mini-

mizes the average control data which accompanies messages during trans-

mission. In so doing, channel bandwidth requirements and transmission

delays are minimized, leading to a more efficient useage of network

resources.

7.2 The design of efficient network protocols

Protocol information is necessary in a communications network to

resolve the statistical uncertainties associated with incoming messages,

including arrival time, length and destination. These uncertainties may

be modelled by separate information sources from those supplying message

data. The design approach adopted here was to find efficient source

encodings which met the lower bounds already constructed for some

protocols4

The availability of reliable statistics of network users is

essential in order to achieve efficient source codes. For purposes of

illustration, some standard distributions have been assumed including

geometrically distributed message lengths and poisson arrivals.

-94-
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7.3 Start-stop protocols

The start-stop protocols associated with message arrival and

length information are found to be related to the lengths of idle and

busy periods of the information source. A Huffman coding scheme is

available to encode efficiently the geometrically distributed integers

corresponding to these periods. The scheme is discussed both for

single source and receiver links (Sections 3,4,5) and many identical

source/receiver pairs sharing a single link (Section 6).

For the single source/receiver model, the condition variable

length packets was found necessary to achieve a small coding redundancy

of message length, or stop information. Such a condition may be met

by using either a terminating flag character or a Huffman length en-

coding (with slight advantage to the latter scheme). Section 5.6

summarizes the relative performance of a fixed packet, terminal flag

and Huffman length encoding approach to stop information for single

source/receiver models.

By employing an information concentrator in a network with iden-

tical sources sharing a single link, the need for separate address infor-

mation was eliminated. It was found sufficient to provide the receiver

node with start-stop information for each source/receiver pair individ-

ually in order to communicate messages to the appropriate destinations.

Again a Huffman length encoding scheme efficiently conveyed the start-

stop information, which contained the lengths of the idle and busy
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periods. Section 6.7 summarizes the efficiency of this approach, and

section 6.8 comments on design implications.

7.4 Problems of future interest

The problem of transmission delay is of major practical impor-

tance in communication networks. A source coding approach to protocol

information is able to reduce network overheads to a minimum, but

sometimes at the expense of increased delay. For example, it is more

efficient to perform joint encodings of message lengths and arrivals

than to send individual protocol information for each message to be

transmitted. However, joint encoding assumes that one waits for several

messages to arrive in a queue before commencing transmission. The

relationship between delay and efficient protocol coding is yet to be

explored from a practical standpoint.

The second major issue in network protocols is the routing and

supervisory information. No bounds yet exist for such information with

which to evaluate existing protocols, and devise more efficient ones.

The problem is complicated by the intimate relationship between effec-

tive control and state information in a network. By supplying addi-

tional information on traffic flow conditions, it is generally possible

to improve routing of messages, and thus utilize network capacity more

efficiently. However, the control information itself reduces network

capacity, and message flow. This field will require a joint control

and communications approach.



-97-

The rapid expansion of data networks in the near future should

provide the economic incentives to improve the efficiency of overhead

information. The study of protocol structure and implementation could

offer significant savings in system overheads.
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