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ABSTRACT 

 
The last few years mark a significant leap in the capability of algorithms with the advent 

of deep learning. While conventional machine learning has existed for decades, their utility has 

been rather limited, requiring considerable engineering and domain expertise to design pertinent 

data features that can be extracted from raw data. In contrast, deep learning methods have 

yielded state-of-the-art results in a wide range of computer vision tasks without the need for 

hand-crafted imaging features. At the same time, we are collecting ever-increasing quantities of 

medical imaging. Together, deep learning models and big data yield a powerful combination. 

Integrated in the data workflow, the clinic, or at the bedside, these models have the potential to 

aid with clinical decision-making, improving efficiency, accuracy, and reliability of patient care. 

However, at present, there is a critical gap between the researchers who develop deep learning 

algorithms and the clinicians who could utilize the technology to improve patient care. In this 

thesis, I focus on several challenges that prevent clinical translation of algorithms. First, vast 

quantities of data needed to train effective models are often dispersed across institutions and 

cannot be shared due to ethical, infrastructure, and patient privacy concerns. As such, we 

developed distributed methods of training robust deep learning models that do not require 

sharing patient data in multi-institutional collaborative settings. Second, it is not clearly 

understood how decisions in algorithm design can affect model performance. To this end, I 

showcase how various training, data, and model parameters can impact algorithm prediction and 

performance. Lastly, while many algorithms are designed to perform a single task, there are few 

pipelines that have multi-faceted functionality needed in patient care. I demonstrate an integrated 

and deployable clinical decision support pipeline for glioma and ischemic stroke that is 

extensible to other diseases. 
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1 Introduction 

 The last few years mark a significant leap in the capability of classification, detection, 

and segmentation algorithms with a new class of techniques under the umbrella of deep learning. 

While conventional machine learning has existed for decades, their utility has been rather 

limited, requiring considerable engineering and domain expertise to design pertinent data 

features that can be extracted from raw data. In contrast, deep learning methods do not require 

domain-inspired hand-crafted imaging features. With the advent of powerful graphics processing 

units, deep learning has brought about major breakthroughs in tasks such as image classification, 

speech recognition, and natural language processing.1–3 Deep learning models take raw data such 

as images as input and apply many layers of transformations to calculate the output of interest. 

The high dimensionality of these transformations allows these algorithms to learn complex 

patterns with a high level of abstraction.4  The logical application of deep learning, especially 

those methods developed for computer vision, is to medical imaging, where clinicians have long 

noticed the relationship between imaging patterns and diagnoses, prognosis, and genomics.  

 At the same time, we are collecting ever-increasing quantities of medical imaging. 

Together, deep learning models and big data yield a powerful combination. Integrated in the data 

workflow, the clinic, or at the bedside, these models have the potential to aid with clinical 

decision-making, improving efficiency, accuracy, and reliability of patient care. However, at 

present, there is a critical gap between the scientists who develop deep learning algorithms and 

the clinicians who will utilize the technology to improve patient care. Our long-term objective is 

to develop artificial intelligence technologies for medical imaging that can improve the 

efficiency, cost, and quality of patient care.  
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 In this thesis, I focus on several challenges that prevent clinical translation of algorithms. 

First, vast quantities of data needed to train effective models are often dispersed across 

institutions and cannot be shared due to ethical, infrastructure, patient privacy concerns. As such, 

we developed distributed methods of training deep learning models that do not require sharing 

patient data in multi-institutional collaborative settings. Second, it is not clearly understood how 

decisions in algorithm design can affect model performance. In our work, we showcase how 

various training, data, and model parameters can impact algorithm prediction and performance. 

Lastly, while many algorithms are designed to perform a single task, there are few pipelines that 

have the multi-faceted functionality needed in patient care. We demonstrate an integrated and 

deployable clinical decision support platform for glioma and ischemic stroke that is extensible to 

other diseases. 

 

1.1 Distributed deep learning networks among institutions as an alternative to sharing patient 

data 

1.1.1 Motivation 

Deep learning has become a promising approach for automated support for clinical 

diagnosis. Deep learning is most effective when trained on large, diverse datasets. However, 

when medical data samples are limited, collaboration among multiple institutions is necessary to 

achieve high algorithm performance. Sharing patient data often has limitations due to technical, 

legal, or ethical concerns. In chapter 3, we propose methods of distributing deep learning models 

as an attractive alternative to sharing patient data. 
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1.1.2 Contributions 

 We simulate the distribution of deep learning models across four institutions using 

various training heuristics and compare the results with a deep learning model trained on 

centrally hosted patient data.5,6 The training heuristics investigated include ensembling single 

institution models, single weight transfer, and cyclical weight transfer. We evaluated these 

approaches for image classification in three independent image collections (retinal fundus 

photos, mammography, and ImageNet). Among the results, we find that: 

• High model performance can be achieved without centrally hosted data. Distributing deep 

learning can effectively utilize data from many institutions as long as the institutions are 

willing to share the model parameters. Specifically, we show that cyclical weight transfer 

resulted in a performance that was comparable to that of centrally hosted patient data. 

• There is an improvement in the performance of cyclical weight transfer heuristic with 

high frequency of weight transfer, which represents a tradeoff between communication 

costs and performance. 

• Performance of cyclical weight transfer is compromised in the presence of data quality 

and data size variability at a single institution. We also propose methods to optimize 

distributed learning in the presence of data size and label imbalance heterogeneity across 

multiple institutions.7 

• Distributed deep learning models can achieve high performance at large scale (that is, 

when there are many institutions, each with small amounts of data). 
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1.2 Model design and the impact on performance 

1.2.1 Motivation 

Despite the significant progress in research, AI is currently underutilized in current 

clinical workflows. The success of AI model development depends critically on the synergy 

between the availability of high-quality datasets, physicians who can drive clinical direction, and 

data scientists who can design effective algorithms. Even after the model is developed, aspects 

such as clinician misunderstanding of model limitations, limited model generalizability due to 

lack of continual refinement and collaborative training, and lack of rigorous validation can 

preclude integration into the clinical workflow. In chapter 4, we explore these issues. 

 

1.2.2 Contributions 

 Accurate and consistent evaluation of mammographic breast density is an unmet clinical 

need. We develop deep learning algorithms to assess Breast Imaging Reporting and Data System 

breast density, investigating the effect of data, model, and training parameters on overall model 

performance.  For our study, we utilized a large multi-institution patient cohort of 108,230 digital 

screening mammograms from the Digital Mammographic Imaging Screening Trial. Our best 

performing algorithm achieved good agreement with radiologists, with a 4-class κ of .667. 

Among the technical results, we find that: 

• ImageNet pretraining of models improved performance compared to randomly initialized 

models. 

• Model performance increased with increasing training set size. However, this increase 

reaches a plateau with larger quantities of training data. 
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• Model architecture, ensembling, and augmentation had smaller effects on model 

performance. 

• Randomly sampling of images at each training iteration can significantly bias model 

predictions away from low-represented classes when compared to using sampling each 

density class with equal probability. The net result is an increase in sensitivity and a 

decrease in specificity for predicting dense breasts for equal class compared to random 

sampling. 

• Performance of the model degrades when we evaluate on digital mammography data 

formats that differ from the one that we trained on, emphasizing the importance of multi-

institutional training sets. 

• In exploring the learned features of the algorithm, we discover that the algorithm learns a 

distribution for each data format as opposed to a unified distribution across all data 

formats. 

• When the model was fine-tuned on data from a new institution, the model had lower 

performance on the original dataset it was trained on, a phenomenon known as 

catastrophic forgetting. 

• We provide a crowdsourcing evaluation from the attendees of the American College of 

Radiology 2019 Annual Meeting, showing that crowdsourced annotations, including 

those from attendees who routinely read mammograms, have higher agreement with our 

algorithm than with interpreting radiologists. Because crowdsourced annotations are 

minimally time-consuming for individual participants, it provides an effective way to 

evaluate algorithms. 
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• Because our results have implications for any deep learning medical imaging study, these 

study design options have been integrated in the ACR AI-LAB, a platform for 

democratizing Artificial Intelligence that brings together clinicians and researchers to 

build and evaluate deep learning models. 

 

1.3 Developing a integrated deep learning pipeline for glioma 

1.3.1 Motivation 

 Gliomas are primary central nervous system tumors with variable natural histories and 

prognoses depending on their histologic and molecular characteristics. Current clinical 

evaluation and treatment approaches contain manual inefficiencies that can be enhanced by deep 

learning, specifically delineation of tumor boundaries, treatment response assessment, and non-

invasive prediction of molecular markers. This is the focus of chapter 5. 

 

1.3.2 Contributions 

 We create a multifaceted deep learning pipeline for glioma using a multi-institutional 

patient cohort from Brigham and Women’s Hospital, Massachusetts General Hospital, Hospital 

of University of Pennsylvania, and TCIA.  

• Taking advantage of biological context, we create an integrated tool for brain extraction, 

fluid attenuated inversion recovery (FLAIR) hyperintensity segmentation, and contrast-

enhancing tumor segmentation.8 We show that our method for brain extraction 

outperforms previous methods, which do not perform well in the presence of varied 

image acquisition settings and disease pathology. To facilitate utilization of the brain 

extraction and segmentation algorithm by the larger research and clinical community, we 
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have made the trained model publicly available as part of our open-source neuroimaging 

package, DeepNeuro.9,10 

• We automatically quantitate tumor volume and bi-directional measurements as per 

Response Assessment in Neuro-Oncology (RANO) criteria.11 These measures serve as 

automatic measures of tumor burden. We show that automatic tumor volume and 

AutoRANO are highly repeatable and show good agreement with clinical experts. 

• Notably, automatic tumor volume and AutoRANO capture longitudinal changes in tumor 

burden, which serve as the basis of treatment response assessment. This tool may be 

helpful in clinical trials and clinical practice to decrease the time expended by clinicians 

for manual annotation as well as decreasing interobserver variability. 

• We also developed a tool to noninvasively predict Isocitrate Dehydrogenase (IDH) status 

from MR imaging.12 IDH status is of clinical importance as patients with IDH-mutated 

tumors have longer overall survival than their IDH-wild-type counterparts. In addition, 

knowledge of IDH status may guide surgical planning. By using a large, multi-

institutional patient data set with a diversity of acquisition parameters, we show the 

potential of the approach in clinical practice. Furthermore, this algorithm offers broad 

applicability by utilizing conventional MR imaging sequences. Our model has potential 

to complement surgical biopsy and histopathologic analysis by offering molecular marker 

information at the time of imaging. 
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1.4 Developing a computational pipeline for ischemic stroke 

1.4.1 Motivation 

 Cerebrovascular disease is the third leading cause of death around the world after heart 

disease and cancer.13,14 The most common clinical manifestation of cerebrovascular disease is an 

acute stroke, 87% of which are of an ischemic nature.14 In chapter 6, we investigate the 

inefficiencies in the current clinical evaluation approach that can be improved with 

computational tools, specifically delineation of stroke boundaries, quantification of stroke 

volumes, and prediction of symptoms that the patient can develop during the hospital course. 

 

1.4.2 Contributions 

 We create a multifaceted pipeline for imaging of ischemic stroke, using a large patient 

cohort from the Massachusetts General Hospital.  

• We developed a deep learning tool for ischemic stroke volumetric segmentation utilizing 

only DWI imaging. To improve segmentation performance, we modified the U-Net 

neural network architecture as well as ensembled the output of several trained models. 

We also clinical experts qualitatively assess the automatically delineated stroke 

boundaries, which found that clinical experts rated automatic segmentations to have 

equivalent or higher quality compared to manual segmentations. 

• There was high agreement between manually and automatically derived volumes. 

Automatic volumes were capable of differentiating 90-day disability (modified Rankin 

Scale >2, p < .001) as well as 90-day survival (p < .001).  

• We also aimed to identify the neuroanatomic correlates of a broad range of cardiac and 

systemic alterations occurring after ischemic stroke. Using a mapping technique that is 
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free from the bias of a-priori hypothesis as to any specific location, we show that both 

cardiac and systemic abnormalities occurring after stroke map to specific infarct locations 

on diffusion-weighted MR. We show that these maps are predictive of the abnormalities 

as well as patient outcomes. 

• To facilitate further utilization, development, and validation of the segmentation 

algorithm by the larger research and clinical community, we have made the code as well 

as trained model publicly available as part of our open-source neuroimaging package, 

DeepNeuro.9,10 
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2 Background 

2.1 The disruption of deep learning 

In an increasingly digital world, it is difficult to imagine an aspect of life where 

computers do not play a role. The last few years mark a significant leap in the capability of 

classification, detection, and segmentation algorithms with a new class of techniques under the 

umbrella of deep learning. While conventional machine learning has existed for decades, their 

utility has been rather limited, requiring considerable engineering and domain expertise to design 

pertinent data features that can be extracted from raw data.15 In contrast, deep learning methods 

have yielded state-of-the-art results in a wide range of computer vision, speech recognition, and 

natural language processing tasks without the need for hand-crafted features.15–17  

Advances in technology have been spurred by large scale competitions such as ImageNet, 

which have brought about innovations in training and structure of these artificial intelligence 

(AI) algorithms.16 At the core of deep learning are convolutional neural networks (CNNs); a 

machine learning technique that can be trained on raw data to predict the outputs of interest via a 

supervised approach. This is achieved through many layers of non-linear transforms that are 

capable of learning complex patterns with a high level of abstraction.4 The abstractions can 

represent low-level features such as edges to high-level motifs such as the ear of a cat. With the 

advent of more powerful graphics processing units (GPUs) that allow for training of large-scale 

neural network architectures, deep learning has become the method of choice for automating 

tasks from images, speech, and text. 
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2.2 The promise for healthcare applications 

 The promise of deep learning has spread like a wave across numerous domains with 

many of them converging within medicine.18   

 

Figure 2-1. Trend of publications on PubMed that contain keyword “Deep Learning”.19 

 

The timing could not be better as we are simultaneously in the era of big data. In the 

medical context, we are collecting ever-increasing quantities of data, in many forms including 

medical imaging, physiological measures, genomic sequencing, sensor data, electronic health 

records.18,20–25 Conventional approaches to medical data often require domain-expertise from 

clinicians and medical researchers, which is then followed by formulation of biological, 

pathological, physiological, and/or anatomical features.26–33 This approach is limited in many 

aspects because it is 1) time-consuming and challenging (as it is not always easy to engineer 

useful data features), 2) not scalable as there are numerous features to model, especially when 

trying to integrate of multi-faceted data (such as electronic health record, sequencing, imaging, 

sensor data), and 3) limited if the domain-knowledge is not yet known (such as determining sex 

or anemia from retinal fundus photographs34,35). 
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To scale into the future of medical data analysis, a less hand-crafted approach becomes a 

necessity, that is deep learning. However, in isolation, deep learning and big data cannot do 

much. Together, they yield a powerful combination. Recent studies have shown the potential of 

deep learning in medical fields such as dermatology, ophthalmology, and radiology for key 

clinical assessments, such as diagnosis, prognosis, longitudinal change detection, response to 

treatment, and future disease progression.36–47 Even before the data reaches clinical personnel, 

deep learning has shown potential for image reconstruction, data quality assessment, and motion 

detection.48–50 Integrated in the data workflow, the clinic, or at the bedside, these models have 

the potential to aid with clinical decision-making, improving efficiency, accuracy, and reliability 

of patient care. 

 

2.3 The clinician as an information specialist 

The modern clinician wears two hats: one as a healthcare provider who takes a holistic, 

humanistic approach to care. The other as an information specialist, integrating clinical context 

and results from diagnostic imaging as well as testing to make informed clinical decisions. Due 

to the complexity of the latter task, there are many pitfalls to have a human perform this task: 

namely it is time-consuming, expensive, subject to variability, and prone to human error. 

Elaborating further, it can be incredibly time-consuming to interpret diagnostic tests, adding 

expenses to already ballooning healthcare costs. A complex CT scan can take up to an hour to 

read.51 This is further compounded by the increased utilization of medical imaging as well and 

improved technology (such as higher resolution images), further increasing workload.20 The time 

spent interpreting diagnostic tests is expensive, both monetarily and for certain medical 

specialties at the opportunity cost of spending more time with the patient. Additionally, 
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interpretation by humans can be highly variable. Despite attempts at objective guidelines for 

assessing disease, each physician’s interpretation is different, which may have profound impacts 

on downstream decision-making.52–54 Lastly, a hallmark of being human is to err. As medical 

decision making is in many regards, a manual task, it is also prone to human error. The question 

that much of the research in healthcare AI tries to address is whether deep learning algorithms 

can alleviate these pitfalls. While some have touted that machines will replace humans, that in 

my opinion, is much further down the line and is not even the goal of such technologies. Rather, 

these algorithms can bring much more value in the immediate term as a support system, 

augmenting human intelligence and capabilities. It has been yet to be shown that the sum of 

humans and machines is greater than either alone. 

 

 

Figure 2-2 The modern clinician (for example radiologist shown here) is an information 

specialist. Whether AI algorithms can augment the clinician remains an open question. 
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2.4 The pitfalls of radiomics and other handcrafted features 

 Clinicians have long noticed a relationship between imaging features and genomics, 

prognosis, and treatment response. The term “radiomics” describes the technique of calculating 

various imaging features that describe shape, intensity, and texture, among many other 

characteristics.55 Combined with traditional machine learning techniques (such as random 

forest), radiomics has been successful in segmentation as well as predicting various measures 

such as genomics, likelihood of metastasis, drug response, and prognosis.56–60 However, 

radiomics has the limitation of relying on the computation of a selection of manually formulated 

or “handcrafted” features, which may not capture the full range of the information contained 

within imaging. 

 In addition, there are many challenges to the reproducibility of radiomics. While there are 

explicit mathematical definitions of radiomic features, differences in implementations across 

software packages can result in significantly different feature values.61,62 In addition, how the 

radiomics package treats the boundary of the region of interest (whether through masking, 

omitting boundary pixels, or dilation), performs normalization of texture features, handles 3D 

images (as either a single 3D volume or a stack of 2D images), and quantizes pixel values can 

have downstream effects.63 There is also variability among users in how they perform the 

segmentation (manual vs automatic) and how they pre-process the images (choice of resampling 

and interpolation).63 The scanner model, acquisition parameters, and reconstruction kernel can 

also have an effect.64–66 Taken together, many studies have show that radiomic features (and their 

resulting predictive models) are difficult to reproduce.61,64,65,67–69 Radiomic signatures also have a 

number of vulnerabilities, mostly notably the lack of sensitivity to voxel randomization.70 While 

a deep learning model trained on diverse training data may not mitigate all of these challenges, it 
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does represent a less engineered approach and the next generation of automated methods. Indeed, 

a recent study found that deep learning outperformed radiomics for classification of contrast-

enhancing lesions on multiparametric breast MR.71 Similarly, deep learning approaches 

performed significantly better than texture feature-based approaches in the CAMELYON 

challenge for detecting lymph node metastases in women with breast cancer on pathology 

slides.72 

 

2.5 The challenge of developing robust deep learning models  

While the promise of clinical deep learning models is high, there are numerous obstacles 

to training effective deep learning models. First, there is a need for enormous quantities of 

annotated training data, especially for diseases with subtle or diverse phenotypes. The data 

requirement is also increased when the individual patient data are noisy or incomplete. While the 

vast majority of medical diseases have no publicly available datasets, the few of those that do are 

either limited in quantity (varying from few hundreds to hundreds of thousands) or are 

incompatible for transfer learning on a different medical problems.73,74 Comparatively, most of 

the state-of-the-art neural network architectures have millions of parameters and have been 

trained on benchmark datasets such as ImageNet which have millions of annotated images.16 In 

such a scenario, where publicly available dataset is scarce for a given medical problem, 

algorithm developers have to rely on their own institutional datasets. However, for rare diseases 

or when studying the effect of different modes of treatment that may be hospital specific, it may 

be impossible to acquire sufficient quantities of training data at a single institution or the trained 

model might not be generic enough to perform well on outside institution datasets.75 

Furthermore, deep learning algorithms are prone to overfitting and brittle when evaluated on 
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external data. As such, training data needs to be diverse, ideally from varying acquisition settings 

and patient populations. Unfortunately, data from a single institution are often limited in quantity 

and heterogeneity, rendering the data insufficient for training deep learning algorithms. In such 

cases, multi-institutional patient cohorts are the only avenue towards training an effective deep 

learning model. 

One approach to multi-institutional studies is to build a large central repository, but this is 

hindered by concerns about data sharing, specifically patient privacy, data de-identification, 

regulation, intellectual property, data storage. Firstly, protecting patient privacy is of upmost 

importance in the increasingly digital world as the release of sensitive patient information would 

be harmful. Recently studies have shown that the barrier to re-identification is quite low, 

requiring just a few clinical variables or a single scan, emphasizing the importance of privacy 

preservation.76,77 Second, it is difficult to ensure rigorous patient de-identification and there is the 

potential of accidental data leakage. Also, data is a valuable resource and many hospitals prefer 

not to publicly share data to protect their own institutional interests. Lastly, patient data is 

growing in size with the increasing resolution and number of imaging modalities. As such, it 

would be cumbersome to commission the substantial data storage required to centrally host data. 

These challenges have made centrally hosting data both expensive and impractical. An 

alternative approach is to have the data be locally hosted and have the model be trained in a 

distributed fashion. Comparatively, the model is much smaller than patient data so the 

communication overhead is drastically reduced. In a recent study, we showed that 

distributed/federated approaches can achieve centrally hosted performance without sharing 

patient data 5. Under this paradigm, each institution will install a software application that links 

the different institutions together, allowing for collaboration and distribution computation. The 
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result is a model that performs as well as if the data had been shared, while still preserving 

patient privacy and protecting institutional interests. In addition, the reduced requirements for 

storage and de-identification means reduced cost of collaboration and increased incentive for 

participation in multi-institutional studies. 

One critical hurdle that prevents the deployment of deep learning models in the clinical 

work environment is their relatively poor generalizability across institutional differences, such as 

patient demographics, disease prevalence, scanners, and acquisition settings. A variety of recent 

deep learning studies that have shown poor generalizability of deep learning models when 

applied to data from different institutions than the one they were trained on 78,79. The optimal 

method of distributing the process of training deep learning models across heterogenous 

institutions has not yet been studied. 

 

2.6 Understanding design and limitations of deep learning models 

Despite significant research into the applications of AI, there is currently limited use of 

AI in clinical care. Key to the success of these algorithms are two components: 1) clinical 

professionals who can drive direction, validation, and translation, and 2) data scientists who can 

design, train, and deploy such algorithms. Unfortunately, such synergy is only accessible within 

certain academic institutions. To date, physicians, who have the requisite domain expertise to 

make AI relevant for clinical use, have not been able to widely participate in AI development 

because of limited access to AI computational solutions and education resources. On the other 

hand, data scientists who are not working closely with radiology professionals are building 

algorithms that are accurate yet clinically irrelevant or not useful. 
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Even once the model is trained, there are many foregoing challenges. First, end-users for 

these models, such as radiologists and pathologists, may not fully understand how these models 

were trained. Critically, this may lead to a general misunderstanding for why and when a model 

will fail. Furthermore, models need to be rigorously validated to ensure that they are not biased 

to the technical imaging specifications and patient population of the training data. In fact, only 

6% of AI studies report external validation.80 

 

2.7 Automated tools are needed for glioma 

 Gliomas are common infiltrative neoplasms of the central nervous system that affect 

patients of all ages, with variable growth rates and prognosis.81,82 They are subdivided into four 

World Health Organization (WHO) grades (I-IV), based on the degree of differentiation, 

anaplasia, and aggressiveness.83 WHO grades I and II are referred to as “low-grade” while WHO 

grades III and IV are considered “high-grade”. WHO grade I gliomas are considered the least 

malignant, while WHO grade II tumors (diffuse astrocytomas, oligodendrogliomas, and 

oligoastrocytomas) are more differentiated, and invariably progress to high grade.84 WHO grades 

III (anaplastic astrocytomas, oligodendrogliomas, and oligoastrocytomas) and IV (glioblastoma 

and its variants) tumors are the most malignant, with a tendency to infiltrate into the surrounding 

brain parenchyma. 

Glioblastoma (GBM) is the most common malignant primary adult brain tumor with five-

year survival rates are less than 10%.85,86 Despite active research in the treatment of GBM, the 

improvement of patient outcomes has lagged behind other types of cancers (Fig. 4-3).87 The 

current standard of care is maximal safe surgical resection, chemoradiation, and adjuvant 

temozolomide. Within the natural history of GBM, there is inevitable recurrence of tumor, 
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leading to patient death. There is currently no consensus on therapy for recurrent tumor as none 

have been proven to provide substantial survival benefit.88 The current treatment strategy for 

GBM is suboptimal because clinicians do not have a reliable method of assessing tumor 

treatment response. An automatic tool that can longitudinally assess tumor volumes and genetic 

characteristics of the tumor would substantially improve evaluation of treatment efficacy, 

allowing for an earlier switch to alternative treatment strategies and thus, more personalized 

tailoring of patient care. To our knowledge, such a predictive tool for clinicians currently does 

not exist.  

 

 

Figure 2-3. Median survival of colon cancer, all cancers, and glioblastoma over the last 4 

decades. 

 

The current clinical standard to measure tumor treatment response is based on the 2010 

Response Assessment in Neuro-Oncology (RANO) criteria, which uses the product of maximal 

cross-sectional tumor diameters within T1 gadolinium post-contrast as measures of tumor 

burden.89 However, the RANO criteria have several weaknesses: 1) It is manual and thus, time-
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consuming, 2) It is a two-dimensional measure (and thus, only a surrogate measure of tumor 

volume) 3) It is subject to inter- and intra-rater variability, and 4) It is sensitive to head position 

during imaging.90–93 For these reasons, there has been high interest in developing a reproducible 

and accurate method for assessing tumor volumes. While manual volumetric segmentation of 

tumors is possible, it is difficult if the tumor is diffuse or demonstrates poor gadolinium contrast 

enhancement. Furthermore, the radiographic appearance of glioblastoma is quite heterogeneous, 

which makes delineation of boundaries challenging for even the most experienced 

neuroradiologists. As a result, manual segmentation is labor-intensive task and subject to 

variability, resulting in low reproducibility.94,95 As such, there have been some automatic, deep 

learning methods proposed to automatically segment tumors pre-operatively.96,97 There are 

currently no methods to that have been successfully validated for longitudinal segmentation of 

post-operative tumors and measurement of tumor burden.98,99 Post-operative tumors are 

particularly challenging due to the presence of a resection cavity as well as blood products 

resulting from surgery. Because surgical resection is the standard of care for GBM, a tool for 

automatic segmentation in the post-operative setting is critically needed to allow for evaluation 

of treatment response. 

In addition to assessing changes in tumor burden, evaluation of the underlying genetic 

characteristics of the tumor is needed to understand treatment efficacy. The most important 

molecular marker of gliomas is the presence of isocitrate dehydrogenase (IDH) mutations. In 

2008, the presence of IDH1 mutations, specifically involving the amino acid arginine at position 

132, was demonstrated in in 12% of glioblastomas,100 with subsequent reports observing IDH1 

mutations in 50-80% of LGGs.101 In the wild-type form, the IDH gene product converts isocitrate 

into α-ketoglutarate 102. When IDH is mutated, the conversion of isocitrate is instead driven to 2-
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hydroxyglutarate, which inhibits downstream histone demethylases.103 The presence of an IDH 

mutation carries important diagnostic and prognostic value. Gliomas with the IDH1 mutation (or 

its homolog IDH2) carry a significantly increased overall survival than IDH1/2 wild-type 

tumors, independent of histological grade.100,104–106 Conversely, most lower grade gliomas with 

wild type IDH were molecularly and clinically similar to glioblastoma with equally dismal 

survival outcomes.83 IDH wild-type grade III gliomas may in fact exhibit a worse prognosis than 

IDH mutant grade IV gliomas.104 Its critical role in determining prognosis was emphasized with 

the inclusion of IDH mutation status as a classification parameter used in the 2016 update of 

WHO diagnostic criteria for gliomas.107 Pre-treatment identification of IDH status can help guide 

clinical decision making. First, a priori knowledge of IDH1 status with radiographic suspicion of 

a low-grade glioma may favor early intervention as opposed to observation as a management 

option. Second, IDH mutant gliomas are driven by specific epigenetic alterations, making them 

susceptible to therapeutic interventions (such as temozolomide) that are less effective against 

IDH wild-type tumors.108,109 This is supported by in vitro experiments, which have found IDH-

mutated cancer cells to have increased radio- and chemo-sensitivity.110–112 Lastly, resection of 

non-enhancing tumor volume, beyond gross total removal of the enhancing tumor volume, was 

associated with a survival benefit in IDH1 mutant grade III-IV gliomas but not in IDH1 wild-

type high-grade gliomas 113. Thus, early determination of IDH status may guide surgical 

treatment plans, peri-operative counseling, and the choice of adjuvant management plans. 

 

2.8 Automated tools are needed for ischemic stroke 

Cerebrovascular disease is the third leading cause of death around the world after heart 

disease and cancer.13,14 The most common clinical manifestation of cerebrovascular disease is an 
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acute stroke, 87% of which are of an ischemic nature.14 Symptoms often include focal 

neurological deficit, which can develop into chronic disease and disability. In fact, stroke is the 

leading cause of long-term disability worldwide in adults.114 In the United States, the estimated 

direct and indirect costs of stroke is $68.9 billion.115 Brain imaging is a key step in the clinical 

evaluation of ischemic stroke, with Computed Tomography (CT) and Diffusion Weighted 

Magnetic Resonance (DWI) being the key imaging modalities. While CT is more widely used 

due to its lower cost and acquisition time, DWI provides the advantage of being more 

sensitive.116 Rapid and accurate evaluation is needed as intravenous thrombolysis should be 

performed within 4.5 hours of stroke onset.117 

Important decisions in stroke management currently rely on accurate delineation of 

regions of acute ischemic brain injury. However, manual delineation of stroke regions is 

expensive, time-consuming, and subject to inter-rater variability.  Furthermore, segmentation is a 

highly difficult task as there can be variability in size and location as well as ill-defined 

boundaries. As such, there has been efforts to develop automatic methods of performing lesion 

segmentation. Existing methods are limited in that they either require additional imaging 

modalities (such as T1-weighted, T2-weighted, and fluid attenuation inversion recovery, FLAIR) 

or they are semi-automatic and thus require manual input.118–120 Recently, Chen et al. developed 

a fully automatic method using convolutional neural networks with the limitation that their 

approach only utilizes 2 dimensional information.121 

Furthermore, there is a need to identify novel imaging subtypes that are predictive of 

stroke recovery. There are several distinct clinical sequelae of ischemic stroke, specifically 

patients with hyperglycemia, elevated troponin, prolonged QT, pneumonia, and urinary tract 

infections, which we hypothesize to be associated with different clinical subtypes. Two-thirds of 
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stroke patients experience hyperglycemia, which is associated with adverse tissue outcomes.122 

Cardiac mortality accounts for 20% of stoke deaths.123 Pneumonia and urinary tract infections 

occur in 7%- 22% and 3-40% of stroke patients, respectively.124,125 The association between 

these clinical sequelae and anatomical imaging has been largely unexplored and has the potential 

to elucidate the biological mechanisms behind the clinical presentation of stroke. Using these 

imaging associations along with clinical covariates could be used to develop a useful tool to 

predict stroke recovery. Prediction of stroke recovery is pertinent as beta-blockers therapy has 

been shown to reduce mortality.126 Furthermore, identification of patients of patients with poor 

predicted recovery can stratify patients who would benefit from supplemental treatment and 

management. 
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3 Distributed training of neural networks as an alternative to sharing patient 

data 

3.1 Introduction 

With the advent of powerful graphics processing units, deep learning has brought about 

major breakthroughs in tasks such as image classification, speech recognition, and natural 

language processing.1–3 Due to the proficiency of neural networks at pattern recognition tasks, 

deep learning has created practical solutions to the challenging problem of automated support for 

clinical diagnosis. Recent studies have shown the potential of deep learning in detecting diabetic 

retinopathy, classifying dermatological lesions, predicting mutations in glioma, and assessing 

medical records.12,40,127,128 Deep learning models take raw data as input and apply many layers of 

transformations to calculate a classification label of interest. The high dimensionality of these 

transformations allows these algorithms to learn complex patterns with a high level of 

abstraction.4 

A requirement for the application of deep learning within the medical domain is a large 

quantity of training data, especially when the difference between imaging phenotypes is subtle or 

if there is large heterogeneity within the population. However, patient sample sizes are often 

small, especially for rarer diseases.129 Small sample sizes may result in a neural network model 

with low generalizability.  

A possible solution to the foregoing challenges is to perform a multicenter study, which 

can significantly increase the sample size as well as sample diversity. Ideally, patient data is 

shared to a central location where the algorithm can then be trained on all the patient data. 

However, there are challenges to this approach. First, if the patient data takes up a large amount 

of storage space (such as very high-resolution images), it may be cumbersome to share these 
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data. Second, patient data is valuable, so institutions might simply prefer not to share data.130 

Third, there are often legal or ethical barriers to sharing patient data, making dispersal of some or 

all of the data not possible.129 

In such cases, instead of sharing patient data directly, distributing the trained deep 

learning model may be a more appealing alternative. The model itself has much lower storage 

requirements than the patient data and does not contain any individually-identifiable patient 

information. Thus, distribution of deep learning models across institutions can overcome the 

limitations of distributing the patient data. However, the optimal method of performing such a 

task has not yet, to our knowledge, been studied. 

One critical hurdle that prevents the deployment of deep learning models in the clinical 

work environment is their relatively poor generalizability across institutional differences, such as 

patient demographics, disease prevalence, scanners, and acquisition settings. A variety of recent 

deep learning studies that have shown poor generalizability of deep learning models when 

applied to data from different institutions than the one they were trained on.78,79 Furthermore, the 

optimal method of distributing the process of training medical deep learning models across 

heterogenous institutions has not yet been adequately studied. Indeed, much of the medical deep 

learning studies have been on independent and identically distributed (IID) data.5,131 In this 

scenario, the institutions have no intra-institution correlation and the data across institutions is 

identically distributed.132 More work needs to be done on dealing with dataset skew (non-IID 

data) across institutions, specifically when there is: 1) quantity skew (e.g. a large academic 

hospital has significantly more data than a small community hospital), 2) feature distribution 

skew (e.g. one hospital uses one scanner vendor while another hospital uses a different scanner 

vendor), 3) label distribution skew (e.g. obesity is much more prevalent in North American than 
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in Asia), 4) concept shift – same label, different features (e.g.  eczema looks different on light vs 

dark skin), and 5) concept shift- same features, different labels (e.g. physicians in North America 

may be more conservative in calling a certain disease than physicians in Asia due to higher rates 

of litigation for unnecessary treatment).132,133 In a real case scenario, the data across institutions 

will contain a mixture of skew types, which makes the problem even more challenging (Fig. 3-

1).  

 

Figure 3-1. Various types of heterogeneity can exist in real patient data, such as (A) imbalanced 

labels or patient characteristics (label distribution skew or concept shift), (B) data size 

heterogeneity (quantity skew), and (C) differences in data acquisition (feature distribution skew) 

 

 In this section, we simulate the distribution of deep learning models across institutions 

using various heuristics. We compare the results with a deep learning model trained on centrally 

hosted patient data. We demonstrate these simulations on 3 datasets: retinal fundus photos, 

mammography, and ImageNet. We aim to assess 1) the performance of distributing deep 

learning models compared to sharing patient data, 2) whether the performance distributing deep 

learning models is compromised when variability is introduced to an institution, and 3) if 
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distributing deep learning models can achieve high performance on a large scale (that is, when 

there are many institutions). 

 

3.2 Methods 

3.2.1 Preprocessing (initial image collection) 

We obtained 35,126 color digital retinal fundus (interior surface of the eye) photos from 

the Kaggle Diabetic Retinopathy competition134. Each image was rated for disease severity by a 

licensed clinician on a scale of 0-4 (absent, mild, moderate, severe, and proliferative retinopathy, 

respectively). The images came from 17,563 patients of multiple primary care sites throughout 

California and elsewhere. The acquisition conditions were varied, with a range of camera 

models, levels of focus, and exposures. In addition, the resolutions ranged from 433x289 pixels 

to 5184x3456 pixels135. The images were pre-processed via the method detailed in the 

competition report by the winner, Ben Graham136. To summarize his method, the OpenCV 

python package was used to rescale images to a radius of 300, followed by local color averaging 

and image clipping. The images were then resized to 256x256 to reduce the memory 

requirements for training the neural network. To simplify training of the network, the labels were 

binarized to Healthy (scale 0) and Diseased (scale 2, 3, or 4). Furthermore, mild diabetic 

retinopathy images (scale 1, n = 2443 images), which represent a middle ground between 

Healthy and Diseased, were not used for our experiments. It is also known that there is a 

correlation between the disease status of the left eye and the status of the right eye. To remove 

this as a confounding factor in our study, only images from left eye were utilized.  
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3.2.2 Convolutional neural network 

We utilized the 34-layer residual network (ResNet34) architecture (Fig. 3-2A)137. Our 

implementation was based on the Keras package with Theano backend. 138,139 The convolutional 

neural networks were run on a NVIDIA Tesla P100 GPU. During training, the probability of 

samples belonging to Healthy or Diseased class was computed with a sigmoid classifier. The 

weights of the network were optimized via a stochastic gradient descent algorithm with a mini-

batch size of 32. The objective function used was binary cross-entropy. The learning rate was set 

to .0005 and momentum coefficient of .9. The learning rate was multiplied by .25 when the same 

training images were used to train the neural network 20 times with no improvement of the 

validation loss. The learning rate was decayed a total of 3 times (Training Phases A-D, Fig 3-

2C). Biases were initialized using the Glorot uniform initializer.140 To prevent overfitting and to 

improve learning, we augmented the data in real-time by introducing random rotations (0-360 

degrees) and flips (50% change of horizontal or vertical) of the images at every epoch. The final 

model was evaluated by calculating the accuracy on the unseen testing cohort. 
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Figure 3-2. (A) ResNet-34 architecture was utilized for the Diabetic Retinopathy dataset. (B) The 

dataset was randomly divided into 4 institutions along with a validation and testing set. (C) The 

learning rate was decayed to .25 of its value when the same input samples are inputted into the 

network 20 times at a given learning rate without an improvement of the validation loss.5 

 

3.2.3 Model training heuristics with 4 institutions 

The dataset was randomly sampled, with equal class distributions, into 4 “institutions”, 

each institution having n = 1500 patients. In addition, the dataset was sampled to create a single 

validation cohort (n = 3000 patients) and a single testing (n = 3000 patients) cohort, again with 

equal class probabilities (Fig. 3-2B). Sampling was without replacement such that there are no 

overlapping patients in any of the cohorts. The image intensity was normalized within each 
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channel across all patients within each cohort. Because model performance plateaus as the 

number of training patient samples increases, the number of patients per institution was limited 

to 1500 to prevent saturation of learning for models trained in single institutions. 

We tested several different training heuristics (Fig. 3-3) and compared the results. The first 

heuristic is training a neural network for each institution individually, assuming there is no 

collaboration between the institutions. The second heuristic is collaboration through pooling of 

all patient data into a shared dataset (centrally hosted data, Fig. 3-3A). The third heuristic was 

averaging the output of the four models trained on the institutions individually (ensemble single 

institution models, Fig. 3-3B). For n participating institutions, I1, I2, …, and In, the output, O, 

would be: 𝑂 =  
1

𝑛
∑ 𝑂𝑖

𝑛
𝑖=1 . Ensembling is typically used to gain some performance over a single 

model due to the stochastic nature of these models.141 The fourth heuristic was training a model 

at a single institution until plateau of validation loss and then transferring the model to the next 

institution (single weight transfer, Fig. 3-3C). Under the single weight transfer training heuristic, 

the model is transferred to each institution exactly once. This is akin to transfer learning, 

whereby a model is trained on one dataset and the fine-tuned on another.142 The last heuristic 

was training a model at each institution for a predetermined number of epochs (weight transfer 

frequency) before transferring the model to the next institution (cyclical weight transfer, Fig. 3-

3D). The idea of cyclical weight transfer is that the model sees all the data till convergence 

similar to when the model is trained on centrally located data. Under the cyclical weight transfer 

training heuristic, the model is transferred to each institution more than once. The frequencies of 

weight transfer we studied were every 20 epochs, 10 epochs, 5 epochs, 4 epochs, 2 epochs, and 

every epoch. 
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Figure 3-3. Model training heuristics investigated include (A) centrally hosted, (B) ensemble 

single institution models, (C) single weight transfer, and (D) cyclical weight transfer.5 

 

3.2.4 Cyclical weight transfer with 20 institutions 

We next addressed whether cyclical weight transfer can improve model performance 

when the performance of any individual institution is no better than random classification. This 

simulates a scenario where data at any individual institution is sparse such as in a community 

hospital or for a rare disease. To do this, we divided 6000 patient samples from the Kaggle 

Diabetic Retinopathy dataset into 20 institutions (n = 300 per institution) with equal class 

distributions. As with our previous experiments, we also sampled a single validation cohort (n = 

3000 patient samples) and a single testing cohort (n = 3000 patient samples) with equal class 
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probabilities. We then performed experiments with different numbers of collaborating 

institutions, starting with 1 and increasing to all 20 institutions. We utilized the cyclical weight 

transfer training heuristic with a weight transfer frequency of 1 epoch. We evaluated model 

performance via testing cohort accuracy. We compared testing accuracies with that of random 

classification and with the testing accuracy of a model trained with all 6000 patient samples 

centrally hosted. 

 

3.2.5 Introduction of an institution with variability 

In our initial division of the different institutions, we assumed that each institution had 

the same number of patients, ratio of healthy to diseased patients, and image quality. However, 

in a real scenario, there will likely be variability within institutions that may compromise the 

predictive performance of the model. These modes of variability include differences in patient 

demographics, disease prevalence, and image acquisition settings (image resolution, detector 

sensitivity, heterogeneity in spatial sensitivity, data post-processing, and modality specific 

parameters such as field strength, echo time, and repetition time for MR). 

To simulate this possibility, we introduced variability into one of the 4 institutions and 

assessed the performance of the different training heuristics. We simulated two scenarios: In the 

first, we decreased the resolution of the images by a factor of 16. In the second, we significantly 

decreased the number of patients (from n = 1500 to n = 150) and introduced class imbalance 

(ratio of healthy to diseased was 9:1). We assessed the performance of centrally hosted data, 

ensembling single institution models, single weight transfer, and cyclical weight transfer with 

weight transfer at every epoch. For single weight transfer, we experimented with ordering of the 

institutions, specifically whether the variable institution was Institution 1, 2, 3, or 4. For cyclical 
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weight transfer, we assessed the performance of not skipping vs skipping the variable institution 

entirely. A summary of all experiments performed with the Kaggle Retinopathy Dataset is 

summarized in Table 3-1. 

 

Experiment Summary 

Model Training Heuristics 
with 4 Institutions 

In this experiment, there are 4 equivalent institutions. We evaluate 
the performance of model ensembling, single weight transfer, and 
cyclical weight transfer compared to centrally hosted patient data. 

Cyclical Weight Transfer 
with 20 Institutions 

In this experiment, there are 20 institutions. The number of patients 
at each institution is such that a model trained on patients from a 

single institution is no better than random classification. We 
evaluate the performance of cyclical weight transfer as the number 

of collaborating institutions increase from 1 to all 20. 

Introduction of an 
Institution with Variability 

In this experiment, there are 4 institutions but one of the institutions 
has a mode of variability introduced (either low-resolution images or 

a low number of patients with class imbalance). We evaluate the 
effectiveness of model ensembling, single weight transfer, and 

cyclical weight transfer compared to centrally hosted patient data. 

Table 3-1. A summary of all experiments performed with the Kaggle Retinopathy Dataset. 

 

3.2.6 Repetition of experiment in a second image collection 

To demonstrate the reproducibility of our results, we repeated our experiment on model 

training heuristics with 4 institutions on the Curated Breast Imaging Subset of the Digital 

Database for Screening Mammography (DDSM) dataset, an open source labeled dataset of 

mammograms143.  For each patient, the dataset includes cranial-caudal and/or mediolateral-

oblique views of the right and/or left breast, and each image is labeled as benign or malignant. 

For our experiments, we use a subset of 1508 grayscale images from 800 patients that had a mass 

in the breast. Along with each image, a binary segmentation mask for the mass was available. Of 

the 1508 images, 722 were labeled malignant and 786 were labeled benign, so a majority 

classifier would have 52.1% accuracy. We randomly selected 140 patients for each of the 4 
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“institutions”, 120 patients for the validation cohort, and 120 patients for the testing cohort. This 

resulted in 257 images in Institution 1, 266 images in Institution 2, 257 images in Institution 3, 

and 270 images in Institution 4 (total of 1050 training images), 229 images in the validation set, 

and 229 images in the testing set. For the same patient, the different images, including different 

views of the same breast, could have different labels. Thus, we treated each image separately, but 

did not allow images from the same patient to be divided across different institutions, or across 

the training and testing/validation cohorts (as in our experiments with the Kaggle Diabetic 

Retinopathy dataset). 

The grayscale image pixels were scaled between 0 and 1, and the mask pixels were either 

0 or 1. Each image was cropped into 256x256 pixel resolution such that the region of interest as 

indicated by the binary mask was centered in the largest possible bounding box. Each cropped 

grayscale image along with its corresponding cropped binary mask were combined to produce a 

2-channel 256x256 image. The images were normalized by subtracting the maximum pixel 

intensity and zero-centered by subtracting the mean pixel intensity. These normalized 2x256x256 

images were input into a neural network. For this dataset, we used a 22-layer GoogLeNet with 

batch normalization after each convolutional layer, batch size of 32, and dropout of 0.5 before 

the final readout layer.144 We used Adam optimizer with initial learning rate of 0.001 and 

learning rate decay of 0.99 every epoch (every 4 epochs in the weight transfer experiments) to 

optimize the model. 145 Cross entropy with L2 regularization coefficient of 0.0001 was used as 

the loss function. Model learning is terminated when there were 80 epochs of no improvement in 

validation loss (320 epochs in the weight transfer experiments). For the single weight transfer 

experiment, weights were transferred to the next institution each time there were 20 epochs of no 

improvement in validation loss, and learning was terminated when there were 20 epochs having 
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no improvement in validation loss at the final institution.  For ensembling, the output 

probabilities from the models trained at each of the 4 institutions were averaged to produce final 

class predictions. During training, the data were augmented by introducing random rotations (0-

360 degrees) and flips (50% change of horizontal or vertical) to the images at every epoch.  

 

3.2.7 Repetition of experiment in a non-medical image collection 

We further demonstrate the reproducibility of our results by repeating our experiment on 

model training heuristics with 4 institutions on the ImageNet dataset16. We utilized the ImageNet 

2012 classification dataset, which contains 1.28 million training images and 1000 classes. To 

decrease the time of training, we utilized a subset of the training images for our experiments. We 

randomly selected 20 classes of the 1000 to work with. We randomly allocated 75 images of 

each class to each “institution” and 150 images of each class to the validation and testing cohort. 

In total, each of the 4 institutions had 1500 images and both the validation and testing cohorts 

had 3000 images. For pre-processing, we resized each image to 224x224 and subtracted by the 

per channel mean of the entire ImageNet dataset. As with the experiments with the Kaggle 

Diabetic Retinopathy dataset, we utilized the 34-layer residual network architecture. The 

learning rate was set to .0001 and momentum coefficient was set to .9. The learning rate was 

decayed to .25 of its value when the same samples were inputted into the network 20 times at a 

given learning rate with no improvement of the validation loss. To prevent overfitting and 

improve learning, we augmented the data by introducing random rotations (0-360 degrees), flips 

(50% change of horizontal or vertical), zooming (from -20% to +20%), and shearing (0 to .2 

radians) at every epoch. We evaluated our models by assessing both the top-1 and top-5 

accuracies. Top-1 accuracy is calculated by comparing the ground truth label with the top 
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predicted class. Top-5 accuracy is calculated by comparing the ground truth label with the top 5 

predicted classes. 

 

3.3 Results 

3.3.1 Retinal fundus dataset - single institution training 

The models trained on single institutions had poor performance (Fig. 3-4A-D) due to 

dataset size limitations. The average testing accuracies for the single institution models was 

56.3% (Table 3-2). The highest testing accuracy for a network trained on a single institution was 

59.0%. 
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Figure 3-4. Performance of a neural network when trained on (A) Institution 1, (B) Institution 2, 

(C) Institution 3, and (D) Institution 4 for the Diabetic Retinopathy dataset. The training and 

validation accuracies for a model trained the centrally hosted training and single weight transfer 

training heuristics are shown in (E) and (F), respectively.5 

 

Diabetic Retinopathy 
Training Accuracy 

(n = 1500, %) 

Validation Accuracy 

(n = 3000, %) 

Testing Accuracy 

(n = 3000, %) 

Institution 1 68.1 59.6 59.0 

Institution 2 66.8 54.9 53.8 

Institution 3 64.3 53.3 54.3 

Institution 4 69.5 58.8 58.2 

DDSM 
Training Accuracy 

(n = 257-270, %) 

Validation Accuracy 

(n = 229, %) 

Testing Accuracy 

(n = 229, %) 

Institution 1 59.1 55.5 55.0 

Institution 2 56.1 57.2 52.8 

Institution 3 59.0 52.8 60.3 

Institution 4 61.6 56.3 54.6 

ImageNet 
Training Accuracy 

(n = 1500, %) 

Validation Accuracy 

(n = 3000, %) 

Testing Accuracy 

(n = 3000, %) 

 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 

Institution 1 62.1 93.5 30.4 71.4 31.0 71.2 

Institution 2 66.1 95.0 31.1 70.0 32.4 71.5 

Institution 3 64.5 94.3 31.5 71.3 32.4 71.1 

Institution 4 66.8 94.5 31.6 70.8 32.1 71.6 

Table 3-2. Training, validation, and testing accuracy of the neural network when trained on 

single institutions for the Diabetic Retinopathy, DDSM, and ImageNet datasets. 
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3.3.2 Centrally hosted training 

When patient data from all institutions were pooled together, the collective size of the 

dataset was 6000. A network trained on the combined dataset had a high performance with a 

testing accuracy of 78.7% (Table 3-3). 

 

Diabetic Retinopathy 
Training Accuracy 

(n = 6000, %) 

Validation 

Accuracy 

(n = 3000, %) 

Testing Accuracy 

(n = 3000, %) 

Centrally Hosted 89.4 78.6 78.7 

Ensemble Models 63.2 60.9 60.0 

Single Weight Transfer 70.4 68.3 68.1 

DDSM 
Training Accuracy 

(n = 1050, %) 

Validation 

Accuracy 

(n = 229, %) 

Testing Accuracy 

(n = 229, %) 

Centrally Hosted 77.0 71.6 70.7 

Ensemble Models 63.7 56.3 61.1 

Single Weight Transfer 61.3 ± 0.9 61.2 ± 0.8 61.1 ± 1.8 

ImageNet 
Training Accuracy 

(n = 6000, %) 

Validation 

Accuracy 

(n = 3000, %) 

Testing Accuracy 

(n = 3000, %) 

 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 

Centrally Hosted 82.9 98.4 49.5 83.4 48.9 83.8 

Ensemble Models 50.2 88.6 37.0 76.5 38.6 77.0 

Single Weight Transfer 45.5 84.5 36.0 76.2 37.9 75.5 

Table 3-3. Training, validation, and testing accuracy of centrally hosted training, ensembling 

single institution model outputs, and single weight transfer for for Diabetic Retinopathy, DDSM, 

and ImageNet datasets. 
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3.3.3. Ensembling single institution models 

Averaging the sigmoid probability of the single institution models resulted in a testing 

accuracy of 60.0% (Table 3-3). Notably, the ensembled model outperformed any network trained 

on a single institution in terms of validation and testing accuracy. 

 

3.3.4 Single weight transfer 

Using single weight transfer heuristic, the model was trained at each institution until the 

plateau of validation loss was reached, followed by transferring of the model to the next 

institution. The resulting model had a testing accuracy of 68.1% (Table 3-3). 

 

3.3.5 Cyclical weight transfer 

In our initial experiment, we trained the network for 20 epochs at each institution before 

transferring the weights to the next institution. The average testing accuracy after repeating this 

experiment 3 times was 76.1% (Table 3-4).  

 



58 
 

 

Figure 3-5. Training and validation accuracies during training on the Diabetic Retinopathy 

dataset with cyclical weight transfer with weight transfer frequencies of every (A) 20 epochs, (B) 

10 epochs, (C) 5 epochs, (D) 4 epochs, (E) 2 epochs, or (F) every epoch.5 

 

Diabetic Retinopathy 
Training Accuracy 

(n = 6000, %) 

Validation Accuracy 

(n = 3000, %) 

Testing Accuracy 

(n = 3000, %) 

Cyclical Weight Transfer, Every: 

20 Epochs 

10 Epochs 

5 Epochs 

4 Epochs 

2 Epochs 

Epoch 

85.8 ± 0.9 

87.9 ± 1.6 

86.8 ± 0.9 

88.9 ± 1.1 

89.1 ± 1.7 

89.4 ± 2.3 

76.0 ± 0.6 

75.6 ± 2.0 

76.1 ± 0.6 

76.6 ± 0.1 

77.3 ± 0.5 

77.3 ± 1.3 

76.1 ± 1.0 

75.9 ± 1.2 

76.1 ± 0.8 

77.4 ± 0.2 

77.8 ± 0.3 

77.3 ± 0.9 

DDSM 
Training Accuracy 

(n = 1050, %) 

Validation Accuracy 

(n = 229, %) 

Testing Accuracy 

(n = 229, %) 

Cyclical Weight Transfer, Every: 

20 Epochs 

10 Epochs 

5 Epochs 

4 Epochs 

2 Epochs 

Epoch 

72.7 ± 1.3 

70.5 ± 4.7 

71.5 ± 3.0 

71.7 ± 1.9 

71.9 ± 1.5 

74.8 ± 2.0 

66.5 ± 3.5 

68.9 ± 0.9 

69.1 ± 0.2 

65.9 ± 1.8 

69.3 ± 2.4 

68.9 ± 1.3 

65.4 ± 1.1 

68.1 ± 3.6 

68.1 ± 1.2 

68.7 ± 2.4 

69.9 ± 2.7 

69.1 ± 2.9 

ImageNet 
Training Accuracy 

(n = 6000, %) 

Validation Accuracy 

(n = 3000, %) 

Testing Accuracy 

(n = 3000, %) 

 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 
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Cyclical Weight Transfer, Every: 

20 Epochs 

10 Epochs 

5 Epochs 

4 Epochs 

2 Epochs 

Epoch 

77.2 ± 3.2 

78.5 ± 1.2 

77.7 ± 2.6 

78.5 ± 3.5 

79.0 ± 3.2 

83.2 ± 3.5 

97.7 ± 0.8 

98.0 ± 0.4 

97.7 ± 0.4 

97.9 ± 0.6 

97.8 ± 0.9 

98.6 ± 0.6 

46.9 ± 0.8 

47.8 ± 0.9 

47.7 ± 0.7 

47.2 ± 0.9 

47.9 ± 0.0 

49.2 ± 0.3 

82.8  ± 0.7 

82.9  ± 0.4 

83.0  ± 0.1 

83.2  ± 0.5 

82.8  ± 0.4 

83.9  ± 0.7 

46.6 ± 0.9 

47.3 ± 0.6 

47.5 ± 1.4 

48.1 ± 0.6 

47.6 ± 1.1 

49.3 ± 1.0 

83.2  ± 0.9 

83.8  ± 0.1 

83.3  ± 0.5 

83.6  ± 0.2 

84.1  ± 0.4 

84.7  ± 0.1 

Table 3-4. Training, validation, and testing accuracy for cyclical weight transfer for Diabetic 

Retinopathy, DDSM, and ImageNet datasets. Weight transfer frequencies investigated include 

every 20 epochs, 10 epochs, 5 epochs, 4 epochs, 2 epochs, and epoch. The accuracies for cyclical 

weight transfer are shown as mean ± standard deviation for 3 repetitions. 

 

We also investigated whether having a higher frequency of weight transfer can improve 

the testing accuracy. We experimented with weight transfer frequencies of 10, 5, 4, 2, and every 

epoch, repeating each experiment 3 times (Table 3-4). The average testing accuracy of lower 

frequency weight transfer (every 20, 10, or 5 epochs) was 76.1% while the average testing 

accuracy of higher frequency weight transfer (every 4, 2, or 1 epoch) was 77.5% (two-sample t-

test p-value < .001). Thus, a higher frequency weight transfer had a statistically significant 

increase in testing accuracy. The average training testing accuracy for all cyclical weight transfer 

experiments was 76.8%. 
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Figure 3-6. (A) Testing accuracies of centrally hosted training, ensembling models, single weight 

transfer, and cyclical weight transfer for our 4 “institution” experiment on the Diabetic 

Retinopathy dataset. Cyclical weight transfer had the performance that was on par with centrally 

hosted training (p > .05). (B) To show distributed computation on a larger scale, we performed a 

20 “institution” experiment with n = 300 patients per institution. The plot shown is the testing 

accuracy as a function of the number of collaborating institutions. All models were trained using 

the cyclical weight transfer training heuristic with a weight exchange frequency of 1. For 

reference, testing accuracy expected from random classification (gray line) and centrally hosted 

data (n = 6000 patients, blue line) are shown.5 When all 20 institutions participated in cyclical 

weight transfer, the performance was not different from that of centrally hosted data (p > .05). 

 

3.3.6 Cyclical Weight Transfer With 20 Institutions 

We next addressed whether cyclical weight transfer can improve model performance 

when the performance of any individual institution is no better than random classification. To do 

this, we divided 6000 patient samples into 20 institutions, each with n = 300 patients. We trained 

models with increasing numbers of collaborating institutions, from 1 to 20. We utilized the 
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cyclical weight transfer training heuristic with the weight transfer frequency of 1. As we 

increased the number of collaborating institutions, the testing accuracy increased (Fig. 3-6B). 

The testing accuracy for a single institution was 49.8%, which is equivalent to random 

classification as there are equal numbers of healthy and diseased patients. The testing accuracy 

for 20 collaborating institutions was 78.7%, which is on par with the performance of centrally 

hosted data with all 6000 patient samples. 

 

3.3.7 Introduction of an institution with variability 

We next addressed what would happen if variability was introduced into one of the 

institutions. The modes of variability were either an institution with low-resolution images or an 

institution with few patients and class-imbalance. Among the various model-sharing training 

heuristics that was trained on all 4 institutions, cyclical weight transfer had the highest testing 

performance (Table 3-5), with a testing accuracy of 72.7% in experiments with an institution 

with low-resolution images and 73.3% in experiments with an institution with a small number of 

patients with class-imbalance. This is of comparable performance to that of centrally hosted data, 

which had testing accuracies of 72.2% and 75.4%, respectively. It is interesting to note that the 

performance of single weight transfer was dependent on the ordering of the institutions (that is, 

whether the variable institution was institution 1, 2, 3, or 4), which can be attributed to 

catastrophic forgetting.146 We also assessed performance of cyclical weight transfer when the 

variable institution was skipped. The resulting testing accuracy was 74.4%, which is comparable 

to cyclical weight transfer that included the variable institution. 

 

 

Variable Institution: 

Low-Resolution 

Variable Institution: 

Small and Imbalanced 
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Table 3-5. The testing accuracy of the various training heuristics with the various training 

heuristics when variability (low-resolution images or few patients with class-imbalance) was 

introduced into one of the institutions. 

 

3.3.8 Mammography dataset 

When we repeated the experiments on the DDSM dataset, the average testing accuracy 

was 55.7% for single institution models (Table 3-2, Fig. 3-7A-D), only slightly better than a 

majority classifier. A model trained on centrally hosted data had a testing accuracy of 70.7% 

(Table 3-3, Fig. 3-7E). Ensembling single institution models (via averaging of the model outputs) 

resulted in a testing accuracy of 61.1% and the single weight transfer training heuristic also 

resulted in an average testing accuracy of 61.1% (Table 3-3, Fig. 3-7F). Cyclical weight transfer 

resulted in an average testing accuracy of 67.2% for low frequencies of weight transfer (every 

20, 10, or 5 epochs), which was lower than the average testing accuracy of 69.2% for high 

frequency of weight transfer (every 4, 2, or 1 epoch, p < .05) (Fig. 3-8, Table 3-4). 

Testing Accuracy 

(n = 3000, %) 

Testing Accuracy 

(n = 3000, %) 

Centrally Hosted 72.2 75.4 

Ensembling Models 57.8 58.9 

Single Weight Transfer (Variable Institution as Institution 1) 55.2 54.7 

Single Weight Transfer (Variable Institution as Institution 2) 64.6 67.6 

Single Weight Transfer (Variable Institution as Institution 3) 57.4 67.2 

Single Weight Transfer (Variable Institution as Institution 4) 50.4 64.3 

Cyclical Weight Transfer, Every Epoch 72.7 73.3 

Cyclical Weight Transfer, Every Epoch (Skipping Variable Institution) 74.4 
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Figure 3-7. Training and validation accuracies during training on DDSM dataset when trained on 

(A) Institution 1, (B) Institution 2, (C) Institution 3, and (D) Institution 4, (E) Centrally Hosted 

Training Heuristic, and (F) Single Weight Transfer Training Heuristic. 

 

 

Figure 3-8. Training and validation accuracies during training on the DDSM dataset with cyclical 

weight transfer with weight transfer frequencies of every (A) 20 epochs, (B) 10 epochs, (C) 5 

epochs, (D) 4 epochs, (E) 2 epochs, or (F) every epoch. 
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3.3.9 ImageNet dataset 

When these experiments were repeated for the ImageNet dataset, the average testing top-

1 accuracy was 32.0% (top-5 accuracy = 71.4%) for single institution models (Table 3-2, Fig. 3-

9A-D). In comparison, a model trained on centrally hosted data had a testing top-1 accuracy of 

48.9% (top-5 accuracy = 83.8%) (Table 3, Fig. 3=9E). Ensembling single institution models 

resulted in a testing top-1 accuracy of 38.6% (top-5 accuracy = 77.0%), while the single weight 

transfer training heuristic resulted in a testing top-1 accuracy of 37.9% (top-5 accuracy = 75.5%) 

(Table 3-3, Fig. 3-9F). Cyclical weight transfer resulted in an average testing top-1 accuracy of 

47.1% (top-5 accuracy = 83.4%) for low frequencies of weight transfer (every 20, 10, or 5 

epochs), which was lower than the average testing top-1 accuracy (48.3%, top-5 accuracy = 

84.1%) for high frequency of weight transfer (every 4, 2, or 1 epoch, p < .01) (Table 3-4, Fig. 3-

10). 
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Figure 3-9. Training and validation accuracies during training on ImageNet dataset when trained 

on (A) Institution 1, (B) Institution 2, (C) Institution 3, and (D) Institution 4, (E) Centrally 

Hosted Training Heuristic, and (F) Single Weight Transfer Training Heuristic. 

 

 

Figure 3-10. Training and validation accuracies during training on the ImageNet dataset with 

cyclical weight transfer with weight transfer frequencies of every (A) 20 epochs, (B) 10 epochs, 

(C) 5 epochs, (D) 4 epochs, (E) 2 epochs, or (F) every epoch. 

 

3.4 Discussion 

All training heuristics, either data sharing or model distribution, outperformed models 

trained only on one institution in terms of testing accuracy. This shows the benefits of 

collaboration among multiple institutions in the context of deep learning. Unsurprisingly, a 

model trained on centrally hosted data had the highest testing accuracy, serving as a benchmark 
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for the performance of our various model sharing heuristics. In this study, we investigate if a 

model sharing heuristic can replace having the data be centrally hosted. 

To overcome limitations in data-sharing, we tried several approaches – ensembling of single 

institution models, single weight transfer, and cyclical weight transfer. Ensembling of neural 

networks trained to perform the same task is a common approach to significantly improve the 

generalization performance. 147 In comparison, the concept of single weight transfer is very 

similar to that of transfer learning, which is derived from that idea that a model can solve new 

problems faster by using knowledge learned from solving previous problems in other domains. 

148,149 In practice, this involves training a model on one institution’s dataset and fine-tuning the 

model on a different dataset. If we consider each institution as a separate dataset, the model is 

trained on institution 1 and fine-tuned on institutions 2, 3, and 4. Both ensembling single 

institution models and single weight transfer resulted in higher testing accuracies than any single 

institution model for Kaggle Diabetic Retinopathy, DDSM, and ImageNet datasets. Single 

weight transfer outperformed ensembling models for the Kaggle Diabetic Retinopathy dataset 

while ensembling models and single weight transfer had the same testing performance for the 

DDSM dataset. For the ImageNet dataset, ensembling models outperformed single weight 

transfer. 

The highest testing accuracies amongst training heuristics was cyclical weight transfer. 

On average, the testing accuracy of models trained with cyclical weight transfer was 1.9%, 2.5%, 

and 1.2% less than that of a model trained on centrally hosted data for the Kaggle Diabetic 

Retinopathy, DDSM, and ImageNet datasets, respectively. This means non-parallel distributed 

training produced model performance comparable to centrally hosted model performance, and 

parallel distributed training was not required to achieve this performance. 
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Furthermore, we find that a higher frequency of weight transfer had a higher testing 

accuracy than a lower frequency of weight transfer. For the Kaggle Diabetic Retinopathy dataset, 

the higher frequency of weight transfer had, on average, a 1.4% increase in testing accuracy 

compared to lower frequency of weight transfer. Similarly, for the DDSM dataset, a higher 

frequency of weight transfer had, on average, a 2.0% increase in testing accuracy compared to 

lower frequency of weight transfer. Finally, for the ImageNet dataset, a higher frequency of 

weight transfer had, on average, a 1.1% increase in testing accuracy compared to lower 

frequency of weight transfer. The disadvantage of having a higher frequency of weight transfer, 

however, is that it may be more logistically challenging and may add to the total model training 

time. In these cases, a lower frequency of weight transfer would still produce results that are 

comparable to that of a model trained on centrally hosted data. Lastly, we show that cyclical 

weight transfer is robust even when there was an institution with variability (either low-

resolution images or few patients with class-imbalance), simulating a real-world scenario. We 

show that cyclical weight transfer performs similarly when the variable institution was 

introduced compared to when the variable institution is skipped entirely in terms of testing 

accuracy. In other words, variability did not significantly compromise the performance of the 

model with the cyclical weight transfer training heuristic. 

In our experiments with 4 institutions, we show that we are able to achieve high model 

performance without having the data centrally hosted. We next investigated whether high model 

performance can be achieved when the performance of any single institution is no better than 

random classification. We divided 6000 patient samples from the Diabetic Retinopathy dataset 

into 20 institutions, each with 300 patient samples. Indeed, when we trained a model using data 

from one institution, the performance was no better than random classification. As we increased 
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the number of collaborating institutions (using cyclical weight transfer), we observed an increase 

in testing accuracy. With all 20 institutions, cyclical weight transfer achieved a testing accuracy 

on par with centrally hosted data with all 6000 patient samples. This simulates a scenario where 

patient data are dispersed sparsely across many different institutions, and it is impossible to build 

a predictive model with data from any single institution. There are many situations (especially 

with rarer patient conditions) where no single institution has much patient data. In such cases, 

distributed learning can effectively utilize data from many institutions as long as the institutions 

are willing to distribute the model. In other words, if all institutions participate, they can, in 

essence, build a model capable of performing as if they had open access to all the data. 

 

3.5 Limitations 

One limitation is that our “institutions” were sampled from a single dataset (such as 

Kaggle Diabetic Retinopathy dataset) and thus, do not display much variability from one 

institution to the next. To address the possibility of variability, we performed experiments in 

which we altered one institution to either have low-resolution images or low numbers of patients 

with class imbalance. Further, in a follow-up study we assessed optimization strategies to 

account for the case when there is label distribution or quantity skew across multiple 

institutions.7 Future studies can explore other types of heterogeneity, such as differences in data 

acquisition. Furthermore, for the Diabetic Retinopathy and DDSM datasets, the neural networks 

were trained to perform a binary classification problem. In practice, multi-label problems are 

commonplace but our work does not address how the added complexity would impact the 

various training heuristics. Future work can investigate the performance of distributed training 

heuristics in scenarios with multiple labels and more narrow decision boundaries. Also, we only 
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investigated distributed learning in the context of a convolutional neural network. Distribution of 

models across institutions for other forms of deep learning, such as autoencoders, generative 

adversarial networks, and recurrent neural networks, warrant further study.150–152 Lastly, future 

work will be on developing an open-source platform for distributed training. One key feature that 

is needed within this platform for cyclical weight transfer is that training at a given institute only 

begin after the training at the previous institute is completed. 

 

3.6 Future directions 

3.6.1 Other variants of distributed learning 

 Federated learning is a variant of distributed learning in which training among institutions 

is orchestrated by a central server.133 Under this paradigm, models are trained locally at each 

institution and either gradient updates (federated stochastic gradient descent) or model weights 

(federated averaging) are sent to the central server.153,154 The model in the central server is then 

updated and the weights are then sent back to the institutions to update their local copy of the 

model. A key challenge with federated stochastic gradient descent is waiting for synchronous 

updates from each institution. Specifically, the model weights in the central server can only be 

updated and sent back to the institutions after gradient updates are received from all 

institutions.155 Given that each institution is likely to have different compute and communication 

infrastructure, this process is rate-limited by the slowest institution. A workaround is to perform 

asynchronous stochastic gradient descent in which each institution asynchronously grabs the 

most up-to-date model weights from the central server, computes gradients of the loss, and then 

send the gradients back to the central server.156 The downside of asynchrony is while a specific 

institution is calculating the gradient, the model weights in the central server may be updated by 
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other institution, resulting in the gradients from the specific institution being calculated with 

outdated model weights. These gradients are thus termed stale resulting in convergence with 

worse performance.155 A compromise between fully synchronous or fully asynchronous 

approaches is to have partial synchrony, in which the central server waits for update from 

institutions until a certain point, after which the updates from straggler institutions are 

discarded.155 An alternative approach is federated averaging, in which local model weights are 

sent to the central server after a specified number of training iterations and averaged. The 

averaged model weights are then sent back to the local institutions to update the local copy of the 

model.154 The advantage of this approach is that communication with central server is only 

performed after a specified number of training iterations (which consists of many gradient 

updates), which can more communication efficient, depending on the frequency of averaging. 

However, federated averaging faces the same synchrony challenge as federated stochastic 

gradient descent in terms of being rate limited by the slowest institution. Recently federated 

averaging has been shown to be capable of achieving near centrally hosted performance under a 

simulated setting, for the task of brain tumor segmentation.131 

 Split learning is based on the idea that the layers of a neural network can be divided 

piecewise at specific layers (termed cut layers) between institutions and the central 

server.133,157,158 Raw patient data is never shared, but rather the outputs of cut layers (termed 

smash data) during forward propagation and the gradients of cut layers during 

backpropagation.133 Although there are many possible configurations, the most relevant one for 

medical applications is U-shaped (boomerang) split learning, designed for a scenario in which 

both input data and labels cannot leave the institution.158 In this paradigm, each institution has 

their own beginning and end layers of a neural network. The intermediate layers are shared 



71 
 

between all institutions. At each iteration of training, the image is fed through the local 

beginning layers, then fed through the intermediate layers on the central server, and lastly 

through the local end layers. The loss and gradient are then calculated and the weights are 

updated through backpropagation, this time moving through all the layers in reverse. The main 

advantage of split learning is the ability to defer a portion of the computation to the central 

server.158,159 This decreases the computational resources needed at each institution, which would 

benefit institutions with limited resources, such as smaller community hospitals. Also, depending 

on the dataset size contributed per client, number of clients and the model size, the 

communication requirements of split learning can be more favorable than those of federated 

averaging.158,160 A recent study has shown the potential of split learning for achieving centrally 

hosted performance for healthcare applications.161 

 Compared to cyclical weight transfer, federated learning and split learning have differing 

synchrony, communication, and hardware requirements. Furthermore, time to convergence and 

performance at convergence may differ. Each method provides different advantages and 

disadvantages that warrant further head-to-head comparison in real-world healthcare use cases. 
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Figure 3-11. Other variants of distributed learning include (A) federated learning, in which local 

model weights or gradients are average on a central server and (B) split learning, in which 

intermediate layers are shared across institutions and smashed data is transferred during forward 

propagation and gradients are transferred during back propagation. 

 

In model averaging, separate models are trained for each split of the data and the weights 

of the model are averaged every few mini-batches.162 In asynchronous stochastic gradient 

descent, separate models are trained for each split of the data and the gradients of each separate 

model are transferred to a central model.156 However, these methods were developed with the 

intention of optimizing training speed. Although applying such data parallel training methods in 

a multi-institution study in which data is not exchanged between institutions is possible, they 

also represent a significant logistical challenge. Specifically, training would have to take place in 

parallel across all institutions. This would be especially challenging if institutions have 

drastically different network connection speeds or deep learning hardware. While non-parallel 

methods of distributed training may be slower than parallel methods, they would avoid the 

logistical challenges.  

 

3.6.2. Handling data heterogeneity 

 In this chapter, we showed that cyclical weight transfer is robust to low-resolution images 

or low numbers of patients with class imbalance at a single institution. In a follow-up study, we 

detail optimization approaches for label distribution or quantity skew across multiple 

institutions.7 However, in a real-world use case, there will likely be a combination of multiple 

types of heterogeneity  (quantity skew, feature distribution skew, label distribution skew, and 
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concept shift) across all institutions. As such, further approaches need to be considered to 

achieve high performance. One hurdle is the high prevalence of Batch Normalization 

(BatchNorm) layers in modern neural network architectures.137,163,164 BatchNorm layers stabilize 

neural networks by channel-wise normalization of intermediate inputs with the mean and 

standard deviation of each mini-batch, which mitigates divergent effects of large gradient 

updates and smooths the optimization landscape.165,166 At inference time, an estimate of the 

global mean and standard deviation is used. This can be problematic in a non-IID setting with 

federated learning because the training and validation distributions differ, resulting in differing 

normalization during training and validation and thus, lower validation performance.132 Hsieh et 

al provides evidence that much of the loss in performance due to BatchNorm can be partially 

recovered by replacing the BatchNorm layers with Group Normalization (GroupNorm) layers.132 

GroupNorm layers normalize by group, which is defined as a prespecified number of adjacent 

channels for each individual input (as opposed to on a mini-batch basis).167 Another hurdle is the 

prevalent use of momentum in neural network optimizers, which improves convergence of 

networks.1,168 However, it is unclear how to incorporate momentum into distributed learning.133 

Work by Yu et al demonstrates that letting each institution have its own momentum buffer 

followed by periodic global averaging of the buffers improves accuracy of the final model 

compared to resetting the buffers to 0 during each round of federated averaging.169 

 One critical barrier to optimizing of distributed training is dealing with catastrophic 

forgetting, a phenomenon in which sequential training of a model on a new task results in 

“forgetting” of previously learned knowledge for previous tasks.170 Although the task is the same 

across all institutions in most healthcare applications, if the dataset is non-IID across institutions, 

it is possible that learning the model may “forget” what it learned at other institutions when 
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training at a given institution. This is of particular concern in cyclical weight transfer, in which 

training occurs at each institution in sequence.5 Indeed, overall model performance is decreased 

with decreasing frequency of weight transfer.5 Catastrophic forgetting is also a concern in the 

context of synchronous distributed learning (such as federated averaging) if the gradient updates 

at one institution are anti-parallel to those from another institution. Some proposed approaches to 

dealing with catastrophic forgetting may be to slow down learning on weights that are important 

for other institutions when updating model weights for a given institution, masking trainable 

weights differentially at each institution, or to update the model weights orthogonally for each 

institution.171–173 

 Another approach to dealing with data heterogeneity is to train “personalized” models for 

each institution as opposed to a single global model for all institutions, also known as domain 

adaptation.133 These “personalized” models can be adapted from a global model that performs 

reasonably well among all institutions. For example, one strategy could be to have common 

weights for convolutional layers of the neural network but have institution-specific BatchNorm 

layers.174 Another strategy would be to perform unsupervised domain adaptation of the global 

model to a specific institution through adversarial training.175 Zhao et al gives upper and lower 

bounds on conditions required to reduce model error on target domain when adapting from a 

source domain.176 The bounds are based on Jenson-Shannon divergences between labels 

distributions in source and target domain as well as between intermediate representations learn 

by the deep learning network over the source and target domain of data. Once these 

“personalized” models are trained, there will be several models that can be used for inference on 

new institutions. Model selection strategies, based on similarity of the data distribution of the 
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new institution with the data distribution used to train each of the “personalized models”, can be 

used to select the optimal model.177,178 

 Alternatively, datasets at institutions can be augmented to make the data distribution 

more IID-like. For example, in the presence of imbalance in the distribution of class or patient 

characteristics, data from the minority class or characteristic can be augmented via synthetic 

oversampling.179 If one institution has less data than another institution, the institution with less 

data can augment its data with geometric transforms, mix-up, or generative adversarial networks 

(GANs), assuming that such augmentation doesn’t cause a shift in the institution’s overall 

distribution.180–183 If scanner types or image sequences differ across institutions, data at each 

institution can be augmented for acquisition diversity using supervised approaches.184–186 In 

summary, these heterogeneity present a critical hurdle to the deployment of distributed deep 

learning methods. Importantly, these challenges not unique to distributed machine learning, but 

relevant for multi-institution machine learning as a whole. 

 

3.6.2 Patient privacy 

 One of the key motivations of distributed deep learning is the protection of patient 

privacy. Most institutions require researchers to deidentify patient data before they are used for 

training. This removes obvious patient identifiers such as name, medical record numbers, date of 

birth, and date of hospital visit. It is important to note that patient information is still embedded 

in the clinical variables, lab tests, and medical imaging. Distributed learning provides a method 

of training deep learning models without sharing raw patient data. However, this is not 

equivalent to full protection of patient privacy as there is still component data being shared: 

model weights (model ensembling, cyclical weight transfer, federated averaging), gradients 
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(federated stochastic gradient descent), and smashed data (split learning). A tech-savvy attacker 

might infer sensitive information about the training data or, in the worst-case scenario, 

reconstruct the training data itself from the shared component data.187–189 As such, additional 

protections need to be put into place to ensure privacy among participating institutions. 

 One framework for such protection is differential privacy (DP). At the core of DP is the 

concept of a privacy budget, which is the maximum increase to the risk of an individual’s 

privacy.190 Alternatively, the privacy budget is how much of an individual’s privacy that the 

neural network can use for training. In practice, DP optimization involves clipping the gradient 

followed by addition of gaussian noise at each training step. Training is discontinued once the 

privacy budget is exhausted, regardless of whether the desired level of performance is reached.191 

Utilization of DP comes with an important tradeoff – there is an inversely proportional 

relationship between the privacy budget and model performance.159 That is, the more stringent 

the protection, the lower the model performance. Recently, DP has been applied to train models 

for healthcare applications.192,193 DP can also be used to train GANs that can subsequently be 

shared for model training.194  

 Homomorphic encryption is an approach that allows performing of mathematical 

operations directly on the encrypted data (ciphertext).133 The allowed operations include addition 

and multiplication, but other operations (such as activation functions) can be approximated using 

higher degree polynomials, Chebyshev polynomials, and Taylor series.159 Patient data or 

smashed data can be homomorphically encrypted before it is sent to the central server for model 

training or inference.133,195,196 Alternatively, model weights can be homomorphically encrypted 

before it is sent to the central server for aggregation.133 The major drawback of homomorphic 

encryption is the need for specialized hardware and extensive computational resources, limiting 
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the scalability of the method.159,195 As such, much of the work on homomorphic encryption has 

been focused on shallow architectures that do not represent the deep architectures used for 

modern healthcare applications.159,195,196 

 One concern that is specific to split learning is the correlation between raw data and 

smashed data, resulting in leakage of information. To reduce this leakage, a variant of split 

learning, called NoPeek, utilizes a decorrelation approach based on distance correlation between 

raw and smashed data as part of the loss function during optimization.133,189 This approach has 

been shown to protect again information leakage while maintaining high model performance.189 

This is especially useful when the cut layer is very early in the neural network when the 

correlation between raw and smashed data is high.189 The exact tradeoff between the use of 

NoPeek and model performance in a variety of medical deep learning scenarios is still under 

investigation. 

 

3.7 Conclusions 

In this chapter, we address the question of how to train a deep learning model without 

sharing patient data. We found that cyclical weight transfer performed comparably to centrally 

hosted data, suggesting that sharing patient data may not always be necessary to build these 

models. This finding has applications for any collaborative deep learning study. There are other 

methods for distributed learning as well that became popularized in parallel with our work, 

namely federated learning and split learning. Each method provides different advantages and 

disadvantages that warrant further study in real-world healthcare use cases. A large hurdle to 

such validation is dealing with the presence of data heterogeneity within and across institutions, 

which present challenges in optimization, generalizability, and catastrophic forgetting. This 
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hurdle is compounded by the need for further protection of patient privacy, which induce 

tradeoffs in performance and computational complexity. Studies on the synergy between 

methods of distributing training, handling data heterogeneity, and protecting patient privacy 

provide an avenue for impactful future work. 
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4 Model design and the impact on performance 

4.1 Introduction 

Breast cancer is a leading cause of death among women in the US, with the expected 

number of deaths to be over 41,000 in 2019.197 Early mammographic screening has resulted in a 

decrease in breast cancer mortality.198,199 The correct mammographic interpretation of breast 

density, which measures extent of fibroglandular tissue, is important in the assessment of breast 

cancer risk as there is increased risk with increased density.200,201 Furthermore, the identification 

of dense breast may stratify patients who may have masked cancers and may benefit from 

additional ultrasound and/or MR imaging. As such, there is now legislation in many states that 

patients must be notified of their breast density after mammography.202 

Qualitative assessment by means of the widely used Breast Imaging Reporting and Data 

System (BI-RADS) include four categories: a) almost entirely fatty, b) scattered fibroglandular 

densities, c) heterogeneously dense, or d) extremely dense.203 These criteria are subjective, 

resulting in inter-rater variability among radiologists. A study by Sprague et al. showed that the 

likelihood of any given mammogram being rated as dense (heterogeneously dense and extremely 

dense) is highly dependent on the interpreting radiologist, with the percentage ranging from 

6.3%-84.5%.204 Similarly, commercially available software shows a wide range of agreement 

with clinical experts and the probability of dense classification is dependent on the specific 

software used.205,206 This inter-rater variability, and even inter-software variability, may confer 

undue patient anxiety and potential harm to the patient, i.e. possible unnecessary supplemental 

screening examinations.  

As such, there has been interest in using automated approaches to improve accuracy and 

consistency of breast density assessment. Commercial software utilize quantitative imaging 
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features to assess breast density, with mixed agreement with radiologist interpretation.206 Deep 

learning methods have yielded state-of-the-art results in a wide range of computer vision tasks 

without the need for domain-inspired hand-crafted imaging features. Moreover, recent studies 

have shown the potential of deep learning in medical fields such as dermatology, ophthalmology, 

and radiology.40,42,207 A recent study from Lehman et al. demonstrates the utility of deep learning 

for mammographic density assessment in clinical practice at a single institution/mammography 

system. 202 Here, we further this work by validating the deep learning approach on a multi-

institutional imaging cohort with a variety of digital-mammography systems. Furthermore, we 

provide an in-depth analysis of how choice of data, model, and training parameters affects 

algorithm performance. In addition to that, we investigate the generalizability of models across 

different digital-mammography data formats. Lastly, we deploy our system at the American 

College of Radiology (ACR) 2019 Annual Meeting for a crowdsourced evaluation. 

We highlight several fundamental features needed for artificial intelligence 

democratization: First, we demonstrate the possible data, model, and training parameters that can 

influence the performance of the model. We also show importance of diverse training data for 

model generalizability, supporting collaborative development of algorithms across institutions. 

Lastly, we show how a crowdsourced annotations can be used to evaluate algorithm 

performance. 

 

4.2 ACR AI-LAB 

 Despite significant research into the applications of AI, there is currently limited use of 

AI in clinical care. Key to the success of these algorithms are three components: 1) the 

availability of large quantities of diverse, well-annotated patient data, 2) clinical professionals 
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who can drive direction, validation, and translation, and 3) data scientists who can design, train, 

and deploy such algorithms. Unfortunately, such synergy is only accessible within certain 

academic institutions. Of note, the availability of publicly-available, high-quality data of 

sufficient size has been known to be a bottleneck for progress in AI.208 To date, radiology 

professionals, who have the requisite domain expertise to make AI relevant for clinical use, have 

not been able to widely participate in AI development because of limited access to AI 

computational solutions and the complexity of AI computational architecture.  On the other 

hand, data scientists who are not working closely with radiology professionals are building 

algorithms that are accurate yet clinically irrelevant or not useful.  The widespread availability of 

these three components to all individuals and institutions would catalyze AI research and 

expedite model integration into the clinical workflow.209  

Even once the model is trained, there are many foregoing challenges. First, end-users for 

these models, such as radiologists and pathologists, may not fully understand how these models 

were trained. Critically, this may lead to a general misunderstanding for why and when a model 

will fail. Furthermore, models need to be rigorously validated to ensure that they are not biased 

to the technical imaging specifications and patient population of the training data. In fact, only 

6% of AI studies report external validation.80 Consequently, models trained on data from only 

one institution may not achieve high performance (due to limited size or diversity of the training 

dataset), and moreover may not generalize well to data from other institutions. Thus, there exists 

a need to enable multi-institutional, collaborative approaches for the purpose of creating robust 

models, while simultaneously ensuring patient privacy.5 

To this end, the ACR presents AI-LAB, a framework for democratization of AI which 

was developed in tandem with study presented in this chapter. The AI-LAB provides an online 
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interface for radiologists, radiation oncologists, medical physicists, and data scientists to work 

together, both within institutions and across institutions. Among its core functions, the AI-LAB 

provides education on AI, tools for data curation, annotation, model development, and 

collaboration, all in a code-free environment. Recently, the AI-LAB was used in a resident 

challenge, where radiology residents experimented with the built-in options for model design and 

evaluated the effect of performance of a deep learning mammographic breast density model. 

Such a platform allows the greater radiological community to overcome many challenges faced 

within AI and lays the foundation towards the shared goal of improving patient care. 

 

 

Figure 4-1. A schematic of the AI-LAB Ecosystem, which consists of 11 modules for education, 

annotation, model development, model evaluation, data and model sharing, and distributed 

training. Source: ACR 
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Figure 4-2. Example of using AI-LAB to train and evaluate a deep learning mammographic 

breast density model. Source: ACR 

 

4.3 Materials and methods 

4.3.1 Patient cohort 

Digital screening mammograms were retrospectively obtained through the Digital 

Mammographic Imaging Screening Trial (DMIST), the details of which were previously 

published.210 In summary, women were recruited to the study across 33 sites and underwent 

digital mammography from various digital-mammography systems. The protocol was approved 

by the institutional review boards at all sites and all patients gave written informed consent. Each 

site had a lead radiologist that trained the sites’ other radiologist readers.  

Each examination was interpreted by a single radiologist from a cohort of radiologists 

using ACR BI-RADS breast density lexicon (Category a: fatty, Category b: scattered, Category 

c: heterogeneously dense, Category d: extremely dense).203 All images were previously de-
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identified before this study. The mammograms were saved in DICOM format with 4 different 

image data formats, corresponding to different digital-mammography systems or different 

versions of the same system (Table 4-1): 12 bit Monochrome 1 (30.3%), 12 bit Monochrome 2 

(11.2%), 14 bit Monochrome 1 (58.0%), and 14-bit Monochrome 2 (0.5%). 14-bit Monochrome 

2 images were excluded to ensure that each image data format included in our study had 

adequate representation for training of our deep learning model. Monochrome 1 images indicates 

images were reversed from conventional intensity representation in which higher intensities 

indicate higher opacity. Monochrome 2 images were in conventional intensity representation. 

Monochrome 1 images were inverted as part of preprocessing. 

Our final patient cohort consisted of 108,230 digital screening images from 21,759 

patients. The demographics of the patient cohort is shown in Table 4-2. We divided this cohort 

on the patient level into training (n = 62,316 images from 12,158 patients), validation (n = 6,978 

images from 1,351 patients), and testing sets (n = 38,936 images from 8,250 patients). The 

training set was used to develop the model and the validation set was used to assess model 

performance during training to prevent overfitting. The test set was unseen until the model 

training was complete. 

 

12 Bit Monochrome 1 12 Bit Monochrome 2 14 Bit Monochrome 1 

Senoscan (99.9%) 

Kodak Lumiscan 75 

(.1%) 

Senograph (93.8%) 

Other (6.1%) 

Mammo-Clinical (.1%) 

Senograph (94.1%) 

Mammo-Clinical (5.9%) 

Table 4-1. Breakdown of data format by digital mammograph system. 

 

 
Training 

(n = 62316) 

Validation 

(n = 6978) 

Testing 

(n = 38936) 

Age (median years, IQR) 46 (53-61) 46 (53-61) 47 (53-61) 
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Female (%) 100 100 100 

Race 50414 5622 30845 

     White 

     Black or African American 8389 925 5733 

     Hispanic or Latino 2273 289 1416 

     Asian 819 62 633 

     American Indian or Alaska 63 8 19 

     Other or Unknown 358 72 290 

Radiologist-assessed breast density 
   

      Fatty 6980 (11.2%) 873 (12.5%) 4575 (11.8%) 

      Scattered 27733 (44.5%) 2985 (42.8%) 17191 (44.2%) 

      Heterogeneously dense 23987 (38.5%) 2753 (39.5%) 14585 (37.5%) 

      Extremely dense 3616 (5.8%) 367 (5.3%) 2585 (6.6%) 

Table 4-2. Summary of demographics in the patient cohort with regard to age, sex, race, and 

breast density. 

 

4.3.2 Image preprocessing 

For Monochrome 1 images, image intensity values were inverted to ensure all images 

transitioned from radiolucent to radiopaque as intensity value increased. Because images of each 

image format contained different intensity distributions (Fig. 4-3), the intensity of each image 

was normalized by the mean and standard deviation of the population mean and standard 

deviation of that image format. 202 To ensure proper input size to the pre-trained neural network 

architectures that were used, the images were downscaled with linear interpolation and replicated 

to create three channels. The final preprocessed image size was 224x224x3 as to be able to use 

ImageNet pretraining. 
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Figure 4-3. Visualization of an intermediate layer of the trained neural network for 3000 images 

in the testing set, color-coded by (A) image format and (B) radiologist interpretation of breast 

density. 

 

4.3.3 Training 

Neural network models were implemented in DeepNeuro with Keras/TensorFlow 

backend. 10,138,211 Models were trained using images from a single view. All models were 

optimized using the Adam optimizer with an initial learning rate of 1*10-6, β1 = 0.9, and β2 = 

0.99.145 All model parameters were made trainable, regardless of whether the model was 

pretrained or randomly initialized. The learning rate was decreased by a factor of 10 when the 

loss on the validation set did not improve for 10 consecutive epochs. The network was trained 
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until the loss on the validation set did not improve for 20 consecutive epochs. The model with 

the lowest validation set loss during training was saved as the final model. At prediction time, the 

probability of each density class was predicted using the neural network for each image 

individually. To combine predictions from all images (across all views) from a given patient into 

a patient-level assessment, the probabilities for all images were averaged. The averaged 

probabilities were then used to determine the predicted breast density class. 

 

4.3.4 Experiments on data, model, and training parameters 

 We investigated the effect of data, model, and training parameters on algorithm 

performance. 13 different models were trained with varying parameters. A schematic of the 

various experiments investigating data, model, and training parameters are summarized in Fig. 4-

4. To investigate the effect of training set size, we utilized various different training set sizes and 

assessed the resulting performance on the test set. We tested four commonly used neural network 

architectures, each of which differ in number of layers and design: ResNet50 (23,542,788 

parameters), DenseNet121 (6,957,956 parameters), InceptionV3 (21,776,548 parameters), and 

VGG16 (14,716,740 parameters).137,212–214 We also investigated the benefit of pretraining by 

comparing ImageNet (a large computer vision dataset of natural images) pretrained versus 

random initialization.215 A variety of cost-functions were also utilized (categorical cross-entropy, 

mean absolute error, mean squared error, and ordinal regression) in order to assess the effect of 

objective function (and their underlying assumptions of the nature of the labels) on 

performance.216 The last layer of the neural network was modified to accommodate the dataset 

and cost function: four-unit dense layer with softmax activation (categorical cross-entropy), 

single-unit dense layer with linear activation (mean absolute error and mean squared error), and 
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four unit-dense layer with sigmoid activation (ordinal regression). The training set was 

augmented in real time by means of random horizontal/vertical flips (50% probability of each) 

and random rotations (0-45°). At each mini-batch, images from each breast density class were 

sampled with either random (weighting in the empirical density class distribution) or equal class 

(weighting each density class equally) probability to assess the effect of class weighting on 

performance. We also evaluated the effect of model ensembling by averaging the output of 2-4 

trained models of the same architecture (ResNet50). Model ensembling describes the process by 

which several independently trained models are combined to improve performance.141 The 

default model utilized 100% of the training set, ImageNet pretrained weights, ResNet50 

architecture, no ensembling, categorical cross-entropy loss function, augmentation, and equal 

class sampling. Only one parameter was modified at a time in the experiments, keeping all other 

parameters the same as the default model (ceteris paribus).  
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Figure 4-4. A summary of all the data, model, and training parameter experiments performed. 

 

4.3.5 Experiments on image data formats 

To visualize the differences in intensity distributions across image formats, histograms of 

preprocessed images from the testing set were generated. The dimensionality of histograms (x ∈ 

ℝ100) were then reduced to a 2-dimensional projection and plotted to inspect for similarity across 

image formats.217 The effect of image format of training images on generalizability of models 

was investigated. We trained ResNet50 models using 12 bit Monochrome 1 images only, 12 bit 

Monochrome 2 images only, 14 bit Monochrome 1 images only, and all images. The 

performance of these models for each image format was then assessed. Projections of an 

intermediate output from the penultimate layer of the neural network were also plotted for 

images in the testing set using a model trained on all images to evaluate the learned features 

learned by the deep learning model. The dimensionality (x ∈ ℝ1000) was then reduced to 2 using 

Uniform Manifold Approximation and Projection (UMAP) and plotted to inspect for similarity 

across image formats.217 

 

4.3.6 Crowdsourcing assessment 

As further evaluation of our breast density algorithm, we deployed an annotation 

workstation at the ACR 2019 Annual Meeting. Attendees of all levels (researchers, medical 

students, residents, radiologists) were invited to perform annotations on a subset of images 

within our patient cohort. Representative images of all breast density classifications from the BI-

RADS manual were provided to attendees during annotation. Attendees were able to inspect all 

images (all views available) from a given patient study and were asked to provide a BI-RADS 
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breast density assessment. In total, 3,649 annotations were performed on 1083 patient studies by 

17 raters (Demographics summarized in Table 4-3). On average, there were 3 annotations per 

patient study and each rater performed 215 annotations. Consensus of the crowd was determined 

by majority vote, with random tiebreak. In our analysis, we looked at agreement between crowd 

and radiologist annotation as well as crowd and algorithm (ResNet50), 

 

 

Table 4-3. Demographics of participants of the crowdsourcing assessment. 

 

4.3.7 Statistical analysis 

Agreement between raters was assessed via linear κ coefficient across the four breast 

density categories in the testing set (4-class κ). For reference, a κ of 0.21-.40, 0.41-0.60, and 

0.61-0.80 represents fair, moderate, and substantial agreement, respectively.218 Agreement 

between raters was also assessed via linear κ coefficient for non-dense (class a and b) vs. dense 

breast (class c and d) based on the categorization of notification requirements in most states. 

Experiments on data, model, and training parameters as well as image data format were repeated 

five times to calculate confidence intervals. For the crowdsourcing assessments, confidence 

intervals were calculated with non-parametric bootstrapping. Chi-squared test was used to 
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compare the distributions of predicted labels between experiments. An unequal variances t-test at 

a significance level of p = .05 was used for statistical comparisons of model performance. 

 

4.4 Results 

4.4.1 Effect of data parameters on performance 

The performance of training set size on testing set performance was investigated, 

showing that κ coefficient increases as the training set size increases. When 2% (n = 1247 

images) of the training set was used, the mean 4-class κ was .563 (95% Confidence Interval, 

CI, .551-.576). In contrast, when using 100% (n = 62,316 images) of the training set, the mean 4-

class κ was .660 (95% CI .657-.664) (Fig. 4-5). There was a statistically significant difference 

between the performance of using 2%-60% and 100% of the training set (t-test p < .05). There 

was no difference in the performance of using 80% and 100% of the training set (p = .291). 
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Figure 4-5. Performance on the testing set (measured by 4-class κ agreement with radiologist 

interpretation) increased as the percentage of training set used. The 95% confidence interval is 

plotted in light green. 

 

When 2% (n = 1247 images) of the training set was used, the mean 2-class κ was .642 

(95% Confidence Interval, CI, .629-.655). In contrast, when 100% (n = 62,316 images) of the 

training set was used, the mean 2-class κ was .718 (95% CI .712-.723). There was a statistically 

significant difference between the performance of using 2%-40% and 100% of the training set (p 

< .05). There was no difference in the performance of using 60% or 80% and 100% of the 

training set (p = .054 and .291, respectively). 

 

4.4.2 Effect of model parameters on performance 

The number of epochs until model convergence for randomly initialized weights (68.2, 

95% CI 47.2-91.2) was greater than for ImageNet pretrained weights (38.2, 95% CI 35.0-41.6), 

although not statistically significant (p = .086).  

The mean 4-class κ of models with randomly initialized weights was .327 (95% 

CI .273-.384), compared to ImageNet pretrained weights .660 (95% CI .657-.664, p < .001) 

when using the full training set (Fig. 4-6). In the experiments assessing model architecture, the 

mean 4-class κ of ResNet50, DenseNet121, InceptionV3, and VGG16 was .660 (95% 

CI .657-.664), .650 (95% CI .640-.659), .644 (95% CI .635-.652), and .660 (95% CI .658-.664), 

respectively. There was no statistically significant difference between the performance of the 

various architectures. The mean 4-class κ of no ensembling, ensembling two models, ensembling 

three models, and ensembling four models was .660 (95% CI .657-.664), .665 (95% 
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CI .664-.666), .666 (95% CI .666-.667), .667 (95% CI .666-.668), respectively. The performance 

of ensembling four models and three models was greater than that of no ensembling (p = .041 

and .036, respectively). 

 

 

Figure 4-6. Effect of model and training parameters on testing set 4-class κ agreement with 

radiologist interpretation. Black lines denote 95% confidence interval. P-values are denoted by 

*p < .05, **p < .01, ****p < .001 

 

 

The mean 2-class κ of models with randomly initialized weights was .453 (95% 

CI .389-.533), compared to ImageNet pretrained weights .718 (95% CI .712-.724, p < .005. In 

the experiments assessing model architecture, the mean 2-class κ of ResNet50, DenseNet121, 

InceptionV3, and VGG16 was .718 (95% CI .712-.724), .720 (95% CI .717-.723), .719 (95% 

CI .714-.724), and .722 (95% CI .719-.724), respectively. There was no statistically significant 

difference between the performance of the various architectures. The mean 2-class κ of no 
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ensembling, ensembling two models, ensembling three models, and ensembling four models 

was .718 (95% CI .712-.724), .721 (95% CI .719-.724), .722 (95% CI .721-.724), .723 (95% 

CI .721-.724), respectively. There was no significant difference between the performance of 

ensembling models and that of no ensembling (p > .05). 

 

4.4.3 Effect of training parameters on performance 

For categorical cross-entropy, mean absolute error, mean squared error, and ordinal 

regression, the mean 4-class κ was .660 (95% CI .657-.664), .649 (95% CI .644-.653), .654 (95% 

CI .646-.661), and .664 (95% CI .659-.669), respectively. The performance of categorical cross-

entropy and ordinal regression was significantly greater than mean absolute error (p = .011 and p 

= .004, respectively). The mean 4-class κ with no augmentation was .658 (95% CI .646-.666), 

compared to with augmentation .660 (95% CI .657-.664) (p = .675). The mean 4-class κ with 

random and equal class sampling at each mini-batch was .665 (95% CI .662-.669) and .660 (95% 

CI .657-.664), respectively (p = .135). For random class sampling, the predicted distribution of 

labels on the test set was 8.1% fatty, 47.5% scattered, 40.1% heterogeneously dense, and 4.3% 

extremely dense. This differed from the predicted distribution of labels on the test set with equal 

class sampling, which was 13.5% fatty, 37.5% scattered, 36.8% heterogeneously dense, and 

12.2% extremely dense (p < .001, Fig. 4-7). The predicted binary distribution for random (44.4% 

dense) and equal sampling (49.0% dense) also differed (p < .001). For random class sampling, 

the mean sensitivity and specificity for classifying dense breast was .833 (95% CI .803-.856) 

and .888 (95% CI .872-.905), respectively. Comparatively, for equal class sampling, there was an 

increase in sensitivity (.880, 95% CI .869-.890, p < .05) with a decrease in specificity (.842, 95% 
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CI .828-.857, p < .001). A display of the range of diagnoses for models trained with different 

model and training parameters for 50 patients in the testing set is shown in Fig. 4-8. 

 

 

Figure 4-7. The distribution of predicted breast density labels in the testing set differed for 

experiments with random class sampling (left) compared to equal class sampling (right) at each 

mini-batch. P-values are denoted by ****p < .001 
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Figure 4-8. A visual display of the range of classifications for models trained with different 

model and training parameters for 50 patients in the testing set. The radiologist interpretation is 

displayed in the first row. The average breast density rating across all models and radiologist 

interpretation is displayed in the last row and was used to order the patients from least dense 

(left) to most dense (right). 

 

For categorical cross-entropy, mean absolute error, mean squared error, and ordinal 

regression, the mean 2-class κ was .718 (95% CI .712-.724), .717 (95% CI .713-.721), .713 (95% 

CI .710-.716), and .721 (95% CI .718-.724), respectively. The performance of regression was 

significantly greater than mean absolute error (p = .009). The mean 2-class κ with no 

augmentation was .713 (95% CI .707-.718), compared to with augmentation .718 (95% 

CI .712-.724) (p = .287). The mean 2-class κ with random and equal class sampling at each mini-

batch was .723 (95% CI .714-.729) and .718 (95% CI .712-.724), respectively (p = .471). 

 

4.4.4 Contribution of breast size to density assessment 

 It has previously been shown that breast size is related to breast density. Specifically, 

smaller breast size is correlated with higher breast density.219 Indeed, in our patient cohort, 

mammographic breast size was negatively associated with both radiologist and deep learning 

model determined breast density (Fig. 4-9). In looking at the AUC of ROC analysis for breast 

size vs density class, all values were above .5 (Fig. 4-10). Notably, AUC values were higher for 

the deep learning model than for the radiologist, suggesting that breast size was more important 

for the deep learning model than for the radiologist in determining breast density. It is also 

interesting to note that all AUC values were below .8, indicating that breast size is not the only 
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factor that radiologist and the deep learning model takes into consideration in making the breast 

density assessment. Put in other words, the radiographic density within the breast is also an 

important factor. This serves as an important sanity check into what the deep learning model is 

learning as it is not just learning the trivial association between breast size and density. 

 

 

Figure 4-9. A plot of the distribution of breast size (% of mammogram) vs the radiologist/deep 

learning model determined breast density. 
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Figure 4-10. ROC of breast size (% of mammogram) vs the radiologist/deep learning model 

determined breast density for (A) fatty vs. scattered/heterogeneously dense/extremely dense, (B) 

fatty/scatter vs. heterogeneously dense/extremely dense, and (C) fatty/scatter/heterogeneously 

dense vs. extremely dense. 

 

4.4.4 Differential performance across different patient races 

 Given the DMIST trial enrolled patients from 33 different sites across the United States 

and Canada, the dataset contained many patient races. Within each race, there were different 

distributions of breast density (Fig. 4-11). Notably, black or African American patients had a 

higher proportion of fatty breasts while Asian Americans had a higher proportion of dense 

breasts, consist with what has been previously reported within the literature.219 When the model 

was trained on all races, there was differential performance across different patient races in the 

test set. The model had higher agreement with radiologists for Asian and white women. The 

model had lower agreement with radiologist for black or African American, Hispanic or Latino, 

and other or unknown races (Fig. 4-12-13). Notably, this did not change when the model was 

trained on only white women (Fig. 4-12, 4-14). 
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Figure 4-11. Distribution of different density classes vary across different races. 
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Figure 4-12. Agreement of a model trained on all races and a model trained on white women 

only with radiologists on the testing set, by race. 
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Figure 4-13. Confusion matrices between radiologist and a model trained on all races on the 

testing set, by race. 
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Figure 4-14. Confusion matrices between radiologist and a model trained on white women only 

on the testing set, by race. 

 

4.4.5 Effect of digital-mammography data format on model generalizability 

A plot of projections of intensity distributions of preprocessed images showed clustering 

within image format, delineating differences between image formats (Fig. 4-15A). Clustering by 

intensity distribution was preserved even after passing the images through a trained neural 

network, as shown by projections of the output of the penultimate layer, with the grouping by 

breast density occurring within the respective image format cluster (Fig. 4-16). For all image 

format specific models, testing set performance was decreased for other image formats compared 

to the image format the model was trained on (p < .001). In contrast, a model trained on all 

images showed no differences in performance across image formats (p > .05, Fig. 4-5B). 
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Figure 4-15. (A) Visualization of the histogram of intensities of 3000 preprocessed images from 

the testing set demonstrating clustering of images by image format. (B) Performance of models 

trained on specific image formats as well as all images, showing that for image format specific 

models, testing set performance was decreased for other image formats compared to the image 

format the model was trained on. 

 

 

Figure 4-16. Visualization of an intermediate layer of the trained neural network for 3000 images 

in the testing set, color-coded by (A) image format and (B) radiologist interpretation of breast 

density. 

 

4.4.7 Fine-tuning the model on a new patient cohort 

 We also acquired another patient cohort of 17,549 images from MGH. When a model 

trained on DMIST was applied to the MGH cohort, low performance was observed. When the 

model was fine-tuned on MGH, performance at MGH increased, but performance on DMIST 

decreased. Only when a model was trained on DMIST and MGH simultaneously was high 

performance on both DMIST and MGH observed (Fig. 4-17). 
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Figure 4-17. Testing set performance of a model trained on DMIST, trained on DMIST and then 

fine-tuned at MGH, and trained on DMIST and MGH simultaneously. 

 

4.4.8 Crowdsourcing assessment 

The 4-class κ between the crowd and algorithm (.505, 95% CI .503-.506) was greater 

than agreement between crowd and radiologist (.463, 95% CI .461-.464, p < .001, Fig. 4-18). 

Agreement with the algorithm was greater than agreement with the radiologist for both crowd 

participants who regularly read mammograms and those who do not (Fig. 4-19). Similarly, the 2-

class κ between the crowd and algorithm (.588, 95% CI .587-.590) was greater than agreement 

between crowd and radiologist (.492, 95% CI .491-.495, p < .001). As a reference, the 4-class κ 

and 2-class κ between algorithm and radiologist was .636 (95% CI .635-.637) and .682 (95% 

CI .681-.684), respectively, for the same patient studies. 
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Figure 4-18. Confusion matrices showing the agreement between radiologist, algorithm, and 

crowd. The agreement between the algorithm and crowd (B) was greater than the agreement 

between crowd and radiologist (A). The agreement between algorithm and radiologist for the 

same patient studies (C) shown for reference. 
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Figure 4-19. There was higher agreement, in terms of 4-class κ, with the algorithm than with the 

original interpreting radiologist from the DMIST trial for both crowdsourcing participants who 

read mammograms and those who do not. P-values are denoted by ****p < .001 

 

4.5 Discussion 

In this study, we investigated the performance of deep learning models in a large multi-

institution and multi-mammography system patient cohort. Our best performing model achieved 

a κ of .667, equivalent to the agreement observed by Lehman et al., which only utilized 

mammograms from a single institution/mammography system.202 

One challenge of training robust deep learning models is the availability of large 

annotated imaging datasets.220 In this study, we provide empirical evidence that the size of the 

training set is a key determinant in the performance of neural networks, consistent with another 

study on abnormality classification in chest radiographs.221 In accordance with deep learning 

studies in other domains, tens of thousands of annotated images are needed before model 

performance begins to plateau in diverse imaging cohorts, supporting the need for collaborative 

efforts among medical institutions.5,37,221 

In our investigation of model parameters, pretraining and ensembling led to 

improvements in performance. Pretraining neural networks followed by fine-tuning in the target 

domain (also known as transfer learning) has become a well-established paradigm for medical 

imaging applications to achieve high performance.37,40,222 The intuition behind this practice is 

that low level imaging features (such as texture, gradient, color, etc.) are similar across domains, 

allowing us to leverage large-scale datasets such as ImageNet, which has over 14 million 

annotated images, to learn these baseline filters learn task specific filters by training on the target 
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data set. 220 In our study, we noted that pretraining on ImageNet improved performance for the 

breast density classification task. Further improvement in performance was seen with ensembling 

of independently trained models which is analogous to how a consensus of experts is more likely 

to be correct than any single expert.223 Interestingly, neural network architecture did not have a 

significant effect on performance despite differences in model complexity and design. 

One important consideration when training a model is the objective function used to 

optimize the algorithm, also known as a cost function. Our experiments have shown that the 

choice of cost function had a significant effect on model performance, mainly because each cost-

function makes different assumptions about the nature of the labels. Specifically, mean absolute 

error, mean squared error, and ordinal regression assume that the categories are ordered while 

categorical cross-entropy does not. Furthermore, mean absolute error and mean squared error 

assume the distance between adjacent classes is equal whereas ordinal regression does not. In our 

application, breast density is classified on an ordered scale with undefined distances between 

adjacent classes (i.e. the distances between Fatty and Scattered compared to heterogeneously 

dense and extremely dense cannot be quantified), making ordinal regression the most appropriate 

cost function. This is validated in our experiments, where we find that ordinal regression 

exhibited the highest performance, although this was significantly different to only mean 

absolute error. We did not notice any effect of augmentation on performance. Augmentation is a 

commonly used approach to increase the diversity of the training data through random 

manipulations of the image.1 While effective for some applications, we did not observe any 

statistically significant improvements from using data augmentation for our task when using the 

full training set. Augmentation may be of greater importance when less training data is available. 
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We also did not notice significant difference between random and equal class sampling 

on model performance in terms of κ coefficient. Class sampling is an important consideration in 

cases where there are differences in the number of patient samples from each class (i.e. when the 

majority class significantly outnumbers the minority class). In our study, we have more patients 

with scattered and heterogeneously dense breast (44.2% and 37.5% respectively) than with fatty 

and extremely dense breast (11.8% and 6.6%, respectively), which is the expected distribution as 

breast density has a normal distribution. Under random class sampling, the neural network would 

be exposed to more training examples of scattered and heterogeneously dense breast than of fatty 

and extremely dense breast. Equal class sampling can be used to mitigate this inherent class 

imbalance by ensuring that the neural network is adequately exposed to all classes. 224 However, 

it is also important to note that with equal class sampling, the distribution of predicted labels 

changes – specifically, minority classes are predicted with higher frequency and majority classes 

are predicted with lower frequency, as shown by our experimental results. The net result of this 

is that the sensitivity of predicting dense breast improves with equal class sampling. Moreover, 

equal class sampling leads to lower specificity for classification of dense breast. From a policy 

perspective, this can lead to more patients being notified that they have dense breast. If 

additional imaging is performed on these patients, this may lead to increases in the number of 

false positives. This is a key example of how the manner in which deep learning models are 

trained can have implications for clinical care. 

It was observed that a model trained on all races performed agreed with radiologist to 

different degrees, depending on race. Notably, this did not change when the model was only 

trained on whites. This suggests that the differential performance across races is not due to poor 

generalization across imaging from patients of difference races, but rather differences in 
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consistency of radiologist assessment for different races. Whether this is due to differing 

distributions of breast density across races (i.e. a radiologist is less consistent in calling certain 

classes of breast density) or other differences across races remains an open question. 

One critical hurdle that prevents the deployment of deep learning models in the clinical 

work environment is their relatively poor generalizability across institutional differences, such as 

patient demographics, disease prevalence, scanners, and acquisition settings. In fact, other deep 

learning studies that have shown poor generalizability of deep learning models when applied to 

data from different institutions than the one they were trained on.78,79 In our study, we found that 

models trained on specific digital-mammography data formats do not generalize to other data 

formats, and it was only after training on images from all digital-mammography data formats did 

our model achieve generalizability. Indeed, several deep learning studies for mammographic 

breast density assessment were only validated on patient cohorts from a single institution and/or 

digital-mammography systems.202,225,226 Some possible differences between different digital-

mammography systems or versions of systems include the x-ray tube target, filter, digital 

detector technology, and control of automatic exposure.227 Our results add to the growing body 

of literature that states that deep learning models do not necessarily generalize when applied to 

data that differs from that which the model was trained with. 

 One approach to improve model performance at a new institution is to fine-tune the 

model at that institution. However, it was observed that this resulted in lower performance on the 

original training data. This phenomenon, known as catastrophic forgetting, can have implications 

for model deployment. Specifically, if a model that was FDA approved is subsequently fine-

tuned, the model is now invalid for the original patient population that was used for evaluation. 

Regulations need to be put into place to ensure the integrity of deep learning models. 
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Alternatively, there are some approaches to mitigate catastrophic forgetting such as elastic 

weight consolidation and orthogonal weight modification.171,172 Future studies can evaluate the 

effectiveness of these approaches for medical use cases. 

Various studies have shown the utility of crowdsourcing and citizen science in biological 

and medical annotation.228–230 As such, we performed a crowdsourcing assessment of our 

algorithm and radiologist annotations. Given the diversity of experience of the participants, it is 

unsurprising that the agreement between both the crowd and radiologist and the crowd and 

algorithm was lower than the agreement between algorithm and radiologist. Interestingly, the 

crowd had higher agreement with the algorithm than the crowd did with the radiologist, which 

may reflect the consistency of the algorithm in its assessment compared to the various 

radiologists in our multi-institutional study. 

 

4.6 Limitations 

There are several limitations to our study. First, we only investigated a scenario where 

hyperparameter are manual tuned and did not compare performance with AutoML, where model 

architecture and hyperparameters are tuned automatically.231 Also, we only had one radiologist, 

from a cohort of radiologists, perform interpretation for each patient study. Future studies will 

incorporate multiple readers for each patient study. In addition, for models initialized with 

random weights, we did not optimize training hyperparameters such as the learning rate schedule 

or the duration of training.232 It is possible that optimization would improve the performance of 

the randomly initialized model, but in this study, we show the performance advantage of 

pretrained neural networks with minimal hyperparameter tuning. Additionally, we only 

ensembled models trained with the same data, architecture, and training parameters. Ensembling 
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models with differing parameters may further improve model performance.233 Furthermore, in 

our investigation of augmentation, we only explored random flips and rotations, though future 

work will explore other augmentation techniques such as intensity scaling and elastic 

deformations.234 Also, our crowdsourcing assessment included participants with a wide range of 

expertise. Future studies can further utilize crowdsourcing for evaluation with only experienced 

breast imaging radiologists as participants. Lastly, we only assessed mammography in this study 

– the incorporation of MR can further improve the clinical utility for assessment of breast cancer 

risk and outcomes.235,236 

 

4.7 Conclusions 

We showcase the various data, training, and model parameters that can influence model 

performance. Furthermore, we found that model performance deteriorates when training and 

testing on different imaging data formats. In performing this study in tandem with the 

development of the ACR AI-LAB, we demonstrate important principles that radiologists and 

data scientists have to consider when training neural network models. Our hope is that users of 

the AI-LAB can use this study as an educational tool when utilizing the AI-LAB to train their 

own deep learning models. 
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5 Enhancing glioma workflows with deep learning 

5.1 Potential for automated tools for glioma 

 The current clinical workflow for a patient with neurological symptoms suspicious of 

brain malignancy is to receive MR imaging. This is followed by an invasive biopsy for 

pathological assessment and evaluation of molecular markers. Based on the information revealed 

by radiology and pathology, the patient receives a treatment that is a combination of 

chemotherapy, radiation, and surgery. The patient is then evaluated for treatment response using 

the Response Assessment in Neuro-Oncology (RANO) criteria, which is based on imaging and 

clinical information.237 Based on how well the patient is responding to treatment, the patient is 

either continued on the current treatment course or considered for alternative approaches (Fig. 5-

1).  Within this clinical workflow, there are many potential opportunities for automated tools. 

The ones that I will focus on in this chapter are: 1) Detection and delineation of tumor 

boundaries, 2) Treatment response assessment42, 3) Non-invasive prediction of the Isocitrate 

Dehydrogenase (IDH) molecular marker.12 

 

 

Figure 5-1. The current clinical workflow for patient with suspected glioma. 
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5.2 Background on automatic segmentation and response assessment 

Gliomas are primary central nervous system (CNS) tumors with variable natural histories 

and prognoses depending on their histologic and molecular characteristics.101 The current gold 

standards to determine treatment response and assess tumor progression in clinical trials are the 

Response Assessment in Neuro-Oncology (RANO) criteria.89 For high-grade gliomas, including 

glioblastomas (GBMs), radiographic response assessment is based on 1) measuring the 2D 

product of maximum bi-dimensional diameters of contrast-enhancing tumor and 2) qualitative 

evaluation of T2/fluid-attenuated inversion recovery abnormal (FLAIR)-hyperintense 

regions.89,95  However, manual delineation of tumor boundaries can be difficult due to the 

infiltrative nature of gliomas and presence of heterogeneous contrast enhancement, which is 

particularly common during anti-angiogenic treatment. As a result, there can be substantial inter-

rater variability in 2D measurements for both contrast-enhancing and FLAIR-hyperintense 

tumors.94,238,239 Furthermore, variability in segmentation can introduce substantial variability in 

calculated mean values of multi-parametric MR parameters, such as the volume transfer 

constant.240 Consequently, there is great interest in developing reproducible automated methods 

for segmentation and calculation of the product of maximum bi-dimensional diameters.   

Although 2D linear measurements currently represent the gold standard for response assessment, 

volumetric measurements may capture tumor burden more accurately, particularly because 

gliomas are often irregularly shaped. However, volumetric response assessment has not been 

adopted for routine use due to the laborious efforts needed to perform tumor segmentation using 

existing tools and a lack of large-scale studies validating its benefit over simpler 2D approaches.  

A recent consensus paper on brain tumor imaging in clinical trials noted volumetric analysis as 

an improvement to current protocols.241 An automated segmentation tool could help facilitate the 
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use of tumor volume as a response endpoint in clinical trials and allow integration into the 

clinical work-flow. Rapid and reproducible tumor segmentation is also an essential step towards 

voxel-based quantitative assessment of single as well as multi-parametric imaging biomarkers of 

tumor response to treatment.12,242–245  

With the advent of more powerful graphics processing units, deep learning has become 

the method of choice for automatic segmentation of medical images.98,99 At the core of deep 

learning is the convolutional neural network; a machine learning technique that can be trained on 

raw image data to predict clinical outputs of interest. Existing deep learning methods have not 

been developed for the post-operative setting where the surgical cavity and brain distortion 

makes it difficult to reliably outline the boundaries of the tumor.98,246  

There are two key challenges to automatic tumor segmentation. The first challenge is 

variability in brain extraction, an image pre-processing technique that separates the brain from 

skull and is essential for many neuroimaging applications.247 Removing the skull from the image 

prevents automatic segmentation algorithms from falsely labeling non-brain regions as tumor 

and enables consistent intensity normalization across all patients. Many automated methods exist 

for brain extraction but their generalizability is limited 248–252. Without manual correction, poor 

brain extraction can introduce errors in downstream automatic segmentation.253 This is 

particularly important in the post-operative setting due to the widely heterogeneous and variable 

appearance of surgical cavity, calvarium, and scalp. The second challenge is generalizability: 

MR intensity values vary substantially depending on the MR scanner properties (including 

manufacturer, scanner type, and field strength) and acquisition parameters (including echo time, 

repetition time, and contrast injection dose/timing) and can result in substantial differences in 
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tumor appearance.241 Consequently, algorithms trained on limited datasets may not apply well to 

data acquired from different institutions, acquisition protocols, and patient populations.   

In this section, we developed a fully automated pipeline for brain extraction and tumor 

segmentation that can be used to reliably generate abnormal FLAIR hyperintensity and contrast-

enhancing tumor volumes as well as 2D bi-dimensional diameters according to the RANO 

criteria. Importantly, we utilize the biology in our approach – the brain encapsulates the FLAIR 

hyperintensity, which encapsulates the enhancing tumor. As such, we perform brain extraction 

first, followed by FLAIR hyperintensity segmentation which is fed as an input into the enhancing 

tumor segmentation (Fig. 5-2).8 

 

 

Figure 5-2. A sequential deep learning approach was designed for segmentation to utilize 

biological context. 

 

We then validated the performance of the algorithm in both a multi-institutional pre-

operative patient cohort and a longitudinal post-operative patient cohort from a single institution 

by comparing automated measurements to manual measurements derived from experts. 
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5.3 Materials and methods 

5.3.1 Pre-operative patient cohort 

The study was conducted following approval by the Hospital of the University of 

Pennsylvania (HUP) and the Partners Institutional Review Boards. Glioma patients at HUP, The 

Cancer Imaging Archive (TCIA), Massachusetts General Hospital (MGH), and Brigham and 

Women’s Hospital (BWH) were retrospectively identified. The imaging study dates for HUP, 

MGH, and BWH ranged from 1998-2016. For the TCIA cohort, we identified glioma patients 

with pre-operative MRI data from TCGA and IvyGap.254 All patients met the following criteria: 

(i) histopathologically confirmed grade II-IV glioma according to World Health Organization 

(WHO) criteria (2007 or 2016 criteria depending on whether the case occurred before or after 

2016) and (ii) available preoperative MRI consisting of T2-weighted fluid attenuation inversion 

recovery (FLAIR) and post-contrast T1-weighted (T1 post-contrast) images. Patients were 

excluded if glioma was not histopathologically confirmed, either FLAIR or T1 post-contrast 

imaging was unavailable, or if there was excessive motion artifact on imaging. Demographics 

are shown in Table 5-1. The acquisition settings of the imaging for the pre-operative patient 

cohort are shown in Fig. 5-1 and 5-2. For the pre-operative cases, both 2D and 3D T1-weighted 

images were used, depending on which were available. 3D T1-weighted imaging was available 

for 29% of the patients in the pre-operative patient cohort. Our final pre-operative patient cohort 

included 239 patients from HUP, 293 patients from TCIA, 154 patients from MGH, and 157 

patients from BWH.  

 

 
HUP, n = 239 TCIA, n = 293 MGH , n = 154 BWH, n = 157 Post-Operative, n=54 

Gender  (% Male) 54% 60% 60% 57% 61% 

Age (yr) 53 (18-88)  54 (14-84) 52 (22-86) 48 (18-85) 65 (22-77) 
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Grade  

       II 
       III 

       IV 

 

59 
83 

97 

 

46 
57 

190 

 

19 
56 

79 

 

31 
46 

80 

 

0 
0 

54 

Table 5-1. Age, gender, and histologic grade for the pre-operative (HUP, TCIA, MGH, and 

BWH) and post-operative patient cohorts (MGH). Note.- Age is shown as mean (minimum-

maximum). 
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Figure 5-3. Scatter plots of Magnetic Field Strength, Resolution, Slice Thickness, Repetition 

Time, and Echo Time of FLAIR imaging in the pre-operative patient cohort. Histogram of 

frequencies are shown along the diagonal. 
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Figure 5-4. Scatter plots of Magnetic Field Strength, Resolution, Slice Thickness, Repetition 

Time, and Echo Time of T1 post-contrast imaging in the pre-operative patient cohort. Histogram 

of frequencies are shown along the diagonal. 

 

5.3.2. Post-operative patient cohort 

MRI data were acquired from two clinical trials at MGH that enrolled patients with newly 

diagnosed glioblastoma receiving standard chemoradiation (NCT00756106) or standard 

chemoradiation with cediranib (NCT00662506). There were 54 total patients. The Dana-

Farber/Harvard Cancer Center IRB approved these studies. Inclusion criteria for both trials were 

age > 18 years, post-surgical residual contrast-enhancing tumor size of ≥ 1 cm in one dimension, 

histologically confirmed diagnosis of glioblastoma, and eligibility for standard therapy after 

surgery. For NCT00756106, MRI was performed at the following time points: within 1 week of 

starting chemoradiation therapy (baseline visit 1), 1 day before starting chemoradiation therapy 

(baseline visit 2), weekly during chemoradiation, and monthly before each cycle of adjuvant 

temozolomide until disease progression or at least until completion of six cycles of adjuvant 

temozolomide (whichever one occurred first).255 MRI time points for NCT00662506 were 

previously described in Batchelor et. al.256 MRI was performed at 3.0T (TIM Trio, Siemens 

Healthcare, Erlangen, Germany) and included FLAIR (TR = 10,000 ms, TE = 70 ms, 5-mm slice 

thickness, 1-mm inter slice gap, 0.43-mm in-plane resolution), and both pre- and post-contrast 

T1-weighted (TR = 600 ms, TE = 12 ms, 5-mm slice thickness, 1-mm interslice gap, 0.43-mm 

in-plane resolution) images. Our final post-operative patient cohort consisted of 713 visits from 

54 patients from MGH. Twenty-one patient visits were excluded due to missing MRI sequences 

or excessive motion artifact. 
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5.3.3 Expert brain extraction, tumor segmentation, and RANO measurements 

Brain extraction was performed in 42 randomly selected patients from the pre-operative 

and post-operative patient cohort by one rater (R.Y.H., neuroradiologist, 9 years experience). 

Manual tumor segmentations were performed on the FLAIR-hyperintense areas in the pre-

operative patient cohort (Q.S., neuroradiologist, 5 years experience; R.Y.H.; A.B., neurosurgery 

resident, 5 years experience) and the FLAIR-hyperintense as well as contrast-enhancing tumor 

areas in the post-operative patient cohort (E.R.G., neuro-oncologist, 12 years experience, M.C.P., 

neuroradiologist, 11 years experience), with segmentation for each patient visit performed by a 

single expert evaluating both the pre- and post contrast MRIs to exclude post-operative blood 

products. Manual RANO bi-directional measurements as well as assessment for FLAIR 

progression were performed by two raters (E.R.G.; K.I.L., neuro-oncologist, 7 years experience) 

for both baseline visits, the visit with the lowest manual contrast-enhancing tumor volume, and 

the last patient visit from the post-operative patient cohort.237 

 

5.3.4 Deep learning-based brain extraction 

To remove any low-frequency intensity non-uniformity, N4 bias correction was applied 

to all MR images by subtracting the mean and then dividing by the standard deviation of the 

whole image (Fig. 5-5).  Images were subsequently registered to FLAIR images using 3D 

Slicer.257,258 The 42 patients for whom expert brain mask extraction was performed were divided 

into training (n = 30) and testing (n = 12) sets. The neural network was trained on the training 

set. As a point of reference, we compared brain extraction using our deep learning algorithm 

with that of other commonly used automatic brain extraction methods (Hybrid Watershed 
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Algorithm, Robust Learning-Based Brain Extraction, Brain Extraction Tool, 3dSkullStrip, and 

Brain Surface Extractor).247–252 All methods were applied to the T1 post-contrast images using 

default parameters except for Robust Learning-Based Brain Extraction, which has no tunable 

parameters. 

 

 

Figure 5-5. (A) Image pre-processing steps in our proposed approach. (B) A U-Net architecture 

was used for skull-stripping and tumor segmentation. The input is a patch from FLAIR, T1 pre-

contrast, T1 post-contrast, and/or FLAIR tumor region depending on the segmentation task. The 

output is a binary label map. 

 

5.3.5 Deep learning-based abnormal FLAIR hyperintensity and contrast-enhancing Tumor 

Segmentation  

Following brain extraction, N4 bias correction was re-applied to brain tissue only. In 

order to evaluate the performance of brain extraction and segmentation separately, any tumor 

region, that was identified by the expert manual segmentation and removed during our brain 

extraction method was reinserted. 
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The HUP, TCIA, and MGH patient pre-operative cohorts were randomly divided into 

training and testing sets in a 4:1 ratio. The BWH patient cohort was used as an independent 

testing set. A single neural network model was trained for FLAIR hyperintensity segmentation in 

the pre-operative patient cohort using only the training set. Once the model was trained, 

performance was assessed on the testing and independent testing sets.  

The patients from the single institutional post-operative patient cohort were randomly 

divided into training and testing sets in a 4:1 ratio. Data were split on a patient level such that all 

visits for a patient were either entirely in the training or test set (Fig. 5-6). Two neural network 

models were trained for the post-operative patient cohort: FLAIR hyperintensity segmentation 

and contrast-enhancing tumor segmentation. Only the training set was used during training of the 

model. Once trained, the performance of the model was assessed on the separate testing set. 

 

 

Figure 5-6. (A) Division of Training, Testing, and Independent Testing Sets in the preoperative 

patient cohort. (B) Division of Training and Testing in the post-operative patient cohort. 

 

5.3.6 Neural network architecture and post-processing 

We utilized the 3D U-Net architecture, a neural network designed for fast and precise 

segmentation, for both brain extraction and tumor segmentation (Fig. 5-5B).8,259 Similar to the 
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original 2D U-Net, our architecture consists of a downsampling and an upsampling arm with 

residual connections between the two that concatenate feature maps at different spatial scales. 

The networks were designed to receive input patches from multiple channels: 1) FLAIR and T1 

post-contrast images for brain extraction, 2) FLAIR and T1 post-contrast images for FLAIR 

hyperintensity segmentation in the pre-operative patient cohort, 3) FLAIR, T1 pre-contrast, and 

T1 post-contrast images for FLAIR tumor segmentation in the post-operative patient cohort, and 

4) FLAIR, T1 pre-contrast, T1 post-contrast, and FLAIR hyperintensity region for contrast-

enhancing tumor segmentation in the post-operative patient cohort. Rectified linear unit 

activation (ReLU) was used in all layers, with the exception of the final sigmoid output. Batch 

normalization was applied after each convolutional layer for regularization. We used Nestorov 

Adaptive Moment Estimation to train the 3D U-Nets with an initial learning rate 10−5, 

minimizing a soft Dice loss function: 

(1)  𝐷(𝑝, 𝑔) =
2 ∑ 𝑔𝑖𝑝𝑖𝑖

∑ (𝑔𝑖 + 𝑝𝑖)𝑖 + 𝛼
 

where D is Dice, p is the probability output of the neural network, g is the ground truth, and α is 

a constant. Our networks were implemented in DeepNeuro with Keras/Tensorflow backend.10 

Each U-Net was trained on a NVIDIA Tesla P100 graphics processing unit. During training, 

20% of the training set was withheld as a validation set. For brain extraction, 50 patches 

(64x64x8) were extracted, randomly, for each patient in the training set and 10 patches were 

extracted for each patient in the validation set. For tumor segmentation, 20 patches (64x64x8) 

were extracted from normal brain and FLAIR hyperintense regions in a 1:1 ratio for each patient 

in the training set and 4 patches were extracted for each patient in the validation set. Before 

patches were used to train the network, they were augmented by means of sagittal flips. 



124 
 

Augmentation increases the size of the training set while also preventing overfitting.12 

The network was trained through all extracted patches until the validation loss did not improve 

for 10 consecutive iterations. Once the network was trained, inference was performed by 

gridding the MR images into patches at 8 different offsets from the upper-most corner of the 

image. The model then predicted probability maps for each of these patches, and voxels with 

predictions from multiple overlapping patches had their probabilities averaged. For prediction of 

the contrast-enhancing tumor regions, the output probability map from the FLAIR hyperintensity 

segmentation neural network was used as input instead of the manually derived FLAIR 

hyperintensity region. 

 

5.3.7 AutoRANO algorithm 

We developed an AutoRANO algorithm to automatically derive RANO measurements 

from our automatic deep-learning based contrast-enhancing tumor segmentations as described 

above. The algorithm searches for the axial slice with the largest tumor area and determines if 

the lesion is measurable. A measurable lesion was defined as a minimum length of both 

perpendicular measurements greater than or equal to 12 mm (based on a threshold of 10 mm if 

slice thickness + gap <= 5 mm or a threshold of 2 x [slice thickness + gap] if slice thickness + 

gap > 5 mm).88 If the lesion was measurable, the product of maximum bi-dimensional diameters 

was automatically derived by first exhaustively searching for the longest diameter and then the 

corresponding longest perpendicular diameter. The angle between the longest diameter and the 

perpendicular diameter was restricted to 85-95º. If there was more than one measurable lesion on 

the same scan, the products of maximal bi-dimensional diameters were summed (for up to 5 
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measurable lesions).88 The AutoRANO algorithm was applied to the automatically segmented 

contrast-enhancing tumor regions (Fig. 5-7C). 

 

 

Figure 5-7. (A) Example of manual vs automatic FLAIR hypertintensity segmentation (A) and 

enhancing-tumor segmentation (B) for the testing set in the post-operative patient cohort. (C) 

Examples of AutoRANO applied to automatic enhancing segmentations on the post-operative 

patient cohort. 

 

5.3.8 Comparison of manual vs automatic determination of response assessment 

To compare manual vs automatic determination of no progression vs progression, the 

nadir of the baseline visits and the patient visit with the smallest manual contrast-enhancing 

tumor volume were compared with the last patient visit. For manual raters, progression was 

defined as ≥25% increase in RANO measurement, presence of FLAIR progression, or the 
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presence of new measurable contrast-enhancing lesions.88,237 Similar criteria were applied for 

AutoRANO with FLAIR progression defined as ≥40% increase in FLAIR hyperintensity 

volume. Agreement between Rater 1, Rater 2, and Auto RANO were assessed by means of 

unweighted κ coefficient.  

 

5.3.9 Statistical analysis 

Neural network segmentation was compared with expert segmentation by means of 

Sørensen–Dice coefficient, sensitivity, and specificity, and evaluated statistically using the 

Dunnet’s test (significance level p < 0.05). Comparison of volume and RANO measurements 

were assessed via either the Spearman’s rank correlation coefficient (ρ) or intraclass correlation 

coefficient (ICC) (significance level p < 0.05). For the assessment of rater-algorithm agreement 

for volumes in both the pre-operative and post-operative patient cohorts, where each patient visit 

has only one rater perform segmentation, ICC estimates were calculated based on a single 

measurement, absolute-agreement, one-way random-effects model. For assessment of intra-

rater/algorithm reliability in the double baseline visit in the post-operative patient cohort, ICC 

estimates were calculated based on a single measurement, absolute-agreement, two-way mixed-

effects model. For assessment of inter-rater and rater-algorithm agreement for RANO measures 

in the post-operative patient cohort, where each rater as well as the algorithm assessed the same 

patient visits, ICC estimates were calculated based on a single measurement, absolute-agreement, 

two-way random-effects model. R package IRR (inter rater reliability) was used for ICC 

computation.260 For the post-operative patient cohort, the nadir was defined as the minimum 

volume or minimum 2D linear measurements at any time point from baseline to last visit. For 

longitudinal comparison of volume and RANO measurements, the last patient visit was assessed 



127 
 

relative to the nadir (delta measure = volume or RANO measure of the last patient visit – volume 

or RANO measure of the nadir). 

 

5.4 Results 

5.4.1. Deep learning-based brain extraction 

We compared brain extraction using our deep learning algorithm, based on the 3D U-Net 

architecture259, with that of both human expert and commonly used brain extraction software 

packages. The mean Dice score between our algorithm and manual expert brain extraction was 

0.935 (95% CI, 0.918-0.948) in the testing set (Supplementary Table 2, Fig. 5-8A). Compared to 

other commonly used brain extraction techniques (Table 5-2), our algorithm had the highest Dice 

score and specificity for the testing set. When the U-Net was applied to all 843 patients in the 

pre-operative patient cohort, the mean fraction of FLAIR hyperintensity retained in the extracted 

brain image (defined as tumor volume remaining in the brain-extracted image divided by total 

tumor volume) was 0.987 (95% CI, 0.984-0.990, Fig. 5-8B). When applied to the 713 patient 

visits in the post-operative patient cohort, the mean fraction of FLAIR hyperintensity and 

contrast-enhancing tumor retained in the extracted brain image was 0.996 (95% CI, 0.994-0.997, 

Fig. 5-8C) and 0.982 (95% CI 0.977-0.987), respectively. 

 
 

Dice Sensitivity Specificity 
 

Training 

(n = 30) 

Testing 

(n = 12) 

Training 

(n = 30) 

Testing 

(n = 12) 

Training 

(n = 30) 

Testing 

(n = 12) 

U-Net 0.954 0.935 0.966 0.956 0.986 0.978 

Hybrid Watershed Algorithm 0.905* 0.900 0.921 0.978 0.976 0.949 

Robust Learning-Based Brain Extraction 0.925 0.911 0.897** 0.943 0.986 0.965 

Brain Extraction Tool 0.826*** 0.854* 0.954 0.966 0.909*** 0.923* 

3dSkullStrip 0.841*** 0.848* 0.956 0.965 0.916*** 0.919* 

Brain Surface Extractor 0.812*** 0.800*** 0.740*** 0.773*** 0.983 0.961 
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Table 5-2. Mean Dice, sensitivity, and specificity compared to human expert brain extraction our 

deep learning algorithm (based on 3D U-net architecture) versus other commonly used skull-

stripping methods within the training and testing sets. Note.- Methods with the highest 

performance are shown in bold. Dunnet’s test was used to compare significance between 3D U-

Net and the other skull-stripping methods. *p < 0.05, **p < 0.01, ***p < 0.001 

 

 

Figure 5-8. (A) Example of skull-stripping using 3D U-Net (B) Histogram plot of the fraction of 

FLAIR tumor that was retained after brain extraction for all patients in the pre-operative patient 

cohort (n = 843) (C) Histogram plot of the fraction of FLAIR hypertintensity that was retained 

after brain extraction for all patient visits in the post-operative patient cohort (n = 713) 
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Figure 5-9. Example of the performance different brain extraction methods on a test patient visit 

from the post-operative patient cohort. This patient visit had a fluid-filled resection cavity, a 

clear surgical point of entry, and enhancing adhesions. In this scenario, the U-Net performed 

better than the other brain extraction methods at removing the resection cavity while not 

removing brain tissue. 

 

5.4.2 Deep learning-based FLAIR hyperintensity and contrast-enhancing tumor volume 

segmentation 

The average time for brain extraction, FLAIR hyperintensity, and contrast-enhancing 

tumor segmentation was 19 seconds using our trained algorithms. For the testing set of the pre-

operative patient cohort, the mean Dice score for FLAIR hyperintensity segmentation was 0.796 

(95% CI 0.753-0.803) (Table 5-3). For the independent testing set, the mean Dice score for 

automatic FLAIR hyperintensity segmentation compared to expert human segmentation was 

0.819 (95% CI 0.793-0.842). Examples of FLAIR hyperintensity segmentations for the 

independent testing set of the pre-operative patient cohort are shown in Fig. 5-10. For the testing 

set of the post-operative patient cohort, the mean Dice score for automatic FLAIR hyperintensity 

segmentation compared to manual segmentation was 0.701 (95% CI 0.670-0.731). The mean 

Dice score for automatic segmentation compared to manual contrast-enhancing tumor 

segmentation was 0.696 (95% CI 0.660-0.728).  
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 HUP TCIA MGH BWH Total 

 n Dice n Dice n Dice n Dice n Dice ρ ICC 

Training 191 0.785 239 0.823 118 0.822 
 

548 0.810 0.948 0.926 

Testing 48 0.812 59 0.801 31 0.763 138 0.796 0.914 0.873 

Independent 

Testing 
 157 0.829 157 0.819 0.957 0.923 

Table 5-3. Mean Dice similarity coefficient for automatic versus expert manual segmentations of 

FLAIR tumor. Spearman’s rank coefficient (ρ) and intraclass correlation coefficient (ICC) were 

calculated to show agreement in volumes derived from automatic and manual segmentations. 
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Figure 5-10. (A) Example of manual vs automatic FLAIR hypertintensity segmentation of a (A) 

grade II, (B) grade III, (C) grade IV glioma for the independent testing set of the pre-operative 

patient cohort. An example of automatic segmentation with poor agreement with expert manual 

segmentation (grade III) is shown in (D). Segmentations shown are overlaid on axial FLAIR 

image. 

 

Examples of FLAIR hyperintensity and contrast-enhancing tumor segmentations for the 

testing set of the post-operative patient cohort are shown in Fig. 5-7A-B. Examples of 

longitudinal tracking of FLAIR hyperintensity and contrast-enhancing tumor volumes for two 

patients in the testing set are shown in Fig. 5-11. The ICC for calculated FLAIR hyperintensity 

volumes between automatic and manual segmentation was 0.915 (p < 0.001) in the pre-operative 

and 0.924 (p < 0.001) in the post-operative patient cohorts. The ICC for calculated FLAIR 

hyperintensity volumes between automatic and manual segmentation in the pre-operative patient 

cohort was 0.901 (p < 0.001) for Grade II, was 0.936 (p < 0.001) for Grade III, and was 0.899 (p 

< 0.001) for Grade IV. The ICC for contrast-enhancing tumor volume in the post-operative 

patient cohort was 0.965 (p < 0.001, Fig. 5-12). In the rare cases when the algorithm was off, the 

reason was due to similarity in signal intensity between normal brain and tumor – a similar 

challenge for human readers (Fig. 5-10D and Fig. 5-13). 
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Figure 5-11. Longitudinal plots of automatic vs manual volumes for 2 patients in the testing set 

of the post-operative patient cohort, demonstrating that automatic measurements mirror the 

pattern of volume changes seen with manual measurements. 

 

 

Figure 5-12. Automatically and manually derived volumes are highly correlated. Correlation 

between manually and automatically derived volumes for (A) FLAIR hypertintensity in the pre-

operative patient cohort, (B) FLAIR hyperintensity in the post-operative patient cohort, and (C) 

contrast-enhancing tumor in the post-operative patient cohort. Training and Testing Sets are 

shown light blue/red/gray and dark blue/red/gray, respectively. Line of identity (x = y) is shown 

in all plots. 
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Figure 5-13. Examples of automatic segmentation with poor agreement with expert manual 

segmentation from the testing set is shown in (A) for FLAIR hyperintensity (overlaid on axial 

FLAIR image) and (B) contrast-enhancing (overlaid on T1 post-contrast image). 

 

5.4.3 Repeatability of volume and RANO measurements in the post-operative patient cohort 

Repeatability of manual and automatic measurements was assessed by comparing 

measurements from the two baseline visits for each patient. Comparing baseline visits 1 and 2 for 

FLAIR hyperintensity volume, the ICC was 0.983 (p < 0.001) for manual volume measurement 

and 0.986 (p < 0.001) for automatic volume measurement. For contrast-enhancing tumor volume, 

the ICC was 0.964 (p < 0.001) for manual volume measurement and 0.991 (p < 0.001) for 

automatic volume measurement.  

Comparing baseline visits 1 and 2 for RANO measurements, the ICC was 0.984 (p < 

0.001) for manual RANO and 0.977 (p < 0.001, Fig. 5-14) for AutoRANO. Notably, there were 

five patients assessed by one rater that had measurable lesions on one but not the other baseline 

visit. Similarly, there were three patients assessed by the other rater that had measurable lesions 

on one but not the other baseline visit. By comparison, when using the AutoRANO algorithm, no 

patients had a discrepancy in the presence/absence of measurable lesions between the two 

baseline visits. 
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Figure 5-14. Volume and RANO measures are highly repeatable. Repeatability of (A) Manual 

FLAIR hypertintensity Volume, (B) Automatic FLAIR hypertintensity Volume, (C) Manual 

Contrast-Enhancing Tumor Volume, (D) Automatic Contrast-Enhancing Tumor Volume, (E) 

Manual RANO, and (F) AutoRANO in the post-operative patient cohort. Training and Testing 

Sets are shown as in light blue and dark blue, respectively, in B, D, and F. Line of identity (x = 

y) is shown in all plots. 

 

5.4.4 Inter-rater agreement for manual RANO and agreement between manual RANO and 

AutoRANO 

In assessing inter-rater agreement, the ICC for manual RANO measurements between the 

two expert raters was 0.704 (p < 0.001). In assessing rater-algorithm agreement, the ICC was 

0.768 (p < .001) between AutoRANO and Rater 4 and 0.501 (p < 0.001, Fig. 5-15) AutoRANO 

and Rater 6. 
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Figure 5-15. There was moderate inter-rater and manual-algorithm agreement for RANO 

measures. Agreement between RANO measures for (A) Rater 6 vs Rater 4, (B) AutoRANO vs 

Rater 4, and (C) AutoRANO vs Rater 6 in the post-operative patient cohort. Training and Testing 

Sets light blue and dark blue, respectively, in B and C. Line of identity (x = y) is shown in all 

plots. 

 

5.4.5 Automatic treatment response assessment 

Comparisons between nadir and the last patient visit were made (delta measure = last patient 

visit measure – nadir measure). In assessing rater-algorithm agreement for the delta measures, 

the ICC between automatic and manual delta measurements were 0.917 (p < 0.001), 0.966 (p < 

0.001), and 0.850 (p < 0.001) for FLAIR hyperintensity volume, contrast-enhancing tumor 

volume, and RANO measures, respectively (Fig. 5-16). For non-progression vs progression, 

there was moderate agreement between both raters as well as Auto RANO: the κ coefficient for 

Rater 4 vs Rater 6, AutoRANO and Rater 4, and Auto RANO and Rater 6 was 0.546, 0.451, and 

0.530, respectively (Fig. 5-17). 
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Figure 5-16. There was high agreement between manually and automatically derived 

longitudinal changes in volume and RANO measures. Agreement between automatic and manual 

delta measures for (A) FLAIR hypertintensity volume, (B) contrast-enhancing tumor volumes, 

and (C) RANO measure in the post-operative patient cohort. Training and Testing Sets are 

shown light blue/red and dark blue/red, respectively. Line of identity (x = y) is shown in all 

plots. 

 

 

Figure 5-17. Classification of Non-Progressive Disease (ND) and Progressive Disease (PD) 

based on comparison of baseline and last patient visits for (A) Rater 4 vs Rater 6, (B) 

AutoRANO vs Rater 4, and (C) AutoRANO vs Rater 6 in the post-operative patient cohort. 
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5.4.6 Correlation between RANO measures and manual volume 

Spearman’s ρ coefficient between manual RANO measures and manual enhancing-tumor 

volume was 0.787 (p < 0.001). Spearman’s ρ coefficient between AutoRANO measures and 

manual enhancing-tumor volume was 0.940 (p < 0.001, Fig. 5-18).  Spearman’s ρ coefficient 

between delta manual RANO measures and delta manual enhancing-tumor volume was 0.744 (p 

< 0.001). Spearman’s ρ coefficient between delta AutoRANO measures and delta manual 

enhancing-tumor volume was 0.832 (p < 0.001, Supplementary Fig. 19). 

 

 

Figure 5-18. AutoRANO had higher agreement with manual contrast enhancing volume than 

manual RANO measures. Correlation between manual contrast-enhancing volume and RANO 

measures for (A) Manual RANO and (B) AutoRANO in the post-operative patient cohort. 

Training and Testing Sets are shown in light blue and dark blue, respectively in B. Linear fit is 

shown in all plots. 
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Figure 5-19. Delta AutoRANO had higher agreement with delta manual contrast enhancing 

volume than delta manual RANO measures. Correlation between delta manual contrast-

enhancing volume and delta RANO measures for (A) Delta Manual RANO and (B) Delta 

AutoRANO in the post-operative patient cohort. Training and Testing Sets are shown in light 

blue and dark blue, respectively in B. Linear fit is shown in all plots. 

 

5.5 Discussion 

In this section, we demonstrate the utility of a fully automated, deep learning-based 

pipeline for calculation of tumor volumes and RANO measurements. A key image pre-

processing step is brain extraction, which removes non-brain tissue – a significant source of error 

for downstream tumor segmentation. Although automatic brain extraction methods exist, 

performance can be compromised in a dataset with varying MR scanners and acquisition 

protocols, which in turn lead to variations in image contrast and intensity. Lesion pathology 

introduces an additional mode of variability due to the diversity of anatomical locations and 

radiographic features. Surgery also introduces variability due to the presence of blood products, 

proteinaceous material, resection cavities, and surgical defects/scars (Fig. 5-9). The result is that 

previous state-of-the art methods often require parameter tuning or manual correction on a case-

by-case basis for patients with pathology, introducing time-consuming manual steps to the image 
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pre-processing pipeline. Korfiatis et al. reported poor skull-stripping using an atlas-based method 

as a significant source of error for their automated tumor segmentation algorithm.247 Here, we 

applied deep learning for brain extraction in a multi-institutional pre-operative glioma patient 

cohort with a wide variety of acquisition settings as well as in a post-operative glioblastoma 

patient cohort from a single institution. The U-Net outperformed other commonly used skull-

stripping methods. Notably, no case-specific parameter tuning or editing was required to achieve 

high performance with the neural network. Our method outperformed Robust Learning-Based 

Brain Extraction, which is the only other brain extraction method studied that does not require 

any parameter tuning. Furthermore, the U-Net has robust recognition of tumor pathology, with a 

high mean fraction of tumor retained in the brain-extracted image.  

After brain extraction, a deep learning framework was applied for FLAIR hyperintensity 

and contrast-enhancing tumor volume segmentation. Even with the varied acquisition protocols, 

our automatic pipeline proved to be robust for segmentation in the majority of patients in our 

multi-institutional dataset. We further developed an algorithm for automatic calculation of 

RANO measurements from contrast-enhancing tumor segmentations. In addition to the pre-

operative setting, our algorithm demonstrated good performance in post-operative MRIs, which 

are particularly challenging given the frequent presence of surgical cavities and brain distortion. 

Furthermore, the algorithm was successfully applied in a longitudinal patient cohort including 

patients that had been treated with cediranib, which blunts the contrast enhancement, yielding ill-

defined contrast enhancement margins that are difficult to contour. It is in these cases, 

particularly, that standardized segmentation is likely to be most helpful. 

Based on the double baseline MRIs, both manually and automatically derived FLAIR 

hyperintensity volume, contrast-enhancing tumor volume, and RANO measurements were highly 
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repeatable, showing intra-rater consistency. However, there were differences in inter-rater 

consistency. The RANO measurements from the AutoRANO algorithm were, on average, larger 

than those of the two human raters. This is likely due to the fact that our AutoRANO algorithm 

performs an exhaustive search of the longest perpendicular diameters while a human performs 

this estimation by eye, which is a less accurate method. This inaccuracy is further evidenced by 

the fact that the average RANO measurements differed between the two raters. In fact, consistent 

with prior reports on the variability in 2D measurements238, it is not surprising that there was 

substantial variability between RANO measurements between our raters. In contrast, we found 

high agreement between manual raters and automatic volume for both contrast-enhancing tumor 

and FLAIR hyperintensity. This suggests that volume measurements allow for greater 

consistency across raters than RANO measurements. 

There was high agreement between manual and automatic measures with regard to 

changes in tumor burden (both contrast-enhancing and FLAIR hyperintensity) during the course 

of longitudinal therapy. However, there was better agreement between manual raters and 

automated measurements for contrast-enhancing tumor volume compared to RANO measures. 

Thus, automated volume measurements were superior to AutoRANO measurements due to 

higher concordance with manual methods.  

Interestingly, AutoRANO correlated better with manual contrast-enhancing tumor 

volume than the manual RANO measurements. Delta AutoRANO (the difference in the bi-

dimensional measurements between the last visit and the nadir scan) also correlated better with 

delta manual contrast-enhancing tumor volume than delta manual RANO measurements. This 

suggests that AutoRANO may be a more accurate measure of tumor burden than manual RANO 

measurement in addition to the advantage of being fully automated.  
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One point to note is that the ICC values for manual vs automatic volumes were higher 

than the Dice scores for manual vs automatic segmentation. This is because Dice is a measure of 

the spatial overlap between the ground truth and segmentations, while the ICC compares 

volumes without considering spatial location. Both metrics provide useful but complementary 

information. Dice as a measure is more sensitive to differences in segmentation along the 

boundary of the lesion. Thus, if manual and automatic segmentations differed along the 

boundary, this can compromise the dice measure which is dependent on the degree of overlap. 

Furthermore, Dice coefficient can be sensitive to lesion size in that a few voxel difference in the 

location of the boundary can substantially reduce the Dice for small lesions but not as much for 

large lesions. In contrast, ICC of volume is less sensitive to boundary effects. If automatic 

segmentation was more conservative at some boundaries and more liberal at other boundaries 

compared to manual segmentation, these effects would cancel out and there would still be high 

concordance between manual and automatic volumes. Indeed, this is the case which is why the 

ICC values were higher than the Dice scores. 

In the manual and automatic determination of response, there was moderate agreement 

between both raters as well as Auto RANO. There are two key reasons for this: 1) Because the 

cutoffs for each response category are percentage based, any variation in the average size of 

RANO measurements can dramatically affect categorization. There were indeed differences in 

the average size of the RANO measurements from Rater 1, Rater 2, and Auto RANO which 

affected response categorization. 2) Deciding if a small lesion around the 1 cm threshold is 

measurable is subjective. If a lesion is not measurable at nadir and becomes measurable on the 

last visit, this would be classified as progressive disease even if the change was only 1-2 mm.  

There were differences in the percentage of lesions considered measurable for both raters and 
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Auto RANO – even on the double baseline scans where size should not have changed. For these 

reasons, there was moderate rater to algorithm agreement in the call for progression, consistent 

with the moderate inter-rater agreement in the call of progression. 

 

5.6 Limitations 

There are some limitations to our study. First, the expert manual volume segmentations 

for each patient were derived from a single rater, which limits our ability to assess inter-rater 

variability of volume segmentation. Future studies could incorporate segmentations from 

multiple raters for segmentation. Second, our post-operative patient cohort contained imaging 

from only 54 patients from a single institution. Additional studies could utilize a larger, multi-

institutional cohort and also assess performance early after surgery versus later after surgery as 

well as in responsive versus progressive disease. Third, our approach utilized a single neural 

network architecture without comparison with other approaches. Future work could explore the 

clinical utility of other neural network architectures as well as ensembles of neural network 

models to.261 Furthermore, only patients with residual enhancing tumor of a certain size after 

surgery were enrolled in the clinical trials, which limits applicability to smaller tumors which 

may be harder to segment. Additionally, patient cohorts with 2D or 3D MR imaging was used in 

this study, as 3D MR imaging is not always available at all institutions. The utilization of only 

3D MR imaging would further improve the reliability of bi-directional and volume measures.241 

Lastly, the confidence of the algorithm in its segmentations could be added to our pipeline to flag 

segmentations that require further verification from clinicians.262,263 This would allow for more 

reliable integration into clinical workflows. Overall, our study shows that automated measures of 

tumor burden are highly reproducible and can reflect changes in tumor burden during the course 
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of treatment. These automated tools could potentially be integrated in routine clinical care and 

imaging analyses performed as part of clinical trials and significantly enhance our accuracy in 

assessing treatment response.  

 

5.7 Background on IDH mutations in glioma 

In 2008, the presence of IDH1mutations, specifically involving the amino acid arginine at 

position 132, was demonstrated in in 12% of glioblastomas100, with subsequent reports observing 

IDH1 mutations in 50-80% of LGGs.101 In the wild-type form, the IDH gene product converts 

isocitrate into α-ketoglutarate.102 When IDH is mutated, the conversion of isocitrate is instead 

driven to 2-hydroxyglutarate, which inhibits downstream histone demethylases.103 The presence 

of an IDH mutation carries important diagnostic and prognostic value. Gliomas with the IDH1 

mutation (or its homolog IDH2) carry a significantly increased overall survival than IDH1/2 

wild-type tumors, independent of histological grade.100,104–106 Conversely, most lower grade 

gliomas with wild type IDH were molecularly and clinically similar to glioblastoma with equally 

dismal survival outcomes.83 IDH wild-type grade III gliomas may in fact exhibit a worse 

prognosis than IDH mutant grade IV gliomas.104 Its critical role in determining prognosis was 

emphasized with the inclusion of IDH mutation status as a classification parameter used in the 

2016 update of WHO diagnostic criteria for gliomas.107 

Pre-treatment identification of isocitrate dehydrogenase (IDH) status can help guide 

clinical decision making. First, a priori knowledge of IDH1 status with radiographic suspicion of 

a low-grade glioma may favor early intervention as opposed to observation as a management 

option. Second, IDH mutant gliomas are driven by specific epigenetic alterations, making them 

susceptible to therapeutic interventions (such as temozolomide) that are less effective against 
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IDH wild-type tumors.108,109 This is supported by in vitro experiments, which have found IDH-

mutated cancer cells to have increased radio- and chemo-sensitivity.110–112 Lastly, resection of 

non-enhancing tumor volume, beyond gross total removal of the enhancing tumor volume, was 

associated with a survival benefit in IDH1 mutant grade III-IV gliomas but not in IDH1 wild-

type high-grade gliomas.113 Thus, early determination of IDH status may guide surgical 

treatment plans, peri-operative counseling, and the choice of adjuvant management plans.  

Non-invasive prediction of IDH status in gliomas is a challenging problem. A recent 

study by Patel et al. using MR scans from the TCGA/TCIA low-grade glioma database 

demonstrated that T2-FLAIR mismatch was a highly specific imaging biomarker for the IDH-

mutant, 1p19q non-deleted molecular subtype of gliomas.264 Other previous approaches toward 

prediction utilized isolated advanced MR imaging sequences, such as relative cerebral blood 

volume, sodium, spectroscopy, blood oxygen level-dependent, and perfusion.265–270 An 

alternative radiomics approach has also been applied, which extracts radiographic features from 

conventional MRI such as growth patterns as well as tumor margin and signal intensity 

characteristics.242,271 Radiomic approaches rely on multi-step pipelines that include generation of 

numerous pre-engineered features, selection of features, and application of traditional machine 

learning techniques.272 Deep learning simplifies this pipeline by learning predictive features 

directly from the image. Deep learning has shown promising capabilities in prediction of key 

molecular markers in gliomas such as 1p19q codeletion and MGMT promoter methylation.273–275 

We hypothesize that a deep learning algorithm, using differences in radiographic differences 

between wild-type and mutants on conventional MR, can achieve high accuracy in predicting 

IDH mutation in gliomas (Fig. 5-20). In this section, we trained a deep learning algorithm to 
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non-invasively predict IDH status within a multi-institutional dataset of low and high-grade 

gliomas. 

 

 

Figure 5-20. Radiographic differences between IDH wild-type and mutant on conventional MR 

 

5.8 Materials and Methods 

5.8.1 Patient Cohorts 

We retrospectively identified patients with histologically confirmed World Health 

Organization grade II-IV gliomas with proven IDH status (after resection or biopsy) at the 

Hospital of the University of Pennsylvania (HUP), the Brigham and Women’s Hospital (BWH), 

and The Cancer Imaging Archive (TCIA). The study was conducted following approval by the 

HUP and DanaFarber/Brigham and Women's Cancer Center (DF/BWCC) Institutional Review 

Boards. MR imaging, clinical variables including patient demographics (i.e. age and sex), and 
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genotyping data were obtained from the medical record under a consented research protocol 

approved by the DF/BWCC IRB. For the TCIA cohort, we identified glioma patients with 

preoperative MR imaging data from TCGA and IvyGap.254 Under TCGA/TCIA data-use 

agreements, analysis of this cohort was exempt from IRB approval. All patients identified met 

the following criteria: (i) histopathologically confirmed primary grade II-IV glioma according to 

current WHO criteria, (ii) known IDH genotype, and (iii) available preoperative MR imaging 

consisting of pre-contrast axial T1-weighted (T1 pre-contrast), post-contrast axial T1-weighted 

(T1 post-contrast), axial T2-weighted fast spin echo (T2), and T2-weighted fluid attenuation 

inversion recovery (FLAIR) images. The scan characteristics for the 3 patient cohorts are shown 

in Fig. 5-21-23. Patients whose genetic data were not confirmed per criteria (see “Tissue 

Diagnosis and Genotyping” section below) were excluded. Our final patient cohort included 201 

patients from HUP, 157 patients from BWH, and 138 patients from TCIA. 

 



147 
 

 

Figure 5-21. Magnetic field strength, resolution, and slice thickness of (a) HUP, (b) BWH, and 

(c) TCIA cohorts for FLAIR, T2, T1 pre-contrast, and T1 post-contrast MR images. 
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Figure 5-22. Echo time for FLAIR, T2, T1 pre-contrast, and T1 post-contrast MRI images of (a) 

HUP, (b) BWH, and (c) TCIA cohorts. 
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Figure 5-23. Repetition time for FLAIR, T2, T1 pre-contrast, and T1 post-contrast MRI images. 

of (a) HUP, (b) BWH, and (c) TCIA cohorts. 

 

5.8.2 Tissue diagnosis and genotyping 

For the HUP cohort, IDH1R132H mutant status was determined using either 

immunohistochemistry (n = 93) or next-generation sequencing, performed by the Center for 

Personalized Diagnostics at HUP on 108 tumors diagnosed after February 2013. For the BWH 

cohort, IDH1/2 mutations were determined using immunohistochemistry, mass spectrometry-

based mutation genotyping (OncoMap) 276, or capture-based sequencing (OncoPanel) 277,278 

depending on the available genotyping technology at the time of diagnosis. OncoMap was 

performed by Center for Advanced Molecular Diagnostics of the BWH and Oncopanel was 

performed by Center for Cancer Genome Discovery of the Dana-Farber Cancer Institute. For 

patients under the age of 50 in the HUP and BWH cohorts, only gliomas with the absence of 

IDH1/2 mutation as determined by full sequencing assay were included in our analyses as IDH 

wild-type as to minimize the possibility of false negatives. IDH-mutated gliomas were defined 

by the presence of mutation as indicated by immunohistochemistry or sequencing on samples 

provided to the pathology department at each institution at the time of surgery. IDH1- and IDH2-

mutated gliomas were collapsed into one category. For patients in the TCIA cohort, IDH1/2 

mutation data were downloaded from TCGA and IvyGap data portal 254. 

 

5.8.3 Tumor segmentation 

For the HUP and TCIA cohorts, MR imaging for each patient was loaded into Matrix 

User v2.2 (University of Wisconsin, WI), and 3D regions-of-interest were manually drawn slice-
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by-slice in the axial plane for the FLAIR image by a user (H.Z.) followed by manual editing by a 

neuroradiologist (Q.S.). For the BWH cohort, tumor outlines were drawn with a user-driven, 

manual active contour segmentation method with 3D Slicer software (v4.6) on the FLAIR image 

(K.C.) and edited by an expert neuroradiologist (R.Y.H.) 258,279. The segmented contour was then 

overlaid with source FLAIR, T2, T1 pre-contrast, and T1 post-contrast images. 

 

5.8.4 Image pre-processing 

All MR images were isotropically resampled to 1 mm with bicubic interpolation. T1 pre-

contrast, T2, and FLAIR images were then registered to T1 post-contrast using the similarity 

metric. Resampling and registration was performed using MATLAB 2017a (Mathworks, MA). 

N4 bias correction (Nipype Python package) was applied to remove any low frequency intensity 

non-uniformity 257,280. Skull-stripping was then applied from the FSL library to isolate regions of 

brain 248. Image intensities were normalized by subtracting the median intensity of normal brain 

(non-tumor regions) and then dividing by the interquartile intensity of normal brain. To utilize 

information from all 3 spatial dimensions, we extracted coronal, sagittal, and axial tumor slices 

from each patient. Only slices with tumor were extracted. To extract a slice, a bounding rectangle 

derived from the tumor segmentation was drawn around the tumor. This ensures that the entire 

tumor area is captured as well as a portion of the tumor margin. Because every tumor is different 

in size, all slices were resized to 142x142 voxels for input into our neural network.  

Gliomas are heterogeneous 3D volumes with complex imaging characteristics across 

each dimension. In our experiments, we choose to model this 3D heterogeneity by using 3 

representative orthogonal slices, one each in the axial, coronal and sagittal planes. Together, 

these 3 orthogonal slices represent a single "sample" of the 3D tumor volume, and a total of three 
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such samples were chosen for each patient based on the following scheme: 1) the coronal slice 

with the largest tumor area, the sagittal slice with the 75th percentile tumor area, and the axial 

slice with the 50th percentile tumor area, 2) the coronal slice with the 50th percentile tumor area, 

the sagittal slice with the largest tumor area, and the axial slice with the 75th percentile tumor 

area, 3) the coronal slice with the 75th percentile tumor area, the sagittal slice with the 50th 

percentile tumor area, and the axial slice with the largest tumor area. While each such sample 

may be somewhat correlated to other samples of the same tumor, gliomas exhibit marked 

heterogeneity and each additional set of orthogonal slices captures a marginal but significant 

amount extra information about that particular tumor. After pre-processing, the total number of 

patient samples was 603 for HUP, 414 for TCIA, and 471 for BWH. Image samples from the 

same patient were kept together when randomizing into training, validation, and testing sets. 

Another method of addressing overfitting is to augment the training data by introducing random 

rotations, translations, shearing, zooming, and flipping (horizontal and vertical), generating 

“new” training data 274. The augmentation technique allows us to further increase the size of our 

training set. For every epoch, we augmented the training data before inputting it into the neural 

network. Augmentation was only performed on the training set and not the validation or testing 

sets. Data augmentation was performed in real time in order to minimize memory usage. 

 

5.8.5 Residual neural network 

Convolutional neural networks are a type of neural network developed specifically to 

learn hierarchical representations of imaging data. The input image is transformed through a 

series of chained convolutional layers that result in an output vector of class probabilities. It is 

the stacking of multiple convolutional layers with non-linear activation functions that allow a 
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network to learn complex features. Residual neural networks won the 2015 Large Scale Visual 

Recognition Challenge by allowing effective training of substantially deeper networks than those 

used previously while maintaining fast convergence times 137. This is accomplished via shortcut, 

“residual” connections that do not increase the network’s computational complexity 137. Our 

residual network was derived from a 34-layer residual network architecture (Fig. 5-24A) 137. As 

with the original residual network architecture, batch normalization was used after every 

convolutional layer 164. Batch normalization forces network activations to follow a unit Gaussian 

distribution after each update, preventing internal covariate shift and overfitting 164. The first two 

layers of the original residual network architecture, which sub-sample the input images, were not 

used, as the size of our input (142x142) is smaller than that of the original residual net input 

(224x224). 
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Figure 5-24. (A) Image pre-processing steps in our proposed approach. (B) A modified 34-layer 

residual neural network architecture was used to predict IDH status. (C) Displays the learning 

rate schedule. The learning rate was set to .0001 and stepped down to .25 of its value when there 

is no improvement in the validation loss for 20 consecutive epochs. 

 

5.8.6 Implementation details 

Our implementation was based on the Keras package with the TensorFlow library as the 

backend. During training, the probability of each patient sample belonging to the wild-type or 

mutant IDH class was computed with a sigmoid classifier. We used the rectified liner unit 

activation function in each layer. The weights of the network were optimized via a stochastic 

gradient descent algorithm with a mini-batch size of 16. The objective function used was binary 

cross-entropy. The learning rate was set to 0.0001 with a momentum coefficient of 0.9. The 

learning rate was decayed to 0.25 of its value after 20 consecutive epochs without an 

improvement of the validation loss. The learning rate was decayed 2 times (Training Phases A-C, 

Fig. 5-24B). At the end of training phase A and B, the model was reverted back to the model 

with the lowest validation loss up until that point in training. The final model was the one with 

the lowest validation loss at any point during training. Biases were initialized randomly using the 

Glorot uniform initializer 140. We ran our code on a graphics processing unit to exploit its 

computational speed. Our algorithm was trained on a Tesla P100 graphics processing unit. Code 

for image pre-processing as well as trained models utilizing the modality networks heuristic can 

be found here: https://github.com/changken1/IDH_Prediction.  
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5.8.7 Training with three patient cohorts 

Each patient cohort (HUP, BWH, and TCIA) was randomly divided into training, 

validation, and testing sets in an 8:1:1 ratio, balancing for mutation status and age. In our 

experiments training with all three patient cohorts, we combined HUP, BWH, and TCIA training 

sets. Similarly, we combined HUP, BWH, and TCIA validation sets as well as testing sets. The 

combined testing set was not disclosed until the model was finalized. 

We implemented three different training heuristics. In the first heuristic, we input all 

sequences and dimensions into a single residual network with input size 12x142x142 (single 

combined network heuristic, Fig. 5-25A). In the second heuristic, we trained a separate residual 

network for each dimension (input size 4x142x142) and combined the sigmoid probabilities of 

each network with a logistic regression (dimensional networks heuristic, Fig. 5-25B). In the third 

heuristic, we trained a separate network for each MRI sequence (input size 3x142x142) and 

combined the sigmoid probabilities of each network with a logistic regression (sequence 

networks heuristic, Fig. 5-25C). 
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Figure 5-25. The training heuristics tested include a (A) single combined network, (B) 

dimensional networks, and (C) sequence networks. In the single combined network training 

heuristic, all sequences and dimensions were inputted into a single network. In the dimensional 

networks training heuristic, a separate network was trained for each dimension. In the sequence 

networks training heuristics, a separate network was trained for each MR sequence. 

 

Because IDH status is correlated with age 242, we compared the results of residual neural 

networks with a logistic regression model based on age of patients in the training and validation 

sets. We also implemented a logistic regression model combining the sigmoid probability output 

of the residual neural networks and age. 

 

5.8.8 Independent testing 

We also trained residual networks with two patient cohorts with the goal of seeing if the 

model could predict IDH mutation status in the independent testing set without having been 

trained on any patients in that set. In these experiments, we combined the training sets of two 

patient cohorts. Similarly, we combined the validation sets and testing sets of two patient 

cohorts. The remaining patient cohort was kept aside as an independent testing set. The testing 

and independent testing sets were not disclosed until the final model was developed. The 

sequence networks training heuristic was used for these experiments. 

 

5.8.9 Evaluation of models 

The performance of models was evaluated by assessing the accuracy on training, 

validation, and testing sets. In addition, sigmoid or logistic regression probabilities were used to 
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calculate Area Under Curve (AUC) of Receiver Operator Characteristic (ROC) analysis. 

Bootstrapping was used to calculate the confidence intervals (CI) of the AUC values. 

 

5.9 Results 

5.9.1 Patient characteristics 

The median age of the HUP, BWH, and TCIA cohorts were 56, 47, and 52 years, 

respectively (Table 5-3). The percentage of males was 56%, 57%, and 57%, respectively. The 

HUP cohort was 19% grade II (72% IDH-mutant), 34% grade III (59% IDH-mutant), and 46% 

grade IV (3% IDH mutant). The BWH cohort was 20% grade II (100% IDH-mutant), 29% grade 

III (87% IDH-mutant), and 51% grade IV (26% IDH mutant). The TCIA cohort was 25% grade 

II (91% IDH-mutant), 32% grade III (70% IDH-mutant), and 43% grade IV (12% IDH mutant). 

Collectively, the HUP, BWH, and TCIA cohorts were 36%, 59%, and 50% IDH-mutant, 

respectively. 

 

 
Table 5-3. Patient demographics, IDH status, and grade for HUP, BWH, and TCIA cohorts. Age 

is shown as median (minimum-maximum). 

 

 
HUP, n = 201 BWH, n= 157 TCIA, n= 138 

Age 56 (18-88) 47 (18-85) 52 (21-84) 

Sex (% Male) 56% 57% 57% 

IDH mutation rate 36% 59% 50% 

Grade & IDH status 
II Wild-Type 
II Mutant 
III Wild-Type 
III Mutant 
IV Wild-Type 
IV Mutant 

 
11 
28 
28 
41 
90 
3 

 
0 
31 
6 
40 
59 
21 

 
3 
31 
13 
31 
53 
7 
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5.9.2 Optimization of deep learning model 

We first determine the optimal training heuristics for the full multi-center data set by 

comparing three different heuristics (Fig. 5-26). A logistic regression model using age alone had 

an AUC of 0.88 on the Training set, 0.88 on the Validation set, and 0.89 on the Testing set 

(Table 5-4).  

 

 

Figure 5-26. ROC curves for training, validation, and testing sets from training on three patient 

cohorts for (A) age only, (B) combining sequence networks, and (C) combining sequence 

networks + age. The testing set AUC for combing sequence networks + age was 0.95. 
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Table 5-4. Accuracies and AUC from ROC analysis from training on three patient cohorts. The 

methods shown include age only, the single combined network training heuristic, the 

dimensional networks training heuristic, and the sequence networks training heuristic. 

 

First, we constructed a single combined network model. After 157 epochs training, the 

resulting model had an AUC of 0.93 on the Training set, 0.92 on the Validation set, and 0.86 on 

the Testing set. When combined with age, the single combined network had improved 

performance with an AUC of 0.95 on the Training set, 0.95 on the Validation set, and 0.92 on the 

Testing set.  

To demonstrate the individual predictive performance for different imaging dimensions, 

the coronal, sagittal, and axial networks were trained for 92, 82, and 122 epochs, respectively. 

The final model for the coronal, sagittal, and axial networks had Testing set AUCs of 0.85, 0.86, 

and 0.87, respectively. When the dimensional networks were combined, the AUC was 0.91 on 

 

 
Training Set 

HUP + BWH + TCIA 
n = 1188 

Validation Set 
HUP + BWH + TCIA  

n = 153 

Testing Set 
HUP + BWH + TCIA 

n = 147 

 Accuracy AUC Accuracy AUC Accuracy AUC 

Age 82.6% .88 82.4% .88 79.6% .89 

Single Combined Network 
Single combined network 
Single combined network + age 

86.4% 
89.1% 

.93 

.95 
82.4% 
86.9% 

.92 

.95 
76.9% 
84.4% 

.86 

.92 

Dimensional Networks 
Coronal network 
Sagittal network 
Axial network 
Combining dimensional networks 
Combining dimensional networks + age 

80.0% 
78.8% 
82.0% 
83.2% 
87.2% 

.87 

.86 

.90 

.91 

.94 

77.8% 
79.1% 
79.7% 
84.3% 
85.6% 

.89 

.88 

.91 

.93 

.94 

76.9% 
79.6% 
76.9% 
77.6% 
89.1% 

.85 

.86 

.87 

.90 

.95 

Sequence Networks 
FLAIR network 
T2 network 
T1 pre-contrast network 
T1 post-contrast network 
Combining sequence networks 
T1C network + age 
Combining sequence networks + age 

65.9% 
68.4% 
68.7% 
80.5% 
82.8% 
87.2% 
87.3% 

.72 

.74 

.77 

.88 

.90 

.93 

.93 

62.1% 
66.0% 
72.5% 
82.4% 
83.0% 
86.9% 
87.6% 

.70 

.77 

.75 

.89 

.93 

.95 

.95 

65.3% 
67.3% 
68.7% 
86.4% 
85.7% 
87.8% 
89.1% 

.69 

.73 

.86 

.92 

.94 

.94 

.95 
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the Training set, 0.93 on the Validation set, and 0.90 on the Testing set. Performance was 

improved when dimensional networks were combined with age with an AUC of 0.94 on the 

Training set, 0.94 on the Validation set, and 0.95 on the Testing set.  

To demonstrate the individual predictive performance for different MRI sequences, the 

FLAIR, T2, T1 pre-contrast, and T1 post-contrast networks were trained for 88, 75, 76, and 325 

epochs, respectively (Fig. 5-27). The final model for the FLAIR, T2, T1 pre-contrast, and T1 

post-contrast networks had Testing set AUCs of 0.69, 0.73, 0.86, and 0.92, respectively. When 

the sequence networks were combined, the AUC was 0.90 on the Training set, 0.93 on the 

Validation set, and 0.94 on the Testing set. When sequence networks were combined with age 

the AUC was 0.93 on the Training set, 0.95 on the Validation set, and 0.95 on the Testing set 

(Fig. 5-26). Looking at predictive performance for the individual tumor grades, the AUC for the 

Validation and Testing cohorts were 0.85 (n = 66), 0.91 (n = 81), and .94 (n = 153) for grades 2, 

3, and 4, respectively. 

Overall, combining the sequence networks and age resulted in the highest performance in 

terms of accuracy and AUC values in the validation and testing set. This approach was 

subsequently applied to independent data set testing. 
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Figure 5-27. Training and validation accuracy for three patient cohort training for (A) single 

combined network, (B) coronal network, (C) sagittal network, (D) axial network, (E) FLAIR 

network, (F) T2 network, (G) T1 pre-contrast network, and (H) T1 post-contrast network. 

Training accuracy shown is for augmented training data. 

 

5.9.3 Training on two patient cohorts and independent performance testing on the third cohort 

To examine the generalizability of our model, the sequence network training heuristic 

was applied to training on two patient cohorts at a time. FLAIR, T2, T1 pre-contrast, and T1 

post-contrast residual networks were trained on the combined Training sets of HUP + TCIA, 

HUP + BWH, and TCGA + BWH with data from the remaining site reserved for independent 

testing (Table 5-5). The average AUCs for combining sequence networks within the Training, 

Validation, Testing, and Independent Testing Cohorts were 0.90 (95% CI 0.88-0.92), 0.89 (95% 

CI 0.84-0.94), 0.92 (95% CI 0.88-0.96), and 0.85 (95% CI 0.82-0.88), respectively. When age 

was combined with sequence networks, the average AUCs were 0.94 (95% CI 0.92-0.95), 0.95 

(95% CI 0.91-0.98), 0.95 (95% CI 0.91-0.98), and 0.91 (95% CI 0.88-0.93) respectively within 

the Training, Validation, Testing, and Independent Testing sets.  

Comparatively, a logistic regression model utilizing age alone had an average AUC of 0.88, 

0.88, 0.89, and 0.87 respectively within the Training, Validation, Testing, and Independent 

Testing sets. The average accuracy, sensitivity, and specificity for combined model for age and 

sequence networks on the independent Testing set was 82.1%, 79.1%, and 87.0%, respectively. 
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Table 5-5. Training, validation, testing, and independent testing set performance from training on 

two patient cohorts using the sequence networks training heuristic. 

 

5.10 Discussion 

In this section, we demonstrate the utility of deep learning to predict IDH mutation status 

in a large, multi-institutional dataset of gliomas as part of a larger effort to apply deep learning 

techniques to the field of neuro-oncology. To our knowledge, this is the largest study to date on 

the prediction of IDH status from conventional MR imaging and deep learning methods. 

Furthermore, our algorithm has broad applicability by utilizing conventional MR performed at 

different institutions, as advanced MR sequences or other modalities may not be part of the 

standard imaging protocol. Pre-treatment identification of IDH status may be important in 

clinical-decision making as it may guide patient management, choice of chemotherapy, and 

surgical approach. 

 
Training Set Validation Set Testing Set Independent Testing Set 

HUP + TCIA, n = 813 HUP + TCIA, n = 102 HUP + TCIA, n = 102 BWH, n = 471 

Age 
FLAIR network 
T2 network 
T1 pre-contrast network 
T1 post-contrast network 
Combining modality networks 
Combining modality networks + age 

Accuracy 
83.0% 
68.3% 
62.4% 
72.8% 
83.5% 
83.8% 
89.4% 

AUC 
.89 
.74 
.64 
.81 
.90 
.91 
.95 

Accuracy 
73.5% 
63.7% 
64.7% 
76.5% 
83.3% 
80.4% 
79.4% 

AUC 
.83 
.68 
.73 
.76 
.93 
.92 
.92 

Accuracy 
82.4% 
70.6% 
69.6% 
77.5% 
87.3% 
90.2% 
91.2% 

AUC 
.86 
.75 
.64 
.88 
.96 
.97 
.97 

Accuracy 
77.7% 
58.2% 
62.0% 
58.8% 
65.0% 
67.1% 
77.5% 

AUC 
.86 
.70 
.72 
.76 
.82 
.86 
.90 

Age 
FLAIR network 
T2 network 
T1 pre-contrast network 
T1 post-contrast network 
Combining modality networks 
Combining modality networks + age 

HUP + BWH, n = 858 HUP + BWH, n = 111 HUP + BWH, n = 105 TCIA, n = 414 

Accuracy 
83.6% 
69.1% 
71.2% 
68.8% 
76.5% 
81.4% 
86.7% 

AUC 
.88 
.77 
.77 
.78 
.85 
.90 
.94 

Accuracy 
83.8% 
60.4% 
65.8% 
76.6% 
74.8% 
78.4% 
85.6% 

AUC 
.91 
.72 
.78 
.73 
.83 
.89 
.96 

Accuracy 
82.9% 
71.4% 
66.7% 
72.4% 
81.0% 
83.8% 
89.5% 

AUC 
.92 
.75 
.74 
.88 
.89 
.91 
.94 

Accuracy 
78.3% 
67.6% 
55.8% 
65.5% 
79.5% 
79.0% 
84.5% 

AUC 
.85 
.73 
.56 
.74 
.85 
.87 
.91 

 
TCIA + BWH, n = 705 TCIA + BWH, n = 93 TCIA + BWH, n = 87 HUP, n = 603 

Age 
FLAIR network 
T2 network 
T1 pre-contrast network 
T1 post-contrast network 
Combining modality networks 
Combining modality networks + age 

Accuracy 
81.3% 
67.2% 
69.2% 
69.4% 
75.0% 
80.4% 
85.4% 

AUC 
.86 
.75 
.78 
.79 
.82 
.89 
.92 

Accuracy 
83.9% 
66.7% 
68.8% 
68.8% 
77.4% 
77.4% 
87.1% 

AUC 
.89 
.69 
.71 
.73 
.85 
.87 
.96 

Accuracy 
82.8% 
63.2% 
69.0% 
63.2% 
81.6% 
77.0% 
89.7% 

AUC 
.88 
.64 
.75 
.83 
.89 
.89 
.94 

Accuracy 
84.1% 
63.5% 
65.3% 
72.5% 
68.5% 
74.8% 
84.1% 

AUC 
.90 
.65 
.73 
.75 
.85 
.83 
.91 

 
Average Average Average Average 

Age 
FLAIR network 
T2 network 
T1 pre-contrast network 
T1 post-contrast network 
Combining modality networks 
Combining modality networks + age 

Accuracy 
82.7% 
68.3% 
67.6% 
70.3% 
78.5% 
81.9% 
87.2% 

AUC 
.88 
.75 
.73 
.79 
.86 
.90 
.94 

Accuracy 
80.4% 
63.4% 
66.3% 
74.2% 
78.4% 
78.8% 
84.0% 

AUC 
.88 
.70 
.74 
.74 
.87 
.89 
.95 

Accuracy 
82.7% 
68.7% 
68.4% 
71.4% 
83.4% 
84.0% 
90.1% 

AUC 
.89 
.72 
.71 
.87 
.91 
.92 
.95 

Accuracy 
80.5% 
63.0% 
61.6% 
66.2% 
70.4% 
73.5% 
82.1% 

AUC 
.87 
.69 
.68 
.75 
.84 
.85 
.91 
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We did not include WHO grade information in our prediction model since this data 

would not have been known a priori without pathological tissue after invasive biopsy or surgery. 

The goal of our algorithm was to use conventional MR sequences to predict IDH mutation status 

before surgery. Furthermore, we did not train separate networks for each tumor grade to reflect 

the pre-operative clinical scenario, when the WHO grade remains unknown prior to acquisition 

of pathological tissue from biopsy or surgery. Increasing research and the updated 2016 WHO 

classification of CNS tumors further emphasize molecular phenotype as a critical determinant of 

glioma behavior even before the assignment of histopathologic grade 107. 

Previous studies have reported an association between radiographic appearance and IDH 

genotype within gliomas. IDH wild-type grade II gliomas are more likely to display an 

infiltrative pattern on MRI, compared to the sharp tumor margins and homogenous signal 

intensity characteristic of IDH mutant gliomas 281. Patel et al. found T2-FLAIR mismatch to be a 

specific biomarker for IDH-mutant, 1p19q non-deleted gliomas 264. Hao et al. scored pre-

operative MRIs of 165 patients from the TCIA/TCGA according to the Visually Accessible 

Rembrandt Images (VASARI) annotations and found that increased proportion of necrosis and 

decreased lesion size were the features most predictive of an IDH mutation 245. However, 

VASARI features overall achieved lower accuracy than texture features in this study. In another 

study of 153 patients with glioblastoma using the VASARI features, Lasocki et al. found that if a 

particular glioblastoma does not have a frontal lobe epicenter and has less than 33% non-

enhancing tumor, it can be predicted to be IDH1-wildtype with a high degree of confidence 282. 

One significant limitation of this study is that only five glioblastoma patients had IDH1 mutation 

(3.3%). Furthermore, Yamashita et al. found that mutant IDH1 glioblastoma patients had a lower 
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percentage of necrosis within enhancing tumor with the caveat that the study included only 11 

IDH1 mutant tumors 283. 

As such, various studies have used a radiomics approach to predict IDH status. Zhang et 

al. used clinical and imaging features to predict IDH genotype in grade III and grade IV gliomas 

with an accuracy of 86% in the training cohort and 89% in the validation cohort 242. Hao et al. 

used preoperative MRIs of 165 MRIs from the TCIA to predict IDH mutant status with an AUC 

value of 0.86 245. Similarly, Yu et al. used a radiomic approach to predict IDH mutations in grade 

II gliomas with an accuracy of 80% in the training cohort and 83% on the validation cohort 284. 

Deep learning simplifies the multi-step pipeline utilized by radiomics by learning predictive 

features directly from the image, allowing for greater reproducibility. In this study, we 

demonstrate that accurate prediction can be achieved in a multi-institutional patient cohort of 

both low- and high-grade gliomas without pre-engineered features. 

One challenge of training deep neural networks is the need for a large amount of training 

data. We addressed this by artificially augmenting our imaging data, in real-time, before each 

training epoch. This has the additional benefit of preventing overfitting, which is another 

common issue when training networks. We also utilized batch normalization after each 

convolutional layer to prevent overfitting, as with the original residual network architecture. 

We implemented various training heuristics with training on three patient cohorts – namely a 

single combined network, dimensional networks, and sequence networks. Under the dimensional 

networks training heuristic, we trained a neural network for coronal, sagittal, and axial 

dimensions which had similar testing set performance. These results suggest that all dimensions 

have similar predictive value. Under the sequence networks training heuristic, we trained a 

neural network for each MR sequence. Notably, T1 post-contrast images conferred a higher 
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predictive value compared to other MR sequences and appeared to drive the vast majority of the 

accuracy of the combined sequence model with additional sequences contributing a smaller 

incremental benefit. Indeed, the contrast-enhancing regions were also highlighted when Grad-

CAM visualization was used to highlight the salient features used in prediction of the single 

combined model (Fig. 5-28).285 The only imaging-only models that outperformed the age-only 

logistic regression model in terms of accuracy in the validation and testing set were the T1 post-

contrast network and a model combining sequence networks. Overall, a combination of sequence 

networks and age offered the highest accuracy in the validation and testing sets. 

 

 

Figure 5-28. Grad-CAM visualizations of two patients in the independent test set, highlighting 

the salient features used  by the neural network model 

 

When the sequence networks training heuristic was applied to training on two patient 

cohorts at a time, similar results were observed when training on three patient cohorts. For 

training on HUP + TCIA, HUP + BWH, and TCIA + BWH, combining sequence networks and 

age had a higher AUC than a logistic regression using age only in the training, validation, 
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testing, and independent testing sets. However, the AUC of the combined sequence network and 

age model within the independent testing set was lower than that of the testing set. The most 

likely reason for this are the differences in scan parameters and in IDH mutation rate among the 

different patient cohorts. In the ideal scenario, all patient scans would be collected with 

consistent acquisition parameters (field strength, resolution, slice thickness, echo time, and 

repetition time), and IDH mutation rate would be the same. However, this would be challenging 

in practice, as MR scanner models and acquisition parameters, as well as the demographics of 

patient captured, vary widely from institution to institution. Our approach distinguishes itself 

from past studies in the field by using multi-institutional data and makes an important first step 

towards achieving the goal of independent validation, which is necessary if radiogenomic tools 

are to be used in a clinical setting. 

 

5.11 Limitations 

There are several possible improvements to our approach. First, the potential of advanced 

MR sequences in the prediction of IDH genotype has been demonstrated in several studies 265–

269. We did not utilize such sequences, but future studies can combine advanced imaging 

modalities with conventional MR imaging to test for possible enhancement of prediction 

performance. However, addition of these advanced MR sequences is also a limitation in that 

these sequences may not be available at every institution. Second, sufficient cohort size is a 

limiting factor in the training of deep neural networks. Although we overcame this partially 

though data augmentation and extracting multiple imaging samples from the same patient, it is 

likely a larger patient population would further improve algorithm performance, especially given 

the heterogeneity in image acquisition parameters. Third, the use of other techniques such as 
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dropout, L1/L2 regularization, and augmentation via generative adversarial networks may 

improve the generalizability of our model182,286, although we found that basic data augmentation 

and batch normalization were sufficient to prevent overfitting of our model, as evidenced by the 

high testing accuracies. Lastly, incorporation of spatial characteristics of IDH-mutated gliomas 

(such as unilateral patterns of growth and localization within single lobes) into the deep neural 

network may further improve model performance.281  

 

5.12 Future directions 

 Beyond the applications described in this chapter, there are many potential tools that 

would be helpful in assisting clinical decision making. In this section, we describe a non-invasive 

approach to prediction IDH mutation status. Other studies have show the capacity for non-

invasive prediction of other molecular markers such as 1p19q codeletion and O6-methylguanine-

DNA methyltransferase (MGMT) methylation.287–289 Such molecular markers can be determined 

via pathological assessment of the tumor specimen that is acquired during the initial surgery and 

is not expected to change in remaining unresected tumor and during tumor recurrence.290 

However, the aforementioned molecular markers represent an incomplete picture of the genetic 

landscape of the tumor that determines response to chemotherapy. Rather, GBMs are more 

accurately described as “many tumors in one” with significant genetic heterogeneity within a 

given tumor focus.291 This heterogeneity has been implicated as a driver of tumor progression, 

growth, and resistance to therapy.292 Studies have shown that there are genetically distinct clonal 

populations with different driver mutations (such as in CDKN2A, TP53, EGFR, PTEN, and NF1) 

that may confer different therapeutic sensitivities.100,293–295 This is further complicated by 

primary or recurrent tumors with multiple foci, which may have different genetic 
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characteristics.296 Additionally, temozolomide can induce adaptive genetic changes that confer 

resistance to treatment.297,298 Thus, multi-focal and repeated tumor biopsies are needed to assess 

the genetic characteristics of the tumor. However, this is not feasible due to surgical risk, patient 

burden, and/or inoperable location. Future studies can use deep learning applied to multi-

parametric Magnetic Resonance (MR) to non-invasively assess key driver mutations that vary 

spatially and temporally during the course of treatment. 

 Furthermore, we described in the section an approach for automated treatment response 

assessment for glioma. What is also needed is the ability to predict drug response before the 

treatment is even applied. An example would be bevacizumab, which has been shown to work 

for a subset of patients while ineffective for others.299,300 Previous studies have shown the 

potential of a radiomics approach for prediction response to bevacizumab.60,301 A natural 

extension would be to use a deep learning approach to predict drug response to bevacizumab and 

other therapies. The predictive capacity of these algorithms can be further augmented with the 

use of advanced MR modalities, which can elucidate vascular structure that can impact drug 

delivery.302,303 Lastly, our approach focused our application on gliomas, but our algorithms can 

be extended to other diseases as well such as pediatric tumors and brain metastases.304,305 

 

5.13 Conclusions 

We developed an open-source, fully automatic pipeline for brain extraction, tumor 

segmentation, and RANO measurements and applied it to a large, multi-institutional pre-

operative and post-operative glioma patient cohort. We showed that automated volume and 

AutoRANO measurements are highly reproducible and are in agreement with human experts in 

terms of change in tumor burden during the course of treatment. This tool may be helpful in 
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clinical trials and clinical practice for expediting measurement of tumor burden in the evaluation 

of treatment response, decreasing clinician burden associated with manual tumor segmentation 

and decreasing inter-observer variability. Furthermore, our algorithm serves as a proof-of-

concept for automated tools in the clinic and demonstrates their applicability to other tumor 

pathologies. We also developed a technique to non-invasively predict IDH genotype in grade II-

IV glioma using conventional MR imaging. In contrast to a radiomics approach, our deep 

learning model does not require pre-engineered features. Our model may have the potential to 

serve as a noninvasive tool that complements invasive tissue sampling, guiding patient 

management at an earlier stage of disease and in follow-up. 
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6 Enhancing ischemic stroke workflows with computational tools 

6.1 Potential for automated tools for ischemic stroke 

The current patient workflow for the patient with symptoms suspicious of stroke is to receive 

either CT and/or MR imaging, depending on the protocol of the specific hospital. Based on the 

information revealed by physical examination and radiology, the patient receives a treatment that 

usually consists of either tPA (if within 4.5 hours of stroke onset) or mechanical thrombectomy. 

The patient is then monitored and treated for any additional clinical symptoms until the patient 

recovers (or deteriorates, in the unfortunate cases). Within this clinical workflow, there are many 

potential opportunities for automated tools. The ones that I will focus on in this chapter are: 1) 

Detection of stroke and volumetric assessment, 2) Prediction of patient outcomes, and 3) Risk 

assessment of associated clinical symptoms. 

 

Figure 6-1. The current clinical workflow for patient with suspected ischemic stroke. 

 

6.2 Background on automatic segmentation 

 The use of artificial intelligence in neurological disorders has significantly evolved over 

the past few years with introduction of several novel automated systems. Examples include AI 
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systems used in neuro-critical care units to monitor hemodynamics306 and deep-learning based 

algorithms for automatic seizure detection.307 One active area of interest has been on 

differentiating structural brain lesions such as brain infarcts, hemorrhages, tumors, and MS 

plaques from the surrounding brain tissue.8,42,308,309 Stroke represents an attractive model to 

develop a segmentation algorithm because it is a prevalent condition. This allows for testing and 

validating developed algorithms in large number of patients, which is critical for generalizability. 

Accurate estimation of the infarct volume is invaluable because quantitative measurement 

of infarct volume rather than qualitative assessment of infarct size injects statistical power to 

stroke research. However, manual delineation of stroke regions is time-consuming, and subject 

to inter-rater variability.310 Furthermore, segmentation is a highly difficult task as there can be 

variability in size and location of infarcts as well as ill-defined boundaries. As such, there has 

been efforts to develop automatic methods of performing infarct segmentation. Existing methods 

often require multiple imaging modalities (such as T1-weighted, T2-weighted, and fluid 

attenuation inversion recovery (FLAIR)), are semi-automatic and thus require manual input, or 

are constrained by cost and convenience.118,119,311 Specifically, the need for multiple modalities 

can compromise the method if there is a defect in acquisition, such as the presence of an imaging 

artifact. Diffusion Weighted MR Imaging (DWI) is frequently used in patients with stroke to 

evaluate the  extent of irreversibly damaged ischemic tissue.312 Recently, Chen et al. developed a 

fully automatic method using convolutional neural networks using DWI with the limitation that 

their approach only utilizes information in only 2 dimensions, ignoring lesion information within 

the axial plane.121 In this study, we developed a 3-dimensional deep learning approach for 

ischemic stroke volumetric segmentation utilizing only DWI imaging and a large clinical dataset 

of 1,205 consecutive patients. Furthermore, we demonstrated that both manual and automatically 
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segmented volumes could be used to predict functional outcome and survival.313 To facilitate the 

use of algorithms developed in this work (entitled Deep Learning Tool for Ischemic Stroke 

(DeLTIS)), we have made the code as well as trained model publically available for the larger 

research and clinical community to use.  

 

6.3 Methods 

6.3.1 Patient Cohort 

The study was conducted following approval by the Partners Healthcare Human Studies 

Committee. Informed consent was obtained from each patient or from the patient’s relatives. 

Clinical and imaging data were collected prospectively in 1,205 consecutive patients from the 

inpatient population of the Massachusetts General Hospital (MGH) with DWI-confirmed acute 

ischemic stroke recruited between June 2009 and December 2011. Exclusion criteria included 

patients with intracerebral hemorrhage on the acute neuroimaging study, patients with 

contraindications to MRI, and patients who were admitted after 72 hours of symptom onset.  

One investigator blinded to DWI findings performed outcome assessments through in 

person evaluations, phone interviews, or reviews of physician notes obtained during outpatient 

visits when the patient was unavailable for a follow-up visit. Follow-up evaluation included 

assessment of survival and functional outcome using modified Rankin Score dichotomized as 

good (mRS <=2) and bad (mRS >2) outcome at 90 ± 15 days. We used the Social Security Death 

Index to confirm the survival status at 90 days in patients who were not available for follow-up. 
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6.3.2 MR imaging 

DWI (b-value = 0, b0, and 1000 s/mm², b1000) was performed on 1.5T General Electric 

(Milwaukee, WI) and 1.5T Siemens (Erlangen, Germany) MR instruments. The full diffusion 

tensor was sampled using a single-shot echo-planar imaging (EPI) technique repeated in at least 

six non-collinear diffusion gradient directions. The resolution in the x-y plane ranged from 

0.859-1.72 mm and the resolution in the z plane ranged from 6-6.5 mm. 

Manual annotations of acute infarcts were generated using an image outlining software 

(MRICron, United States) by one investigator (JH) who had access to clinical stroke 

characteristics of the patients and used this information to identify whether a given 

hyperintensity on DWI was clinically relevant. All outlines were adjudicated by a second 

investigator (HA) and final outlines were generated.  

The patients were randomly divided into Training (n = 720), Validation (n=243), and 

Testing (n=242) sets in a 3:1:1 ratio. The Training Set was used to train our deep-learning 

algorithm and the performance of Validation Set was evaluated to assess for under/overfitting. 

Training was stopped when performance on the Validation Set no longer improved. The Testing 

Set was used for evaluation of segmentation quality once the model was finalized to ensure 

generalizability of the trained model. 

 

6.3.3 Data pre-processing for segmentation 

For pre-processing, we normalized the intensity of each b0 and b1000 DWI image to zero 

mean and unit variance. Notably, we did not resample the images in order to avoid introducing 

any resampling errors in both the image and manual segmentations. Furthermore, we did not 
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apply brain extraction to the images, after observing that our neural networks can accurately 

segment the stroke lesions without this preprocessing step. 

 

6.3.4 Neural Network Architecture for Segmentation 

We utilized the 3D U-Net architecture, a network designed for fast and precise 

segmentation (Fig. 6-2A), implemented within the DeepNeuro framework.10,259 A 3D approach 

was chosen instead of a 2D approach because a 3D approach incorporates information between 

adjacent axial slices. Because lesion segmentation is a challenging problem, modifications of the 

3D U-Net architectures were investigated. Specifically, we individually incorporated residual 

connections, inception modules, dense connections, and squeeze-and-excitation modules (Fig. 6-

2B) into the standard 3D U-Net architecture, all of which are state-of-the-art components that 

have improved neural network architectures for classification tasks. Residual connections are 

“shortcut” connections that allow for skipping of convolution layers.137 Inception modules have 

multiple pathways with different convolution filter sizes, allowing the network to learn from a 

variety of field-of-views.163 Dense connections allow feature maps from every convolutional 

layer to be carried into successive layers.212 Squeeze-and-excitation modules allow relationships 

to be learned between different feature maps at different layers of the neural network by 

rescaling a layer with compressed feature maps from the previous layer.314 Here, we utilized 

Inception modules from the Inception-V4 architecture.163 Dense connections with a growth rate 

of two were used in place of each block of convolutions. Squeeze-and-excitation modules with a 

reduction ratio of 16 was utilized to reduce the computational complexity. The architectures 

consists of a downsampling and an upsampling arm with horizontal connections between the two 

that concatenate feature maps at different spatial scales. We added these components to the 3D 
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U-Net individually to devise four new neural network architectures (Residual U-Net, Inception 

U-Net, Dense U-Net, and Squeeze-and-Excitation U-Net). The components were added to each 

convolutional layer within each spatial scale and did not carry past the consequent 

downsampling or upsampling layers. The rectified linear unit (ReLu) activation was used in all 

layers, with the exception of the final sigmoid output. Batch normalization was applied after each 

convolutional layer for regularization. Our networks were implemented in DeepNeuro with 

Keras/TensorFlow backend.10 

 

 

Figure 6-2. U-Net architecture (A) was modified with (B) inception, residual, dense, and 

squeeze-and-excitation modules. 

 

The network was trained iteratively through all extracted patches on a NVIDIA Tesla 

P100 graphics processing unit. Binary segmentation maps were generated by binarizing the 
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probability maps at a threshold of .5. We used Nestorov Adaptive Moment Estimation (Nadam) 

to train the 3D U-Nets with an initial learning rate 10−5, minimizing a soft Dice loss function315: 

(1)  𝐷(𝑞, 𝑝) =
2 ∑ 𝑝𝑖𝑞𝑖𝑖

∑ (𝑝𝑖 + 𝑞𝑖)𝑖 + 𝛼
 

where D is Sørensen–Dice coefficient, q is the probability output of the neural network, p 

is the ground truth, and α is a smoothing constant set to 1 in our experiments. Twenty patches of 

size 64x64x8 mm voxels were extracted for each patient in the training set. Two channels were 

used, one for the b0 DWI image and one for the b1000 DWI image. The chosen patch size 

provided enough image context for segmentation while still being computationally and memory 

efficient. Patches were extracted from non-ischemic and ischemic lesions in a 1:1 ratio. To 

prevent overfitting and to increase the size of the training set, patches were augmented by means 

of sagittal flips.137 Four patches were extracted for each patient in the Validation Set and the soft 

dice was evaluated at the end of each training epoch. Training was stopped when Validation Set 

soft dice did not improve for ten consecutive epochs. Once the network was trained, inference of 

new DWI images was performed by inputting successive patches of size 62x62x6, with 

neighboring patches having an overlap ratio of 15/16. The smaller patch size and overlap criteria 

at inference time was used to mitigate any edge effects. Probability maps for each of these 

patches were then predicted by the model, and voxels with predictions from multiple overlapping 

patches had their probabilities averaged. 

Because averaging the output of multiple trained machine learning models has been 

shown to improve performance, the performance of model ensembles was also evaluated.261,316 

The improved performance from ensembling is analogous to how a consensus of experts is more 

likely to be correct than any single expert.223 The Top 2, Top 3, and Top 4 models with different 

neural network architectures based on Testing Set Dice Similarity Coefficient as well as all 5 
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models were ensembled by averaging the output probability maps. The averaged probability 

maps were then binarized at a threshold of .5. The performance of ensembling multiple models 

of the same neural network architecture was also assessed – to do so, we trained 3 additional 

Inception U-Nets and assessed the performance of an ensemble of 2, 3, and 4 Inception U-Nets. 

 

6.3.5 Qualitative assessment by stroke neurologist and two radiologists 

To qualitatively assess the quality of the stroke segmentations, 94 segmentations 

annotated by either manually or the algorithm were randomly selected. We then automatically 

determined the axial slice with the largest lesion area. The segmentations were then overlaid on 

the b1000 DWI images and assessed by a stroke neurologist (Rater 1), neuroradiologist (Rater 2), 

and radiologist (Rater 3) blinded to whether the segmentations were performed manually or 

automatically. Specifically, each rater was asked to answer 3 questions: 1) Would you edit the 

segmentation? 2) What is the quality of the segmentation on a scale of 1-4? 3) Was it a human 

annotator (as opposed to the algorithm)? 

 

6.3.6 Statistical analysis 

The performance of individual models and model ensembles were evaluated by means of 

Testing Set Sørensen–Dice Similarity Coefficient with the Mann–Whitney U test. We assessed 

clinical and imaging stroke features that determined model performance by examining 

differences between first and last quartiles of Dice Similarity Coefficient. Clinical and image 

stroke features that were significant on univariate analysis (Mann–Whitney U test, p < .05) were 

inputted into a multivariate logistic regression to assess for significance as threshold of p = .05. 

Additionally, we assessed Dice Similarity Coefficient for patients with small and large infarct 
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volumes, defined as patients with manual volumes below and above the median manual volume 

for all patients, respectively. Spearman’s rank correlation coefficient (ρ) was used to evaluate the 

relationship between dice coefficient, manual volume, and time to MR imaging (from stroke 

onset). We also calculated the stroke detection rate, defined as the percentage of patients with at 

least one true positive voxel (a voxel that was segmented as ischemic by both the rater and the 

algorithm).121 Relatedness between volumes derived from manual and automatic segmentations 

was assessed via Intraclass Correlation Coefficient from one-way analysis of variance (R version 

3.1.2). To compare similarity between manual and automatic segmentations, we utilize the Chi-

squared test (Questions 1 and 3) and Mann-Whitney U test (Question 2). We also evaluated 

manual vs automatic volumes for patients stratified by the mRS at 90-days after admission for 

ischemic stroke.313 We compared volumes for mRS <= 2 and > 2 (excluding mRS values of 6), 

which represents 90-day functional outcome. We also compared mRS <=5 and 6, which 

represents 90-day survival. The volumes between the different mRS stratifications were 

evaluated using the Mann–Whitney U test. The threshold for significance for all statistical tests 

was p = 0.05. 

 

6.4 Results 

6.4.1 Patient cohort 

The study cohort comprised of 1205 consecutive patients with acute ischemic stroke. 

Patient demographics and stroke characteristics are shown in Table 6-1. The study population 

reflected typical characteristics of a consecutive hospital population with ischemic stroke; the 

median age was 70 and median admission NIHSS score of 4. The population also reflected the 

heterogeneity in stroke characteristics; 68% of patients had anterior circulation stroke, 12% 
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presented with a lacunar infarct, and 47% had multiple infarcts on MRI. Median time from 

symptom onset to DWI was 9 hours. There was a total of 5142 infarcts in 1205 patients, with 

infarct volumes falling into a wide range of values from .004 to 818.120 mL.  

 

 

Table 6-1. Patient demographic information and clinical and imaging stroke features 
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6.4.2 Performance of Individual Deep Learning Models for Segmentation 

The performance of the five architectures (U-Net, Residual U-Net, Inception U-Net, 

Dense U-Net, and Squeeze-And-Excitation U-Net) was investigated on the Testing Set. The 

average time for segmentation was 16 seconds using our trained algorithms. The best performing 

individual model was the Inception U-Net, which had a median dice similarity coefficient of 0.72 

(0.697-0.751) within the Testing Set (Table 6-2). Notably, the performance of Inception U-Net 

was better than the standard U-Net (p < .05) within the Testing Set. 

 

 

Table 6-2. Median dice similarity coefficient (95% Confidence Interval) of individual models 

within the Training, Validation, and Testing Sets. 

 

6.4.3 Performance of ensembles of different U-Net architectures 

We also assessed the performance of ensembling the individual models of different U-

Net architectures. The median dice similarity coefficient on the Testing Set for an Ensemble of 

Top 2 Models, Top 3 Models, Ensemble of Top 4 Models, and Ensemble of All 5 Models was 

0.726 (0.68-0.747), 0.724 (0.682-0.753), 0.722 (0.694-0.746), and 0.71 (0.686-0.738), 

respectively (Table 6-3). The best performing ensemble was the Ensemble of Top 2 Models 

(Inception and Dense U-nets). This performance was significantly better than that of a single U-

Net (p < .05) but not from a single Inception U-Net. 
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Table 6-3. Median dice similarity coefficient (95% Confidence Interval) of model ensembles of 

different U-Net architectures within the Training, Validation, and Testing Sets. 

 

6.4.4 Performance of ensembles of inception U-Nets 

Additionally, we assessed the performance of ensembling Inception U-Nets. Within the 

Testing Set, the median dice similarity coefficient of the Ensemble of 2, 3, and 4 Inception U-

Nets was 0.729 (0.696-0.753), 0.734 (0.708-0.75), and 0.737 (0.708-0.765) (Table 6-4). Notably, 

the performance of all ensembles of Inception U-Nets were higher than that of a Single Inception 

U-Net. The best performing ensemble was that of 4 Inception U-Nets. Example manual and 

automatic segmentations from the Ensemble of 4 Inception U-Nets are shown in Fig 6-3. This 

performance was significantly better than that of a single U-Net (p < .005) but not from a single 

Inception U-Net (p = .18). 
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Table 6-4. Median dice similarity coefficient (95% Confidence Interval) of model ensembles of 

Inception U-Nets within the Training, Validation, and Testing Sets. 

 

Figure 6-3. Example of manual vs automatic segmentations showing high (I and II) and low (III) 

agreement. 

 

Within the Validation and Testing Sets, the Ensemble of 4 Inception U-Nets had a stroke 

detection rate of 92.8%.  The average volume of lesions detected was 25.011 mL while the average 

volume of lesions missed was 0.082 mL (Fig. 6-4). For patients with small infarcts (<median), the 
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median dice coefficient was 0.657 (0.588-0.701). For patients with large infarcts, the median dice 

coefficient was 0.816 (0.795-0.829). There was a moderate association between dice coefficient 

and manual volume (Spearman’s ρ = 0.561, p < .001, Fig. 6-5). There was no association between 

dice coefficient and time from symptom onset to MR imaging (ρ = 0.097) as well as between 

manual volume and time to MR imaging (ρ = 0.158). The intraclass correlation coefficient between 

manually and automatically derived infarct volumes (from ensemble of 4 Inception U-Nets) was 

0.977 (p <. 0001) within in the Validation and Testing Sets (Fig. 6-6). Example automatic 

segmentations are shown in Fig. 4. In case III, the automated algorithm missed the parts of the 

infarction in inferior frontal and temporal regions that are typically subject to susceptibility 

artifacts. 

 

Figure 6-4. Histogram of manual lesion volumes for (A) detected and missed lesions. (B) Bland-

Altman plot. 
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Figure 6-5. Scatter plot of (A) dice coefficient vs manual volume, (B) dice coefficient vs time to 

MR imaging, and (C) manual volume vs time to MR imaging. 

 

 

Figure 6-6. (A) Histogram of Dice. (B) Scatter plot of automatic vs manual volumes. 

 

Despite high intraclass correlation coefficient, there were 17 patients (7%) in the Testing 

dataset where dice similarity index was equal to zero, meaning that the automated algorithm 

completely missed the manually outlined lesion. A retrospective analysis of such cases revealed 

that all 17 had a punctate infarct measuring < 1 mL (Fig. 6-7). Bivariate analyses comparing the 

first and last quartiles of dice similarity coefficients revealed that infarct size, admission stroke 

severity as measured by NIHSS score, anterior territory, infarct location (isolated deep or 

brainstem, isolated superficial cortical, cortical and subcortical, and multiple sites) predicted the 

algorithms performance (Table 6-5). A multivariate analysis showed that only infarct size (p < 
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0 .01), isolated deep or brainstem location (p < .05), and isolated cortical location (p < 0.05) 

were the independent predictors of performance. 

 

 

Figure 6-7. Examples of two cases < 1 mL that were missed by DeLTIS. 
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Table 6-5. Bivariate and multivariate analyses comparing the first and last quartiles of dice 

similarity coefficients. * p < .05, ** p <.01, **** p < .001 

 

6.4.5 Qualitative assessment by clinical raters 

There were no statistically significant differences between manual and DeLTIS 

segmentations for Questions 1-3 for Rater 1 (Table 6-6). For Rater 2, there were no statistically 

significant differences between manual and DeLTIS segmentations for Question 2. However, 

Rater 2 would have edited 79% of the manual segmentations as opposed to 55% of the DeLTIS 

segmentations (p < .05). Additionally, Rater 2 believed 72% of the manual segmentations were 

performed by humans and 19% of the DeLTIS segmentations were performed by humans (p 

< .001). For Rater 3, there were no statistically significant differences between manual and 
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DeLTIS segmentations for Questions 1 and 3. However, Rater 3 rated DeLTIS segmentations of 

higher quality than manual segmentations (p < .05). 

 

 

Table 6-6. Qualitative assessment of 47 manual and 47 DeLTIS segmentations by an stroke 

neurologist (Rater 1), neuroradiologist (Rater 2), and radiologist (Rater 3). Question 1 asked 

whether the rater would edit the segmentation. Question 2 asked the rater to grade the quality of 

the segmentation on a scale of 1-4. Question 3 asked whether the rater believed the segmentation 

was performed by a human (as opposed to an algorithm). Results from question 1 and 3 are 

shown as percent of cases the rater stated yes. Results from question 2 are shown as the mean 

rating. 

 

6.4.6 Manual and automatic volume by 90-day mRS score 

90-day mRS was missing for 71 patients and these patients were excluded from the 

analysis. Patients were stratified based on mRS score at <= 2 vs > 2 (representing 90-day 

functional outcome) and at <= 5 vs 6 (representing 90-day survival). Within the Validation and 
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Testing Sets, the median manually derived volumes were 2.21 (1.87-2.75) mL, 9.79 (5.93-18.20) 

mL, 2.97 (2.43-3.69) mm3, and 38.79 (27.97-76.69) mL for patients with a 90-day mRS score of 

<= 2, >2, <=5, and 6, respectively. The median of automatically derived volumes from the 

Ensemble of 4 Inception U-Nets was 1.96 (1.62-2.52) mL, 13.60 (5.25-18.82) mL, 2.86 (2.16-

3.66) mL, and 41.44 (25.30-56.30) mL, respectively. For the manually derived volumes, there 

was a statistically significant difference between patients with mRS score <= 2 vs. > 2 (p<.001) 

and mRS score <=5 vs. >5 (p<.001). Similarly, for the automatically derived volumes, there was 

a statistically significant difference between patients with mRS score <= 2 and > 2 (p<.001) and 

mRS score <=5 vs. >5 (p<.001) (Fig. 6-8). 

 

 

Figure 6-8. Violin plots of manual and automatic volumes for disability (A-B) and survival (C-

D). ****p<.001 
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6.5 Discussion 

In this section, we demonstrate the utility of DeLTIS, a fully automated, deep-learning 

based pipeline for segmentation of acute infarcts on DWI, as part of a larger effort to apply deep 

learning techniques to the field of neurology. We show that with minimal image pre-processing 

(i.e. no resampling and brain extraction) along with a 3D U-Net architecture, our automated 

pipeline achieves high performance in the Testing Set with a median dice of 0.737. In addition, 

DeLTIS offers a high stroke detection rate, at 92.8% on the Validation and Testing Sets. We 

further show that, qualitatively, automatic segmentations are the same or superior to manual 

segmentations via ratings from three raters; all raters stated that they would edit a greater 

proportion of the manual segmentations compared to the automatic segmentations and one of the 

raters graded automatic segmentations as of significantly higher quality than manual 

segmentation. In addition to segmentation accuracy, we also evaluated infarct volumes as 

derived from manual segmentations and automatic segmentations, and found that they showed 

high agreement. Finally, we demonstrate that automatically segmented volumes confer 

comparable predictive information to manual volumes for 90-day functional outcome and 

mortality. Hence, the automatically generated segmentations can be used instead of manual 

segmentations in stroke research examining quantitative infarct metrics and clinical end points.  

Infarct volume measurements are becoming an integral piece of stroke research. 

Continuous nature of the infarct volume data allows for exploring associations in smaller 

samples and making inferences with fewer data points as compared to categorical assessments 

based on visual inspection of neuroimaging. Also, categorical classifications suffer from high 

interrater disagreement. For instance, the interrater agreement to determine whether infarct size 

is less than or greater than one-third of the middle cerebral artery territory, which roughly 
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corresponds to 100 ml, is only moderate (kappa = 0.4).317 Infarct volume information is also 

frequently used by clinicians in practice for prediction of tissue and clinical outcome,318,319 

assessment of the risk of developing hemorrhagic transformation or malignant edema,320,321 and 

assessment of eligibility for thrombolytic treatment or endovascular thrombectomy. Most clinical 

trials of intravenous and endovascular recanalization therapies have excluded patients who have 

already developed large infarcts because the risk of treatment complications such as symptomatic 

intracerebral hemorrhage outweighs the anticipated benefit in large infarcts.322 Infarcts exceeding 

one third of the middle cerebral artery territory are considered to be contraindication for 

intravenous thrombolysis.322 Similarly, most endovascular thrombectomy protocols exclude 

patients based on certain infarct volume thresholds that range from 20-70 ml depending on other 

associated clinical and imaging features of stroke. Conversely, some protocols attempt to avoid 

exposing patients with small infarcts to the risks, discomfort, and cost associated with 

recanalization treatments as such small infarcts causing minute structural brain injury in the 

absence of large vessel occlusion confer a high recovery potential regardless of treatment. The 

major premise of the present study is that it provides a rapid and accurate means of obtaining 

infarct volume data; our automated algorithm provides infarct volumes within seconds. In 

contrast, manual outlining can take anywhere from a few minutes to half an hour depending on 

the lesion load and the experience level of the operator. Furthermore, in patients with multiple 

scattered infarcts, manual outlining takes even more time. In our experience, average time 

required to manually outline a patient’s infarcts hovers around 15 minutes for expert 

neuroradiologists. DeLTIS can generate lesion outlines rapidly and with minimal level of 

inconsistency and thus could be particularly useful in settings where there are large quantities of 

data, such as in big consortia and multicenter repositories. 
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The use of a large dataset allowed us to examine the performance characteristics of 

DeLTIS in different patient populations. We found that infarct size and infarct location were the 

independent predictors of the algorithm’s performance; DeLTIS performed less well in patients 

with punctate infarcts (median volume = 0.155 mL) especially when such lesions were located in 

deep white matter or within the cortex. Detection of such small dots by clinicians are often 

prompted by the accompanying signs and symptoms. While clinical information is unarguable 

important in lesion detection, it should be noted that even with clinical data, agreement between 

human experts for detection of such punctate dots is typically very low, leading to a potential 

attribution bias.310 Automated tools like DeLTIS are agnostic to clinical information and thus 

provide segmentations with limited accuracy but without attribution bias. It is possible to further 

enhance the accuracy of automated tools by incorporating clinical information in the future.  

We studied a large and unselected patient population with diverse mechanisms of stroke, 

brain morphology, and radiographic stroke features such as infarct size, shape, and signal 

intensity. Hence, DeLTIS effectively accounts for the variance in patient populations and infarct 

characteristics, which are key for its generalizability. We showed that the performance of 

automated segmentations improved upon the 3D U-Net architecture with the addition of 

Inception modules as well as ensembling multiple Inception U-Nets. The improved performance 

of the Inception U-Net is likely due to multi-scale learning allowed by the multiple pathways 

with different convolution filter sizes.144 Similarly, the improved performance of ensembling is 

due to the decreased probability of overfitting when using the consensus output of multiple 

trained models. Because our approach is designed to distinguish abnormality from normal brain 

anatomy, it has potential utility for other structural neurological abnormalities, such as 

hemorrhage, tumors, and plaques. 
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6.6 Limitations 

Despite such strengths, there are several possible improvements to this section as well. 

First, manual volumetric segmentations were derived from a single rater for each patient. Future 

studies can evaluate the performance of DeLTIS compared to manual segmentations by multiple 

raters. Secondly, we applied a basic image augmentation technique (sagittal flipping) to increase 

the size of training set and improve segmentation performance. The incorporation of additional 

image augmentation techniques, such as the use of generative adversarial networks, may bring 

further gains in performance.323 Additionally, future algorithms that incorporate structural and 

perfusion MR could improve segmentations on DWI . Also, measures of uncertainty could be 

added to our pipeline to flag segmentations that require further verification from 

clinicians.262,324,325 This would allow for more reliable integration into clinical workflows. While 

the addition of structural and perfusion MRI might increase segmentation performance, the use 

of multimodal imaging can comprise the method when there is a defect in acquisition. DeLTIS is 

solely based on DWI because DWI is sensitive to early infarcts, provides excellent conspicuity 

for lesion identification, and is routinely obtained in most stroke practices. Moreover, DWI alone 

reduces the amount of imaging that needs to be performed on a patient. Nonetheless, there are 

limitations of relying on a single modality as well; DWI lesions can become larger or smaller 

depending on how the lesion is windowed. In the present study, the reader was allowed to 

window the images, as they would be in real practice, to be able to detect subtle changes. In 

contrast, DeLTIS used a default window setting generated by the scanner. This might have 

caused DeLTIS to miss some punctate lesions with subtle signal intensity. Finally, although time 

from stroke onset to imaging was not an independent predictor of performance, DWI signal 
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intensity can increase as a function of time during the hyperacute phase of stroke, and this might 

have blurred the observed correlations between manual and automatic segmentations. 

 

6.7 Background on viscerotoxic brain infarcts 

 Classic textbook teaching has been that problems in internal organs, such as atrial 

fibrillation in the heart, lead to problems in the brain, such as ischemic stroke. However, 

emerging evidence suggests that acute brain injury could independently lead to internal organ 

injury as well, often with serious outcomes ranging from transient dysfunction to permanent 

morphological injury in internal organ systems. This form of injury, which is called neurogenic 

organ injury (NOI), is thought to result from excessive activation of or withdrawal of inhibitory 

inputs on central autonomic modulation centers by stroke lesions resulting in pathologically 

increased activity of the autonomic nervous system.326,327 While autonomic response is generally 

considered systemic, i.e., response throughout the system is total, organic brain injury can cause 

organ-selective activation where manifestations depend on the organ involved.328,329 Organ 

specificity may indicate the existence of a viscerotopic organization in the brain, analogous to 

the somatotopic organization, where each organ or visceral function is governed by discrete 

regions of the brain. It is currently not fully known what parts of the human brain predispose to 

NOI when injured. Accurate identification of such brain regions is critical to recognize patients 

at risk of NOI. Nonetheless, animal models are too limited to test the neuroanatomic hypotheses 

in a piecemeal way. Classic lesion-based paradigms for neuroanatomic localization in humans 

have been useful to suggest hypotheses but since they are based on a priori anatomical 

assumptions, they lack precision especially when the region of interest is large. Unprejudiced 

localization requires a mapping technique that takes brain as a whole rather than focusing on a 
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particular region of interest. In this section, we sought to identify the neuroanatomic correlates of 

a broad range of cardiac and systemic alterations occurring after ischemic stroke using a method 

that is free from the bias of an a priori hypothesis as to any specific location. Our goal was to 

understand how internal organ dysfunction after acute ischemic stroke might be mediated. For 

this, we tested the hypothesis that there are brain regions which, when infarcted, are associated 

with NOI in a large and prospective cohort without primary causes of internal organ injury. We 

further aimed to understand the direction of the relationship between infarct location and NOI 

and quantify the added burden of infarct location on clinical outcome. 

 

6.8 Methods 

6.8.1 Patient cohort 

We explored the neuroanatomic correlates of four different post-stroke cardiac or 

systemic abnormalities (CSA) that included plasma cardiac troponin T (cTnT) elevation as a 

marker of structural cardiac injury, QT segment prolongation on ECG as a marker of 

electrophysiological cardiac alteration, pneumonia and urinary tract infection (UTI) as a marker 

of altered pulmonary, urinary, or immune system functioning, and acute stress hyperglycemia 

(ASH) as a marker of increased glycogenolysis in the liver. A corrected QT interval (QTc) was 

calculated using the Bazett's formula:  QTc  = QT interval / square root of the RR interval (sec). 

For 1208 patients in the prospective, longitudinal, consecutive, NIH-funded study (Heart-Brain 

Interactions Study), a neuroradiologist manually generated binary maps of acute infarcts on 

DWI.  
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6.8.2 Image processing and statistical analysis 

The diffusion weighted images and corresponding outline images were co-registered to 

the Montreal Neurological Institute (MNI) 152 template using a 12-degrees of freedom affine 

transformation via the BRAINSFit module in 3D Slicer.258,330 This was followed by iterative 

groupwise elastic registration using SimpleElastix.331 The diffusion images and corresponding 

outline images were subsequently re-sampled at 4 mm isotropic resolution in for faster 

permutation calculation. P-value maps were generated using threshold-free cluster enhancement 

via Randomise in FMRIB Software Library with sex and age as covariates (Fig. 6-9A).332,333 

Using a nonparametric permutation test with 5,000 permutations, significance was reported at a 

family-wise error corrected p < .05.334 We also generated two additional neuroanatomic maps in 

cohorts with cTnT elevation and QTc prolongation who were initially excluded due to the 

presence of a non-neurogenic cause for the CSA. These maps aimed to serve logic check purpose 

to further support the existence of a neurogenic link. Overlap of each patient with the resulting 

neuroanatomic maps was calculated. Logistic regression models were fit with an overlap ratio of 

10% for each of the neuroanatomic maps to determine the odds ratio for an abnormal lab test, 90-

day disability (90-day modified Rankin Score > 2), and 90-day survival, correcting for infarct 

volume. 
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Figure 6-9 (A) To bring each patient image into the same space, affine registration to the MNI 

Atlas was applied followed by groupwise elastic registration. Then threshold-free cluster 

enhancement via permutation was applied to reveal each viscerotopic map. (B) Heatmap of 

ischemic infarcts across all patients, color-coded by the % of patients that have a lesion at a 

given voxel. 

 

6.9 Results 

6.9.1 Patient cohort 

 We screened a total of 1474 consecutive patients with ischemic stroke admitted within 72 

hours of stroke onset during the study period. We excluded 159 patients in whom an MRI could 

not be obtained because of contraindications. We excluded an additional 59 patients who 

underwent an MRI study in an outside hospital and images were not available for analysis. Of 

the remaining 1256 patients, we excluded 48 patients because of extensive motion artifacts in 

MRI. Hence, the final study population consisted of 1208 patients. Table 6-7 shows baseline 

characteristics and clinical and imaging stroke features of the study population. Fig. 6-9B 
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demonstrates topographic distribution of coregistered binary infarct maps showing infarct 

probability in all 1208 consecutive patients. The burden of stroke on the brain was mainly on 

deep hemispheric gray and white matter structures.  

 Table 6-8 illustrates the recruitment process into each study. The cTnT substudy 

comprised of 813 patients, of whom 66 (8.1%) had elevated cTnT levels that could not be 

attributed to a known cause. The QTc substudy included 694 patients, of whom 194 (27.8%) had 

QTc prolongation in the absence of a known provoker. The ASH substudy included 772 patients, 

of whom 408 (52.8%) met the criteria for diagnosis of ASH. The pneumonia substudy included 

977 patients, 58 (5.9%) of which has pneumonia. The UTI substudy included 1027 patients, 108 

of which had UTI (10.5%). The overlap rates between the different CSAs are shown in Tables 6-

8 and 6-9.  
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Table 6-7. Patient demographic information and clinical and imaging stroke features 
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Table 6-8. Number of positive and negative cases with abnormal lab values as well as percentage 

binary positive overlap with other abnormal lab values (relative to the total number of patients 

who received the two lab value tests). 

 

 

Table 6-9. Percentage positive tertiary/quaternary/quinary overlap with other abnormal lab 

values (relative to the total number of patients who received the three/four/five lab value tests) 

for Troponin T Elevation (T), QTc Prolongation (Q), Hyperglycemia (H), Pneumonia (P), and 

Urinary Tract Infection (U). 

 

6.9.2 Neuroanatomic maps for each cardiac or systemic abnormality 

Fig. 6-10 demonstrates the neuroanatomic maps for each CSA. We identified at least one 

cluster for each CSA. The clusters for cTnT elevation and QTc prolongation were both located in 
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the right hemisphere. There were three clusters for ASH, a small cluster in the right hemisphere, 

a small cluster in the cerebellum, and a large one in the left hemisphere. There were two clusters 

for post-stroke infection, one in the right and the second one in the left hemisphere. Infection 

type specific maps revealed that the cluster on the left was exclusively associated with 

pneumonia whereas the one on the right with UTI. All CSA maps displayed overlap with the 

insula and opercula regions (Fig. 6-11, Table 6-10). Pneumonia had the largest percentage of the 

neuroanatomical map that was located in the insula. ASH had the largest percentage of the 

neuroanatomical map that was located in the opercula. In contrast, no statistically significant 

maps neuroanatomical maps were revealed for cTnT elevation and QTc prolongation logic 

checks (Fig. 6-12). 
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Figure 6-10. (A) Viscerotopic maps revealed from cluster analysis, color-coded by p-value and 

overlaid on the groupwise DWI atlas (L-R radiological convention) (B) 3D models of 

viscerotopic maps (L-R non-radiological convention). 
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Figure 6-11. The component of the viscerotopic maps within the insula and opercula, color-

coded by p-value and overlaid on the groupwise DWI atlas. 

 

 

Table 6-10. Anatomical description of maps in terms of percentage of the map that is in the 

insula, opercula, and other brain regions. 
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Figure 6-12. Logic check maps for Troponin T Elevation and QTc Prolongation, color-coded by 

p-value and overlaid on the groupwise DWI atlas. There were no voxels with p < .05 for either 

logic check map. 

 

6.9.3 Predictive value of neuroanatomical maps 

Overlap with all maps were predictive of post-stroke CSA (Table 6-11, Figure 6-13). 

Overlap with QTc prolongation and pneumonia maps was predictive of 90-day functional 

disability. Overlap with the pneumonia map was predictive of 90-day mortality. When looking 

only at insula/opercula regions within the neuroanatomical maps, overlap with those regions was 

predictive of QTc prolongation and pneumonia. Overlap with the neuroanatomic pneumonia map 

within the insula/opercula regions was also predictive of 90-day mortality (Table 6-12). 
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Figure 6-13. The odds ratio (OR) and 95% confidence interval (CI) of developing abnormal test 

results, 90-day functional disability, and 90-day mortality with a 10% overlap threshold after 

adjusting for infarct volume. 
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Table 6-11. The odds ratio (OR) and 95% confidence interval (CI) of developing abnormal test 

results, 90-day functional disability, and 90-day mortality with a 10% overlap threshold after 

adjusting for infarct volume. *p < .05, **p < .01, ***p < .005, ****p < .001 

 

 

Table 6-12. The odds ratio (OR) and 95% confidence interval (CI) of developing abnormal test 

results, 90-day functional disability, and 90-day mortality with a 10% overlap threshold in the 

insulas and opercula sub-region after adjusting for infarct volume. *p < .05, **p < .01, ***p 

< .005, ****p < .001 

6.10 Discussion 

 In this section, we provide support for the principle of NOI, showing that the location of 

acute brain injury is correlated with symptoms that the patient can later develop, specifically 

cTnT elevation, QT segment prolongation, acute stress hyperglycemia, pneumonia, and UTI. 

Notably, we show that adjustment for infarct volume did not alter the relationship between 

infarct location and the CSAs suggesting that infarct location confers independent predictive 

information for developing post-stroke CSAs. Additionally, we show that the location 

dependence for cTnT elevation, QT segment prolongation was abolished when patients with 

non-neurogenic causes of symptoms were included, serving as a logic check for these 

neuroanatomical maps. The fact that neuroanatomical maps for cTnT elevation and QT segment 
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prolongation were on the right side of the brain also provide further support for NOI as well, 

given that the brain is, on the most part, organized contralaterally with respect to the body. 

 It is important to note that all maps had overlap with the insula and opercula, regions of 

the brain that are known to have homeostatic functionality. Interestingly, the neuroanatomic map 

for pneumonia localized on the left side of the brain while the map for UTI localized on the right 

side of the brain, which may correspond a currently unknown mechanism of NOI. 

 We also show that overlap with the neuroanatomic maps for QTc prolongation as well as 

pneumonia provide prognostic information with the patient. This can serve as a potentially useful 

tool for clinicians at the time of imaging for clinical decision-making, although further 

prospective study is needed. 

 

6.11 Limitations 

 There are three main limitations to this work. First, the neuroanatomical maps were 

generated using manual segmentations from experts, which may be subject to inter-rater 

variability. Future studies will use automatic segmentation (such as DelTIS described earlier in 

this chapter) for enhanced reproducibility of the neuroanatomical maps. Second, once the 

neuroanatomical maps were generated, overlap with the maps was determined as a fraction of 

overlap, which was subsequently used to calculate odds ratios of developing the symptom or for 

patient prognosis. An extension of this would be to treat the maps not as binary masks but rather 

probabilistically as certain neuroanatomic regions within each map were more significant than 

others. Alternatively, the probabilistic neuroanatomic map can be combined with a given 

patient’s lesion outline into another neural network that is tasked with predicting the symptom 

risk or prognosis. Lastly, in our interpretation of the neuroanatomical maps, we focused only on 
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the insula and opercula, brain regions known to regular homeostasis. Further analysis can assess 

other brain regions for their role in NOI. 

 

6.12 Open-source deep learning for neuroimaging 

 One major challenge within deep learning is reproducibility.335 Oftentimes, the methods 

section of papers is incomplete and subtle differences in pre-processing, deep learning 

hyperparameters, and post-processing can compromise the performance of resulting models. 

Furthermore, different versions of software packages may also change performance. As such, we 

developed an open-source deep learning package for neuroimaging, DeepNeuro 

(https://github.com/QTIM-Lab/DeepNeuro).10 DeepNeuro is designed in such a way that a user 

with minimal coding experiencing can develop end-to-end deep learning pipelines. Furthermore, 

DeepNeuro is customizable with the modular design so users can modify pipeline components as 

needed for the same applications as our labs or their own healthcare applications. Furthermore, 

we have made the glioma segmentation and ischemic stroke segmentation (DeLTIS) pipelines 

including the final trained model publicly available in a dockerized solution. To use our 

pipelines, the user simply has to download the docker container from Docker Hub and run the 

container from command line.  
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Figure 6-14. Pipelines, including the trained models, for glioma and ischemic stroke 

segmentation are publicly available in DeepNeuro. 
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6.13 Conclusions 

In this section, we demonstrate novel deep learning architectures for automatic 

segmentation of ischemic stroke. Furthermore, we show that automatically derived volumes 

showed high agreement with one another. Additionally, we show that automatic volumetrics can 

be used to stratify functional outcomes for stroke patients. Our fully-automatic pipeline for 

stroke segmentation demonstrates the potential for deep learning-based tools to find clinical and 

research utility in stroke. DELTIS presents an attractive alternative to commercially available 

softwares, which can be prohibitively expensive for widespread clinical use, particularly in 

places with limited resources. 

 We also used a mapping technique that is free from the bias of a-priori hypothesis as to 

any specific location, we show that both cardiac and systemic abnormalities occurring after 

stroke map to specific regions in the brain. We show that maps for all abnormalities overlap in 

part with the insula and opercula. We also show that these maps are predictive of the 

abnormalities as well as patient outcomes, showing the potential utility of the maps to aid with 

clinical-decision making. 
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7 Summary and Conclusion 

 We end with a summary of our methods to enhance medical imaging workflows with 

deep learning and a broader discussion of implications and future work. Although there are many 

emerging studies that have show the potential of deep learning for clinical workflows, these 

algorithms have yet to improve routine clinical practice. We are only beginning to see clinical 

trials for AI algorithms within the literature, due to the numerous challenges that prevent their 

clinical translation. These challenges are the central focus of this dissertation. In chapter 3, we 

showcase how deep learning models can be trained without sharing patient data. We found that 

distributed deep learning methods can be as effective as centrally hosted data. In chapter 4, we 

explored how various data, training, and model parameters that can influence model 

performance. We found that the design of algorithms can have profound downstream 

implications, considerations that an engineer may not have in mind when disconnected from the 

patients seen in clinical practice. Our results provide evidence for synergy between technical and 

clinical teams as algorithm design and clinical impact are inevitably intertwined. In chapter 5, we 

showcase an integrated pipeline for glioma, a challenging disease with a dismal prognosis. We 

show how deep learning can be used for detection, segmentation, and molecular marker 

prediction in a single pipeline, beyond single function algorithms often seen within the literature. 

In chapter 6, we showcase another computational pipeline, this time for ischemic stroke. Again, 

showing how a multi-faceted pipeline can be a multitool in the pocket of the clinician. 

 As anyone in research knows, scientific inquiry and advancement is never complete. 

When you answer one research question, five new ones pop up. This dissertation is no exception. 

Within distributed learning, it is still unclear how different distributed learning methods compare 

with one another head-to-head. Addressing heterogeneity across institutions remains a 
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challenging problem with no clear solution. Also, providing the most stringent protections to 

patient privacy introduces tradeoff to model performance that need to be rigorously evaluated. In 

looking at implications of model design, the parameters that we looked at only represent the tip 

of the iceberg of possible parameters. As new deep learning algorithms continue to be developed, 

there are many new parameters that will need to be thoroughly interrogated. Issues related to 

catastrophic forgetting and model generalizability warrant further investigation as well. Within 

our glioma pipeline, there are still many modes that can be added to expand functionality, such 

as prediction of molecular markers beyond IDH and drug response. As new advanced imaging 

modalities become utilized more in regular clinical practice, they will also be integrated into this 

pipeline. Similarly, the ischemic stroke pipeline can be augmented with further functionality and 

advanced imaging modalities. 

 Lastly, algorithms need to be rigorously tested “in the wild”. The controlled 

environments in which most research takes place is not representative at worst and overly 

optimistic at best. To this end, we have made progress towards packaging our algorithms into 

usable software for deployment. However, this is only the first step. The next is much more 

herculean effort – achieving FDA approval and deploying the software into the hospital system 

on a large scale. The role of software and infrastructure engineers cannot be emphasized enough. 

The creation of a truly robust algorithm must also be one that is “living”, that is that is must be 

constantly adapting to its environment and improving. The feedback between a clinically 

deployed algorithm and the scientists who can make improvements will be critical.  

 Stepping back, this work has given me an appreciation of the necessity of an ecosystem 

of scientists, engineers, and physicians. To move forward, true synergy will be needed, which 

can only be achieved through collaboration and trust. The hope for AI is immense – to the 
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address the shortcomings of human interpretation and decision-making. Not only that, but also to 

free up physician time for tasks that machines are not quite ready to tackle – the humanistic and 

social aspects of patient care. As this ecosystem co-evolves with integration and feedback, we 

can make progress toward this goal. 
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