
Incorporating Automated Feature Engineering Routines

into Automated Machine Learning Pipelines

by

Wesley Runnels

Submitted to the Department of Electrical Engineering

and Computer Science

in partial fulfillment of the requirements for the degree of Master of

Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c© Massachusetts Institute of Technology 2020. All rights reserved.

Author .

Wesley Runnels

Department of Electrical Engineering

and Computer Science

May 12th, 2020

Certified by .

Tim Kraska

Department of Electrical Engineering

and Computer Science

Thesis Supervisor

Accepted by .

Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Incorporating Automated Feature Engineering Routines

into Automated Machine Learning Pipelines

by

Wesley Runnels

Submitted to the Department of Electrical Engineering and Computer

Science

on May 12, 2020, in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Automating the construction of consistently high-performing machine learning

pipelines has remained difficult for researchers, especially given the domain knowl-

edge and expertise often necessary for achieving optimal performance on a given

dataset. In particular, the task of feature engineering, a key step in achieving high

performance for machine learning tasks, is still mostly performed manually by ex-

perienced data scientists. In this thesis, building upon the results of prior work

in this domain, we present a tool, rl feature eng, which automatically generates

promising features for an arbitrary dataset. In particular, this tool is specifically

adapted to the requirements of augmenting a more general auto-ML framework.

We discuss the performance of this tool in a series of experiments highlighting the

various options available for use, and finally discuss its performance when used in

conjunction with Alpine Meadow, a general auto-ML package.

Thesis Supervisor: Tim Kraska

Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgements

I would like to thank Professor Tim Kraska and the Kraska lab for taking me on as

a research assistant and introducing me to the ideas behind this work. In particular,

I would like to thank Zeyuan Shang and Emanuel Zgraggen for all their novel ideas

and help with implementation details.

5

6

Contents

1 Introduction 14

2 Prior and Related Work 16

3 Feature Engineering Routine 18

3.1 General Operation . 18

3.2 Operation Details . 19

3.3 Learning Algorithm . 22

4 Algorithm Modifications and New Features 24

4.1 Scoring Modification . 24

4.2 Automatic Feature Selection . 25

4.3 Budgeting by Time . 27

4.4 The cherrypick Operation . 27

4.5 Runtime Estimation . 28

4.6 Model Selection . 30

5 Using rl feature eng 32

5.1 Training . 32

5.2 Bulk Testing . 33

5.3 Direct Testing . 33

5.4 Incorporation into Alpine Meadow 34

7

6 Experimental Results 37

6.1 Experimental Setup and Results . 37

6.2 Analysis of Results . 41

7 Extensions and Future Work 44

8 Conclusion 46

A Operation Types 49

B Settings and Parameters 52

B.1 Operational Settings . 52

B.2 Algorithm Settings . 53

B.3 Performance Settings . 55

B.4 Output Settings . 56

C Package Structure 57

D Preprocessing 59

E Feature Filtering 61

E.1 Inverse Pairs . 61

E.2 Highly Correlated Features . 61

E.3 Redundant Operations . 62

E.4 Constant Features . 62

E.5 High Cardinality Categorical Features 62

8

9

List of Figures

3.1 Example Graph with 6 Nodes . 20

4.1 Example Graph with 12 Nodes and cherrypick 28

6.1 Test score heatmap . 42

10

11

List of Tables

3.1 Feature Growth with Composed Operations 21

6.1 Trial Settings . 38

6.2 Validation Results . 39

6.3 Testing Results . 41

12

13

Chapter 1

Introduction

Despite the many recent advances in automated machine learning methods, one as-

pect remains particularly elusive to perform well: automated feature engineering.

Indeed, feature engineering is often thought of as more of an art than a science.

While plenty of sophisticated modeling techniques exist for extracting as much in-

formation as possible from a dataset, choosing among the innumerable possibilities

when it comes to generating features and augmenting a dataset is a particularly

difficult task for algorithms to handle, given the creativity and domain knowledge

often required to efficiently and effectively select among the infinite possibilities.

Thus, the task of feature engineering, among the most fundamentally important

steps for maximizing modeling performance, has traditionally been left to manual

experimentation and human intuition.

Recently, we have seen significant advancements in the domain of automated

feature engineering which hold much promise in automating significant portions of

what has traditionally been left to manual effort. Some preliminary works, which

we discuss in the next section, introduce various methods of identifying a space of

potential features and exploring it intelligently. These methods generally work by

identifying a set of simple operations (e.g. addition, date extraction, logarithm)

and exploring some subspace of features generated by applying these operations to

the original features. If model quality can be improved with the addition of such

14

features, then by exploring the feature space in an intelligent way, the algorithms

should be able to identify useful new features. Even though the proportion of

useful features among all those explored may be small, by continually testing a

large number of features, an algorithm may be able to compensate sufficiently for

its relative lack of intuition and domain knowledge.

A further issue regarding the employment of these novel techniques is the incor-

poration of such routines into more complete auto-ML pipelines. While combining

an automatic feature engineering routine with a simple, standard machine learning

model (e.g. a generic random forest implementation) can produce promising results,

it is a more complicated task to seamlessly incorporate such a routine into a compre-

hensive auto-ML framework. Among the many potential issues one may encounter

are large increases in modeling time due to feature expansion and vulnerability to

overfitting due to significant expansion of the feature space.

In this work, we describe rl feature eng, a Python package containing our

implementation of a prior automated feature algorithm along with numerous mod-

ifications and additions that improve its utility in the context of a more general

automated machine learning framework. Next, we describe the process of combin-

ing this feature engineering algorithm implementation with Alpine Meadow, a high-

performing automated machine learning framework that lacks feature engineering

capabilities. We then evaluate and compare the performance of rl feature eng,

Alpine Meadow, and various combinations of them over a large corpus of datasets.

15

Chapter 2

Prior and Related Work

With the challenges of constructing auto-ML pipelines in mind, several auto-ML

frameworks have been developed. As an example, a popular tool for this is the

auto-sklearn library in Python [2] (Pedregosa et al. 2011). Upon encountering a

new dataset, auto-sklearn leverages its experience with previous datasets to choose

promising combinations of its numerous data preprocessing methods and classifiers

to try.

A recent approach which we build upon in this work is the Alpine Meadow

machine learning tool [3] (Shang et al. 2019), a framework achieving state-of-the-

art performance in auto-ML competitions, such as the Data Driven Discovery (D3M)

program held by DARPA. Alpine Meadow further explores the idea of identifying

promising machine learning pipelines by referencing experience gained from exposure

to prior datasets. Alpine Meadow, forming one component of the NorthStar utility,

heavily prioritizes interactivity with the user and rapidly and frequently provides

feedback on current model performance. This focus on interactivity, feedback, and

interpretability makes it particularly appealing to users who lack the expertise of

professional data scientists.

The field of automated feature engineering in particular remains a relatively

unexplored area, with plenty of opportunity available for developing novel methods.

Recently, there have been a few notable results in this space. One such effort is

16

the Deep Feature Synthesis (DFS) algorithm [4] (Kanter, Veeramachaneni 2015),

which applies a set of transformations to all available features and selects the most

promising among them. DFS served as a proof of concept of the idea of automated

feature engineering, outperforming two-thirds of human teams it competed against

in machine learning competitions in 2015.

More recently, several methods have been explored which use tree-based ex-

ploration methods to construct compositions of feature transformations. These

methods aim to leverage efficient exploration algorithms to avoid the computational

overhead of previous exhaustive search methods, while allowing the composition of

several types of feature transformations. Among these is [1] (Khurana, Samulowitz,

Turaga 2018), a framework which employs a reinforcement learning algorithm to

guide exploration of feature generation. Particularly impressive is its combination

of speed, performance, and feature intelligibility.

To this end, the core algorithm in rl feature eng is an independent implemen-

tation of the algorithm in [1], with some minor differences. On top of this base

algorithm are a suite of improvements and adjustments that are intended to facili-

tate the algorithm’s incorporation into a larger, more general auto-ML system. In

the following sections, we describe these changes and the reasoning behind their

inclusion.

17

Chapter 3

Feature Engineering Routine

In this chapter, we give an overview of the structure and function of the feature

engineering routine upon which the rl feature eng package is based. This struc-

ture is largely based upon the work in [1]. The modifications to this base structure

included in rl feature eng will be addressed in the subsequent chapter.

3.1 General Operation

Given a dataset, our goal is to discover new features that improve modeling perfor-

mance. In rl feature eng, we only consider features that are transformations of

features in the original dataset. For example, given a dataset with features height,

weight, and age, both height
weight

and log(age), among others, are valid features we

might consider.

As in [1], rl feature eng is driven by a reinforcement learning algorithm that

seeks to efficiently search for useful features to generate. Feature generation is done

through the creation of Nodes on a Graph of transformations, where each Node rep-

resents a new, augmented dataset yielded by the application of the transformation to

its parent(s). While [1] uses the term “transformation” to represent the generation

(or removal) of new features through some function, we use the terms “transforma-

tion” and “operation” interchangeably. Indeed, in rl feature eng transformations

are represented by Operation objects. The full list of operations currently available

18

in rl feature eng is available in Appendix A.

At the beginning of the feature engineering process, a Graph is created with

a single root Node corresponding to the original dataset. The next step of the

algorithm is to select an Operation to use on the root Node to yield a new feature set.

The logic behind the selection of this Operation is governed by the reinforcement

learning algorithm, which will be described later.

Once this Node is generated, its performance is evaluated and execution con-

tinues. The default performance metric for classification problems is the Macro F1

score for classification problems and (1 - relative absolute error) for regression prob-

lems, both taken over 5-fold stratified cross validation. The reinforcement learning

algorithm, having observed the performance of the previous Node, selects another

Operation to be performed on the Node of its choice: either the root or its child.

This process repeats until the algorithm reaches a termination condition: for exam-

ple, after having explored and evaluated 100 Nodes.

Figure 3.1 shows a possible Graph that could be constructed during algorithm

operation for a given dataset. The numbers within the Nodes correspond to the

order in which they were added to the Graph.

3.2 Operation Details

Upon selecting an Operation to use on a specific Node, the Operation is applied

to all valid targets in the Node’s set of features. Note that both originally included

and newly generated features can be valid targets. For example, a log operation,

which acts upon numeric features, would be applied to all numeric type features

in the Node, rather than to only a specific subset of them. In most cases, the

application of an Operation only adds news features to the Node it acts upon.

Some Operations (e.g. union) only combine features between nodes, while a select

few (e.g. feature selection) potentially remove features. The precise behavior of

all Operations is described in Appendix A.

There are three feature types supported by rl feature eng: numeric (for stan-

dard numeric types), categorical (for e.g. string feature types), and datetime.

19

0

1

3

4

5

2

log

sum

square

sqrt

tanh

Figure 3.1: Example Graph with 6 Nodes

Nodes are labeled in chronological order of addition to the graph.

datetime type features can be passed in directly or inferred by rl feature eng if

their name contains the string "date"; consult Appendix D for details.

To avoid redundancy, duplicate features are automatically omitted during feature

generation. Other types of redundant and uninformative features, like constant

features, are also removed automatically during feature generation. The details of

this behavior can be found in Appendix E.

Since an Operation (excluding those which remove features, such as

feature selection) typically generates a new feature for each valid target in the

targeted dataframe, dataset size can grow exponentially. For example, consider a

base dataset with three numeric features A, B, and C, in conjunction with the Graph

from Figure 3.1. Table 3.1 shows the features generated along the path to Node 4,

as a result of applying log, sum, and square, in order, to the dataset.

Note that by default, sum does not generate 62 = 36 new features, but instead(
6
2

)
= 15; equivalent pairs such as sum(A, B) and sum(B, A) only yield one feature,

while features such as sum(A + A) are omitted completely.

20

Node Operation Additional Features on This Step Total Features

0 - A, B, C 3

1 log log(A), log(B), log(C) 6

3 sum sum(A, B), sum(A, C), sum(A, log(A)),

sum(A, log(B)), sum(A, log(C)),

sum(B, C), sum(B, log(A)), sum(B,

log(B)), sum(B, log(C)), sum(C,

log(A)), sum(C, log(B)), sum(C,

log(C)), sum(log(A), log(B)),

sum(log(A), log(C)), sum(log(B),

log(C))

21

4 square square(A), square(B), square(C),

square(log(A)), square(log(B)),

square(log(C)), square(sum(A, B)),

square(sum(A, C)), square(sum(A,

log(A))), square(sum(A, log(B))),

square(sum(A, log(C))), square(sum(B,

C)), square(sum(B, log(A))),

square(sum(B, log(B))), square(sum(B,

log(C))), square(sum(C, log(A))),

square(sum(C, log(B))), square(sum(C,

log(C))), square(sum(log(A),

log(B))), square(sum(log(A),

log(C))), square(sum(log(B), log(C)))

42

Table 3.1: Feature Growth with Composed Operations

Even with such measures to reduce redundancy, the number of numeric features

grows as O(n) for Operations like log and O(n2) for Operations like sum. To pre-

vent extreme computational burdens, limit parameters such as two arg feature limit

are available and configurable. The Operation feature selection is also available

21

to trim generated datasets.

3.3 Learning Algorithm

The algorithm that controls exploration of the Graph is a reinforcement learning

algorithm mostly taken from [1], originally inspired by [10] (Watkins, Dayan 1992).

More specifically, we use Q-learning with linear function approximation, where we

approximate the Q values as

Q(s, t) = wt · f(s)

Here, wt, the algorithm’s weights of transformation t, controls how strongly each

component of f(s) contributes to the estimated value of a state. The vector f(s)

characterizing each state for a potential Node is a function of the following attributes

of the state:

• Node modeling performance

• Average reward of transformation in the Graph

• Frequency of t in paths to this Node

• Node accuracy gain from its parents

• Node depth

• Budget remaining

• Number of features in this Node relative to the root

• Feature types in the dataset

• Whether the transformation is cherrypick

Note that there is still some dependence on the transformation t inherent in f(s).

The optimal policy simply selects the transformation t which yields the highest Q-

value on each iteration based on the current state s.

The weights wt are derived during training. We start with a set of initial weights

for each Operation (by default, all 1). After each iteration, we calculate a reward

ri for the algorithm based on the performance of the new Node as follows:

22

ri = max(0, Pi − max
j∈{0,...,i−1}

Pj)

where Pk is the calculated performance of Node k. Thus the algorithm only re-

ceives a reward when discovering a Node with better performance than all previously

explored Nodes. This reward is then used to update wt on iteration i:

wt
i ← wt

i−1 + α · (ri + γ · φ(max
n′,t′

Q(s′, t′))−Q(s, t)) · f(s)

Here α and γ are the learning and discount rates, respectively, configurable as

alpha and gamma. The maximization in the weight update is done over all potential

valid (node, transformation) pairs in the next weight update. φ(·) is a clipping

function that bounds the predictedQ in the next iteration to regulate weight updates

and ensure they converge; the default implementation of φ uses the bounds 0 and

0.1 · (1− P), where P is the current best performance in the Graph.

Lastly, to ensure that the algorithm is exposed to enough of the possible state

space, the learning algorithm takes a random (valid) action with probability ε. Note

that this is only done during training; during testing, the policy is to always take

the action with the highest expected reward.

23

Chapter 4

Algorithm Modifications and

New Features

On top of the core algorithm, rl feature eng includes a number of additions that

better suit certain use cases, as well as new features that can improve modeling

performance. They are described in the following sections.

4.1 Scoring Modification

With the original scoring formulation, there is an imbalance that arises when in-

corporating improvements in performance into weight updates. As an example,

consider datasets A and B, with base node classification performances of 0.2 and 0.9,

respectively. Upon discovering a new set of features that achieves perfect perfor-

mance, the total reward given to the algorithm over A and B would then be 0.8 and

0.1, respectively. As a result, the improvements in classification performance over

B will have a much smaller impact on the algorithm weights than that of A.

To address this imbalance, we use a scoring system that considers performance

relative to the root node to evaluate the performance of each node. First, the raw

score Ri of each node is calculated: for classification problems, this is the median

Macro F1 score over 5-fold stratified cross validation, while for regression problems

this is the median RMSE over 5-fold cross validation. Then, node performance is

24

defined as the percentage of possible improvement relative to R0, the raw score of

the root node. Thus, for classification problems, where the optimal performance is

an F1 score of 1, node performance is defined as:

Pi = 1− 1−Ri

1−R0

For example, given a root raw score of 0.4 and a new raw score of 0.8, the

new node performance is 1 − 1−0.8
1−0.4 = 0.667, representing 66.7% of the possible

improvement.

For regression problems, where the optimal performance is an RMSE of 0, node

performance is defined as:

Pi = 1− Ri

R0

So, for a root raw score of 40 and a new raw score of 10, the new node performance

is 1− 10
40 = 0.75, representing 75% of the possible improvement.

With these scoring definitions, a performance of 1 represents perfect performance

on a dataset, while a performance of 0 always represents no improvement over the

root node.

4.2 Automatic Feature Selection

One significant issue with the original feature exploration algorithm is that the

number of features in each node is unconstrained. For example, a dataset with 10

numeric features grows to 100 features (10 original + 2∗
(
10
2

)
= 90 new features) after

just one divide operation. This number quickly grows well into the thousands, or

even tens of thousands, when adding more operations, particularly those generating

O(n2) new features like divide.

This phenomenon of feature explosion has multiple drawbacks. First, our results

become far less explainable if the number of features we generate is an extreme

increase over the original dataset. While we can easily interpret the addition of 3

25

new features to a dataset with 10 features, the importance of 90 additional features

is not as clear.

Keeping such a large number of features also greatly reduces computational ef-

ficiency. Without a consistent restriction on the number of features in each node,

generating new nodes becomes increasingly computationally intensive, given the

exponential growth in the number of features when chaining transformations. Fur-

thermore, evaluating the performance of nodes with large number of features is much

slower and more memory intensive.

This problem is partially addressed through the inclusion of the

feature selection operation, and indeed, in [1] experimental results show that

including feature selection as an operation greatly improves performance. However,

there is no guarantee that any given node, including the best performing one, will

use feature selection.

To address this issue of feature explosion, rl feature eng includes by default

automatic feature selection, set with the auto fs parameter. Automatic feature

selection (“auto-fs”), in this context, means requiring feature selection at each

node where the number of features exceeds a predetermined cap, determined by

the number of features in the original dataset and algorithm settings (specifically,

fs scaling and fs cap factor). The exact method is identical to the operation of

the feature selection operation, described in Appendix A.

An unfortunate consequence of using automatic feature selection is that compu-

tation time must be spent determining which features to keep. This is not necessarily

a net loss efficiency-wise: with automatic feature selection, deeper nodes generally

have significantly fewer features, reducing overall computational load. However, the

amount of time spent during feature selection can still be rather significant.

We can save computation time by ending model training prematurely during fea-

ture selection. As our only goal during feature selection is to reduce the size of the

dataset, we have no need to train until the point where model performance converges,

as long as we have sufficient confidence that the features we retain are the most

important for model performance. Since we use Random Forest [5] (L. Breiman,

26

2001) or XGBoost [6] (Chen, Guestrin 2016) for our feature selection method, this

corresponds to using fewer decision trees in the model. The number of decision

trees we use during automatic feature selection is configurable through the setting

auto fs ntrees (default 10). This parameter can be increased accordingly in order

to more confidently identify the most important set of features for model perfor-

mance, or decreased if maximizing the speed of feature selection is more important.

4.3 Budgeting by Time

The original exploration algorithm expresses exploration budgets in terms of a given

number of nodes. Indeed, this behavior can still be enabled in rl feature eng

through the settings train budgets and test budget. However, in practice, we

are generally more concerned with quickly finding features in terms of absolute

time, rather than a number of iterations of the feature engineering algorithm. Thus

by specifying the training time budgets and test time budgets settings, the al-

gorithm can be configured to operate based on absolute time. Note that with these

options enabled, the feature corresponding to the amount of budget remaining is

also based on absolute time.

4.4 The cherrypick Operation

In the original algorithm, we already have the union operation which can be used to

combine promising sets of generated features in the hope of exploiting any synergy

between them. However, if we have many promising nodes, some of which perhaps

at greater depths, taking the union to combine them may either be too slow to

generate (by having to chain multiple union operations in sequence) or may not be

possible given our algorithm configuration (e.g. due to the max height parameter).

To address this desire to combine promising nodes, we introduce the cherrypick

operation, which operates on between 3 and cherrypick size of the best perform-

ing nodes. By default, there are some restrictions on which nodes are eligible for

cherrypicking: for example, a high performing node with worse performance than

27

0

1

2 4 5

6 7 10

11

3

8 9

log

log sum sqrt

union sin divide

cherrypick

date

z-score mean

union

cherrypick

cherrypick

Figure 4.1: Example Graph with 12 Nodes and cherrypick

Nodes are labeled in chronological order of addition to the graph.

its even higher performing parent is ineligible. More details on cherrypick can be

found in Appendix A.

An example Graph with 12 Nodes, including a cherrypick Operation, is de-

picted in Figure 4.1. The numbers within the Nodes correspond to the order in

which they were added to the Graph.

4.5 Runtime Estimation

Naturally, if we configure the budget to be time-based, it makes sense to have the

algorithm account for this when selecting operations. In particular, when budgeting

by node count, all operations have the same cost: one fewer possible node to explore.

28

When budgeting by time, this is no longer true. For example, a transformation

generating O(n2) features, like sum, will generally require more time both to generate

the new dataframe and evaluate its performance than an operation generating O(n)

features, like log. This implies that selecting the transformation with the highest

estimated Q-value may not optimal if it requires too much time relative to other

operations.

In order to address this issue, rl feature eng includes the configurable setting

account for modeling time which makes the exploration algorithm choose the

transformation with the highest Q-to-time ratio at any given step. This leaves

the Q-value definitions and updates identical but allows us to choose actions with

the highest rate of increasing expected value.

Of course, the effectiveness of this mode of operation is complicated by the fact

that estimates for the runtime of various transformations are not readily available.

There are four sources of runtime cost during each iteration which comprise the bulk

of the time spent during each iteration:

1. Search for the most promising transformation

2. Application of the transformation to create a new dataframe

3. Reduction of the number of features during automatic feature selection, if

enabled and necessary

4. Model training and evaluation

The time spent in Step 1 increases when accounting for the runtime of each

transformation but is a constant cost regardless of the chosen transformation. The

runtime of Step 2 depends greatly on the transformation, as an operation like sum

which generates O(n2) features requires much more computation than an O(n) oper-

ation like log. Feature selection in Step 3 can also require much time if the number

of features generated in Step 2 is large, though this can be mitigated by using a

smaller value for auto fs ntrees. Lastly, Step 4, the “modeling time”, often is the

slowest and takes up the majority of the time to execute.

29

As Step 4 is generally the slowest, enabling the account for modeling time

option instructs the algorithm to estimate its runtime by constructing and evaluating

the new Node for a given operation by using a much smaller number of decision trees

during modeling (default 10, configurable through modeling time est ntrees). As

we must construct a dataframe and partially train a model to do this, this requires a

large amount of time when done for each individual valid transformation, so we make

some assumptions about expected runtimes and make the following approximations:

• In general, operations within a given class (e.g. one arg) require the same

amount of time

• divide requires twice as much time as other two arg operations, as it is the

only two arg operation lacking symmetry

• union and cherrypick modeling runtimes scale with the total number of

features among the constituent nodes

Thus, with these approximations, we can cache results for each operation type

and save time calculating the runtimes for other similar operations.

4.6 Model Selection

Another addition available in rl feature eng is the option to choose between two

different learning algorithms: Random Forest and XGBoost. Each brings unique

advantages, and the user can decide which one to choose. By default, the chosen

learning algorithm is used for both evaluating Node performance and instances of

feature selection.

A big advantage of Random Forest is its ease of use and generally

strong performance “out-of-the-box”, i.e. without hyperparameter tuning. Thus

in rl feature eng all Random Forest parameters are kept at default values. This

ease of use and straightforwardness also is the reason why Random Forest is chosen

by default, with the setting algo setting = "rf".

30

XGBoost, on the other hand, occupies a different niche. It is often blazingly fast,

which often means being able to explore many more nodes in the transformation

graph than when using Random Forest. Using XGBoost can be enabled with the

setting algo setting = "xgb". However, it is not as simple to use, as generally,

some hyperparameter tuning is required to achieve good performance. This problem

further compounds since we are exploring potentially hundreds of nodes on each

node, each with a different dataset.

To address this need for hyperparameter tuning, rl feature eng by default

spends a certain proportion of its time budget (xgb opt proportion, default 0.1)

optimizing hyperparameters for the base dataset. During this optimization, the

maximum number of estimators is controlled by xgb max estimators. Afterwards,

it stores the optimal hyperparameter configuration and uses it for the rest of the

nodes in the same Graph.

31

Chapter 5

Using rl feature eng

There are three modes of operation in rl feature eng: bulk training, bulk testing,

and direct testing. We discuss each operation mode in the following sections.

5.1 Training

To ensure that the feature engineering algorithm explores potential transformations

efficiently, we must train the algorithm so that the operation weights guide explo-

ration intelligently. Since we aim to have our algorithm perform well over a wide

variety of datasets, we train rl feature eng over multiple datasets during training

to improve its generalization capabilities.

To train the algorithm, we first specify a directory of datasets to train over, and

then customize, if desired, various training parameters. Some of these parameters

control the duration of training (e.g. train num batches, train time budgets),

while others control the behavior of the learning algorithm (e.g. alpha, epsilon).

The full list of training parameters is available in Appendix B.

During training, the algorithm continually updates weights as it trains on each

dataset. The final weights are output to a specified file, and if desired, bulk testing

commences with the final weights.

32

5.2 Bulk Testing

Bulk testing is a similar operation mode to training, except we start with a specified

set of weights and maintain them throughout. Furthermore, the policy is to always

take the action with the highest Q-value (or Q-to-time ratio if we are using runtime

estimation): at no point is a random action taken.

We start, as with training, by specifying a directory of testing datasets and

our desired testing parameters. As each dataset is analyzed, the best performing

node is shown. If output best test features is specified, its dataset is output to

file. Once all datasets have been handled, the initial (root node) performance and

best node performance are given, along with various statistics describing the testing

results.

Note that as we wish to evaluate the performance of our new features on un-

seen data during testing, a training and testing split must be given for each test

dataset. Exploration is done on the training portion of each dataset, and final test-

ing performance is evaluated for the root and best node on the test portion of the

dataset.

5.3 Direct Testing

Instead of evaluating feature engineering performance on multiple datasets, we can

also find promising new engineered features of a specific dataset, perhaps as one

step of a larger machine learning routine. In this setting, we use the direct testing

functionality. Below is an example showing how to use this mode.

First, import the relevant modules:

from rl feature eng import engineer features, FeatureStore, Primitive

The engineer features function is the main routine for exploring new features,

while the FeatureStore object will store the results of the best features we find. We

will use the Primitive module to generate a new dataframe with the best features

we find.

33

Next, specify any desired hyperparameters and initialize a FeatureStore object:

params = {"account for modeling time": True, "fs scaling": "sqrt",

"test time budget": 300}

fs = FeatureStore()

Next, run the feature engineering routine with the original dataframe and tar-

get, target type ("categorical" for classification problems and "regression" for

regression problems), the instantiated FeatureStore object, and desired hyperpa-

rameters:

engineer features(data=data, target=target, target type="regression",

feature store=fs, hyperparams=params)

Running engineer features stores the names of the best engineered features

in the FeatureStore object. We can obtain these names in a json format with the

following call:

names = feature store.export json()

With the best feature names known, we can now use the Primitive module to

generate a dataframe with the engineered features:

df = Primitive.transform(names)

Now df contains all the engineered features we found through engineer features.

To extract n sets of features, set the n parameter of FeatureStore to the desired

value and use the method export weighted feature sets in FeatureStore. This

yields up to n sets of feature names, weighted by their estimated quality, as described

in the following section.

5.4 Incorporation into Alpine Meadow

As mentioned in the Related Work section, Alpine Meadow is a powerful stan-

dalone auto-ML package that emphasizes quickly returning fast, easily interpretable

34

machine learning pipelines to users. In this section, we describe the process of incor-

porating rl feature eng into Alpine Meadow, as an example of what can be done

when combining rl feature eng into larger frameworks.

Alpine Meadow operates by generating a search space of logical pipelines, which

constitute machine learning pipelines consisting of various steps. The individual

components of each pipeline are called primitives. Primitives encapsulate individual

aspects of a machine learning pipeline: data processing, data transformation, mod-

eling, etc. Indeed, this is where the Primitive module of rl feature eng, which

generates a dataframe given a list of names of features to generate, takes its name.

To combine Alpine Meadow and rl feature eng, we first allocate a specific

budget for rl feature eng to run. Next we run the engineer features routine

we saw in the previous section, storing the best results in a Feature Store object.

After finding which sets of features to use, it suffices to add logical

pipelines to the default search space for a given dataset. We do this by dupli-

cating each preexisting logical pipeline in the original search space and adding a

FeatureEngineeringPrimitive step at the beginning of each duplicate. This prim-

itive, which internally calls the Primitive module of rl feature eng, transforms

the original dataset into an augmented dataset with the features we found from

rl feature eng. After transformation, we continue with the sequence of primitives

originally within the logical pipeline. If the transformed dataframe improves mod-

eling performance, Alpine Meadow will automatically prioritize creating physical

pipelines from logical pipelines including the transformation induced from feature

engineering.

To encourage feature diversity among the various pipelines, we store multiple

(default 5) promising sets of features in the FeatureStore object. To retrieve them,

we use the export weighted feature sets method of FeatureStore like so:

weighted feature sets = fs.export weighted feature sets()

This outputs a list of (weight, feature names) pairs, corresponding to each

set of promising new features found during exploration and their weights, which

35

measure how promising each new dataset is. To determine the weights, we record

the score improvement of each new dataset over the root dataset and apply a softmax

function. Thus, the weight for dataset i with improvement di over the root dataset

is

wi =
edi
n∑

j=1

edj

To avoid crowding the total search space, we add the augmented feature en-

gineering pipelines to the original search space according to probabilities given by

the weights of the features they represent. In this way, we end up retaining more

pipelines with the most promising features, while still keeping some pipelines with

less promising features to ensure feature diversity.

36

Chapter 6

Experimental Results

In this chapter we discuss experimental results involving rl feature eng, both in-

dependently and combined with Alpine Meadow.

6.1 Experimental Setup and Results

To evaluate the feature engineering routine in rl feature eng, we conduct an ex-

periment with 3 total phases: training, validation, and testing. Our objective is to

train and evaluate multiple rl feature eng models, select the most promising ones,

and then evaluate them alone and in conjunction with the Alpine Meadow auto-ML

system.

During the training phase, we take 150 datasets and train 16 different

rl feature eng weight sets, each using different settings. For all training runs,

we use α = 0.05, γ = 0.99, ε = 0.15, with budgets of 60, 150, 300, or 600 sec-

onds, in random order. Parameter settings are otherwise identical except for four:

algo setting, fs scaling, account for modeling time, and op list. These set-

tings, respectively, control: whether to use Random Forest or XGBoost as the model;

how strongly to filter features during feature selection; whether to account for mod-

eling time when choosing actions; and which Operations to consider during explo-

ration. More detailed explanations of these settings can be found in Appendix B.

The distribution of each setting among the 16 trials is given in Table 6.1.

37

Trial algo setting fs-scaling Use Modeling Time Use cherrypick

1 rf sqrt N Y

2 rf sqrt N N

3 rf sqrt Y Y

4 rf sqrt Y N

5 rf linear N Y

6 rf linear N N

7 rf linear Y Y

8 rf linear Y N

9 xgb sqrt N Y

10 xgb sqrt N N

11 xgb sqrt Y Y

12 xgb sqrt Y N

13 xgb linear N Y

14 xgb linear N N

15 xgb linear Y Y

16 xgb linear Y N

Table 6.1: Trial Settings

We use an additional 120 datasets for the validation and testing phases, of which

46 are used during validation. During validation, we compare the performance of

our 16 trained weight sets, each with their specific settings, along with basic Random

Forest and XGBoost models.

Given the results of the 18 total methods over the validation datasets, we select

two of them to evaluate over the test datasets. To determine which two to select, we

calculate the z-scores of performances of each method over each dataset and take

the two models with the highest z-score total. This helps normalize performance

differences across datasets and ensures we choose the trials with consistently good

performance. These results are shown in Table 6.2.

38

Trial Average z-score Average z-score Rank

Base rf -0.486738501 17

Base xgb -0.520263653 18

1 0.054513634 8

2 0.04584359 9

3 -0.064747978 13

4 0.109357191 6

5 0.239124863 2

6 0.175730037 4

7 -0.102349857 14

8 0.163106137 5

9 -0.107983756 15

10 0.003813241 11

11 0.043646142 10

12 -0.10978345 16

13 0.058990208 7

14 -0.020971936 12

15 0.29237381 1

16 0.226340278 3

Table 6.2: Validation Results

Average z-score is over z-scores calculated over trials on each dataset.

For ranks, 1 is best and 18 is worst. The best two values are bolded.

Table 6.2 shows that the overall best performing models are Trials 5 and 15.

Note that the two trials simply using Random Forest or XGBoost without any fea-

ture engineering perform significantly worse than the trials with feature engineering

included.

Now we enter the testing phase, where we evaluate and compare 9 different

setups involving rl feature eng and Alpine Meadow. For each setup, we run

rl feature eng for the specified feature engineering budget and pass the discov-

39

ered features to Alpine Meadow. We then run Alpine Meadow for its corresponding

budget and observe the score of the best pipeline found by Alpine Meadow. For the

setups where Alpine Meadow is not run, we observe the test split score of the best

node found by rl feature eng. The parameters for each run are the same as in

training, respecting the specific settings of models 5 and 15.

To evaluate each setup relative to Alpine Meadow, we make use of a multiple

hypothesis testing procedure involving the Bonferroni-Dunn test [7] (Dunn, 1961),

as described in [8] (Demar, 2006). We first assign each setup i a rank rji on each

dataset j, where rank 1 is best. Tied performances are assigned the average of the

ranks they would otherwise be assigned. We then compute Ri, the average of the

ranks for an individual setup:

Ri =
1

n

∑
j

rji

Here n = 74, as there are 74 testing datasets in total.

Next, we calculate the test statistic zi for each testing setup, relative to Setup

A, which only uses Alpine Meadow:

zi =
(R1 −Ri)√

k(k+1)
6n

where k = 9 is the number of setups. The Bonferroni-Dunn test we employ

here is then to compare the p-value induced by test statistic, assuming the normal

distribution, to the threshold induced by taking α = 0.05
k−1 = 0.00625.

The budget settings, average z-score, average rank, and test statistic on the

testing datasets for each setup are shown in Table 6.3. We see that setup B has the

best average z-score among the 9 setups, while setup F has the best average rank.

Setups F and B exhibit better rank performance than Setup A, which only uses

Alpine Meadow. Notably, setups B and F are the only two that do not incorporate

Alpine Meadow whatsoever. However, neither of these setups outperform Alpine

Meadow by a significant margin; the margin is close enough to resemble statistical

noise, considering that the necessary zi to produce a significant result is roughly 3.2,

40

Setup AM Budget FE Budget FE Model Avg z-score Avg Rank zi

A 10 0 - 0.1653 4.5878 -

B 0 10 5 0.1962 4.5810 0.0150

C 5 5 5 -0.1281 5.2770 -1.5307

D 7.5 2.5 5 -0.1240 5.2162 -1.3956

E 9 1 5 0.0431 5.2094 -1.3806

F 0 10 15 0.1578 4.5405 0.1050

G 5 5 15 -0.0837 5.2094 -1.3806

H 7.5 2.5 15 -0.1021 5.1216 -1.1855

I 9 1 15 -0.1244 5.2567 -1.4857

Table 6.3: Testing Results

Average z-score and average rank are calculated over setups for each test dataset.

For ranks, 1 is best and 9 is worst. Best values are bolded.

Budget values are in minutes.

for α = 0.00625. Hence, no alternative setup has achieved a statistically significant

result superior to Alpine Meadow.

We give the performance of each testing setup over all 74 testing datasets in

Figure 6.1.

6.2 Analysis of Results

While not constituting a formal statistical test, the comparison of bare Random

Forest and XGBoost models to the results of rl feature eng setups during the

validation phase imply that feature engineering does help on many datasets. Of

course, we cannot expect every dataset to respond significantly to feature engineer-

ing efforts without explicit domain knowledge, so the observation that feature engi-

neering outperformed the base models overall in every validation trial supports the

hypothesis that rl feature eng finds useful features in some proportion of datasets

that are responsive to novel features.

41

Figure 6.1: Test score heatmap

Each row, corresponding to a different dataset, has its own heatmap color scheme.

Darker colors indicate better performance on a dataset.

42

It is ultimately not clear that combining rl feature eng with Alpine Meadow

improves modeling performance overall. Interestingly, the experimental setups that

only used one method performed better than any setup that combined the two.

It seems that setups using only feature engineering or only Alpine Meadow yield

comparable performance, with the differences in rankings between these setups over

the testing datasets being quite small.

One possible explanation for this gap in performance between the combined and

individual setups is a decline in search efficiency when combining the two meth-

ods. Alpine Meadow operates by successively improving upon previous pipelines,

and using too much of the allotted time for feature engineering could hinder this

optimization process. Furthermore, if too many features are retained during feature

engineering, fewer pipelines can be explored due to an increase in computational

load. This could possibly be mitigated by a more aggressive feature selection routine

or a more sophisticated method of integrating Alpine Meadow and rl feature eng.

43

Chapter 7

Extensions and Future Work

As automated feature engineering is a burgeoning young field, there is an enormous

number of potential directions to explore as for improving upon current methods.

Here, we discuss what improvements could be made specifically to rl feature eng

to improve the utility it has in feature engineering tasks.

Of course, there are potentially significant improvements to be made

regarding parameter tuning. This includes tuning learning parameters such as

alpha or epsilon to improve exploration, and feature filtering parameters like

two arg corr threshold and fs scaling to reduce the number of redundant and

uninformative features which occupy computational resources for little benefit.

More interesting than parameter tuning are new ideas that could greatly improve

search efficiency. One is the idea of search pruning, where we gradually restrict

the search space over possible transformations over time. This becomes important

when running rl feature eng for long periods of time, as the entire search space

must be recalculated on each iteration (due to e.g. changing proportion of budget

remaining), which can have a significant negative effect on algorithm runtime in later

stages. Pruning transformations that are unlikely to ever be selected could therefore

reduce the amount of time we spend searching and evaluating transformations that

are unlikely to be chosen.

Another possible efficiency improvement relies on exploiting the warm start pa-

44

rameter of models like Random Forest. As we are fitting a large quantity of models

during operation, being able to terminate model evaluation early in certain situa-

tions (e.g. if the node is almost certainly low-performing) could greatly increase the

number of nodes we explore in a given time frame. This would require some inves-

tigation into modeling the behavior of Random Forest and XGBoost performance

over the number of estimators present; the work in [9] (Probst, Boulesteix 2017)

regarding tuning random forest hyperparameters may be useful in this regard.

Yet another efficiency improvement would be the exploitation of multiple cores

in the exploration algorithm. In this work, we only use one core for all experimental

runs with rl feature eng, but configuring the algorithm to manage multiple worker

units, each exploring separate parts of the tree, should yield a great improvement

in search capability.

Lastly, a large potential improvement could be had from incorporating

rl feature eng into Alpine Meadow in a more sophisticated manner. The current

incorporation method simply runs rl feature eng and Alpine Meadow sequentially.

A dynamic budget allocation, where feature engineering is stopped upon reaching

a termination condition (e.g. once node performance stalls) could ensure that the

budget is being spent in the most efficient way possible. An intermediary feature

selection routine, ensuring that Alpine Meadow only operates upon demonstrably

useful features, could also help improve overall performance.

45

Chapter 8

Conclusion

In this work we present rl feature eng, a Python package capable of automatically

engineering promising features for a given dataset. We describe the works inspiring

it, the motivations for improvements and additions we implement to make it suitable

for use in larger auto-ML frameworks, and its structure, function, and customization

opportunities.

While ultimately the experiments regarding incorporation of rl feature eng

into Alpine Meadow do not yield any statistically significant improvements, the re-

sults seen in this work support the idea that rl feature eng is a promising tool

that can aid in the analysis of datasets where feature engineering is a promising av-

enue of improvement. Many future opportunities for improvements, including some

already mentioned in this text, could make rl feature eng suitable for eventual

inclusion in larger auto-ML frameworks.

46

Bibliography

[1] Khurana, U., Samulowitz, H., and Turaga, D. (2018, April). Feature engineering

for predictive modeling using reinforcement learning. In Thirty-Second AAAI

Conference on Artificial Intelligence.

[2] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., ... and Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. the

Journal of Machine Learning Research, 12, 2825-2830.

[3] Shang, Z., Zgraggen, E., Buratti, B., Kossmann, F., Eichmann, P., Chung, Y.,

... and Kraska, T. (2019, June). Democratizing data science through interactive

curation of ml pipelines. In Proceedings of the 2019 International Conference on

Management of Data (pp. 1171-1188).

[4] Kanter, J. M., and Veeramachaneni, K. (2015, October). Deep feature synthe-

sis: Towards automating data science endeavors. In 2015 IEEE International

Conference on Data Science and Advanced Analytics (DSAA) (pp. 1-10). IEEE.

[5] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

[6] Chen, T., and Guestrin, C. (2016, August). Xgboost: A scalable tree boost-

ing system. In Proceedings of the 22nd acm sigkdd international conference on

knowledge discovery and data mining (pp. 785-794).

[7] Dunn, O. J. (1961). Multiple comparisons among means. Journal of the American

statistical association, 56(293), 52-64.

47

[8] Demar, J. (2006). Statistical comparisons of classifiers over multiple data sets.

Journal of Machine learning research, 7(Jan), 1-30.

[9] Probst, P., and Boulesteix, A. L. (2017). To tune or not to tune the number

of trees in random forest. The Journal of Machine Learning Research, 18(1),

6673-6690.

[10] Watkins, Christopher JCH, and Peter Dayan. “Q-learning.” Machine learning

8.3-4 (1992): 279-292.

48

Appendix A

Operation Types

In rl feature eng, each Operation is classified by type. Below the various oper-

ation types are explained, along with the members of each operation class. Most

of the operations are taken from [1], though not all operation definitions between

rl feature eng and [1] are identical. cherrypick is a new operation type.

• one arg: Operations that act upon a single numeric feature element-wise, i.e.

functions of the form f : (c1, . . . , cn)→ (f(c1), . . . , f(cn)).

This class includes log, sin, cos, tanh, reciprocal (rc), sigmoid, square, and

square root (sqrt).

• two arg: Operations that act upon two numeric features element-wise, i.e.

functions of the form f : (c1, . . . , cn)×(d1, . . . , dn)→ (f(c1, d1), . . . , f(cn, dn)).

This class includes sum, subtract, multiply, and divide. To reduce redun-

dancy, the operations sum, subtract and multiply are treated as symmetric,

and only one of f(ci, di) and f(di, ci) is generated (while subtraction is not

mathematically symmetric, there is no benefit to retaining both f and −f as

features.)

• statistical: Operations that act upon a single numeric feature as a whole

and output statistics based on the feature, i.e. functions of the form

f : (c1, . . . , cn)→ (f1(c1, . . . , cn), . . . , fn(c1, . . . , cn)).

49

This class includes z score, standard deviation, min max norm (normalizing a

single feature to between 0 and 1), binning u (uniform binning with 10 bins),

and binning d (dynamic binning dependent on data).

• aggregate: Operations that act upon a numeric feature class-wise according

to the classes in a categorical feature.

As an example, given a numeric feature pollution index and a categorical

feature day of week, the max aggregate operation will generate one feature

where the pollution index value for each day is replaced by the maximum

pollution index value on that day in the entire dataset. Other examples

would include computing a statistic for each client of a business or each country

in a dataset.

This class includes max,min, count, standard deviation (std), z score, and

mean. All aggregate operation names are suffixed by agg in rl feature eng.

• frequency: There is only one operation in this class, one term frequency.

This operation takes a numeric feature and outputs a feature corresponding

to the frequency of each value as a proportion of the number of instances.

• date split: Parses a np.datetime feature and generates several features

based on the contained dates. These are : ["year", "month", "day", "hour",

"minute", "second", "microsecond", "nanosecond", "dayofweek"]

• union: A union operation simply takes two dataframes and produces the

mathematical union of their features.

To avoid redundancy, certain pairs of nodes are forbidden from being joined

through a union operation, e.g. a node and its parent.

• compact one hot: An operation that attempts to join low frequency one-hot

categories for categorical variables into a “misc” category. Not used by default.

• feature selection: Performs feature selection on a given node. While there

are many methods for performing feature selection, the feature selection algo-

rithm implemented here uses the feature importances attribute of either a

50

RandomForest or XGBoost classifier, depending on the algo setting param-

eter, to choose which features to retain.

Once the feature selection model is chosen, we then perform feature selection

by selecting N = c · φ(n) features, where c is the fs cap factor setting, φ(·)

is given by the fs scaling setting, and n is the number of features in the

original dataset. Thus, for c = 1, φ(·) =
√
· and n = 100, 10 total features will

be kept. Afterwards, all original features are re-added to the node dataframe.

Thus, after feature selection, we will have retained all the original features and

kept anywhere between 0 and 10 engineered features, depending on how well

they ranked in terms of feature importance in our selected model.

• cherrypick: An operation, similar to union, which joins features from up

to cherrypick size nodes. Unlike union, cherrypick has several unique

constraints:

– A minimum of 3 nodes must be joined.

– Only nodes with better performance than all of their ancestors can be

joined (i.e. “good” nodes)

– Only the qualifying nodes with the absolute best performance can be

chosen

These constraints imply that cherrypick can only be called once after find-

ing three high-performing nodes, and then only once each time after finding

another qualifying high-performing node.

51

Appendix B

Settings and Parameters

rl feature eng has a wide range of settings which can be tweaked by the user to

suit their individual needs. We categorize them into multiple types of settings, given

below.

B.1 Operational Settings

These settings affect the setup and output behavior for rl feature eng. This in-

cludes reading in parameters and outputting certain information.

• config settings file [str]: File name containing a json dictionary map-

ping settings to values. If specified, will output a json file in the same directory

containing all settings.

• skip training [bool]: Do not do training (if specified, must input training

weights)

• train weights input file name [str]: File containing pickled training

weights for each operation

• output training weights [bool]: Output training weights after training

• training output name [str]: Name for output training weights

52

• skip testing [bool]: Do not do testing (i.e. only get training weights)

• output best test features [bool]: Output the dataframes corresponding

to the best sets of features found during testing

• test weights file name [str]: Name of file containing best features found

during testing

• performance evolution name [str]: Name of file containing the index of

the best performing node over time

B.2 Algorithm Settings

The following settings alter the modeling and exploration behavior of rl feature eng.

• op list [list[str]]: specify which types of operations to include

(Options include ["one arg", "two arg", "statistical", "aggregate",

"frequency", "compact one hot", "feature selection",

"cherrypick", "union", "date split"])

• algo setting [str] (One of ["rf", "xgb", "rf multiclass"]): Learning

algorithm to use, between Random Forest and XGBoost. "rf multiclass"

uses Random Forest for multiclassification problems and XGBoost for regres-

sion and binary classification.

• account for modeling time [bool]: Estimate and account for modeling time

when selecting new transformations

• xgb opt proportion [float]: Proportion of time we optimize hyperparam-

eters when using xgboost

• xgb max estimators [int]: Max number of estimators used in xgboost mod-

eling

• train budgets [list[int]]: Maximum number of nodes to explore for each

training run

53

• train time budgets [list[int]]: Time budget for each training run

• train num batches [int]: Number of times to repeat each training run

• alpha [float]: Learning rate during training

• gamma [float]: Discount factor during training

• epsilon [float]: Frequency of random actions during training

• test budget [int]: Maximum number of nodes to explore during testing

• test time budget [int]: Time budget for testing

• modeling time ntrees [int]: How many trees to use for Random Forest

when estimating modeling time

• auto fs ntrees [int]: How many trees to use for Random Forest when do-

ing automatic feature selection

• preprocessing opt outs [list[str]]: Which preprocessing steps to skip

(Options: "skip all", "skip drop index", "skip infer dates",

"skip remove full NA columns", "skip fill in categorical NAs",

"skip impute with median", "skip one hot encode",

"skip remove high cardinality cat vars", "skip rename for xgb")

• max height [int]: Maximum height of the exploration graph

(Note: cherrypick and feature selection are not constrained by this limit)

• two arg feature limit [int]: Maximum number of features before two arg

operations are forbidden due to computational constraints

• agg product feature limit [int]: Maximum product of number of cate-

gorical and numerical features before aggregate operations are forbidden

• node total data limit [int]: Maximum product of number of instances

and features before feature generating operations are forbidden

54

• fs cap factor [int]: What scaling factor to use for limiting the number of

retained features during auto-fs

• fs scaling [str]: Scaling used to determine max number of features re-

turned during automatic feature selection

• two arg corr threshold [float]: Threshold for removing correlated oper-

ations

• auto fs [bool]: Whether to do automatic feature selection

• cherrypick size [int]: Maximum number of nodes to use for cherrypick

operations.

B.3 Performance Settings

Below are various settings that can improve the performance of rl feature eng

under specific circumstances.

• calculate from scratch [bool]: If True, discard the dataframes for each

explored Node after evaluation. When constructing a new Node, all parent

dataframes must be recalculated. This incurs a cost in runtime while mini-

mizing memory usage.

• keep feature cache [bool]: Whether to maintain a cache of generated fea-

tures, so as to avoid redundant calculations when using the same operation on

a different node. Useful for saving time when memory is plentiful.

• n cores [int]: Number of cores to use. This is passed to the relevant under-

lying models (i.e. sklearn RandomForest and xgboost). −1 indicates to use

all available cores.

55

B.4 Output Settings

• show warnings [bool]: Show warnings (e.g. from scikit-learn) during oper-

ation.

• verbose [int]: Show output, with higher integer values yielding increasingly

more output. 0 means silent.

56

Appendix C

Package Structure

In this section, we discuss the general structure of rl feature eng. This can be

useful for those wanting to extend the package, e.g. by implementing their own

operations or altering the exploration behavior.

The base module of rl feature eng is the Main module. Indeed, the

engineer features function called in the previous section is defined in Main. Main

reads in command line arguments and determines, based on our method of calling

it, whether to use data passed in as arguments or data residing in specific folders on

the file system. Main also handles initializing the Config object and setting some

of its parameters appropriately based on the functional mode.

Once Main has processed the inputs appropriately, it passes control to

PipelineManager, which handles various operational aspects of the chosen func-

tional mode(s). This includes tasks like reading in initial training weights and

calling the appropriate training and testing algorithms.

The actual training and testing algorithms for exploring new features reside in

RL1, which takes its name from the corresponding algorithm in [1]. RL1 handles tasks

such as ensuring the algorithm doesn’t overspend its budget, updating the Graph

object corresponding to the exploration graph, storing high-performing engineered

features in a given FeatureStore object, and maintaining and updating operation

weights during training. The features corresponding to each weight are defined in

57

the Characteristics module.

A Graph object maintains a group of Node objects, with methods to perform

functions like adding certain types of nodes and validating whether an action would

produce a valid Node. Each Node maintains information related to its children and

parents, while also maintaining a FeatureSet object which stores the information

related to the task: the dataframe corresponding to this Node, the target, division

into training and test sets, etc.

Transformer handles the administration of generating new features, which calls

the appropriate Operation needed to transform a dataframe. The operations

module contains each Operation, each of which implement a transform method to

act upon a dataframe. The mathematical operations underpinning each Operation

are defined in the TransformOperations module.

Lastly, given a list of names of features to engineer (e.g. from a FeatureStore

object), the transform method of the Primitive module can add them to a given

dataframe. In general the feature names, which can be nested, must conform to the

format operation(arg1, arg2, ...), e.g. log(temperature) or divide(weight,

square(height)). For DateSplitOperation, the feature names have the format

date split year(date), date split month(date), etc.

58

Appendix D

Preprocessing

By default, in rl feature eng various preprocessing steps are taken for each dataset.

All of them can be opted out of if desired, though care should be taken to ensure

that data is appropriately cleaned beforehand when skipping certain steps. Prepro-

cessing steps to skip can be specified through the preprocessing opt outs setting,

which can include any of the values given below. The definitions for each option

(except for skip all) give the default behavior which can be turned off through

specifying the corresponding option.

• skip all: Skip all preprocessing steps.

• skip drop index: If using a d3m dataset, remove the d3mIndex feature.

• skip infer dates: By default, rl feature eng tries to infer a datetime fea-

ture from any feature whose name includes the string "date". Skipping this

step can prevent rl feature eng from mistakenly inferring a datetime feature.

• skip remove full NA columns: Remove any column which only contains NA

values.

• skip fill in categorical NAs: Replace NA values in categorical columns

with the value missing .

59

• skip impute with median: Replace NA values in numerical columns with me-

dian imputation.

• skip one hot encode: One hot encode categorical features.

• skip remove high cardinality cat vars: Remove categorical variables with

too high a ratio of categories relative to total instance count (default 0.8). This

avoids situations where each value is unique and any generated features based

on the column categories will be uninformative.

• skip rename for xgb: Don’t rename features which contain illegal characters

when using XGBoost. All name changes are reverted after finishing operation,

but XGBoost throws errors during operation if a feature name contains certain

illegal characters.

60

Appendix E

Feature Filtering

By default, certain kinds of features are removed or omitted during operation of

rl feature eng. These features are generally redundant or are unlikely to be in-

formative. The various omissions are described in the following sections.

E.1 Inverse Pairs

Some kinds of operations are inverses of each other, and applying them both on

a feature doesn’t yield any information. For example, if X is a feature, then

square(sqrt(X)) is not an informative feature. Such features are automatically

omitted.

E.2 Highly Correlated Features

two arg operations can often generate highly correlated features that don’t add

much value to performance and distort feature importance rankings, while also re-

quiring unnecessary computational effort. For example, consider feature A ≈ 100

and feature B ≈ 1; sum(A, B) will be extremely highly correlated to A and is un-

likely to be useful. The two arg corr threshold (default: 0.99) controls how strong

this correlation must be, positive or negative, before such features are omitted.

61

E.3 Redundant Operations

Certain operations are unlikely to be useful when repeated. For example, date split

and zscore operations don’t make any sense when composed with themselves. For

such operations, the is redundant to self method returns True and thus the al-

gorithm avoids composing them directly.

E.4 Constant Features

Some operations sometimes yield features that are constant, depending on the input

features. For example, a binary (0 or 1) feature X will yield a constant feature log(X)

as in rl feature eng, log(0) is defined to be 0. Similarly, given a feature X with

only large positive values, the feature tanh(X) will always yield 1. Such features

are always omitted after dataset generation.

E.5 High Cardinality Categorical Features

As rl feature eng does not currently contain any features operating specifically on

categorical features, the only relevant attribute of categorical features are the parti-

tions they induce through their values for aggregate oprations. Thus, a categorical

feature with very small partitions is unlikely to be useful for generating informative

features. For example, consider an “ID” feature for hospital patients; if each patient

has a unique ID, then one hot encoding the ID feature will only serve to generate

a large number of useless features. Furthermore, this creates redundant computa-

tional load. Thus, by default, categorical features with too few unique values are

removed by default, though they are restored after operation is complete.

62

