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Abstract

In this thesis, we explore concepts related to anomaly detection at particle accelera-
tors. In an extremely high-energy proton-proton collision, sprays of subatomic parti-
cles are generated and destroyed at extremely short timescales. Detecting anomalies
in these event signatures is a crucial step in experimentally verifying new theories of
physics beyond the Standard Model.

Towards this end, we analyze the geometric structure of event signatures, which
can be represented as discrete distributions of energy on the surface of a cylinder.
Therefore, we approach the problem from the framework of optimal transportation.
The optimal transport distance is the map between two measures which minimizes
the total work required to transform one measure into another.

First, we provide theoretical improvements in learning with transport-type dis-
tances. We show that minimizing the transport distance also leads to a coreset with
respect to a broad class of functions, by showing a bound on the quadrature error
of a Monte Carlo integration. In addition, we develop an unbiased estimator for
a Gaussian kernel based on the sliced Wasserstein distance, which is based on the
one-dimensional version of optimal transport.

Next, we use these kernels within the framework of discriminative anomaly de-
tection. The methods we consider apply transport distance-based kernels to classify
anomalies on an event-by-event basis. We apply these techniques to two datasets, one
from the field of particle physics and one inspired by biology. This comparison allows
us to argue empirically which models are most effective for which types of anomalies.

Finally, we move to the generative setting, and build a topic model based on the
dijet factorization theorem to perform anomaly detection and quark/gluon discrimi-
nation. This approach leverages the fact that each jet in a dijet pair is statistically
independent, and uses matrix factorization to disentangle the component distribu-
tions.

Thesis Supervisor: Justin M. Solomon
Title: Associate Professor
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Chapter 1

Introduction

“The laws of nature are constructed in such a way as to make the

universe as interesting as possible.”
— Freeman Dyson, Imagined Worlds

1.1 Motivation

The search for physics beyond the Standard Model relies on particle accelerators to

give us a window into a world of high energies, small distances, and short timescales.

The effective theories governing this regime are strange and foreign in comparison

with how we interact with matter in our terrestrial lives, but they provide a valuable

insight into the fundamental question physicists have been asking since the dawn of

time: What are the equations that govern the universe?

Currently, our best guess at a unified theory of everything is the Standard Model.

But what lies beyond it? One way to probe new physics is by smashing together

protons at insanely large energies to create new subatomic particles. In particular,

when a proton undergoes scattering at energy scales on the order of tera-electron-

volts, it will fragment into its constituent partons – three quarks and three gluons.

Quarks and gluons are, under most circumstances, confined by the laws of quantum

chromodynamics to be bound together into hadrons. Due to the asymptotic freedom

of the strong force (meaning, roughly, that it decays at short length scales and high

energies) these elementary building blocks can deconfine. In this scattering process,

17



they couple to each other and the vacuum to form new resonant particles. It is these

anomalies that allow us to experimentally test new theories of the universe.

The pathway from proton collision to announcing a new particle has been discov-

ered is not as easy as it may sound. As the scattering process happens at relativistic

speeds, we can only observe the energy distribution deposited in the calorimeter

around the cylindrical outside of the collision chamber. These event signatures are

also messy and stochastic. Anecdotally, the process of proton collisions has been

described as two people standing on opposite sides of a football field and throwing

bowls of pea soup at each other at relativistic speeds. While one is interested in what

happens when the peas collide, most of the time one just gets soup everywhere.

In general, it is very difficult to deterministically reconstruct the intermediate par-

ticles that generate a given event signature. However, we can gain valuable insights,

potentially both discovering new particles and improving precision measurements of

observable quantities, by analyzing the wealth of data provided by particle colliders

like the LHC. To achieve the best understanding, it is crucial to leverage as much

structure from the data as possible.

In this thesis, we will explore the space of anomaly detection techniques, with a

primary focus on the geometric and statistical advantages conveyed by the structure

of event signatures. As event signatures are distributions of energy over space, it is

natural to ask under what conditions two distributions are similar or different. To

answer that question, we will appeal to the theory of optimal transportation. Optimal

transport provides a distance metric on the space of probability distributions defined

over arbitrary measurable spaces. This framework allows us to utilize many tools

in geometric machine learning to understand anomalous events, and motivates this

thesis.

1.2 Notation

Coordinates. At the Large Hadron Collider, final state particles are traditionally

recorded in one of two coordinate systems. Let the z-axis be longitudinal (i.e., along

18



the beam). The first coordinate system is ~p = (px,py,pz). Alternately, we sometimes

write (pT ,η,φ):

pT =
√
p2x + p

2
y

η =
1

2
ln

(‖~p‖+ pz
‖~p‖− pz

)
φ = sin−1

(
py

px

)

The second set of coordinates has the benefit of transforming additively to Lorentz

boosts along the longitudinal axis. For example, a boost of magnitude ∆η moves a

massless particle to coordinates (pT ,η+∆η,φ). We will commonly use the Euclidean

distance metric in η− φ space, defined as: (∆R)2 = (∆η)2 + (∆φ)2.

Measures and spaces. We will denote random variables by uppercase letters X.

A random variable that follows a distribution law is written as X ∼ µ. For a metric

space X, we define the space of all continuous and infinitely differentiable functions

C∞(X) and the set of Radon probability measures P+(X). In the continuous case, the

expectation of a function f of a random variable X ∼ µ will be written Eµ[f(X)] ,∫
X
f(X)dµ. The variance will be written as Var[f(X)] = E[f(X)2] − (E[f(X)])2. Given

a map f : X → Y, the push-forward operator is f# : P+(X) → P+(Y). It sends the

distribution µ defined over X to a distribution ν defined over Y where (f# ∘ µ)(y) =
µ(f−1(y)).

When we transition to the discrete setting, the probability simplex on n bins will

be written as ∆n = {a ∈ Rn
+|
∑

i ai = 1} . The empirical measure corresponding to

sampling n random variables {x1, ..., xn} ∼ µ will be written as µ̂n =
∑
i δxi , where

δx is the Dirac delta at location x.

Finally, for computational purposes, we will write discrete distributions as vectors.

Vectors v and matrices A will be displayed in boldface. Denote the special vector of

all ones 1n = (1, 1, ..., 1)T ∈ Rn. The inner product is the standard Euclidean inner

product for vectors ⟨a,b⟩ = aTb =
∑

i aibi, and similarly the Frobenius inner product

for matrices ⟨A,B⟩ =∑ijAijBij.
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1.3 Overview

The remainder of this thesis is organized into three different parts.

In Part I, we give brief preliminaries on particle physics and machine learning nec-

essary to understand the remainder of this thesis.

∙ Chapter 2 delves into the experimental apparatus used to generate data at

particle accelerators, and some theoretical formalisms necessary to understand

it. We will also give a brief introduction to subatomic particles and jet physics,

focusing on the perspective of data analysis.

∙ Chapter 3 introduces the challenge of learning on point clouds and provides some

theoretical motivation for considering transport-based metrics. We also formally

write the optimal transport problem, as well as describing the computational

challenges inherent in solving it.

In Part II, we provide some theoretical improvements in efficiently computing Wasserstein-

type kernels, which will be the building blocks underlying some of our anomaly de-

tection techniques.

∙ Chapter 4 builds a connection between kernel approximations and geodesic clus-

tering in a high-dimensional feature space. We show a quadrature bound for

coresets of arbitrary functions over a measure that is inspired by the idea of

Wasserstein barycenters and centroidal Voronoi tessellations.

∙ Chapter 5 covers two techniques for more efficiently computing transport-type

distances. We describe an unbiased version of the sliced Wasserstein distance,

and give two formulations for computing it that reduce variance. We also

demonstrate a multi-level Monte Carlo approximation and prove that our es-

timator enjoys better scaling than existing techniques. Finally, we introduce

kernels based on these metrics.

In Part III, we apply our techniques to perform anomaly detection on simulated

collider data. We will outline and test two types of methods: discriminative methods,
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which classify individual datapoints as anomalous or not, and generative methods,

which seek to statistically model the properties of anomalies in the aggregate.

∙ Chapter 6 describes the application of two discriminative methods to anomaly

detection problems. We perform an empirical study of the various types of

kernel estimators developed in the previous chapter. Additionally, we compare

density-based and margin-based kernelized anomaly detection techniques on a

top quark tagging dataset.

∙ Chapter 7 applies a domain-specific generative technique based on topic model-

ing to simulated LHC data. We show good performance of our method to find

resonant anomalies, as well as to discriminate between quark and gluon-initiated

jets.

Chapter 8 provides concluding remarks.
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Part I

Background
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The intersection of machine learning and particle physics is an exciting and rapidly-

developing field. The wealth and richness of data collected from the Large Hadron

Collider allows us to peer deeper into the building blocks of the universe and test more

and more complex theories of physics beyond the Standard Model. In this thesis, we

will primarily focus on jet physics, one of the oldest aspects of this vast field. Briefly,

jets are collimated sprays of subatomic particles generated when protons smash into

each other at relativistic speeds.

While there is no theoretical definition of what constitutes a jet, in practice, they

are some of the most fundamental objects of study in collider data. As an example,

understanding the scattering processes that lead to the creation of a jet is an active

field of study. The figure on the previous page, taken from ref. [6], provides an example

of a Feynman diagram for a soft collinear coupling that affects the intermediate states.

Similar processes cause the Casimir scaling effect between quark and gluon jets, to

which we will return in the last chapter of this thesis.

This part serves as a brief introduction to the methods of the rest of this thesis.

Chapter 2 will introduce the Standard Model, with the goal of explaining how data

is generated and collected at the Large Hadron Collider. Chapter 3 is devoted to un-

derstanding the computational and mathematical challenges of modelling collections

of unordered point clouds, with a focus on optimal transport and related techniques.
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Chapter 2

Accelerator physics

“The Standard Model is so complex it would be hard to put it on a

T-shirt – though not impossible; you’d just have to write kind of small.”
— Steven Weinberg

2.1 The Standard Model

The Standard Model is the crowning achievement of almost a century of progress in

understanding the fundamental laws governing our universe [7]. It can be succinctly

summarized by the following Lagrangian [8]:

L = −
1

4
(Faµν)

2 + ψ̄(iγµDµ)ψ+ yijψ̄iψjφ+ |(∂µ − igA
a
µt
a
r )φ|

2 + µ2φ†φ− λ(φ†φ)2

It describes three of the four fundamental forces in our universe: electromagnetism,

and the strong and weak nuclear forces.1 Of these three forces, electromagnetism is

the only one that is noticeable on a terrestrial length scale.

To understand how the SM relates matter and force, we must retrace the steps

of Max Planck in discovering the quantization of radiation. Briefly put, Planck ac-

counted for the existence of blackbodies by proposing that electromagnetic radiation
1Notably, gravity is not included in the Standard Model. Finding a theory to unify gravity with

the rest of the SM is one of the most pressing open questions in theoretical physics. For more
information, we refer the reader to ref. [9]. For the purposes of this thesis, gravity is negligible at
the energy scales of particle colliders.
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could only be emitted in discrete quanta. A quantum is defined as the smallest dis-

crete amount of any property that is permitted to participate in an interaction. The

electromagnetic force is propagated by a massless particle called a photon, which is

denoted γ. The position and momentum of any photon cannot be determined pre-

cisely. Instead, these observables are governed by a probability distribution. Further,

the relative precision to which we can measure canonically conjugate pairs of ob-

servables is constrained.2 This simple statement demonstrates that the underlying

degrees of freedom dictating observable events are non-deterministic. Hence, when

we refer to particles in this thesis, we do not mean point masses in the classical sense.

We instead speak of particles as the propagators of quantum fields, which are operator

functions defined at every point on spacetime.3

2.1.1 An inventory of particles

Each fundamental force in the Standard Model is associated with both a quantum

field and a mediator particle which governs its interactions. A full inventory of these

fields and particles is given in Table 2.1. For example, the photoelectric effect is

the interaction of photons in the form of incoming radiation with electrons bound

to nuclei in a metal, and represents one mode of interaction of the electromagnetic

force. Similarly, the strong and weak nuclear forces are also mediated by subatomic

particles. For the weak nuclear force, these are the W+, W−, and Z bosons; for the

strong force, they are the 8 different types of gluons g. Collectively, these particles

are known as the gauge bosons. Of these bosons, only the weak force mediators have

non-zero mass (the W+ has mass roughly 80.3 GeV). For this reason, the weak force

decays very rapidly with distance – each boson has a half-life of less than 3 × 10−25

seconds [11]. Finally, we must mention possibly the most famous boson – the Higgs.

The Higgs boson is a scalar boson, meaning it has zero spin, unlike the others, which

have spin 1. The Higgs field is special due to its non-zero vacuum expectation value –

2A more familiar version of this statement is given by the Heisenberg uncertainty principle.
3The full complexity of quantum field theory is too great to describe in this brief introduction.

There are an innumerable number of textbooks on QFT, but we recommend [10] for a intuitive, if
not rigorous introduction.
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that is, the average value of the Higgs operator in the absence of other particles. This

property leads to electroweak symmetry breaking, allowing particles to gain potential

energy through coupling. This is what we commonly refer to as mass. The Higgs field

is particularly important as it represents the greatest triumph of the Large Hadron

Collider, as well as the last major piece of the Standard Model to be experimentally

verified. We will return to the Higgs field in section 2.2, when we describe how it was

experimentally verified in 2012 [4].

Field Particles Representation Generations

Spin 1 gauge bosons

B photon (γ) (1, 1, 0)

W W+, W−, Z (1, 3, 0)

G 8 gluons (g) (8, 1, 0)

Spin 1
2

fermions

qL quarks (u,d,c,s,t,b) (3, 2, 1
3
) 3 total

ūCL up antiquarks (ū, c̄, t̄) (3̄, 1,−4
3
) 3 total

ūCL down antiquarks (d̄, s̄, b̄) (3̄, 1, 2
3
) 3 total

¯̀
L leptons (e−,µ−, τ−) (1, 2,−1) 3 total

¯̀C
L antileptons (e+,µ+, τ+) (1, 1, 2) 3 total

Spin 0 scalar bosons

H Higgs boson (H) (1, 2, 1)

Table 2.1: The particle inventory of the Standard Model. The representation column
gives the set of transformations in SU(3)× SU(2)× U(1) under which each particle
transforms.

The Standard Model also specifies a different class of particle, known as the

fermions. As we will see, matter itself is an emergent phenomenon, composed of the

interactions of this second class of particles mediated by the bosons. Fermions carry

charge, and act as source generators for the field associated with a charge. Charge

is the generator of a symmetry group acting on a field. For example, the electron is

a member of the subclass of fermions known as leptons (from the Greek “leptos” for

their light mass). The electron carries a negative electric charge, and interacts with

other particles via the electromagnetic force. The symmetry group acting on the EM
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field is U(1), meaning that there is only one type of electric charge. By comparison,

the other subclass of fermions are the quarks. Quarks carry both electric charge and

the strong-force equivalent of charge, known as color. There are three types of color

charge, known as red, blue and green,4 each corresponding to a generator of the SU(3)

symmetry of the SM. For completeness, we note that the weak-force charge is known

as weak isospin, corresponding to SU(2) symmetry. All massive particles carry weak

isospin and, therefore, interact with the W and Z bosons. Quarks are the constituent

components of protons and neutrons. In total, there are 6 quarks, organized into

three “generations”: up (u) and down (d), charm (c) and strange (s), top (t) and

bottom (b). and their corresponding antiparticles. Both protons and neutrons are

hadrons, composite particles made of quarks bound by gluons. A proton consists of

two up and one down quark (uud), while a neutron is (udd). Protons exist in a color

singlet state, given by a color charge of (r̄r + bb̄+ gḡ)/
√

3. This means that in any

proton, each color must be represented by exactly one quark [12].

2.2 The Large Hadron Collider

The Large Hadron Collider is the world’s largest particle accelerator. It consists

of over 30 kilometers of track, and has been operating for the past 12 years under

Geneva. During operation, the superconducting magnets around the collider ac-

celerate two beams of protons to super-relativistic speeds. Each beam consists of

approximately 1,000 bunches, each containing 100 billion protons. Head-on collisions

between bunches occur every 25 nanoseconds, at center-of-mass energies of
√
s = 13

TeV [8]. To put this into perspective, this means each bunch of protons has roughly

the same kinetic energy as a small anti-tank explosive.

For our purposes, the most important interactions are those that occur within a

proton. Quarks and gluons collectively are known as partons, a term due to Feynman.

Partons, and, more generally, any particles carrying color charge experience a peculiar

4These have nothing to do with our common perception of color. Physicists are just bad at
naming things.
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phenomenon known as color confinement. In simple terms, confinement states that

only colorless particles – those that have no net color charge – are stable. Most of

the mass of a proton (i.e., its rest energy) comes from the chromodynamic binding

energy of the gluons which mediate the strong force between the quarks.

Confinement is broken at extremely high energy scales due to the asymptotic free-

dom of the strong interaction [13]. When gluons bind with each other in vacuum,

they cause a quasi-paramagnetic polarization in color, which in turn makes the vac-

uum a quasi-dielectric in color. Thus, unlike in electromagnetism, the vacuum is

“anti-screening” to the strong force, and its interactions weaken at extremely small

distances. Hence, in a high-energy collision, as the quarks and gluons move close to

each other, they uncouple and become asymptotically free to move in space. This

process is known as fragmentation. The bare quarks and gluons are exposed for a

fraction of a second, but due to confinement, these isolated particles are not sta-

ble. Hence, they must hadronize into composite particles. It must be noted that a

solid theoretical understanding of these processes does not exist; while the mechanism

that causes confinement has been extensively studied [14, 15], there is no known non-

abelian gauge theory that is guaranteed to have confinement. Models that predict

hadronization well in practice, however, do exist [16].

After fragmentation, hadrons may not necessarily be stable particles. In particu-

lar, the final state might go through an arbitrary sequence of intermediate products.

However, the intermediate state is never directly observed, as the decay happens much

too quickly to detect. Instead, colorless final-state hadrons are recorded in a series of

multiple types of calorimeters surrounding the detector, as shown in Fig. 2-1.

Equipped with this understand, we can now define an event, the central object of

study for accelerator physics.

Definition 2.2.1. (Events at the LHC.) An event E is an unordered collection

of reconstructed particles {(pT ,η,φ)i}
N
i=1, derived from calorimeter readings. It

is an empirical approximation to an underlying energy distriution.

For our purposes, all particles in the reconstruction are both massless and colorless.
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Figure 2-1: A cutaway graphic showing the structure of the CMS (Compact Muon
Solenoid) detector at the Large Hadron Collider. Figure taken from the CMS Col-
laboration website.

This means that the event signature contains no categorical variables – each particle

in the event signature is uniquely identified by a spatial location and an energy or

momentum. In particular, this suggests that events can be considered as point clouds.

While we will discuss point clouds in more detail in Chapter 3, we note that they

can alternately be thought of as empirical approximations generated by sampling

from some underlying continuous distribution; this point of view (events as energy

distributions) will be one we adopt for the remainder of this thesis.

2.3 Jet kinematics

Precision measurements of SM parameters and probes of beyond-SM physics both

require accurate understanding of the intermediate channels by which final-state

hadrons are produced. Conveniently, most intermediate products have large trans-

verse momentum as they decay and hadronize. Further, the likelihood for cre-

ating a new particle decreases with increasing scattering angle. As a result, the

bremsstrahlung products they form as they decelerate through the vacuum (gluons,

quark-antiquark pairs, etc.) are highly collimated. Hence, the structure in η − φ

30

 http://cms.cern/detector
 http://cms.cern/detector


space of the final event is well-correlated with the intermediate structure. These

highly collimated regions of phase space are known as jets.

Definition 2.3.1. (Jets.) A jet J is a subset of an event E corresponding to a

localized and highly collimated spray of particles. There is no universal defini-

tion of a jet; however, operationally, a jet is a reconstructed region of the event

corresponding to a discrete energy flow.

Jets are a fundamental object of study in both precision measurements and searches

of beyond-Standard Model physics at the Large Hadron collider. Many techniques

exist for reconstructing jets. A full review is given in ref. [17]. For the purposes of this

thesis, we will only consider the anti-kt algorithm due to ref. [1], which is a special

case of the sequential recombination algorithms. An example of the application of

this algorithm is given in Fig. 2-2.

Given a radius parameter R, define the metric between particles and the distance

to the beam axis as follows:

d(~pi,~pj) , min(p−2
T ,i,p

−2
T ,j)

(∆R)2

R2
(2.1)

d(~pi,B) , p−2
T ,i (2.2)

The algorithm proceeds as follows:

1. For each particle xi ∈ E, create a new proto-jet and assign the particle to it.

2. While there are still proto-jets, find the pair of proto-jets (k, `) with the min-

imum distance between them d(~pk,~p`), and the single proto-jet m with the

minimum distance to the beam axis d(~pm,B). If d(~pm,B) < d(~pk,~p`), define

m to be a jet and remove it from the set of proto-jets; else, define a new proto-jet

with momentum ~pn = ~pk + ~p`.

Given a single jet, many observables can be used to understand its properties.

We will briefly outline a few relevant ones here, but leave an exhaustive review of jet

observables to ref. [18].
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Figure 2-2: An example application of the anti-kt algorithm, with characteristic radius
1. Note the conical form of the jets produced. Figure from ref. [1].
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1. Jet mass. The invariant jet mass for a jet J is defined as the Minkowski norm

of the sum of the 4-momenta of all the particles in the jet. Concretely, it is

calculated as

m(J) =

√√√√(∑
i∈J

Ei

)2

−

∥∥∥∥∥∑
i∈J

~pi

∥∥∥∥∥
2

where E is the energy recorded in the calorimeter.

2. n-subjettiness. First introduced in [19], this correlates with the number of

“prongs” or modes in the energy distribution of a jet. Lorentz-boosted bosons

often are 2-subjetty, while boosted top quarks are 3-subjetty.

3. Jet multiplicity. Defined as the number of total particles detected in a jet.

As outlined in [20], jets that are quark-initiated have different multiplicity dis-

tributions than those that are gluon-initiated. We will return to this distinction

in Chapter 7.

Many other observables have been proposed in the literature for understanding

specific types of jets with and without domain-specific knowledge [21, 22]; however,

for the remainder of this thesis, we will focus primarily on jet mass and multiplicity.

2.4 Searches at the LHC

Studying reconstructed jets gives us insight into the intermediate channels of produc-

tion of rare particles at the LHC. In particular, recent developments in jet substructure

both in theory [23–30] and in experiment [31–39] have proved extremely promising

for a variety of different applications in accelerator physics. We will take as an ex-

emplar search the successful discovery in 2012 of the Higgs boson at the LHC [4]. As

summarized in Figure 2-3, there are multiple channels by which the Higgs boson can

be created in pp collisions. As proton quarks (the u, d) form the lightest generation,

and the Higgs coupling increases with mass, the most common channel to create the

Higgs is in fact the gluon fusion channel denoted as (a) in the figure below.
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Figure 2-3: The Feynman diagrams corresponding to the main channels of production
of the Higgs boson at the LHC. (a) gluon fusion. (b) weak boson fusion, (c) production
via gauge boson, (d) production via top quark. Figure from ref. [2].

Yet, more important for the purposes of our study are the decay channels for the

Higgs. There are three dominant modes by which the Higgs decays: H→ VV, H→ gg,

H→ qq̄, where V, g, q are weak gauge bosons, gluons, and quarks, respectively. This

is evidenced in Fig. 2-4.

Most proton collisions result in two individual and well-separated jets. When the

density any observable of these generic QCD jets is plotted, the histogram forms a

smoothly falling background, as shown in the top panel of Fig. 2-5. However, because

the Higgs boson has a well-defined mass, the jets created by the Higgs maintain

the same invariant mass, with some added noise. This results in a Breit-Wigner

distribution centered around the true Higgs mass. In the histogram, it appears as a

small bump. The presence of this bump at a statistically significant level is evidence

for the presence of the Higgs. The notion of anomalies as “relative overdensities” in a

region of some well-defined phase space is central to search for new physics, as well

as the rest of this thesis.

2.5 Machine learning in BSM physics

In searches for physics beyond the SM, the resonant mass of a certain particle may

not be known a priori. Our work in this thesis attacks two important tasks crucial
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Figure 2-4: Branching ratios for Higgs decay channels at the Large Hadron Collider.
At the currently accepted mass mH = 125.18± 0.16 GeV, the dominant decay modes
are 2-pronged jets. Figure from ref. [3].

Figure 2-5: The bump in the invariant mass spectrum corresponding to the anomalous
Higgs excess along the diphoton decay channel. Figure from ref. [4].

to BSM probes.

First, the task of resonant anomaly detection is to find, without assumptions on

the physical characteristics of a resonance, distributional excesses corresponding to

unknown particles. Many techniques for detecting these anomalies have been pro-
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posed. Some are based on sophisticated deep learning techniques like the variational

autoencoder, a method which seeks to learn a low-dimensional representation of data;

the anomalies are the events which have a high reconstruction error [40, 41]. Other

techniques seek to improve the statistical sensitivity of traditional “bump hunting”

methods [42, 43]. Our approach will rely on the mathematical model of an event as a

distribution of energy across space. To perform anomaly detection, we will leverage

techniques from optimal transport theory [44, 45], first applied to this field in ref.

[46]. In the next chapter, we will introduce optimal transport and outline why it is

useful for defining a metric on the space of collider events.

Second, we will build a model to discriminate between quark- and gluon-initiated

jets. By classifying light jets in this way, we are able to gain insight into the domi-

nant decay channels for an unknown intermediate resonance. Many machine learning

classifiers have been proposed for this problem, ranging from deep neural networks

[47–50] to cutting distributions based on simple and complex observables [51, 52].

Our work falls into the class of generative models, first applied to quark-gluon dis-

crimination by ref. [53]. Our contribution is a generalization of their model to dijet

resonances by leveraging the factorization theorem for dijets.
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Chapter 3

Notions of distance

“The first good thing about optimal couplings is that they exist.”

— Cédric Villani, Optimal transport, old and new

In this section, we will address the challenge of defining when two distributions

are similar and when they are not. While this may seem simple at first glance, this

problem reveals a grand mathematical formalism that is in equal parts subtle and

powerful. This section will focus primarily on the applied side of the field, when we

only have access to probability distributions through sampling. We call these point

clouds, and we will study them from the statistical perspective where they are viewed

as empirical approximations to some underlying measure. First, we will introduce the

concept of a ϕ-divergence, a class that encompasses many commonly used notions

of distance between distributions employed in the statistical and machine learning

literature. As we will see, this class of divergences lacks certain properties that would

be desirable when it comes to the discrete and empirical settings. For a class of

distances avoiding these issues, we will turn to optimal transport and the Wasserstein

distances. This framework will be the building block for the kernels we will use in

our anomaly detection techniques later in this thesis.
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3.1 Discrepancies between measures.

3.1.1 ϕ-divergences

Before we move to the discrete setting, we first mention several notions of discrepancy

between absolutely continuous measures. These are the ϕ-divergences first introduced

by [54], defined as follows:

Definition 3.1.1. (ϕ-divergence.) Let ϕ be a convex and continuous function such

that ϕ(1) = 0. The ϕ-divergence is between two measures µ,ν ∈M1
+(X) as:

Dϕ(µ‖ν) ≡
∫
X

ϕ

(
dµ

dν

)
dν

In particular, consider the `1 (or total-variation) distance and the Kullback-Leibler

(KL) divergence, both of which are commonly used to define similarity of probability

distributions. They are defined in Table 3.1. As shown, both are ϕ-divergences.

However, both these divergences are ill-behaved when the supports of the distributions

being compared are different. In particular, if supp(µ) ∪ supp(ν) ⊂ X is a set of

measure zero, then KL(µ‖ν) = ∞ and TV(µ,ν) = C for some positive constant

C. This statement holds regardless of how similar or different µ,ν are, both in

distributional shape and location of support in the ambient space X. As an example,

consider the scenario where X = R, µ = δ0 and ν = δx for some x > 0. It is

problematic that the value of x does not affect the value of the ϕ-divergence.

Name Divergence ϕ(·)

Total variation TV(µ,ν) = supA⊆X ‖µ(A) − ν(A)‖1 ϕTV(t) =
1
2
|t− 1|

Kullback-Leibler (KL) KL(µ‖ν) =
∫
X

log dµ
dν
dµ ϕKL(t) = t log t

Table 3.1: Two common ϕ-divergences, and their respective functions ϕ(·).

For the purposes of this thesis, we can consider a point cloud µ̂n to be an empirical

approximation to an absolutely continuous distribution µ. However, the argument
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above suggests that Dϕ(µ̂n, ν̂n) will be degenerate, even if µ = ν. To make this

statement more formal, we state the following result from ref. [55].

Definition 3.1.2. (Weak convergence.) A sequence of measures {µn}
∞
n=1 converges

weakly to a reference measure µ (written as µn
D→ µ) if the following statement is

true:

lim
n→∞ supEµn [f(X)] = Eµ[f(X)]

for every continuous and bounded function f : X→ R6c. A divergence metrizes weak

convergence if:

D(µn,µ)→ 0⇐⇒ µn
D→ µ

Thus, the ϕ-divergences do not metrize weak convergence. We turn instead to a

different notion of distance based on a principle of least action.

3.2 Optimal transport

Consider two distributions µ,ν that are represented as piles of sand. Moving sand

from one spatial location to another costs energy. What is the minimum amount

of energy required to fully transform µ into ν? The answer to this question is the

optimal transport plan. Transport has found applications in a variety of disparate

fields, from economics [56, 57] to computer vision [58–61] to astrophysics [62, 63]. In

this section, we will give a brief introduction to the continuous and discrete versions

of the problem.

3.2.1 Exact formulation

The exact optimal transport problem can be formulated as follows [45], first due to

Leonid Kantorovich:

Definition 3.2.1. (Optimal transportation.) Given two measures µ,ν on metric

spaces X,Y respectively, and a cost function c : X × Y → R>0, the smallest trans-

portation cost required to move µ to ν is given by:
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Wc(µ,ν) ≡ inf
γ∈Γ(µ,ν)

{∫
X×Y

c(x,y)dγ(x,y)

}
where Γ(µ,ν) is the set of couplings, i.e., probability distributions on X×Y such that

the marginals of γ ∈ Γ on X,Y are µ,ν respectively.

As alluded to in the epigraph, it can be shown that the minimizing transport

plan always exists [55]. To show this, we transform to the dual of the linear program

above. Note the corresponding dual problem can be written as a supremum over

expectations of the Kantorovich potentials :

Wc(µ,ν) = sup
f,g∈Φ

∫
X

fdµ+

∫
Y

gdν

where Φ = {(f,g) ∈ C∞(X) × C∞(Y) : ∀x,y, f(x) + g(y) 6 c(x,y)} is the set of

admissible dual potentials. Obtaining the transport map is then a matter of taking

first variations of the dual potentials.1

When the cost c(x,y) equals ‖x−y‖1/pp , the optimal transport cost is known as the

p-Wasserstein or Wp distance. In the remainder of this work, we use the Wasserstein

distance W2, and the metric spaces we consider are Euclidean (X = Y = Rd). Finally,

we consider µ,ν to be discrete distributions and treat them as vectors µ = {µi}
M
i=1.

Thus, the problem can be rewritten in primal and dual forms as:

min
T

⟨C,T⟩

s.t. T1n = µ

TT
1n = ν

T > 0

⇐⇒
max
f ,g

⟨f ,µ⟩+ ⟨g,ν⟩

s.t. f ⊕ g 6 C

(3.1)

where C is a matrix of pairwise distances, T is the transport plan, and f , g are the

Kantorovich potentials. A visualization of this transport plan for a discrete distribu-

tion is given in Figure 3-1.

1There are many ways to show this result. For a full review of the subject, we refer the reader
to ref. [45].
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Figure 3-1: The optimal transport plan T under Euclidean cost between two discrete
distributions. Figure adapted from ref. [5].

When X = R, the solution to the above linear program has a convenient closed

form. Define the cumulative distribution function Qµ : R→ [0, 1] such that Qµ(x) ,∫x
−∞ dµ. Similarly, define its pseudoinverse Q−1

µ , the generalized quantile function.

Then, the 1-dimensional transport distance is given by:

W2
2(µ,ν) =

∫ 1
0

‖Q−1
µ (t) − Q−1

ν (t)‖22dt (3.2)

In the discrete setting, the above formula reduces to sorting. Assume the points

are ordered such that x1 6 x2 6 ... 6 xn, xi ∼ µ and similarly for yi ∼ ν. Then, the

following relation holds:

W2
2(µ,ν) =

1

n

n∑
i=1

‖xi − yi‖22 (3.3)

However, in dimension d > 2, the simple closed form does not exist. Worse still,

the exact solution of optimal transport suffers from two major problems:

∙ Slow to compute. This linear program has runtime complexity O(n3 logn)

using traditional LP solvers [64]. Therefore, exact solutions to the OT linear

program are prohibitive for large point clouds.
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∙ Slow to converge. The convergence rate in terms of the number of samples is

extremely slow, especially so for high-dimensional distributions. In particular,

minimax results due to ref. [65] and others suggest that

E
[∣∣∣∣W2

2(µ̂n, ν̂n) −W2
2(µ,ν)

∣∣∣∣] = O(n−1/d)

when d > 4. We will return to this more in Chapter 5.

For these reasons, we consider certain relaxations of the constraints to improve

the computational properties of optimal transport.

3.2.2 Entropic optimal transport

Many techniques exist to improve the time complexity of computing optimal trans-

port, the most popular by far of which is the Sinkhorn method [66]. This technique

relies on adding an entropic penalty to the formulation of OT. Define the entropy of

a matrix P to be H(P) , −
∑
i,j Pij(logPij − 1). With a slight rewriting of Problem

3.1, we get the following:

Wλ,c(µ,ν) = min
T

⟨C,P⟩− 1

λ
H(T)

s.t. T1n = µ

TT
1n = ν

T > 0

(3.4)

The solution to this equation has the form Tij = uiKijvj for some scaling vectors

u, v. The celebrated Sinkhorn-Knopp matrix scaling algorithm allows for the following

iterative update scheme [67]:

u(`+1) ← µ

Kv(`)

v(`) ← ν

Ku(`+1)

As the regularization constant becomes large, the entropic Wasserstein distance con-

verges to the exact solution of the linear program given in Problem 3.1:
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lim
λ→∞Wλ(µ,ν) = W(µ,ν)

Recent developments [5, 68, 69] in analyzing the Sinkhorn iterations for optimal

transport have shown that the worst-case runtime for this algorithm is Õ(n2ε−2),

where ε is the error relative to the exact cost.

3.3 Optimal transport in particle physics

Over the past several years, optimal transport and related techniques have demon-

strated significant promise in analyzing jets and events in hadron colliders. In this

section, we will briefly review some of the theoretical properties that make optimal

transport a valuable tool for this field. While we will not engage with the definitions

in this section in detail, we will note that all the estimators we propose in Chapter

5 also enjoy these properties. Starting with ref. [70], an unbalanced version of the

1-Wasserstein distance was shown to have certain beneficial properties with respect

to the underlying physics of hadron collisions. In particular, this distance, which the

authors refer to as the Energy Mover’s distance [58] satisfies the important properties

of infrared safety and collinearity (IRC).

Definition 3.3.1. (IRC safety.) A distance between events E1,E2 is IRC-safe if it

meets the following two conditions:

1. Infrared safety. A distance is infrared-safe if:

lim
ε→0

D

(
(1 − ε) · E1 + ε · δx ′ ,E2

)
= D(E1,E2)

regardless of the location of emission x ′. In words, adding a soft emission with

infinitesimal energy should not change the distance.

2. Collinear safety. A distance is collinear-safe if:

D

(∑
i

pT

αi
δx + E1,E2

)
= D

(
pTδx + E1,E2

)
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if
∑
i αi = 1. In words, splitting a single particle into multiple with the same

total energy should not change the distance.

Any distance that satisfies IRC safety is said to metrize the underlying energy

flow. It is easy to see from the definitions above that both exact OT and entropic OT

satisfy IRC safety. More recently, a large number of jet observables, pileup mitigation

techniques, and reconstruction algorithms have been explicitly cast as minimizations

with respect to the EMD in ref. [71]. It is beyond the scope of this work to enumerate

all the applications of optimal transport in the jet physics literature; however, we

remark that the surprising breadth of both theoretical and experimental overlap is a

motivation for extending this line of inquiry.
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Part II

Theoretical improvements

45



Transport-style distances have been historically underused in machine learning

due to their computational complexity, in both memory and runtime. In addition,

standard optimal transport lacks some properties that are desirable in certain appli-

cations – it is not end-to-end differentiable, making it difficult to use as a loss function

in a neural network; it does not induce a kernel, meaning it cannot be used in SVMs

or kernel density estimators; and, the metric space associated with it is not flat in high

dimensions, so standard notions of Euclidean geometry do not carry over. However,

recent developments have made transport more appealing. For example, a transport-

based distance known as the sliced Wasserstein distance has been shown to induce a

positive definite kernel [72]. As many anomaly detection techniques are kernel-based,

this suggests a potential avenue for using transport to find anomalies in collider data.

Our goal in this part is to further develop the theory behind transport-based kernels

and how to estimate, approximate, and compute them in practice.

This part will discuss some interesting theoretical results concerning Wasserstein

distances, kernels, and approximations thereof. Chapter 4 will introduce exactly what

a kernel is and why it has played such a central role in the history of machine learn-

ing, before diving into a new result on approximating kernels. and more generally,

bounding the Monte Carlo quadrature error, using centroids as the empirical approx-

imation. Chapter 5 is based on an unpublished work and is mainly devoted to speed.

This chapter focuses primarily on how to make computing transport distances fast

while maintaining theoretical guarantees.
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Chapter 4

Kernels and approximations

“Far better an approximate answer to the right question, which is often

vague, than an exact answer to the wrong question, which can always be

made precise.”
—John Tukey

The kernel trick is an old and important technique in machine learning, used to

provide additional expressivity to models for a wide range of downstream tasks [73].

A kernel is, simply, a nonlinear function that measures the similarity between two ob-

jects. Kernels are useful because they induce an embedding of some datapoint into a

higher-dimensional space. Therefore, a kernelized model can leverage the expressivity

of this space just through computations of the kernel, without constructing the em-

bedding explicitly. Kernels are often used in anomaly detection models [74, 75], and

are especially useful when the datapoints D are not drawn from Euclidean space. For

example, in our case, particle physics events are empirical measures, and, as we will

see in the next section, we can create a kernel so that the feature space is Euclidean.

This will allow us to modify existing anomaly detection techniques by first applying

our kernel to the particle physics datasets. Therefore, the techniques we outline in

this section are useful to establish the underlying geometry for our anomaly detection

techniques.

In this section, we will first introduce the concept of a kernel more rigorously, and

state some important results about the relationship between the algebraic properties
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of the kernel function and the geometric properties of the feature space it induces.

Next, we will also discuss how to quickly compute or approximate the kernel matrix

for a dataset. A major problem with kernel methods is that they scale quadratically-

or-worse in the number of datapoints, making them impractical for extremely large

datasets. To this end, we introduce the Nyström method, which is a technique for

approximating the full kernel matrix by column sampling. Finally, our main contribu-

tion is to show that sampling the columns so that they are approximately the centroids

of the dataset will provide an optimal approximation. Specifically, we will demon-

strate a new bound on the quadrature error of an arbitrary function with bounded

Hessian, when integrating across the empirical measure induced by the centroids. We

leverage a relationship between Voronoi tessellations and centroids, and along the way

we connect our analysis to several common machine learning techniques like k-means

and Wasserstein barycenters. Later in this work, the approximation techniques we

outline in this section will be used to make anomaly detection methods faster and

more scalable to large datasets.

4.1 Kernels, Hilbert spaces, and all that

4.1.1 Preliminaries

Definition 4.1.1. (Kernel function.) A kernel is a nonlinear measure of similarity.

Specifically, given a pair of datapoints (x, y) ⊂ X× X, a kernel is defined as:

k(x, y) = ⟨Φ(x),Φ(y)⟩V

where V is a high-dimensional vector space and Φ : X→ V is a nonlinear embed-

ding. A kernel is positive definite if the following condition holds:

n∑
i,j

cicjk(xi, xj) > 0

for all {xi}ni=1 ⊂ X and any vector c ∈ Rn.
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If a kernel is positive definite, it induces a space of functions f : X→ R called the

reproducing kernel Hilbert space.

Definition 4.1.2. (Reproducing kernel Hilbert space.) The Hilbert space H is the

set of functions f : X→ R induced by a kernel. It satisfies:

k(x, ·) ∈ H

f(x) = ⟨f,k(x, ·)⟩.

If a kernel is reproducing, then it is not necessary to ever construct the feature

map explicity to recover the value of the kernel. In particular, given a distance or

similarity measure between two datapoints, there exist certain transformations that

induce a kernel in a feature space that is infinite dimensional. One such common

family of kernels is the Gaussian kernel, which is defined as follows:

kγ(x, y) = e−γ·d(x,y)

for some distance function d(·, ·). Even if X = Rd for a finite d < +∞, the induced

feature map Φ(x) maps onto an infinite dimensional feature space V. To prove this, it

suffices to Taylor expand the exponential. Next, we will state two results that apply

for the Gaussian kernel. First, we show that the Gaussian kernel can be expanded in

terms of an infinite series of eigenfunctions:

Theorem 4.1.1 (Mercer’s theorem). Let L2(X,µ) be the space of µ-square-integrable

functions on X with respect to some measure µ. Define the integral operator Tk :

L2(X,µ)→ L2(X,µ) as:

(Tkf)(·)
∫
X

k(·, x)f(x)dµ

Any positive definite kernel k : X× X→ R can be eigen-decomposed as:

k(x, y) =

∞∑
i=1

λiψi(x)ψi(y)

where ψi(·) are the eigenfunctions of the integral operator.
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As a consequence of this theorem, the feature map Φ(x) has the explicit decom-

position

Φ(x) = (...,
√
λiψi(x), ...)T

and, for the case of the Gaussian kernel, Φ ∈ C∞(X), meaning it is infinitely

differentiable. Finally, we define the notion of separability in Hilbert spaces.

Definition 4.1.3. A Hilbert space is separable if it has a countable basis.

The Hilbert space induced by the Gaussian kernel is separable [76].

4.1.2 Topology of the feature space

It is natural to next ask what a kernel can tell us about the topology and metric of

the base space over which it is defined. In most cases, the answer is (unfortunately)

very little. However, if the kernel is Gaussian, and it is also positive definite, it can

be shown that the underlying metric space must be flat [77]. More rigorously, the

theorem can be stated as follows:

Theorem 4.1.2 (Feragen, 2015). Given a Riemannian manifold with metric tensor

(M,g), with a line element given as ds2 = gµνxµxν, the manifold is Euclidean if and

only if the kernel

k(x, y) = e−γd
2(x,y)

is positive definite for all values of γ.

For the remainder of this work, we will concern ourselves primarily with kernels

that are both Gaussian and positive definite. In this case, the following additional

fact, due to ref. [76] will be useful.

Remark. Assume that the space (X,d) is isometrically Euclidean, and k is the Gaus-

sian kernel induced by d. Then, for any subset A ⊂ X, the image of the subset

in the RKHS of the kernel k its itself a flat manifold, with metric tensor given by

g ′µν = γ · δµν.
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This result is a corollary of Nash’s theorem, which states that any Riemannian

manifold can be isometrically embedded in (higher-dimensional) Euclidean space.

It holds for any positive definite kernel that induces a separable reproducing kernel

Hilbert space. Intuitively, this remark states that the similarity defined by the feature

map induced by Gaussian kernel satisfies many of our standard notions of Euclidean

geometry. We will return to this result in the next section.

4.2 Nyström’s approximation

In many kernel-based algorithms, the key object of study is the Gram matrix K

of a dataset D, which is the symmetric, positive semi-definite matrix defined as

Kij = k(xi, xj). Unfortunately, this causes issues in the case where k(·, ·) is ex-

pensive or when the cardinality of the dataset n = |D| is large. In some cases, there

are shortcuts to approximate this matrix. When the kernel is translation invariant, it

can be decomposed into a convex combination within the cone of Fourier kernels. By

performing a Monte Carlo approximation of the Fourier transform of the kernel, one

can find a low-rank approximation of the full kernel matrix, known as the Random

Fourier Feature method [78]. A popular alternative is the Nyström method, which

approximates the Gram matrix through an eigenvalue decomposition [79, 80].

Definition 4.2.1. (Nyström method.) Given a positive semidefinite matrix

K =

A BT

B C


where A ∈ Rm×m, B ∈ Rm×n−m, the Nyström approximation is

K̃ =

A BT

B BTA−1B

 (4.1)

Applying the Nyström technique on a given Gram matrix then reduces to sampling
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a subset A ⊆ D of datapoints (known as “landmarks”), computing the distances from

each landmark to the rest of the dataset, and applying the formula in Eq. (4.1). In

particular, it can be shown that this approximation is simply a truncation of the

explicit feature map given by Mercer’s theorem.

To show this, note that the integral operator Tk can be approximated by Monte

Carlo quadrature against the measure µ as follows:

(Tkφi)(x) = aiφi(x) =

∫
X

k(x, y)φi(x)dµ

= Ex ′∼µk(x, x ′)φi(x
′)

u
1

t

t∑
j=1

k(x, xj)φi(xj)

where {xj}
n
i=1 = D is the dataset. This directly leads to the symmetric eigende-

composition K = ΨΛΨT, where Ψ,Λ are the eigenvectors and diagonal eigenvalue

matrix, respectively. In the Nyström technique, the singular value decomposition

above is approximated using a subset of landmark points {zj}
m
j=1 = Z. The optimal

approximation is given by:

ΨD u
√
m

n
KD,ZΨZΛ

−1
Z

ΛD u
n

m
ΛZ,

where KD,Z is the matrix whose entries are Kij = k(xi, zj). Plugging this approxi-

mation in to reconstruct K gives exactly the formula in Eq. (4.1) This technique is

appealing not only for its theoretical guarantees, but also for its computational ad-

vantage – if the number of landmarks chosen is k, then the computational complexity

is O(k2n), significantly smaller than the full-rank O(n3).

Choosing the set of landmarks for the Nyström technique intelligently can yield

improved theoretical and practical approximations. Techniques such as determinantal

point processes, k-means, and k-means++ have been utilized as initialization steps to
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select good landmark points at the expense of some additional precomputation [81–

83]. In particular, the analysis presented in ref [81], shows that k-means clustering

in feature space is equivalent to selecting the top k eigenvectors in the SVD step,

meaning that this technique leads to a good approximation of the Gram matrix in

terms of Frobenius norm. In our work, we will focus instead on bounding the error of

quadrature of some integral under an empirical approximation induced by the kernel

landmarks.

4.2.1 Quadrature and Voronoi tessellations

Recent work has attempted to bound the quadrature error of Nyström-type approxi-

mations for arbitrary kernels [84–86]. However, most results either appeal to a specific

learning paradigm or apply quadrature in the RKHS. By contrast, our analysis will

focus on quadrature bounds in the feature space directly. In this section, we will focus

primarily on k-means initializations, and, in particular, their relation to centroidal

Voronoi tessellations and low-discrepancy sequences [87]. First, we will define some

important terms.

Definition 4.2.2. (Centroidal Voronoi tessellation). Assume we are given a measure

µ on a metric space (X,d). The Voronoi tessellation induced by a set of points

Z = {zi}
k
i=1 is defined as:

V =

{
Vi |Vi = {x ∈ X : min

z∈Z
‖x− z‖ = zi}

}

A tessellation is known as a centroidal Voronoi tessellation if, in addition to the

property above, the induced points are the centroids of the respective cells – that is:

zi =

∫
Vi

xdµ∫
Vi
dµ

The centroidal Voronoi tessellation is the minimizer of a specific energy function.
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We define the CVT energy for a set of landmarks as

E(Z) =
∑
i

∫
Vi

‖x− zi‖2dµ (4.2)

Algorithms to minimize the CVT energy are also good approximations to optimal

solution to k-means problem. In fact, the CVT energy and the k-means “within-

cluster-sum-of-squares” error are equivalent. In particular, we point to the algorithms

due to Lloyd and MacQueen [88], which are guaranteed to converge to a centroidal

Voronoi tessellation, and also are commonly used to solve the k-means problem.

Finally, the k-means++ initialization scheme provides a fast approximation to the

optimal objective with only O(log k) penalty [81].

We note that, when the measure µ is not the Lebesgue measure, this energy has

a close relationship to semidiscrete optimal transport [89]. In particular, the optimal

transport value can be written as [90]:

W2
2

(
µ,

1

k

k∑
i=1

δ(zk)

)
= sup

ϕ

k∑
i=1

(
1

k
ϕi +

∫
Viϕ

(‖x− zi‖2 −ϕi)dµ
)

where ϕ ∈ Rk is the Kantorovich potential. If
∫
Viϕ
dµ = 1

k
, then the semidiscrete 2-

Wasserstein distance is equal to the CVT energy. We will see later that, for an optimal

CVT, this is indeed the case. Further, it has recently been shown that finding the

Wasserstein barycenter (i.e., the distribution supported on k points that most closely

approximates the target µ in Wasserstein distance) is equivalent to a centroidal power

tessellation [90].

Our goal is to show that selecting a subset of points according to the centroidal

Voronoi tessellation scheme (or approximations thereof) leads to provable bounds on

the quadrature of arbitrary functions. To proceed, we take inspiration from ref. [91],

and generalize their argument to arbitrary measurable spaces. In particular, assume

that the data D is drawn from some measure µ, and our target function f ∈ C∞(X)
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is Lipschitz with constant L. In this case, the quadrature error can be written:

Err(Z) =

∥∥∥∥∥
∫
X

f(x)dµ−
1

k

k∑
i=1

f(zi)

∥∥∥∥∥ (4.3)

Taylor expansion of the first integral yields the decomposition:

∫
X

f(x)dµ .
∑
i

[∫
Vi

f(zi) +∇f(zi)T(x− zi) +
1

2
(x− zi)

T(∇2f(zi))(x− zi)dµ

]
(4.4)

=
∑
i

[
µ(Vi)f(zi) +

∫
Vi

∇f(zi)T(x− zi) +

∫
Vi

1

2
(x− zi)

T(∇2f(zi))(x− zi)dµ

]
(4.5)

6
∑
i

µ(Vi)f(zi) + sup
a:‖a‖=1

‖aT∇2f(zi)a‖
∫
Vi

‖x− zi‖2dµ (4.6)

where ∇ is the gradient, H = ∇2 is the Hessian, and the middle term vanishes (and is

minimal) if zi is the centroid of Vi. Assuming that the target function f is convex and

twice differentiable, the operator norm of the Hessian is bounded above by L. This

is simply due to the mean value theorem and the fact that the Hessian is positive

semidefinite for any convex and differentiable function f:

‖∇f(x) −∇f(x+ ∆x)‖ 6 L‖∆x‖ ⇐⇒ ‖∇2f‖ 6 L

=⇒ aT(∇2f(x))a 6 LaTa ∀a

Plugging this into eq. (4.3) gives the bound:

Err(Z) 6
∑
i

f(zi)

∣∣∣∣µ(Vi) − 1

k

∣∣∣∣+ sup
a
‖∇2f(a)‖ ·

∑
i

∫
Vi

‖x− zi‖2dµ (4.7)

=
∑
i

f(zi)

(
µ(Vi) −

1

k

)
+ L · E(Z) (4.8)

Finally, we note a conjectured bound on the optimal CVT error, which has been
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proven for two and three dimensions [92].

Theorem 4.2.1. (Gersho’s conjecture.) As k → ∞, the optimal CVT (i.e., the

one that minimizes the CVT energy) is a tessellation such that the following two

conditions hold:

1. All Voronoi cells Vi are geometrically similar to some reference polytope V,

which depends on the dimension.

2. Each Vi has equal measure with respect to µ. Specifically,

µ(Vi) ≡ k−1/d · vol(V)

where vol is the volume with respect to the Lebesgue measure, d is the dimension

and k is the number of points in the CVT. Further, these conditions hold for

arbitrary µ.

For 2 dimensions, Gersho’s conjecture can be visualized in Fig. 4-1. Note that

the optimal polytope for R2 is a hexagon, and that the regularity of the tessellation

increases from the top to the bottom of the figure. Following [91], we see that the

following quantity is invariant to the deformations permitted under Gersho’s conjec-

ture:

Mi =

∫
Vi
‖x− zi‖2dµ(∫
Vi
dµ
)(d+2)/d

If Gersho’s conjecture is valid, then all Mi = M for some optimal tessellation V.

Therefore:

E(Z) =
∑
i

∫
Vi

‖x− zi‖2dµ

=
∑
i

(∫
Vi

dµ

)(d+2)/d

Mi

u k−2/dM = O(k−2/d)

In fact, this bound is reminiscent of the best asymptotic rate for an empirical
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Figure 4-1: A visualization of Voronoi tessellations in 2 dimensions for a Gaussian
(left) and uniform (right) distribution. From top to bottom, the landmarks are chosen
randomly, using k-means++, and using Lloyd’s algorithm.
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approximation in Wasserstein distance, which is O(k−1/d), independent of the points

sampled. The similarity may follow, intuitively, from the idea that the Wasserstein

distance metrizes weak convergence of the empirical measure. Gersho’s conjecture

also suggests that the best subset to select to minimize quadrature error is the CVT.

This follows from the two terms in Eq. (4.7). By Gersho’s conjecture, the first term

vanishes, and the second term is minimized by the definition of the CVT.

Putting all the arguments above together, this implies that:

∥∥∥∥∥
∫
Vi

f(x)dµ−
1

k

∑
i

f(zi)

∥∥∥∥∥ = O(k−2/d)

if zi are the centroids of an optimal Voronoi tessellation. A similar bound holds

if the points are, instead, approximations to a CVT – for example, in k-means++,

the quadrature error will have an additional O(log k) term. This provides a power-

ful bound on an optimal method of sampling to minimize the quadrature error of

arbitrary functions.

4.2.2 Centroids as landmarks

To conclude this section, we will connect back the result we have shown to the Nys-

tröm approximation. To make the relationship between these two techniques explicit,

consider a generalized kernel method, like the support vector machine. The output

function in a kernelized SVM is:

ŷ(x) = sign

(
N∑
i=1

wiyik(x, xi)

)

for some weight vector w and kernel function κ(·, ·). Naively, computing the prediction

requires the full kernel matrix K. However, the Nyström approximation suggests

that instead of computing the prediction with respect to all points in the dataset,

we can sample a subset {zj}
k
j=1 by simply selecting points randomly. However, the

arguments above, applied with care, suggest that this error can be minimized when

the subset is a CVT. First, we note a problem with directly applying our results
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under the feature map. Note that, due to Theorem 4.1.2, all the arguments above

hold equivalently under the transformation by the feature map of a positive definite

kernel. In particular, this means that computing an approximate Voronoi tessellation

in the data space gives a similar tessellation in the feature space. However, this comes

with the caveat that the centroids are almost certainly not an element of the original

dataset – i.e., zi ̸∈ D. This means that, without explicitly constructing the feature

map, it will (in general) not be possible to achieve the tight bound described above.

Further, the dimension of the feature space is not guaranteed to be finite, and the

subspace induced by the image of the dataset im(D) under the map Φ can have very

high dimension, so the error bounds may be very loose.

Instead, let us consider the approximation of the kernel function itself. Assume

that the kernel κ is Gaussian with parameter γ. In particular, note that the quadra-

ture error bound when applied to the function f(x) =
∑N
i=1 κ(xi, x) over the land-

marks {zj}
k
j=1 gives the following:

∥∥∥∥∥
N∑
i=1

∫
X

κ(xi, x)dµ−
1

k

N∑
i=1

k∑
j=1

κ(xi, zj)

∥∥∥∥∥ 6
N∑
i=1

∥∥∥∥∥
∫
X

κ(xi, x)dµ−
1

k

N∑
i=1

k∑
j=1

κ(xi, zj)

∥∥∥∥∥
6

1

k

N∑
i=1

k∑
j=1

∥∥∇2κ(zj)
∥∥ · ∫

Vi

‖x− zj‖2dµ

6
1

k

N∑
i=1

k∑
j=1

−γ ·
∫
Vi

‖x− zj‖2dµ

where we have used the fact that the Hessian of the Gaussian kernel is the inverse

of its covariance matrix. This value is, by the same argument as above, minimized

when the landmarks are an optimal CVT, and additionally, the bound holds with d

the dimension of the base space X.1

1This also suggests, interestingly, that a distribution can be well approximated with respect to
the kernel mean map with a subset of points equivalent to the CVT. Similarly, the CVT is the best
empirical distribution to approximate the true measure with respect to the Wasserstein distance.
We will define the kernel mean map in the next section, but implementing this approximation is
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While we leave a full analysis to future work, a similar argument can also be

applied to functionals of the kernel – i.e., consider the mean squared error MSE =∑
i (y(xi) − ŷ(xi))

2. A future analysis can hopefully show that the objective attained

when minimizing this functional over the weight vector w supported at only the points

in the subset is close to that achieved when solving the quadratic program fully over

the whole dataset.

4.3 Conclusion

Kernels are a useful tool in machine learning to improve the expressivity of a model.

In particular, kernels allow us to use non-linear embeddings into potentially infinite-

dimensional feature spaces without explicitly constructing the embedding map. Un-

fortunately, most kernel-based methods suffer from quadratic-or-worse time and space

complexity due to the burden of computing the full Gram matrix. As an example,

the anomaly detection techniques we will discuss in Chapter 6 both are kernel-based.

Therefore, it is often necessary to employ approximations to make these methods

practical. In this section, we have introduced the Nyström method, a low-rank ap-

proximation technique based on column sampling. We provide what is, to our knowl-

edge, a novel analysis of this technique for positive definite kernels that have bounded

Hessian by framing the error in terms of quadrature of an arbitrary function on the

Gram matrix. Using this method, we have shown that there are theoretical benefits,

in terms of this error, to initializing the landmarks of this technique with the cen-

troids of the measure. We connect this technique to recent developments in optimal

quantization, specifically the semidiscrete Wasserstein barycenter problem.

Before we apply centroid-based kernel approximations to our anomaly detection

techniques, however, we still need a kernel that operates on distributions. We would

like this kernel to satisfy the properties of positive definiteness while still respecting

the notion of weak convergence as described in Chapter 5. As we will see in the next

chapter, the standard Gaussian kernel defined over the Wasserstein distance does

outside the scope of this work.
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not provide these theoretical guarantees, except in 1 dimension. Therefore, we will

introduce and show how to compute a variant of the Wasserstein distance based on

projecting the atoms of the distribution to d = 1.
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Chapter 5

Fast Wasserstein-type kernels

“Numerical analysis is quickly becoming an experimental science.”

— Peter Wynn

In this section, we will describe our recent progress in constructing fast, unbiased

estimators for transport-related distances, and their applicability in kernel-based ma-

chine learning techniques. Recall that the central object of study in this thesis is the

event signature, which is an empirical distribution. To operate on these distributions

in a practical setting, it is convenient to first map them into a Hilbert space defined

by some kernel. In that space, one can measure lengths, angles, and local densities,

which are important in many machine learning techniques, including (but not limited

to) models of anomaly detection. To this end, certain kernels operating on distribu-

tions [72, 93] have been proposed. We will specifically analyze one kernel, the sliced

Wasserstein kernel, and show that the naïve estimator proposed in the literature for

it suffers from bias with respect to the number of points in the empirical distribution.

Because of this bias, the theoretical benefits it enjoys are not necessarily guaranteed

in practice.

In the first part of this chapter, we will define the sliced Wasserstein distance, and

provide an unbiased estimator for it. We show both numerically and mathematically

that our estimator eliminates the bias inherent to the naïve estimator. We will also

show that, in the case that the empirical distribution is an approximation to some ab-

solutely continuous measure, that the “bootstrapped” version of the kernel generated
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from the empirical distributions also satisfies kernel properties with respect to the

underlying continuous measures. Following that, we will introduce another estimator

for the sliced Wasserstein distance, based on a multi-level Monte Carlo scheme. This

estimator is optimized for speed, and we will prove a theoretical runtime complexity

for it that is lower than that of the unbiased and naïve estimators. This chapter is

primarily based on work done jointly with Justin Solomon, Sam Power, Abdelkader

Baggag, and Yue Wang.

5.1 Sliced Wasserstein distances

In one dimension, the Wasserstein distance has a closed form and is easy to compute.

The family of sliced Wasserstein distances exploits this computational advantage, by

computing the Wasserstein distance between 1-dimensional projections onto random

vectors. More precisely, it can be defined as follows:

Definition 5.1.1. Let Sn−1 denote the unit sphere in Rn. Then, the sliced Wasser-

stein distance between µ,ν ∈ P+(Rn) equals:

SW2(µ,ν) := Eθ∼Sn−1 [W2
2(projθ µ, projθ ν)]. (5.1)

In this expression, projθ µ denotes the projection of each atom in measure µ onto

the vector θ. In words, Eq. (5.1) is the expected transport distance between the

projections of µ and ν onto arbitrary lines through the origin.

The sliced Wasserstein distance has been utilized in many fields as a replacement

for the Wasserstein distance. For example, as it can be easily differentiated, it can

be used as a loss function for training neural networks with backpropagation [94, 95].

In this form, it has appeared in natural language processing [95], music transcription

[96], and computer vision [97, 98], among others. In addition, its kernel-related

properties have been exploited for kernel-based machine learning [72] and topological

data analysis [99]. However, as we will note later, these kernel methods suffer from a

bias, which we will describe and correct in this work.
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While the sliced Wasserstein distance is a completely different metric to the

Wasserstein, it enjoys some theoretical and computational advantages that make it

appealing for use in many kernel-based problems.

∙ Computational advantage. As the integral over the sphere can be approx-

imated stochastically with a Monte Carlo sum, an estimator for the sliced

Wasserstein distance can be given as follows:

ŜW
2
(µ,ν) =

1

T

T∑
k=1

W2
2(projθk µ, projθk ν), (5.2)

where θ1, . . . , θT ∼ Sn−1 are drawn i.i.d. As described in Chapter 3, 1-dimensional

transport distances between empirical distributions can be computed in closed-

form by sorting [45]. This means that the runtime of the above estimator is

O(Tn logn), much faster than the quadratic-or-worse scaling of Sinkhorn and

the exact OT solver.

∙ Positive definite kernel. Unlike the regular Wasserstein distance, the sliced

Wasserstein distance generates a positive definite Gaussian kernel. We can

construct it from SW by defining:

Kγ(µ,ν) = e−γSW
2(µ,ν). (5.3)

Kγ is positive definite for all γ > 0 on the space of absolutely continuous

probability measures [72]. This property enables Kγ to be used in any stan-

dard kernel-based machine learning algorithm, whereas the non-sliced func-

tional (µ,ν) ↦→ exp(−γW2
2(µ,ν)) does not satisfy the positive definite condition

needed to do so when n > 1. By a similar argument as outlined in the previ-

ous chapter, this additionally implies that the space of measures endowed with

the sliced Wasserstein distance is isometric to Euclidean space, and the Hilbert

space induced by this kernel is separable.

Further, we note that the sliced Wasserstein distance inherits the properties of
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IRC safety and energy flow metrization discussed in Chapter 3.

5.1.1 Debiasing the kernel estimator

A naive computation of the kernel as the exponential of the simple estimator in

Eq. (5.2) immediately encounters an issue, however. By Jensen’s inequality,

E[exp(−γx)] > exp(E[−γx])

which means that simply exponentiating our Monte Carlo approximation is an over-

estimate of the true value of the kernel.

Next, we will explicitly define our unbiased estimator. To start, we leverage the

following identity:

1 = EK
[

1(K > k)
P(K > k|K ∼ ρ)

]
where ρ ∈ P+(N) is a distribution defined over the natural numbers. Intuitively, this

identity allows us to . Next, we will consider the Taylor expansion of the exponential,

following the work of refs. [100, 101].

exp(−γx) =

∞∑
k=0

(−γx)k

k!

Multiplying the equations above, and moving the sum through the expectation,

we arrive at the following expression for an unbiased estimator:

e−γx = EK∼Geom(p)

[ ∞∑
k=0

(−γx)k

k!

1(K > k)
(1 − p)k

]

= EK∼Geom(p)

[
E{xk}

K
k=1∼X

[
K∑
k=0

1

k!

(
−γ

1 − p

)k k∏
`=1

x`

]]
.

where, as the test distribution over the natural numbers, we have chosen Geom(p)

for some parameter p > 0 due to its convenient closed form, and the terms x` are the
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Figure 5-1: Stochastic estimation of the kernel Kγ between two 50-point empirical
measures (top), with γ = 1, accumulated over 104 trials. The mean of the naïve biased
estimate depends on the number of slices drawn (lower left), while our estimator has
the same mean regardless of the number of slices (lower right).

67



one-dimensional transport distances computed after projecting along the slice θ`

Fig. 5-1 illustrates the bias of the naive estimator and our improvement over it

in practice. When the biased kernel estimator is computed between two Gaussian

measures supported on 50 points each, if the number of projections is small, the

estimator suffers from a small but consistent overestimation, due to the convexity of

the exponential function. In contrast, the unbiased estimator has no dependence on

the number of projections, but has the drawback of any individual trial not guaranteed

to fall in the range [0, 1].

In practice, the unbiased estimator additionally suffers from a large variance.

The variance is generated by two orthogonal sources within the computation of the

unbiased estimator.

∙ Taylor series truncation. The number of terms in the Taylor series is con-

trolled by the parameter p governing the geometric distribution. In particular,

EK∼Geom(p)[K] =
1

p
− 1.

For large p, this means that the expected number of terms is small, and the

variance of the exponential is high.

∙ Multiplying random variables. If the variance of the underlying distribu-

tion is large with respect to the projection slices (i.e., the distribution is not

isotropic), then the variance of multiplying many random variables to form

higher-order terms in the Taylor series can dominate.

We will now show how to control this variance. We propose three independent

modifications to the algorithm described above to reduce the variance.

Choosing the parameter p. The goal of choosing p is to select a value that is

large enough for the polynomial in the numerator to be dominated by the factorial

in the denominator of the last Taylor series term. In particular, this means that we
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want:
(γx)K

(1 − p)KK!
/ 1.

Substituting the expectation for K and rearranging, we find:

(
γx

1 − 1/(K+1)

)K
/ K!

6 KK

where x is a “typical” value for the sliced Wasserstein distance, and we have used

Stirling’s inequality in the second line. Taking the K-th root of both sides and noting

that the denominator is always at least equal to 1
2
, we obtain the final heuristic for p:

K u 2γx =⇒ p u
1

1 + 2γx

Avoiding reuse. Note that in our estimator, the product of the sliced distances in

the interior of the expectation is asymmetric – in particular, the first terms are used

much more often than the last. While this does not induce a bias in the estimator, it

does increase the variance. Two easy remedies present themselves to avoid this.

1. Random shuffling. If we randomly permute the values before taking the prod-

uct, in expectation, this problem is avoided. However, in any given iteration, we

might still be “unlucky” and use one term more than any other. This scenario

is more likely if the number of projections is small, which is already a scenario

with higher variance.

2. Symmetric polynomials. Alternatively, we can replace the product with an

elementary symmetric polynomial:

∏
`

x` →
(
K

k

)−1

Ek(x1, ..., xK)

which is the sum of all possible k-element combinations of the K arguments

x1, ..., xK. Computationally, this step takes O(K2) time with a dynamic pro-
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gramming algorithm, and is implemented in log domain for numerical stability.

Centering the Taylor series. Instead of centering the Taylor series at 0, we can

center it instead closer to the mean, which will reduce variance in the approximation.

In particular, we can subtract the mean x̄ =
∑
` x` from each distance, and then add

this mean back at the end by multiplying through with the factor exp(−γx̄) to recover

the correct value. This computation both adds numerical stability and decreases the

variance.

5.1.2 Bootstrapping the kernel

There are certain applications for which computing the sliced Wasserstein kernel

between two distributions is computationally prohibitive – for example, if the number

of points in each empirical distribution is extremely large, or if the distributions

are absolutely continuous and sample access is costly. In this case, it is tempting

to approximate the sliced Wasserstein distance with a subsampled or bootstrapped

version, defined as:

SW2(µ,ν)≈Exi∼µyi∼ν
[
SW2

(
1

N

N∑
i=1

δxi ,
1

N

N∑
i=1

δyi

)]
. (5.4)

However, this approximation is biased, and does not induce a distance. Consider

the bootstrapped sliced Wasserstein “distance” from an absolutely continuous measure

to itself. For any finite number of points, the transport distance will be positive, as

the probability of the samples being the same is vanishingly small. Despite this, we

can define a bootstrapped kernel as follows:

K
N

γ (µ,ν) := Exi∼µyj∼ν

[
Kγ

(
1

N

N∑
i=1

δxi ,
1

N

N∑
j=1

δyj

)]
. (5.5)

A straightforward argument verifies that K
N

γ is a kernel. Since Kγ is a kernel,

there exists a feature map Φ : P+(Rn)→ H into a Hilbert space H with Kγ(µ,ν) =
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⟨Φ(µ),Φ(ν)⟩H. Then,

K
N

γ (µ,ν) =

〈
Exi∼µΦ

(
1

N

N∑
i=1

δxi

)
,Eyi∼νΦ

(
1

N

N∑
i=1

δyi

)〉
.

Hence, K
N

γ is an inner product via a new feature map

µ
Φ̃↦−→
[
Exi∼µΦ

(
1

N

N∑
i=1

δxi

)]
. (5.6)

Moreover, since sampled transport distances converge to the true value as N → ∞,

we can verify

Kγ(µ,ν) = lim
N→∞K

N

γ (µ,ν). (5.7)

To prove this, consider the following scenario. For a sampled set of points xi ∼

µ ∈ P+(Rn), define µN = 1
N

∑N
i=1 δxi . Berthet et al. [102, Theorem 12] prove in one

dimension that limN→∞Wp(µN,νN) = Wp(µ,ν) almost surely. Hence, starting from

(5.1) we have

lim
N→∞ SW2(µN,νN)

= lim
N→∞Ev∼Sn−1

[
W2

2(projv µN, projv νN)
]

a.s.
= Ev∼Sn−1

[
W2

2(projv µ, projv ν)
]
= SW2(µ,ν)

Let {xi}
∞
i=1, {yj}

∞
j=1 be infinite sets of points sampled from µ,ν, resp. Under the

assumption that µ,ν have compact and bounded support, SW2 is bounded above by

the diameter of the support. Then, using the result above, we can apply Lebesgue’s

dominated convergence theorem and continuity of exp(·) to interchange the limit and

expectation:

K
N

γ (µ,ν) = Exi∼µ
yj∼ν

[Kγ(µN,νN)]

= Exi∼µ
yj∼ν

[
e−γSW2(µN,νN)

]
a.s.→ Eµ,ν

[
e−γSW2(µ,ν)

]
= e−γSW2(µ,ν) = Kγ(µ,ν).
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5.2 Monte Carlo Wasserstein

While the sliced Wasserstein is very fast compared to the exact optimal transport

distance, we will take the remainder of this chapter to attempt to find an even faster

estimator for it. We will take inspiration from the idea of multi-level Monte Carlo

methods.

5.2.1 Multi-level Monte Carlo

A classic technique in numerical simulations is the idea of an control variate. As-

suming the goal is to compute the expectation value of a certain function P, one

can achieve good empirical and theoretical performance by using a control variate Q,

assuming corr(P,Q) is large and E[Q] is simple to compute [103]. The idea behind

multi-level Monte Carlo algorithms is to leverage a coarse series of approximations

to a given function, all of which are well-correlated with each other, to build an es-

timator that is more accurate than the sum of its part. More rigorously, consider

some functional P, which is expensive to compute. If one can construct a hierarchy

of functions P`, ` = 0, 1, 2, ... such that each subsequent function in the hierarchy

has improved approximation accuracy but also increased cost, then the telescoping

identity

E[P] = E[P0] +
∞∑
`=1

E[∆P`], ∆P` = P` − P`−1

trivially holds. Then, each expectation can be computed with an independent Monte

Carlo integral, and the infinite sum can be truncated appropriately, giving the esti-

mator:

P̂ u E[P0] +
L∑
`=1

1

n`

n∑̀
i=1

(∆P
(i)
` ).

The computational savings that such a scheme may afford is given by the following
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theorem, due to ref. [104].

Theorem 5.2.1 (Giles, 2013). Denote by Y` = 1
n`

∑n`
i=1(∆P

(i)
` ) the Monte Carlo

approximation to the hierarchical difference term. If the following conditions hold:

1. ‖E[∆Y`]‖ 6 c12−α`

2. Var[∆Y`] 6 1
N`
c22

−β`

3. cost(∆Y`) 6 c3N`2γ`

such that α > 1
2

min(β,γ), then, there exists a constant c4 such that the MLMC

estimator achieves the error and cost bounds

E[(P̂ − E[P])2] 6 ε2 and cost(P̂) 6


c4ε

−2 β > γ

c4ε
−2 log2 ε β = γ

c4ε
−2−(γ−β)/α β < γ

This suggests an efficient scheme for approximating the Wasserstein and sliced

Wasserstein distances, when the number of points in the sample is very large or the

measures are absolutely continuous. Specifically, letDn, n = 1, . . . ,∞ be the distance

between the empirical distributions formed from n samples:

Dn := SW2

(
1

n

n∑
`=1

δx` ,
1

n

n∑
`=1

δy`

)
.

In particular, we can write the telescoping sum:

SW2
2(µ,ν) = lim

n→∞E[D2
n] (5.8)

= E[D2
1] +

∞∑
j=1

(
E[D2

n(j+1)] − E[D2
n(j)]

)
(5.9)

= Ex,y[D2
1] + En∼GEx,y

[
1

gj

(
D2
n(j+1) −D

2
n(j)

)]
, (5.10)
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where G is a chosen distribution in P+(N) with density g1,g2, . . . , and n(j) is a

monotonically increasing integer sequence with n(1) = 1.

Before we prove any results about this MLMC estimator, we note similar bounds

present in the literature for the exact and entropic versions of the Wasserstein dis-

tance. In particular, known bounds on time complexity are shown in Table 5.1.

Method Cost Base metric

Empirical optimal transport [64] n3ε−2 Exact Wasserstein
Parallelizable optimal transport [105] n2ε−1 Exact Wasserstein

Sinkhorn iterations [66] n2ε−3 Entropic transport
Greenkhorn iterations [69] n2ε−2 Entropic transport

Projected dual mirror descent [106] n5/2ε−1 Entropic transport

Table 5.1: Bounds on time complexity for approximation schemes to standard and
entropic Wasserstein.

To the best of our knowledge, there are no such results explicitly for the sliced

Wasserstein distance.

Theorem 5.2.2. The estimator defined in Eq. (5.8) is asymptotically unbiased and

satisfies the following asymptotic relations:

E[ŜW − E[SW]] 6 ε2 =⇒ cost(ŜW) 6 cε−3

Proof. The asymptotic unbiasedness of the estimator follows directly from the fact

that the Wasserstein distance metrizes weak convergence.

Proving the runtime bound is slightly more involved. For the remainder of this

analysis, we will fix the number of projections to be some constant value, and ignore

it in the asymptotic limit as the number of points n → ∞. To prove the total time

complexity, we require three scaling constants: the bias, the variance, and the cost.

Bias. In general dimension, the asymptotic scaling of the bias of Wasserstein dis-

tance is:

‖Wp
p(µ,ν) −Wp

p(µ̂n, ν̂n)‖ = O(n−1/d).
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In general dimension, this result has only recently been shown [65]. However,

in one dimension, an analogous result dates back to 1969 [107]. It follows from the

Glivenko-Cantelli convergence of the empirical quantiles to the true quantiles, which

forms the basis for the closed form solution to the 1-d transport problem.

Variance. Here, we will specifically consider W2. To bound the variance, we will

apply the Efron-Stein inequality. For generality, we

Theorem 5.2.3. (Efron-Stein inequality.) Define Xn := (x1, ..., xn) and X̄ni :=

(x1, ..., x ′i, xi+1, ..., xn), where x ′i
D
= xi are i.i.d. from the same distribution. For

any function of a arbitrary vector-valued random variable Xn,

Var[f(Xn)] 6
1

2

n∑
i=1

E
[
(f(Xn) − f(X̄ni )

2
]

We want a similar bound for Var[W2
2(X

n, Yn)]. As before, all the xi are i.i.d.

across i. By symmetry, we can set i = 1 without loss of generality and drop the

index, writing X̄n instead. The inequality then becomes:

Var[W2
2(X

n, Yn)] 6
n

2
· E
[
(W2

2(X
n, Yn) −W2

2(X̄
n, Ȳn))2

]
We will move to the dual.

D2
n(X

n, Yn) −D2
n(X̄

n, Ȳn) 6
1

k

(
sup
f,g∈Φ

(f(x1) + g(y1)) − sup
f,g∈Φ

(f(x ′1) − g(y
′
1))

)
6

1

k
(c(x1,y1) − c(x

′
1,y
′
1))

where we have used the definition of the constraint set Φ. Hence,

E[
(
D2
n(X

n, Yn) −Dn(X̄
n, Ȳn)

)2
] 6

1

k2
· E[(c(x1,y1) − c(x ′1,y ′1))2]

6
2

k2
· Ex∼µ
y∼ν

[c(x,y)2]

Assume that the cost c(x,y) is the Euclidean distance. We will show that E[c(x,y)2]

75



is finite and independent of k.

Case 1. If µ has finite and bounded support, and the diameter of the support is

bounded by R, then immediately E[c(x,y)2] 6 R2.

Case 2. Instead, if µ has σ-subgaussian marginals, we first note the variance of the

i-th dimension is bounded as Eµi [(x(i))2] 6 σ2. In this case, we can write:

E[c(x,y)2] = E
[ d∑
i=1

(x(i) − y(i))2
]

6
d∑
i=1

(
E[(x(i))2] + E[(y(i))2] − 2E[x(i)y(i)]

)

6
d∑
i=1

(
σ2 + σ2 + 2σ · σ

)
= 4dσ2

where in the third line we have used the fact that µ,ν are σ-subgaussian in their

marginals for the first two expectations, and for the third we have used Hölder’s in-

equality. In either case, the expectation is finite and does not depend on k. Therefore,

plugging back in, we have E[
(
D2
n(X

n, Yn) −Dn(X̄
n, Ȳn)

)2
] 6 2

k2
·4dσ2, which implies

that:

Var[D2
n(X

n, Yn)] 6
n

2

2

n2
· 4dσ2 = O(n−1)

which is the parametric rate1.

Cost. As described above, the complexity of sliced transport is simply the same as

that of sorting. Therefore, asymptotically, sliced transport costs O(n logn) in the

number of points.

These three results give us scaling constants (α,β,γ) = (1, 1, 2). Taking these

scaling constants together, Theorem (5.2.1) implies that the estimator has the desired

error and time complexity.

1A similar argument due to ref. [65] can be applied to the primal problem to prove the same
rate. And, while we do not reproduce it here, ref. [68] shows the same rate applies for the entropic
transport problem as well.
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5.3 Conclusion

In summary, we have shown that there exists a kernel that satisfies the property of

positive definiteness and therefore induces a feature space that is Euclidean. This

kernel, based on the sliced Wasserstein distance, is well-suited to point clouds as

it is well-behaved for empirical measures. Specifically, we prove that, for empirical

approximations of absolutely continuous measures, the “bootstrapped” sliced Wasser-

stein kernel satisfies the Mercer condition to be a kernel. Further, it converges to

the kernel similarity between the underlying measures in the limit as the number of

samples goes to infinity. We additionally introduce a fast estimator based on the

multi-level Monte Carlo method, and prove that its runtime is smaller than that of

the sliced Wasserstein distance.

In the next section, we will test empirically the theoretical claims made in this

section. We will show that these kernels are, in fact, useful in the specific application

of anomaly detection.
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Part III

Experimental results
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The central goal of this work is to identify and detect anomalies. However, the

definition of an anomaly itself is vague and varies from field to field. In particular,

the machine learning scientist’s vision of an anomaly is very different from that of

a particle physicist. Anomalies at hadron colliders, as in the figure on the previous

page (taken from ref. [108]) arise when a theoretical prediction is not realised in

experimental data. In this sense, particle physicists are searching for anomalies in

the aggregate – statistical deviations in a region of phase space from a background

model. For example, regions of local overdensity are the telltale sign of a BSM

particle, a phenomenon colloquially known as the “bump hunt.” However, as we

cannot directly recontruct the intermediate states of a resonant anomaly, there’s no

ground truth that assigns each event a label as anomalous or not, despite the best

efforts of neural network-based taggers at the LHC to simulate this. In this part,

we will dive into the distinction between these two frameworks, spending some time

with the discriminative perspective on anomaly detection, before transitioning to the

generative framework and mixture modelling.

This part will apply the framework that the previous chapters of this work have

outlined to a series of anomaly detection tasks. Chapter 6 takes the transport-based

kernels previously defined and leverages them in a pair of discriminative models.

These models are then applied to detect cancerous cells in flow cytometry data, and

to tag top quarks in simulated Pythia data. Chapter 7 is based on an unpublished

work, and builds a generative model that uses the factorization theorem to statistically

model dijet mixtures.
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Chapter 6

Anomaly detection

“We know that the only way to avoid error is to detect it and that the

only way to detect it is to be free to inquire.”
—J. Robert Oppenheimer

In this section, we will apply our fast Wasserstein kernels to a pair of anomaly

detection datasets Before we start, it is important to carefully define what we mean by

an anomaly.1 We will see that our definition has a huge impact on not only the types

of models that demonstrate good performance, but also the kernels and techniques

which we decide to use. To that end, we will distinguish between three types of

anomalies.

1. Localized density anomaly. A localized abnormal density is a region of phase

space that is either over- or under-dense relative to its surroundings.

2. Outlier. A spatial outlier is a point or group of points that is “far away” from

the bulk of the background distribution, with respect to the base metric. This

is distinguished from a localized abnormal density as a spatial outlier will lie in

a region where density estimation is impractical, due to the lack of support.

3. Something else entirely. There are other types of anomalies as well – for

example, a mixture model with one component having a small mixing fraction
1In keeping with the particle physics literature, we will sometimes refer to anomalies as the

“signal”.
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could be considered an anomaly. However, it’s very difficult to find these types

of anomalies if we have no information about the background distribution, or

some a priori guess about the shape or location of the signal component.

In the remainder of this chapter, we will numerically test out the kernels and ap-

proximations we have defined over the previous sections on a toy example of isotropic

Gaussians. We will then introduce two real-world anomaly detection datasets – one

based on cancer detection, and one from particle physics – and empirically test our

kernels in two discriminative models. These models, the k-NN-LPE from [74] and

the OC-SVM from [75], have shown good performance in a wide variety of anomaly

detection tasks. However, as we will see, the kernel-based techniques in this section

are best suited to address the first two types of anomalies.

6.1 The kernel zoo

In the previous chapter, we proposed several new Wasserstein-type distances and

kernels. Before we dive into the task of anomaly detection, we first devote a brief

moment to summarizing all the available kernels that operate on distributions, and

their theoretical time complexity. As before, consider a pair of distributions µ̂, ν̂, each

supported on n points in Rd (and for the bootstrapped kernels, m≪ n subsampled

points). For the sliced kernels, we consider t projections. In Table 6.1, we outline all

the kernels considered in this analysis.

As a baseline, we have included the kernel mean map, proposed in ref. [109]. This

kernel is defined as the map Φ : P+(X)→ H such that

Φ(ρ) =

∫
X

k(x, ·)dρ(x).

where H is the RKHS of some kernel k : X× X→ R. This suggests an efficient em-

pirical method for computing the inner product in the feature space H. In particular,

2Recall that the MLMC theorem 5.2.1 gives a computational cost in terms of the mean squared
error of the approximation. Empirically, the runtime is upper bounded by the sliced Wasserstein
complexity on the full sample.
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Kernel Time complexity P.d.? Unbiased?

Sliced Wasserstein (unbiased) O(tn logn) Yes Yes
Sliced Wasserstein (biased) O(tn logn) Yes No

Bootstrapped sliced Wasserstein O(tm logm) Yes No
Bootstrapped coreset sliced Wasserstein O(tm2) Yes No

Multilevel Monte Carlo sliced Wasserstein2 O(ε−3) 6 O(tn logn) Yes Yes
Exact Wasserstein O(n3 logn) No Yes

Entropic Wasserstein (Sinkhorn divergence) O(n2) No No
Kernel mean map O(n3) Yes Yes

Table 6.1: A list of kernels operating on distributions and some of their properties,
including if they are positive definite, if they are unbiased, and their theoretical time
complexity.

κ(µ,ν) = ⟨Φ(µ),Φ(ν)⟩H =
1

n2

∑
i

∑
j

k(xi, yj)

where x ∼ µ, y ∼ ν. This kernel is characteristic and universal, and when it is gen-

erated from the Gaussian kernel, the kernel mean map is equivalent to the moment

generating function of a random variable drawn from the distribution µ [110]. Be-

cause of these properties, it has been repeatedly used as a kernel over the space of

distributions in learning tasks [75].

6.1.1 Numerical experiments

In this section, we will study the empirical time complexity and numerical convergence

of the kernels in our zoo. We will perform all our experiments on a toy dataset of

isotropic Gaussians. This dataset is chosen as the Wasserstein, sliced Wasserstein,

and kernel mean map all have easily computable closed form values [44]. The number

of points in the dataset varies by experiment, but is bounded in the range [1, 1×106].

All computations are performed on a 2016 MacBook Pro laptop, using commonly

available implementations of the Wasserstein distance. In particular, the entropic

(Sinkhorn) and exact Wasserstein kernels are implemented in the PyOT package [111]

while the sliced Wasserstein kernel and kernel mean map are computed using built-in
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functions in SciPy and NumPy
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Figure 6-1: Wall time of various kernels computed between two isotropic Gaussians
supported on varying numbers of points. Hyperparameters for each kernel were fixed
prior to computation, to provide a fair comparison.

The plot in Fig. 6-1 shows the time complexity of running each kernel as a func-

tion of the number of points in the dataset. Immediately, we notice that the sliced

Wasserstein kernels are empirically and theoretically the fastest kernels. The cen-

troidal SW kernel, which is a version of the bootstrapped sliced Wasserstein kernel

seeded through several iterations of Lloyd’s algorithm, is the slowest, as the overhead

of performing the k-means update steps dominates the actual transport computa-

tions. Behind that, the kernel mean map is the second slowest, and quickly outpaces

it in the asymptotic limit. We remark that PyOT uses a highly optimized C imple-

mentation to solve the linear programs and compute the matrix balancing updates.

As a result, for small n, these methods are among the fastest. However, they both

share (approximately) the same asymptotic complexity as the kernel mean map, and

as they are cubic, quickly become slower than the nearly-linear sliced distances. Fi-

nally, due to the high variance in the MLMC estimator in selecting the number of
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levels in the hierarchy to traverse, we note unfortunately that it does not perform

significantly better than the other sliced distances. A more careful analysis of the

algorithm, akin to the variance reducing strategies employed for the unbiased SW

kernel, may alleviate this issue.
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Figure 6-2: Convergence speed in n, the number of points in the empirical approxima-
tion, of the bootstrapped Wasserstein kernels relative to the true value. All kernels are
computed between two isotropic Gaussians supported on varying numbers of points,
with γ = 0.1. For the sliced Wasserstein distances, the number of slices is fixed (in
expectation) at t = 100.

Next, we can observe the convergence speed of bootstrapped versions of these

kernels with respect to the number of points subsampled. This is shown in Fig. 6-2.

As we are considering isotropic Gaussians, the exact value of the Wasserstein distance

can be computed from the Bures metric:

W2
2 (N(µa,Σa),N(µb,Σb)) = ‖µa−µb‖2+

[
tr(Σa) + tr(Σb) − 2tr

(
Σ1/2
a ΣbΣ

1/2
a

)1/2]1/2
and relative error is defined as the mean absolute deviation

∑
i
‖ŷi−y‖
y

. This is what

we compare the exact Wasserstein distance to. The slowest to converge is the kernel
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mean map, as it relies on an all-pairs computation. The fastest, as expected again,

is the centroidal SW bootstrap. This follows directly from the theoretical arguments

made in the previous chapter regarding the centroidal Voronoi tessellation and its re-

lationship to Wasserstein barycenters. Therefore, it is expected that this will perform

the best, compared to random samples. Unfortunately, the MLMC estimator again

underperforms expectations. In the limit as N becomes large, the variance induced

by the geometric distribution also becomes large, and the variance dominates the

convergence. Finally, we note that all of these kernels have larger absolute error at

smaller values of N. The unbiased kernel also has a nonzero error for small N, due to

its increased variance. This is a consequence of the minimax argument stating that

any empirical approximation of the Wasserstein distance converges in error with a

O(n−1/d) rate. Chaining this with the triangle inequality gives a lower bound on the

bias.
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Figure 6-3: Convergence speed in t, the number of projections in the sliced Wasser-
stein kernels, relative to the true value. All kernels are computed between two
isotropic Gaussians supported on n = 50 points, with γ = 0.1 fixed.

Finally, to conclude our discussion of the numerics, we consider the convergence of
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the sliced kernels in terms of the number of slices, as shown in Fig 6-3. As expected,

the unbiased sliced kernel converges immediately to the true kernel value, but exhibits

high variance for all values of N. Further, the MLMC estimator again fails due

to high variance. In addition, we note that the bootstrapped estimators are not

asymptotically unbiased, if the number of points is held fixed at some finite value.

6.2 Datasets

In this section, we will briefly describe the two datasets that we consider for anomaly

detection, and briefly provide representative visualizations of sample datapoints.

While the first dataset is not related to physics, we include it as a demonstration of

the different types of anomalies that one can encounter in point-cloud-based datasets

(and, in particular, a real-world example that our anomaly detection techniques are

well-suited to address). The second dataset is a standard tagging problem encoun-

tered at the Large Hadron Collider.

Flow cytometry. Flow cytometry is a method by which the properties of a suspen-

sion of particles in a fluid can be probed through optical scattering of a laser through

individual particles, one at a time. It is commonly used in histology and oncology to

understand cancerous tissues. For our purposes, the output of a flow cytometer can

be thought of as a high-dimensional point cloud. Each element in the point cloud rep-

resents an individual cell, and each dimension represents the prevalence of a certain

type of glycoprotein or immunoglobulin within the cell, as measure by the amount

of light scattered at a certain (set of) wavelengths. In this analysis, we will use the

datasets provided by ref. [112]. In this sample, 357 patients are tested for adult acute

myeloid leukemia. For each patient, anywhere between 9,000 and 30,000 cells were

collected, and intensity values were measured for 7 proteins of interest. We subsample

the point cloud down so that each element of the dataset has 1,000 constituents. A

sample 2-dimensional histogram for a pair of datapoints is presented in Fig. 6-4.

We note that the original dataset was intended for use in a supervised classification
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Figure 6-4: Two-dimensional marginals sliced through the flow cytometry data. The
two histograms in the top row are taken from a patient suffering from AML, while
the bottom row represents a normal sample.

study. For our purposes, as the fraction of AML-positive patients is 43/357 ≈ 12.7%,

we can consider the unsupervised anomaly detection problem instead. This problem is

made more challenging by the small number of background samples, meaning density

estimation will be difficult. However, as we will demonstrate later, we still achieve

strong performance by a variety of metrics, although not comparable to the supervised

methods.

Top quark tagging Our second dataset is a sample study of tagging top quarks

against a QCD dijet background [113]. Top quarks, due to their relatively heavy mass,

couple strongly to many theorized BSM particles. For example, the proposed topcolor

theory suggests that a new force with SU(3)⊗SU(3) symmetry is spontaneously broken

by a Z’ boson, which decays to a top and anti-top quark [114]. Therefore, identifying
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and tagging top quark jets can provide statistical evidence for this theory, and many

others.

When dealing with point clouds in the jet plane, care must be taken to avoid

symmetries. In fact, as the plane is invariant under reflections across both the y and

φ axes, as well as translations, we perform the following preprocessing steps. First,

each jet is centered around the hardest particle in the event (i.e., the particle with the

largest pT ). Next, the second hardest particle is placed in the upper left quadrant.

Examples of these events are shown in Fig. 6-5.

This dataset contains 400,000 top quark jets and 400,000 QCD background jets.

As with the flow cytometry data, this dataset was originally intended as a balanced

supervised classification problem. However, by subsampling the signal class to be

≈ 10% of the total dataset, we can induce an anomaly detection problem. Our final

dataset is a random sampled set of 11,000 jets, 1,000 of which are top quarks. We can

contrast this task with the flow cytometry dataset. We find reason to believe that

top quark tagging will be more challenging for these models, for the following reasons

∙ Large dataset. The number of samples is an order of magnitude larger, and

each individual sample has fewer elements (roughly 100). This meaning the

computational tradeoff favors approximations of the kernel matrix instead of

approximations to the kernel between any pair of data points, and our use of

the sliced Wasserstein kernel is not as much of a computational advantage in

this setting.

∙ Entangled anomaly. As evidenced by the plot in Fig. 6-5, standard observ-

ables like invariant jet mass have no discriminative power to tag individual top

quarks against a dijet background without either a background density model

or supervised training samples. As the anomaly is an overdensity embedded in

the support of the background, it represents a fundamentally different type of

anomaly than the flow cytometry data.

The discussion above suggests that anomaly detection techniques can be roughly

broken down into two categories: discriminative and generative methods. The dis-
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Figure 6-5: Four samples from the top tagging dataset, and the distributions of
invariant jet mass, broken up into signal and background spectra.

tinction between the two can be roughly outlined as follows. In some cases, it is

desirable to identify an individual event as anomalous. Under this assumption, we
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seek to find the likelihood L = P(x|y=1)
P(x|y=0)

, where y = 1 denotes the signal class. This

leads to a discriminative procedure, where we seek to classify individual instances as

either anomalous or not. Contrast this to a scenario where each event is viewed as be-

ing generated by a mixture between two classes, one anomalous and one background.

In this case, we are more interested in modeling the joint distributions between labels

and observables P(x,y). Instead of there being a ground truth for every event, in

this paradigm we seek to bound the behavior of each generative process in a specific

region of phase space. With this distinction established, we may proceed to applying

these models to real-world datasets.

6.3 Discriminative methods

Equipped with a set of kernels, we can proceed to our main task. In this section, we

will discuss two techniques for performing kernel-based anomaly detection through

classifying samples, which constitute our discriminative models.

6.3.1 Nearest-neighbor density estimation

If the anomalies appear in regions of phase space where there are few surrounding

samples, nearest-neighbor density estimation techniques are extremely powerful [74,

115, 116]. This family of techniques seeks to locally approximate the outlier factor

through kernel-based density estimation. In particular, we will focus on the k-NN-

LPE technique [74]. To perform this type of anomaly detection, we must first generate

the kernelized k-NN graph, and assign the value R(µi) = κ(µi,µik) as the distance

to the k-th nearest neighbor for each event in the set. Then, each event receives a

score defined as:

S(µi) =
1

n

∑
ν6=µi

1{R(µi) > R(νi)}

.

The higher this score, the further away a point is from its k-nearest neighbors, and
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therefore the more anomalous it is. Then, applying a threshold on these scores will

give the most anomalous points. In previous work, the kernels used in this method

have been Gaussian kernels based on the `2 and KL divergences, both of which fail

to metrize weak convergence [75].

6.3.2 One-class support vector machines

Another interesting method for solving this problem is the method of one-class sup-

port vector machines (OC-SVM), first proposed by ref. [75].3 The objective of the

kernel-based one-class SVM is to find a maximum margin hyperplane in the feature

space, w ∈ Hκ, that best separates the mapped data from the origin. This hyperplane

is found by solving the SVM linear program:

min
w,ρ,ξ

1

2
⟨w,w⟩+ 1

νn
1

Tξ− ρ

s.t. ⟨w,Φ(µ)⟩ > ρ− ξ

ξ > 0

⇐⇒

min
α

1

2
αTKα

s.t 0 6 αi 6
1

νn

1
Tα = 1.

(6.1)

where ν is the fraction of anomalies expected, and n is the number of point clouds in

the dataset. Here, as the feature mapping Φ is hard to compute, solving the problem

in the dual space is preferred. It can be shown that this results in a nonlinear decision

boundary encompassing the original data, and is closely related to the problem of

finding a minimum enclosing sphere [75]. Then, to detect anomalies is as simple as

checking on which side of the decision boundary the new data lies.

6.3.3 Results

We will first present results for the flow cytometry data, in Table 6.2. We note that,

due to computational constraints, the number of subsampled points m = 1000 for all

methods except for Centroidal SW and the kernel mean map, for which it is set at

m = 100. Additionally, the number of projections is fixed using a hyperparameter

3When the kernel used is the kernel mean map, these are known as one-class support measure
machines. We will use the terms interchangeably.
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sweep at t = 50, and the number of neighbors in the k-NN-LPE is set at k = 30.

Flow cytometry

OC-SVM k-NN-LPE

Kernel Precision Recall F-1 score Precision Recall F-1 score

Unbiased SW 0.67 0.67 0.67 0.72 0.73 0.73

Biased SW 0.66 0.66 0.66 0.70 0.73 0.72
Entropic OT 0.67 0.67 0.67 0.68 0.66 0.66
Exact OT 0.67 0.68 0.67 0.68 0.66 0.66

Centroidal SW 0.42 0.42 0.42 0.51 0.60 0.57
Kernel mean map 0.53 0.36 0.44 0.58 0.52 0.54

MLMC SW 0.28 0.22 0.26 0.18 0.18 0.18

Table 6.2: Results for discriminative methods on the flow cytometry dataset. The
best performing algorithm is the k-NN-LPE, using the unbiased sliced Wasserstein
kernel.

As evidenced in Table 6.2, these techniques show strong performance on the task

of anomaly detection in flow cytometry data. As our primary metric, we use the

concepts of precision, recall, and F-1 score, which are defined as follows:

Precision =
True positives

True positives + false positives

Recall =
True positives

True positives + false negatives

F-1 =
1

1
Precision + 1

Recall

While the supervised methods were able to classify the data perfectly, the F-1 scores

reported in show that these models are well suited to the flow cytometry data. The

performance of the unbiased sliced Wasserstein kernel is the best by a small but not

insignificant margin, followed closely by the biased SW, and entropic and exact OT

kernels. The other three kernels perform significantly worse, either due to their high

variance or computational complexity. Between the k-NN-LPE and the OC-SVM, we

find that the nearest neighbor density method performs slightly better. This suggests
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Figure 6-6: A t-SNE embedding of the flow cytometry dataset using the best-
performing method, the k-NN-LPE using the unbiased sliced Wasserstein kernel.
Datapoints are marked with the classification made by the method, and whether
this was a correct prediction or not.

that the anomalous events are better described as spatially localized in some region

of phase space, not isolated events far from the bulk of the background distribution.

This hypothesis is supported by the t-SNE embedding presented in Fig. 6-6. t-SNE

is a technique used to embed and visualize arbitrary manifolds in Euclidean space,

while preserving clusters [117]. As shown, the anomalies are localized in the same

region of the t-SNE plot.

Top quark tagging

OC-SVM k-NN-LPE

Kernel Precision Recall F-1 score Precision Recall F-1 score

Unbiased SW 0.25 0.27 0.26 0.28 0.33 0.30
Exact OT 0.27 0.33 0.32 0.35 0.35 0.35

Exact OT (with Nystrom) 0.25 0.33 0.31 0.21 0.21 0.21

Table 6.3: Results for discriminative methods on the top quark tagging dataset. While
the algorithms are statistically better than random, they do not perform well at the
anomaly detection task.

However, we note that neither discriminative model is well suited for the top quark

tagging task. As shown in Table 6.3, regardless of kernel, the F-1 scores are extremely

low. This is caused by multiple factors, but most importantly, we find the top quark
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Figure 6-7: A t-SNE embedding of the top tagging dataset using the best-performing
method, the k-NN-LPE using the exact Wasserstein kernel. Datapoints are marked
with the classification made by the method, and whether this was a correct prediction
or not.

anomaly is not an outlier in the traditional sense. In particular, as shown in Fig. 6-5,

when the distribution is plotted for the invariant jet mass, the anomalous region has

overlapping support with the background. In this projection, some background events

are indistinguishable from the signal. Therefore, it is neither a localized anomalous

density, nor is it a set of events far away in feature space – it falls into the third type

of anomaly. This is the motivating reason for the “bump hunt” described in Chapter

2 – in a physically relevant observable, the anomaly is evidenced as an overdensity

in a specific localised region of phase space. Our hypothesis was that, in the feature

space induced by our set of kernels, we could reproduce this behavior. However, as

clear from the t-SNE embeddings presented in Fig. 6-7, this is not the case. In fact,

this means that despite the success of supervised nearest-neighbor tagging with the

Wasserstein distance [108], searching for regions of anomalous density (as in the k-

NN-LPE) or regions separated from the background support (as in the OCSVM) are

not suitable for this specific anomaly detection task.
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6.4 Conclusions

This section was primarily devoted to examining empirically the theoretical guaran-

tees we established in previous sections for our set of kernels. We showed numerical

experiments demonstrating the speed of convergence and time complexity of the ker-

nels in our “kernel zoo.” Then, we applied the kernels to a set of anomaly detection

problems from disparate domains. We demonstrated three techniques, two discrimi-

native and one generative, that each target a different type of anomaly. We claimed

that the flow cytometry data could be well described as a localized density anomaly,

and then experimentally verified this by showing that the nearest-neighbor-based

anomaly detection system gave the best results for that dataset. In addition, we have

demonstrated empirically that the sliced Wasserstein kernels are a strong and fast

replacement to kernels based on exact and entropic transport distances.

Finally, we showed that tagging top quarks does not fall into the framework of

either of these anomaly detection mechanisms. As the set of top quarks is neither lo-

calised in Wasserstein space nor spatially separated from the QCD dijet background,

neither of our techniques demonstrates strong performance in detecting these anoma-

lies. Therefore, we must find another model to separate this type of anomaly. In

particular, as the support of the anomalous distribution overlaps so widely with the

support of the background distribution, we should look towards a statistical picture of

anomalies. In the next section, we will take this idea of generative modeling even fur-

ther, and explicitly construct a topic model that leverages the factorization theorem

to find anomalies.
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Chapter 7

Factorized disentangling

“From these considerations, it might seem that factorization should be

easy to prove. It’s not quite this simple, however...”
—George Sterman

Before we begin this section, we will briefly recap the setting for our anomaly

detection problem, when it comes to particle physics. Recall that we are operating

on event signatures, comprised of jets. So far, we have considered classifying each jet

individually as either anomalous or not. However, jets are fundamentally statistical in

nature. It is difficult to isolate pure samples of a given type of jet from experimental

data [118], and therefore predictions and analyses are often carried out under the

assumption that collections of jets are a mixed sample from different types. Naturally,

it is desirable to access pure samples from these mixed samples to understand the

physics of the underlying particles. This idea, of disentangling samples, is the target

of this section. This chapter is based on a joint work with Jesse Thaler, Eric Metodiev,

and Patrick Komiske.

7.1 Introduction

We will focus on two specific tasks: quark/gluon discrimination, and resonant anomaly

detection, both of which can be cast as disentangling problems.

∙ Quarks and gluons are the underlying particles that fragment into most jets
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observed at the LHC. Jets produced from quarks and gluons are ubiquitious in

both signal processes and the background QCD fragmentation. Unfortunately,

there is no theoretical distinction between a “quark” or “gluon” jet. In practice,

ground truths are often derived from parton shower event generators, but these

are unphysical, and provide a barrier in comparing theory and experiment. For

example, a recently proposed hadronic-level definition relies on the likelihood

ratio between two mixed samples of quark and gluon jets [119], while mod-

els based on likelihood ratios have performed competitively across a variety of

discrimination and tagging tasks [120, 121]. However, as data in practice is

mixed, to model and understand quarks and gluons requires disentangling their

component distributions from each other.

∙ Resonant anomaly detection is a fundamental tool in probing physics be-

yond the standard model. As jets are highly collimated, novel particles can be

found as resonant “bumps” when plotted over the smoothly falling background

of a specific observable. Machine learning provides an extremely useful tool

in both searching for and validating the presence of a hypothesized anomaly

[122–126]. Estimating the background density of a sample is crucial in this task

to determine the significance against the null hypothesis. In this way, anomaly

detection can be viewed as the task of disentangling the signal (if it exists) from

the background.

In both of these problems, the underlying goal is to understand the connection

between the parton or boson generated in a collision and the final-state jet it pro-

duces. This understanding can be leveraged to either tag and classify jets, or to

make theoretical predictions about the properties of an observable conditioned on jet

type. Fundamentally, both tasks fit well into the framework of generative modeling.

In this paradigm, a mixed sample of jets M has a probability distribution over some

observables x described as:

pM(x) =
∑
k

fM(k) · pk(x) (7.1)
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where k is a jet type, and f(k) is its relative fraction. Therefore, the goal of both

tasks is to recover the components pk and the mixing fractions f(k). In recent years,

supervised learning has provided a solution to this problem, when a sample of true

(observable, label) pairs are known [113, 127–130], and many such methods have

been implemented in practice at the LHC as taggers [131, 132]. These methods are

discriminative in nature, like those in the previous section. Recall that this means

that they seek to model the conditional distributions p(x|k) directly. However, in both

quark-gluon discrimination and anomaly detection, the ground truth labels are not

known a priori, making this type of analysis difficult. Among unsupervised methods,

generative modeling is a commonly used tool that provides a different approach.

This framework seeks to model the joint distribution over observables and labels

pk(x) instead. In particular, instead of labelling each individual jet with a category,

generative modeling aims to directly understand the statistical distribution governing

collections of jets of a certain type or types.

In this section, we propose and evaluate a new technique to statistically model

and discriminate between dijets. Most LHC events are dijets, and understanding their

behavior specifically is useful in both BSM searches [133, 134] and precision measure-

ments [135]. Dijets are especially interesting as they satisfy a factorization theorem

for jet substructure. Simply put, factorization implies that both the jets in a dijet

event are statistically independent, conditioned on their joint types. For example, the

value of the leading jet mass does not affect the subleading jet multiplicity, except

through their coupling in type. This is an extremely powerful statement, motivated

from first principles, which we will convert into a statistical constraint on a gener-

ative model. Starting from the generative model of “jet topics” [136], we leverage a

factorization theorem for jet substructure to build a generative model and demon-

strate a procedure for optimizing it to recover both the relative fractions of different

types of jets within a mixed sample, as well as the component distribution for a given

observable.
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7.2 Factorized Topic Modeling

7.2.1 A review of factorization

To describe a generative model for dijet production, we will leverage factorization.

Factorization, in words, is the statement that the cross section for dijet production can

be decomposed as the product of independent probability functions. Each component

of the cross-section corresponds to a different physical process contributing to the

observed jet pair. Concretely, the cross-section can be written as follows [137]:

dσ =
∑
ab→cd

fa(ξa)⊗ fb(ξb)⊗H ⊗ Jc(zc)⊗ Jd(zd), (7.2)

where f are the standard parton distribution functions for the proton, ξ are the mo-

mentum fractions, H is the partonic cross section for the short-range hard scattering

process (ab→ cd), and J are the jet branching functions. In this work, as our goal is

jet tagging, we will primarily shift our focus to the part of this equation that governs

jet substructure.

dσ ∝
∑
c,d

Hc,d ⊗ Jc(zc)⊗ Jd(zd) (7.3)

Our goal is to translate this physical theorem into a statistical constraint on the

probability distribution over jet observables. For dijets, we will specifically consider

each observation to be a pair (x1, x2), corresponding to the value of a given observ-

able for the hardest and second-hardest jet in the event, respectively. Now, using

equation (7.3) as a starting point, we will write down a generative model for dijet

production.

7.2.2 A review of topic models

In this work, we will focus on topic modeling, a specific type of unsupervised mixture

modeling. The goal of unsupervised mixture modeling is to identify the presence

and characteristics of subpopulations found within a sample, without the presence

of identifying labels for any individual datapoint within the sample. As we cannot
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observe the intermediate partons that fragment to create jets, and it is challenging

to isolate pure samples of any give type of jet [118], mixture modeling is a natural

framework for analyzing events. To apply this framework in practice, we can utilize a

powerful technique from the natural language processing community known as topic

modeling. Topic modeling was first applied to jet physics in ref. [136]. Their work

leveraged the statistical connection between themes in text corpora and jet flavors in

event samples to propose a new data-driven method for defining classes of jets. In this

section, we will briefly describe their setting, and some benefits of their framework.

We will first consider an unfactorized topic model, in a single observable x. For a

mixed sample M, this corresponds to a generative process with the following structure.

pM(x) =
∑
k

fM(k) · pk(x)

s.t.
∫
X

dxpk(x) = 1 ∀k∑
k

fM(k) = 1

(7.4)

In the present setting of jet physics, each component k corresponds to a jet class

(i.e., quark or gluon). The mixture components {pk} correspond to the distributions

of any given jet observable x, while the fractions f(k) represent the fraction of the

total sample which belongs to each component. The goal of a topic model is to

simultaneously learn the components {pk} and fractions f(k) from a set of samples

{Mi}.

Once the components and fractions are extracted, they can be used to construct

an operational definition of jet classes, that only relies on cross-sectional data [119].

The optimal discriminant between two jet classes is given by the Neyman-Pearson

lemma as:

Li/j(x) =
pi(x)

pj(x)
(7.5)

Then, if two samples are mixtures of only two classes i, j, the likelihood ratio between

them can be written simply as monotonic rescaling of Li/j(x). Equipped with this

insight, the extrema of this likelihood ratio can be used to identify regions of phase
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space that are enriched in a certain class. These enriched regions constitute the op-

erational definition of those classes; in particular, the resultant classes are mutually

irreducible distributions over the observable x. Conveniently, the learned components

from a topic model are, up to rescaling, exactly these classes. Therefore, topic mod-

eling provides an effective and practical implementation of the operational definition.

The theoretical guarantees that this framework enjoys also translate to experimen-

tal benefits, as well. As an example, topic modeling has been applied to the task

of understanding quark and gluon jets at the LHC [138]. By using topic modeling,

they were able to recover operationally-defined quark and gluon samples, and com-

pare these classes to “quarks” and “gluons” tagged by a parton shower simulation.

Through this comparison, regions of phase space where the simulation diverged from

the observed data were identified.

7.2.3 Statistical considerations

In this section, we will build up a statistical formulation of our topic model. Unlike the

univariate topic model described in eq. (7.4), we will operate on pairs of observables

x1, x2, corresponding to the leading and subleading jets in an event. To begin, we

note that a topic model is uniquely specified by a constrained generative process.

The goal of a topic model is to learn a universal set of components pk(x1, x2), and

a sample-dependent set of mixing fractions fM(k), that accurately describe the data

distribution of a given sample pM(x1, x2). To generate datapoints, then, the following

procedure is followed:

1. Sample a category k ∼ Multinomial[fM(1), ..., fM(k)].

2. Sample a datapoint (x1, x2) ∼ pk.

This process yields the analogous formula for the sample distribution:

pM(x1, x2) =
∑
k

fM(k)pk(x1, x2). (7.6)
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To specify the form for p(x1, x2), we must explicitly write down our constraints, which

are as follows, in statistical language:

1. Sample independence: The model assumes that, to leading order, the jet ob-

servable x depends only on the initiating parton. We note that, in fact, there

is some dependence on the process in addition to the flavor. As an example,

in the case of a Z+jet emission, soft gluon resummation subtly changes the pT

spectrum of the light quark jet relative to the QCD background. However, ex-

perimental studies have shown a high degree of empirical independence, and we

suggest that these differences can be considered negligible for our model [119].

For the case of QCD dijets, sample independence tells us that for any given

jet, its distribution is a function of the initiation parton (either light quark or

gluon) and its momentum fraction. Rigorously, if we define p(1),p(2) the distri-

bution functions for the hardest and second-hardest jet, respectively, then the

statement above can be written as:

p
(1)
k (x; ξ) = p

(2)
k (x; ξ). (7.7)

2. Factorization tells us that the two jets in an event are statistically independent,

conditioned on convolution through the matrix element describing the short-

range scattering. From a statistical perspective, the factorization theorem given

above is mathematically equivalent to stating that our topic model for dijets

must be an mixture of products. Hence, this can be written as:

(x1|k1,k2) ⊥ (x2|k1,k2) =⇒ p(x1, x2) ∝
∑
k1,k2

f(k1,k2)·p(1)k1 (x1)·p
(2)
k2

(x2). (7.8)

Note that by simply replacing the structure of the sample-level probability distri-

bution in Problem 7.6 with the constraints from Section 7.2, the mapping between

the factorization theorem and statistical language can directly give us a topic model.
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Figure 7-1: The paired observables from a dijet sample can be represented as a his-
togram, shown as the matrix D. The generative process we describe can be visualized
as the matrix product PFPT, shown as a decomposition on the right.

The model can be expressed as follows.

pM(x1, x2) =
∑
k1,k2

fM(k1,k2) · pk1(x1) · pk2(x2). (7.9)

However, the model itself is simply an encoding of the constraints. Our goal is to

find the parameters of the model that give the best fit to the true distribution for the

mixed sample pM. Hence, the problem we seek to solve can be written as:

min
fM,{pk}

dist

(
pM(x1, x2)

∥∥∥∥∑
k1,k2

fM(k1,k2) · pk1(x1) · pk2(x2)
)

s.t.
∫
X

dxpk(x) = 1 ∀k∑
k1,k2

f(k1,k2) = 1

(7.10)

for some appropriate distance between measures.

7.2.4 Disentangling topics with histograms

The model described in equation (7.4) suffers from a problem known as non-identifiability,

which limits our ability to recover the true components and mixing fractions given

a sample of data. In this section, we will define an identifiable model as well as the
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assumptions necessary to avoid model degeneracy.

Identifiability. Consider the (infinite-dimensional) parameter space for our topic

model. It is defined as

Θ =

{(
f, {pk}

)∣∣∣∣ ∫
X

dxpk(x) = 1,
∑
k

f(k) = 1

}
. (7.11)

In the limit that we are given an infinite number of samples from the true distri-

bution pM, there may exist multiple parameters θi ∈ Θ for which the corresponding

models yield an equivalent fit to the data. Each of these solutions would necessarily

be interchangeable by some transformation of the mixing weights or components. A

model that has this property is non-identifiable. We will outline three ways that our

topic model, as specified above, can be non-identifiable.

Mutual reducibility. If one mixture component can be written as a linear com-

bination of the remaining components, then the model is not uniquely identifiable,

as there is a equivalent family of solutions that are equivalent up to reweighting. In

particular, let pk(x) =
∑
i αipi(x). Then, we can write:

pM(x) = fM(k)pk(x) +
∑
i

fM(i)pi(x) (7.12)

=
∑
i

(
αifM(k) + fM(i)

)
pi(x) (7.13)

Hence, there are multiple equivalent ways of specifying the same model.

Degenerate mixing fractions. If two components share the same mixing coeffi-

cient, i.e., fM(k1) = fM(k2), then the model is again not unique. In particular, we

can write any linear combination of the two components:

p ′k1(x) = αpk1(x) + (1 − α)pk2(x) (7.14)

p ′k2(x) = (1 − α)pk1(x) + αpk2(x) (7.15)
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that yields the same sample-level probability distribution.

For the remainder of this work, we will assume that both of the conditions above do

not hold for the data we are presented. Specifically, we assume that the true generative

process satisfies f(k1) ̸= f(k2), for all k1 ̸= k2. Mutual reducibility is slightly harder

to avoid. For the unfactored topic model described above and in ref. [136], it can be

shown that the existence of a region of phase space where each component is uniquely

supported suffices to make the components mutually irreducible. This is referred to

in the literature as the separability assumption [139, 140]. For the purposes of this

work, we will not assume that separability holds. When we discuss quark-gluon

discrimination, we will show that the components are recoverable even without this

assumption. In the case of a factorized topic model, one additional property of the

true mixing fractions can lead to degeneracy.

Super-factorization If the true mixing matrix F satisfies the condition rank(F) =

t 6 k, then there is any decomposition into t components that fits the observed data

as well as any model with k components. We refer to this case as “super-factorization.”

In particular, if the mixing fractions can be written as

fM(q,q) = a2

fM(q,g) = a(1 − a)

fM(g,g) = (1 − a)2

(7.16)

for some fraction a ∈ [0, 1], then quarks and gluons cannot be discriminated by our

model, as the model is equivalent to the product of a single component pmixed =

apq(x) + (1 − a)pg(x) with itself.

This scenario is the factorized analog to non-separable component distributions. In

practice, the minimization problem (7.10) as written is intractable, as the distribution

pM is continuous. As we only have access to it through a finite number of samples, and

it is impossible to optimize over the space of all continuous probability distributions,

we must find some way of operating on both pM and the components pk. There are

two reasonable choices for this reformulation, outlined below.
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1. Parametric modeling. In this paradigm, we force a distributional form on pk,

governed by some finite-dimensional parameter θ ∈ Θ. For example, one com-

mon mixture model can be defined as:

min
θk∈Θ,f

dist
(
p(x),

∑
k

f(k)pk(x)

)
s.t. pk(x; θk) = N(x;µk,σk)

where the minimization is performed in parameter space. This method gives the

well-known Gaussian mixture model, which is solvable by applying a projected

descent algorithm. However, for our purposes, it is impractical to assume a

parametric form for the shape of arbitrary jet observables. Therefore, we will

not discuss this technique further in the present work.

2. Non-parametric modeling. One can instead discretize each distribution into a

histogram. The advantages of this method are numerous. Primarily, it frees

us from enforcing an implicit prior on the system in the form of a parametric

assumption on distribution shape. It also allows us to improve computational

performance, by reformulating the model as a matrix decomposition.

Hence, we prefer the second option, and move to the non-parametric setting. De-

fine the matrix D to be the 2-dimensional histogram generated by jointly binning the

sampled data across x1 and x2. Similarly, let P be the matrix whose columns are

n-bin histograms representing each component pk. By rewriting the equation above

in terms of histograms and bins, we arrive at the following non-convex program:
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Problem 7.2.1.
min

F∈Rk×k
P∈Rn×k

‖D− PFPT‖2F

s.t. PT
1n = 1k

1
T

kF1k = 1

P,F > 0

where 1n is the n-dimensional vector of all ones and we have taken the Frobenius norm

‖A−B‖F =
√∑

ij(Aij − Bij)2 as our measure of distance. A pictorial representation

of this discretization is given in Figure 7-1.

This problem is non-convex in P and F, meaning finding global optima is not

guaranteed. However, a rich variety of algorithms to solve the problem exists, most

based on alternating minimization and gradient descent to quickly find local optima

[141–148]. In the next section, we provide additional detail on the computational

techniques used to solve this problem explicitly.

7.2.5 Algorithmic considerations

In this section, we will describe two methods to solve the topic modeling problem

(7.2.1).

Symmetric tri-factorization. First, we consider the unconstrained alternating

update rules due to ref. [144].

Fij ← Fij
(PTHP)ij

(PTPFPTP)ij

Pij ← Pij

(
1 − β+ β

(HPF)ij
(PFPTPF)ij

) (7.17)

for some weight β ∈ [0, 1]. To remain within the constraint set, we simply normalise

P,F at the end of each update so that they satisfy the conditions given. This method

will converge to a fixed point by the Karush-Kuhn-Tucker optimality conditions [149].

Further, the fixed point is guaranteed to be at least a local optimum.
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Asymmetric NMF. Alternately, we explore a relaxation of the problem where

the decomposition is not constrained to be symmetric. In particular, we solve the

standard NMF problem 7.18 for two different matrices C,G. Problems of this form

are studied in the signal processing community as blind source separation [150, 151].

min
C∈RN×K
G∈RN×K

‖H− CGT‖2F

s.t. CT
1n = 1k

C,G > 0

(7.18)

where ε is a small regularization parameter. We will now demonstrate an equivalence

between optimal solutions to each of these problems.

Theorem 7.2.1. Any optimal solution to Problem (7.18) with rank at least k can be

transformed to an element of the constraint set of Problem (7.2.1) with rank k.

Proof. First, we will establish that dropping the explicit symmetry constraint does

not affect the symmetry of the optimal solution. Assuming the input matrix is pos-

itive semidefinite, any local search algorithm will still yield a symmetric solution

while improving the rate of convergence [152]. In the more general case, we note the

following proposition due to ref. [153].

Proposition 7.2.2. Let the eigenvalues of H be λ1, λ2..., λn. Assume λi ̸= −λj for

every nonzero λi, λj. Then the minimizing solution Ĥ = CGT. to Problem (7.18) is

symmetric.

Note that:

GT = XCT =⇒ C†G = X (7.19)

which means that Ĥ = CXCT. As CGT is symmetric, therefore X is also symmetric.

Then, performing the following rescaling:

Pij ←
Cij∑
kCkj

Fij ← Xij ·
(∑

k

Cki
∑
k

Ckj

)
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we retrieve a pair P,F that lies in the constraint set for Problem (7.2.1).

The result above suggests that the optimal solution to problem (7.18) is not neces-

sarily optimal for problem (7.2.1). However, our reformulation is, in fact, empirically

useful. Alternating non-negative least squares methods, like the two described above,

are significantly less likely to approach global optima when the problem is non-convex

(as in the latter) [154, 155]. Instead, we can leverage conic solvers designed for bi-

convex problems [156]. This leads to both better theoretical convergence rates, as

well as improved empirical performance. For this reason, we observe better empirical

performance with the asymmetric formulation of the problem, and use that method

throughout this work. As a final note, for the specific case of quark-gluon discrimina-

tion, we have exactly two components that we wish to learn. In the case that k = 2,

there exist certain algorithmic techniques to improve the performance and increase

the efficiency of these algorithms [157, 158]. Although we do not implement them,

they are an interesting direction for future work.

Finally, we will address the separability assumption described in some more detail.

Rigorously, a mixture component is t-separable if the following holds:

pk is t-separable ⇐⇒
∫
R

dpk > t and pk ′(R) = 0 for some region R ⊂ X. (7.20)

However, recent work has shown that this assumption is not strictly necessary to

retrieve the true solution, if it is unique. The “catch-words” algorithm due to ref. [159]

relaxes separability, instead requiring only the existence of regions of phase space

that are highly correlated with each other under a single topic. Similarly, in the

case of finite mixture models, ref. [160] show that, as long as the size of each sample

is super-exponential in the number of topics, the component distributions can be

arbitrarily close. While we do not implement either of these models (their empirical

complexity and runtimes are prohibitively large, and they are not easily generalized

to the factorized setting), we mention them to show that it is possible, in theory, to

relax the separability assumption.

In the case of (approximate) super-factorization, we note one final modification
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necessary to solve the problem above. Unfortunately, due to the stochastic nature of

the algorithm to solve Problem 7.2.1 (and the fact that finding a global optimum is

not guaranteed) even if the mixing fractions are only approximately low-rank, finding

a solution is empirically difficult. In this case, we increase the number of mixed

samples to help the algorithm find the correct optimum, if it is unique. It suffices to

bin on an auxiliary variable so that the mixing fractions in each bin are different. Let

the mixed samples induced by these bins be {Mi}
B
i=1. As established before, sample

independence mandates that pk are independent of the mixed sample Mi, while the

mixing fractions are not. Thus, the binned version of the minimization problem can

be formulated as:
min

Fi∈Rk×k
P∈Rn×k

∑
i

‖Di − PFiP
T‖2F

s.t. PT
1n = 1k

1
T

kFi1k = 1

P,F > 0

(7.21)

where the mixing fractions are learned for each bin, but the components are learned

jointly across all bins1. As an example, in the case of quark-gluon discrimination, it is

well-known that forward jets are quark-enriched compared to central jets. Therefore,

we can bin along quantiles in rapidity y. Empirically, we observe that the necessary

number of bins to achieve good performance is small – anywhere between 3 and 7

bins is sufficient.

We now demonstrate the performance of this model on realistic quark and gluon

samples.

1Similarly, one can apply the algorithm above to simultaneously learn multiple component dis-
tributions corresponding to different jet observables as well, noting that the mixing fractions are
dependent only on the bin and independent of the observable. While this provides some additional
discrimination power, it is not significant compared to the induced computational burden.
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7.3 Quark and gluon disentangling

7.3.1 Event generation

The parton shower Pythia [161] is used to generate millions of dijet samples at
√
s = 14 TeV, including hadronization and multi-parton interactions. All detector-

stable particles in the final state are clustered using the anti-kt algorithm with R = 0.4

using FastJet [162]. The two hardest jets in the event are selected if their total

transverse momentum is within the range psum
T ∈ [950, 1050] GeV and the ratio of

their momenta p(1)T /p
(0)
T > 0.8. Additionally, we add a rapidity cut on the range

|y| 6 2. This yields a total of 1,432,784 total jet pairs, which constitute our mixed

sample M. Empirically, we observe that the true mixing fractions are

fM(g,g) ≈ 0.13, fM(q,q) ≈ 0.41, fM(q,g) = fM(g,q) ≈ 0.23. (7.22)

Therefore, the mixing fractions are within approximately 1% of being super-factorized.

7.3.2 Disentangled components

The model is trained using an alternating optimization scheme, using the splitting

conic solver [163] implemented in cvxpy [164]. All experiments terminate within

several hours on a standard laptop computer, suggesting the methods described are

quite practical for data analysis in the big-data regime.

In Fig. 7-2, we show the disentangled components learned from applying the topic

model to various jet observables from our dijet dataset. Samples are generated by

binning across rapidity. Specifically, we apply 5× 5 bins across the auxiliary variable

pair y1,y2. The matrix D for each is generated by discretizing into 50 × 50 bins

across the observable pair x1, x2. The learned components track the Pythia-generated

samples well. This demonstrates that our model has good empirical performance for

the quark-gluon tagging problem.

In Fig. 7-3, we show the recovered mixing fractions as a function of the rapid-

ity bin of the hardest jet. The disentangling procedure is performed on constituent
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Figure 7-2: The components retrieved from factorized topic modeling of dijets. Di-
jet distributions and ground truth labels were both taken from Pythia simulations.
Our method shows good agreement between the learned topics and the ground truth
across a variety of jet observables – clockwise from the top left, we show results for
constituent multiplicity, 2-subjettiness, invariant jet mass, and N-95.

multiplicity, as this observable has good discriminative power for tagging quarks and

gluons. We are able to recover the general trends across the rapidity bins. In particu-

lar, forward and backwards jets are quark-enriched, as observed in practice. However,

our method overestimates the relative proportion of gluons and underestimates the

proportion of quarks, across all rapidity bins. One potential explanation for this

behavior is that the true mixing matrix is ill-conditioned. As it is approximately

low-rank, finding the optimal mixing matrix given components is highly susceptible

to noise compared to finding the components.
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Figure 7-3: The mixing fractions per rapidity bin retrieved from disentangling con-
stituent multiplicity in dijets. We note that the forward and backward bins have a
larger proportion of quark jets, as expected from the Pythia labels.

7.4 Reconstructing anomalous resonances

The factorized model we propose is applicable to any sample of dijet events, and

therefore is applicable to many other problems beyond quark/gluon discrimination.

In this section, we will illustrate it can be used in unsupervised searches for resonant

anomalies.

7.4.1 Event generation

We apply our technique to the LHC Olympics 2020 anomaly detection challenge R&D

dataset [165]. The events are generated with Pythia 8 [161] and Delphes 3.4.1 [166],

with no pileup or multi-parton interactions. The signal process in this dataset is a

hypotheticalW ′ boson with massmW ′ = 3.5 TeV, which decays into X, Y bosons with

masses mX = 500 GeV and mY = 100 GeV, respectively. The boosted bosons decay

into quark pairs, which are clustered together with the FastJet [162] implementation

of the anti-kT algorithm with R = 1.0. The wide radius of the clustering algorithm

captures all the decay products of the quark pair within a single jet, meaning that the

resulting event looks like a dijet. A trigger of pleading
T > 1.2 TeV is applied, yielding
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(c) Anomalous components at 1% signal.
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Figure 7-4: The components retrieved from factorized topic modeling of the LHC
Olympics R&D dataset. Our method shows good agreement between the learned
topics and the ground truth on the invariant jet mass observable. We are able to
recover both of the resonant masses (at 100 GeV and 500 GeV) with signal fraction
of 10% (top row) and 1% (bottom row), up to mutual irreducibility.

1,000,000 background QCD dijets, with an additional 100,000 signal events.

7.4.2 Results and sensitivity

In Fig. 7-4, we demonstrate the performance of our algorithm in recovering the mass

distributions for the dijets in the anomaly detection dataset. We learn a model with

3 topics, corresponding to pX,pY ,pQCD, respectively. To generate these figures, we

consider a signal fraction of 10%, and 1% respectively, solve the topic model, and then

re-weight the component distributions by subtracting the overall background distribu-

tion and renormalizing. This is necessary because the distributions are only accurate
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up to mutual reducibility, as the true components do not satisfy the separability

hypothesis. An artifact of this reducibility procedure is visible in the background dis-

tribution, which exhibits noticeable dips around the resonant masses. In addition, one

or both of the components show small peaks at both resonant masses. Again, these

artifacts are expected due to the lack of separability. As the resonances appear on the

histogram as bumps in a smoothly falling background, there are no regions within the

resonance mass that are only supported in the anomalous component distributions.

Our model does not contain a prior on the number of modes of the component, or

any smoothness assumptions. In addition, the algorithms used to optimize the model

return extremal points in the polytope of all feasible solutions, as they are alternating

convex projections that remain on the boundary of the constraint set. Therefore, the

solution will force the components to be as orthogonal as possible.

After this processing step, in both cases, we are able to recover the correct masses

of 100 and 500 GeV respectively. We note that the noise in the recovered distributions

is noticeably larger at the lower signal fractions, as expected. However, in both cases,

our model has significant discriminative power. In particular, the model can infer

which process any event was generated from using the likelihood ratio:

L(x1, x2) =
f(signal) · psignal(x1, x2)

f(bg) · pbg(x1, x2)
(7.23)

=
f(X, Y)pX(x1)pY(x2) + f(Y,X)pY(x1)pX(x2)

f(QCD, QCD) · pQCD(x1)pQCD(x2)
. (7.24)

Using this likelihood ratio as a discriminant, we can test the ability of our model

to classify events relative to the ground truth in the dataset. In Fig. 7-5, we show the

receiver operating characteristic curve for the 10% and 1% signal fraction. In both

cases, the model performs very well compared to randomness, with AUCs of 0.88 and

0.81, respectively.

To test the sensitivity of the model, we report the AUC of the model while varying

the signal fraction from 10% down to 0.1% in 7-6. The model is initialized 30 times

with different parameters, and we show the value of the AUC to one standard error.

The performance of the model is strong even at low signal fractions.
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Figure 7-5: The receiver operating characteristic curve recovered from disentangling
resonant masses. At both 10% and 1% signal fraction, almost all the anomalies are
identified with a component-based likelihood ratio test.

7.5 Next steps

Topic models have shown promise for understanding the generative processes behind

jets at the LHC [136, 138]. In this work, our goal was to leverage the factorization

theorem for jet substructure to design more powerful models. To that end, we have

introduced a new factorized topic model to disentangle dijets. The model is unsu-

pervised, meaning that it does not rely on ground-truth labels for any events within

the sample. It is also non-parametric, assuming no form a priori for the distribution

over jet observables. Our model requires fairly few assumptions – we only require

the mixture to be full-rank, and for the true components to be non-degenerate to

retrieve and we have demonstrated its applicability to both quark/gluon discrimi-

nation, and anomaly detection in a BSM resonance search. In summary, we have

shown that modeling dijets as a factorized mixture of components is a promising

direction for analysis in multiple relevant problems in jet physics. Our model has

significant discriminative power for low-signal anomalies, can perform background

density estimation, and is able to discriminate between quark and gluon jets, in a

fully data-driven and unsupervised manner.
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Chapter 8

Conclusions

In this work, we have made steps towards a better understanding of anomaly detection

at particle colliders. The data collected by colliders consists of event signatures,

which represent energy distributions over the calorimeters around the inner ring of

the accelerator. These signatures can be though of as empirical approximations to

some continuous, underlying measure. By operating on these signatures as if they are

distributions, we can induce a metric on the space of all collider events. This allows

us to better understand the similarities and differences between events. We base

our metric on the theory of optimal transport, as transport distances have certain

beneficial theoretical guarantees related to empirical distributions. Further, they

satisfy key physical properties like infrared and collinear safety, making them robust

to certain degeneracies in quantum field theory.

Next, we used kernels based on the sliced Wasserstein distance, a variant of opti-

mal transport that induces a positive definite Gaussian kernel, for anomaly detection.

From a theoretical perspective, we have demonstrated an unbiased sliced Wasserstein

kernel, and proven that it enjoys certain geometric benefits over its exact Wasserstein

counterpart. In addition, we have shown that the centroidal Voronoi tessellation is a

good approximation with respect to quadrature error for a broad class of functions,

including the sliced Wasserstein kernel. Experimentally, we have built a framework for

understanding which types of models are well-suited for certain classes of anomalies.

We empirically demonstrate the performance of these discriminative models using
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our transport-based kernels on two real-world anomaly detection tasks. Finally, we

have built a generative model that encodes the factorization theorem as a statis-

tical constraint, and performs extremely well on real-world tasks like quark/gluon

discrimination and resonant anomaly detection.

So, what’s next? Our research leaves many questions open and suggests several

directions for further research.

1. Kernels and approximations. Our framework for analyzing subsampling

error through quadrature is a new approach to the problem, and suggests several

potential extensions.

∙ Rigorous bounds on SVMs. We leave open the quadrature analysis for

specific error functions. A future work might seek to complete this analysis

for the SVM objective function, and seek to quantify the difference in the

actual mean squared error. This would be, to our knowledge, a new result

for the SVM.

∙ Barycenters. Solidifying the link between the Wasserstein barycenter prob-

lem and Voronoi tessellations could suggest more efficient algorithms for

computing barycenters explicitly. In addition, bounding the Wasserstein

error due to farthest point sampling using our framework would be an

interesting result, as fast algorithms for farthest point sampling already

exist.

2. Wasserstein-type kernels. Our unbiased and fast kernels have good theoret-

ical guarantees but perform poorly in practice, and understanding this gap is

of interest.

∙ Monte Carlo Wasserstein. Understanding why the variance of this esti-

mator is so high, and finding a low-variance approximation would allow

for fast computation of the kernel in practice. Further, generalizing this

type of estimator to the exact and entropic Wasserstein cases would yield

immense practical benefit.
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3. Discriminative anomaly detection. We showed that the discriminative

methods perform well on certain types of anomalies, but not others; addition-

ally, we suggest why this may be the case. However, a method that works across

anomaly types is still unknown.

∙ Better-designed models. Finding a loss function that can optimize for mul-

tiple types of anomalies with a single minimization procedure would be of

practical interest.

∙ Wasserstein kernels as features. One potential anomaly detection method

that might work is to use the Wasserstein kernel between a datapoint and

a cluster centroid of the dataset as a feature vector, and try and isolate

anomalies that are “far away” from the

4. Generative models. Within the framework of generative anomaly detection,

we have restricted our focus to a specific set of observables and assumptions.

Future research could seek to expand beyond these restrictions, along the fol-

lowing directions.

∙ Tensor factorization. We have restricted ourselves to dijets in a single ob-

servable; however, theoretically our method is generalizable to any number

of jets. Finding efficient algorithms to solve the analogous minimization

problem in practice is an open question.

∙ Separability. We have assumed that separability is necessary to recover

mutually irreducible components, but recent work has shown that identi-

fiability does not require separability for certain classes of topic models.

Extending these models to the factorized picture would be quite relevant,

as it would allow us to understand the mixing fractions without reweight-

ing.

∙ Neural topic models. It may be possible to simultaneously train a topic

model and learn the observable on which it is trained by leveraging back-

propagation. Understanding the behavior of topic models on learned ob-
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servables, like Energy Flow Polynomials [167] would allow for a deeper

understanding of jet substructure.

Machine learning is a powerful tool, when wielded properly, and it only becomes

more powerful when it is imbued with the proper statistical and physical structure

corresponding to the task at hand. The results we have achieved through optimal

transport, generative modelling, and kernel methods demonstrate the promise of ge-

ometric learning techniques when applied to event signatures at colliders.
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