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Abstract
To perform real-world tasks, robots need to rapidly explore and model their environment.
However, existing methods either explore slowly, are data-inefficient, or need to leverage
significant prior knowledge that limits their generalization. In this thesis, we explore appli-
cations of techniques from the program synthesis literature to improve the generalization
and data-efficiency of reinforcement learning agents. Two complementary approaches are
explored. First, we explore leveraging program synthesis techniques to meta-learn explo-
ration strategies, and automatically synthesize new explorations strategies competitive with
state of the art benchmarks. Second, we explore applying program synthesis to the problem
of learning factored world models and achieve promising preliminary results. We see these
results as promising examples of the potential of integrating program synthesis techniques
with the rest of our modern modern reinforcement learning and robotics toolkits, increasing
generalization in the process.
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Chapter 1

Introduction

To perform complex tasks, agents need to learn about their environments. This learning

is different from the classical setting of supervised learning because the agent’s actions

determine the training data it will receive, and the agent needs structures to support long

term decision making. Current methods as a whole explore slowly, are data-inefficient, or

need to leverage significant prior knowledge that limits their generalization. In this thesis I

leverage program synthesis techniques to address these problems from two angles.

In chapter 2, I consider curiosity strategies that guide an agent to explore its environ-

ment effectively. These strategies encourage the agent to seek out novel experiences with

the hope that in doing so it will discover new dynamics, find new sources of rewards, or

improve its transition model. Specifically, I explore ways to automatically synthesize novel

curiosity strategies automatically given some distribution of tasks.

In chapter 3, I develop methods to learn transition models using a program-like repre-

sentation. This representation has a good inductive bias for learning transition models in

environments that contain objects and can be leveraged for efficient planning. I also explore

methods that build on this representation to automatically learn to plan more efficiently.

9
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Chapter 2

Meta-Learning Curiosity Algorithms

2.1 Overview

We hypothesize that curiosity is a mechanism found by evolution that encourages mean-

ingful exploration early in an agent’s life in order to expose it to experiences that enable it

to obtain high rewards over the course of its lifetime. We formulate the problem of gen-

erating curious behavior as one of meta-learning: an outer loop will search over a space

of curiosity mechanisms that dynamically adapt the agent’s reward signal, and an inner

loop will perform standard reinforcement learning using the adapted reward signal. How-

ever, current meta-RL methods based on transferring neural network weights have only

generalized between very similar tasks. To broaden the generalization, we instead pro-

pose to meta-learn algorithms: pieces of code similar to those designed by humans in

ML papers. Our rich language of programs combines neural networks with other building

blocks such as buffers, nearest-neighbor modules and custom loss functions. We demon-

strate the effectiveness of the approach empirically, finding two novel curiosity algorithms

that perform on par or better than human-designed published curiosity algorithms in do-

mains as disparate as grid navigation with image inputs, acrobot, lunar lander, ant and

hopper.
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2.2 Introduction

Figure 2-1: Our RL agent is augmented

with a curiosity module, obtained by meta-

learning over a complex space of programs,

which computes a pseudo-reward ̂︀𝑟 at every

time step.

When a reinforcement-learning agent is

learning to behave, it is critical that it both

explores its domain and exploits its rewards

effectively. One way to think of this prob-

lem is in terms of curiosity or intrisic mo-

tivation: constructing reward signals that

augment or even replace the extrinsic re-

ward from the domain, which induce the

RL agent to explore their domain in a way

that results in effective longer-term learn-

ing and behavior [51, 8, 46]. The pri-

mary difficulty with this approach is that

researchers are hand-designing these strate-

gies: it is difficult for humans to systemat-

ically consider the space of strategies or to tailor strategies for the distribution of environ-

ments an agent might be expected to face.

We take inspiration from the curious behavior observed in young humans and other

animals and hypothesize that curiosity is a mechanism found by evolution that encourages

meaningful exploration early in an agent’s life. This exploration exposes it to experiences

that enable it to learn to obtain high rewards over the course of its lifetime. We propose

to formulate the problem of generating curious behavior as one of meta-learning: an outer

loop, operating at “evolutionary” scale will search over a space of algorithms for gener-

ating curious behavior by dynamically adapting the agent’s reward signal, and an inner

loop will perform standard reinforcement learning using the adapted reward signal. This

process is illustrated in figure 2-1; note that the aggregate agent, outlined in gray, has the

standard interface of an RL agent. The inner RL algorithm is continually adapting to its in-

put stream of states and rewards, attempting to learn a policy that optimizes the discounted

sum of proxy rewards
∑︀

𝑘≥0 𝛾
𝑘̂︀𝑟𝑡+𝑘. The outer “evolutionary” search is attempting to find

12



a program for the curiosity module, so as to optimize the agent’s lifetime return
∑︀𝑇

𝑡=0 𝑟𝑡,

or another global objective like the mean performance on the last few trials.

In this meta-learning setting, our objective is to find a curiosity module that works well

given a distribution of environments from which we can sample at meta-learning time.

Meta-RL has been widely explored recently, in some cases with a focus on reducing the

amount of experience needed by initializing the RL algorithm well [23, 11] and, in others,

for efficient exploration [12, 68]. The environment distributions in these cases have still

been relatively low-diversity, mostly limited to variations of the same task, such as explor-

ing different mazes or navigating terrains of different slopes. We would like to discover

curiosity mechanisms that can generalize across a much broader distribution of environ-

ments, even those with different state and action spaces: from image-based games, to joint-

based robotic control tasks. To do that, we perform meta-learning in a rich, combinatorial,

open-ended space of programs.

This paper makes three novel contributions.

We focus on a regime of meta-reinforcement-learning in which the possible environ-

ments the agent might face are dramatically disparate and in which the agent’s life-

time is very long. This is a substantially different setting than has been addressed in pre-

vious work on meta-RL and it requires substantially different techniques for representation

and search.

We propose to do meta-learning in a rich, combinatorial space of programs rather

than transferring neural network weights. The programs are represented in a domain-

specific language (DSL) which includes sophisticated building blocks including neural

networks complete with gradient-descent mechanisms, learned objective functions, en-

sembles, buffers, and other regressors. This language is rich enough to represent many

previously reported hand-designed exploration algorithms. We believe that by performing

meta-RL in such a rich space of mechanisms, we will be able to discover highly general,

fundamental curiosity-based exploration methods. This generality means that a relatively

computationally expensive meta-learning process can be amortized over the lifetimes of

many agents in a wide variety of environments.

13



We make the search over programs feasible with relatively modest amounts of com-

putation. It is a daunting search problem to find a good solution in a combinatorial space

of programs, where evaluating a single potential solution requires running an RL algorithm

for up to millions of time steps. We address this problem in multiple ways. By including

environments of substantially different difficulty and character, we can evaluate candidate

programs first on relatively simple and short-horizon domains: if they don’t perform well

in those domains, they are pruned early, which saves a significant amount of computation

time. In addition, we predict the performance of an algorithm from its structure and op-

erations, thus trying the most promising algorithms early in our search. Finally, we also

monitor the learning curve of agents and stop unpromising programs before they reach all

𝑇 environment steps.

We demonstrate the effectiveness of the approach empirically, finding curiosity strate-

gies that perform on par or better than those in published literature. Interestingly, the top

2 algorithms, to the best of our knowledge, had not been proposed before, despite making

sense in hindsight. We conjecture the first one (shown in figure 2-3) is deceptively sim-

ple and that the complexity of the other one makes it relatively implausible for humans to

discover.

2.3 Problem formulation

2.3.1 Meta-learning problem

Let us assume we have an agent equipped with an RL algorithm (such as DQN or PPO, with

all hyperparameters specified), , which receives states and rewards from and outputs actions

to an environment , generating a stream of experienced transitions 𝑒(; )𝑡 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1).

The agent continually learns a policy 𝜋(𝑡) : 𝑠𝑡 → 𝑎𝑡, which will change in time as de-

scribed by algorithm ; so 𝜋(𝑡) = (𝑒1:𝑡−1) and thus 𝑎𝑡 ∼ (𝑒1:𝑡−1)(𝑠𝑡). Although this need not

be the case, we can think of as an algorithm that tries to maximize the discounted reward∑︀
𝑖 𝛾

𝑖𝑟𝑡+𝑖, 𝛾 < 1 and that, at any time-step 𝑡, always takes the greedy action that maximizes

its estimated expected discounted reward.

14



To add exploration to this policy, we include a curiosity module that has access to

the stream of state transitions 𝑒𝑡 experienced by the agent and that, at every time-step 𝑡,

outputs a proxy reward ̂︀𝑟𝑡. We connect this module so that the original RL agent receives

these modified rewards, thus observing 𝑒(, ; )𝑡 = (𝑠𝑡, 𝑎𝑡, ̂︀𝑟𝑡 = (𝑒1:𝑡−1), 𝑠𝑡+1), without hav-

ing access to the original 𝑟𝑡. Now, even though the inner RL algorithm acts in a purely

exploitative manner with respect to ̂︀𝑟, it may efficiently explore in the outer environment.

Our overall goal is to design a curiosity module that induces the agent to maximize∑︀𝑇
𝑡=0 𝑟𝑡, for some number of total time-steps 𝑇 or some other global goal, like final episode

performance. In an episodic problem, 𝑇 will span many episodes. More formally, given a

single environment , RL algorithm , and curiosity module , we can see the triplet (environ-

ment, curiosity module, agent) as a dynamical system that induces state transitions for the

environment, and learning updates for the curiosity module and the agent. Our objective is

to find that maximizes the expected original reward obtained by the composite system in

the environment. Note that the expectation is over two different distributions at different

time scales: there is an “outer” expectation over environments , and in “inner” expecta-

tion over the rewards received by the composite system in that environment, so our final

objective is:

max

[︃
E

[︃
E𝑟𝑡∼𝑒(,;)

[︃
𝑇∑︁
𝑡=0

𝑟𝑡

]︃]︃]︃
.

2.3.2 Programs for curiosity

In science and computing, mathematical language has been very successful in describ-

ing varied phenomena and powerful algorithms with short descriptions. As Valiant points

out: “the power [of mathematics and algorithms] comes from the implied generality, that

knowledge of one equation alone will allow one to make accurate predictions about a host

of situations not even conceived when the equation was first written down” [67]. Therefore,

in order to obtain curiosity modules that can generalize over a very broad range of tasks

and that are sophisticated enough to provide exploration guidance over very long horizons,

we describe them in terms of general programs in a domain-specific language. Algorithms

in this language will map a history of (𝑠𝑡, 𝑠𝑡+1, 𝑎𝑡, 𝑟𝑡) tuples into a proxy reward ̂︀𝑟𝑡.
15



Inspired by human-designed systems that compute and use intrinsic rewards, and to

simplify the search, we decompose the curiosity module into two components: the first, 𝐼 ,

outputs an intrinsic reward value 𝑖𝑡 based on the current experienced transition (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)

(and past transitions (𝑠1:𝑡−1, 𝑎1:𝑡−1) indirectly through its memory); the second, 𝜒, takes

the current time-step 𝑡, the actual reward 𝑟𝑡, and the intrinsic reward 𝑖𝑡 (and, if it chooses

to store them, their histories) and combines them to yield the proxy reward ̂︀𝑟𝑡. To ease

generalization across different timescales, in practice, before feeding 𝑡 into 𝜒 we normalize

it by the total length of the agent’s lifetime, 𝑇 .

Both programs consist of a directed acyclic graph (DAG) of modules with polymorphi-

cally typed inputs and outputs. As shown in figure 2-2, there are four classes of modules:

• Input modules (shown in blue), drawn from the set {𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1} for the 𝐼 component

and from the set {𝑖𝑡, 𝑟𝑡} for the 𝜒 component. They have no inputs, and their outputs

have the type corresponding to the types of states and actions in whatever domain

they are applied to, or the reals numbers for rewards.

• Buffer and parameter modules (shown in gray) of two kinds: FIFO queues that

provide as output a finite list of the 𝑘 most recent inputs, and neural network weights

initialized at random at the start of the program and which may (pink border) or may

not (black border) get updated via back-propagation depending on the computation

graph.

• Functional modules (shown in white), which compute output values given the inputs

from their parent modules.

• Update modules (shown in pink), which are functional modules (such as k-Nearest-

Neighbor) that either add variables to buffers or modules which add real-valued out-

puts to a global loss that will provide error signals for gradient descent.

A single node in the DAG is designated as the output node (shown in green): the output of

this node is considered to be the output of the entire program, but it need not be a leaf node

of the DAG.
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Figure 2-2: Example diagrams of published algorithms covered by our language. The green
box represents the output of the intrinsic curiosity function, the pink box is the loss to be
minimized. Pink arcs represent paths and networks along which gradients flow back from
the minimizer to update parameters.

On each call to a program (corresponding to one time-step of the system) the current

input values and parameter values are propagated through the functional modules, and the

output node’s output is given to the RL algorithm. Before the call terminates, the FIFO

buffers are updated and the adjustable parameters are updated via gradient descent using

the Adam optimizer [39]. Most operations are differentiable and thus able to propagate

gradients backwards. Some operations are not differentiable, including buffers (to avoid

backpropagating through time) and "Detach" whose purpose is stopping the gradient from

flowing back. In practice, we have multiple copies of the same agent running at the same

time, with both a shared policy and shared curiosity module. Thus, we execute multiple

reward predictions on a batch and then update on a batch.

Programs representing several published designs for curiosity modules that perform in-

ternal gradient descent, including inverse features [51], random network distillation (RND)

[8], and ensemble predictive variance [52], are shown in figure 2-2. We can also represent

algorithms similar to novelty search [42] and 𝐸𝑋2 [28], which include buffers and nearest

neighbor regression modules.

A crucial, and possibly somewhat counter-intuitive, aspect of these programs is their

17



use of neural network weight updates via gradient descent as a form of memory. In the

parameter update step, all adjustable parameters are decremented by the gradient of the

sum of the outputs of the loss modules, with respect to the parameters. This type of update

allows the program to, for example, learn to make some types of predictions, online, and

use the quality of those predictions in a state to modulate the proxy reward for visiting that

state (as is done, for example, in RND).

Key to our program search are polymorphic data types: the inputs and outputs to each

module are typed, but the instantiation of some types, and thus of some operations, depends

on the environment. We have four types: reals , state space of the given environment , action

space of the given environment and feature space , used for intermediate computations and

always set to 32 in our current implementation. For example, a neural network module

going from to will be instantiated as a convolutional neural network if is an image and as

a fully connected neural network of the appropriate dimension if is a vector. Similarly, if

we are measuring an error in action space we use mean-squared error for continuous action

spaces and negative log-likelihood for discrete action spaces. This facility means that the

same curiosity program can be applied, independent of whether states are represented as

images or vectors, or whether the actions are discrete or continuous, or the dimensionality

of either.

This type of abstraction enables our meta-learning approach to discover curiosity mod-

ules that generalize radically, applying not just to new tasks, but to tasks with substantially

different input and output spaces than the tasks they were trained on.

To clarify the semantics of these programs, we walk through the operation of the RND

program in figure 2-2. Its only input is 𝑠𝑡+1, which might be an image or an input vector,

which is processed by two NNs with parameters Θ1 and Θ2, respectively. The structure

of the NNs (and, hence, the dimensions of the Θ𝑖) depends on the type of 𝑠𝑡+1: if 𝑠𝑡+1 is

an image, then they are CNNs, otherwise a fully connected networks. Each NN outputs a

32-dimensional vector; the 𝐿2 distance between these vectors is the output of the program

on this iteration, and is also the input to a loss module. So, given an input 𝑠𝑡+1, the output

intrinsic reward is large if the two NNs generate different outputs and small otherwise.

After each forward pass, the weights in Θ2 are updated to minimize the loss while Θ1

18



remains constant, which causes the trainable NN to mimic the output of the randomly

initialized NN. As the program’s ability to predict the output of the randomized NN on an

input improves, the intrinsic reward for visiting that state decreases, driving the agent to

visit new states.

To limit the search space and prioritize short, meaningful programs we limit the total

number of modules of the computation graph to 7. Our language is expressive enough to

describe many (but far from all) curiosity mechanisms in the existing literature, as well as

many other potential alternatives, but the expressiveness leads to a very large search space.

Additionally, removing or adding a single operation can drastically change the behavior

of a program, making the objective function non-smooth and, therefore, the space hard to

search. In the next section we explore strategies for speeding up the search over tens of

thousands of programs.

2.4 Improving the efficiency of our search

We wish to find curiosity programs that work effectively in a wide range of environments,

from simple to complex. However, evaluating tens of thousands of programs in the most

expensive environments would consume decades of GPU computation. Therefore, we de-

signed multiple strategies for quickly discarding less promising programs and focusing

computation on a few promising programs. In doing so, we take inspiration from efforts in

the AutoML community [33].

We divide these pruning efforts into three categories: simple tests that are independent

of running the program in any environment, “filtering” by ruling out some programs based

on poor performance in simple environments, and “meta-meta-RL”: learning to predict

which curiosity programs will produce good RL agents based on syntactic features.

2.4.1 Pruning invalid algorithms without running them

Many programs are obviously bad curiosity programs. We have developed two heuristics

to immediately prune these programs without an expensive evaluation.
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• Checking that programs are not duplicates. Since our language is highly expressive,

there are many non-obvious ways of getting equivalent programs. To find duplicates,

we designed a randomized test where we identically seed two programs, feed them

both identical fake environment data for tens of steps and check whether their outputs

are identical.

• Checking that the loss functions cannot be minimized independently of the input

data. Many programs optimize some loss depending on neural network regressors.

If we treat inputs as uncontrollable variables and networks as having the ability to

become any possible function, then for every variable, we can determine whether

neural networks can be optimized to minimize it, independently of the input data.

For example, if our loss function is |𝑁𝑁𝜃(𝑠)|2 the neural network can learn to make

it 0 by disregarding 𝑠 and optimizing the weights 𝜃 to 0. We discard any program

that has this property.

2.4.2 Pruning algorithms in cheap environments

Our ultimate goal is to find algorithms that perform well on many different environments,

both simple and complex. We make two key observations. First, there may be only tens

of reasonable programs that perform well on all environments but hundreds of thousands

of programs that perform poorly. Second, there are some environments that are solvable

in a few hundred steps while others require tens of millions. Therefore, a key idea in our

search is to try many programs in cheap environments and only a few promising candidates

in the most expensive environments. This was inspired by the effective use of sequential

halving [36] in hyper-parameter optimization [34].

By pruning programs aggressively, we may be losing multiple programs that perform

well on complex environments. However, by definition, these programs will tend to be

less general and robust than those that succeed in all environments. Moreover, we seek

generalization not only for its own sake, but also to ease the search since, even if we only

cared about the most expensive environment, performing the complete search only in this

environment would be impractical.
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2.4.3 Predicting algorithm performance

Perhaps surprisingly, we find that we can predict program performance directly from pro-

gram structure. Our search process bootstraps an initial training set of (program structure,

program performance) pairs, then uses this training set to select the most promising next

programs to evaluate. We encode each program’s structure with features representing how

many times each operation is used, thus having as many features as number of operations

in our vocabulary. We use a 𝑘-nearest-neighbor regressor, with 𝑘 = 10. We then try the

most promising programs and update the regressor with their results. Finally, we add an

𝜖-greedy exploration policy to make sure we explore all the search space. Even though

the correlation between predictions and actual values is only moderately high (0.54 on a

holdout test), this is enough to discover most of the top programs searching only half of the

program space, which is our ultimate goal.

We can also prune algorithms during the training process of the RL agent. In particular,

at any point during the meta-search, we use the top 𝐾 current best programs as benchmarks

for all 𝑇 time-steps. Then, during the training of a new candidate program we compare its

current performance at time 𝑡 with the performance at time 𝑡 of the top 𝐾 programs and

stop the run if its performance is significantly lower. If the program is not pruned and

reaches the final time-step 𝑇 with one of the top 𝐾 performances, it becomes part of the

benchmark for the future programs.

2.5 Experiments

Our RL agent uses PPO [61] based on the implementation by pytorchrl in PyTorch [50].

Our code (https://github.com/mfranzs/meta-learning-curiosity-algorithms)

can take in any OpenAI gym environment [7] with a specification of the desired exploration

horizon 𝑇 .

We evaluate each curiosity algorithm for multiple trials, using a seed dependent on the

trial but independent of the algorithm, which leads to the PPO weights and curiosity data-

structures being initialized identically on the same trials for all algorithms. As is common in

PPO, we run multiple rollouts (5, except for MuJoCo which only has 1), with independent
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experiences but shared policy and curiosity modules. Curiosity predictions and updates are

batched across these rollouts, but not across time. PPO policy updates are batched both

across rollouts and multiple timesteps.

2.5.1 First search phase in simple environment

We start by searching for a good intrinsic curiosity program 𝐼 in a purely exploratory en-

vironment, designed by [9], which is an image-based grid world where agents navigate in

an image of a 2D room either by moving forward in the grid or rotating left or right. We

optimize the total number of distinct cells visited across the agent’s lifetime. This allows us

to evaluate intrinsic reward programs in a fast and simple environment, without worrying

about combining it with external reward.

To bias towards simple, interpretable algorithms and keep the search space manageable,

we search for programs with at most 7 operations. We first discard duplicate and invalid

programs, as described in section 2.4.1, resulting in about 52,000 programs. We then ran-

domly split the programs across 4 machines, each with 8 Nvidia Tesla K80 GPUs for 10

hours; thus a total of 13 GPU days.

Each machine finds the highest-scoring 625 programs in its section of the search space

and prunes programs whose partial learning curve is statistically significantly lower than

the current top 625 programs. To do so, after every episode of every trial, we check whether

𝑚𝑒𝑎𝑛𝑝𝑟𝑜𝑔𝑟𝑎𝑚(𝑠𝑡𝑒𝑝) ≤ 𝑚𝑒𝑎𝑛𝑡𝑜𝑝625(𝑠𝑡𝑒𝑝)−2𝑠𝑡𝑑𝑡𝑜𝑝625−𝑠𝑡𝑑𝑝𝑟𝑜𝑔𝑟𝑎𝑚.Thus, we account for both

inter-program variability among the top 625 programs and intra-program variability among

multiple trials of the same program.

We use a 10-nearest-neighbor regressor to predict program performance and choose the

next program to evaluate with an 𝜖-greedy strategy, choosing the best predicted program

90% of the time and a random program 10% of the time. By doing this, we try the most

promising programs early in our search. This is important for two reasons: first, we only try

26,000 programs, half of the whole search space, which we estimated from earlier results

would be enough to get 88% of the top 1% of programs. Second, the earlier we run our

best programs, the higher the bar for later programs, thus allowing us to prune them earlier,
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further saving computation time. Searching through this space took a total of 13 GPU days.

We find that most programs perform relatively poorly, with a long tail of programs that are

statistically significantly better, comprising roughly 0.5% of the whole program space.

Figure 2-3: Fast Action-Space Transi-

tion(FAST): top-performing intrinsic curios-

ity algorithm discovered in our phase 1

search.

The highest scoring program (a few

other programs have lower average perfor-

mance but are statistically equivalent) is

surprisingly simple and meaningful, com-

prised of only 5 operations, even though

the limit was 7. This program, which we

call FAST (Fast Action-Space Transition),

is shown in figure 2-3; it trains a single

neural network (a CNN or MLP depending

on the type of state) to predict the action

from 𝑠𝑡+1 and then compares its predictions

based on 𝑠𝑡+1 with its predictions based on

𝑠𝑡, generating high intrinsic reward when

the difference is large. The action predic-

tion loss module either computes a softmax

followed by NLL loss or appends zeros to the action to match dimensions and applies MSE

loss, depending on the type of the action space. Note that this is not the same as reward-

ing taking a different action in the previous time-step. The network predicting the action

is learning to imitate the policy learned by the internal RL agent, because the curiosity

module does not have direct access to the RL agent’s internal state.

Of the top 16 programs, 13 are variants of FAST, including versions that predict the

action from 𝑠𝑡 instead of 𝑠𝑡+1. The other 3 are variants of a more complex program that

is hard to understand at first glance, but we finally determined to be using ideas similar to

cycle-consistency in the GAN literature [71] (we thus name it Cycle-consistency intrinsic

motivation). Interestingly, to the best of our knowledge neither algorithm had been pro-

posed before: we conjecture the former was too simple for humans to believe it would

be effective and the latter too hard for humans to design, as it was already very hard to
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understand in hindsight.

2.5.2 Transferring to new environments

Our reward combiner was developed in lunar lander (the simplest environment with mean-

ingful extrinsic reward) based on the best program among a preliminary set of 16,000

programs (which resembled Random Network Distillation. Among a set of 2,500 candi-

dates (with 5 or fewer operations) the best reward combiner discovered by our search waŝ︀𝑟𝑡 = (1+𝑖𝑡−𝑡/𝑇 )·𝑖𝑡+𝑡/𝑇 ·𝑟𝑡
1+𝑖𝑡

. Notice that for 0 < 𝑖𝑡 ≪ 1 (usually the case) this is approximatelŷ︀𝑟𝑡 ≈ 𝑖2𝑡 + (1 − 𝑡/𝑇 )𝑖𝑡 + (𝑡/𝑇 )𝑟𝑡, which is a down-scaled version of intrinsic reward plus a

linear interpolation that ranges from all intrinsic reward at 𝑡 = 0 to all extrinsic reward at

𝑡 = 𝑇 . In future work, we hope to co-adapt the search for intrinsic reward programs and

combiners as well as find multiple reward combiners.

Given the fixed reward combiner and the list of 2,000 selected programs found in the

image-based grid world, we evaluate the programs on both lunar lander and acrobot, in

their discrete action space versions. Notice that both environments have much longer hori-

zons than the image-based grid world (37,500 and 50,000 vs 2,500) and they have vector-

based, rather than image-based, inputs. The results in figure 2-4 show good correlation

between performance on grid world and on each of the new environments. Especially in-

teresting is that, for both environments, when intrinsic reward in grid world is above 400

(the lowest score that is statistically significantly good), performance on the other two en-

vironments is also good in more than 90% of cases.

Finally, we evaluate on two MuJoCo environments [66]: hopper and ant. These envi-

ronments have more than an order of magnitude longer exploration horizon than acrobot

and lunar lander, exploring for 500K time-steps, as well as continuous action-spaces in-

stead of discrete. We then compare the best 16 programs on grid world (most of which

also did well on lunar lander and acrobot) to four weak baselines (constant 0,-1,1 intrin-

sic reward and Gaussian noise reward) and three published algorithms expressible in our

language (shown in figure 2-2). We run two trials for each algorithm and pool all results

in each category to get a confidence interval for the mean of that category. All trials used
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Figure 2-4: Correlation between program performance in gridworld and in harder envi-
ronments (lunar lander on the left, acrobot on the right), using the top 2,000 programs in
gridworld. Performance is evaluated using mean reward across all learning episodes, av-
eraged over trials (two trials for acrobot / lunar lander and five for gridworld). The high
number of algorithms performing around -300 in the middle of the right plot is an artifact of
averaging the performance of two seeds and the mean performance in Acrobot having two
peaks. Almost all intrinsic curiosity programs that had statistically significant performance
for grid world also do well on the other two environments. In green, the performance of
three published works; in increasing gridworld performance: disagreement [52], inverse
features [51] and random distillation [8].
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Class Ant Hopper
Baseline algorithms [-95.3, -39.9] [318.5, 525.0]

Meta-learned algorithms [+67.5, +80.0] [589.2, 650.6]
Published algorithms [+67.4, +98.8] [627.7, 692.6]

Table 2.1: Meta-learned algorithms perform significantly better than constant rewards and
statistically equivalently to published algorithms found by human researchers (see 2-2).
The table shows the confidence interval (one standard deviation) for the mean performance
(across trials, across algorithms) for each algorithm category. Performance is defined as
mean episode reward for all episodes.

the reward combiner found on lunar lander. For both environments we find that the perfor-

mance of our top programs is statistically equivalent to published work and significantly

better than the weak baselines, confirming that we meta-learned good curiosity programs.

Note that we meta-trained our intrinsic curiosity programs only on one environment

(GridWorld) and showed they generalized well to other very different environments: they

perform better than published works in this meta-train task and one meta-test task (Acrobot)

and on par in the other 3 tasks meta-test tasks. Adding more meta-training tasks would be

as simple as standardising the performance within each task (to make results comparable)

and then selecting the programs with best mean performance. We chose to only meta-train

on a single, simple, task because it (surprisingly!) already gave great results, highlighting

the broad generalization of meta-learning program representations.

2.6 Related work

In some regards our work is similar to neural architecture search (NAS) [64, 72, 14, 53]

or hyperparameter optimization for deep networks [45], which aim at finding the best neu-

ral network architecture and hyper-parameters for a particular task. However, in contrast

to most (but not all, see zoph2018learning) NAS work, we want to generalize to many

environments instead of just one. Moreover, we search over programs, which include non-

neural operations and data structures, rather than just neural-network architectures, and

decide what loss functions to use for training. Our work also resembles work in the Au-

toML community [33] that searches in a space of programs, for example in the case of SAT

solving [38] or auto-sklearn [22] and concurrent work on learning loss functions to replace

26



cross-entropy for training a fixed architecture on MNIST and CIFAR [30, 31]. Although

we took inspiration from ideas in that community [34, 43], our algorithms specify both

how to compute their outputs and their own optimization objectives in order to work well

in synchrony with an expensive deep RL algorithm.

There has been work on meta-learning with genetic programming [59], searching over

mathematical operations within neural networks [55, 29], searching over programs to solve

games [69, 37, 62] and to optimize neural networks [6, 5], and neural networks that learn

programs [56, 54]. Our work uses neural networks as basic operations within larger algo-

rithms. Finally, modular meta-learning [1, 2] trains the weights of small neural modules

and transfers to new tasks by searching for a good composition of modules; as such, it can

be seen as a (restricted) dual of our approach.

There has been much interesting work in designing intrinsic curiosity algorithms. We

take inspiration from many of them to design our domain-specific language. In particular,

we rely on the idea of using neural network training as an implicit memory, which scales

well to millions of time-steps, as well as buffers and nearest-neighbour regressors. As we

showed in figure 2-2 we can represent several prominent curiosity algorithms. We can

also generate meaningful algorithms similar to novelty search [42] and 𝐸𝑋2 [28]; which

include buffers and nearest neighbours. However, there are many exploration algorithm

classes that we do not cover, such as those focusing on generating goals [63, 41, 25], learn-

ing progress [47, 60, 4], generating diverse skills [20], stochastic neural networks [24, 27],

count-based exploration [65] or object-based curiosity measures [26]. Finally, part of our

motivation stems from taiga2019benchmarking showing that some bonus-based curiosity

algorithms have trouble generalising to new environments.

There have been research efforts on meta-learning exploration policies: [12, 68] learn

an LSTM that explores an environment for one episode, retains its hidden state and is

spawned in a second episode in the same environment; by training the network to maximize

the reward in the second episode alone it learns to explore efficiently in the first episode.

stadie2018some improves their exploration and that of [23] by considering the importance

of sampling in RL policies. gupta2018meta combine gradient-based meta-learning with a

learned latent exploration space in which they add structured noise for meaningful explo-
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ration. Closer to our formulation, zheng2018learning parametrize an intrinsic reward func-

tion which influences policy-gradient updates in a differentiable manner, allowing them to

backpropagate through a single step of the policy-gradient update to optimize the intrinsic

reward function for a single task. In contrast to all three of these methods, we search over

algorithms, which will allows us to generalize more broadly and to consider the effect of

exploration on up to 105−106 time-steps instead of the 102−103 of previous work. Finally,

[10, 21] have a setting similar to ours where they modify reward functions over the entire

agent’s lifetime, but instead of searching over intrinsic curiosity algorithms they tune the

parameters of a hand-designed reward function.

Closest to our work, evolved policy gradients (EPG, [32]) use evolutionary strategies

to meta-learn a neural network that acts as a loss function and is used to train a policy net-

work. EPG generalizes by meta-training with target locations east of the start location and

meta-testing with target locations to the west. In contrast, we showed that by meta-learning

programs, we can generalize between radically different environments, not just goal vari-

ations of a single environment. Concurrent to our work, [40] also show generalization

capabilities between environments similar to ours (lunar lander, hopper and half-cheetah).

Their approach transfers a parametric representation, for which it is unclear how to adapt

the learned neural losses to an unseen environment with a different observation space. Their

approach thus does not encode states into the loss function, which is critical for efficient

exploration. In contrast, our algorithms can leverage polymorphic data types that adapt the

neural networks to the environment they are running in, adapting both the size and the type

of network (CNN vs MLP) running in each environment.
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Chapter 3

A Program Synthesis Approach to

Learning Entity-Level Transition

Models

3.1 Motivation

Transition models that predict (𝑠𝑡, 𝑎) → 𝑠𝑡+1 can be leveraged for planning and reasoning.

Entity-level transition models factor their prediction into separate functions for each entity.

In domains where most dynamics are controlled by a single entity or by pairwise interac-

tions, entity-level transition models have been shown to increase generalization between

states and reduce sample complexity. Note that this requires an assumption that the agent

already has a perception mechanism that can obtain a representation of the state in terms of

the state of each independent entity.

We propose an approach for learning a entity-level symbolic transition model in an

active manner from state transitions within a simulator. Our approach attempts to expand

the hypothesis space of transition models that the algorithm can efficiently consider; it

partially succeeds in this regard.

Our approach differs from related approaches in a few ways - it learns a purely symbolic

world model, factored into the dynamics of different entities, without an apriori encoding
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any of the domain’s transition rules. Note that a strong caveat here is that our program

search space still encodes a reasonably strong bias, encoding knowledge about entities

interacting through local interactions, and knowledge about the complexity of possible

interactions.

3.2 Assumptions

Our approach makes a number of assumptions about its environment.

First, the state is described in terms of entities. We assume that we’re provided a state

space in terms of entities whose state can be described by (𝑥, 𝑦, 𝑡𝑦𝑝𝑒, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦).

This requires our model to sit on top of a vision module that parses this environment. This

assumption is motivated by the observation that factoring a state into entities seems to help

humans learn and generalize in a data efficient way. However, our structure includes an

assumption that the entities can be learned by a lower-level module without higher level

feedback; this seems potentially problematic and needs to be addressed in future work.

Second, each entity has a single type. We assume that each entity is identified with

a single entity type and that all entities of the same type act in the same way. (Note,

however, that entities can also hold varying amounts of resources on which their dynamics

are conditioned). This is perhaps a reasonable assumption in a specific realm of thinking,

but is unlikely to hold more broadly. A solution that identifies entities from raw visual data

could hopefully fare better here, especially given that such a solution would need to already

leverage an understanding of the different roles each entity could be playing.

Third, there is no action at a distance. We assume that every transition is only a function

of the entities within some surrounding 𝑛 × 𝑛 region around the entity (we use 5 × 5 in

our experiments). This encodes a bias that nothing happens through action at a distance.

This is a reasonable assumption in some regards, and is a valid assumption in all VGDL

domains. However, it prohibits modelling effects like "switches connected to doors at

arbitrary distances" or "light shining across large distances". Removing this limitation

would require the model to consider a significantly larger hypothesis space. It’s likely that

other heuristics will need to be built in or learned to constrain this search. For example, a
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reasonable bias might be that "every action at a distance is triggered by the interaction of

two neighboring entities, such as an agent touching a switch". An alternative bias might be

that "every action at a distance is triggered by a change in some other entity’s state, such

as a switch flipping from on to off". This bias would allow transitions to be chained and

would likely result in a smaller hypothesis space. However, VGDL does not support action

at a distance and we have thus not yet explored this idea further.

Fourth, the environment is discrete, fully-observed, nonstochastic, and markovian. Ev-

ery entity’s position is locked onto a grid, and in principle the next state can always be

predicted perfectly from the current state. This set of assumptions is perhaps the biggest

blocker to extending this approach to a broader set of interesting domains (such as contin-

uous games or partially-observed manipulation environments).

For clarity, we do not assume that we need oracle simulator access to query (𝑠𝑡−1, 𝑎) →

𝑠𝑡 at an arbitrary state. Instead, we only have online access to the simulator through an

interface that takes an action in the current state. Our planner instead leverages its learned

model, which it can query from arbitrary locations.

3.3 Background

3.3.1 The Video Game Description Language (VGDL)

We test our approach in game domains specified in the Video Game Description Language.

The Video Game Description Language (VGDL) [58] is a flexible language for expressing

simple gridworld games. A game consists of a game specification file and a sequence of

level layout files.

The level layout file is an 𝑛×𝑚 grid of letters, each representing an entity. The mapping

of letters to entity types is specified in the game specification file. Multiple level layout files

can be constructed for a single game.

The game specification file specifies four components:

1. A set of entity types, each with a base type from the VGDL language. (These are

called sprites in VGDL, but are called entity types here for consistency.) Base types
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are linked to a program that determines the base entity dynamics. Example base

types include MovingAvatar, Passive, Immoveable, RandomNPC, OrientedFlicker,

Door, ShootAvatar, etc.

2. A level mapping from single characters to entity types; ex "g" is mapped to Goal.

This is used in the level layout file to describe an initial game state.

3. A set of interactions that specify how entities interact on collision. For example,

the interaction "if an agent touches poison and has 0 medicine, kill the agent" would

be written as avatar poison > killIfHasLess resource=medicine

limit=0. The interaction "increase an agent’s ’medicine’ resource by 1 upon

touching a medicine entity" would be specified as avatar medicine > changeResource

resource=medicine value=1. Interactions can also lead to changes in re-

wards.

4. A set of termination conditions, such as touching the goal.

This language defines a large space of possible games. Learning a model of the game

from scratch is thus a non-trivial task.

For example, the game Sokoban could be specified with entities for Agent, Box, Hole,

and Wall to generate levels like the ones shown in 3-1

Figure 3-1: Example levels of VGDL Sokoban. They grey squares are Walls, the blue
square is an Agent, the green squares are push-able Blocks, and the red squares are Holes.
The Agent’s goal is to push all of the Blocks into the Holes, deleting all of the Blocks in
the process.
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Figure 3-2: Example levels of VGDL Bait. The grey squares are walls, the dark blue square
is an Agent, the light blue squares are Water, the red square is a Hole, the orange square
is a Key, the green square is a Goal, and the brown squares are push-able Blocks. Water
is destroyed when a Block is pushed onto it. The dark-blue Agent’s objective is get the
orange Key then get to the green Goal.

3.4 Related Work

We survey related ideas in learning world models, learning entity-level world models, and

in planning.

3.4.1 Learning Neural World Models

One approach to learning a world model is to learn an end-to-end neural network to predict

the entire state 𝑠𝑡+1 from 𝑠𝑡 .

In "Model Based Reinforcement Learning for Atari"[15], Kaiser et al. train a Deep

Video Prediction network to learn a simulator of the environment, and then train the re-

inforcement learning agent within the learned simulator. This approach is designed to in-

crease the agent’s data efficiency and is tested within the "low-data" regime in Atari (100k

interactions between the agent and environment). The simulator can then be queried an ar-

bitrary number of times, allowing powerful model-free reinforcement learning algorithms

to be trained with a large amount of (simulated) data. This approach led to significantly

better performance than simply training the model-free RL algorithm for 100k steps di-

rectly. Note, however, that this world model is not directly accessible by the agent / policy

network in any way.
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"Imagination-Augmented Agents for Deep Reinforcement Learning"[19] by Weber et

al. leverage a similar setup, except that the learned model is provided directly to the policy

network. An "imagination module" is again parameterized by a Deep Video Prediction

network. On every frame the agent uses the imagination module to simulate a rollout of the

next 𝑇 frames. This rollout is then encoded into a fixed-length vector by a LSTM "rollout

encoder" network. This rollout encoder network is trained as part of the policy network

and can be seen as learning to "interpret" the predicted rollout. The actions in the rollout

trajectory are taken from a small "rollout policy" network that is trained in a supervised

fashion to mimic the actions of the larger policy network. This extra policy-mimicking

network is needed because the main policy needs input from the rollout encoder and also

helps to speed up inference. This approach shares an element with ours in that it uses

the learned world model to locally choose actions; however, it does not explicitly perform

planning.

We now move to a set of approaches that all leverage planning rather than policy gradi-

ents or Q-learning.

"Entity Abstraction in Visual Model-Based Reinforcement Learning"[18] by Veera-

paneni et al. presents a compelling approach to learning a world model and entity fac-

torization jointly from raw pixels. They treat entities as latent state variables 𝐻𝑇 and

frame the process of identifying these state variables as an inference process of computing

𝑝(𝐻𝑇 |𝐻<𝑇 , 𝑋≤𝑇 ). Through training, a latent representation for 𝐻𝑇 will be learned that

can then be used to reconstruct 𝑋𝑇 or to predict the next state. Very little domain-specific

bias is encoded a-priori. The most significant biases are an architectural factorization into

different entities, symmetric pairwise entity processing functions, and knowledge of depth

encoded in the 3D renderer (the "observation model").

Their model learns this distribution through an iterative inference process introduced

in [44]. The model is factored into three components - an Object Recognition Model

𝑄
(︁
𝐻

(𝑡)
1:𝐾 |𝐻

(𝑡−1)
1:𝐾 , 𝑋(𝑡), 𝐴(𝑡−1)

)︁
, a Observation Model 𝐺(𝑋|𝐻1:𝐾) , and a Dynamics Model

𝒟 ℓ
(︀
𝐻 ′

𝑘|𝐻𝑘, 𝐻[ ̸=𝑘], 𝐴
)︀

. These distributions are parameterized by neural networks trained

through variational inference .

First, the Object Recognition Model 𝑄
(︁
𝐻

(𝑡)
1:𝐾 |𝐻

(𝑡−1)
1:𝐾 , 𝑋(𝑡), 𝐴(𝑡−1)

)︁
predicts the next
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latent state from the previous latent state and new observation and actions. Second, the

dynamics model the predicts the state of the entities after a single timestep. It’s factored

into three types of dynamics: 1) modelling global effects on individual objects (such as

gravity) 2) modelling action effects on individual objects, and 3) modeling pairwise effects

between objects. It does this in a symmetric manner, applying the same functions to the

state of each entity. This encourages the model to 1) learn a general physics model that can

be applied to an arbitrary number of objects, and 2) learn to represent latent information

about entity types within the state representation. Third, the observation model predicts

the visual input that would be observed for a given latent state history 𝐻1:𝐾 . The model

outputs a rendering and a depthwise segmentation mask for each entity; these are then

composed on top of each other, breaking ties with the depth data.

OP3 is tested on a rendered 3D block-stacking dataset, and also has some preliminary

results on real world images. The approach is still data intensive and worked best on the

isolated blockworld domains, but presents an exciting direction towards learning factored

world models directly from raw visual data. It would be especially interesting to explore

building in modular / programmatic structures into the architecture, to facilitate generaliza-

tion across entities of different types.

3.4.2 Learning Symbolic World Models (Rule Learning)

We now survey related approaches that leverage symbolic factored models (rather than a

neural network) to predict 𝑠𝑡+1 from (𝑠𝑡, 𝑎)

"Schema Networks"[35] by Kansky et al. also learn a factored transition model of their

environment, and express it in terms of small "networks". (These are not neural networks,

but rather simpler rule-like structures.) They test primarily in the game Atari Breakout.

In their setup, each pixel is treated as a separate entity, leveraging the assumption that a

vision module can track each pixel across frames and that each color represents a different

type of object. The state is remapped into a binary variables (breaking apart continuous /

categorical variables into multiple binary ones). Networks are learned to predict the state

of a binary variable on 𝑠𝑡+1 from state of the 𝑛 closest neighboring entities the previous
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𝑇 states. These rules are learned at a lifted level without reference to specific entities; to

use them for prediction, they are matched ("grounded") to specific entities in the state for

which the rule’s preconditions hold. Rules are formulas in the form of logical expressions

over the binary state variables of nearby entities; for example a rule might condition on

the existence of an entity with "color=red" and "relative_offset=1". These rules are similar

to the programs explored in our work in that they’re factored, look at neighboring entities,

and are symbolic. However, the details of the structure and the optimization process are

quite different; for example, new Schema Networks are greedily added by selecting new

rules to maximize prediction error, rather than performing a larger program search. Ad-

ditionally, our approaches leverage dramatically different exploration, planning, and state

representation techniques.

An alternative approach to rule learning is presented in "Learning Symbolic Models

of Stochastic Domains"[49] by Pasula et al. They learn "action rules" to model the local

effects of taking an action in a given situation. For example, consider a motion primitive

called "pickup". Their model could learn that a rule that "if a block 𝐵 has a relative offset

on the y axis of 10 units below the gripper 𝐺 , there’s a 70% chance that "the predicate

inhand(B, G) will be true after the predicate finishes executing, and a 30% chance of

no change". This allows the model to represent stochasticity - in this example, to model

the probability that the motion primitive fails. More formally, action rules take the form of

lifted logical predicate expressions that output a distribution of possible outcomes, each of

which are represented by the set of new boolean atoms that will be turned on. Their rule

learning process can be interpreted from a program synthesis perspective. Given a dataset

𝐷 of observed transitions, a unique rule is first constructed to model the result of every

individual transition; this rule simply states the entire previous state as the predicate and

the entire resulting state as the outcome. |𝐷| rules are created in total. Then, rules are

generalized using an anti-unification -style process, by checking ways to replace specific

entities with lifted entity variables. Using the above example of picking up a block, if

there exist two observations, one with "block-1" and another with "block-2", the search

process could discover that a rule that replaces "block-1" with a lifted variable 𝐵 could

explain both of these transitions. Then, given a proposed predicate, the distribution of
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possible outcomes can be computed simply by checking matching states in the dataset and

looking at the distribution of next states. This approach requires an existing set of motion

primitive s, as well as an existing set of symbolic relational predicates between entities

(such as 𝑜𝑛(𝑋, 𝑌 ) , 𝑖𝑛ℎ𝑎𝑛𝑑(𝑋) , etc.). In that sense, the idea lives at a different level

of abstraction with a different setting than the one we’re exploring. However, the goal of

learning transition rules is similar, and their rule-synthesis process has desirable properties

from an efficiency perspective. It would be interesting to explore ways to combine these

ideas with the ideas we present.

"Learning sparse relational transition models" by Xia et al. leverage a similar sparse

transition model to the work by Pasula et al., but instead use neural networks to parame-

terize the transition models. This parameterization provides a smoother optimization land-

scape than Pasula et al.’s program search process and allows them to learn more complex,

continuous dynamics.

Perhaps the closest related work is "Human-Level Reinforcement Learning through

Theory-Based Modeling, Exploration, and Planning" [17] by Tsividis et al. This paper

presents EMPA, which learns a symbolic factored transition model of its domain by per-

forming bayesian inference to reconstruct the original representation of the domain. It uses

a strong prior about the space of possible environment dynamics to do so efficiently. EMPA

has three components - "Exploring", "Modelling", and "Planning".

The paper also uses the VGDL domain (and solve many more domains in VGDL than

our current approach ). EMPA is pre-built with a full internal specification of the VGDL

language. Internally, it directly calls into the VGDL library - this allows the agent to con-

sider 𝑝(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠|𝑣𝑔𝑑𝑙_𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛) by constructing a corresponding VGDL imple-

mentation and looking at the successor states. EMPA factors its inference into different

entities. This allows it to learn in a highly data-efficient manner, often identifying the en-

vironment dynamics necessary to solve the goal within 10 to 50 steps. This data efficiency

is an impressive demonstration of how to learn efficiently once you’ve identified the rele-

vant space of dynamics that you need to consider. VGDL is highly expressive, and there

are a massive number of domains that can be constructed (by constructing different game

specification files and level layout files), so EMPA is tasked with a significant inference
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challenge. It solves this by leveraging a strong assumption that the full space of possible

entity type dynamics are known beforehand (although note that EMPA still needs to per-

form inference over how interactions can be constructed, which impacts entity dynamics

as well).

EMPA explores by setting subgoals for itself to get pairs of entities to touch in previ-

ously unobserved ways. Given that interactions in VGDL are triggered by touching, this

was shown to be a highly effective exploration strategy. We also use this strategy (which

we call Explore-Novel-Pair below), and extend it with an additional exploration strategy

for our programs, which we call Explore-Unknown-Outcome .

EMPA uses a modified version of the Iterated Width (IW) Planning Algorithm. It lever-

ages three types of goals, which are combined to create a reward function - 1) High level

goals of getting the size of a set to equal something (such as "pick up all diamonds" or

"touch the goal flag to make it disappear") 2) Sub goals, which are any state that changes

the count of the high level set (such as "pick up a diamond") 3) Goal gradients, which are

any state that moves the agent closer to a sub goal. Additionally, their planner includes

three stages of fallback modes: 1) Planning to reach a goal terminal condition , 2) Planning

to reach a subgoal 3) Staying alive by planning to any nearby state that doesn’t result in a

loss.

Our approach is inspired by these ideas, and explores the tradeoffs and methodology

around baking in less prior knowledge into the model. Although we both attempt to learn

a symbolic world model that can be leveraged for planning, the formulations of this model

are quite different. Our approach attempts to remove the need to provide VGDL to the

agent and instead have it re-learn (an approximation to) VGDL for itself. Rather than

modelling in terms of inferring a VGDL specification, we learn lower-level programs to

predict environment dynamics. Leveraging these models, we both plan with the Iterated

Width (IW) plannign algorithm. EMPA additionally build in more planning structure in

the form of heuristics about subgoals and goal gradients to speed up planning, while we

leverage our model to learn IW-2 higher level actions. However, our technique for learning

IW-2 higher level actions can be used in any domain where we have a world model that’s

factored into objects, and could thus also be integrated into EMPA if desired.
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Finally, we note that using entity-centric transition models that look at the neighborhood

around the entity has (perhaps unsurprisingly) also been found to be useful in model-free

reinforcement learning. For example, "Rotation, Translation, and Cropping for Zero-Shot

Generalization"[70] by Ye et al. demonstrates that centering the policy network’s input

around the agent helps with generalization to new levels of a VGDL game and reduces

sample complexity. We leverage a similar principle.

3.4.3 Iterated Width Planning

Iterated Width (IW) [16] planning is a planning algorithm based on breadth-first-search that

prunes states that are too similar to already observed states. A IW Location is a tuple of

length 𝑤 consisting of a set of boolean atoms. A state 𝑠 with a set of active boolean atoms

𝐵 has a set of IW Locations constructed from all possible size 𝑤 combinations of boolean

atoms. The IW Planning algorithm maintains a set 𝐿 of already-seen IW Locations. New

states are only expanded if they contain at least one IW Location that is not present in the

set 𝐿 . After expanding a state, all IW Locations in the state are added to 𝐿 . The value 𝑤

that defines the length of the IW Location tuples is called the "width" of the planner. This

parameter is quite important, so the width is often specified in the name; for example "IW-

1" means that 𝑤 = 1 . Given a branching factor 𝑏 and 𝑛 boolean atoms per state, IW- 𝑤 will

explore at most 𝑂(𝑏𝑛𝑤) states; this is exponential in the 𝑤 term, so it’s important to keep

the width as small as possible. Interestingly, many domains have low width if expressed in

the right representation. A width of 2 is sufficient to solve many popular planning domains

(and we only explore width of 1 or 2 in our work). However, it’s important to note that

the width is very sensitive to the representation design. For example, representing the state

with separate variables for 𝑥 and 𝑦 positions already makes simple grid navigation a width-

2 task, but combining them into a joint (𝑥, 𝑦) position lowers this back down to width-1. It

is thus useful to find ways to spend as much time as possible planning in lower widths; we

explore an approach to do so in our work.
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3.5 The World-Modeller

As the agent explores its domain, it learns a world model (𝑠𝑡, 𝑎) → 𝑠𝑡+1. This model is

then leveraged by the planner to find action sequences that achieve the agent’s goals. The

model is built from observed state transitions, some directly caused by the agent’s actions.

Sometimes these state transitions are observed in a passive sense, without the agent trying

to cause them. Other times, the agent explicitly tries to experiment with its environment to

see what state transition will occur.

3.5.1 A Factored Transition Model

The modelling module learns a transition function to predict 𝑠𝑡+1 from (𝑠𝑡, 𝑎) . It does so in

a factored way, learning to model the transitions of each entity independently. Specifically,

the model is composed of a set of transition classifiers, each of which are tied to a single

entity type and and predict if an entity of that type will undergo a relative state transition

(∆𝑥,∆𝑦, 𝑛𝑒𝑤_𝑡𝑦𝑝𝑒). (Alternatively (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑛𝑎𝑚𝑒,∆𝑟) if the classifier is modelling

a resource change). For example, a Box entity type might have a transition classifier of (

∆𝑥 = 1,∆𝑦 = 0, 𝑛𝑒𝑤_𝑡𝑦𝑝𝑒 = 𝑏𝑜𝑥) to represent being pushed to the right; this classifier

might learn that this transition only happens when an agent is to the left and pushing right.

The next state is predicted in a factored manner, independently for each entity. For each

entity, the set of transition classifiers with a matching entity type are found. These classi-

fiers are then split into groups; one group for classifiers that modify the agent’s position,

and an extra group for each research that the agent can have. These groups ensure that

such as an entity’s position can simultaneously change by ∆𝑥 = 1 and ∆medicine = 1,

but not simultaneously by ∆𝑥 = 1 and ∆𝑥 = −1. For each group, if any single classi-

fier matches, the relative state delta is applied (if multiple match, the change is selected

arbitrarily).

Each transition classifier outputs one of Yes - it will happen, No - it will not happen, or

Unknown. When any transition classifier outputs Unknown, the overall state is marked as

uncertain. This tracking allows the agent to reason with a coarse level of certainty about

its predictions. As explained later, it also allows the agent to plan paths to state transitions
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for which it is unsure of the outcome.

Each classifier internally maintains a dataset of positive datapoints of states on which

the transition was observed and negative datapoints of states on which the transition was

not observed. These datasets are built in a conservative manner, where new datapoints are

only stored if a previous model made an incorrect prediction. A new positive datapoint is

collected if the model failed to predict a that transition would occur, and a new negative

datapoint is collected only if the model incorrectly predicted a transition would occur. The

datasets generally stayed small in our experiments, with only tens of datapoints stored for

each. Our classifier training process has time complexity linear in the number of datapoints

collected, so keeping this size small was important for speeding up this process.

3.5.2 Classifiers are Represented by Programs

The classifier could be constructed in a number of ways. In this work, we explore represent-

ing the classifier as a program/logical expression. Our program takes as input the 𝑘× 𝑘 re-

gion surrounding the entity ((5×5) in our experiments); the programs will query this region

by checking if there exists an entity of a specific type at a specific relative offset from the en-

tity in the center. Using our running example of a box being pushed to the right, a program

could encode if(entity_type_at_offset(-1, 0, Agent) and not entity_type_at_offset(1,

0, Wall)) return Yes

Our programs are constructed through a simple domain specific language of just two

operations:

• ANDRule: This operation represents a single rule, such as

if(entity_type_at_offset(-1, 0, Agent) and not

entity_type_at_offset(1, 0, Wall)) return Yes. Specifically, this

operation looks at a set of squares (determined by relative offsets from the entity be-

ing transformed), and for each square checks if the entity(s) in that square are of

the type specified by the program. The operation stores an outcome to return if it

matches.

Additionally, the rule stores the set of all observed tuples of entity types in the squares
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that it’s monitoring. Using the above example, if an Agent is ever observed to the

left and a Box to the right, (Agent, Box) would be stored. If the rule sees a tuple that

it does not have in its observed set, it will return Unknown. This is designed to help

the agent learn generalizations of its rules.If the rule finds a match, it will return its

stored outcome (either Yes or No). Otherwise, it will return Pass.

The above rule would thus be stored as

{

yes:{(-1, 0): {"agent"}},

no: {(1, 0): {"wall"}},

observed: {("agent", "wall"), ("agent", "empty"),

("agent", "box")},

outcome: "Yes"

}

• TakeFirstActiveRule: This operation maintains a list of of ANDRules. It loops

through each rule and returns the first outcome that is not Pass. If all rules return

Pass, this operation returns Unknown. This operation is similar to a decision list.

[57]

3.5.3 A Synthesis Through Unification-style Program Synthesizer Finds

High-Scoring Programs

Due to our small DSL, every program is of the form TakeFirstActiveRule(List[ANDRule]).

Our program synthesis module utilizes a synthesis-through-unification[3]-style procedure

to build programs iteratively, adding one ANDRule at a time. On each attempt to find the

next ANDRule, the synthesizer will perform an enumerative search over a few parameters:

1. The number of squares (relative positions from the main entity) to condition on.

Programs with smaller numbers of squares are tested first, biasing the search towards

simpler programs. This value is capped with a hyperparameter.
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2. The specific tuples of squares to consider.

3. Which squares are in the positive set and which are in the negative set.

4. The matching entity sets for each square.

5. The position in the TakeFirstActiveRule list at which to put the new ANDRule.

Each candidate program is built by adding the new ANDRule to the program being built

and evaluating the program’s score on the full collected dataset. The best ANDRule will be

greedily selected and added to the program. The search process will halt if a perfect (score

=1) program has been found; otherwise a search will begin for the next operation to add

(up to the maximum number of operations).

3.5.4 Program Synthesis Optimizations to Speed up Our Search

We found it critical to build in a number of optimizations into our search process. These

optimizations should probably be considered limitations of the work, as they increase the

complexity while decreasing the generality. In future work we would like to explore meth-

ods for learning these biases.

First, only consider squares with multiple observed values in our dataset: If a transition

classifier’s datasets have always had the same entity in a given square offset, that square has

no discriminatory power. That square is thus not considered as a candidate in our search

process. For example, the center square in the detector input always includes the entity

being transformed; this square is thus ignored.

Second, eject when a perfect program is found: Once a program with score=1 is found,

the search process halts and that program is returned.

Third, resume searches from the last synthesized perfect program: Consider the case

where a transition classifier has found a perfect program 𝑃 with 𝑜 operations. At some

point a new datapoint might be observed that the program mis-classifies . Rather than

scrapping the entire existing program, the synthesizer will instead restart the search with

𝑃 [: 𝑜 − 1] , the program 𝑃 with all but the last-found operation left. Our synthesizer can

be seen as having two modes: a search for perfect program mode and a search for the
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highest scoring program mode. In our deterministic VGDL domains, all transitions can

in principle be predicted with perfect accuracy, so the synthesizer mostly acts in the first

mode. It sometimes enters the second mode when it’s building on a partially incorrect

program; in this case the program will eventually hit its max number of operations and be

re-synthesized from scratch.

Fourth, only consider the central cross of squares: In VGDL, almost all transitions can

be modeled by looking at entities only on either the same horizontal or vertical axis. A more

general heuristic should in principle be learnable by biasing the search towards squares used

in previously selected programs; we did not explore implementing this optimization.

Fifth, only consider neighboring pairs of squares: We further constraint the hypoth-

esis space by only considering chains of neighboring/touching squares. This is again a

reasonable bias, especially in VGDL, but will be a barrier in generalizing the approach.

Sixth, extend ANDRule observed sets when possible: Individual ANDRules return

unknown for any tuple of entity IDs that they have not explicitly observed before. Rather

than re-synthesizing the entire program once a novel tuple is observed, the synthesizer first

checks if the program would have otherwise predicted the right answer for this novel tuple.

If so, the tuple is simply added to the program’s observed set, allowing the program to

return that right answer. This allows observed sets to grow with minimal computation,

allowing programs to generalize efficiently in a very controlled manner.

3.5.5 Resource Handling

In VGDL, every entity can hold a set of resources, each with a static string name and

a variable integer counter. Resources can change upon entity collisions, as specified by

the game’s Interaction set. We handle resources in the same way as "x, y" coordinate

transitions, by learning a classifier for when a resource delta (ex "gaining 1 medicine") will

occur.

This is handled in a few places throughout the agent. In the Prediction-Fidelity Check-

ing step, resource transitions are monitored to create new transitions and add collect extra

datapoints for mispredicted existing transitions.The entity state is extended with a dictio-
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nary of the resources of each entity, and the state - transition predictor factors changes in

resources from changes in (𝑥, 𝑦) state.

The program input space is extended to allow programs to condition on an entity having

a given resource. Specifically, programs can query the exact resource value of the entity

at a relative (∆𝑥,∆𝑦) offset from the Main Entity . For example, a program for checking

if a door opens could check if "the entity at (−1, 0) is an agent, the entity at (−1, 0) has

a resource Key with value 1, and the action is press right". Note that this space does not

currently support inequalities; this would be simple to add but comes at the tradeoff of a

larger search space.

In the IW-Planner a boolean atom is added for every tuple of the type (entity_id, re-

source_name, resource_value). Valid resource values are bounded between 0 and the max

resource type specified in the domain’s VGDL specification file. This prevents endless

resource acquisition in the planning step; such as when the agent has an incorrect world

model of "acquire a key every time the agent touches the key, but do not delete the key".

3.5.6 Handling Appearing / Disappearing Entities

In addition to representing position changes and resource level changes, transition clas-

sifiers can also represent agents disappearing / appearing. Disappearing entities can be

treated in roughly the same way as position changes are, as long one is careful about the

state representation. Appearing entities must be treated slightly differently, as there is not

an existing entity to center the transition classifier’s input around. Appearing entities are

currently handled by the modeller by checking every square separately to see if an entity

will appear. A faster approach might leverage the principle of binding to a given entity in

the rule; for example if a rule requires an Agent in a location, the checker only needs to

check squares aat which that agent would be at the right relative offset. We did not explore

this in our work.
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3.6 The Planner

Our planner takes a description of the state, the learned world model, and a goal predicate.

It leverages a modified form of Iterated Width (IW) Planning Algorithm to find the shortest

path to the goal.

3.6.1 Stages of the Planner

The planner has four different planning modes:

1. Reach-Goal: Find a path to the goal, on which our model never predicts Unknown

2. Attempt-Goal: Find a path to the goal, allowing paths that have uncertainty. Recall

that a state 𝑠𝑡+1 can be marked with a uncertain flag if any transition for any entity

on state 𝑠𝑡 output Unknown (or if 𝑠𝑡 was already flagged as uncertain). However, the

uncertainty might come from an entity that is irrelevant to agent reaching its goal.

This planner thus simply tries to execute the path to the goal anyway, in the spirit of

optimism under uncertainty.

3. Explore-Novel-Pair : Find a path that terminates in the observation of novel pair of

entities (𝑎, 𝑏) touching on a side 𝑠 (left, right, above, or below). (See Exploration

Mechanisms.)

4. Explore-Unknown-Outcome: Find a path that terminates a state where a model out-

put Unknown

The planner runs each of these modes sequentially, returning the first successfully re-

turned path. If no path is found with IW-1, the planner reruns the four modes with IW-2,

resulting in eight total planning attempts. If no plan is found, a random action is taken.

IW-2 is dramatically slower than IW-1, so placing all of the IW-1 planning attempts be-

fore the IW-2 planning attempts was found to significantly reduce planning time. Once the

agent has solved a specific domain configuration a single time in IW-2, it learns a HLA that

allows it to reliably find that path again.
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3.6.2 Exploration Mechanisms

Two guided exploration mechanisms are used - Explore-Novel-Pair and Explore-Unknown-

Outcome.

Explore-Novel-Pair

Taking inspiration from EMPA, we use an exploration procedure that seeks to get novel

pairs of objects to touch. For example, if we’ve never seen a box touch the hole from

the left side, the planner will attempt to find a path to a state on which we can observe

this relationship. Observing this interaction can lead to four possible outcomes, three of

which which provide useful information to the world-modelling module. 1) A new entity

transition is observed. The modeller instantiates a new transition, which it will then work

on refining over time. 2) An existing transition is observed that the agent had predicted

Unknown or No (will not happen) for. The world-modeller module will collect a new

datapoint to reformulate its hypothesis. 3) A transition that the world-model predicted

would happen did not happen. The world-modeller module will collect a new datapoint to

reformulate its hypothesis. 4) No transform happens. Nothing is learned, but the touch is

recorded and will not be pursued again.

Explore-Unknown-Outcome

Transition classifiers can output Unknown when a state does not exist within their set of

observations. In this case, we want to collect an observation that would resolve this uncer-

tainty. To do so, the Explore-Unknown-Outcome heuristic searches for a path to the closest

state with any unknowns. Empirically, the agent spends a majority of its time in this state,

identifying deficiencies in its model and seeking paths to correct them.
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3.7 IW-2 Higher Level Actions

3.7.1 Motivation

The number of states explored by an IW planner is exponential in terms of the width. IW-2

planning is tractable in many domains but is already significantly slower than IW-1, and

widths of IW-3 or greater are rarely used. We thus would like to be able to solve as many

domains in IW-1 as possible.

As a running example, consider the game Sokoban, where an agent needs to be able

to efficiently plan ways to push blocks around. Finding the plan in figure 3.7.1 requires

IW-2. (IW-1 could fail if it explores the path that places the agent beneath the block before

it explores the path involving pushing the box down).

Figure 3-3: This plan was found by IW-2, but is not guaranteed to be found by IW-1. In IW-
1, the planner might have already seen the white agent everywhere else before considering
this sequence. Then, the second frame would be immediately pruned because the agent
was already in that location and the blue box below the agent has not moved.

However, finding a way to push this block from the top right to the bottom left could

mostly be done through IW-1 planning - except for the small intermediate section where we

have this more complicated manipulation. One way to reduce the width of a domain is to

expand the set of available actions to include higher level composite actions. For example,

if we had an action "push a block right, then down", our IW-1 planner could find a complete

path.

We model this ability as a mechanism to store cached action paths for these higher level

tricks. Rather than building in these higher level actions as motion primitives, we propose

a method to learn them automatically.
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3.7.2 Representation and Planning

A higher level action (HLA) is represented by a set of involved entities , a cached action

sequence, and a predicted end state for the involved entities. Higher level actions found in

IW-2 can be used in IW-1, allowing IW-1 to find plans that would have otherwise required

IW-2. This comes at a cost of an increased branching factor in IW-1, as the outcome of

every HLA must be checked. However, we still found IW-1 with HLAs to be dramatically

faster in our experiments than IW-2 as the number of HLAs was significantly smaller than

the number of atoms in the environment.

On every step, the planner searches through all higher level actions to find any that

match the current state. To match, the state needs to have a subset of entities that are in

the same relative configuration as the set of involved entities. Potential matches are found

efficiently by specifying a main entity, and looking for matching entities at the correct

relative offsets from that main entity. (All entities must be at exact relative offsets from

each other. Relaxing this requirement is an interesting future work direction.)

Start State End State

Causally Involved Entities

Figure 3-4: After an IW-2 plan is found, the entities that are causally involved in reaching
the end state are identified. These entities are extracted, and there relative offsets are stored
as the HLA matching template. Here, these three entities are involved as the white agent is
pushing the blue box to the red goal.

Once a matching HLA is found, the planner simulates the result of executing that HLA

on the current state. This simulation process allows the planner to ensure that every entity

ends up in its expected final state, and allows it to reason about other entities that would be

affected by the application of this HLA. Note that it’s fine if a HLA matches, but fails to

be useful because of other entities that got in the way - at worse the planner explores a few

extra states (still bounded by the global IW heuristic). This simulation process is important.
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For example, simply teleporting the involved entities to the end states found in the original

HLA observation does not work as it would ignore the effects of other un-involved entities

that would get effected by the HLA.

As future work, it would also be interesting to explore an alternative where a goal

predicate representing the HLA’s end state is stored instead of a cached action sequence.

The agent could search within a simplified domain (such as one with only the important

entities) for the goal predicate, still resulting in a speedup compared to searching in the real

domain. Additionally, it would be interesting to explore the implications of a formulation

that leads to the goal not appearing in the set of causally involved entities in the example in

3-4.

3.7.3 Learning Higher Level Actions

Our higher level actions are sub-plans that can be found with IW-2 but not IW-1. At a high

level, there are 4 steps:

1. Find a plan with IW-2 that doesn’t work with IW-1.

2. Find the shortest sub-plan that cannot be solved with IW-1. (Test every pair of start-

ing and ending points in the overall plan and find the shortest unsolveable one.) This

provides a start state and an end state .

3. At the end state, identify the entities that are causally involved in the reaching the goal

of the overall plan. We denote this set as the goal entities. This uses the proposed

causal filtering process described below.

4. At the start state, identify the entities that are causally involved in moving the goal

entities from their starting states to their ending states. We denote this set as the

involved entities, as this higher level action will match to another state if these entities

appear in the same relative state. This uses the proposed causal filtering process

described below.

The higher level action is then represented as a tuple of the (set of matching entities, and

the sequence of actions that leads from a matching start state to a matching end state).
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3.7.4 Causal Filtering Process

Given a state 𝑠 and a goal predicate 𝑔 , we want to identify the smallest subset of entities

that are causally involved in reaching the goal predicate. We define a causally involved

entity as "an entity whose modification would lead to the discovery of a different overall

plan". More precisely, our algorithm to find causal entities is as follows:

1. Make an initial plan 𝑝 from the state to the goal 𝑔

2. For each entity 𝑒 :

(a) Construct a modified state 𝑠′𝑒 from 𝑠 with entity 𝑒 removed. (Or with 𝑒 added

back in if it disappeared in the goal end state).

(b) Construct a new plan 𝑝′𝑒 from 𝑠′𝑒 to the goal

(c) Denote this entity as causally involved if 𝑝′𝑒 ̸= 𝑝

3.7.5 Limitations

This process assumes that every entity can be treated independently. However, this is not

necessarily the case. For example, consider a domain consisting of a single hallway with

the agent to the left of two sequential doors with a goal on the right. Both doors open

with the press of a single key. In the proposed process both doors would be marked as not

important, as deleting a single one of them would still lead to the agent deciding to press

the key. This is problematic, as the HLA will match to many more scenes than are relevant.

We consider two (unimplemented) solutions. Both leverage the observation that it’s

possible for the agent to check if it has found a superset of entities to remove (by attempting

to plan), but it’s only hard for the agent to confirm that this set is minimal. Let us call this

an under-specified HLA.

First, we could search over larger groups of entities to delete simultaneously. If the

HLA is under-specified with groups of size 𝑘, the agent could restart and consider deleting

groups of size 𝑘 + 1 instead.

Second, we could add an extra phase of adding back incorrectly-removed entities. If

there are a group of entities that they all must be removed for a change to be observed, then
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adding back any entity will cause the change to disappear. Thus, we could simply loop

through each removed entity and check if adding it back changes the plan; if so, we would

mark it as important.

3.7.6 Consistency-Checking Higher Level Actions

The agent learns higher level actions whenever it executes a IW-2 plan. Note that higher

level actions are discovered within the planner (rather than by interaction with the real

environment), which leverages a potentially incorrect or incomplete world model. It’s thus

possible that a faulty HLA is discovered, leading to the HLA failing to reach the end state

that it was originally planned for.

Whenever a higher level action finishes executing, it is checked for consistency against

the predicted end state. If the HLA’s important entities in this end state do not match their

predicted location, the HLA is marked as inconsistent and removed.
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3.8 Results

We test our approach on four VGDL domains: Sokoban, Bait, Preconditions, and Rela-

tional.

In Sokoban, the agent is tasked with removing all boxes from the domain by pushing

them into holes. In Bait, the agent is tasked with navigating obstacles to get a key before

going to a goal. In Preconditions the agent is tasked with collecting resources like Medicine

to get through barriers like Poison to find a a path to the goal. In Relational the agent needs

to learn how to manipulate and remove all probes with Converters.

Each agent was run on a single Intel Xeon Gold 6248 CPU core for at most 24 hours.

We measure both the total number of environment interactions and the amount of compu-

tation time needed to solve the environment. These numbers are not perfectly correlated

because the agent can spend significant amounts of time thinking between environment

interactions to find new plans or synthesize new higher level actions.

The results of running our agent in each level of these domains are shown in table 3.1

below. All successful experiments finish in only a few thousand environment interactions.

In some domains, the agent fails to find a plan; upon analysis this was due to the planner

greedily selecting subgoals that traps it and prevents it from reaching the overall goal.

We then investigated the generalization of the learned model across different levels

within a single environment. Results are shown in table 3.2. We see that transferring the

world model from one level to the next reduces the amount of total learning time.

In table 3.3, we measure the generalization of the learned model across different envi-

ronments. Here, we run each domain in sequence, transferring the world model and HLAs

learned in earlier levels rather than re-training the expeirment from scratch in each level.

We see that this transfer reduces the amount of time that the agent needs to solve in the

subsequent domain.
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Experiment Environment Interactions Time
Sokoban Level 0 3073 12 hours
Sokoban Level 1 2984 7 hours
Sokoban Level 2 1855 2 hours
Sokoban Level 3 x x
Sokoban Level 4 493 12 min
Bait Level 0 758 7 min
Bait Level 1 x x
Bait Level 2 x x
Bait Level 3 x x
Bait Level 4 x x
Precondition Level 0 227 1 min
Precondition Level 1 1068 2 hours
Precondition Level 2 227 2 min
Relational Level 0 2857 8 hours
Relational Level 1 x x
Relational Level 2 x x

Table 3.1: Results in multiple levels of four VGDL domains. Number of environment
interactions and total time to solve the level are listed. An x indicates that the level was not
solved.

In table 3.4 we show ablations of various parts of our model, compared on level two

of Sokoban and Precondition. We see that the most impactful optimizations are only con-

sidering squares with multiple values, simulating the next state, and only finding perfect

programs; ablating these optimizations caused the programs to not finish. The exploration

mechanisms were the next most important. The other optimizations had relatively minimal

impact.
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Experiment Interactions w. Transfer Without Transfer Reduction
Sokoban Levels 0, 2, 4 3958 5021 79%
Precondition Levels 0, 1, 2 921 1522 60%

Table 3.2: We compare transferring the learned world models across levels within a domain
against re-learning the world model from scratch in each levels of our VGDL domains. The
"Interactions w. Transfer" column shows the total number of environment interactions that
the agent needed to solve each level in the domain in sequence. The "Without Transfer"
column shows the sum number of environment interactions, initializing a new agent in each
level separately.

Experiment Interactions w. Transfer Without Transfer Reduction
Sokoban Level 0 to Bait Level 0 3660 3831 95%
Sokoban Level 2 to Bait Level 0 2399 2613 91%
Sokoban Level 4 to Bait Level 0 734 1251 58%

Table 3.3: We compare transferring the learned world models across different domains
against re-learning the world model from scratch in each domain. The "Interactions w.
Transfer" column shows the total number of environment interactions that the agent needed
to solve each domain in sequence. The "Without Transfer" column shows the sum number
of environment interactions, initializing a new agent in each domain separately.

Ablation Sokoban Level 2 Precondition Level 2
Extend Current Program 123% 111%
Only Cross Squares 105% 99%
Only Neighboring Squares 85% 100%
Only Squares with Multiple Values x x
Learn Higher Level Actions 136% 100%
Simulate Next HLA State x 100%
Only Find Perfect Programs x x
Explore-Novel-Pair 161% 118%
Explore-Unknown-Outcome 144% 103%

Table 3.4: We perform ablations of the main experiment hyperparameters and denote the
percent time longer that the ablated experiment took over the non-ablated experiment. For
each domain we denote the level number that was used in the test. An x indicates that the
ablated experiment did not finish.
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3.9 Observations

As a result of this work, we have made a few high-level observations that we believe can

be carried over to learning rules with other setups and other domains.

• Planning With Incorrect Models Is Fine If You Can Notice You’re Incorrect In

its early phases, our planner leverages a highly buggy world model. It thus occa-

sionally finds a path that it believes will lead it to a goal, but that fails on the way.

When the planner sees an unexpected outcome, it simply halts the current path and

collects a new datapoint, in a Model Predictive Control -style.This is a relatively in-

expensive way to explore, as it either leads to a success or the collection of data that

immediately improves the model.

Taking inspiration from an Optimism Under Uncertainty perspective, our planner

tries to plan a path to the goal before falling back on trying to plan a path to improve

its model. This has a another desirable property that computation time for learning

rules has higher weight on the rules that will let the agent achieve its goals, rather than

achieving arbitrary changes in the environment. However, it seems likely that there

is still additional room for improvement here, due to still relatively formal nature

in which the model plans. For example, leveraging better relaxed planning (such as

choosing to ignore some entities / effects in the planner stage) could let the agent

spend even more time in the phase of exploring possible paths to the goal.

• Immediately Re-synthesizing Erroneous Programs Avoids Head-Bashing Be-

havior Whenever a program makes an invalid prediction, a new datapoint is col-

lected and the program is immediately re-synthesized. This has a nice effect in that

the agent will never repeatedly make the same mistake - such as repeatedly bashing

itself into a wall. (In contrast, this failure mode can appear in model-free RL agents,

which is often fixed by adding a LSTM on top of the policy network. [48]). Of

course, this comes at a tradeoff with the computation time needed to re-synthesize

the program.

• Programs Undergo Waves of Increasing Complexity then Reformulation In our
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experiments, we observed that programs will often undergo waves of complexity.

First, they grow in number of ANDRule s, layering on new hacky rules that fix in-

dividual datapoints. The program eventually hits the maximum number of allowed

operations and begins resynthesizing from scratch. More general rules that capture

multiple datapoints can now emerge by greedily selecting the new best rule, resulting

in a smaller program overall.

These phases are reminiscent of a an accumulating and then uniframing process.

New datapoints are accumulated as individual rules to remember, and then are even-

tually uniframed into a central framework once the datapoints make a clear statistical

suggestion.

• Over-Generalized HLAs Can Block the IW-1 Planner We observe that over-generalized

HLAs can block the IW-1 Planner. IW is very sensitive to the order in which states

are explored, as this order determines the positions of the non-novel entities. This

can cause it to get blocked if states happen to be explored in the wrong order. For

example, as shown in 3-5 once an agent is observed on a square 𝑠 , the planner will

be unable to perform other manipulations that require the agent to again be on square

𝑠 (as long as the manipulation has 1 non-novel state). This caused a problem in

preliminary experiments, and also is part of the reason that we need to take include

Blockers in our higher level actions (See 3.10.1).

State A State B State C State D

Figure 3-5: State ordering matters in IW planning. Consider the initial state A. The white
square is an agent, the blue square is a pushable box, and the red square is a hole to place
the box in. Imagine an event where the planner has already found state B and C. Then, state
D will be pruned in IW-1 because no entities are in novel locations. State B thus interferes
with state D being explored in this ordering, and a HLA that leads to state B being explored
first would prevent a path to state D from being foud.
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3.10 Future Work

3.10.1 Blockers and Enablers

Our procedure for finding higher level actions attempts to identify the important entities

in the domain. However, it might be fruitful to use a finer-grained analysis of different

entities.

One consideration is that some entities are directly involved in reaching the goal and

thus act as enablers while other entities require the agent to find a longer path to the goal

and act as blockers. For example, in Sokoban, the box beng pushed would be enabler,

but walls in the way act as blockers. Blockers could be formally identified as entities that

lead to a longer path. Blockers need to be captured as important entities to allow the HLA

to match to situations where the longer plan is required. However, removing the blocker

would also allow the HLA to apply more generally. It’s unclear if generating extra variants

of HLAs with blockers removed would lower overall computation cost or not (as a match-

checking cost for each HLA is incurred in the planning process.

Enablers could alternatively be defined as the set of entities that are involved in causing

the plan to succeed (rather than the set of entities that are involved in causing the plan

to be found). This would be significantly faster to compute (as no replanning would be

needed, instead only requiring tests with the internal model). However, blockers would not

be found by this process, so an extra mechanism would need to be added to learn situations

in which the HLA does not apply.

It could be useful to have a mechanism for learning situations in which HLAs do not

apply due to other entities that get in the way. Currently, HLAs are simply removed if they

have unexpected effects. Alternative procedures could instead collect datasets for states

where the HLA fails to apply and learn a classifier for these states. However, the structure

of such a classifier is unclear.
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3.10.2 Finding Important Entities More Efficiently

We note that more efficient processes can be leveraged to find these important entities than

raw enumeration, by considering deleting groups of multiple entities at a time. Specifically,

if we have a k important entities (unknown a-priori) and n total entities, we can find the

important entities in 𝑂(log(𝑛)𝑘) time by performing k+1 binary searches over the entities

of unknown importance. 𝑘 is generally significantly smaller smaller then 𝑛 in all of our

experiments, so this would be faster. Note that here we’re measuring runtime in terms of

"calls to the planner" but this scheme would potentially see further efficiency boosts by

planning in simpler environments.

3.10.3 Faster Program Synthesis

Our transition classifiers are represented as programs and are learned through program

synthesis. However, due to our limited DSL, they do not achieve generalization properties

that programs in principle could provide. The tradeoff with expanding the DSL is of course

that a larger hypothesis space leads to slower inference. It remains an exciting avenue for

future work to explore ways to search through this space efficiently.

"Library Learning for Neurally-Guided Bayesian Program Induction" [13] by Elis et al.

is an example of recent promising work that learns to synthesize programs more effectively

and that automatically learns higher level program structures. This approach was tested

on list processing and image generation problems. These problems have smooth curricu-

lums, which this approach implicitly heavily relies on. However, we’ve observed that our

domains also seem to yield a good curriculum when combined with our exploration strate-

gies. For example, one could imagine low-level programs that memorize individual state

transitions emerging first, before finding programs that find higher level ways to model

state transitions.

One could also explore a anti-unification -style synthesis method. Pasula et al. [49] ex-

plore something similar, but do not frame their inference as program synthesis. Reframing

the approach as program synthesis could plausibly allow this technique to be used while

also leveraging higher level program-like structures.
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3.10.4 Meta-Reasoning About Subgoals

The planner currently greedily selects the shortest path it sees to any subgoal. This can

cause it to become trapped if a path to a subgoal is not globally optimal. As a running

example, consider the case in Sokoban where a block is pushed against a wall; if this

happens, the block can never be pushed back away from the wall again, trapping the agent.

The agent might inadvertently cause this to happen, and then get stuck trying to rescue the

block later on.

One solution would be to simply remove the notion of greedily planning to subgoals.

This is not wholly unreasonable as the planner learns to plan more efficiently over time (by

learning new higher level actions), so it eventually might be able to efficiently find a full

path. However, IW-planning needs some notion of subgoals baked in to keep the width low.

For example, Sokoban has width 3 if it has multiple boxes and no subgoals, but shrinks to

width 2 if eliminating boxes are treated as a special subgoal. 𝐼𝑊𝐺 is a variant of IW that

effectively restarts IW after a subgoal is found (by maintaining separate tables of seen IW

locations for different numbers of achieved subgoals). However, this would not prevent the

agent from trapping itself, without extra heuristics built in.

It seems desirable for the agent to learn meta-knowledge about its plans. One could

imagine this in a few forms. First, it could learn explicit rules, such as "pushing a block

against a wall means that no plan can be found to push the block to other goals". Second,

this could be formulated as a value function, where states with blocks against a wall have

lower value. However, the exact mechanisms are unclear and an avenue for future work.
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Chapter 4

Conclusion

In this work, we show that programs can encode high level knowledge that facilitates the

efficient encoding of exploration strategies and world models. We first develop an approach

to automatically synthesize exploration strategies through meta-learning and program syn-

thesis, and demonstrate that this approach yields algorithms with performance competitive

to state of the art human-designed benchmarks. We then explore an approach to learn fac-

tored world models through program synthesis and achieve preliminary results, solving a

few VGDL domains with minimal prior knowledge.

We see these two demonstrations as promising examples of the potential of using pro-

gram synthesis techniques to increase the generalization of machine learning models in

reinforcement learning. A major downside of this approach is its lack of a smooth opti-

mization space. We present some techniques to speed up optimization (in terms of hand-

designed and learned heuristics), but significant future work remains. Solving this chal-

lenge and finding efficient optimization algorithms or more malleable representations is

thus an important avenue for future work to make these approaches tractable in ever more

complex settings.
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