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Abstract

Electronic health records (EHR) and their wealth of patient health information present
new opportunities for understanding relationships between patients and their condi-
tions. However, EHR data sparsity, quality, and accessibility present various com-
putational challenges. To address these challenges, we apply spectral clustering and
variational autoencoders to obtain compact patient representations and clusters from
EHR in an unsupervised manner. We apply these methods to the MIMIC dataset,
from which we only use ICD-9 diagnostic codes to ensure data accessibility. After
obtaining clusters, we conduct high-resolution analysis by examining the 5 most fre-
quent phenotypes within each cluster. We then conduct low-resolution analysis by
examining the distribution of phenotypes within each cluster, examining the rela-
tionships amongst the most prevalent phenotypes in each cluster by constructing a
cluster network, and comparing our findings to existing medical literature. While
preliminary, these results suggest that learning from sparse EHR data is sufficient for
uncovering associations between conditions and diseases.

Thesis Supervisor: Manolis Kellis
Title: Professor, Computer Science
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Chapter 1

Introduction

The analysis of electronic health records (EHR) — an electronic version of a patient’s

medical history — has led to innovations in healthcare and research, especially in

machine learning whose methods are well-suited for digesting large quantities of data.

Spurred by the Health Information Technology for Economic and Clinical Health Act

of 2009 which provided incentives for hospitals to implement healthcare information

technology systems, EHR have seen widespread adoption in the United States where

a vast majority of hospitals have some form of an EHR system [3]. EHR themselves

may include a variety of clinical data such as a patient’s demographics, progress

notes, medications, diagnostics, vital signs, and more [1]. Much of these data are

standardized into systematic codes, such as the International Classification of Diseases

(ICD)-9 which is used to track patient diagnoses and procedures. These increasingly

prevalent EHR enable researchers not only to further research in machine learning and

medicine, but also gain greater insights into diseases and their relationships. In this

thesis, we utilize EHR to tackle two areas of research, namely patient representation

learning and clustering.

The vast amount of EHR data on patient diagnostics enable researchers to examine

relationships between patients, conditions, and diseases on in a broader, more holistic

manner. This could potentially lead researchers to discover novel associations between

diseases and conditions that previously had been unexplored or overlooked. Such

an ability would have tangible impacts in areas such as comorbidity analysis and
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symptom clustering which currently focus on finding disease associations with respect

to a single disease rather than more broadly (see Chapter 2, Related Works).

In spite of these opportunities and advances, analyzing EHR remain challenging

in machine learning due to their quality and availability. EHR can often be high-

dimensional, sparse, incomplete, noisy, and error prone [30, 69]. These qualities

make it difficult for machine learning methods to learn patterns that generalize well

across patients and datasets [6]. Additionally, EHR data can often be inaccessible,

such as in cases where researchers access private data through partnerships with

specific hospitals or companies. While some researchers have tackled this issue of

accessibility by making comprehensive datasets publicly available [48, 31, 57], the

overall lack of publicly available data still poses a challenge in ensuring that methods

are reproducible, especially when certain data types may be present in one dataset

but absent in another.

One promising avenue of machine learning research to address these inherent chal-

lenges is to automatically obtain patient representations or compact representations

of patient data that still retain key characteristics of the original data. While early

research on patient representation relied on domain experts and time-consuming man-

ual feature selection [57], more recent approaches utilize machine learning methods

which are able to automatically identify patterns in data to produce compact yet

meaningful representations of the original data (see Chapter 2, Related Works).

To address these challenges of data quality and availability inherent to EHR while

also examining diseases on a broader scale, we apply a modified version of spectral

clustering and variational autoencoders (VAE) to obtain patient representations. We

then cluster these patient representations to gain insights into the patients’ underlying

conditions. In our modified version of spectral clustering, we compute our affinity ma-

trix using only a subset of mutual nearest neighbors to simulate a scenario where data

is limited, select eigenvector features and patient representations based on empiricism

rather than theoretical heuristics, and make slight computational adjustments to ac-

count for computational constraints in our eigensolvers. We apply this method to one

of the largest, freely available datasets, Medical Information Mart for Intensive Care
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(MIMIC)-III. From this dataset, we only use International Classification of Disease

(ICD)-9 codes as data, ensuring that our data types are accessible in most public

and private datasets. We assess our patient representations and clustering first by

examining the most frequently occurring ICD-9 codes within each cluster and then by

conducting a higher-level analysis using a hybrid Phecode-ICD feature representation.
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Chapter 2

Related Works

2.1 Patient Representation Learning

Extensive research exists on improving healthcare applications using EHRs and ma-

chine learning (for surveys see [68, 51, 45, 12]). Among these, researchers have also

applied machine learning techniques to learn high-level patient representations from

high-dimensional and often noisy patient data. Miotto et al. learned a general rep-

resentation that outperformed previous representations on disease classification and

patient disease tagging using a three-layer stack of denoising autoencoders and ag-

gregated EHR data from 700,000 patients from the Mount Sinai data warehouse

[44]. Suo et al. learned patient representations and used them to measure pairwise

patient similarities using a convolutional neural network and data from 9,528 patients

from a larger, real world dataset [58]. Other researchers have leveraged time-series

patient data to learn representations. Ma et al. learned patient representations and

demonstrated their efficacy in predicting the onset of coronary heart failure using

temporal patient data extracted from proprietary and public datasets and a model

consisting of attentive and time-aware modulars and a hybrid network comprising re-

current and convolutional neural networks [42]. Lyu et al. demonstrated the efficacy

of their unsupervised representations through practical applications using the eICU

Collaborative Research Database [48] and sequence-to-sequence models [41]. As the

research on representation learning accelerates, more recent works have addressed is-
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sues relating to data-silos and lack of interoperability between healthcare centers by

learning patient representations in a distributed manner [40, 70, 29, 37].

2.2 Symptom Clustering and Comorbidity Analysis

While considerable literature exists on comorbidity analysis and symptom clustering,

where researchers use data-driven approaches to identify co-occurring symptoms and

patient subgroups, most works start by selecting for a specific phenotype rather than

using a patient population with a broad range of conditions. For example, in early re-

search conducted in symptom clustering, Sanders et al. used multidimensional cluster

analysis to identify patient subgroups in 180 patients suffering from chronic pain [53],

Knishkowy et al. analyzed survey data to identify symptom clusters from a subset

of 259 Israeli school children with recurrent psychosomatic symptoms [36], and Ho

et al. used principal component analysis followed by varimax rotation to identify 5

symptom clusters from a randomly surveyed group of perimenopausal women [27].

More recent literature on symptom clustering focuses on various stages and forms of

cancer [15, 34, 19, 5]. For example, Walsh et al. used an agglomerative hierarchical

clustering approach to examine 25 symptoms on 922 patients with advanced cancer

and identified 7 symptom clusters which were fatigue: anorexia-cachexia, neuropsy-

chological, upper gastrointestinal, nausea and vomiting, aerodigestive, debility, and

pain [65]. Tsai et al. used exploratory factor analysis on survey data obtained from

427 patients with advanced cancer to identify 5 symptom clusters which were loss

of energy, poor intake, autonomic dysfunction, aerodigestive impairment, and pain

complex [62]. This also holds true for comorbidity analysis, which has examined

symptoms in connection with hypertension [10, 63, 33] among others.

2.3 Large-scale Comorbidity Analysis

To the best of our knowledge, only a handful of studies have attempted to draw asso-

ciations between a wide array of conditions using machine learning and clinical data.
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Li et al. developed a Bayesian unsupervised learning approach based on collaborative

filtering and latent topic models to identify 100 groups of diseases from over 50,000

EHR features [38]. Guo et al. analyzed data from over 8,000,000 patients in 453 hos-

pitals in China to build a disease comorbidity network with 5,702 nodes and 258,535

edges [23]. It’s worth noting several works, such as that by Goh et al. [20], have

built networks across thousands of disease genes, however these works typically do

not utilize both machine learning and clinical data.
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Chapter 3

Spectral Clustering using

Approximate Mutual Nearest

Neighbors

In spectral methods for clustering, we build a matrix by computing distances between

points and then use the top eigenvectors of this matrix to cluster data points. Various

spectral methods for clustering exist and have been used across various domains. Here,

we present a spectral clustering method based on [46].

Representing data points as distances or similarities to other data points is benefi-

cial as doing so densifies sparse datasets and allows data representations to generalize

across data types and datasets. For example, if we are given a dataset that is high

dimensional and sparse then representing each data point as a set of distances to

other data points can drastically increase the density of the dataset. Likewise, by

representing data points as a set of distances rather than their original features, we

abstract away individual data types to create a representation that is potentially more

general. This representation of spectral methods is then especially relevant to health-

care, where data on patients is often sparse and can vary greatly between hospitals

and insurance systems.
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3.1 Methods and Materials

3.1.1 Dataset: Medical Information Mart for Intensive Care

(MIMIC)-III

The Medical Information Mart for Intensive Care (MIMIC)-III is a freely accessible,

large database containing information relating to patients admitted to intensive care

units and includes data such as vital signs, medications, observations and notes, di-

agnostic codes, and more [31]. The data was collected from the Beth Israel Deaconess

Medical Center in Boston, Massachusetts between 2001 and 2012. Because patients

were admitted to intensive care units, MIMIC-III contains more data pertaining to-

wards patients who are critically ill or injured rather than, for example, routine check

up data [31].

International Classification of Disease (ICD)-9 codes

While MIMIC-III contains a wide variety of patient data, the patient data we utilize

here are diagnostic codes which are encoded using standardized International Classifi-

cation of Disease (ICD)-9 codes [31]. For example, the ICD-9 code "001" corresponds

to Cholera. In total, MIMIC-III contains data for 46,520 distinct patients including

adults (defined to be aged 16 years or above) and neonates (ie. newborn children).

Each patient has ICD-9 codes corresponding to each of their visits to the intensive

care unit. In aggregate, we find there are 6,984 ICD-9 codes within MIMIC-III.

While many data types exist in MIMIC-III we use ICD-9 diagnostic codes due

their widespread usage in hospitals in the US and abroad. ICD-9 codes are an in-

ternationally recognized classification system which are primarily used for hospital

administrivia [60]. While the ICD-9 has since been revised and many countries are

now using or in the process of converting to ICD-10 [8, 25], ICD-9 still encodes core

features and diagnostic information and can be converted to ICD-10 [18].

ICD diagnostic codes are useful for clinical analysis and tracking disease despite

some of their potential inaccuracies. For example, some studies have noted that ICD-
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9’s are inaccurate for tracking some diseases, such as one study that showed ICD-9

codes were inaccurately assigned to patients experiencing traumatic brain injury [4].

Nonetheless, other studies have shown the use of ICD-9 codes to be accurate in

tracking certain diseases [54, 21, 7, 17].

3.1.2 Modified Spectral Clustering

Given a set of points 𝑆 = {𝑠1, ...𝑠𝑛} in R𝑙 that we want to cluster into 𝑘 subsets:

1. Build an Approximate Nearest Neighbors tree 𝑇 using the random-projection

based method of Locality Sensitive Hashing (LSH) to approximate the cosine

distance between all pairs of points, where the cosine distance between points

𝑠𝑖 and 𝑠𝑗 is

𝑑(𝑠𝑖, 𝑠𝑗) =
𝑠𝑖 · 𝑠𝑗

||𝑠𝑖||||𝑠𝑗||
.

We use a publicly available library called Annoy (Approximate Nearest Neigh-

bors Oh Yeah) from Spotify.

2. Using the precomputed distances from 𝑇 , build the affinity matrix 𝐴′ ∈ R𝑛×𝑛.

That is,

𝐴′
𝑖𝑗 = exp(−𝐶 * 𝑑(𝑠𝑖, 𝑠𝑗)

2)

𝐶 = 1/2𝜎2

if and only if 𝑠𝑗 is an 𝑚 nearest neighbor of 𝑠𝑖 and 0 otherwise. in our ex-

periments, we found that 𝐶 = 2 was sufficient. Additionally, note that 𝐴′ is

not necessarily symmetric and each row of 𝐴′ should contain exactly 𝑚 nonzero

values.

3. Compute the symmetric matrix 𝐴 from 𝐴′ by keeping nonzero values of 𝐴′ if

and only if 𝑠𝑖 and 𝑠𝑗 are mutual nearest neighbors. That is, 𝐴𝑖𝑗 = 𝐴′
𝑖𝑗 iff 𝑠𝑖 and

𝑠𝑗 are mutual nearest neighbors. Otherwise, 𝐴𝑖𝑗 = 0. Note that 𝐴 is symmetric

and nonuniform.

4. Using 𝐴, compute the diagonal matrix 𝐷 where 𝐷𝑖𝑖 is the sum of 𝐴’s 𝑖th row.
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5. Compute 𝐿 = 𝐷−1/2𝐴𝐷−1/2.

6. Form the matrix 𝑋 by finding the 𝑝 largest eigenvectors 𝑥1, 𝑥2, ..., 𝑥𝑝 of 𝐿, where

𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑝] ∈ R𝑛×𝑝.

7. Compute the matrix 𝑌 by renormalizing the rows of 𝑋 to have unit length.

That is,

𝑌𝑖𝑗 =
𝑋𝑖𝑗

(
∑︀

𝑗 𝑋
2
𝑖𝑗)

−1/2

8. Treating each row of 𝑌 as a point in R𝑝, use K-means to cluster the data into

𝑘 clusters.

9. Assign the original point 𝑠𝑖 to cluster 𝑗 if only if row 𝑖 for 𝑌 was assigned to

cluster 𝑗.

Changes to the original spectral clustering algorithm

Our method differs from standard spectral clustering in several ways:

∙ Our method leverages an Approximate Nearest Neighbors data structure. While

we sacrifice some precision in the process, this modification allows our method

to scale better with larger datasets.

∙ We use cosine distance in the RBF Kernel instead of euclidean distance. Using

cosine distance not only performs well empirically and simplifies implementa-

tion, but also has been shown to perform similarly to euclidean distance in high

dimensional space [50].

∙ We compute a partial affinity matrix 𝐴 using mutual nearest neighbors whereas

the original version in [46] forms 𝐴 using all pairwise distances between points.

We choose to compute a partial 𝐴 in order to simulate a real-world healthcare

scenario where data may be missing or lacking or where extensive comparisons

may not be a viable option.
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∙ We treat each row in 𝑌 as a point in R𝑝 and use K-means to obtain 𝑘 clusters

where 𝑘 does not necessarily equal 𝑝. In the original method, the number of

clusters 𝑘 equals the number of selected eigenvector features 𝑝. We choose to

use different values given our empirically successful results.

Intuition behind spectral clustering

Here we briefly provide intuition for why spectral methods for clustering perform well.

Note that numerous resources explore the underlying mechanisms in greater detail

using a variety of methods such as idealized cases, comparisons to other algorithms,

mathematical proofs, and more [13, 28, 46, 55, 64].

Intuitively, spectral methods for clustering work because data points in Cartesian

space can sometimes be partitioned better in similarity space. We show this by

considering an idealized case. Assume each data point 𝑠1, ..., 𝑠𝑛 belongs to one of 𝑝

distinct clusters and each cluster is separated (ie. infinitely far) from all other clusters.

We start with our original dataset 𝑆, where each data point exists in Cartesian space,

and compute 𝐿 ∈ R𝑛×𝑛, where each data point can be thought of as existing in

similarity space. Next, we compute 𝐿’s eigenvector matrix 𝑋 ∈ R𝑛×𝑝, where 𝑝 < 𝑛

without loss of generality.

In this idealized case, 𝐿 would be a block-diagonal matrix, leading to a convenient

property where each block corresponds to a unique cluster [46]. This is because each

of the 𝑝 columns (ie. eigenvectors) in 𝐿’s eigenvector matrix 𝑋 ∈ R𝑛×𝑝 is orthogonal

to each other such that each row (ie. transformed data point) will contain a single

nonzero value [46]. In other words, each row in 𝑋 will lie along one of 𝑝 unique axes

corresponding to one of 𝑝 distinct clusters which can then be identified through simple

inspection or K-Means. And because each row in 𝑋 corresponds to a data point in

the original dataset 𝑆, each data point 𝑠1, ..., 𝑠𝑛 can then be mapped accordingly to

one of 𝑝 distinct clusters.

While the idealized case 1) relies on 𝐿 being a block-diagonal matrix and 2)

makes assumptions about the dataset 𝑆 that may not necessarily hold in real world

datasets, spectral methods for clustering still perform well empirically as they hold
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certain provable properties which ensure nontrivial partitioning of the original data

[46, 55].

3.1.3 Cluster Analysis

We assess the quality of our patient clustering by 1) examining the most frequent

ICD-9 codes within individual sets of clusters and 2) conducting a high-level analysis

over all clusters. By examining individual clusters, we are able to make a higher-

resolution assessment of how well our clusters capture meaningful conditions. By

examining all clusters together, we are able to make a higher-level assessment of the

general trends and conditions our clusters capture.

Examining most frequent symptoms in individual clusters

To assess individual sets of clusters, we separate clusters into 3 classes by size —

small, medium, large — and then examine the 5 most frequently occurring conditions

within each cluster. The conditions are encoded based on International Classification

of Disease (ICD)-9 codes (see Section 3.1.1). Examining the diseases using the ICD-

9 codes allows us to gain a high resolution understanding of the specific conditions

within a cluster. To decide the small, medium, and large size thresholds, we obtain

the interquartile range (IQR) of cluster sizes and define small clusters to be below

the IQR, medium clusters to be within the IQR, and large clusters to be above

the IQR. We then analyze only a subset of the cluster due to the potentially large

number of clusters that result from K-Means. We also only examine the most frequent

conditions within each cluster, as some cluster may contain several hundred different

ICD-9 codes.

High-level analysis of all clusters

Hybrid Phecode-ICD representation. To assess the quality of all clusters, we start by

1) using a hybrid encoding consisting of Phecodes and ICD-9 codes rather than using

ICD-9 codes alone to represent patient features (we refer to the hybrid encoding as
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Phecode-ICD), 2) obtaining the distribution of Phecode-ICD features for each cluster,

and 3) using the new Phecode-ICD representation to construct a network across the

clusters. Similar to the ICD-9 codes, Phecodes are a hierarchical coding structure

used for encoding phenotypes that can be converted to ICD-9 [67, 14]. For example,

the ICD-9 code "001" which corresponds to "Cholera" maps to the Phecode "008"

corresponding to "Intenstinal infection" [14]. A major utility for using Phecodes

over ICD-9 for high-level analysis is that Phecodes can be mapped to higher-level

disease categories that still preserve a high-degree of detail [67]. For example, ICD-9

codes "001.0" and "002" map to "Cholera due to Vibrio cholerae" and "Typhoid and

paratyphoid fevers," respectively but both codes map to Phecode "008" corresponding

to "Intenstinal infection" [14].

We perform our mapping by mapping specific ICD-9 codes to the nearest integer

Phecode, as doing so enables us to obtain a disease class that is broad yet still retains

a high level of detail. For example, the ICD-9 code "002.0" originally maps to the

Phecode "008.5." Due to the hierarchical structure of Phecodes, we would then map

the ICD-9 code to "008."

In instances where we were unable to map between ICD-9 to Phecode using our

method and online resources [14], we retained the original ICD-9. For example, we

were unable to find a direct Phecode mapping for ICD-9 code "V3000" corresponding

to "Single liveborn; born in hospital; delivered by cesarean section." After converting

our from ICD-9 codes hybrid Phecode-ICD, we then obtain a feature distribution for

each cluster.

Weighted Jaccard similarity network. After obtaining Phecode-ICD cluster-level dis-

tributions, we construct an inter-cluster similarity network using weighted Jaccard

similarity. We compute this metric for all pairs of clusters and then build a similarity

graph. The weighted Jaccard similarity value is a metric which measures the similarity

between two discrete sets In our case, these sets are our clusters and each element in

a set is a Phecode-ICD feature. Mathematically, let 𝐽(𝐴,𝐵) be the weighted Jaccard

similarity value between clusters 𝐴 and 𝐵. Additionally, let 𝑖 denote some Phecode-
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ICD feature and 𝐴𝑖 denote its frequency in cluster 𝐴 and 𝐵𝑖 denote its frequency in

cluster 𝐵. The weighted Jaccard similarity value is then defined as

𝐽(𝐴,𝐵) =
Σ𝑖𝑚𝑖𝑛(𝐴𝑖, 𝐵𝑖)

Σ𝑖𝑚𝑎𝑥(𝐴𝑖, 𝐵𝑖)
.

Silhouette plots for qualitative cluster assessment. We use silhouette analysis to qual-

itatively assess whether our selected number of clusters is appropriate. That is, we

examine the average silhouette score across all clusters while inspecting the corre-

sponding silhouette plot. We do so using the eigenvector patient representations.

A silhouette score is a value between -1 and 1 which measures of how similar an

object is to its own cluster compared to other clusters [66]. The average silhouette

score across all clusters is then calculated by averaging the score across all data

points. In our setting, we compute a patient’s silhouette score by computing the

average distance between that patient and all other patients within the same cluster.

Next, we compute the average distance between that patient and all other patients

within the nearest cluster. Finally, we then compute a ratio using the two values.

Mathematically, let patient 𝑖 belong to cluster 𝐶𝑖 and its silhouette score be 𝑠(𝑖).

Next let 𝑑(𝑖, 𝑗) be the euclidean distance between patient 𝑖’s eigenvector representa-

tion and some patient 𝑗’s eigenvector representation, 𝑎(𝑖) be the average intra-cluster

distance for patient 𝑖, and 𝑏(𝑖) be the average inter -cluster distance between patient

𝑖 and all points in the cluster nearest to cluster 𝐶𝑖. The silhouette score is then

𝑎(𝑖) =
1

|𝐶𝑖| − 1

∑︁
𝑗∈𝐶𝑖,𝑖 ̸=𝑗

𝑑(𝑖, 𝑗)

𝑏(𝑖) = min
𝑘 ̸=𝑖

1

|𝐶𝑘|
∑︁
𝑗∈𝐶𝑘

𝑑(𝑖, 𝑗)

𝑠(𝑖) =

⎧⎪⎪⎨⎪⎪⎩
𝑏(𝑖) − 𝑎(𝑖)

max (𝑎(𝑖), 𝑏(𝑖))
, if |𝐶𝑖| > 1

0, if |𝐶𝑖| = 1
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Based on the formula for 𝑠(𝑖) above, it can be shown that a silhouette score is within

the range -1 and 1. Intuitively, lower silhouette scores represent ambiguous or po-

tentially inappropriate cluster assignments while higher values represent decisive or

distinct cluster assignments. Considering a toy example, if a data point is located

within a distinct cluster that is well-separated from neighboring clusters, then we

expect the data point’s inter -cluster distance 𝑏(𝑖) to be greater than its intra-cluster

distance 𝑎(𝑖), resulting in a positive silhouette score. On the other hand, if a data

point exists at the boundary of two potential clusters that have a similar density,

then we expect this data point’s inter -cluster distance 𝑏(𝑖) and intra-cluster distance

𝑎(𝑖) to be approximately equal, resulting in a silhouette score that is closer to 0.

And in certain cases, such as when a data point is assigned to a sparse cluster with

low density while a dense cluster is nearby, then its inter -cluster distance 𝑏(𝑖) may

be less than its intra-cluster distance 𝑎(𝑖), resulting in a negative silhouette score.

Generalizing this understanding to an entire set of clusters, we would then expect a

good clustering to have a positive average silhouette score.

3.2 Experiment

3.2.1 Preprocessing: Binary ICD Matrix

We compute a binary 0-1 matrix where each patient is represented by a binary vector

and a 1 represents the presence an ICD-9 diagnostic code. We do so by first open-

ing the "diagnoses_icd" table in MIMIC-III. Prior to preprocessing, this table has

651,047 rows with 5 columns. We only use 2 of the 5 columns that correspond to

the patient identification number ("SUBJECT_ID") and the ICD-9 diagnostic code

column ("ICD9_CODE"). We then aggregate this information into a binary matrix,

such that each row or vector corresponds to a single patient and each column cor-

responds to a single ICD-9 diagnostic code. Doing so results in a matrix of shape

46,520 patients × 6,984 ICD-9 diagnostic codes. Note that while there are over 14,000

ICD-9 codes, we found that only 6,984 are present in the "diagnoses_icd" table of
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MIMIC-III.

3.2.2 Modified Spectral Clustering

Setting up the Approximate Nearest Neighbor Tree 𝑇

After building the binary matrix, we then pass this into our spectral clustering algo-

rithm (see Section 3.1.2) and start by building an approximate nearest neighbor tree

𝑇 . We do so using the open-source library "Approximate Nearest Neighbor Oh Yeah"

(ANNOY) from Spotify, which creates an approximate nearest neighbor tree using

the random projection method of Locality-Sensitive Hashing [11]. In the approximate

nearest neighbor tree data structure, we are able to obtain the nearest 𝑛 neighbors

for any given patient in sublinear time. This means that over the entire dataset, we

are able to efficiently compute our affinity matrix in under O(𝑛2) runtime. Using the

ANNOY library, we construct the approximate nearest neighbors tree using default

parameters, cosine distance, and 10 intermediate trees (a parameter where higher

values increase the precision of nearest neighbor outputs at the expense of runtime

for constructing the tree).

Computing initial affinity matrix 𝐴′

Next, we build a preliminary affinity matrix 𝐴′. To start, for each patient 𝑠𝑖, we

query our approximate nearest neighbor tree 𝑇 to obtain patient 𝑠𝑖’s 𝑛 = 50 nearest

neighbors. While we tested other values for the number of nearest neighbors 𝑛, we

highlight 𝑛 = 50 as this was the smallest value that yielded efficacious results. Then,

for each nearest neighbor, we compute the affinity metric according to the modified

Radial Basis Function kernel in Section 3.1.2, step 2. After repeating this process for

each patient, we obtain 𝐴′, a 46,520 patient × 46,520 patient affinity matrix where

each row has exactly 𝑛 = 50 nonzero values.
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Computing 𝐴 from 𝐴′ by only keeping mutual nearest neighbors

After obtaining 𝐴′, we build 𝐴 by only keeping values corresponding to mutual near-

est neighbors. We perform this step because the nearest neighbors obtained from the

approximate nearest neighbor tree 𝑇 are not necessarily symmetric and obtaining a

symmetric affinity matrix 𝐴 is necessary for this spectral clustering method. Two

patients are considered mutual nearest neighbors if both patients are in each other’s

neighborhoods. More specifically, for any pair of patients 𝑠𝑖 and 𝑠𝑗, their correspond-

ing affinity values 𝐴𝑖𝑗 and 𝐴𝑗𝑖 are nonzero if 𝐴′
𝑖𝑗 and 𝐴′

𝑗𝑖 are also nonzero and 0

otherwise. As a result, the patients in 𝐴 have a non-uniform distribution as shown

in Figure 3-1a. From this distribution, note that there are two "spikes" in the lowest

and highest bins. These peaks are caused by an excess of patients with either 0 or

𝑛 = 50 neighbors. Based on experiments, we found the presence of these patients

biased the final output and so we removed them. Doing so results in a final 𝐴 matrix

of shape 42,517 patients × 42,517 patients, where each row was between 1 and 49

(inclusive) nonzero values. The updated distribution is shown in Figure 3-1b, where

the peaks in the lowest and highest bins have now been reduced or removed.

Computing diagonal matrix 𝐷 and normalized Laplacian 𝐿

With our 𝐴 matrix, we then straightforwardly compute 𝐷 and 𝐿 according to Section

3.1.2 steps 4 and 5. We note that care should be taken when computing 𝐷 and 𝐿,

as some Python libraries can result in 𝑛𝑎𝑛 or "not a number" values, such as when

taking the libraries mistakenly take the inverse of 0.

Obtaining eigenvector feature matrix 𝑋

After obtaining 𝐿, we compute the top 𝑘 eigenvector matrix 𝑋 and then straight-

forwardly normalize its rows to unit norm to obtain 𝑌 . In terms of implementation,

there are several ways of obtaining 𝑋 from 𝐿. For example, some methods involve

computing the eigenvector matrix in its entirety and then selecting the top 𝑘 eigen-

vectors based on the quality of results; this method allows for a potentially more
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(a) Distribution of node degrees in affinity
matrix 𝐴 before removing nodes with 0 and
50 connections.

(b) Distribution of node degrees in affinity
matrix 𝐴 after removing nodes with 0 and
50 connections. Note that by removing pa-
tients with 50 connections, we also reduced
the degrees of their neighbors. The empty
bin in the middle contained patients who
were tightly connected with patients with 50
connections.

Figure 3-1: Degree distributions of A before and after removing nodes. Note these
distributions differ from that in standard spectral clustering [46], where the graph
would be fully connected and each node would therefore have the same degree.

comprehensive evaluation of 𝐿’s eigenvectors at the (potentially large) expense of

computation time. Other methods allow us to compute the top 𝑘 eigenvectors di-

rectly via truncated singular value decomposition (SVD), sacrificing some precision

in exchange for reduced runtime. In our case, computing all eigenvectors of 𝐿 using

standard eigenvector solvers proved to be prohibitively expensive. As a result, we

compute the top 𝑘 eigenvectors directly. To ensure we examine a sufficient number

of eigenvectors, we compute the top 𝑘 = 2000 eigenvectors.

Computing 𝑋 using truncated SVD. More specifically, we obtain the eigenvector ma-

trix 𝑋 from 𝐿 by performing a truncated singular value decomposition (SVD) on

𝐿 using the Python library scikit-learn function "randomized_svd," a function that

runs accurately and efficiently [24, 39, 59]. Truncated singular value decomposition

is often used for approximating matrices and, in our setting, is a convenient way of
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computing 𝑋 directly from 𝐿 where our result is

𝐿 ≈ 𝑋Λ𝑋𝑇

where Λ is a sorted diagonal matrix containing 𝐿’s top 𝑘 eigenvalues and 𝑋’s columns

contain the corresponding eigenvectors.

Background on SVD and truncated SVD. To better understand truncated singular

value decomposition, we first need to look at standard singular value decomposition.

In standard singular value decomposition, we decompose some 𝑛× 𝑛 real matrix 𝑀

into

𝑀 = 𝑈Σ𝑉 𝑇

where 𝑈 is a 𝑛×𝑛 real matrix such that 𝑈𝑇𝑈 = 𝐼, Σ is a 𝑛×𝑛 diagonal matrix with

non-negative real numbers (ie. 𝑀 ’s "singular values") on the diagonal, 𝑉 is a 𝑛× 𝑛

real matrix such that 𝑉 𝑇𝑉 = 𝐼, and 𝑈 and 𝑉 𝑇 are orthonormal matrices.

If 𝑀 is a 𝑛 × 𝑛 symmetric real matrix, then singular value decomposition is

equivalent to spectral- or eigen-decomposition. That is, through standard singular

value decomposition, we can decompose our symmetric real matrix 𝑀 into

𝑀 = 𝑈Σ𝑉 𝑇 = 𝐸Λ𝐸𝑇

where 𝐸 is an 𝑛 × 𝑛 matrix whose columns are orthonormal eigenvectors of 𝑀 and

Λ is a 𝑛× 𝑛 diagonal matrix containing 𝑀 ’s eigenvalues.

Truncated singular value decomposition then simply computes the top 𝑘 eigen-

vectors and eigenvalues of 𝑀 , meaning we would only keep the first 𝑘 columns of

the eigenvector matrix 𝐸 and corresponding top 𝑘 values in the eigenvalue matrix Λ.

Doing so results in an approximate decomposition where

𝑀 ≈ 𝐸1:𝑘Λ1:𝑘𝐸
𝑇
1:𝑘
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where 𝐸1:𝑘 is a 𝑛× 𝑘 matrix and Λ1:𝑘 is a 𝑘 × 𝑘 matrix.

Quality control: selecting a subset of eigenvectors from 𝑋

Before computing the normalized 𝑌 from 𝑋, we first perform quality control by

examining the eigenvalues of 𝐿, as the eigenvalues theoretically reveal much of the

underlying structure of our data and influence which of 𝐿’s eigenvectors we should

select to build 𝑋. For example, if we examine 𝐿’s first 2,000 eigenvalues in Figure

3-2a, we see that all eigenvalues are less than or equal to 1 and the eigenvalue 1

is repeated (we verify that the eigenvalue 1 is repeated approximately 200 times).

This is worth noting, as the number of times the eigenvalue 1 is repeated should

be approximately equal to the number of underlying clusters in our data and that,

theoretically, we should be using these 200 eigenvectors to build 𝑋 [46].

(a) First 2000 eigenvalues of 𝐿. The eigen-
value 1 is repeated ∼ 200 times.

(b) Eigenvalues 200 - 220 of 𝐿 corresponding
to the eigenvectors we use to build 𝑋.

Figure 3-2: Sorted eigenvalues of 𝐿 matrix

However, we arrive at a different approach and instead compose 𝑋 using 𝐿’s first

20 eigenvectors starting from 203, where 203 is selected as it is approximately where

the eigenvalues stop repeating. These eigenvalues can be seen in Figure 3-2b. We

should note that several methods have been proposed for selecting the eigenvectors

with varying degrees of efficacy, trade-offs and theoretical justifications [47, 32, 56].
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Normalizing rows of 𝑋 to obtain 𝑌

After constructing our 45, 217 × 20 matrix 𝑋 using 20 eigenvectors of 𝐿, we obtain

𝑌 by normalizing 𝑋’s rows.

K-Means Clustering using 𝑌

After construbting 𝑌 , we then performing K-Means clustering where the number of

clusters 𝐾 = 30. Again, we note 𝐾 = 30 does not equal the theoretical number of

clusters 200 [46]. However, we see empirically that doing so yields better results.

Summary

To summarize our methods so far, we first built a cosine distance approximate nearest

neighbor tree using the "Approximate Nearest Neighbors Oh Yeah" library from

Spotify. Next, we construct our affinity matrix 𝐴′ where for each patient, we compute

the affinities using 50 approximate nearest neighbors and leave all other values 0.

Then, we obtain 𝐴 by examining each pair of patients in 𝐴′ with a nonzero affinity

value and keeping that value if and only if that pair are mutual nearest neighbors. We

then use 𝐴 to compute 𝐷 and 𝐿 and obtain 𝐿’s eigen-decomposition using truncated

singular value decomposition. We then select 20 of 𝐿’s eigenvectors to create 𝑋,

normalize the rows of 𝑋 to obtain 𝑌 , and then use 𝑌 to run K-Means clustering with

30 clusters.

3.2.3 Cluster Analysis

Examining most frequent symptoms in individual clusters

We examine the quality of specific clusters by computing the interquartile range (IQR)

of cluster sizes. From our experiment, we obtain an IQR of 74.25-2448.0 patients,

which we round to 74-2448 patients. The IQR divides the clusters into 3 classes —

small, medium, large — where small clusters are below the IQR, medium clusters are

within the IQR, and large clusters are above the IQR. To analyze the ICD-9 codes,

for each cluster we obtain the top 5 most frequently occurring ICD-9 codes. We then
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normalize the probability distribution with respect to the top 5 ICD-9 codes and plot

them in their respective heatmaps. The results can be seen in Figure ??.

High-level analysis of all clusters

Hybrid Phecode-ICD representation. To gain a broader view of what our clusters cap-

ture, we first convert from ICD-9 codes to our hybrid Phecode-ICD representation.

Doing so results in a reduction of features from 6,894 ICD9 codes to 1,110 Phecode-

ICD features, where some ICD-9 codes were kept if they did not have a corresponding

Phecode (see Section 3.1.3). We obtained the ICD9 to Phecode mapping using the

map provided by the publicly available at phewascatalog.org [14]. We then obtain

a sorted distribution of Phecodes and ICD9 codes for each cluster as seen in Figure

3-7a. Note the main significance of these plot is the shape of the sorted distribution

and not the ordering.

Weighted Jaccard similarity network. To create a network across our clusters, af-

ter reducing our original feature encoding from 6,894 ICD9 codes to 1,110 Phecodes

and ICD9 codes, we obtain Jaccard similarity scores between all clusters. To obtain a

single feature vector to represent each cluster, we sum over all patient Phecode-ICD

features in that cluster. Then for each cluster, we compute pairwise similarities with

all other clusters.

Silhouette plots for qualitative cluster assessment. To compute the silhouette scores,

we start with our normalized eigenvector matrix 𝑌 , where each row contains a patient

representation, as well as the cluster assignment results from our K-Means clustering,

where 𝑘 = 30. Then, for each patient, we compute the silhouette score and then

plot it along side its cluster. This plot is shown in Figure 3-3a, where each "peak"

corresponds to a cluster. Clusters are plotted according to their index assignment

based on our K-Means clustering.
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3.3 Results

(a) Empirically derived silhouette plot. This
plot uses 20 eigenvectors corresponding to
the 200-220 highest eigenvalues and K-
Means with 30 clusters.

(b) Silhouette plot using standard spectral
clustering heuristic. This plot uses 200
eigenvectors corresponding to the 200 first
repeated eigenvalues and K-Means with 200
clusters.

Figure 3-3: Eigenvalue selection heuristic comparison: silhouette plots

Before examining the contents of our clusters, we first note that the silhouette plot

corresponding to our method yields a qualitatively better silhouette plot than that

corresponding to the standard spectral clustering heuristic. We see this in Figure 3-3

which shows a side-by-side comparison of silhouette plots produced using our empir-

ical versus the standard heuristic for selecting eigenvectors. Generally, a silhouette

plot for a set of clusters is considered well-formed if the vast majority of individual

data points have positive silhouette scores and each cluster’s silhouette plot is approx-

imately smooth in shape with minimal spikes, as these spikes may indicate ambiguous

or potentially improperly assigned data points [52]. Indeed, examining the silhouette

plots in Figure 3-3, we see that our method obtains a well-formed silhouette plot

with the exception of a few clusters who have much higher silhouette scores and a

few patients with negative scores. Examining the plot produced using the standard

heuristic, we see that a majority of patients actually have negative silhouette scores,
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suggesting inappropriate clustering. While our heuristic yields qualitatively improved

results, there may be other heuristics to consider (See Discussion).

3.3.1 Examining the most frequent symptoms in individual

clusters

We also demonstrate that our clusters capture different subsets of symptoms, as

shown in Figures 3-4, 3-5, and 3-6. We’ve divided the clusters based on size into

small, medium, and large clusters and show that in some cases our clusters capture

distinct sets of diagnostic ICD-9 codes and in other cases capture overlapping ICD-9

codes. For example, in Figure 3-4 we see that cluster numbers 1, 2, 3, and 18 capture

distinct sets of ICD-9 codes (as evidenced by the diagonal). At the same time, clusters

4, 26, 27, and 29 capture similar groups of ICD9 codes corresponding to coronary

atherosclerosis, hypertension, hyperlipidemia, atrial fibrillation, and congestive heart

failure. In our medium-sized clusters in Figure 3-5, we observe a similar pattern where

more overlap in ICD-9 codes commonly associated with childbirth such as cesarean

section, prophylactic vaccination, and circumcision. Lastly, our small clusters shown

in Figure 3-6 have more overlapping ICD-9 codes.
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Figure 3-4: Top 5 ICD-9 codes for Large Clusters

Figure 3-5: Top 5 ICD-9 codes for Medium Clusters
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Figure 3-6: Top 5 ICD-9 codes for Small Clusters

3.3.2 High-level analysis of all clusters

Hybrid Phecode-ICD distributions

Examining the contents of our clusters, we find that our method captures symptoms

clusters as well as some underlying relationships. We first see this in the sorted

distribution plot of Phecode-ICD features in Figure 3-7a (data summarized in Tables

A.1 and A.2). Figure 3-7a contains 30 subplots corresponding to our 30 clusters and

each subplot contains the sorted distribution of features as encoded by our Phecode-

ICD scheme. Note that each subplot contains a sorted distribution, meaning that the

histogram locations are not necessarily consistent across subplots (ex. the highest

peak in Cluster 0 does not necessarily correspond to the highest peak in Cluster 1).

We see that most clusters contain a single prominent feature followed by a rapid drop

off with the range for the number of features in a cluster being 3 to 910. Based on

this observation that most clusters contained a single dominant feature, we created a

similarity network and colored it based on the most prominent feature.
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Figure 3-7: Phecode-ICD distribution for all 30 clusters.

(a) Each plot contains the sorted distribution of Phecode-ICD features for that particular
cluster in order to provide a sense of the mix of patients in each cluster. Note that this
means there is no consistent ordering for the peaks across clusters (ex. the highest peak of
Cluster 0 and Cluster 1 do not necessarily correspond to the same Phecode-ICD feature.)
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Weighted Jaccard similarity cluster network

Examining our cluster network in Figure 3-8a, we see that our weighted Jaccard

similarity network identifies common conditions while also finding relations which

potentially have clinical relevance. Here, cluster colors correspond to the most com-

mon code according to our hybrid Phecode-ICD features, cluster sizes correspond to

the number of patients in the cluster, and edges have been pruned for visual clar-

ity. We find that there are 11 unique Phecode-ICD features which belong to different

families of symptoms (ex. "Intracranial hemorrhage" versus "Cardiac dysrhythmias")

where the most common code is Phecode 411 — "Ischemic Heart Disease." Exam-

ining spatial relationships among clusters, we see that our network indeed groups

similar symptom groups together. For example, we see near the top of the figure that

clusters whose most common code is Phecode 276 — "Disorders of fluid, electrolyte,

and acid-base balance" (shown in light blue) are located close to each other while the

same is true at the bottom of the figure for some symptoms corresponding to infants

(shown in green and grey). We also observe that there is a separation between the top

and bottom portions of the network. This is likely due to the patient population in

the MIMIC-III dataset which consists of adults and neonates. This is also supported

by the fact that the conditions in the lower half of the graph correspond to child

delivery and future works will be conducted to examine patient subpopulations more

closely.
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Figure 3-8: Cluster Network using weighted Jaccard similarity

(a) Clusters are colored according to most frequent Phecode-ICD feature in cluster with
13 colors in total. Cluster are labeled according to (Phecode-ICD feature, Phecode-ICD
long-form name) where the prefix "icd9" indicates a ICD9 code and no prefix indicates a
Phecode. Edges were pruned for visual clarity.
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3.4 Discussion

For discussion purposes, we examine 3 clusters more closely and demonstrate that

they capture symptoms that are clinically related. Here, we select clusters 3, 15, and

7 as these have the highest entropies based on their distributions of Phecode-ICD

features. We next list their 5 most frequent Phecode-ICD features below:

∙ Cluster 3

1. Phecode 276: "Disorders of fluid, electrolyte, and acid-base balance"

2. Phecode 1008: "Crushing or internal injury to organs"

3. Phecode 317: "Alcohol-related disorders"

4. Phecode 285: "Other anemias"

5. Phecode 819: "Skull and face fracture and other intercranial injury"

∙ Cluster 15

1. Phecode 276: "Disorders of fluid, electrolyte, and acid-base balance"

2. Phecode 585: "Renal failure"

3. Phecode 509: "Respiratory failure, insufficiency, arrest"

4. Phecode 250: "Diabetes mellitus"

5. Phecode 038: "Septicemia"

∙ Cluster 7

1. Phecode 401: "Hypertension"

2. Phecode 427: "Cardiac dysrhythmias"

3. Phecode 276: "Disorders of fluid, electrolyte, and acid-base balance"

4. Phecode 250: "Diabetes mellitus"

5. Phecode 428: "Congestive heart failure; nonhypertensive"
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Examining the clusters, we see that we can associate the most frequent features

with each other. For example, in Cluster 15, "Renal failure," "Septicemia," and "Di-

abetes mellitus" are known to be associated [49, 2]. These results indicate that clus-

tering using EHR data alone is capable of highlighting high-level, clinically relevant

associations between conditions and symptoms. Combining EHR data with genomic

and other forms of data could yield even greater insights and improve healthcare

treatments.

We obtained the results in this chapter using only ICD9 codes. While we did

so due to the widespread prevalence of ICD9 codes in hospital datasets, we should

consider other data types such as lab test results in future analysis. Additionally, to

ensure our method generalizes, we should also assess these methods on other datasets.

3.4.1 Limitations

Selecting eigenvectors

Our selection of eigenvectors is based on empiricism rather than theory. While we

have demonstrated that this method still yields promising results, our current lack of

theoretical backing poses a potential challenge in generalizing our techniques.

Figure 3-9: Average silhouette scores for different number of K-Means clusters
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Selecting number of K-Means clusters

Our empirical selection of the number of K-Means clusters was motivated by the need

to obtain a qualitatively acceptable silhouette plot while also retaining a high level

of detail in each cluster. For example, we tried various numbers of clusters, and their

corresponding average silhouette scores are shown in Figure 3-9. While we achieved

our highest silhouette score using 10 K-Means clusters, we ultimately chose to use 30

K-Means clusters as doing so yielded a similar score while providing more granular

insights into patient symptoms.
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Chapter 4

Variational Autoencoders (VAE)

4.1 Background

A variational autoencoder (VAE) is a deep generative model that is capable of learning

complicated distributions in an unsupervised manner. We take advantage of its ability

to mapping complex data into lower-dimensions.

VAE learn to reconstruct input data and in the process are also able to learn high-

level, generalizable patterns. They do so using two separate neural networks called

encoder and decoder networks, as shown in Figure 4-1. The encoder maps input

data into a much lower dimensional representation which is used to parameterize a

continuous distribution or "latent space." In our case and with standard VAE, this

distribution is is a isotopic Gaussian (ie. a multivariate Gaussian distribution with

0 mean and unit variance) [16, 22]. The decoder then samples a vector called the

"latent representation" from the latent distribution and attempts to reconstruct the

original input data.

We are particularly interested in the lower dimensional embedding vector, as it

is a compact representation of the original data that is thought to preserve critical

aspects of the original data while also reducing noise. This is because in order for a

VAE to learn a lower dimensional embedding that is useful for reconstructing differ-

ent data points, the encoder must learn compact features that are especially relevant

for distinguishing one data point from another while discarding unimportant features.
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Figure 4-1: Diagram of variational autoencoder from Towards Data Science [61]

Additionally, the dimension of the latent representation can be made smaller or larger

to capture higher or lower level details. As a result, while a VAE outputs a recon-

struction of our original data, the more important aspect that we leverage in this

section is the encoder and its embedding vector.

4.1.1 Model

More formally, let 𝑥 be an input datum and 𝑧 be its latent representation. Through

training, we aim to learn 1) an encoder for mapping input data 𝑥 in discrete space

to values 𝑧 in continuous space and 2) a decoder for mapping values 𝑧 in continuous

space back to 𝑥 in discrete space.

4.1.2 Loss Function

Because the encoder and decoder map their respective inputs onto different distri-

butions — the encoder mapping to a parameterized, continuous distribution and

the decoder mapping to the discrete distribution of the original input data — both

optimize different loss functions. The encoder minimizes Kullback–Leibler (KL) di-

vergence and the decoder minimizes reconstruction error. Here, we use binary cross

entropy as our reconstruction error.

To examine the loss for a single input, let 𝑥𝑖 ∈ R𝑚 be a single input from 𝑋 =
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{𝑥1, ..., 𝑥𝑛} and let 𝑥′
𝑖 be its final reconstruction. Additionally, to simplify our analysis

without loss of generality, let all of 𝑋 be used in a training batch. In our standard

VAE model, we use the encoder to map our input 𝑥𝑖 to its latent representation 𝑧𝑖,

which is drawn from an isotropic Gaussian 𝑁(0, 𝐼) where 𝐼 is the identity matrix. An

isotropic Gaussian 𝑁(0, 𝐼) is parameterized by a mean and variance vector, so our

encoder will map 𝑥𝑖 to a corresponding mean vector 𝜇𝑖 and variance vector 𝜎𝑖.

We can then express the loss 𝐿(𝑥𝑖) as a sum of KL-divergence KL(𝑥𝑖) and binary

cross entropy BCE(𝑥𝑖, 𝑥
′
𝑖):

𝐿(𝑥𝑖) = KL(𝑥𝑖) + BCE(𝑥𝑖, 𝑥
′
𝑖)

KL(𝑥𝑖) =
1

2

𝑚∑︁
𝑘=1

(︀
1 + log (𝜎𝑖,𝑘) − 𝜇2

𝑖,𝑘 − 𝜎𝑖,𝑘

)︀
BCE(𝑥𝑖, 𝑥

′
𝑖) =

1

𝑚

𝑚∑︁
𝑘=1

(︀
−𝑥𝑖,𝑘 log(𝑥′

𝑖,𝑘) − (1 − 𝑥𝑖,𝑘) log(1 − 𝑥′
𝑖,𝑘)

)︀

where we make use of the "reparameterization trick" to obtain the KL-divergence

loss term [35]. We can then optimize this differentiable loss function using gradient

descent.

It is important to note that our VAE maps data to 𝑁(0, 𝐼) in aggregate over the

data. In other words, while all data points will in aggregate map to a mean vector 0

and variance matrix 𝐼, each individual data point 𝑥𝑖 may nontrivially map to a mean

vector that is not necessarily 0 and a variance vector that is not necessarily a column

in 𝐼.

4.1.3 VAE versus Autoencoders (AEs)

It’s worth briefly exploring why VAE project data onto a distribution by examin-

ing its close relative, autoencoders (AE). AE are similar to VAE — they are neural

network-based models that are used to reconstruct data and learn high-level features,

and they are also composed of an encoder and decoder network. However, the main

architectural difference is that the encoder of an AE does not project data onto a dis-
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Figure 4-2: Diagram of autoencoder from Towards Data Science [61]

tribution; instead, it reduces the dimensionality of the input data by "bottlenecking"

the data to a lower dimensional representation. This is shown in Figure 4-2 where

the encoder of an AE creates a lower-dimensional vector embedding that is directly

used by the decoder, whereas the VAE encoder uses the embedding to approximate

a distribution.

The VAE’s use of a distribution has several added benefits that the AE does not,

such as creating an embedding with disentangled representations [26] and generating

synthetic data [9]. The choice of distribution can also be modified depending on the

specific project or desired output. However, detailed discussions of these topics is

beyond the scope of this thesis.

4.2 Experiment

While we experimented with several architectures, we were unable to obtain efficacious

results. As a result, instead of enumerating results, we present the experiment which

motivated our switching to spectral clustering.

In these preliminary experiments, our primary goal was to automatically learn

compact patient representations that could be clustered into distinct groups and then

visualized. We also aimed to produce interpretable results as doing so is especially
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relevant to healthcare. However, due to insufficient results we forego cluster analysis

and instead highlight the insights obtained from analyzing our visualizations.

4.2.1 Data Preprocessing

Just as in Section 3.2.1, we use ICD-9 diagnostic codes to compute a binary 0-1

matrix where each patient is represented by a binary vector. In this binary vector,

a 1 represents the presence an ICD-9 diagnostic code. Doing so results in a matrix

of shape 46,520 patients × 6,984 ICD-9 diagnostic codes. See Section 3.2.1 for more

details.

4.2.2 Model Architecture and Training

To capture high-level features and ensure interpretable outputs, we use a VAE whose

encoder is a compact neural network with layers containing 250, 500, 250, 100, and 25

nodes respectively and whose decoder consists of a single layer with 6,984 nodes. Note

this means our latent representation has 25 dimensions. We choose to use a neural

network-based model in this setting as our data are high dimensional and there could

be non-linear relationships between features. Additionally, we choose to use a single-

layer decoder as doing so theoretically allows us to directly map our embedding vector

to final output activations, although this ultimately was not the case. We trained our

model for 55 epochs with a learning rate of 0.001 and a batch size of 32.

4.2.3 Visualization

Uniform Manifold Approximation and Projection for Dimension Reduc-

tion (UMAP)

We use Uniform Manifold Approximation and Projection for Dimension Reduction

or UMAP on our latent representations [43] followed by coloring based on manual

keyword selection. More specifically, we obtain a 25-dimensional representation for

each patient, use UMAP to obtain 2- and 3- dimensional embeddings, and then plot

the embeddings.
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Keyword Selection

To find keywords, we inspect the UMAP plots and manually select patients from

regions that appear to be clustered. Then, we extract a subset of those patients’

ICD-9 codes and use their corresponding titles to obtain keywords. Finally, we then

find all patients whose ICD-9 codes have any matching keywords and then color them

accordingly. For example, lets assume the manually selected patient had the ICD-9

code V3000 corresponding to "Single liveborn, born in hospital, delivered by cesarean

section." From this title, we would then manually extract keywords such as "liveborn"

and "born," and then lookup all ICD-9 codes whose title contains those keywords.

This lookup would yield other related ICD-9 codes, such as V30001. After obtaining

all of these ICD-9 codes whose titles have matching keywords, we then find all patients

with those corresponding ICD-9 codes and color them.

Ultimately, we arrived at keywords pertaining to neonates and hearts, where

our neonate-related keywords were "congenital," "infant," "newborn," "neonatal,"

"born," and "birth" and our heart-related keywords were "heart," "atrial," "coro-

nary," "hypertension," and "vascular." If a patient contained both neonates and heart

keywords, then it was assigned the neonate color.

We recognize that this method is rather naive. For example, it ignores the fact that

some patients have multiple ICD-9 codes or that some patients may not be accurately

represented by whatever keywords or ICD-9 codes we obtain. However, this method

was still valuable in helping us understand the shortcomings in our methodology.
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4.3 Results

Figure 4-3: UMAP plots for 25-dimensional VAE latent representations.

(a) 2D UMAP. Light blue is the default
color, pink denotes patients with heart key-
words, and purple denotes patients with
baby keywords.

(b) 3D UMAP. Light blue is the default
color, pink denotes patients with heart key-
words, and purple denotes patients with
baby keywords.

Our UMAP plots reveal a separation between patients with neonate-related key-

words and other patients(Figure 4-3). At the same time, we do not observe any

meaningful separation between patients with heart-related keywords and other pa-

tients.

The separation of neonate-related keywords and other patients may likely be due

to other factors and data that we did not use in these experiments, such as the age of

the patient. Indeed, this is supported by the fact that we achieved similar results for

other categories of keywords. For example, selecting kidney-related keywords (results

not shown) these yielded a similar coloring. These preliminary results then indicate

that our naive VAE method may require additional data in order to identify patterns.

Based on these exploratory VAE experiments, we realized we had to adopt a more

hands-on and deterministic approach for generating patient representations in order

to obtain more granular separation between patients. As a result, we adopted a

spectral clustering-based approach.
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Chapter 5

Conclusion

In this thesis, we conducted two sets of experiments, one with modified spectral

clustering and another with variational autoencoders, using International Classifica-

tion of Disease (ICD)-9 codes from the Medical Information Mart for Intensive Care

(MIMIC)-III dataset to obtain compact patient representations. In our spectral clus-

tering experiments, we clustered these patient representations and then conducted

cluster-level analysis by examining the top 5 most frequent symptoms within each

cluster as well as higher-level analysis by constructing a cluster network using weighted

Jaccard similarity. Through examining a subset of individual clusters and the most

frequently occurring symptoms within those clusters, we find that our clusters cap-

ture conditions and symptoms that are clinically associated. Through examining our

cluster network, we find that our method captures high-level patterns where clusters

with similar most-frequent symptoms are also more closely located to each other. In

our variational autoencoder experiments, we found that visualizations of our patient

representations showed clear separation between patients with conditions containing

a subset of neonate-related keywords and other conditions, but that ultimately addi-

tional research and data types are likely needed to improve the quality of the patient

representations.
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Appendix A

Tables
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Table A.1: Top Phecode-ICD9 Cluster Summary

Top Code Name # Clusters
Phecode 411 Ischemic Heart Disease 7
ICD9 V3000 Single liveborn, born in hospital, delivered by cesarean section 4
ICD9 V3001 Single liveborn, born in hospital, delivered by cesarean section 3
Phecode 276 Disorders of fluid, electrolyte, and acid-base balance 3
Phecode 656 Other perinatal conditions of fetus or newborn 3
Phecode 1010 Other tests 3
Phecode 637 Short gestation; low birth weight; and fetal growth retardation 2
Phecode 401 Hypertension 2
Phecode 430 Intracranial hemorrhage 1
Phecode 427 Cardiac dysrhythmias 1
Phecode 585 Renal failure 1
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Table A.2: Size and most common Phecode-ICD9 code for each cluster

Cluster Size Total
Codes

Most Common
Code

Condition Name

0 2340 654 Phecode 585 Renal Failure
1 4013 479 Phecode 411 Ischemic Heart Disease
2 2484 209 Phecode 656 Other perinatal conditions of fetus or newborn
3 6687 910 Phecode 276 Disorders of fluid, electrolyte, and acid-base balance
4 2604 599 Phecode 411 Ischemic Heart Disease
5 883 91 ICD9 V3001 Single liveborn, born in hospital, delivered by cesarean

section
6 435 41 ICD9 V3000 Single liveborn, born in hospital, delivered by cesarean

section
7 3693 712 Phecode 401 Hypertension
8 291 63 Phecode 656 Other perinatal conditions of fetus or newborn
9 2187 644 Phecode 276 Disorders of fluid, electrolyte, and acid-base balance
10 119 126 Phecode 430 Intracranial hemorrhage
11 1914 540 Phecode 411 Ischemic Heart Disease
12 56 249 Phecode 411 Ischemic Heart Disease
13 86 18 Phecode 1010 Other tests
14 78 270 Phecode 411 Ischemic Heart Disease
15 3545 727 Phecode 276 Disorders of fluid, electrolyte, and acid-base balance
16 121 233 ICD9 V3000 Single liveborn, born in hospital, delivered by cesarean

section
17 48 3 Phecode 1010 Other tests
18 65 14 ICD9 V3001 Single liveborn, born in hospital, delivered by cesarean

section
19 146 35 ICD9 V3000 Single liveborn, born in hospital, delivered by cesarean

section
20 46 6 Phecode 656 Other perinatal conditions of fetus or newborn
21 36 5 ICD9 V3001 Single liveborn, born in hospital, delivered by cesarean

section
22 498 65 Phecode 637 Short gestation; low birth weight; and fetal growth re-

tardation
23 45 6 Phecode 1010 Other tests
24 73 20 ICD9 V3000 Single liveborn, born in hospital, delivered by cesarean

section
25 393 73 Phecode 637 Short gestation; low birth weight; and fetal growth re-

tardation
26 3152 683 Phecode 427 Cardiac dysrhythmias
27 4313 689 Phecode 401 Hypertension
28 65 235 Phecode 411 Ischemic Heart Disease
29 2101 508 Phecode 411 Ischemic Heart Disease
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