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Abstract

Object motion detection and tracking is a major research focus in visual autonomous nav-
igation. In the case of a moving camera, pixel-based approaches to detecting motion are
difficult as the algorithm must be able to distinguish between pixel motion caused by ego
motion and pixel motion caused by object motion in the environment. In this study, we
propose a low-computation pixel-based method to detect and track moving objects in scenes
with a moving camera. Our method calculates deviations in pixel values over a stream of
RGB images and thresholds the deviations to identify motion. Most importantly, the method
accounts for ego motion by using depth information and camera poses to determine the best
pixel locations to compare across images. We experiment with two different methods of cal-
culating deviation: standard deviation and Gaussian distribution percentile. Our proposed
method is evaluated on a dataset from the AirSim Safari Environment and shows the ability
to detect and track only the moving objects in scenes.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics, MIT
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Chapter 1

Introduction

Autonomous systems including self-driving cars have started to gain popularity as recent

advances in machine learning have furthered the capabilities of intelligent decision-making.

These systems rely on a vast range of sensor suites to gain information about their environ-

ments. However, many of these sensors come at high cost. Most self-driving cars use LiDAR

input as the primary means to map environments, and early models of LiDAR cost upwards

of $75K [1]. In the application of ground robots in indoor and pedestrian-rich environments,

scaling the production of the robots may be infeasible with such a large cost for sensors.

Relying on LiDAR or similar range-finding mechanisms also has other pitfalls: they are

extremely sensitive to noise in the environment. Raindrops and fog can very easily introduce

noisy close readings, throwing off mapping estimates, while cameras have the potential to

gain a more semantic understanding of rain and fog [2].

For these, and other reasons, low-cost vision-based navigation systems are growing in popu-

larity in the field of autonomy. These systems rely on input from an RGB(D) (or grayscale)

camera as well as other low-cost sensors (i.e. inertial measurement units, wheel encoders) to

perform localization, perception, and planning [3].

This research project is part of a larger study to build a fully-autonomous low-cost visual

navigation stack. This system is meant to operate on a small ground robot in a pedestrian-
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Figure 1-1: This flow represents the three main modules of the vision navigation stack. The robot uses
vision-based localization techniques to estimate its current state (heading, position, velocity, acceleration).
Using its current state, the robot localizes moving pedestrians and objects in the environment and tracks
them. Finally, using external object motion, the robot can path plan to avoid the moving objects and reach
its goal.

rich campus environment (possibly indoors), with a driving speed of 1-2 m/s. With this

application, the pipeline can be broken down into three main units that operate entirely

on low-cost visual sensors (i.e. RGBD cameras) and IMU/wheel encoders, as detailed in

Figure 1-1. The three units comprise the core of many autonomy stacks: determining state,

observing moving objects in environment, and path planning to goal while avoiding those

objects.

The vast majority of the project focuses on the second step of the pipeline, or more specifi-

cally, achieving moving object detection and tracking through low-compute pixel-based meth-

ods. This research project also experiments with achieving vision-based localization through

applying VINS-Fusion, an extension of a vision-based state estimation system VINS-Mono

[4].

The specific emphasis of this project is object movement detection and tracking with a moving

camera. We define movement detection as identifying the moving object in a scene, and we

define tracking as locating the moving object in the scene over multiple images and creating

a trajectory. We denote the static camera problem as moving object detection and tracking

with non-moving camera. We denote the moving camera problem as moving object detection

and tracking with a moving camera, where the algorithm must be able to distinguish the

object moving from all other motion in the pixel frame (see Section 3.1 for definition) caused

by the camera’s motion.

We will first introduce methods for measuring pixel deviation as a way of detecting motion in

the context of the static camera problem (Section 3.2), and then show how we extend those

methods to solve the moving camera problem (Section 4). For the moving camera problem,

14



we will show the ability to detect and track object motion.

The main contribution of this thesis is proposing a method to accurately detect and track

moving animals in an AirSim Safari Simulation Environment with a moving camera using

low-computation pixel-based methods.

Now that we have introduced the problem and defined its scope, Chapter 2 will describe

related work in the field, as well as related work from this research project in state estima-

tion.

15
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Chapter 2

Related Work

2.1 Related Work in Literature

This section will describe related work in literature on the three main steps of the visual

navigation pipeline in Figure 1-1.

2.1.1 Vision-Based State Estimation

2.1.1.1 Monocular Vision

Monocular vision navigation uses a single camera to localize a moving robot in environments

relative to the staring position. While it may be one of the most inexpensive solutions,

monocular vision techniques have difficulty with providing position and distance measure-

ments to objects, since without sophisticated deep learning methods it is difficult to measure

depth without multiple locations of sensor input. Monocular methods can also easily be

disturbed by sudden movements [5]. However, many monocular solutions do exist, includ-

ing ORB-SLAM, which uses a FAST feature detector for corner/edge detection [6], bundle

adjustment, and loop closure across frames to outperform other monocular SLAM methods

including PTAM and LSD-SLAM [7, 8].
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2.1.1.2 Stereo Vision

In stereo vision techniques, two cameras installed on the robot capture images in the envi-

ronment. This system is usually more capable of estimating distance to objects from small

differences where landmarks are located in the image plane between the cameras. We will

be using a stereo vision system on our robot due to this ability.

2.1.2 Moving Object Detection

Deep-Learning based approaches can detect objects in images through object detectors [9].

Coupled with LiDAR or depth input, these approaches can track objects over time [10]. In

pixel-based approaches, one of the major difficulties with moving object detection involves

when there is ego motion with the camera (i.e. a moving camera). Stationary objects

appear moving, and moving objects could appear stationary. Thus, it is vital to be able

to subtract background motion purely caused by camera motion, a task that has many

challenges. Toyama et. al. described a lot of these challenges, including foreground objects

camouflaging with the background, low frame rates, and motion blur [11].

Previous methods for moving-camera object motion detection include classifying each pixel

into three categories (planar background, parallax, or motion regions) by sequentially apply-

ing 2D planar homographies [12], developing non-panoramic background models [13], and

classifying feature points into the foreground and background. [14]. Optical flow has also

been used as a method to solve the moving camera problem in cases where the dense stereo

and ego motion estimates are available [15]. Gaussian Models based on spatial distribution

have also been used in attempting to subtract background pixel motion from images [16]. Fil-

tering techniques including morphological filtering are commonly used to pre-process images

before these algorithms are used [17]. These pixel-based methods all attempt to solve the

difficult problem of removing background motion from a moving camera and only detecting

actual object motion, and our method falls into this class of methods.

18



2.1.3 Collision-Avoidance Motion Planning

Path planning is a key module in navigation systems that uses estimated states and en-

vironment information to provide the robot path(s) to follow that usually optimize a cost

function.

1. Collision Avoidance using Deep Reinforcement Learning (CADRL) frames collision

avoidance as a sequential decision-making problem in an RL framework and then uses

policy-based learning for path planning. An initial implementation of the algorithm

performed well at human walking speed (1.2 m/s) on a small robot in an indoor pedes-

trian environment, but more accurate vehicle dynamics models are needed to apply it

to faster speeds [18].

2. Diffusion Map algorithms learn the map’s geometry to parameterize feasible paths in

a memory efficient way [19]. The diffusion map algorithm currently employed by the

lab efficiently computes cost-to-go for planners, but needs to be extended to handle

dynamic environments.

These algorithms do not directly use visual input, but need to be modified to incorporate

outputs of vision-based object tracking and state estimation systems.

2.2 Summary of Work in Vision-Based State Estimation

When applied in a real-life system, our pixel-based motion detection methods will rely on

accurate state estimation from visual features. In this section we briefly summarize the

portion of this research project that focuses on accurately determining ego pose from an

RGB-infrared camera and IMU.

2.2.1 Method

We define the setup as follows: A RealSense D435i camera moves around a large open space,

collecting infrared images and IMU data.

19



Figure 2-1: Example of infrared image that is an input to VINS. The blue dots indicate features that are
moving (in the pixel frame) or new features (have not been detected before). The red dots indicate features
that the algorithm believes to be stationary in the pixel frame. Note how many of the dots correspond with
edges in the image

As inputs, we used the following method:

1. Timestamped infrared images (used rather than RGB to reduce lighting noise). Figure

2-1 shows an example of an infrared image, with corresponding red and blue dots that

represent visual features tracked by the algorithm.

2. Timestamped IMU accelerometer data

Camera intrinsic and extrinsic parameters were determined from RealSense Documentation

and Kalibr [20].

To estimate state, we then use the VINS-Fusion state estimation pipeline, that accepts these 2

inputs in the specified format, and outputs a predicted pose (orientation and location).

2.2.2 Results

We evaluated the performance of VINS-Fusion in pose estimation with these two input

streams, in a relatively open space, where most of the visual features were markings on the

walls or floor. As shown in Figure 2-2, the camera was placed on a rolling chair and manually

moved in the ground truth path shown in red (measured by markers). The estimated path

from VINS-Fusion is shown in green. The algorithm tracked the trajectory with a max error

20



Figure 2-2: Results of trial of state estimation method. The Red path indicates the ground truth path,
while the green path indicates the path estimated from VINS-Fusion. Areas where the estimation can be
incorrect can be attributed mainly to propagation of previous error or lack of nearby visual features to detect.
The max error (Euclidean distance between true point and estimated point) is 0.8 meters, while the ending
error is 0.2 meters. This process was done without any loop closure logic.

margin of 0.8 meters. These results indicate that VINS-Fusion can provide valuable real-time

information about state estimates in our indoor setting. However, much further testing is

needed to evaluate the consistency and robustness of the algorithm before we have strong

evidence that it can replace existing methods for localization. Based on our limited testing,

we observed that VINS-Fusion requires a multitude of nearby objects to use as features, and

performs poorly in open spaces without many nearby objects. We would need to see more

accurate localization and feature tracking in open environments to be more confident in its

use in environments similar to ours.

In this chapter, we have described related work in the field and described our experiment

with state estimation using Vins-Fusion. Chapter 3 will detail background information in

coordinate frames and pixel deviation that will be necessary to understand our proposed

method of motion detection and tracking.
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Chapter 3

Background

3.1 Coordinate Frame Definitions

This section defines the 3 coordinate frames used in this thesis. These frames are described

in Figure 3-1 with the pinhole camera model.

1. Pixel Frame: 2D coordinate frame for a camera image. The 𝑢-axis represents the

horizontal axis, and the 𝑣-axis represents the vertical axis. The origin is at the top left

corner of the image. We denote a location in this frame as (𝑢, 𝑣).

2. Global Frame: 3D Coordinate frame with origin set at specified point in the Simulation

Environment. The X and Z axes cover the 2D plane parallel to the ground, and the Y

axis spans the height of the environment. We will represent a point in the global frame

with capital X,Y,Z: (𝑋, 𝑌, 𝑍). In addition, when we detect and track object motion in

this study, we are detecting the motion in the global frame (i.e. the object physically

moved), even though we may represent the motion in other frames.

3. Local Camera Frame: 3D Coordinate frame with camera pose as origin. The 𝑧 axis

represents depth from camera (+𝑧 points forward), the 𝑥 axis corresponds to the axis

horizontally across the camera left to right (+𝑥 points right), and the 𝑦 axis corresponds

to vertical axis (+𝑦 points down), as shown in Figure 3-1. We will represent a point

23



Figure 3-1: Relationship between the three coordinate frames used in this study. In (a), the black rectangle
represents the pixel frame of the camera. The blue point (𝑥, 𝑦, 𝑧) in the local camera frame shows up in the
pixel frame (green) at (𝑢, 𝑣). (b) is a top-down view of the global frame, which represents the entire AirSim
environment. In (b), the camera (purple) and the corresponding projection line, as well as the gold box and
the blue point are shown in the global frame (solid red). The axes of the global frame are represented by
capital letters (underlined). The pixel frame is also shown in (b) as the black line that intersects the purple
dotted projection line. For all 3 frames, the axes shown are the axes in the positive direction.

in the local camera frame with lowercase (𝑥, 𝑦, 𝑧).

3.2 Pixel-Based Deviation for Stationary Camera Motion

Detection

Our study will focus on pixel-based methods to detect motion. More specifically, we will track

pixel values at a specific locations across a stream of images, and based on the distribution

of those values, determine whether deviation (or motion) occurred at that specific pixel. In

this section we describe this process and formulation for a stationary camera and describe
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the two ways we will measure deviation. In Chapter 4 we will describe how we extend these

calculations to tackle the moving camera problem.

3.2.1 Formulation

We formulate the problem with the following input, output, and algorithm:

Input 𝑚 RGB images (𝐼1 to 𝐼𝑚) (can be a moving window in a buffer) from the same

stationary camera. Images are ℎ pixels in height and 𝑤 pixels in width.

Output 2D 𝑤 x ℎ array 𝐸, where 𝐸[𝑢𝑖, 𝑣𝑖] ∈ [−1, 0, 1], corresponding to whether positive

deviation (+1), negative deviation (-1), or no deviation (0) was detected at pixel (𝑢𝑖, 𝑣𝑖).

Algorithm The RGB images are first converted to grayscale (𝐺1 to 𝐺𝑚). The deviation

algorithm compares pixels at the same location in the image across the 𝑚 grayscale images

and determines the extent of the pixel change. For a specific location (𝑢𝑚, 𝑣𝑚), we can denote

the deviation algorithm as:

𝐸[𝑢𝑚, 𝑣𝑚] = 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐺1[𝑢𝑚, 𝑣𝑚], 𝐺2[𝑢𝑚, 𝑣𝑚], . . . , 𝐺𝑚[𝑢𝑚, 𝑣𝑚]) (3.1)

Using a thresholding parameter 𝜃, we then threshold 𝐸[𝑢, 𝑣]

𝐸[𝑢𝑚, 𝑣𝑚] > 𝜃 → 𝐸[𝑢𝑚, 𝑣𝑚] = 1 (3.2)

𝐸[𝑢𝑚, 𝑣𝑚] < −𝜃 → 𝐸[𝑢𝑚, 𝑣𝑚] = −1 (3.3)

|𝐸[𝑢𝑚, 𝑣𝑚]| < 𝜃 → 𝐸[𝑢𝑚, 𝑣𝑚] = 0 (3.4)

The idea behind this process is that motion should introduce pixel value deviations in a

certain pixel location over a stream of images. If there is no object motion at (𝑢𝑚, 𝑣𝑚),

we expect |𝐸[𝑢𝑚, 𝑣𝑚]| < 𝜃. We will define our method of measuring deviation such that

𝐸[𝑢𝑚, 𝑣𝑚] = 1 implies that pixel (𝑢𝑚, 𝑣𝑚) is getting darker over the images, while 𝐸[𝑢𝑚, 𝑣𝑚] =

−1 implies that the pixel is getting lighter. The resulting 2D array 𝐸 is denoted as a

deviation map.
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Figure 3-2: Example deviation maps for each of the two methods of measuring deviation. In this example,
a person is walking from right to left across the pixel frame. Pixels with 𝐸[𝑢𝑚, 𝑣𝑚] = 1 are colored green,
pixels with 𝐸[𝑢𝑚, 𝑣𝑚] = −1 are colored red. The red and green areas in this case provide a leading and
trailing edge for the moving object. Map a. shows the result for the standard deviation, who’s result is
still able to identify the object but has less defined and thicker. Map b. shows the result for the Gaussian
distribution percentile, which is able to identify the edges of the moving object but also detected deviations
in the background.

3.2.2 Methods of Measuring Deviation

3.2.2.1 Standard Deviation

One method of measuring deviation is based on sample standard deviation. Sample standard

deviation will analyze the deviation over all of the pixel values, treating each pixel with equal

weight. We define this method of measuring deviation as follows (denoting the calculation

as an implementation of the 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 function):

𝐸[𝑢𝑚, 𝑣𝑚] = 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐺1[𝑢𝑚, 𝑣𝑚], 𝐺2[𝑢𝑚, 𝑣𝑚], . . . , 𝐺𝑚[𝑢𝑚, 𝑣𝑚]) (3.5)

= 𝜎[𝑢𝑚, 𝑣𝑚] · sgn(𝐺𝑚[𝑢𝑚, 𝑣𝑚]− 𝜇[𝑢𝑚, 𝑣𝑚]) (3.6)
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where

𝜇[𝑢𝑚, 𝑣𝑚] =
1

𝑚

𝑚∑︁
𝑖=1

𝐺𝑖[𝑢𝑚, 𝑣𝑚] (3.7)

𝜎[𝑢𝑚, 𝑣𝑚] =
1

𝛾
𝑠𝑡𝑑𝑒𝑣(𝐺1[𝑢𝑚, 𝑣𝑚], 𝐺2[𝑢𝑚, 𝑣𝑚], . . . , 𝐺𝑚[𝑢𝑚, 𝑣𝑚]) (3.8)

and 𝛾 is a normalization parameter. Note that the sign term compares the last pixel value to

the mean to determine whether the deviation is positive or negative. Figure 3-2a describes

an example result of this algorithm on a stream of RGB images where a person is moving

from right to left across the pixel frame.

3.2.2.2 Gaussian Distribution Percentile

The second way of measuring deviation we will use is the Gaussian Distribution Percentile. In

this method, for pixel values at location (𝑢𝑚, 𝑣𝑚) across 𝑚 frames, we fit the first 𝑚−1 values

to Gaussian distribution 𝑁(𝜇*[𝑢, 𝑣], 𝜎*[𝑢, 𝑣]). We then determine the percentile of the last

value 𝐺𝑚[𝑢𝑚, 𝑣𝑚] in the distribution. In essence, we are determining how close 𝐺𝑚[𝑢𝑚, 𝑣𝑚] is

to 𝐺1[𝑢𝑚𝑣𝑚], 𝐺2[𝑢𝑚𝑣𝑚], . . . , 𝐺𝑚−1[𝑢𝑚𝑣𝑚]. This algorithm determines how close the last pixel

compared is to the (normal) distribution of the rest of the pixel values. More specifically,

we calculate the deviation as follows (denoting the calculation as an implementation of the

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 function)

𝐸[𝑢𝑚, 𝑣𝑚] = 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐺1[𝑢𝑚, 𝑣𝑚], 𝐺2[𝑢𝑚, 𝑣𝑚], . . . , 𝐺𝑚[𝑢𝑚, 𝑣𝑚]) (3.9)

= (2Φ(𝑧[𝑢𝑚, 𝑣𝑚])− 1) · sgn(𝐺𝑚[𝑢𝑚, 𝑣𝑚]− 𝜇*[𝑢𝑚, 𝑣𝑚]) (3.10)

𝑧[𝑢𝑚, 𝑣𝑚] =
|𝐺𝑚[𝑢𝑚, 𝑣𝑚]− 𝜇*[𝑢𝑚, 𝑣𝑚]|

𝜎*[𝑢𝑚, 𝑣𝑚] + 𝑘
(3.11)

𝜇*[𝑢𝑚, 𝑣𝑚] =
1

𝑚

𝑚∑︁
𝑖=1

𝐺𝑖[𝑢𝑚, 𝑣𝑚] (3.12)

𝜎*[𝑢𝑚, 𝑣𝑚] = 𝑠𝑡𝑑𝑒𝑣(𝐺1[𝑢𝑚, 𝑣𝑚], 𝐺2[𝑢𝑚, 𝑣𝑚], . . . , 𝐺𝑚−1[𝑣𝑚, 𝑣𝑚] (3.13)

where 𝜇*[𝑢𝑚, 𝑣𝑚] and 𝜎*[𝑢𝑚, 𝑣𝑚] are maximum likelihood estimates of the mean and variance

parameters of the Gaussian distribution fitted to the pixel values. Note that the Φ function
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is the CDF of 𝑁(0, 1). Note also that the sign term determines whether the deviation will

be positive or negative. The extra 𝑘 = 15 term is added to the denominator of the z-score

calculation to dampen the sensitivity of the algorithm to low standard deviations. We mul-

tiply Φ(𝑧[𝑢𝑚, 𝑣𝑚]) by 2 and subtract 1 to scale the output between 0 and 1. Figure 3-2b

describes an example result of this algorithm on a stream of RGB images where a person is

moving from right to left across the pixel frame.

While distribution percentile measures how different the pixel in the last image is from the

previous images, standard deviation treats each pixel over the images equally and calculates

deviation over all the pixels. We expect standard deviation to perform better in cases where

an object may move so quickly that it moves in and out of the pixel location through the

images, since the last pixel may not differ much from the previous ones in this case. We

expect distribution percentile to perform better in cases where the object just enters the

pixel location at the last image: the overall standard deviation would be low, but the last

pixel will be significantly different than the previous ones.

In this chapter, we introduced the three coordinate frames relevant to our study. We also

introduced the problem formulation for pixel deviation, and described the two ways we

measure deviation in our study. Chapter 4 describes our proposed method in detail for

moving object detection and tracking.
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Chapter 4

Method for Object Motion Detection

and Tracking with a Moving Camera

In this section, we explain the main contribution of the research project, which is extending

the algorithm described in Section 3.2 to detect a moving object with a moving camera. To do

so, we will introduce two extra inputs to the process, depth images aligned and synchronized

with the RGB images, and camera poses in the global frame for each image. These inputs

are detailed in Section 4.1.1.

4.1 Problem Statement and Summary

Our method has the following inputs and outputs, and certain assumptions.

4.1.1 Input and Output

Input:

∙ 𝑛 RGB images (𝐼1 to 𝐼𝑛) from the same moving camera. The images are ℎ pixels in

height and 𝑤 pixels in width, and correspond to timesteps 1→ 𝑛

∙ 𝑛 corresponding Depth images (𝐷1 to 𝐷𝑛). Images are ℎ pixels in height and 𝑤 pixels
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in width. These images are synchronized and aligned with the RGB images

∙ 𝑛 camera poses (𝑃1 to 𝑃𝑛) in the global frame corresponding to camera poses (4×4

transformation matrix between the global frame and local camera frame) for each RGB

image .

∙ Camera intrinsics: Contains focal lengths in both dimensions and image center pixel

in both dimensions. We assume a pinhole camera model with no distortion since the

images are taken in a simulation environment.

We define 𝐴𝑖 as all inputs corresponding to timestep 𝑖: 𝐴𝑖 = (𝐼𝑖, 𝐷𝑖, 𝑃𝑖).

Output: For given window-size 𝑚 ≪ 𝑛, list of locations 𝑘𝑚, 𝑘𝑚+1, . . . , 𝑘𝑛, where 𝑘𝑖 is a 3D

(𝑥, 𝑦, 𝑧) location in the local camera frame at the last timestep 𝑛. This sequence of locations

represents the motion of the object over the images, as observed in the local camera frame

of timestep 𝑛. The reasoning for this specific representation of object motion is detailed in

Section 4.5.

4.1.2 Assumptions

The problem formulation makes two main assumptions.

∙ There is only one moving object in each scene. We make this assumption to focus on

the algorithm’s ability to detect moving objects rather than the ability to cluster and

separate moving objects from each other.

∙ The moving object is in all 𝑛 images. We make this assumption to prevent extra

filtering needed from input images.

4.1.3 Method Summary

1. For each sliding window of 𝐴𝑖−𝑚+1 . . . 𝐴𝑖

(a) Calculate Deviation Map 𝐸𝑖 from window (Section 4.2)
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(b) Calculate centroid of deviation (𝑢𝑐
𝑖 , 𝑣

𝑐
𝑖 ) from the deviation map, which locates the

object in the pixel frame (Section 4.3.1)

(c) Project the centroid into the global frame, to get the global location (𝑋𝑐
𝑖 , 𝑌

𝑐
𝑖 , 𝑍

𝑐
𝑖 )

of the moving object at time 𝑖. (Section 4.3.2)

2. Transform all global locations (𝑋𝑐
𝑖 , 𝑌

𝑐
𝑖 , 𝑍

𝑐
𝑖 ) from the sliding windows into the local

camera frame of timestep 𝑛. The result is the tracked locations of the object over

timesteps 𝑚 to 𝑛 in that local camera frame. The locations do not start at 𝑡 = 1, since

a buffer of 𝑚 is needed to run the algorithm. (Section 4.4 and 4.5)

4.2 Moving Camera Pixel Deviation Algorithm

4.2.1 Problem Statement

Input: We will detect deviation for pixels from a window of 𝑚 images (RGB and Depth)

and corresponding camera poses. More specifically our inputs are

∙ 𝐴1 ,. . ., 𝐴𝑚

∙ Camera intrinsics: focal lengths in both dimensions, image center pixel in both dimen-

sions

Output: 2D 𝑤 x ℎ array 𝐸𝑚, where 𝐸𝑚[𝑢𝑚, 𝑣𝑚] ∈ [−1, 0, 1], corresponding to whether

positive deviation (+1), negative deviation (-1), or no deviation (0) was detected at pixel

(𝑢𝑚, 𝑣𝑚).

We denote the input and output of the process as the following:

𝐸𝑚 = 𝑃𝑖𝑥𝑒𝑙𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐴1, 𝐴2 . . . , 𝐴𝑚)
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4.2.2 New Formulation for Moving Camera

The validity of the stationary camera pixel deviation algorithm for motion detection relies

on the following statements. We compare pixels at a specific location (𝑢𝑚, 𝑣𝑚) across images.

If the object at (𝑢𝑚, 𝑣𝑚) (i.e. object that pixel 𝑢𝑚, 𝑣𝑚 is representing) is stationary, then

the pixel value at 𝑢𝑚, 𝑣𝑚 will be the same across all images, resulting in no deviation. If

the object at (𝑢𝑚, 𝑣𝑚) moved over the images, then the pixel value at (𝑢𝑚, 𝑣𝑚) should be

different across the images, resulting in deviation at (𝑢𝑚, 𝑣𝑚). In other words, in all images,

pixel (𝑢𝑚, 𝑣𝑚) corresponds to the same global location.

These statements need to be modified in the moving camera problem. With a moving camera,

if a stationary object is at 𝐼𝑘[𝑢𝑘, 𝑣𝑘], in the previous image it may not be at 𝐼𝑘−1[𝑢𝑘, 𝑣𝑘].

Instead, it could be at a different location in the previous image, 𝐼𝑘−1[𝑢𝑘−1, 𝑣𝑘−1]. We will

now use the following notation: In the moving camera problem for 𝑚 images, a stationary

object at 𝐼𝑚[𝑢𝑚, 𝑣𝑚] would be at the following points in the previous images:

𝐼𝑚−1[𝑢𝑚−1, 𝑣𝑚−1], 𝐼𝑚−2[𝑢𝑚−2, 𝑣𝑚−2], . . . , 𝐼1[𝑢1, 𝑣1]

The pixel deviation formulation originally from Section 3.2.1 is modified to become:

𝐸𝑚[𝑢𝑚, 𝑣𝑚] = 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐺1[𝑢1, 𝑣1], 𝐺2[𝑢2, 𝑣2], . . . .𝐺𝑚[𝑢𝑚, 𝑣𝑚]) (4.1)

This algorithm now relies on that statement that if the object at (𝑢𝑚, 𝑣𝑚) is stationary, then

𝐼1[𝑢1, 𝑣1], 𝐼2[𝑢2, 𝑣2] . . . , 𝐼𝑚[𝑢𝑚, 𝑣𝑚] will have similar pixel values. If the object moved, then

the pixel values will be significantly different. For this statement to be accurate, 𝐼1[𝑢1, 𝑣1],

𝐼2[𝑢2, 𝑣2] . . . , 𝐼𝑚[𝑢𝑚, 𝑣𝑚] must represent the same global location. Note that we also threshold

𝐸𝑚 with a threshold 𝜃 as described in Section 3.2.1.

4.2.3 Determining Pixel Locations to Compare

This section will detail how we determine corresponding pixel locations (𝑢𝑖, 𝑣𝑖) for images

𝑖 = 1 . . .𝑚 − 1 from pixel location (𝑢𝑚, 𝑣𝑚). We accomplish this by analyzing transforms
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between camera poses of consecutive images. We observe an object (assume stationary) at

𝐼𝑚[𝑢𝑚, 𝑣𝑚] with camera at pose 𝑃𝑚 and determine where that object should be in the pixel

frame of a camera with the previous pose 𝑃𝑚−1. More specifically, we project (𝑢𝑚, 𝑣𝑚) into

the local camera frame of image 𝑚, resulting in 3D point (𝑥𝑚, 𝑦𝑚, 𝑧𝑚).

⎡⎢⎢⎢⎢⎢⎢⎣
𝑑𝑚
𝑓𝑢𝑠

0 −𝑑𝑚𝑐𝑢
𝑓𝑢𝑠

0

0 𝑑𝑚
𝑓𝑣𝑠

−𝑑𝑚𝑐𝑣
𝑓𝑣𝑠

0

0 0 1
𝑠

0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑢𝑚

𝑣𝑚

𝑑𝑚

1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑚

𝑦𝑚

𝑧𝑚

1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.2)

where for notational simplicity, 𝑑𝑚 = 𝐷𝑚[𝑢𝑚, 𝑣𝑚]. 𝑓𝑢 and 𝑓𝑣 are the camera focal lengths in

the 𝑢 and 𝑣 directions, respectively, and 𝑐𝑢 and 𝑐𝑣 are the camera center pixels in the 𝑢 and

𝑣 directions, respectively. Variable 𝑠 is the scaling factor of the depth camera, such that 𝑑𝑚
𝑠

is the true depth in meters to pixel (𝑢𝑚, 𝑣𝑚).

We then transform (𝑥𝑚, 𝑦𝑚, 𝑧𝑚) into a point (𝑋𝑚, 𝑌𝑚, 𝑍𝑚) in the global frame using the

global camera pose 𝑃𝑚

𝑃𝑚

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑚

𝑦𝑚

𝑧𝑚

1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑋𝑚

𝑌𝑚

𝑍𝑚

1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.3)

If the object at pixel (𝑢𝑚, 𝑣𝑚) was stationary, then the object would also be at global point

(𝑋𝑚, 𝑌𝑚, 𝑍𝑚) at image 𝑚− 1. We now need to find what pixel in image 𝑚− 1 corresponds

to the global point (𝑋𝑚, 𝑌𝑚, 𝑍𝑚). To do so, we first transform (𝑋𝑚, 𝑌𝑚, 𝑍𝑚) into the local

camera frame of image 𝑚− 1, using the global camera pose of image 𝑚− 1 (𝑃𝑚−1)

(𝑃𝑚−1)
−1

⎡⎢⎢⎢⎢⎢⎢⎣
𝑋𝑚

𝑌𝑚

𝑍𝑚

1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑚−1

𝑦𝑚−1

𝑧𝑚−1

1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.4)

Now we project (𝑥𝑚−1, 𝑦𝑚−1, 𝑧𝑚−1) into the pixel frame of image 𝑚−1, resulting in (𝑢𝑚−1, 𝑣𝑚−1),
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Figure 4-1: Example result of mapping of two pixel locations in RGB images 𝑚 (b) and 𝑚− 1 (a). In this
example, we will track the pixel corresponding to the Lion’s nose. The lion is stationary between these two
pictures, but the camera is moving forward from (a) to (b). (b) shows the pixel location of the Lion’s nose in
image 𝑚. The algorithm determines the pixel location in image 𝑚− 1 to compare it to, shown in (a). Both
pixel locations over the two images correspond to the Lion’s nose, showing the accuracy of the calculation.
These images are taken from the AirSim African Safari Environment

which will be the pixel in image 𝑚− 1 representing the global location (𝑋𝑚, 𝑌𝑚, 𝑍𝑚)

⎡⎢⎢⎢⎣
𝑢𝑚−1

𝑣𝑚−1

1

⎤⎥⎥⎥⎦ =
1

𝑧𝑚−1

⎡⎢⎢⎢⎣
𝑓𝑢 0 𝑐𝑢 0

0 𝑓𝑣 𝑐𝑣 0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑚−1

𝑦𝑚−1

𝑧𝑚−1

1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.5)

We now have one pixel location from each of two camera images that represent the same

point in global space: (𝑢𝑚−1, 𝑣𝑚−1) and (𝑢𝑚, 𝑣𝑚). If an object at (𝑋𝑚, 𝑌𝑚, 𝑍𝑚) was stationary,

with similar logic explained in Section 4.2.2, pixel values at 𝐼𝑚−1[𝑢𝑚−1, 𝑣𝑚−1] and 𝐼𝑚[𝑢𝑚, 𝑣𝑚]

should be very similar.

In summary, we have taken a pixel location in image 𝑚 (𝑢𝑚, 𝑣𝑚) and determined the pixel

location in image 𝑚− 1 (𝑢𝑚−1, 𝑣𝑚−1) to compare it with to calculate deviation. An example

result of this process is shown in Figure 4-1.

We can extend this process to determine (𝑢𝑚−2, 𝑣𝑚−2) from (𝑢𝑚−1, 𝑣𝑚−1), and so on, until

we calculate (𝑢1, 𝑣1)
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Figure 4-2: This is the deviation map 𝐸𝑚 overlaid on the last image in the stream (𝐼𝑚), with sample
standard deviation for measuring deviation. The camera has moved forward over the 𝑚 frames used to
calculate the deviations. Pixels with 𝐸𝑚[𝑢𝑚, 𝑣𝑚] = 1 are colored green, pixels with 𝐸𝑚[𝑢𝑚, 𝑣𝑚] = −1 are
colored red. The green and red areas in this case provide rough leading and trailing edges for the moving
object, which is an elephant walking right to left across the screen. However, deviation is also calculated in
the center of the moving object. Note that a few of the elephant’s legs also have leading and trailing edges.
The algorithm is able to subtract out background pixel changes due to camera motion and only elucidate
the moving object.

4.3 Extracting Object Location from 1 Deviation Map

4.3.1 Determining Centroid of Deviation

We define 𝐸𝑚 as a 2D 𝑤 x ℎ deviation map at image 𝑚, where 𝐸𝑚[𝑢𝑘, 𝑣𝑘] for each (𝑢𝑘, 𝑣𝑘)

in the image is calculated from the process in Section 4.2. If |𝐸𝑚[𝑢𝑘, 𝑣𝑘]| = 1, we say that

the pixel (𝑢𝑘, 𝑣𝑘) has deviation. An example of this deviation map is shown in Figure 4-2,

with sample standard deviation for measuring deviation. Pixels with deviation are shown in

red or green. In Figure 4-2, the green and red areas of deviation form a rough mask on the

moving object. For any object translation, we rely on the presence of these colored areas in

the image to create this rough mask.

We then utilize this mask to locate the moving object. Under the assumption that there is

only 1 moving object in the image, we expect that pixels with deviation form an approximate

mask for that object. Thus, we expect the centroid (𝑢𝑐
𝑚, 𝑣

𝑐
𝑚) of those pixels to be located on
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Figure 4-3: Example Comparison between algorithm for Stationary vs Moving Camera. (a) shows an
example deviation map from assuming no change in camera pose (i.e. stationary pixel deviation algorithm).
(b) shows the deviation map outputted by the moving pixel deviation algorithm that does take into account
changing camera pose. There is significantly less background (more specifically in the terrain) deviation
detected in (b). Centroids are shown as blue points. The centroid in (b) is on the moving object, while the
centroid in (a) is not. The standard deviation method of measuring deviation was used in this example.

the object (noted as centroid of deviation):

𝑈 = {𝑢𝑚∀𝑢𝑚 ∈ [0, 𝑤 − 1] : 𝐸𝑚[𝑢𝑚, 𝑣𝑚] ∈ {−1, 1}} (4.6)

𝑉 = {𝑣𝑚∀𝑣𝑚 ∈ [0, ℎ− 1] : 𝐸𝑚[𝑢𝑚, 𝑣𝑚] ∈ {−1, 1}} (4.7)

𝑢𝑐
𝑚 =

1

|𝑈 |
∑︁
𝑢∈𝑈

𝑢 (4.8)

𝑣𝑐𝑚 =
1

|𝑉 |
∑︁
𝑣∈𝑉

𝑣 (4.9)

In other words, these equations determine the mean 𝑢-value and 𝑣-value out of the pixels

with deviation.

After incorporating camera poses and depth images to find the correct pixels to compare

over frames, ideally the only pixels with deviation should be those that represent moving

objects. Therefore, the centroid of deviation should lie on the object the vast majority of the

time. Figure 4-3 shows an examples of deviation maps and corresponding centroids, with

and without incorporating camera poses and depth images. In other words, it compares the

results of using a stationary algorithm formulated in Section 3.2 versus using the algorithm

we describe in this section (moving camera algorithm). The moving camera algorithm does

a significantly better job of only identifying deviation on the moving elephant.
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4.3.2 Projecting the Centroid to the Global Frame

We can then determine the global location of the object from projecting the centroid into

the global frame, using a similar process as in Section 4.2.3. Again, let 𝑑𝑐𝑚 = 𝐷𝑐
𝑚[𝑢𝑐

𝑚, 𝑣
𝑐
𝑚],

then ⎡⎢⎢⎢⎢⎢⎢⎣

𝑑𝑐𝑚
𝑓𝑢𝑠

0 −𝑑𝑐𝑚𝑐𝑢
𝑓𝑢𝑠

0

0 𝑑𝑐𝑚
𝑓𝑣𝑠

−𝑑𝑐𝑚𝑐𝑣
𝑓𝑣𝑠

0

0 0 1
𝑠

0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑢𝑐

𝑣𝑐

𝑑𝑐𝑚

1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑐
𝑚

𝑦𝑐𝑚

𝑧𝑐𝑚

1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.10)

𝑃𝑚

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑐
𝑚

𝑦𝑐𝑚

𝑧𝑐𝑚

1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑋𝑐

𝑚

𝑌 𝑐
𝑚

𝑍𝑐
𝑚

1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.11)

Through the process described in equations 4.10 and 4.11, from a deviation map 𝐸𝑚 and

inputs 𝐴𝑚 = (𝐼𝑚, 𝐷𝑚, 𝑃𝑚), we are able to determine the global location of the moving object

at image 𝑚: (𝑋𝑐
𝑚, 𝑌

𝑐
𝑚, 𝑍

𝑐
𝑚). We will denote this process through the following function.

(𝑋𝑐
𝑚, 𝑌

𝑐
𝑚, 𝑍

𝑐
𝑚) = 𝐿𝑜𝑐𝑎𝑡𝑒(𝐸𝑚, 𝐴𝑚)

4.4 Object Tracking from Multiple Deviation Maps

When we have an image stream of length 𝑛 > 𝑚 for a single object, we can calculate

multiple deviation maps and global locations for the object, one of each for each buffer of 𝑚

images:

𝐸𝑚 = 𝑃𝑖𝑥𝑒𝑙𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐴1, 𝐴2 . . . 𝐴𝑚) → (𝑋𝑐
𝑚, 𝑌

𝑐
𝑚, 𝑍

𝑐
𝑚) = 𝐿𝑜𝑐𝑎𝑡𝑒(𝐸𝑚, 𝐴𝑚) (4.12)

𝐸𝑚+1 = 𝑃𝑖𝑥𝑒𝑙𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐴2, 𝐴2 . . . 𝐴𝑚+1) → (𝑋𝑐
𝑚+1, 𝑌

𝑐
𝑚+1, 𝑍

𝑐
𝑚+1) = 𝐿𝑜𝑐𝑎𝑡𝑒(𝐸𝑚+1, 𝐴𝑚+1)

...

𝐸𝑛 = 𝑃𝑖𝑥𝑒𝑙𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐴𝑛−𝑚, 𝐴𝑛−𝑚+1 . . . 𝐴𝑛) → (𝑋𝑐
𝑛, 𝑌

𝑐
𝑛 , 𝑍

𝑐
𝑛) = 𝐿𝑜𝑐𝑎𝑡𝑒(𝐸𝑛, 𝐴𝑛)
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We can create a trajectory that the object took from the global locations. We denote this

process as CreateTrajectory⎡⎢⎢⎢⎢⎢⎢⎣
(𝑋𝑐

𝑚, 𝑌
𝑐
𝑚, 𝑍

𝑐
𝑚)

(𝑋𝑐
𝑚+1, 𝑌

𝑐
𝑚+1, 𝑍

𝑐
𝑚+1)

...

(𝑋𝑐
𝑛, 𝑌

𝑐
𝑛 , 𝑍

𝑐
𝑛)

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝐶𝑟𝑒𝑎𝑡𝑒𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦((𝑋𝑐
𝑚, 𝑌

𝑐
𝑚, 𝑍

𝑐
𝑚), . . . ., (𝑋𝑐

𝑛, 𝑌
𝑐
𝑛 , 𝑍

𝑐
𝑛)) (4.13)

4.5 Determining Local Motion Vector

In the application of a camera on a robot, or an human observer with the camera, that

has observed from 𝐴1 up to 𝐴𝑛, the raw global locations resulting from 𝐶𝑟𝑒𝑎𝑡𝑒𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦

may not give useful information. What is more useful for planning applications is those

locations in the current local camera frame of the robot, which would be the local camera

frame at timestep 𝑛. Intuitively, the locations in the local camera frame would represent how

the object motion looked relative to an stationary observer holding a camera at its current

position. To calculate the local motion vector, we transform each of the global points into

the local camera frame of time 𝑛 as shown in Equation 4.14. To make the equation clearer,

we denote the matrix output of 𝐶𝑟𝑒𝑎𝑡𝑒𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 as 𝐵,

𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑋𝑐

𝑚 𝑌 𝑐
𝑚 𝑍𝑐

𝑚 1

𝑋𝑐
𝑚+1 𝑌 𝑐

𝑚+1 𝑍𝑐
𝑚+1 1

...

𝑋𝑐
𝑛 𝑌 𝑐

𝑛 𝑍𝑐
𝑛 1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.14)
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and we calculate the motion vector in the local camera frame of time 𝑛 as shown in Equation

4.15, denoting the process with the name 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑇𝑜𝐿𝑜𝑐𝑎𝑙𝑁 :

𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑇𝑜𝐿𝑜𝑐𝑎𝑙𝑁(𝐵) = 𝐵(𝑃−1
𝑛 )𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑐
𝑚 𝑦𝑐𝑚 𝑧𝑐𝑚 1

𝑥𝑐
𝑚+1 𝑦𝑐𝑚+1 𝑧𝑐𝑚+1 1
...

𝑥𝑐
𝑛 𝑦𝑐𝑛 𝑧𝑐𝑛 1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.15)

4.6 Summary and Example of Process

We have now described the entire object motion detection and tracking pipeline, having

input (𝐴1 . . . 𝐴𝑛), which is 𝑛 RGB images, depth images, and camera poses, and outputs a

list of (𝑥, 𝑦, 𝑧) locations in the local camera frame of time 𝑛. Specified camera intrinsics are

included in the input as well. We denote this entire process in Equation 4.16⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑐
𝑚 𝑦𝑐𝑚 𝑧𝑐𝑚 1

𝑥𝑐
𝑚+1 𝑦𝑐𝑚+1 𝑧𝑐𝑚+1 1
...

𝑥𝑐
𝑛 𝑦𝑐𝑛 𝑧𝑐𝑛 1

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝑇𝑟𝑎𝑐𝑘𝑂𝑏𝑗𝑒𝑐𝑡(𝐴1, 𝐴2, . . . 𝐴𝑛) (4.16)

We also show an demo example of the entire process in Figure 4-4, and we detail pseudocode

of the demo process in Algorithm 1

In this chapter, we described our proposed method of motion detection and tracking with

a moving camera. We showed a demo example of the entire pipeline in Figure 4-4. In

Chapter 5, we will create a dataset and evaluate the performance of our method on the

dataset.
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Figure 4-4: Demo Example of the TrackObject Pipeline. In this example, as input we have 𝑛 = 8 RGB
images (and corresponding depth image, camera poses, and camera intrinsics, which are not shown). We
use a window size of 𝑚 = 5. We calculate the deviation map for each window of 𝑚 = 5 inputs through
the PixelDeviation method. In this example we use sample standard deviation as our method of measuring
deviation. For each deviation map, we then locate the centroid in the global frame using the locate method.
We combine the global locations into a trajectory using the CreateTrajectory method, and we transform those
locations into the local camera frame of timestep 𝑛 using the ConvertToLocalN method. In this example,
the elephant is moving to the left in the pixel frame, and the resulting trajectory shows that by showing
movement in the −𝑥 direction. In the trajectory at the bottom, the blue dot is the origin in the local camera
frame of time 𝑛 (i.e. location of camera), and the red arrow is the vector from the first to last location in
the resulting trajectory. The vector is plotted on the x-z plane, ignoring the 𝑦 coordinate.
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Algorithm 1 𝑇𝑟𝑎𝑐𝑘𝑂𝑏𝑗𝑒𝑐𝑡 Demo Example
𝑛← 8 {length of input}
𝑚← 5 {window size for calculating deviation}
𝑖← 0 {counter}
points ← []
while 𝑖 + 𝑚 < 𝑛 do
𝐸 ← 𝑃𝑖𝑥𝑒𝑙𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐴𝑖 . . . 𝐴𝑖+𝑚)
𝐶 ← 𝑙𝑜𝑐𝑎𝑡𝑒(𝐸,𝐴𝑖+𝑚)
points.add(𝐶)
𝑖← 𝑖 + 1

end while
TrajGlobal ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(points)
Traj ← 𝐶𝑜𝑛𝑣𝑒𝑟𝑇𝑜𝐿𝑜𝑐𝑎𝑙𝑁(TrajGlobal)
return Traj
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Chapter 5

Results

5.1 Dataset

To evaluate our method, we needed to collect a dataset that has the following pieces of

information

1. RGB images of moving objects (as input to the algorithm)

2. Accurate depth images synchronized and aligned with the RGB images (as input to

the algorithm)

3. Accurate camera poses in the global frame for each RGB/depth image pair (as input

to the algorithm)

4. Ground Truth Object Segmentations for each RGB image (for evaluation)

Since we wanted the inputs and segmentation to be as accurate as possible, we decided to

collect a dataset in a simulation environment. Using AirSim with Unreal Engine in the

African Safari, we collected a dataset of 110 examples, where each example is the sequence

𝐴1, 𝐴2, . . . , 𝐴𝑛, and corresponding ground truth segmentation. The examples can overlap

(i.e. 𝐴𝑖 can be in multiple examples at different locations. Thus, after running TrackObject

over each example (sequence of 𝑛 inputs), we receive 110 trajectories to analyze performance
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with. In our collected dataset, 𝑛 = 10 and the window size 𝑚 = 5.

5.1.1 Restrictions

We apply the following restrictions to create a focused dataset for our task:

1. In each example there is only one moving object.

2. In this study we will also focus purely on forward camera translational motion, so in

these examples, we restrict camera motion to forward motion (i.e. +𝑧 motion in the

local camera frame, with no camera movement in 𝑥 or 𝑦 directions).

3. The moving objects in the environment have negligible movement in the ±𝑦 direction

in the local camera frame. The 𝑧 axis in the local camera frame is always parallel to

the ground, and the objects do not exhibit an elevation change. With this restriction,

we only analyze the 𝑥 and 𝑧 coordinates of the output of TrackObject.

5.2 Quantities for Evaluating Performance

Taking as input 𝐴1 . . . 𝐴𝑛 and window size 𝑚, TrackObject outputs a list of object locations

from time 𝑚 to 𝑛 in the local camera frame of timestep 𝑛.

We define the estimated movement vector 𝑣 to be the displacement of 𝑥 and 𝑧 coordinates

between the first and last points (at timestep 𝑚 and timestep 𝑛).

𝑣 = [𝑥𝑐
𝑛 − 𝑥𝑐

𝑚, 𝑧
𝑐
𝑛 − 𝑧𝑐𝑚]

5.2.1 Descriptions

We want to analyze the performance of TrackObject with the two goals of the method in

mind: 1) Motion detection and 2) Motion Tracking. We will define detection error as a

quantity to evaluate performance in motion detection, and will define 3 other quantities to

evaluate performance in motion tracking.
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1. Detection Error:

∙ Fraction of the 𝑛−𝑚 centroids are NOT on the moving object

∙ This quantity evalutes how well TrackObject segments out the moving object

2. Angle Error:

∙ Angle (in radians) between true movement vector and estimated movement vector

3. Magnitude Error:

∙ True movement Vector: 𝑣0

∙ Estimated movement vector: 𝑣

∙ Magnitude Error =
⃒⃒⃒
|𝑣|−|𝑣0|
|𝑣0|

⃒⃒⃒
4. Start Position Error:

∙ Euclidean distance between estimated first position of vector (𝑥𝑐
𝑚, 𝑧

𝑐
𝑚) and true

(𝑥, 𝑧) position of object at timestep 𝑚

In a classification problem, a quantity analogous to detection error may not be used due to

false positive and false negative rates influencing the quantity. In these cases precision/recall

and Receiver-Operating Characteristic Area Under the Curve (ROC-AUC) provide better

evaluations of the true performance of the systems. However, for detection error, these

more sophisticated quantities are not needed, since the algorithm will be able to correctly

detect the object only if it finds a correct centroid in the deviation map, a process that is

not going to be influenced by false positive and negative rates as per normal classification

problems.

5.2.2 Determining Ground Truth Motion

For detection error, we can easily determine whether a centroid is or is not on the moving

object for a deviation map, since we have the corresponding ground truth segmentation. We
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just check that the centroid is inside the mask given by the segmentation.

To determine the ground truth motion vector 𝑣0, we do the following:

1. Get the ground truth segmentation for RGB image 𝑚, corresponding to the first

timestep in the trajectory.

2. For each pixel in the mask of the object, using 𝐴𝑚, project the pixel into the global

frame and determine the global pose of each pixel (in an analogous process to Sec-

tion 4.3.2)

3. For the 3D global poses of the pixels, determine the mean 3D global location.

4. Transform that mean global point into the local camera frame of timestep 𝑛. The

result is the ground truth start point: 𝑆𝑡𝑟𝑢𝑒

5. repeat steps 1-4 for RGB image 𝑛, corresponding to the last timestep in the trajectory,

to get the ground truth end point: 𝑌𝑡𝑟𝑢𝑒

6. Determine the displacement between the two values in the 𝑥 − 𝑧 plane (𝑆𝑡𝑟𝑢𝑒[𝑥, 𝑧] −

𝑌𝑡𝑟𝑢𝑒[𝑥, 𝑧] )

5.2.3 Example

To explain the quantities for measuring error more, we will calculate their values for the

example shown in Figure 4-4, assuming that the ground truth movement vector (in the 𝑥−𝑧

plane) is (∆𝑥𝑡𝑟𝑢𝑒,∆𝑧𝑡𝑟𝑢𝑒) = (−4.5, 0.4) and the ground truth start position of the vector is

(𝑥𝑠𝑡𝑎𝑟𝑡
𝑡𝑟𝑢𝑒 , 𝑧

𝑠𝑡𝑎𝑟𝑡
𝑡𝑟𝑢𝑒 ) = (3.2, 10.4). As shown in the 4 deviation maps in Figure 4-4, all 4 centroids of

deviation (tiny blue dots on the deviation map) are on the elephant. Thus, detection error

= 0.0.

In Figure 4-4, the estimated movement vector, is the displacement between the first and last

values outputted by 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑇𝑜𝐿𝑜𝑐𝑎𝑙𝑁 : (∆𝑥𝑒𝑠𝑡,∆𝑧𝑒𝑠𝑡) = (−4.0, 0.0). The estimate start

position is just the x and z coordinates of the first value: (𝑥𝑠𝑡𝑎𝑟𝑡
𝑒𝑠𝑡 , 𝑧𝑠𝑡𝑎𝑟𝑡𝑒𝑠𝑡 ) = (3, 10)
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From these values, the angle error is the interior angle between the two vectors (∆𝑥𝑡𝑟𝑢𝑒,∆𝑧𝑡𝑟𝑢𝑒)

and (∆𝑥𝑒𝑠𝑡,∆𝑧𝑒𝑠𝑡), which we calculate to be 0.08 rads. The start position error is

||(𝑥𝑠𝑡𝑎𝑟𝑡
𝑡𝑟𝑢𝑒 , 𝑧

𝑠𝑡𝑎𝑟𝑡
𝑡𝑟𝑢𝑒 )− (𝑥𝑠𝑡𝑎𝑟𝑡

𝑒𝑠𝑡 , 𝑧𝑠𝑡𝑎𝑟𝑡𝑒𝑠𝑡 )|| = 0.44m

Finally, the magnitude error is:⃒⃒⃒⃒
|(∆𝑥𝑡𝑟𝑢𝑒,∆𝑧𝑡𝑟𝑢𝑒)| − |(∆𝑥𝑒𝑠𝑡,∆𝑧𝑒𝑠𝑡)|

|(∆𝑥𝑡𝑟𝑢𝑒,∆𝑧𝑡𝑟𝑢𝑒)|

⃒⃒⃒⃒
= 0.11

5.3 Performance on Dataset

We evaluated the performance of TrackObject on our dataset for each of the two methods

of measuring pixel deviation. The results are shown in Figure 5-1 which contains four

graphs, one for each of the four quantities described in Section 5.2.1. For each quantity

for evaluating performance, we show the performance of TrackObject for the 2 methods of

measuring deviation (Standard Deviation, Distribution Percentile). For each method, we

compare its performance with a baseline in which the algorithm assumes no camera motion

(i.e. assumes all camera poses are the same). We show this comparison to emphasize that

incorporating camera motion (and calculating the correct pixels to compare, rather than

comparing the same pixel locations on the raw RGB images) is important for accurate object

motion detection. In essence, the baseline performance represents running the stationary

pixel-deviation algorithm from Section 3.2 and extracting trajectories from its output.

The detection errors of both algorithms are better than their baseline assume-no-camera-

motion counterparts, stressing the importance of incorporating camera poses and camera

motion to accurately detect the moving object. Looking at the solid blue and solid green

bars, both methods of measuring deviation show a median detection error of at most 0.17,

and standard deviation is the more accurate with a median of 0.0. Standard deviation also

has the lower median angle error, start position error, and magnitude error.

We conducted 2-sample t-tests to compare the performances of the two methods of measuring
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Figure 5-1: Performance of TrackObject for different methods of measuring deviation. Each graph
represents performance evaluated with a different quantity – (a) shows detection error, (b) shows angle
error, (c) shows magnitude error, and (d) shows start position error. For each graph, we compare the
performances of TrackObject while varying the method of measuring deviation: Stdev=Sample Standard
Deviation (Blue), Perc=Gaussian Distribution Percentile (Green).

The bar plots the median value (i.e. median detection error for graph a) across the 110 examples in
the dataset, with error bars representing the 50 percent confidence interval of the median. We plot two
values for each method of measuring deviation represented by side-by-side bars (i.e. pink and red). The
lighter-colored bar on the left represents the performance of TrackObject when it assumes that the camera
did not move (i.e. for each example, all camera poses are the same: 𝑃1 = 𝑃2 =, . . . , 𝑃𝑛). The darker-colored
bar on the right shows the performance for the regular algorithm using the real camera poses and transforms
(i.e. the output of the TrackObject algorithm we described in Chapter 4). An optimal threshold 𝜃 was tuned
for each of the two methods of measuring pixel deviation and used in the process.
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deviation. For each of 4 performance quantities in 5.2.1, we compared the performance of

both normal methods, not baselines. For the two methods, we used the mean and variance

of the results to conduct a t-test to determine the probability that the difference in means is

significant. There were no results where 𝑝-value < 0.05, indicating that there is no significant

difference in performance between the two methods of measuring deviation.

The confidence intervals for the start position error and magnitude error quantities are larger

by magnitudes than the corresponding median values. This observation can be attributed

to the following: when a centroid is calculated from a deviation map, if the centroid is

incorrect, it usually is a pixel location in the background of the image. When the global

pose of the pixel location is calculated, the calculated location would be in the background

of the image, which can be hundreds of meters away from the actual object. A location

in the trajectory output by TrackObject that is incorrect to by this amount can introduce

errors several magnitudes more than the true value itself in the case of start position error

and magnitude error.

Due to this reasoning, in Figure 5-1 we primarily analyze detection error and angle error

(Figure 5-1a and 5-1b) as a indication of performance, since error bars for the two quantities

are small enough that trends can be inferred from the graphs.

Based on these observations, it is also important to get a sense of how close the estimated

movement vector is to the true movement vector when the moving object is correctly detected.

To evaluate this aspect, we filtered the results from our 110 examples to only include examples

where the algorithm correctly detected the moving object in all 𝑛−𝑚 deviation maps (i.e.

examples where detection error is 0.0). For these examples, we determine how well the

algorithm estimates the movement vector with the 3 other quantities, as shown in Figure

5-2. The 85% confidence intervals in Figure 5-2 are significantly more bounded than the

intervals of Figure 5-1. For both methods of measuring deviation, when the moving object

is detected by centroid correctly, we can be confident that the angle error does not exceed

0.6 rads and the start position error does not exceed 1.5m. For standard deviation, we can

be confident that the magnitude error (proportion) does not exceed 0.4.
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Overall, these results demonstrate that TrackObject is able to detect and track moving ob-

jects in our dataset, especially with the standard deviation method of measuring deviation.

Although standard deviation may seem to perform better than Gaussian distribution per-

centile, based on Figure 5-1, large confidence intervals prevent that claim from having strong

evidence.

To supplement these numerical results, we also provide qualitative results from the algorithm.

More specifically, Figure 5-3 explains examples of accurate and inaccurate deviation maps

calculated by our algorithm.

5.4 Robustness to Input Noise

The real world will not have the same level of accuracy and precision as the depth and

camera pose estimates we receive in a simulation environment. Therefore, it is important to

determine how adding error to our depth and camera pose estimates affects the performance

of 𝑇𝑟𝑎𝑐𝑘𝑂𝑏𝑗𝑒𝑐𝑡. In this experiment, we will use our seemingly best performing method

of measuring deviation: standard deviation. Note that we make this statement with some

caution due to large error bars in our median results.

5.4.1 Adding Noise to Input

We will add noise to our inputs through the following processes.

5.4.1.1 Depth

For every depth value 𝑑 in a depth image, we set it to a new depth value as 𝑑𝑛𝑒𝑤 = 𝑑(1 + 𝜆)

where scalar 𝜆 is sampled from 𝑁(0, 𝜎2
𝑑) (new sample for every depth value).

5.4.1.2 Pose

We will focus noise to the location of the camera (rather than the orientation), since our

study deals with only translational movements. For every global camera location (𝑋, 𝑌, 𝑍),
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Figure 5-2: Performance of TrackObject for different methods of measuring deviation on examples with 0
detection error. (a) shows the angle error when using each of the two methods: Stdev=Sample Standard
Deviation (Blue), Perc=Gaussian Distribution Percentile (Green). (b) shows start position error and (c)
shows Magnitude Error, varied based on the method of measuring deviation used. Note that we do not
show the stationary-algorithm baselines here. The height of each bar represents the median value across the
examples, while the error bars represent an 85% confidence interval (within 1 z-score of the median)
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we set the new location as follows:

𝑋𝑛𝑒𝑤 = 𝑋 + 𝜆, 𝑌𝑛𝑒𝑤 = 𝑌 + 𝜆, 𝑍𝑛𝑒𝑤 = 𝑍 + 𝜆

so the same 𝜆 is used for the three coordinates, and is sampled from 𝑁(0, 𝜎2
𝑝) (new sample

for every pose).

5.4.2 Performance

5.4.2.1 Robustness to Depth Noise

Figure 5-4 shows the performance of 𝑇𝑟𝑎𝑐𝑘𝑂𝑏𝑗𝑒𝑐𝑡 using standard deviation (for measuring

deviation) using the 4 main quantities in Section 5.2.1 as we vary the noise parameter 𝜎𝑑.

From the graphs, it is not possible to tell if there is a significant overall increase or decrease

in performance in the 4 quantities as we increase 𝜎𝑑 due to the large error bars associated

with the performance values. We do not see a significant difference in performance with

varying depth error, but due to the large error bars we are unable to discern the extent of

the robustness.

5.4.2.2 Robustness to Pose Noise

Figure 5-5 shows the performance of 𝑇𝑟𝑎𝑐𝑘𝑂𝑏𝑗𝑒𝑐𝑡 using standard deviation for measuring

deviation evaluated by the 4 main quantities in Section 5.2.1 as we vary the noise parameter

𝜎𝑝. Graphs 5-5a and 5-5b of detection error and angle error respectively show that increasing

𝜎𝑝 significantly hinders the performance of the system. Even 𝜎𝑝 = 0.5 results in the median

detection error of 0.5 and angle error of 1.2 radians. Graphs 5-5c and 5-5d have error bars

that are too large to make any conclusions from them specifically. Overall, these results show

that the performance of 𝑇𝑟𝑎𝑐𝑘𝑂𝑏𝑗𝑒𝑐𝑡 is sensitive to noise in camera pose estimations.

In this chapter, we analyzed the performance of our method on a dataset from the AirSim

Africa Safari Environment, and we analyzed how robust our method is to depth and cam-

era pose noise. In Chapter 6, we will summarize our study and describe possible future

directions.
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Figure 5-3: Accurate and Inaccurate Examples of Deviation Maps. (a) shows examples of deviation maps
calculated from our dataset that accurately segment the moving object in the scene. (b) shows examples of
deviation maps calculated from our dataset that do not accurately segment the moving object in the scene
(and consequently the centroids would be incorrect). The standard deviation method of measuring deviation
was used in these examples.
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Figure 5-4: Performance of TrackObject using standard deviation for measuring deviation with varying
depth noise. Graph a shows detection error over varying 𝜎𝑑. Likewise, Graph b. shows angle error, Graph
c. shows start position error, Graph d. shows Magnitude Error. Error bars represent +/- 1 z-score from the
mean, and the values plotted are means. 𝜃 = 0.10 is used for the deviation threshold.
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Figure 5-5: Performance of TrackObject using standard deviation for measuring deviation with varying
pose noise. Graph a shows detection error over varying 𝜎𝑝. Likewise, Graph b. shows angle error, Graph
c. shows start position error, Graph d. shows Magnitude Error. Error bars represent ±1 z-score from the
median, and the values plotted are medians. 𝜃 = 0.10 is used for threshold for deviation.
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Chapter 6

Conclusions

6.1 Contributions

This thesis proposed a method of detecting and tracking moving objects with a moving

camera using a low-computation pixel-deviation based algorithm. We demonstrated the

method’s ability to detect and track single animals in scenes from a simulation environment

with translatory camera motion. Our best method has a median of 0.0 for moving object

detection error, which indicates that over the scenes in the dataset, the median performance

of our method is the case where the moving object is detected correctly in all images in

the scene. For our estimated motion vector, our best method has medians of: 0.1 radians

of angle error, 0.93 meters of start position error, and 0.25 magnitude error (proportion).

There is significant noise in these 4 quantities. Although the standard deviation method

of measuring deviation had the lowest calculated median errors, the confidence intervals

of those quantities overlap with that of Gaussian distribution percentile, and a 2-sample

t-test provides no significant difference in performance between the methods of measuring

deviation. Therefore, no strong conclusion can be made comparing the performances of the

methods of measuring deviation.

While it is unclear how sensitive our method is to error in depth input, our method’s per-

formance is significantly sensitive to error in given camera poses. This observation indicates
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that the system might have applications in scenarios where ground truth camera pose can

be determined accurately but depth input may be significantly inaccurate.

Having pixel-based methods of motion detection and tracking can prevent real-time bot-

tlenecks that can arise from using more sophisticated intelligent models, even with recent

advances in machine learning infrastructure. This study shows that analyzing pixel values

in images can provide valuable information about the semantics of the environment.

6.2 Restrictions to release in Future Work

Our study used some restrictions on our data to focus our project and evaluate our proposed

pipeline. For use in more types of scenes, these restrictions need to be released:

∙ Our dataset only contains forward translatory camera motion

∙ For each example scene, there is only one moving object

∙ The moving object does not change elevation, and the camera’s 𝑧-axis is parallel to the

ground. Therefore there is no significant change in the objects global 𝑌 -coordinate or

local camera 𝑦 coordinate in a scene.

6.3 Directions of Future Work

There are many possible enhancements that can be made to the TrackObject pipeline, mainly

when dealing with real-life input.

The method is currently sensitive to lighting conditions in the environment, since lighting

conditions affect the RGB pixel values, and therefore the grayscale pixel values. Perhaps

a better method of analyzing pixel values is to convert them from RGB to the HSV (Hue-

Saturation-Value) scale. We can then compare pixel hues to determine deviation, a process

that is independent of brightness disparities from lighting. Note that in some cases, lighting

increases the pixel deviation caused by moving objects since the camera can see visible reflec-

tions of light from said objects. Thus, it is unclear whether switching to a hue comparison
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would enhance performance.

To incorporate being able to detect multiple moving objects in scenes, one can leverage clus-

tering algorithms. For a given deviation map, one can cluster the pixels with deviation into

𝑘 clusters, where 𝑘 is an estimate of the number of moving objects in the scene. This method

can encounter difficulties in images when moving objects are occluding one another, since it

will become difficult to differentiate the pixels with deviation between the objects.

The motion detection and tracking method we propose based on the two methods of mea-

suring pixel deviation shows promise as a possible future module for the second step in the

visual navigation stack described in Figure 1-1. Using pixel deviation as a method of object

detection and tracking can open up a wide range of possibilities in the autonomy space.
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