
Towards a Verified First-Stage Bootloader in Coq

by

Zygimantas Straznickas

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

© Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 12, 2020

Certified by. .
Adam Chlipala

Associate Professor of Computer Science
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Towards a Verified First-Stage Bootloader in Coq

by

Zygimantas Straznickas

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

A cryptographic secure boot and attestation system usually depends on a measure-
ment root — a first-stage bootloader written to ROM that loads the boot payload
into the machine’s memory, cryptographically signs it and ensures that the boot pay-
load begins execution from a clean-slate environment. We implement a first-stage
bootloader heavily inspired by the Sanctum project [5], describe its specification in
Coq relative to low-level RISC-V semantics, state the correctness of the implementa-
tion as a theorem in Coq and prove a few major lemmas necessary for establishing
correctness.

Thesis Supervisor: Adam Chlipala
Title: Associate Professor of Computer Science

3

4

Contents

1 Introduction 9

2 Background 11

2.1 RISC-V . 11

2.2 Coq . 12

2.3 riscv-coq . 12

2.4 Bedrock2 . 14

2.5 Predicate-Transformer Semantics . 14

2.6 Separation Logic . 15

2.7 Related Work . 16

2.7.1 Sanctum . 16

2.7.2 Bootloaders . 17

2.7.3 Trusted Platform Modules . 18

3 Implementing the First-Stage Bootloader 19

3.1 Structure . 19

3.2 Specification . 21

3.3 External Calls . 22

3.3.1 External Calls as Undefined Memory Handlers 24

3.3.2 Boot-image Loader . 24

3.3.3 C calls . 26

3.4 Assembly . 31

3.5 Bedrock2 Part . 32

5

3.5.1 Arrays and Structures . 33

4 Discussion 37

4.1 Ergonomics of Coq . 37

4.1.1 Implicit Arguments . 37

4.1.2 Performance . 39

4.2 Future Work . 40

4.2.1 Trusting GCC . 40

4.2.2 Not fully accounting for execution time 41

4.2.3 Finishing the correctness proof 41

6

List of Figures

3-1 Structure of the first-stage bootloader 20

7

8

Chapter 1

Introduction

In [5], Lebedev et al. proposed a secure boot and attestation system for the Sanctum

processor, used to prove cryptographically to outside observers that a computer’s

state was correctly established according to the user’s specification. The security of

this system relies on the first-stage bootloader — a program that runs as the very first

piece of code when the machine is turned on. Its purpose is to copy over the actual

executable — e.g. the operating system — from untrusted disk storage to trusted

memory and cryptographically sign the executable, combining it with the computer’s

device-specific key.

Normally, this first-stage bootloader would be stored in the device’s ROM mem-

ory, written there during the manufacturing process and immutable after that. If a

security-compromising bug was discovered, there would be no way to patch it without

entirely replacing the hardware. This makes the correctness of the bootloader even

more important.

Formal-verification techniques have been getting more popular and practical in

ensuring program correctness. Sanctum is especially amenable to such techniques

because it is designed for hardware that uses the RISC-V instruction set [29]. As

an open standard, RISC-V’s instruction semantics are publicly available and can be

used as a base against which to verify program behavior. This thesis is a case study

in formally verifying a low-level program all the way down to RISC-V instruction

semantics, including the modelling of custom hardware DMA-style features available

9

to the CPU.

The goal of this project is to design, implement and verify a first-stage bootloader

inspired by the Sanctum bootloader. The property being verified is functional cor-

rectness. We show that under appropriate assumptions the bootloader, starting from

an arbitrary state, will always terminate and, after completing execution, will have

the second-stage boot image ready in memory, signed and certified, with all other

memory and state being zeroed out. We do not verify the cryptographic-security

aspects of the bootloader — this is considered out of scope. We implement the boot-

loader for the RISC-V architecture with a Sanctum-inspired direct memory access

mechanism to load a user-configurable OS boot image to memory. In order to keep

the performance of cryptographic operations practical, and to investigate possible

interoperation of verified and nonverified code, we also use cryptographic routines

implemented in C and verify a “bridge” from the verified part of the code to these

functions, limiting our need to trust nonverified C compilers. More specifically, we

assume the C compiler will compile the cryptographic functions correctly according to

the cdecl calling convention, and verify the correctness of the function call preamble

and postamble in the bootloader.

We implement the bootloader in the Coq proof assistant (using the Bedrock2

framework), state the correctness theorem about the desired properties relative to the

riscv-coq RISC-V specification, and prove most lemmas necessary for the correctness

theorem.

10

Chapter 2

Background

2.1 RISC-V

RISC-V is an instruction-set architecture (ISA) managed and developed by the RISC-V

Foundation. It is an open and patent-free ISA with a public specification and a per-

missive licence. It is intended to be a practical ISA, suitable for real-world implemen-

tations and able to match the performance of current mainstream ISAs.

RISC-V defines both 32-bit and 64-bit variants. Its specification is divided into the

base instruction set and multiple extensions. As of the time of writing, the following

extensions are fully defined:

• Multiply-Divide

• Atomic

• Floating-point arithmetic for single, double and quad precision

• Compressed Instructions

and there are plans to define other extensions, including for SIMD instructions, bit

manipulation, etc.

RISC-V is supported by many mainstream software-development tools including

GCC, GNU binutils and QEMU.

11

2.2 Coq

Coq [26] is a proof assistant — a software environment to write and manage formal

mathematical proofs. Its theoretical foundations are based on the Calculus of Induc-

tive Constructions [19], a higher-order intuitionistic type theory with inductive types.

Some additional axioms like the law of excluded middle have been proven consistent

with Coq foundations and can be imported by users selectively.

Gallina, the language used to define terms and functions in Coq, is a functional

language that supports defining algebraic data types (in the form of inductive types),

pattern matching and a typeclass mechanism. Coq also includes Ltac and Ltac2,

scripting languages used to construct proof terms dynamically.

The two main uses of Coq are formalizing pure mathematics and constructing

formally verified software. Pure mathematics developed in Coq include the formal-

ization of the Odd-Order theorem [11] and work on homotopy type theory [2] [28]

and category theory [12]. Verified software written in Coq includes the CompCert

C compiler [17] and fiat-crypto [9], a project for generating elliptic-curve-arithmetic

code.

2.3 riscv-coq

The riscv-coq project [8] is an implementation of the RISC-V ISA specification in Coq.

It is based on the RISC-V Haskell specification [3] and is partly programmatically

generated from it. It currently supports the RV32I and RV64I architectures and A

and M extensions.

The riscv-coq project defines an abstract interface of a RISC-V machine and

describes RISC-V instructions by how they change the abstract machine. It also

describes the encoding and decoding of instructions and proves that these operations

are mutually inverse.

The definition of the abstract machine interface can be seen in Listing 1. It

is monadic in nature and can be parametrized by an arbitrary monad to support

12

nondeterministic implementations.

riscv-coq also defines several concrete platforms that implement the abstract inter-

face. The basic implementation just defines the operations as expected, representing

registers and memory as maps. Other implementations add additional functionality

to the hardware, like memory-mapped input/output (MMIO), or extend the state

representation of the machine to enable proving more properties about the programs

running on it, e.g. tracking of executable addresses in memory or counting execution

metrics (jumps, reads, writes, etc.)

Listing 1 The interface of an abstract RISC-V machine in riscv-coq. Source: riscv-
coq.
Class RiscvProgram{M}{t}`{Monad M}`{MachineWidth t} := mkRiscvProgram {

getRegister: Register -> M t;
setRegister: Register -> t -> M unit;

loadByte : SourceType -> t -> M w8;
loadHalf : SourceType -> t -> M w16;
loadWord : SourceType -> t -> M w32;
loadDouble : SourceType -> t -> M w64;

storeByte : SourceType -> t -> w8 -> M unit;
storeHalf : SourceType -> t -> w16 -> M unit;
storeWord : SourceType -> t -> w32 -> M unit;
storeDouble : SourceType -> t -> w64 -> M unit;

makeReservation : t -> M unit;
clearReservation : t -> M unit;
checkReservation : t -> M bool;

getPC: M t;
setPC: t -> M unit;

step: M unit; (* updates PC *)

raiseExceptionWithInfo{A: Type}(isInterrupt: t)
(exceptionCode: t)(info: t): M A;

}.

13

2.4 Bedrock2

Bedrock2 [7] is a low-level, imperative, C-like programming language implemented

in Coq and compiling into RISC-V assembly. It is designed for formal verification,

making it easy to prove theorems about Bedrock2 programs. The language sup-

ports the usual imperative language features like mutable variables, branches, loops

and functions. At the moment of writing, it only supports 32- and 64-bit words as

datatypes. Arrays and structures are supported as Coq-level aliases with helpers to

generate field-access code metaprogramming-style, but are not supported as native

data types and cannot automatically be allocated on the stack. In order to make

reasoning about Bedrock2 programs easier, nonstatic features like function pointers,

recursion and nonterminating programs are intentionally not supported.

The Bedrock2 project implements the Bedrock2 language as a deep embedding in

Coq. It describes the semantics of Bedrock2 and proves a correctness theorem for the

compiler. Using this theorem lets users transport proofs about Bedrock2 programs

to proofs about the compiled RISC-V assembly in RISC-V semantics.

The Bedrock2 semantics are also extensible — in additional to usual statement

types like if statements and function calls, it also supports an “external call” state-

ment type. The semantics of these external calls are provided by the user, together

with a function to compile them to RISC-V and a proof of compilation correctness.

One important use case of external calls is exposing hardware capabilities of custom

RISC-V machines to the Bedrock2 layer. Bedrock2 provides an example external-call

implementation of memory-mapped input/output (MMIO).

2.5 Predicate-Transformer Semantics

Introduced by Edsger Dijkstra, Predicate Transformer Semantics [6] is a way to define

the semantics of a programming language by specifying a predicate transformer to

each statement in the language, that is, specifying how each statement transforms

which predicates apply to the program’s state before and after executing that state-

14

ment.

Weakest-precondition transformers are a popular concrete definition of a predicate

transformer. Given a desired postcondition 𝑄(state), they specify, for each statement,

what precondition

𝑃 = 𝑤𝑝(statement, state, 𝑄)

should hold before the statement is executed.

For example, we can define the semantics of a variable-assignment statement 𝑘 :=

𝑉 by saying

𝑤𝑝(𝑘 := 𝑉, state, 𝑄) = 𝑄(state[𝑘 ↦→ 𝑉])

That is, to prove that 𝑄 holds after the assignment, we need to prove that 𝑄 would

hold before the assignment if we replaced 𝑘’s valuation with 𝑉 . Such definitions of

𝑤𝑝 can be given for all statements in the language to allow for backwards reasoning

about the program’s behavior.

2.6 Separation Logic

Hoare logic [14] is a formal system for reasoning about program behavior. Its as-

sertions are expressed in the form of Hoare triples — {𝑃}𝐶{𝑄} — meaning “if the

predicate 𝑃 holds before executing a statement 𝐶, the predicate 𝑄 will hold after its

execution.”

Separation logic [22] is an extension of Hoare logic to support reasoning about

non-intersecting regions of memory. It adds a concept of a heap ℎ, which is repre-

sented by a set of tuples of 𝑘 ↦→ 𝑣, describing which memory addresses map to which

values. Hoare logic triples can then reference this heap when defining preconditions

and postconditions. Separation logic also adds a connective ⋆, where for two propo-

sitions 𝑃 and 𝑄, 𝑃 *𝑄 means that there exists a way to divide the heap ℎ into two

nonintersecting ℎ1 and ℎ2 such that 𝑃 is valid on ℎ1 and 𝑄 is valid on ℎ2.

In Bedrock2, separation logic is implemented as a way to construct predicates on

memory. Specifically, memory is represented by a data type mem :> map.map word byte

15

and Bedrock2 provides ways to construct statements of type mem -> Prop. These in-

clude “primitive” statements like

Listing 2 Examples of primitive separation-logic statements in Bedrock2. Source:
Bedrock2.
Definition emp : mem -> Prop := fun m => m = empty.
Definition ptsto k v : mem -> Prop :=

fun m => m = put map.empty k v.

as well as the connective

Listing 3 Example of the star connective in Bedrock2. Source: Bedrock2.
Definition sep (p q : mem -> Prop) m :=

exists mp mq, split m mp mq /\ p mp /\ q mq.

representing the star connective. This connective also has an infix notation of *

in Bedrock2. A sample separation-logic statement about the machine’s memory in

Bedrock2 would look like:

Check (exists R,

((ptsto pointer1 dataWord) *

(ptsto_array pointer2 dataBlock) *

R) initialMemory).

The above statement says that the initial memory has a dataWord pointed to by

pointer1, a dataBlock pointed to by pointer2, and is otherwise fully described by

some separation-logic statement R.

2.7 Related Work

2.7.1 Sanctum

Sanctum [5] is a platform to support strong isolation of independent software modules

running on a computer. It consists of hardware modifications to the underlying

16

CPU platform and several software components: the measurement root, the security

monitor and the signing enclave.

In particular, the measurement root is stored in the machine’s ROM and is the

first fragment of code entered after boot. It acts as a first-stage bootloader and is

responsible for the following tasks:

• loading the security monitor into memory;

• generating the necessary cryptographic keys for the Sanctum system;

• cryptographically signing the loaded security monitor;

• zeroing out the memory used by intermediate computations;

• jumping into the security monitor and resuming boot.

The guarantee provided by the measurement root is that after it finishes executing,

the second-stage boot image is loaded and signed, and the machine is in a “clean”

state otherwise.

The first-stage bootloader implemented in this thesis is directly inspired by the

Sanctum measurement root and follows its architecture (while making a few simpli-

fications and assumptions about the hardware).

Parts of the Sanctum project have been formally verified: [25] defines TAP (Trusted

Abstract Platform), an idealized model of a software isolation system, and proves that

a simplified specification of the Sanctum platform is a refinement of TAP. However,

the proof is limited to the specification of Sanctum, not its implementation.

2.7.2 Bootloaders

Coreboot [27] is an open-source implementation of a general-purpose bootloader. It

supports several CPU architectures including x86-64, ARMv8 and RISC-V. While

most of Coreboot is implemented in C/assembly and is unverified, parts of the project

use the SPARK programming language and have been formally checked to have no

17

runtime errors. Coreboot is capable of performing measurements of the payload but

needs to use a platform-provided root of trust.

SABLE [4] is an implementation of an open-source, formally verified bootloader.

It is verified in the style of seL4 [15] — by proving that its abstract specification’s

behavior matches the behavior of the corresponding C implementation. However,

the compilation from C to machine code is unverified, and the compiler has to be

trusted. Similar to Coreboot, SABLE can support measured booting but depends on

an external root of trust for that.

2.7.3 Trusted Platform Modules

Several authors have published work on formal verification of the Trusted Platform

Module specification as well as its implementations, including the first-stage boot-

loader measurement part. [13] defines an abstract model of the TPM 1.2 specifica-

tion and verifies several of its security properties. [18] implements a verified reference

implementation of a part of the TPM specification. It verifies the code up to C

semantics, requiring a trusted compiler.

In comparison, the scope of this thesis is much narrower: it implements only the

first-stage bootloader (the software part of the root of trust) and does not handle later-

stage setup. However, the formal verification is end-to-end: the correctness theorem

specifies how the implementation transforms the state of an abstract RISC-V machine

according to RISC-V assembly semantics, bypassing the need to trust a C compiler

for everything but the performance-sensitive external C functions.

18

Chapter 3

Implementing the First-Stage

Bootloader

3.1 Structure

As the design of the bootloader is based on the Sanctum [5] system’s first-stage

bootloader, we also draw heavy inspiration from its original implementation in C

[16].

The bootloader is composed of three abstract parts:

• a preamble, used to initialize the memory, set up the stack and load the payload

binary into the machine’s memory (using the DMA-based loader mechanism

described below).

• higher-level structured code to compute the cryptographic attestation of the

payload binary.

• a postamble, used to clean up the memory and reset the device’s state.

Ideally, we would want to implement as much of the project as possible in Bedrock2

to maximize the use of helpful tools the language provides. This includes both code-

level features like function calls or local variables and proof-level features like the

lemma library and proof automation. Unfortunately, because the preamble and

19

ASM

Bedrock2

ASM

C function

C function

. . .

Figure 3-1: Structure of the first-stage bootloader

postamble need access to all of the machine’s memory to zero it out, their behav-

ior cannot be reasoned about as Bedrock2 programs. For that reason, we implement

them directly in RISC-V assembly. Only the middle part, which is mostly composed

of a sequence of straightline calls to Bedrock2 functions and external C functions, is

implemented in Bedrock2.

The bootloader uses cryptographic primitives to certify and sign the boot im-

age during the boot process. Most of the running time of the bootloader is spent in

these cryptographic operations, so they have to be fast enough to keep the bootloader

practical. Unfortunately, the Bedrock2 compiler (as of the time of writing) does not

optimize the code very well. Because of this, and as a case study of integrating un-

trusted pregenerated code into a verified program, we use the cryptographic routines

implemented in C and compiled with the GNU Compiler Collection (GCC) and jump

into them from verified Bedrock2 code. We describe these C functions by their “ex-

ternal specifications” and, throughout the development, assume that they correctly

describe the behavior of the resulting assembly.

Throughout this project, because the verified part of our program interfaces with

some unverified parts, we need the following assumptions to ensure our proofs are

meaningful:

• The machine that is running the code is a single-core 64-bit RISC-V abstract

20

machine with a DMA boot-image-loading mechanism. The machine must have

a known fixed memory layout.

• GCC compiles code correctly, and the compiled function uses the cdecl calling

convention.

• The external specifications of C functions and the DMA boot-image loader are

written correctly.

3.2 Specification

The correctness proof takes the form of a Coq theorem describing that the program’s

RISC-V assembly terminates and, after termination, the final state of the machine

satisfies the specification. More specifically, the precondition we need is quite weak:

it suffices that

• The bootloader code is in memory.

• The program counter is pointing to the first instruction of the bootloader.

• The memory contains an arbitrarily initialized region for the bootloader’s work-

ing memory.

• The memory addresses of the external C functions (in the “real world”) are

undefined in the abstract machine’s memory.

(Note that the preconditions do not require zeroed-out memory or registers be-

cause it’s shown that the program will not attempt to read them before their values

are initialized.)

In this project, we focus on proving functional correctness for the bootloader. We

define a functional program in Coq that describes the nonzero part of the machine’s

memory post-execution. Because the project uses code from external C functions for

which functional correctness has not necessarily been proven, the functional specifica-

tion of the bootloader is parametrized by functional specifications of the C functions,

for example,

21

Variable hash_functional_spec : list byte -> list byte.

Variable hash_output_size:

forall i, length (hash_functional_spec i) = 64.

Given these parameters, we then define a function that describes the bootloader’s

output when interpreted as a functional program (of arity zero — conceptually, a

bootloader doesn’t take any arguments):

Definition bootloader_output : list byte :=

This lets us finally state the postcondition of the theorem:

• The bootloader terminates.

• After termination, there is a block of memory in the machine whose value is

equal to bootloader_output.

• The program counter is pointing to the first instruction of that block.

• All other memory in RAM that the program ever wrote to is zeroed-out.

• All registers are zeroed-out.

In this thesis, we state the specification as a theorem in Coq and prove several

major lemmas needed for it, including the correctness of the Bedrock2 code relative

to Bedrock2 semantics and the correctness of assembly routines relative to riscv-coq

semantics. We do not prove the full-correctness theorem unconditionally — that

requires some more proof-engineering work.

3.3 External Calls

It is useful for machine models to have a way of modelling “external” actions that are

not reflected in default hardware-architecture semantics. Such external actions can

be used to represent memory-mapped input/output (MMIO), more direct hardware

22

mechanisms like direct memory access (DMA), or interactions with code written out-

side the formalization. Specifically, in this project the two kinds of external calls used

are

• Boot image loader — an in-hardware mechanism to put the secondary boot

image into the device memory during the boot process using DMA.

• External C calls — calls into machine code compiled from C for performance

reasons.

It is important to note that the definitions of these external calls are used mainly

in the proof side of the project, to specify the behavior of components external to

the produced RISC-V program. Their main purpose is to be able to express the

statement “if the RISC-V code executes a sequence of instructions that is defined to

trigger the external call, the machine’s state will change in this exact way.”

The main criteria considered when designing the external-call interface for this

project were:

• External-call semantics must be coherent with respect to compiled

code. The goal of this project is to produce a valid RISC-V binary blob with a

correctness proof. This means that any external call in the semantics has to be

triggered by ordinary-looking RISC-V instructions (those in the binary blob),

and we cannot invent arbitrary new instructions to represent external calls.

• Preserving Bedrock2 proofs. The Bedrock2 programming language and

its proof of compilation correctness are built on top of the machine RISC-V

semantics. Since we would like to reuse Bedrock2 and all its proof machinery, it

is important to change the RISC-V semantics in a very controlled way, so that

it’s easy to modify the Bedrock2 proofs.

• It should be easy to understand the effect of the external call. The

external calls are effectively additional logical assumptions in our correctness

proof, so the proof’s validity in the real world depends on these assumptions

23

being right (exactly describing the effects of the mechanism being modelled and

logically uncontradictory).

3.3.1 External Calls as Undefined Memory Handlers

We chose to represent external calls as handlers of reads and writes to undefined

memory. This was inspired by preexisting implementation of an MMIO abstraction

in the RISC-V semantics. However, the MMIO abstraction was limited to specifying

how values are written to or read from a specific undefined memory address — the

definitions of MMIO actions have no access to directly referencing the RAM of the

abstract RISC-V machine, except for the exact address that’s being read from/written

to.

This is not sufficient for our use case, as the external calls we use all modify the

memory of the machine. So, our interface for external calls is generalized to allow this

access. We choose to represent external call specifications using predicate-transformer

semantics: if we want the postcondition 𝑅 to hold after the call is executed, the

semantics gives us a precondition 𝑃 (𝑠𝑡𝑎𝑡𝑒, 𝑅) that needs to be satisfied before the

call. The interface is shown in Listing 4. It is a parameter to the description of an

abstract RISC-V machine — that is, each machine is parametrized by an external

specification. (In this project, we use a concrete external specification that describes

the functions we want to use.)

3.3.2 Boot-image Loader

The Sanctum hardware platform contains a DMA-based mechanism to load a user-

modifiable second-stage boot image to the machine’s memory. The image loader

is controlled MMIO-style, by reading and writing values to predefined memory ad-

dresses. Specifically, to activate the loader, the machine issues an MMIO write of the

payload’s destination address. After the write is received, the loader continuously,

nonatomically fills the destination with the payload’s data. In the mean time, the

machine polls for the loader’s completion by repeatedly issuing MMIO reads to a

24

Listing 4 The (simplified) external specification interface for an abstract RISC-V
machine. Adapted from the Bedrock2 MMIO interface.
(* In the following code,

word - a type of n-bit words
mem - a dictionary from word to byte, representing the machine memory
regs - a dictionary from Z to word, representing the registers
list LogItem - the machine's external call trace *)

Class ExtSpec
{W: Words}
{mem : map.map word byte}
{regs: map.map Register word}
:= {

(* weakest precondition semantics for ext_load: *)
ext_load:

(* given the load address, the current memory, registers and trace *)
word -> mem -> regs -> list LogItem ->
(* and some desired proposition about the memory, registers and the

load's return value after executing the external call, *)
(mem -> regs -> HList.tuple byte n -> Prop) ->
(* return a pre-condition that we need to satisfy. *)
Prop;

ext_store: (* equivalent *)
}.

specific address. Once an MMIO read returns a value greater than 0, this signals that

the loader is done and the bootloader can proceed.

Or, in C-like pseudocode:

Algorithm 1 Using the DMA loader
(*𝑙𝑜𝑎𝑑𝑒𝑟𝐸𝑥𝑡𝐶𝑎𝑙𝑙𝑆𝑡𝑎𝑟𝑡)← 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠

done ← 0

while done = 0 do

done ← (*𝑙𝑜𝑎𝑑𝑒𝑟𝐸𝑥𝑡𝐶𝑎𝑙𝑙𝐷𝑜𝑛𝑒)

end while

Modelling this mechanism poses a challenge because it’s nondeterministic: writing

to the machine’s memory is happening in the background, and the loader doesn’t

specify the exact order and timing of memory modification. To model this, we use

25

the notion of undefined memory in the riscv-coq semantics — the machine model

can have certain ranges of the memory undefined (which is distinct from them being

set to 0). Any non-MMIO read from such undefined memory addresses fails, and the

execution can’t proceed — so the proof of the bootloader’s functional correctness also

proves that no such reads happened.

We use undefined memory to signify that the loader is working on that memory.

First, we write the desired destination address to loaderExtCallStart and, as part of

the MMIO write’s postcondition, the block of predefined size at the address becomes

undefined. Then, as we poll loaderExtCallDone and eventually read 1, the postcondi-

tion makes that memory block defined again, and states that it contains the payload

data.

We use the execution trace to model the nondeterministic execution time of the

loading mechanism. Each read of the loaderExtCallDone MMIO address adds an

entry to the execution trace, with a label that lets us distinguish loader-generated

events. The behavior of MMIO-reading loaderExtCallDone depends on the number

of these log entries in the trace — and therefore on how many times it has been read

before. For some parameter 𝑘, the first 𝑘 − 1 reads of loaderExtCallDone will do

nothing to the memory and return 0. The 𝑘th read will finalize the loading — change

the destination memory from undefined to containing the boot binary — and return

1. All subsequent reads will just return 1.

Effectively, this specification means that for some fixed 𝑘, the boot image is loaded

after 𝑘 polls. This, combined with the metric-tracking mechanism for the reference

RISC-V machine, lets us prove the exact number of instructions it takes to load the

boot image as a function of 𝑘, and as a consequence proves termination for any fixed

𝑘.

3.3.3 C calls

The bootloader uses the following cryptographic functions implemented in C:

26

void hash(const void * in_data,

size_t in_data_size,

hash_t * out_hash);

void init_hash(hash_context_t * hash_context);

void extend_hash(hash_context_t * hash_context,

const void * in_data,

size_t in_data_size);

void finalize_hash(hash_context_t * hash_context,

hash_t * out_hash);

void create_secret_signing_key(const key_seed_t * in_seed,

secret_key_t * out_secret_key);

void compute_public_signing_key(const secret_key_t * in_secret_key,

const public_key_t * out_public_key);

void sign(void * in_data,

size_t in_data_size,

public_key_t * in_public_key,

secret_key_t * in_secret_key,

signature_t * out_signature);

More specifically, these functions are thin wrappers around preexisting C imple-

mentations of SHA3 [23] and Ed25519 elliptic curve cryptography [20].

To fully implement these C functions as external calls for Bedrock2, we proceed

in three stages:

• First, we construct a system to compile the C code into RISC-V and program-

27

matically generate its function metadata in the form of Coq definitions.

• Then, we define our custom, extended RISC-V abstract machine that is capable

of executing the abstractly defined effects of the external calls when we jump

to their addresses.

• Finally, we connect the RISC-V semantics to Bedrock2, by defining a way to

compile Bedrock2 “interact” statements to RISC-V instructions and proving

that this compilation is correct w.r.t. our extended RISC-V semantics.

Compiling and Exposing C Functions

The first stage of using C function as external calls is getting the actual function

assembly code and making it available in Coq. For this, the functions are compiled

using GCC [24], each of them fully inlined. This produces an ELF file with a symbol

for each function.

Using GNU binutils we then inspect the ELF file and extract the information

about each desired function: its name and address in the file. In addition, we read the

extended GCC compilation log to see how much stack memory each function requires.

(While in general GCC might fail to calculate a function’s stack size, the cryptographic

functions we use are written using a small static subset of C, so GCC is able to

determine the bound on their stack size.) This information is then used to generate

a Coq definition describing these functions and containing enough information to

compile calls into these functions. An example of such a definition is shown in Listing

5.

Finally, the ELF file is stripped of all the metadata stored before and after the

code sections to produce a minimal binary blob containing the functions.

Clearly, this procedure of making compiled C function code accessible to Coq is a

part of the trusted base for this project — its correctness depends on the correctness

of GCC and the build pipeline. One future direction of this work could be replacing

GCC with CompCert [17] to eliminate this need for trust.

28

Listing 5 Example generated information about C functions in Coq
Definition external_functions := {|

functions := [
...
{|

id := "hash";
addr := (0)%Z; (* address relative to base_offset *)
stack_use := 64;

|};
...

];
base_offset := Ox"1234";
total_size := (1234)%Z;

|}.

Writing C Function External Specifications

Compiling the C functions into RISC-V assembly gives us the program-level infor-

mation we need. But to incorporate C functions into our proofs, we also need a

description of their behavior. We do this by using our extension-specification mech-

anism, by giving a specification for each such function.

Semantically, we want jumping into the function’s address to behave like “call-

ing a function”: what happens at the program level when you jump into a valid

GCC-compiled function is that some side effects happen, caller-saved registers are

clobbered, and eventually the execution jumps back to the value of the 𝑟𝑎 register.

The tool we have to achieve this is the extensibility of the implementation of our

RISC-V abstract machine. We want to make sure that while in the “real world” the

jump to an external function would execute some external assembly, in the “proof

world” it should trigger the external call, and its specification should take effect.

There are many ways of doing that, with the trade-off being flexibility of defining

external calls versus the difficulty of proving that they are coherent with respect to

the rest of the system. In this project, we use the action of undefined memory loads

to intercept external calls.

In the real world, an external call begins by jumping into a function somewhere

in the memory, and we assume we will eventually reach the instruction to jump to

29

the return address. In the proof world, the memory of external-call instructions

is represented as undefined — so a jump to it is followed by a fetch of the first

instruction. That fetch tries to read undefined data and triggers the RISC-V external-

specification handler. The specification handler’s postcondition takes effect, saying

that a particular memory modification happens and the instruction fetched is a Jump

instruction to the value held in the 𝑟𝑎 register. In other words, we skip all but the

last instruction of the external call (instead “magically” applying the postcondition)

and make it so the first instruction fetch returns the Jump instruction that returns

from the external call back into the outer function flow.

While some parts of the external specification are unique to the function being

specified — the hash function will behave differently from sign — a lot of the behavior

is shared. The functions themselves have some similarities:

• The function return types are 𝑣𝑜𝑖𝑑.

• The function arguments are either integers or pointers to byte arrays whose

sizes are either statically known or passed as other arguments.

In addition, we need to include the cdecl calling convention in the specification. For

that, we split the specification into two parts: the common part that talks about

the calling convention and the return type, and function-specific parts that actu-

ally describe what each function does to the device’s memory. As an example, the

specification of an external call to the hash function can be seen in Listing 6.

Connecting Bedrock2 with External-Call Semantics

The next step is to make it so that invocations of Bedrock2’s interact statement

would actually compile to the instructions necessary to trigger the RISC-V external

specification described above. For that, we need to define a way to compile these

interact statements into RISC-V and prove the correctness of this step.

The compilation step is straightforward. We only need to implement the cdecl

calling convention: copy over caller-saved registers to a preassigned memory location,

30

set up the stack pointer and the return address, and jump to the address of the desired

function.

The semantics-transfer-correctness theorem is more complicated. We need to

prove that our description of what an external call does in Bedrock2 semantics cor-

responds to what the compiled code does in our custom abstract RISC-V machine

semantics. The actual effects of individual cryptographic functions are the easy part

— all of our functions only modify the noninstruction memory, and the effect of that

is the same in Bedrock2 and RISC-V semantics. The mechanically difficult part of the

proof is showing the correctness of our implementation of the cdecl calling convention.

This includes showing that the register values are preserved through the function call

and that the call arguments are copied into the right registers.

In this thesis, we stated the semantics-transfer-correctness theorem in Coq and

were able to prove several lemmas to use in its proof, but in the end had to assume

it as an axiom instead of fully proving it for time reasons.

3.4 Assembly

Raw RISC-V assembly is used to write the pre- and postambles of the bootloader. To

avoid needing to parse a separate assembly language, we write down the instructions

as variants of the Instruction algebraic data type in Coq, defined by the riscv-coq

project. This also lets us use Coq functions for lightweight metaprogramming capa-

bilities.

The two main assembly routines used in the code are the memory-clearing routine,

which zeroes out a particular block of memory, and the routine to interact with the

DMA boot image loader and load the image in the desired location. The routine code

can be found in Listing 7.

While the DMA loader looks very much like normal assembly code, the memory-

zeroing routine is more interesting. It is parametrized by the loop-unrolling level —

how many Sw instructions should be executed in a single loop iteration. Different

numbers achieve different balances between performance and code size. The main

31

benefit of using a parametrized description is that this lets us prove the correctness

of this routine for any unrolling level. The user can then choose different levels for

different places in the codebase and get correctness proofs for free.

Proof-wise, both the DMA boot-image loader and the memory zeroing routine’s

correctness lemmas are proven using induction. For the zeroing routine, we simply

induct on how much memory is left to erase. The image loader is more complicated:

its external specification is parametrized by a number 𝑘 — how many polls it will take

for the loading to finish. Holding this number constant, we can induct on
(︀
𝑘−(current

loop iteration)
)︀
. This amounts to proving

• Base case: if
(︀
𝑘−(current loop iteration)

)︀
= 0, we have done all the polling

we need — this iteration will finish the loading and prove the postcondition.

• Inductive step: if
(︀
𝑘−(current loop iteration)

)︀
> 0, we have more polling to

do — we need to poll once and then apply the inductive hypothesis.

3.5 Bedrock2 Part

The Bedrock2 part of the bootloader code mainly consists of a straightline sequence of

function calls. Two of them — memory copying and zeroing routines — are themselves

functions written in Bedrock2, while the others are external calls of cryptographic C

functions, expressed as interact statements.

The Bedrock2 code contains naive implementations of routines to zero out/copy

blocks of memory (corresponding to memset and memcpy functions in C). While the

project already contains a RISC-V assembly routine to zero out memory, it would

require additional software-engineering work to make it usable from Bedrock2, so

rewriting and reproving a separate Bedrock2 version was considered easier. Listing

8 contains the code and specification of the memory-zeroing-out routine, and the

memory-copying routine is defined analogously. Both routines are simple loops so

their correctness can be proved by induction on how many iterations are left. Using

lemmas and tactics from the Bedrock2 framework, proving that these functions ad-

32

here to specifications is much less laborious than proving properties of the assembly

routines.

The whole Bedrock2 part of the code is represented as a function (the “main” func-

tion), its effect captured by a specification. Specifically, since the function takes no

arguments and has no returns, its specification describes the changes in the machine’s

memory and IO trace. The proof of the specification simply combines the specifica-

tions of memory-modification routines and external calls applied sequentially, keeping

track of the states of the memory and registers along the way. This is again made

easy by the Bedrock2 framework and its lemmas and tactics, and by the fact that the

effects of the external C functions are deterministic (that is, a specification maps the

machine state pre call to a single unique machine state post call).

The “main” function is then compiled into RISC-V, which gives us both the RISC-

V instruction list and the proof of correctness, transported from Bedrock2 to the

RISC-V semantics. Both of them are then combined with the preamble and postamble

to produce the whole RISC-V assembly block and its correctness proof.

3.5.1 Arrays and Structures

Most functions used in the Bedrock2 part operate on byte arrays. Ideally, we would

want to declare some of these byte arrays as local variables allocated on the stack and

let the Bedrock2 compiler manage them for us. Unfortunately, at the time of writing

Bedrock2 did not support arrays and structures as native datatypes. To get around

this, we define a structure that contains all local byte arrays and allocate a memory

block for it by hand (i.e. put it in a predefined place in the device’s memory). In

practice this means including a statement about this block’s existence in the “main”

function’s precondition. We then use the fields of this “stack” structure in place of

local variables.

33

Listing 6 Example RISC-V external-specification definition.
Definition common_part_of_ext_spec

(n numargs: nat) specific_ext_spec initMem initReg post :=
(* if the following preconditions hold, *)
exists raddr args,

(* ra contains the value of some address *)
map.get initReg ra = Some raddr /\
(* a predicate that says the registers contain the call's input

arguments *)
arg_relationship numargs initReg args /\
(* after the call, the following postconditions hold: *)
(forall finalReg,

(* the registers that aren't caller_saved_registers are
preserved *)

(forall r, (~(In r caller_saved_registers) \/ r = ra) ->
map.get initReg r = map.get finalReg r) ->

(* the function-specific postcondition holds, and the read
returns a Jalr instruction. *)

let read_result :=
(LittleEndian.split n (encode (Jalr zero ra 0%Z))) in

specific_ext_spec initMem args
(fun (finalMem: mem) => post finalMem finalReg read_result)).

Definition hash_spec := fun (initMem: mem) (args: list word) post =>
forall finalMem,
exists inPtr inSize outPtr inData outDataBefore R,
(* given that the initial memory contains two memory regions *)
((ptsto_array inPtr inData) *
(ptsto_array outPtr outDataBefore) *
R) initMem /\

(* and our arguments passed are reasonable, *)
args = [inPtr; inSize; outPtr] /\
length inData = (Z.to_nat (word.unsigned inSize)) /\
((* after the execution, the input block didn't change *)

((ptsto_array inPtr inData) *
(* while the output block now contains the result of the functional

spec of the hash function *)
(ptsto_array outPtr (hash_functional_spec inData)) *
R) finalMem ->

post finalMem).

34

Listing 7 The assembly routines to use the DMA loader and zero out a block of
memory .
Definition DMA_loader :=

(compile_lit_64bit t0 BOOT_IMAGE_DEST)
++ (compile_lit_64bit t1 BOOT_IMAGE_LOADER_BASE)
++ [[

Sw t0 t1 0;
Fence 0 0

]]
++ (compile_lit_64bit t1 BOOT_IMAGE_LOADER_POLL))
++ [[

Lw t0 t1 0;
Bnez t0 (-4);
Fence 0 0;
Fence_i;
Jr ra

]].

(* generates a list of assembly instructions that zero out n
consecutive memory addresses starting with register t *)

Fixpoint n_32s_zeroed (n: nat) (t: Register) : list Instruction :=
match n with
| O => nil
| S p => [[Sw a1 zero (Z.of_nat n * -4)]] ++ (n_32s_zeroed p t)
end.

(* an assembly loop to zero out memory between a0 and a1, parametrized
by how much the loop should be unrolled *)

Definition clear_memory (n : nat) : list Instruction :=
:= n_32s_zeroed n a1

++ [[
Addi a1 a1 (-4 * n);
Blt a0 a1 (-4 * (n+1));
Jalr zero ra 0]].

35

Listing 8 The implementation and specification of zero_out_memory. Memory-
copying function defined similarly.
Definition zero_out_memory := ((

(* function name *)
"zeroOut",
(* argument list *)
(addr :: numBytes :: nil),
(* list of returned variables *)
nil,
(* function body *)
bedrock_func_body:(

ctr = (constr:(0));
while (ctr < numBytes) {

store4(addr + ctr, constr:(0));
ctr = (ctr + constr:(4))

}
))).

Instance spec_of_zero_out_memory: spec_of "zeroOut" :=
fun functions =>

forall initTrace initMem blockAddr blockSize initData R,
(* given that the initial memory contains an array initData at
blockAddr *)
((ptsto_array blockAddr initData) * R) initMem) ->
(* and they're all appropriately sized, *)
Z.to_nat (word.unsigned blockSize) = List.length initData ->
(word.unsigned blockSize) + (word.unsigned blockAddr) < 2^width ->
(* if a function is called with arguments [blockAddr; blockSize], *)
WeakestPrecondition.call functions "zeroOut" initTrace initMem

[blockAddr; blockSize]
(* the following postcondition holds: *)
(fun finalTrace finalMem rets =>

(* the IO trace won't change *)
initTrace = finalTrace /\
(* nothing will be returned *)
rets = [] /\
(* and the final memory will contain an array of zeroes

instead of initData *)
((ptsto_array blockAddr

(List.repeat Byte.x00 (word_to_nat blockSize))))
* R) finalMem).

36

Chapter 4

Discussion

4.1 Ergonomics of Coq

This project used Coq as the programming language and software-engineering envi-

ronment. While for the most part the developer experience was very pleasant (and

tremendously improved by Proof General [1] / Company-Coq [21]), there were a few

aspects that we found to slow down Coq development. In this section we want to share

our experience with Coq ergonomics-wise and discuss the difficulties we experienced.

4.1.1 Implicit Arguments

Coq users often want to make their definitions and proofs as abstract as possible.

To help that, Coq supports implicit arguments : arguments that do not have to be

provided explicitly if their values can be inferred from context. They can be very

useful in situations where an argument’s type depends on a previous argument. For

example, in definitions like

Fixpoint reverse {A} (l: list A) : list A := ...

it is much easier to write reverse [0; 1; 2] instead of reverse nat [0; 1; 2].

However, if used too much, implicit arguments can hurt code quality instead of helping

it.

37

Hidden by Default

By default, implicit arguments are not printed in the proof view or when inspecting

terms. This can make debugging issues confusing in situations where terms are equal

in their explicit parameters, but not in implicit parameters.

A prototypical situation that happened multiple times throughout the project is

when in the proof view we need to prove P a b c, and in our hypothesis list we see

H1: P a b c. Hoping to automate the proof, we write an Ltac script:

match goal with

| H: ?A |- ?A => apply H

end.

Unfortunately, the match statement fails. Eventually, after some confusion, the

author would remember to set the printing mode to print the implicit variables, and

would realize that the terms are indeed different: @P x a b c and @P y a b c with

𝑥 ̸= 𝑦.

Implicits Without Full Simplification

In situations like above, the author would sometimes encounter an even stranger

situation: while the match statement would fail, directly writing apply H1 would

work. This was again caused by the (structural) mismatch of implicit parameters.

However, in this case they were definitionally equal — which is why the apply tactic

would work.

One way to fix this problem is to apply simpl to both the goal and the hypothesis

before applying the match statement. However, due to the size and construction of

proof terms when using Bedrock2, simplifying everything would take an impractically

long time.

In this project, we solved this problem by writing a tactic that would selectively

simplify all implicit parameters in commonly used definitions and calling the tactic

before using match statements. The downside of this approach is that every such

definition has to be included in the tactic explicitly. An alternative approach would

38

be to use the simpl never argument annotation to make sure Coq never simplifies

terms that have the potential to be slow. However, the slowness is not a binary

property, and it sometimes makes sense to decide whether to simplify these terms on

a case-by-case basis.

4.1.2 Performance

While Coq’s performance has improved significantly throughout the years, there are

still cases where slow performance becomes a blocker to verification work.

• Slow tactics. Working with Bedrock2 often involves manipulating big terms

where even simple normalization might take a lot of time. When working with

such terms, it is important either to simplify relevant subterms selectively or to

aggressively use simpl never annotations. Naturally, most other tactics will

also be slow for such terms.

• Slow QED. In some cases (especially after constructing proofs about Bedrock2

program specifications), going through the proof is fast enough but the QED

step takes a prohibitively long time (at least several hours, with no termination

observed). For this project, we used a workaround from the Bedrock2 project:

in cases where QED is slow and it is not clear how to make it faster, we replace

it with

Lemma ...

Proof.

...

all: fail.

Admitted.

which has the effect of failing if there are any unsolved goals left. Since we end

the proof with Admitted, we lose some correctness guarantees — it is possible

to construct proofs that pass the proof mode but get rightly flagged as incorrect

during the QED checking. Fortunately, it is (empirically) difficult to build such

39

proofs by accident so the workaround provides enough confidence in the proof’s

correctness.

4.2 Future Work

4.2.1 Trusting GCC

By far the biggest weakness of this verification approach is its use of cryptographic C

functions, and as a consequence GCC. While the C functions are written in a static

subset of C and don’t use any “dangerous” features, ideally we would want an end-to-

end proof of correctness instead of having to include GCC in our trusted code base.

There are several ways to address this:

• Rewriting the cryptographic functions in Bedrock2. At the time of

writing the Bedrock2 compiler can’t optimize code very well, so this would

likely make the bootloader unusably slow. In addition, since the bootloader

uses public-key cryptography, implementing the functions would require a lot

of time and effort.

• Integrating with fiat-crypto. Fiat-crypto [9] is a project for generating

correct-by-construction elliptic-curve-arithmetic code. While its original ver-

sion only supported outputting C code, there is ongoing work to make fiat-

crypto output Bedrock2 code and connect them on a proof level. Implementing

asymmetric cryptography operations using fiat-crypto would save a lot of time

and would probably improve the performance by a little bit (due to better

arithmetic-operation constructions), but we would still lose out on register al-

location and peephole optimizations of GCC.

• Integrating with CompCert. Another option is to reuse the cryptographic

C code but compile it with CompCert. This would get us provably correct

compilation and good performance (potentially within a factor of 2 from GCC’s

output). However, it would be necessary to build a bridge between Bedrock2

40

semantics and CompCert semantics, which might be nontrivial.

4.2.2 Not fully accounting for execution time

We prove (subject to assumptions) that the bootloader implemented for this project

terminates, but one might also be interested in bounding its running time more

strongly. In fact, the Bedrock2 framework already supports such reasoning: the

riscv-coq semantics include MetricRiscvMachine, an implementation of an abstract

RISC-V machine that keeps count of various metrics (like the number of instructions

executed, reads and writes), and we can transport Bedrock2 proofs to proofs about

this metric machine. Unfortunately, this approach doesn’t capture the running time

of cryptographic C functions — since we describe their effects using external calls,

each invocation of such a function takes one step of the abstract RISC-V machine.

Some potential ways to address it are:

• Implementing cryptographic routines in Bedrock2 as described above.

This would give us metric tracking for free.

• Using static analysis to bound execution time of C code. Some static-

analysis tools (e.g. [10]) support deriving worst-case running-time bounds for

C programs written in “safe” subsets of C. Such tools could be used to analyze

the C cryptographic functions and record the results as part of the generated

metadata file for Coq, which we could combine with the rest of the proof. This

would not give us end-to-end security — the static-analysis tool would have to

be trusted — but it might be a worthwhile trade-off for practical applications.

4.2.3 Finishing the correctness proof

In this thesis we have stated the correctness theorem in Coq and proved most of the

lemmas necessary for it, but we have not succeeded in unconditionally proving the

full correctness theorem. While the author believes that the parts left to prove are

correct and only pose mechanical/proof engineering difficulty, it is obviously necessary

to finish the correctness theorem before this implementation can be fully trusted.

41

42

Bibliography

[1] David Aspinall. Proof General: A Generic Tool for Proof Development. In
Susanne Graf and Michael Schwartzbach, editors, Tools and Algorithms for the
Construction and Analysis of Systems, Lecture Notes in Computer Science, pages
38–43, Berlin, Heidelberg, 2000. Springer.

[2] Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Mike Shulman, Matthieu
Sozeau, and Bas Spitters. The HoTT Library: A formalization of homotopy type
theory in Coq. arXiv:1610.04591 [cs, math], December 2016.

[3] Ian Clester, Samuel Gruetter, Andy Wright, and Adam Chlipala. RISC-V Spec-
ification in Haskell. Accessible at https://github.com/mit-plv/riscv-semantics.
Git commit 8d00 fa6f 81d6 c1e9 b5d3 b579 7144 0158 7f7d c119.

[4] Scott Constable, Rob Sutton, Arash Sahebolamri, and Steve Chapin. Formal
Verification of a Modern Boot Loader. Electrical Engineering and Computer
Science - Technical Reports, August 2018.

[5] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal Hardware
Extensions for Strong Software Isolation. Technical Report 564, 2015.

[6] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation
of programs. Communications of the ACM, 18(8):453–457, August 1975.

[7] Andres Erbsen and Samuel Gruetter. Bedrock2: language and compiler for veri-
fied low-level programming. Accessible at https://github.com/mit-plv/bedrock2.
Git commit e892 d189 1761 49c1 ef8a bafe a370 03b9 671d b977.

[8] Andres Erbsen and Samuel Gruetter. RISC-V Specification in Coq. Accessible
at https://github.com/mit-plv/riscv-coq. Git commit 94c7 265e c21f b047 6ee3
ee78 cae9 3de4 1dde d99e.

[9] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala.
Simple High-Level Code for Cryptographic Arithmetic - With Proofs, Without
Compromises. In 2019 IEEE Symposium on Security and Privacy (SP), pages
1202–1219, San Francisco, CA, USA, May 2019. IEEE.

[10] C. Ferdinand. Worst case execution time prediction by static program analy-
sis. In 18th International Parallel and Distributed Processing Symposium, 2004.
Proceedings., pages 125–127, Santa Fe, NM, USA, 2004. IEEE.

43

[11] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,
François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, and
Sidi Ould Biha. A machine-checked proof of the odd order theorem. In Inter-
national Conference on Interactive Theorem Proving, pages 163–179. Springer,
2013.

[12] Jason Gross, Adam Chlipala, and David I. Spivak. Experience Implementing a
Performant Category-Theory Library in Coq. arXiv:1401.7694 [cs, math], April
2014.

[13] Brigid Halling. Towards a Formal Verification of the Trusted Platform Module.
PhD thesis, University of Kansas, 2013.

[14] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, October 1969.

[15] Gerwin Klein, Michael Norrish, Thomas Sewell, Harvey Tuch, Simon Winwood,
Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, and Rafal Kolanski. seL4: formal veri-
fication of an OS kernel. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles - SOSP ’09, page 207, Big Sky, Montana, USA,
2009. ACM Press.

[16] Ilia Lebedev and Jules Drean. Secure Bootloader for the Sanctum Project,
May 2020. Accessible at https://github.com/mit-enclaves/secure_bootloader.
Git commit 5527 f1ed 36bc 5bfe efaf 8e19 556d 4633 b76a b17c.

[17] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pis-
ter, and Christian Ferdinand. CompCert - A Formally Verified Optimizing Com-
piler. In RTS 2016: Embedded Real Time Software and Systems,8th European
Congress, SEE, Toulouse, France, January 2016. hal-01238879.

[18] Aybek Mukhamedov, Andrew D. Gordon, and Mark Ryan. Towards a Verified
Reference Implementation of a Trusted Platform Module. In Bruce Christianson,
James A. Malcolm, Vashek Matyáš, and Michael Roe, editors, Security Protocols
XVII, Lecture Notes in Computer Science, pages 69–81, Berlin, Heidelberg, 2013.
Springer.

[19] Christine Paulin-Mohring. Introduction to the Calculus of Inductive Construc-
tions, volume 55. College Publications, January 2015.

[20] Orson Peters. Ed25519 C Implementation, May 2020. Accessible at
https://github.com/orlp/ed25519. Git commit 439a c7a6 2b4d b959 2257 4fd1
83cf 3215 0058 0c82.

[21] Clément Pit-Claudel and Pierre Courtieu. Company-Coq: Taking Proof General
one step closer to a real IDE, January 2016.

44

[22] J.C. Reynolds. Separation logic: a logic for shared mutable data structures. In
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pages
55–74, Copenhagen, Denmark, 2002. IEEE Comput. Soc.

[23] Markku-Juhani O. Saarinen. TinySHA3, May 2020. Accessible at
https://github.com/mjosaarinen/tiny_sha3. Git commit dcbb 3192 047c 2a72
1f5f 851d b591 871d 4280 36a9.

[24] Richard M. Stallman and GCC DeveloperCommunity. Using The Gnu Compiler
Collection: A Gnu Manual For Gcc Version 4.3.3. CreateSpace, Scotts Valley,
CA, 2009.

[25] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas, and San-
jit A. Seshia. A Formal Foundation for Secure Remote Execution of Enclaves. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 2435–2450, Dallas Texas USA, October 2017. ACM.

[26] The Coq Development Team. The Coq Proof Assistant, version 8.11.0, January
2020. Accessible at https://coq.inria.fr. Version 8.11.

[27] The Coreboot Development Team. coreboot. Accessible at
https://www.coreboot.org. Accessed 05/10/2020.

[28] Benedikt and Grayson Daniel and others Voevodsky, Vladimir
and Ahrens. UniMath/UniMath, May 2020. Accessible at
https://github.com/UniMath/UniMath. Git commit 2aec 9849 a459 3df6
fb40 e598 e044 0072 1b3b fa62.

[29] Andrew Waterman, Yunsup Lee, David A. Patterson, Krste Asanovic, Volume
I. User-level Isa, Andrew Waterman, Yunsup Lee, and David Patterson. The
RISC-V Instruction Set Manual. 2014.

45

	Introduction
	Background
	RISC-V
	Coq
	riscv-coq
	Bedrock2
	Predicate-Transformer Semantics
	Separation Logic
	Related Work
	Sanctum
	Bootloaders
	Trusted Platform Modules

	Implementing the First-Stage Bootloader
	Structure
	Specification
	External Calls
	External Calls as Undefined Memory Handlers
	Boot-image Loader
	C calls

	Assembly
	Bedrock2 Part
	Arrays and Structures

	Discussion
	Ergonomics of Coq
	Implicit Arguments
	Performance

	Future Work
	Trusting GCC
	Not fully accounting for execution time
	Finishing the correctness proof

