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Abstract

There are plenty job portals (e.g., linkedin.com, indeed.com, ziprecruiter.com etc),
that leverage machine learning models to connect employers and job seekers via job or
candidate recommendations. However, much less attention is paid to recommending
specific skills that would help workers reskill or employers identify how to retrain their
employees. This thesis seeks to build a system that recommends skills with the follow-
ing two properties: 1) recommended skills are similar to a worker’s existing skills so
they are more likely to try and acquire them; 2) recommended skills increase chances
of income enhancement. Existing research has largely focused on building models
with employee data such as resumes and LinkedIn profiles. We instead explore the
value of much-less-used employer data, i.e. language contained in job postings. The
last few years have seen tremendous advances in natural language processing (NLP),
including the rise of dense vector representations for text (i.e. "text embeddings")
to help solve a plethora of prediction, classification, and other tasks. In building our
system, we compare the performance of several language embedding models and skill
valuation models to identify and recommend opportunities for re-skilling.

Thesis Supervisor: Deb Roy
Title: Professor
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Chapter 1

Introduction

1.1 Background and Motivation

The current wave of technological revolution, especially advancements in artificial

intelligence, has profound impact on the labor market. Understanding this impact

and designing policies that mitigate any challenge society faces are of great interest to

researchers, policy makers, and educators. One piece of the puzzle lies in shifts taking

place in workplace skills. Job skill requirements are changing so quickly that many

people will not able to keep up, and are at risk of being shut out of the workforce. A

report by MIT’s Task Force on the Work of the Future [16] argued that the challenge

is not a lack of jobs, but unequal access to opportunities between high-skilled and

low-skilled workers [1] [2]. Constantly learning and training for new skills is the

only way to survive this demanding time. Frank et al. [15] identified a shortage of

up-to-date and high resolution skills data as a barrier to their "scientific modeling

of technological change and the future of work". Data (O*NET database, Current

Population Survey from the U.S. Census Bureau and the BLS, etc.) available to

researchers does not keep pace with changes in the labor market. Statistics are often

at an aggregated level, making it difficult to design specific and actionable strategies.

Many researchers also lack the resources and expertise to build useful tools that can

realize their insights.

On the other side of the world, career service providers hold an massive amount
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of highly dynamic data. They are also capable of rapidly releasing products that

reach a large audience. They are financially incentivized to fill the needs in the labor

market, which eases some pain workers experience in this challenging environment.

These companies seem well positioned to solve the problems faced by workers today.

However, the problem they are eager to solve is limited to helping employers find

qualified candidates. Supporting workers to re-skill takes much longer and is much

more difficult to monetize. As a result, society is left with a critical problem, and at

the same time, resource that may hold the answer. Yet, not enough people are taking

a stab at the matter. We decided to become part of this group. The way we want to

help is by building a system that recommends skills to workers.

1.2 Related Work

Two lines of research are highly relevant and helpful to this project. One in skill

extraction [9] and normalization [13, 7]. The other in job recommendation. A large

body of work has been dedicated to building job recommender systems. [25] com-

pared various content-based systems that try to match user and job attributes. [18]

recommended jobs that similar users have applied to (a form of user-based collab-

orative filtering). Graph-based models were explored in [23, 11]. Though skills are

intricately tied to jobs, recommending skills has a very different objective. In the case

of job recommendations, users are more interested in positions they qualify for right

now. But our goal is to find skills that allow users to qualify for more jobs in the

future. [10] made use of skill embedding, but their objective is to predict someone’s

next career move, again different from ours. [5] proposed a representation learning

framework that recommends both jobs and skills. The representations are learned

only using data on job and skill interaction, and job to job transition, while we plan

to also utilize the rich text content of job postings.

"DATA AT WORK" project 1 tries to build a more open and interoperable work-

force data ecosystem. The project implemented an open-source Python library, Skills-

1http://dataatwork.org/
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ML [21], for competency extraction and occupation classification from unstructured

text data. Their work has much overlap with this thesis project in terms of data

source and methodology. By the time we found out about this project, we had al-

ready completed much ground work the Skills-ML library is intended for. It was

unfortunate some work was duplicated, but encouraging to see similar approach be-

ing adopted by other people. Using the data and toolkit released by the "DATA AT

WORK“ project, researchers at University of Michigan built and evaluated an appli-

cation, DreamGigs [6], that identifies skills a job seeker needs to develop to achieve

their dream job, and suggests work opportunities where these skills may be acquired.

This work is very user-oriented, presenting a great example of how a system like ours

can be turned into something useful in the real world.

1.3 Our Approach

The main objective of this project is to build a skill recommender system that helps

workers looking to re-skill. The recommended skills should satisfy the following two

properties: 1) recommended skills are similar to a worker’s existing skills so they

are more likely to try and acquire them; 2) recommended skills increase chances of

income enhancement. The first property calls for a model that learns a numerical

representation for skills so their similarity can be measured. The second property

requires assigning quantitative values to skills.

Most of the models that drive our recommendations are built with online job post-

ing data. A large body of previous work on employment tools used career transition

data, probably because such data can be easily converted to matrices, a type that

works with most machine learning algorithms. Text is unstructured, and has to go

through many pre-processing steps before it can be passed into a machine learning

model. This barrier leaves job postings an under-utilized source of data for building

employment applications. Recent progress in text embedding models presents an op-

portunity to build better machine learning systems with job posting data. On the

other hand, employer data such as job postings is better at representing needs in

9



the labor market in real time than employee data such as career transitions, further

motivating the use of job posting data. Recruiters often use the most space in a

job posting to describe the tasks and skills required to be successful at the position.

As a skill can be defined by the tasks it performs, the text in a job posting encodes

important characteristics of a skill. Learning embeddings for job postings, thus, not

only helps finding similar jobs, but also similar skills. If two skills are similar, text

that describes them should have resemblance that can be captured by vectors that

summarize the text content.

Before actually building the recommender system, we combined information from

multiple sources to create a list of skills as recommendation candidates. We present

details of this process in Section 2.2.3. The system consists of several components,

a job posting encoder, a skill tagger, a salary estimator, a similar occupation finder,

and a recommendation engine. Each job posting is converted into an embedding

by the job posting encoder. The skill tagger identifies a list of skills from the job

posting. Each job posting belongs to a job title. We average the embeddings of

the job postings with the same job title to derive a vector representation for the job

title. We also average the embeddings of the job postings that are tagged with the

same skill to derive a vector representation for the skill. The system takes in a job

title, the similar occupation finder then finds the most similar job titles that also pay

better, by comparing the distances calculated from the vector representations of job

titles. Lastly, the recommendation engine outputs a list of recommended skills by

comparing skills required by the input job title and those required by similar titles.

The recommended skills are restricted to a list of skills close to those required by the

input job title, where closeness is measured using the vector representations of skills.

We supplement the model we just described with a recommendation model based

on the job-skill interaction matrix. In this model, we first construct the job-skill

interaction matrix from the output of the skill tagger. We then learn an embedding

for skills from the interaction matrix. The salary estimator either extracts the salary

figure directly from the job posting, or estimates based on similar job postings. We

assign values to skills using the coefficients of a salary predictor. This model takes in
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a skill, and recommends skills based on skill similarity and skill value.

We elaborate the various parts of the system in Section 3.
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Chapter 2

Data

In this section, we describe in detail where data used in this project was collected,

and how it was processed.

2.1 Data Sources

2.1.1 O*NET

The Occupational Information Network (O*NET) 1 was a program sponsored by the

US Department of Labor/Employment and Training Administration. It collected and

organized a variety of occupational information and made the data freely available to

the public. The data has been an invaluable resource for job seekers, policy makers

and social researchers, or anyone interested in the labor market, as it has created stan-

dardized language for interested parties to engage in discussions. Another strength

of the data is that it is continuously updated from input by a broad range of workers

in each occupation. We used the following datasets from the O*NET database:

∙ Occupation Data: this file contains 1,110 job titles (which we will call O*NET

Titles) with their O*NET-SOC Code and descriptions.

∙ Job Zones: this file contains 969 job titles and their corresponding Job Zone

numbers. Job Zone groups occupations based on their associated levels of edu-
1https://www.onetonline.org/
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cation, experience, and training. The values range from 1 to 5. The higher the

value, the more preparation the job requires.

∙ Knowledge: this file contains domains of knowledge and their importance lev-

els associated with O*NET Titles. There is a total of 33 unique domains. Some

examples are ’Law and Government’, ’Physics’, ’Economics and Accounting’.

∙ Skills: this file contains general skills and their importance levels associated

with O*NET Titles. There is a total of 35 unique skills. Some examples are

’Reading Comprehension’, ’Negotiation’, and ’Troubleshooting’.

∙ Abilities: this file contains abilities and their importance levels associated

with O*NET Titles. There is a total of 52 unique abilities. Some examples are

’Memorization’, ’Arm-Hand Steadiness’, and ’Inductive Reasoning’.

∙ Technology Skills: this file contains technology skills associated with occupa-

tions found in Occupation Data. There is a total of 8,824 unique technology

skills, each comes with a classification under the United Nations Standard Prod-

ucts and Services Code (UNSPSC). An example

∙ Tools Used: this file contains tools associated with O*NET Titles. There is a

total of 18,172 unique tools, each comes with a classification under UNSPSC.

An example

2.1.2 Indeed

Indeed 2 is an American worldwide employment-related search engine for job listings

launched in 2004. The site also has salary data on different occupations calculated

based on user input and job advertisements in the past 36 months at any given time.

For occupations with enough data, salary figures are also averaged over cities and

states, in addition to the national average.

2https://www.indeed.com/
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2.1.3 Wikipedia

Wikipedia 3 is “a multilingual online encyclopedia created and maintained as an open

collaboration project by a community of volunteer editors, using a wiki-based editing

system”.

2.2 Data Preparation

We used aforementioned sources to create three sets of data: salaries, job postings

and skills. O*NET data was downloaded directly from its website. Indeed data was

mined using a custom scraper implemented in Python package scrapy. Wikipedia

data was retrieved using Wikipedia-API, a Python wrapper for Wikipedia’s official

API.

2.2.1 Salaries

Indeed users can search salary figures by job titles. If the searched job title exists in

Indeed’s database, users will find average salaries at various locations in the United

States by selecting different values in the location dropdown menu (Figure 2-1a) . If

the searched job title does not exist, users will instead find links to related job titles

(Figure 2-1b). We wrote a scraper that programmatically searched salary figures for

O*NET Titles. State and city figures were saved when available. Salary can be quoted

yearly, monthly, weekly or hourly. We converted all numbers to yearly assuming 40

hours per week, and 52 weeks or 12 months a year. The scraper would also follow any

link to related jobs it could find. We ended up with 4,714 distinct job titles (which

we will call Indeed Titles) with salary information.

2.2.2 Job Postings

We wrote a scraper that scraped the first 10 pages of job postings for each Indeed

Title. For each posting, the scraper extracted the position title, the company name,

3https://en.wikipedia.org/
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(a) Salary Page When Title is Found

(b) Salary Page When Title is not Found

Figure 2-1: Indeed Site When Searching Salary by Job Title
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Figure 2-2: Histogram of Number of Jobs per Indeed Title

the location, the job summary, the detailed job description, and the posting url. 28%

of the scraped postings included expected salary in the job description. When salary

is not explicitly stated, we estimated salary to be the average for the Indeed title at

the smallest available location. For example, if the average salary for a plumber in

Boston, MA was not available, we would use the average for Massachusetts, if still

unavailable, we would use the national average. We ran the scraper in the summer of

2019, and got 211,490 different job postings. Two postings are considered different if

any one of the extracted fields is different. Figure 2-2 shows a histogram of number

of jobs per Indeed Title.

2.2.3 Skills

The set of skills we used in this project is the union of the following sets of skills:

∙ All knowledge, abilities, general skills, technology skills and their UNSPSC

categories, tools used and their UNSPSC categories from O*NET. We will call

this set of skills O*NET Skills.

∙ We had previously scraped job postings on Indeed in 2018. At the time, each

17



posting came with a list of skills Indeed deemed necessary for the job. Indeed

had disabled this feature when we scraped in 2019. Out of 253,680 postings

we scraped in 2018, there were only 1,114 distinct skills, most of which did not

appear in O*NET Skills. We will call this set of skills Indeed Skills.

∙ We ran Google search using Python googlesearch package for each of O*NET

Skills and Indeed Skills. If one of the top 20 search results was a Wikipedia

page, we would save the title of the first Wikipedia page result as a skill. We

will call this set of skills Wiki Skills.
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Chapter 3

Models

3.1 Job Posting Encoder

The first part of the system involves converting each job posting (only the position

title and the job description) into an vector of real numbers, also called an embedding.

We experimented with 4 models that generate numerical representations from text.

3.1.1 Tf-idf

Tf-idf stands for term frequency-inverse document frequency. It measures how impor-

tant a word is to a document in a collection of documents. In this case, a document

is a job posting. We calculated tf-idf using scikit-learn1, a Python machine learn-

ing library. Please refer to the scikit-learn documentation for its implementation

details.

Preprocessing. We took the following steps to preprocess the job postings before

calculating their tf-idf scores:

1. Find all skills (Section 2.2.3) that contain punctuation or numbers. Keep words

that match these skills in the job postings as they are. For the rest of the job

posting, do:

2. Remove all punctuation and numbers.
1https://scikit-learn.org/
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3. Split text into words that are separated by space.

4. Convert all words to lower case.

5. Remove all stop words as defined in nltk2, a Python library for natural language

processing.

6. Lemmatize words using spacy3, another Python library for natural language

processing.

Furthermore, we passed max_df=0.6, min_df=5 as parameters when training tf-

idf vectorizer, effectively removing words that appear too often (more than 60% of

all job postings) or too infrequently (less than 5 job postings).

After training, the tf-idf model learned a vocabulary of size 60,095. Thus each job

posting would be represented by a vector of length 60,095.

3.1.2 Universal Sentence Encoder

Universal Sentence Encoder(USE) [4] is a model developed at Google that converts

longer-than-word text into a 512 dimensional vector. The encoder was trained si-

multaneously on a variety of supervised and unsupervised tasks such as semantic

similarity classification, entailment, and surrounding sentences prediction. The train-

ing data came from Wikipedia, web news, web question-answer pages and discussion

forums.

3.1.3 BERT

Bidirectional Encoder Representations from Transformers [8] (BERT) is another lan-

guage representation model developed at Google. At the time of its publication,

BERT achieved state-of-the-art performance on a number of natural language under-

standing tasks. BERT was trained on the Wikipedia corpus for two tasks: masked

2https://www.nltk.org/
3https://spacy.io/
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word prediction and next sentence prediction. The result is a pre-tranied word en-

coder that generates a high dimensional vector for each word given a piece of text.

The use of transformer, an attention mechanism, allows BERT to be context-aware,

which means the same word could have different representations in different sentences.

We used a Python implementation of BERT by HuggingFace [24] to generate job

embeddings, which are vectors of length 768, calculated as the average of the posting’s

word embeddings.

3.1.4 Doc2Vec

Le and Mikolov[17] proposed an algorithm to learn paragraph vectors as an extension

to word vector models [14][22]. In a typical word vector model, word embeddings are

learned by maximizing the probability of predicting the next word given a sequence

of previous words. The paragraph vector model adds another vector representing the

paragraph to the training sequence.

Gensim4 implemented a framework, Doc2Vec, to train paragraph vectors. We

treated each job posting as a paragraph. The model was trained for 20 epochs to

produce vectors of size 1000. Similar to tf-idf, we removed words that appeared less

than 5 times.

3.1.5 Job Similarity

We want the best encoding model capable of identifying job postings that are similar

to each other. In other words, the vector representations of two similar job postings

should be closer in distance than the vectors of two dissimilar job postings. We

verified that all 4 models were able to do that to a reasonable extent. We randomly

selected 200 Indeed Titles. For each of these titles, we got the job postings that

belonged to the title (group A), as well as an equal number of postings selected

(without replacement) randomly from all job postings (group B). For each encoding

model, we measured the pair-wise cosine distance for postings within group A and

4https://radimrehurek.com/gensim/
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Model Random Same Title
tfidf 0.949 0.817
USE 0.41 0.279

BERT 0.163 0.13
doc2vec 0.871 0.783

Table 3.1: Average Distance between Postings with Same Title vs Random Postings

Model % Titles with p-value < 5%
tf-idf 100%
USE 97.5%

BERT 91.5%
Doc2Vec 98%

Table 3.2: % of 200 Indeed Titles Rejecting Null Hypothesis in Welch’s t-test

postings within group B. The cosine distance between two job embeddings, Ej1 and

Ej2, is calculated as in Equation 3.1. We report the average distance over 200 titles

in Table 3.1. We also performed a Welch’s t-test on the distances from group A and

group B. Table 3.2 shows the percentage of the 200 Indeed Titles that reject the null

hypothesis at 5% significance level, the null hypothesis being the average distance

between two job postings with the same Indeed Title is the same as or larger than

between two random postings.

dstnce(Ej1, Ej2) =
Ej1 · Ej2


Ej1






Ej2




(3.1)

We also ran an Amazon Mechanial Turk (MTurk) job to further evaluate the 4

encoding models. Tf-idf was selected as the best model based on MTurk results. We

elaborate on the experiment setup and analysis in section 4.1. For the rest of the

project, we used tf-idf embeddings to represent job postings. We then converted each

Indeed Title to the average tf-idf embeddings of all job postings that belong to the

title. Table 3.3 has some examples of which Indeed Titles are most similar to some

reference titles according to this representation.
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Reference Title Similar Titles
food clerk sales clerk, store clerk, bakery clerk, general merchan-

dise clerk, food service associate
health services administrator program administrator, behavioral health professional,

health information management manager, registered
nurse, medical director

senior process engineer process engineer, senior manufacturing engineer, senior
lead engineer, development operations engineer, facili-
ties engineer ii

metal worker metal fabricator, sheet metal mechanic, entry level pro-
duction worker, recycling worker, general worker

security guard residential security officer, security supervisor, armed se-
curity officer, guard, security escort

Table 3.3: Examples of Similar Indeed Titles Based on Tf-idf Encoder

3.2 Skill Tagger

An important part of this project was to figure out what skills a job requires. The

O*NET database does provide a mapping from O*NET Titles to O*NET Skills.

However, our set of job titles and skills is larger than that of O*NET’s. We needed

a way to do our own mapping.

The plan was to aggregate skills from job postings grouped by Indeed Titles. That

required each job posting tagged with a list of skills. At first, we attempted to train

a model that predicts required skills from a job posting, using the Indeed data we

scraped in 2018. We assumed the skills that came with each post were labeled by

the recruiter that wrote the post, and hence the ground truth. Only after spending

much effort on building a skill prediction model, we realized some skills were clearly

mislabeled. For example, we found a company listed martial arts as a required skill

for multiple unrelated positions. It was because the company wrote in all its job

descriptions that the gym in its building offers martial arts lessons. Without well

labeled data, we could not really build an intelligent machine learning model. We

resorted to a much simpler algorithm, string matching. A skill is considered necessary

for a job if it is mentioned in the job posting.

We took a few steps to improve the quality of string matching. Word boundary
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was enforced so that “java” would match “java is an object oriented language”, but

not “javap is another tool in JDL bundle”. Matching was case insensitive unless

the skill contained only capital letters. For example, the tagger doesn’t consider

’spice’ or ’Spice’ a match for SPICE (a general-purpose, open-source analog electronic

circuit simulator), but both ’SharePoint’ and ’Sharepoint’ are considered a match for

’sharepoint’ (a Microsoft web-based collaborative platform). To reduce false positive,

we removed the following ambiguous (often mislabeled) skills from our skill list:

(transportation, recruiting, square, principle, monitors, interviewing, route, smart,

https, rules, security, network, self, impact, maintenance, auto, player, basic, levels,

experience, bridge, impact, smart, code, policy, stage, travel, certain, reduce, tax,

platforms, forms, skill, go, fear, rest, google, screens, bar, keys, facebook, instagram,

twitter, windows, picks, tips, frames, televisions, principal, guides, s, j, r, c, html)

After going through all job postings, 4,676 skills appeared in at least 5 postings.

These 4,676 skills constitute our final skill list. Any skill we recommend will come

from this list. The set of skills we map to an Indeed Title T, which we will call ST ,

is the union of skills that are matched to at least 3 out of all job postings that belong

to the Indeed Title.

3.3 Skill Similarity

Similar to job similarity, skill similarity can be calculated as the cosine distance

between skill embeddings. We introduce 2 skill embedding methods.

3.3.1 Text Embedding

The way a skill is mentioned in a job description can reveal properties of the skill.

Since we already have the embeddings of the job postings, a skill can simply be

represented as the average embedding of the jobs that mention the skill. We only

took the embedding of sentences that the skill appeared in, as most of other sentences

in the job posting are unrelated to skills.
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3.3.2 Job-Skill Interaction Matrix

We construct a job-skill interaction matrix, M, of shape 211,490 (number of job

postings) by 4,676 (number of skills). Mj,s is 1 if job j mentions skill s, 0 otherwise.

Since two similar skills are likely to appear in the same job postings, representing

a skill as its corresponding column in the job-skill interaction matrix can help find

similar skills. However, having a vector size of 211,490 is not scalable. A lower-

rank vector representation can be obtained by performing truncated singular value

decomposition (SVD) on the interaction matrix. The idea is borrowed from latent

semantic analysis, where SVD yields a compact representation of documents from a

term-document matrix. We chose 200 as the dimension of the output vector. The

top 200 singular values explain 67% of the variance in the original matrix.

3.4 Skill Recommendation

We present 2 skill recommendation models based on the 2 skill embedding methods.

3.4.1 Text Embedding

Given an Indeed Title T, find top 10 similar (based on tf-idf embeddings) Indeed

Titles that have higher average salaries than T. For each similar title T ′, find the

skills that are mapped to this title, but not to T, i.e. ST′ − ST , and assign each of

these skills a value of the salary difference divide by the number of missing skills. For

skills that appear in multiple similar titles, the values accumulate. We filter the skills

by a similarity threshold, de-duplicate using Wikipedia, and then recommend the top

ones sorted by value. The pseudocode is listed in Algorithm 1.

3.4.2 Job-Skill Interaction Matrix

Running truncated SVD on the job-skill interaction matrix M, gives each skill an

embedding of length 200. Let the full embedding matrix of 4,676 skills be ES. Then

we can find a low-rank approximation of M by M ·ES. We will call this approximation

25



Algorithm 1 Text Embedding Recommendation
1: procedure recommend(T)
2: similar_titles = empty list
3: while size(similar_titles) < 10 do
4: T ′ = next closest Indeed Title
5: if salary(T ′) > salary(T) then
6: similar_titles.add(T ′)
7: skill2value = empty dictionary
8: for T ′ in similar_titles do
9: missing_skills = ST′ − ST

10: for S in missing_skills do
11: value = (sry(T′)−sry(T))

sze(mssng_sks)
12: if S in skill2value then
13: skill2value[S] = value
14: else
15: skill2value[S] = skill2value[S] + value
16: similar_skills = empty list
17: for S in ST do
18: similar_skills.add(S’s 10 most similar skill)
19: skills2recommend = empty list
20: Sort skills in skill2value by value
21: for S in skill2value do
22: if S in similar_skills and not duplicated in skills2recommend then
23: skills2recommend.add(S)
24: Return skills2recommend
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Skill Value
cpa 15068.4

senior management 11461.2
physics 11413.0

senior leadership 11231.6
python 11092.8

strategic planning 10601.4
saas 10503.4

design 10158.9
architecture 9889.9

machine learning 9680.3
underwriting 9652.1

registered nurse 9523.0
software development 8582.1
information security 8346.5

management experience 8124.0

Skill Value
carts -9320.4

forklift -9252.0
laundry -8551.1

cash handling -8099.8
first aid -8008.7

housekeeping -7967.5
merchandising -7859.6
photography -7073.1
receptionist -7046.5
food service -6977.1
front desk -6878.4
clerical -6814.4

event planning -6543.9
sanitation -6536.0
data entry -6288.1

Table 3.4: Examples of High and Low Value Skills With Dimension Reduction

matrix M′, and it is of shape 211,490 by 200. Let Y be the vector of salaries for the

job postings. We built a ridge regression model using M′ to predict Y. The objective

function for the ridge regression is shown in Equation 3.2, where θ contains the

regression weights and is of length 200. λ is set to 10 based on cross-validation.

The dot product between ES and the optimal θ can be interpreted as the estimated

values for skills. Table 3.4 lists the 15 most and least valuable skills based on ES · θ.

We could run ridge regression directly with M instead of M′, and take the regression

coefficient as the value for a skill. However, the values are less interpretable (ranging

from 60,000 to -50,000). The highest and lowest valued skills (Table 3.5) also seem

less consistent with common sense.

Now we have both the embeddings and the values for skills. Given a skill S, we

can find a list of skills that have high cosine similarity with S and sort them by their

values.

Lossrdge =
1

211490
(M′θ − Y)T(M′θ − Y) + λ ‖θ‖2 (3.2)
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Skill Value
intraoral cameras 65964.8

bc/be 61733.9
pupillometer 47822.7

dea certification 47400.5
telephone test set 45698.7

penultimate 45410.0
abap 43954.8

heavybid 40339.4
licensed psychologist credentials 38919.6
psychiatric mental health nurse 38179.5

ixl learning 37343.4
sas jmp 33196.4

blackbaud crm 32889.4
cargo dollies 32687.1
jda software 31775.5

Skill Value
rangefinders -52155.3
backbone.js -42681.0
zookeeper -38281.4

encryption software -31737.5
marklogic -31442.5
ppm tools -28419.4

watir -27943.9
pharmacy intern license -26933.7

deacom -26559.5
wolters kluwer -24044.6

web server software -23709.3
siemens plm software -23335.3

sendgrid -22809.6
awk -22481.8

patient restraints -22421.0

Table 3.5: Examples of High and Low Value Skills Without Dimension Reduction
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Chapter 4

Results

In this section, we detail the results of the job posting encoder experiment, as well as

output from the recommendation system.

4.1 Amazon Mechanical Turk

We ran an MTurk job to compare performance of the 4 text embedding models at

identifying similar job postings. We first chose 59 O*NET Titles from different job

zones. More specifically, 11 from Zone 1 (lowest education and training requirement),

12 from Zone 2, 13 from Zone 3, 11 from Zone 4, and 12 from Zone 5 (highest

education and training requirement). We then found 59 Indeed Titles (Table 4.1)

similar to the O*NET titles. We randomly selected a job posting for every Indeed

Title. The 4 embedding models picked the job posting closest to each of the 59

selected posts. When choosing Indeed Titles, we made sure the 4 embedding models

would pick different posts.

MTurk workers were given 3 job postings, 1 as reference, the other 2 selected by

2 of the 4 models. The workers were then asked to choose which one out of the two

postings is more similar to the reference, as well as the reasons for their choice. Figure

4-1 shows an example task a worker got. Following this setup, a complete ranking

of 4 models requires 6 comparisons. We decided to run binary comparisons instead

of ranking the 4 models directly, hoping an easier task would improve the quality of
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Job Zone # Titles Titles
1 11 seamstress, assistant cook, quarry manager, drain tech-

nician, crop manager, rental agent, farm laborer,
roustabout, sorter, crossing guard, parking attendant

2 12 yard worker, cake decorator, extraction technician,
plasterer, metal fabricator, emergency dispatcher, bus
driver, child life specialist, lumber associate, cargo
agent, meat cutter, press operator

3 13 senior legal assistant, php developer, laser technician,
police officer, test engineer, tool and die maker, massage
therapist, hair stylist, satellite installer, funeral director,
senior electrician, diesel technician, insurance broker

4 11 environmental compliance specialist, human resources
specialist, clinical laboratory scientist iii, broadcast en-
gineer, manufacturing engineer, industrial engineer, en-
ergy consultant, distribution manager, multimedia spe-
cialist, religious education teacher, quality assurance en-
gineer

5 12 ecologist, elementary school teacher, economist, recov-
ery coach, senior research associate, computer techni-
cian, clinical study manager, speech therapist, historian,
surgeon, epidemiologist, radiologist

Table 4.1: Selected Indeed Titles for Mturk
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Figure 4-1: Example MTurk Task

worker answers. Another strategy we took to ensure quality was to have 3 workers

labeling the same task. The majority answer was treated as the truth.

We didn’t publish all MTurk tasks at the same time. After gathering results for

34 titles, we noticed that Doc2Vec had consistently poor performance. Thus for the

rest of 25 titles. We only compared tf-idf, USE, and BERT to save cost.

We made a number of observations:

∙ Tf-idf is overall the best model. We counted pair-wise wins and losses (Table

4.4). Tf-idf has the highest win rate (Table 4.5), followed by USE, BERT, then

Doc2Vec. Averaging MTurkers’ votes across Indeed Titles (Table 4.2, 4.3) gave

us the same ranking.

∙ When tf-idf did poorly, it was more likely to be a job in high O*NET Job Zone

(4 and 5). Table 4.6 lists the Indeed Titles that tf-idf received 0 or 1 vote from

MTurkers.
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Model tf-idf USE BERT Doc2Vec All Models
Average Votes 6.1 4.7 4.0 3.2 4.5

Standard Deviation 2.2 2.3 2.1 2.5 2.5

Table 4.2: MTurker Votes by Model for first 34 Indeed Titles

Model tf-idf USE BERT All Models
Average Votes 4.1 2.7 2.2 3

Standard Deviation 1.8 1.7 1.6 1.8

Table 4.3: MTurker Votes by Model for the Rest of 25 Indeed Titles

∙ Responsibilities and skills are the most common reason for job similarity (Table

4.7). It shows that people consider skills as a key distinguishing factor in a job

posting, which lends support to our belief that job postings encode important

information about skills.

∙ We didn’t find significant difference between the 4 embedding models regarding

reasons for job similarity.

∙ We didn’t find significant difference between the 5 Job Zones regarding reasons

for job similarity.

4.2 Skill Recommendation

We qualitatively evaluated the recommendations made by our system. Table 4.8 4.9

4.10 are some examples of top 10 recommendations from the text embedding model

(Section 3.4.1). In addition, the system points out related occupations that pay better

Model1 #wins Model 2 #wins
tf-idf 28 Doc2Vec 6
tf-idf 45 BERT 14
tf-idf 39 USE 20
USE 23 Doc2Vec 11
USE 34 BERT 25

BERT 20 Doc2Vec 14

Table 4.4: Pair-wise Wins and Losses
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Model Win Rate
tf-idf 74%
USE 51%

BERT 39%
Doc2Vec 30%

Table 4.5: Model Win Rate

Indeed Title Posting Title Tf-idf Votes Job Zone
manufacturing engineer Manufacturing Engineer 0 4
multimedia specialist Multimedia Creative Spe-

cialist
0 4

epidemiologist Military Health Epidemiol-
ogist, Part-Time

0 5

diesel technician Marine Diesel Technician 1 3
distribution manager Distribution Manager -

Overnights
1 4

environmental compliance
specialist

Environmental/Regulatory
Compliance Specialist

1 4

broadcast engineer Freelance Maintenance En-
gineer, KABC-TV

1 4

Table 4.6: Indeed Titles with Poor Tf-idf Performance

responsibilities skills title industry employer other
0.687 0.564 0.529 0.3 0.151 0.014

Table 4.7: % MTurkers Chose as Reason for Similarity
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than the current job. The results also reveal some problems in the system. Firstly,

some skills that look essential to a job are missing from its list of skills when they

do not appear in job postings for this title. But they show up in job postings for a

very similar job title. The system mistakenly thinks these are good skills for workers

to acquire when the workers already possess them. An example is "pallet jacks" for

lumber associate 4.8. Secondly, many job titles are common in different industries.

These job’s skill set may include the ones that are industry-specific. Recommending

these skills to workers in a different industry would not be useful. "Patient care" 4.9

was recommended to a human resources specialist in order to transition to positions

like "director of human resources", probably because we have job postings for these

positions at hospitals. Thirdly, as we rely on Indeed for salary data, any inaccuracy

could lead to bad recommendations. Skills helpful for a lower-paying job are not ideal

candidates for re-skilling.

Table 4.11 shows the top 10 recommendations based on the job-skill interaction

matrix model (Section 3.4.2). We chose a few from both highest value and lowest

value skills (Table 3.4) as the starting skill. Most recommendations seem quite rea-

sonable. But further investigation is required to validate these preliminary results.

An interesting case is for "front desk". A large number of recommended skills are

in the medical field. This could be because front desk jobs at doctor offices usu-

ally pay better than other places, and/or our system scraped a large number of job

postings for this position. Two surprising recommendations are "playing cards" for

"forklift" and "car wash" for "management experience". After some investigation,

we realized many jobs in a casino require using forklift and many car washes were

hiring managers. This reveals a shortcoming of the job-skill interaction matrix model.

This model measures similarity by co-occurrence, i.e., skills often show up together

are considered similar to each other. However, co-occurring skills don’t necessarily

perform similar tasks, nor does knowing one make learning the other easier.
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Skill Potential Future Jobs Value
pallet jacks forklift operator, stacker, replenishment as-

sociate, stock checker
983.2

inside sales yard supervisor, yard specialist 607.1
delivery trucks yard worker, yard specialist, stock checker 468.2

performance management yard supervisor 412.4
coaching yard supervisor 412.4

scaffolding yard coordinator 388.1
truck driver yard driver 350.3
reach trucks replenishment associate 330.1
order pickers replenishment associate 330.1

plumbing yard specialist 194.7

Table 4.8: Recommendations for Lumber Associate
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Skill Potential Future Jobs Value
employment law human resources manager, director of human resources,

senior human resources associate, senior director of hu-
man resources, senior human resources manager, head of
human resources, vice president of human resources, hr
consultant, labor relations specialist, human resources
business partner

19790.6

continuous improve-
ment

human resources manager, director of human resources,
senior human resources associate, senior director of hu-
man resources, senior human resources manager, head of
human resources, vice president of human resources, la-
bor relations specialist, human resources business part-
ner

18877.1

senior leadership director of human resources, senior human resources as-
sociate, senior director of human resources, senior hu-
man resources manager, head of human resources, vice
president of human resources, labor relations specialist,
human resources business partner

18093.6

regulatory compliance human resources manager, director of human resources,
senior human resources associate, senior director of hu-
man resources, senior human resources manager, head
of human resources, vice president of human resources,
human resources business partner

17342.6

change management director of human resources, senior human resources as-
sociate, senior director of human resources, head of hu-
man resources, vice president of human resources, hr
consultant, human resources business partner

15164.9

data analysis director of human resources, senior director of human
resources, senior human resources manager, head of hu-
man resources, hr consultant, labor relations specialist,
human resources business partner

14241.2

professional in human
resources

director of human resources, senior director of human
resources, senior human resources manager, labor rela-
tions specialist, human resources business partner

10276.2

patient care director of human resources, vice president of human re-
sources, labor relations specialist, human resources busi-
ness partner

7596.2

senior professional in
human resources

director of human resources, senior director of human
resources, labor relations specialist

7058.3

business management director of human resources, vice president of human
resources, labor relations specialist

6686.0

Table 4.9: Recommendations for Human Resources Specialist
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Skill Potential Future Jobs Value
process engineering manufacturing engineer, senior manufactur-

ing engineer, senior process engineer, pro-
cess engineer, sustainability engineer, senior
manufacturing supervisor, development op-
erations engineer, materials engineer

5072.4

chemistry senior process engineer, process engineer,
sustainability engineer, development opera-
tions engineer, materials engineer

3713.7

coaching senior industrial engineer, senior manufac-
turing engineer, senior process engineer, sus-
tainability engineer, senior manufacturing
supervisor, development operations engineer,
lean six sigma specialist

3644.4

quality management manufacturing engineer, senior manufactur-
ing engineer, senior process engineer, process
engineer, lean six sigma specialist

3346.8

statistical process control manufacturing engineer, senior manufactur-
ing engineer, senior process engineer, mate-
rials engineer, lean six sigma specialist

2993.4

technical writing senior industrial engineer, manufacturing en-
gineer, process engineer, development opera-
tions engineer, lean six sigma specialist

2893.5

program management manufacturing engineer, sustainability engi-
neer, senior manufacturing supervisor, mate-
rials engineer, lean six sigma specialist

2225.4

cad software senior industrial engineer, manufacturing en-
gineer, senior manufacturing engineer, devel-
opment operations engineer

1914.5

microsoft excel senior industrial engineer, senior manufac-
turing engineer, sustainability engineer, lean
six sigma specialist

1792.5

process mapping senior industrial engineer, senior process en-
gineer, lean six sigma specialist

1629.5

Table 4.10: Recommendations for Industrial Engineer
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Existing Skill Recommended Skills
forklift playing cards, automated export system, cutting machinery,

gouges, compact tractors, gas grills, maximo software, load boxes,
flatbed truck, barcode system

housekeeping level probes, peoplenet, hour meters, buffing machine, mail bags,
safety showers, sewing machines, mud pumps, sample containers,
chemical tankers

front desk registered dental assistant, dental assistant, x-ray certification,
massage, medical records software, web design software, tegra, open
dental, mindbody, vendor management system

physics optics, matlab, professional engineer, calculus, hydraulics, signal
processing, engineering and technology, image processing, funda-
mentals of engineering, failure analysis

machine learning data science, ai, big data, artificial intelligence, data mining,
hadoop, spark, computer vision, internet of things, natural lan-
guage processing

management experience profit and loss, market segmentation, client system, sap ariba, sci-
encedirect, sales software, adapt it, whiteboards, certified supply
chain professional, car wash

Table 4.11: Recommendations by Job-Skill Interaction Matrix Model
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Chapter 5

Discussion

5.1 Job Posting Embedding Models

Out of the 4 text embedding models we experimented with, tf-idf is the clear win-

ner, albeit being the simplest. Recent advancement in NLP, although successful at

improving state-of-art for standardized tasks, is not helpful in our scenario. This

finding is not exciting news, yet admittedly not the most surprising. Work by Arora

et al. [19] showed simple sentence embedding model (a varied version of tf-idf) is a

formidable baseline when labeled training data is scarce or nonexistent (which un-

fortunately is our situation). One major advantage of newer models like BERT and

USE over tf-idf is that they are aware of word order, making them particular pow-

erful at tasks like sentiment analysis and entailment, where meaning can drastically

change when word order changes. However, language used in job postings tends to

be simple and unambiguous. When a job posting mentions a skill, it is much more

likely this skill is required than not. On the other hand, a much smaller embedding

size for BERT, USE and Doc2Vec means less information from the job postings is

encoded compared to tf-idf. Another reason for the underperformance of BERT and

USE can be the presence of out-of-vocabulary words in job postings. Job postings

can be quite different from the corpus BERT and USE were pretrained on, while the

tf-idf model was directly trained on the job posting data. Doc2Vec was also trained

on the job posting data, but had the worst performance. Our explanation is Doc2Vec
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cannot encode as much as information as tf-idf as its embedding is much shorter.

At the same time, it suffers from having a much simpler neural network architecture

compared to BERT and USE. Between USE and BERT, USE did consistently better

in our experiment, though BERT has better performance in standardized NLP tasks.

The reason can be two fold: 1) USE was designed to be more flexible for downstream

tasks, as it was trained simultaneously on multiple tasks, textual similarity being one

of them; 2) BERT was a word embedding model, and simply taking the average of

all words in a job posting may not be the most optimal.

The ranking among the models is strongly backed by MTurk results. We then

looked for more fine-grained patterns: does tf-idf have weakness, is there a type of

posting USE does particularly well on, etc. The observation that all job postings

that tf-idf did poorly on are from Job Zone 4 and 5 made us wonder if there is any

correlation between tf-idf performance with Job Zone or length of posting (job from

higher Job Zones tend to have longer job postings). But only very weak negative

correlation was found. Anecdotally, we saw tf-idf choosing a post from the same

company but for a very different position as the most similar, while other models

were able to find a post from a different company but for a much closer position.

This could happen when the keywords describing job responsibilities are common

words, which get low tf-idf score, but the words describing the company are less

common. Decision made by tf-idf in this situation is biased towards how similar the

company is due to the way tf-idf score is calculated. Other models suffer less from

this issue. However, we did not test this theory systematically.

5.2 Skill Recommendation

Our system has two ways of recommending skills. Model 1 recommends skills based

on a worker’s current occupation (Section 3.4.1). Model 2 recommends based on an

existing skill (Section 3.4.2). Model 1 can be easily extended to multiple occupations

by combining recommendations for each occupation and selecting the top ones by

some metric. Model 2 can similarly be extended to more than 1 existing skill.
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The two models nicely complement each other. A strength of Model 1 is its

ability to recommend future jobs in addition to skills. Workers would also get a sense

of estimated salary increase for such career transitions. On the other hand, Model 2

provides a way for workers to search for new skills based on a particular skill. This is

especially useful if a worker has expertise in a skill and is specifically looking to pivot

from that. Model 2 also assigns values on a skill-level. This can be helpful if workers

have difficulty deciding which skill to acquire next.

One pitfall we observe in Model 2’s recommendations is, even if we select the

highest valued skills among the list of similar skills, skills that co-occur with low-

value skills are often low-value skills too. Most skills and tools recommended to

"housekeeping" involve manual work (Table 4.11). Workers re-skilling this way could

be going from one low-paying job to another. Model 1, in comparison, would more

likely recommend skills that improve workers’ upward mobility. For example, "inside

sales", "performance management", "coaching" are among the top recommendations

for Lumber Associate (Table 4.8). Improvement in these soft skills could be a path to

more responsibilities and higher income. Model 1 also addresses Model 2’s other issue:

recommending skills that co-occur, but perform very different functions. Distance

between skills is measured by semantic similarity in Model 1. It effectively matches

skills that involve similar tasks. Besides comparing text that mention skills in job

postings, we also tried to compare the Wikipedia definition of skills. However, only

about a third of our skills have Wikipedia entries. It would be difficult to integrate

with our system.

Overall, we found the skills recommended by our system relevant and have great

potential to enhance income. Our objectives were mostly met. We describe the limi-

tations of our system in the next section, and propose improvements in the following

section.
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5.3 Limitations

As we use Indeed as our main source of data, the quality of our skill recommendations

depends heavily on the quality of Indeed data. Our system assumes that Indeed

classifies the job postings correctly under different job titles. In addition, our skill

recommendations would only improve workers’ future prospect if the salary figures

on Indeed reflect the reality.

A majority of our skills set is technical in nature. This was a conscious choice

as we believe it is often unclear how one would go about acquiring a non-technical

skill. Online job postings over-represent positions intended for high-skilled and highly

educated workers [3]. As such, skill recommendations for low-skilled workers, who

probably need the most help, may be limited.

Perhaps, the usefulness of our system is most limited by the possibility that work-

ers will not act on any of the recommendations even if they are good. If the biggest

obstacle for re-skilling is not a lack of information, but a lack of motivation, a system

like ours hardly helps.

5.4 Future Work

More data is almost always beneficial to machine learning systems. It’s not difficult

to set up a program that continuously scrapes for more job postings, which would

update our embedding and valuation models in real time. Having a history of job

postings would open up more research possibilities such as trends in skill requirements

and salaries over time. If a continuous system were to be built, Tf-idf may not be

the most suitable embedding model. The tf-idf encoder has to be retrained and job

postings embeddings have to be recalculated every time new job postings come in.

It would not be necessary for the USE encoder or the BERT encoder since they are

pre-trained.

We can also collect data from more sources. Cross-referencing salary figures from

multiple sources would improve the accuracy of our valuation models. Scraping job
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postings from more websites could increase the range of occupations and skills the

system covers. However, standardizing data cross platforms can be challenging.

Another direction of improvement is developing a more sophisticated skill tagger.

Which skills get tagged to a job posting directly influences what skills our system

believes an occupation requires, which in turn changes the skill embeddings. A more

intelligent tagger should be able to identify more skill terms and lower false negatives.

It should also disambiguate skills from their other meanings to reduce false positives.

The end result would be an expanded skill list, which means more and potentially

better choices for workers. Equally importantly is a skill normalizer that can recognize

the same skill in different forms. Past work on skill identification and standardization

[13] [7] [9] [12] could be very helpful to this project. Unfortunately, none of the work

we found was open sourced. We decided against spending too much time on building

a better skill tagger. Hopefully we have demonstrated that our recommendations

make sense despite using a simple skill tagger. But we admit much improvement can

still be made.

The usefulness of our system cannot be measured by cosine similarity or p-values.

The ultimate test should be done by workers. That requires adding user interface

to our system, and a user survey. When designing the interface, we could borrow

ideas from past work that studied the effectiveness of employment tools. [20] iden-

tified design concepts that could address job seekers’ social, personal, and societal

needs, and give users a sense of empowerment. The DreamGigs project [6] reinforced

the importance of raising self-efficacy in promoting action and achieving positive em-

ployment outcome. Both research target low-resource workers, a group our system

may under-serve. To make our recommendations more actionable, we should include

resources, such as online courses or training programs, that can help workers gain

recommended skills.

43



44



Chapter 6

Conclusion

In this work, we introduce a system that recommends skills to workers looking to im-

prove their employment prospect by re-skilling. In building the system, we compared

different text embedding methods, and to our disappointment, saw new and hot neu-

ral network models getting beat by old-school tf-idf. The result demonstrates that

state-of-the-art models for standardized machine learning problems do not necessarily

work the best in a real world application.

Our system has two ways of recommending skills, one based on past jobs, the other

based on existing skills. In addition to skills, the system also suggests career oppor-

tunities the recommended skills may open up. The system also gives users a sense

of how valuable different skills are. We qualitatively evaluated the recommendations

made by our system. It would be interesting to test the usefulness on potential users.

We leave building the user interface as future work.
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