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Abstract

There is currently a lack of informational tools to guide changes to database schemas
in large-scale inormation systems. In practice, schema changes are made with rela-
tively little regard for how they will impact the corresponding application code. Over
time, this has been shown to cause an overall degradation of the quality of both the
application code and the data stored in the database. We propose the Co-Evolution
Assistant, a tool made specifically to fill this need for more impact visibility when
making such structural changes in the database. Given a proposed schema change,
we show how the Co-Evolution Assistant is able to provide a comprehensive analysis
of the impact of that change, allowing system maintainers to make the best-informed
decision. We then validate the performance of the tool on a real-world industrial
codebase.
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Chapter 1

Introduction

Large-scale information systems (ISs) are multi-modular applications capable of han-

dling and storing large quantities of data. In general, the systems can be broken into

two overarching halves: the application side, where the actual logic of the application

is established; and the database side, where data is organized and stored. When

the system is up and running, these two sides are continually communicating back

and forth: the database sends the application data on which it will operate, and the

application in turn tells the database which data must be stored or updated.

The design of ISs is constantly in flux, on both the application and database sides.

Maintainers of these systems are frequently prompted to make significant structural

changes to the system in response to events such as changing business conditions or a

need for significant restructuring of data [6]. As a simple example, the addition of a

new type of customer information might prompt the addition of a new column to the

customer table of the database. Concretely, the update to the system might look like

a schema change to update or overhaul parts of the database, or a consolidation of

logic in the application source code. The need for such changes cannot necessarily be

anticipated, and so it is inevitable that, throughout their time working on the system,

IS maintainers will need to handle them as they come up. It has been estimated

that these significant changes happen approximately once per fiscal quarter, but in

practice, they can occur more frequently than that [5].
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1.1 Data Decay

When tasked with implementing one of these changes to the system, maintainers must

make specific choices about how the needed adjustments will be made. The biggest

of such choices is which of the two halves of the system to prioritize: the application

code or the database schema. Focusing mainly on preserving the semantic integrity

of the database’s schema design and modifying application code to work around it is

a strategy known as data-first. Conversely, attempting to minimize work needed in

the application code by being less careful about changes made to the database schema

is a strategy called application-first [7]. Typically, IS maintainers must choose to

employ either the data-first or the application-first method when implementing a

change.

Each method is not without downside. Intuitively, prioritizing data with the data-

first method can have negative effects on the application, and vice versa with the

application-first method. These negative effects are known as decay [6]. Application

decay can manifest itself as poorly-structured, unhygienic code, written as the result

of an effort to make the code work with a particular database schema as quickly as

possible. Its complement, database decay, is a degradation of the integrity of data

stored in a database. Third normal form (3NF) is generally the gold standard to

which database schemas are held - schemas that used to achieve, but now fail to

achieve, 3NF can therefore be said to exhibit decay.

IS maintainers rarely make their decisions with a full and careful consideration of

these risks in mind. In the interest of time and efficacy, the path of least resistance

is often taken when instituting new changes. In practice, this frequently amounts to

the application-first method. The reason for this is the distributed nature of most

large-scale ISs [6]: because of the sheer size of the system, it is broken up into smaller

modules, which are then distributed across teams in the organization (Figure 1-1).

Each team is responsible for one or more particular pieces of the application, and

the system is thus managed in a distributed fashion. However, all modules of the

application are still backed by the same production database. The combination of a
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Figure 1-1: The distributed nature of IS management

distributed application and a single underlying database makes disruptive changes to

the database schema very risky. It’s difficult to entirely predict which modules will

be affected across the entire system, and costly in terms of both time and money to

perform retroactive global maintenance once the change has been made. The threat of

these unpredictable consequences is enough to incentivize keeping the application code

as intact as possible - i.e. application-first. However, as previously discussed, over

time, this inevitably results in a degradation of the database’s integrity, as schemas

are tweaked further and further away from 3NF to fit the application’s needs [7].

1.2 Co-Evolution

With the health of the overall IS in mind, our claim is that neither the application-

first nor the data-first methodology is sufficient on its own. In order to implement

the most optimal set of changes to the IS each time, a more robust strategy is needed

- a strategy that would simultaneously attempt to minimize both application and

database decay, rather than one or the other. This method is known as co-evolution

(Figure 1-2) . Previous work [5][7] has demonstrated the validity of the co-evolution

method when applied to real industry IS changes. With this method, a more holistic

view of the entire IS is taken, rather than narrowing the scope to just the application

or just the database. This way, maintainers can make the best-informed decisions for
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Figure 1-2: Comparison of decay when using co-evolution, application-first, and data-
first strategies

the health of the system. Instead of separately examining application and data decay

implications, a combination metric of the two can be evaluated and minimized. As

shown in Figure 1-2, ultimately, this allows the system to stay far away from a great

deal of application decay (strictly vertical motion) or data decay (strictly horizontal

motion). Co-evolution results in a step-like motion between the two axes.

The merit of the co-evolution method has been empirically shown [5][7]. However,

those studies were largely conducted manually, by inspecting code and schema changes

by hand. Practically, this is far from ideal - when advocating for the co-evolution

method to be put into real world use, requiring manual application analysis would

be infeasible. It’s time-consuming, and requires expertise and care. Such analysis

is difficult, because the application and database sides are very separate entities.

While they communicate directly with each other when the application is running,

it’s difficult to intuitively and thoroughly deduce all the ways in which a proposed

schema change might affect the code and semantics of the application, and vice versa.

Effects can be subtle and easily missed.
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1.3 Previous Work

Most of the previous work existing on this topic has been focused on proving the value

of the co-evolution methodology. In the past, manual analysis of ISs has demonstrated

the need for better-guided schema evolution processes [2]. Generally, retroactive

inspection of IS version history exposes many instances of decay creation, on both the

database or application sides. It is understood that the traditional way of developing

these systems is suboptimal [1][5]. Co-evolution is a viable way forward to avoid such

an accumulation of decay in systems, but there is still a lack of existing tooling in

place to help database maintainers actually implement the methodology in practice.

Previous research works focusing on a solution for this evolution problem have

proposed a tool in line with the principles of the Co-Evolution Assistant of this paper

[5]. However, no paper yet describes an implementation to the level of detail that we

present here. While past work has consistently and thoroughly demonstrated the need

for such a tool, the Co-Evolution Assistant is the first implementation that tackles

the end-to-end problem of schema evolution.
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Chapter 2

The Co-Evolution Assistant

As discussed in Chapter 1, using the co-evolution methodology requires time-intensive,

manual work, an investment that many developers cannot make. Ideally, this work

would be automated away by a tool, enabling developers to co-evolve their systems

without spending inordinate amounts of time making decisions about schema changes.

There is currently a lack of existing tooling for supporting co-evolution in practical

use. Such a tool would be responsible for bridging the gap between the application

and database sides, by providing insight to a maintainer about the impacts of vari-

ous potential changes (more specifically, schema changes) to the system. Such a tool

would greatly mitigate the manual cost associated with using the co-evolution model,

and would therefore make co-evolution a more viable standard to which maintainers

can adhere.

2.1 Usage

As a maintainer, the value of the Co-Evolution Assistant lies in providing guidance

on the most optimal set of schema changes to an IS database. For each proposed

schema change, the tool will provide an analysis of the magnitude of potential decay,

in terms of lines of code affected. It is up to the user to create and provide these

potential schema changes.

To concretize the usage of the Co-Evolution Assistant, we can describe the general
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workflow that one might follow while using the tool. First, in response to a chang-

ing business condition or new industry constraint, a change must be made to the

IS database. There may be several different ways to accomplish the same goal (i.e.

several different schema changes that are semantically equivalent), but it is unclear

which schema change is “best”, or causes the least overall decay. The maintainer feeds

each potential schema change to the assistant tool, which then outputs a comprehen-

sive digest of the impact of each schema change on the existing application code. The

output contains quantifiable metrics of how much decay or maintenance each change

will cause, making it much easier for a maintainer to efficiently pick the best schema

change.

With the resulting analysis of the impact of various changes, the developer will

be well equipped to choose the schema change that best fits their specific use case.

Often, this will amount to choosing the schema change resulting in the least amount of

maintenance to be done on the code base. At the very least, the analysis will provide

a detailed look at the areas of the codebase that will be affected by the change. The

extent to which a variable extends its influence is not always immediately obvious, so

having the full picture laid out in a digestible format can be helpful.

2.1.1 IS Criteria

While the Co-Evolution Assistant should be as generally applicable to large-scale ISs

as possible, there are some basic criteria that must be met in order for the IS to be

a candidate for use with the assistant tool. The basic criteria are as follows:

∙ The IS should be a system consisting of two distinct pieces: the application

and the database. The means of communication between the two sides is not

restricted.

∙ The database must be relational, and support the SQL Data Definition Lan-

guage (DDL) commands.
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2.2 Quantifying Impact

In order to select the "best" schema change by analyzing a large IS, the way in which

schema change impact is quantified must be standardized. This section describes

a general method for assessing the impact of various schema changes, which was

specifically designed to be general, in order to be applicable to any IS meeting the

criteria put forth in 2.1.1.

2.2.1 Terminology

∙ Application: the source code behind the IS, which interacts directly with the

database

∙ Schema Change Operator (SCO): the SQL Data Definition Language (DDL)

commands (e.g. CREATE, DROP, ALTER), which alter a database’s schema

∙ Schema Change: a modification to a database’s schema, consisting of one or

more SCOs

∙ Map Table: static mapping, manually constructed, linking database variables

to the application variables into which they are mapped

∙ Maintenance: the impact of a schema change, i.e. the quantity of work that

needs to be done to support the schema change

2.2.2 Map Table

Before any analysis of the codebase, the assistant tool requires some knowledge of

the IS with which it is working. More specifically, without any idea of where the

database data is used in the application, the tool will have no way of tracing the

variables involved in a particular schema change from the database to the relevant

application code. To rectify this issue, a map table (Figure 2-1) is constructed and

given to the assistant as part of its input. The map table is simply a static mapping

from database variables to their corresponding application variables. For example, in
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Figure 2-1: A simplified view of how the map table relates the database to the
application

begin_hash end_hash Class App Variable Table Schema Variable
0 d2569... 8f57d... Carrier.java logisticContract national_freight logistic_contract
1 d2569... 8f57d... Carrier.java accessorialCost national_freight accessorial_cost
2 a5abf... 86831... Carrier.java contract national_freight logistic_contract

. . .

Table 2.1: Excerpt from an example map table

Figure 2-1, the database contains a simple Customer table, which has a corresponding

Customer class on the application side. The columns of the Customer database table

are directly mapped into the instance variables of the Customer application class

(i.e. the id column maps to the id instance variable, etc). The map table shows

this relationship, and is constructed manually by inspecting the SQL queries that

are used to map database data into the application code. Using the map table, the

Co-Evolution Assistant can quickly and directly find which application variables are

affected by any given query.

An example excerpt from a map table is show in 2.1, with example data taken

from an IS on which the Co-Evolution Assistant was tested. In addition to the nec-

essary columns App Variable and Table / Schema Variable, which link variables to-

gether in each map table entry, we store some contextual metadata (i.e. begin_hash,
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end_hash, and Class). Class refers to the application class in which the app variable

is found. begin_hash and end_hash specify the validity of the entry over the lifetime

of the IS, which is discussed further below.

Versioning

Typically, ISs are versioned systems, and keep track of iterative changes using a

version control system such as Git. Each version of the IS therefore is assigned its

own unique identifier (i.e. hash), which is furthermore associated with the date on

which the version was committed. It is expected that map table entries may only

be applicable to a subset of versions of the IS. Therefore, for each entry, we store

begin_hash and end_hash, which specify the range of versions of the IS for which

the entry is valid.

In Table 2.1, we can see an example of a mapping changing over the lifetime of

the IS. At index 0, we have an entry linking app variable logisticContract in class

Carrier.java to schema variable logistic_contract in table national_freight,

which is valid over a specific range of hashes. Then, at index 2, we have the same

schema variable mapped into an app variable of a different name, contract, in the

same class Carrier.java. This entry is valid over a different range of hashes, and

it could therefore be inferred that app variable logisticContract was renamed to

contract at a later date.

2.2.3 Scoring Impact

With the map table constructed, the Co-Evolution Assistant has the information it

needs in order to carry out its analysis. Next, we discuss the specific metrics on

which a given schema change is evaluated, and how those metrics are calculated.

There are four main categories of scoring impact, or maintenance: map, schema,

query, and application. Map, schema, and query maintenance are straightforward,

and don’t require much additional logic. Application maintenance, however, is the

most complex, and requires care when computing.
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Map Maintenance

Map maintenance refers only to the map table, and indicates how many rows of the

table will need to be modified (i.e. how many variables must be re-mapped).

Schema Maintenance

Schema maintenance refers to how much work must be done to update existing schema

definitions in the application. This corresponds directly with the inputted proposed

schema change, and thus is very straightforward.

Query Maintenance

Similarly to schema maintenance, query maintenance quantifies how many queries

must be inspected or updated based on the new schema. This is equivalent to finding

all queries that contain database variables modified by the schema change. For ex-

ample, if the proposed schema change is to drop column A in some table, the query

maintenance metric would equal the number of queries in the application that make

use of that column A.

Application Maintenenace

Finally, application maintenance attempts to quantify the impact of the schema

change on the application’s source code. The basic idea is to find, as accurately

as possible, which lines of application code are affected by the value of any variable

modified by the schema change. It should be noted that application maintenance is

only computable for database variables that are mapped into application variables

via the map table.

Calculating application maintenance is substantially more difficult than the other

three metrics, for a couple of reasons.

∙ Firstly, the scope of the impact doesn’t have hard limitations. Depending on

how the application is written, the value of a class variable that is populated

from database data could potentially be propagated to any other module of
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the IS. Tracing the paths that the variable takes through the code can be very

tricky to do correctly.

∙ Secondly, ideally, this application maintenance would be calculated statically,

without having to compile, run, or instrument the IS application code in order

for it to be analyzed. This is a consideration made with the future of the Co-

Evolution Assistant tool in mind: eventually, it would be nice for the tool to be

usable on any general IS, but requiring the tool to dynamically run or instrument

application code would introduce significant obstacles of general compatibility.

Computing application maintenance is therefore a complex process, and is discussed

in detail in Chapter 3.

2.2.4 Impact per SCO

With the four categories of maintenance defined (Map, Schema, Query, Application),

the next step is to define which of these categories is applicable to each potential

SCO. Each SCO by definition modifies the database schema, so the Schema category

is automatically included in each maintenance calculation. Additionally, each SCO

will require a subset of the other three categories to be included in the calculation,

because each SCO varies in its impact on the components of the IS.

Table 2.2 shows the exact mapping of each SCO to the categories of maintenance

that must be evaluated for it. A black box indicates that the category must always

be evaluated for the SCO, whereas a gray box indicates that the category must be

evaluated only if the variables on which the SCO operates are mapped in the map

table. To demonstrate explicitly how and why the mappings in Table 2.2 work, we

go through a few examples of schema changes.

Example: Adding Columns

Adding new columns to the database schema is the simplest example of a schema

change. Such a change introduces brand new columns rather than modifying or

deleting existing ones, and it is therefore impossible for the columns to be present
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in any existing query, application code, or the map table. As a result, the only

maintenance to be calculated is the schema category.

Example: Dropping Columns

Compared to adding columns, dropping columns is a much more disruptive change.

Deleting a column in the database will affect all queries that access it, as well as any

application variable into which the column is mapped. Therefore, dropping a column

requires all four categories to be computed.

Example: Renaming Columns

Renaming a column in the database naturally affects the queries that access it, as

well as the map table, since the mapping must be updated to reflect the new name.

However, the application code itself shouldn’t be affected - the application variables

may stay untouched as long as the queries are appropriately updated to map the new

column name into them.

Example: Dropping Tables

Calculating the maintenance of dropping a table is equivalent to the sum of the main-

tenance of dropping each individual column of the table. Therefore, the categories

needed are the same as that of dropping columns, i.e. all four categories.

2.2.5 Summary

With the SCO mapping established, the process of quantifying the maintenance cost

of a particular schema change is now well defined, albeit at a high level. The ap-

proaches outlined in this chapter are put into practical use in Chapter 3, where the

implementation of the Co-Evolution Assistant tool is discussed in detail. As discussed

in this chapter, the majority of the difficulty of the implementation lies in the com-

plexities of application maintenance computation. Devising an algorithm to correctly

compute application maintenance is a main focus of the implementation.
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Category SCO Map Schema Query Application
Add Column
Drop Column
Rename ColumnAttribute

Change Data Type
Nulls allowed ->disallowed
Nulls disallowed ->allowed
Nulls allowed ->default values
Default values ->nulls allowed
Mark column unused

Attribute Constraint

Delete unused column
Add table
Drop TableTable
Rename Table
Drop PK from attribute
Declare attribute PK
Declare attribute FK
Drop FK
Add value constraint on column

Table Constraint

Drop value constraint on column

Table 2.2: Mapping of each supported SCO to its relevant impact computations
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Chapter 3

Implementation

In Chapter 2, we laid out the high-level proposal of the Co-Evolution Assistant: a

tool for IS maintainers that provides an analytical breakdown of the impact of any

proposed schema change. In this chapter, we discuss the implementation details of

how we created a tool to carry out such an analysis.

3.1 Architecture Overview

Figure 3-1 shows the basic architecture of the Co-Evolution Assistant. It is imple-

mented as a lightweight web app, built on the Flask framework. At a high level, users

interact with the app, sending schema change requests through to the back end. The

app talks to the analytical engine, written in Python, which then is responsible for

the heavy computation of the analysis. To carry this analysis out, the engine must

have access to both the full source code as well as the map table.

3.2 The Analytical Engine

The bulk of the Co-Evolution Assistant’s heavy lifting lies in the analytical engine,

whose job is to analyze a given IS codebase. To this end, the engine was designed

accommodate any general system. However, in practice, it is necessary to make some

constraints to the system, as designing a tool that works perfectly with any arbitrary
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Figure 3-1: Architecture overview of the Co-Evolution Assistant

IS would be virtually impossible (and out of the scope of this project).

3.2.1 IS Code Constraints

Here we lay out the restrictions that we impose on application code of the IS to

be analyzed. These restrictions are separate from the criteria described in section

2.1.1: while those are general structural criteria for the type of IS to which the Co-

Evolution Assistant is applicable, the following are specific guidelines pertaining only

to the application code on which the IS is built.

1. The most restrictive criterion is that the IS must be written in Java. This

was a consideration made from the start of the project, with the potential

of supporting more languages in the future. Targeting a single programming

language was required, due to the way the analysis of the codebase is carried

out with static analysis (discussed in detail in 3.4).

2. The schema structure and database queries must be defined in their own sep-

arate files. The analysis code to quantify impact will need to be directed to

specific files, in order to calculate correct metrics pertaining only to these cat-

egories.
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3.2.2 Creating the Map Table

As discussed in 2.2.2, the map table’s job is to link database variables to their coun-

terpart variable in the application code. This mapping is critical to determining the

impact of a schema change, as it enables immediate identification of which application

variables are affected by a certain SCO.

In our implementation, the map table is created manually, as a comma-separated

value (CSV) file. This requires examination of each query used by the application

code. For each one, a row in the map table must be made, linking the database column

being accessed to the application variable that it populates. As seen in the example

in Table 2.1, some metadata is also included about the mapping - in particular, the

versions over which the mapping is applicable, as well as the application class in which

it appears. Thus, if the user wishes to analyze multiple versions of the codebase, the

map table must be updated to include information relevant to each one.

In this version of the Co-Evolution Assistant we create the map table manually,

though it is theoretically possible to programmatically generate the table instead. To

do so requires parsing of the connector code that links application variables to their

database counterparts, for each stored version of the source code repository. This can

be done by examining each query present in the code, and furthermore inspecting the

ways in which the results of the query are mapped into application variables. We leave

this possibility open for future versions of the Co-Evolution Assistant. However, for

the present version, we do not yet support automatic map table creation, for reasons

mainly related to generalizability. While it may be straightforward to implement an

automatic map table generator for a specific IS’s query patterns, it is much more

difficult to build a generator that works for any IS. There is no set way in which

the queries are constructed, executed, and the results applied to the application, so

an all-purpose solution would have to be robust to every possibility. Being generally

applicable is a main goal of the Co-Evolution Assistant, and so for this version of the

Co-Evolution Assistant, we choose to create map tables manually.
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3.2.3 Static vs. Dynamic Analysis

As discussed in Chapter 2, the computation of all maintenance categories except ap-

plication is straightforward. However, for application maintenance, a substantially

more complex computation is required. It was briefly mentioned in Section 2.2.3 that

a static analysis approach is preferred to a dynamic one when calculating this par-

ticular metric. The reason is that of general compatibility: having the Co-Evolution

Assistant be usable on any codebase, with little setup, is one of the main goals of

the project. Dynamic analysis impedes the general compatibility of the tool, since it

inherently requires some setup work that is specific to the IS on which it is operating.

There do exist dynamic analysis tools via which some version of the analysis

we want could be done, such as Soot or ANTLR, for Java [3][4]. However, such

analysis tools are generally meant to be run dynamically on top of compiled and/or

instrumented code. This can severely impact the Co-Evolution Assistant’s goal of

working quickly on any IS. While each IS to be analyzed will be required to share

certain similar properties, they will differ in many other respects, such as overall

structure, code layout and semantics, and compilation process. As a result, it would

be virtually impossible to design a tool capable of dynamically instrumenting code

while at the same time remaining applicable to a general system. For this reason, for

calculating application maintenance, we choose to employ a static analysis solution

instead of a dynamic one.

3.2.4 Engine State

The state maintained by the engine is largely static, and initialized on creation. It

consists of four main categories:

1. File locations: the file paths of the code to be analyzed. This includes loca-

tions of the application code, the schema and query declaration files, and the

map table file.

2. Versioning information: The unique identifier of the version of the IS to be

analyzed. Typically a Git commit hash.
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3. Map table: While the map table is stored persistently on disk as a file, in the

interest of efficiency during analysis, the engine reads the file into an in-memory

data structure, albeit at the cost of memory space. The map table is generally

of a reasonable size to be held in memory.

4. SCO mappings: The engine maintains the mapping shown in Table 2.2 in

order to properly compute the impact of schema changes requested by the user.

3.2.5 Strategies for Computing Maintenance

The main task of the engine is to compute maintenance estimates for the schema

changes that it is given. A high level overview of the process is outlined in section 2.2;

here, we go over the lower-level implementation details. In summary, the proposed

schema change is broken down into its constituent SCOs, which are individually

computed and summed together to make the total estimate. Each SCO’s impact is

computed based on the applicable categories, according to Table 2.2. A summary of

the implementation strategy for each category is described below.

Map Maintenance

Map maintenance is straightforward to compute. Intuitively, the impact of modifying

a specific variable is simply the number of entries that pertain to that variable, if it

is mapped in the table. Specifically, given a schema change acting on some schema

variable 𝑠, all map table entries linking 𝑠 to an application variable must be counted.

Since the map table is stored on disk as a CSV file, all such affected entries can be

found with a simple linear scan of the rows. As an example, Table 3.1 (same as the

example excerpt of a map table in Table 2.1) shows the rows that would be included

in a map maintenance calculation on the schema variable logistic_contract. In

this case, since logistic_contract is mapped by two rows, the map maintenance

result would be 2.
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begin_hash end_hash Class App Variable Table Schema Variable
0 d2569... 8f57d... Carrier.java logisticContract national_freight logistic_contract
1 d2569... 8f57d... Carrier.java accessorialCost national_freight accessorial_cost
2 a5abf... 86831... Carrier.java contract national_freight logistic_contract

Table 3.1: Rows included in an example map maintenance computation on
logistic_contract

Schema and Query Maintenance

Computing schema and query maintenance is also straightforward to compute. By

definition, a change to a schema variable 𝑠 requires modifying the schema declaration

files. Similarly, any query operating on 𝑠 will be impacted, and must also be modified.

Since the engine state stores the file locations of both the schema and query files on

creation, the maintenance can be computed in a similar way to the map table: scan

the respective file, and count the instances of 𝑠, the affected variable.

As an example of schema maintenance, consider the schema is shown in Listing

3.1. A proposed SCO to drop a column, e.g. LOGISTIC_CONTRACT, would equate to

removing line 9 in the schema. Given the name of the column to drop, finding its

corresponding line in the schema definition requires just a simple linear scan of the

schema.

1 CREATE TABLE "SALES_ACOM_ADMIN"."NATIONAL_FREIGHT" (

2 "INITIAL_WEIGHT" NUMBER NULL ,

3 "FINAL_WEIGHT" NUMBER NULL ,

4 "PRICE" NUMBER NULL ,

5 "MULTIPLIER_TYPE" VARCHAR2 (20) NULL ,

6 "POSTAL_CODE_START" NUMBER NULL ,

7 "POSTAL_CODE_END" NUMBER NULL ,

8 "CARRIER_CNPJ" VARCHAR2 (20) NULL ,

9 "LOGISTIC_CONTRACT" VARCHAR2 (20) NULL ,

10 "DAYS" NUMBER NULL ,

11 "ACCESSORIAL_COST" NUMBER NULL ,

12 "SUFRAMA" CHAR (1) NULL ,

13 "WAREHOUSE_ID" NUMBER NULL

14 )

Listing 3.1: Example Schema
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Application Maintenance

Application maintenance is by far the most complex computation to execute, and

constitutes the bulk of the engine’s heavy lifting. Section 2.2.3 outlines the challenges

of the computation. The effect of modifying a schema variable 𝑠 that maps into an

application variable 𝑎 depends heavily on how 𝑎 is used in the application code. For

example, 𝑎’s value could be propagated to other variables, classes, or modules; used

to guide the code’s control flow; etc. The analytical engine’s job is to trace the path

of 𝑎 through the codebase, starting at the point at which it is populated from the

database. Once these paths are found, 𝑎’s impact can be quantified by the number

and length of its paths of influence. The difficulty of this computation lies in finding

the variable’s paths, and the algorithm used is described in detail in the following

section.

3.3 Tracing Application Variables

Tracing the paths taken by application variables through the code is a complex task.

In our case, statically analyzing a codebase involves writing code to inspect the con-

tents of the codebase’s source code files. Specifically, since we are executing the

analysis to compute application maintenance, our analysis will scan the source code

to quantify the impact of a particular application variable. This amounts to tracing

the variable to all the places in the code that are in some way affected by its value.

Intuitively, the problem of tracing a certain variable 𝑎’s effect throughout a pro-

gram boils down to a simple concept: follow 𝑎 to all the lines of code in which it is

used. For each of those lines, 𝑎 may be used to influence the values of new variables,

via assignment or otherwise. Those new variables will further influence other parts

of the code, propagating the influence of 𝑎 further. This basic idea will guide the

creation of an algorithm to correctly analyze the influence of a given variable.
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1 x = ??? # variable of interest to be
traced

2 a = x
3 b = some_func(x)
4 # ... code involving a & b ...
5 c = some_other_func(b)
6 # ... code involving c ...
7

Figure 3-2: A simple example of application variable tracing

3.3.1 A Simple First Approach

With the basic idea in mind, we can take a first stab at an algorithm to find the effect

of a specific variable 𝑎 through the code. We will maintain a set 𝑆 of variables that

must be traced, which initially contains only 𝑎. As we find more variables influenced

by 𝑎, they will be added to the set, and traced as well. For each variable 𝑠 in the

set, first, as mentioned previously, find all instances of 𝑠 being used in the code. If

it is on the right hand side of an assignment statement, trace whichever new variable

𝑏 is on the left hand side as well, since 𝑠’s value has now been propagated to 𝑏. The

same tracing process must then be repeated on each new variable added to this set

of variables that have been affected.

Figure 3-2 illustrates a simple example of a program in which the value of a

variable x influences the subsequent values of variables a, b, and c. We step through

the program line by line to follow x’s path. On line 2, a is simply assigned to the

value of x, indicating that we must now keep track of a as well as x. Then, in line

3, the result of a function call with x as an argument is assigned to the variable b,

adding b to our set of variables of which to keep track. Finally, in line 5, b is passed

to a function call that results in c. This flow of propagation can be represented as a

tree, with x as the source. Since a and b’s values are assigned as direct functions of

x, they are x’s immediate children. Similarly, c is the child of b, since its value is a

direct function of b. When tracing a variable’s effect in the code, at a high level, the

goal of the process is to find all such paths from the root to leaf, and expose them to

the user.
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1 class Example ():
2 def __init__(self , var):
3 self.var = var
4

5 def get_var(self):
6 return self.var
7

8 def example_func(x):
9 # do something with x, e.g. pass it to other methods or

10 # use it to guide control flow
11 ...
12

13 def main():
14 e = Example("hello")
15

16 # Case 1
17 new_var = e.get_var ()
18

19 # Case 2
20 example_func(e.get_var ())
21

22 # Case 3
23 if e.get_var () == "goodbye":
24 # do one thing
25 else:
26 # do something else
27

Figure 3-3: Examples highlighting failure points of the simple approach

3.3.2 Weakness of Simple Approach

Tracing based solely on assignment statements is an extremely bare-bones approach

that has the correct high-level idea, but disregards the nuances of the way data flows

through programs, and would inevitably yield incomplete results if implemented as-is.

To illustrate a few cases of variable propagation that the algorithm would not pick up

on, consider the code shown in Figure 3-3. Let’s say that the variable of interest is the

instance variable var of the Example class, which has a method get_var to expose

var. The driver code in main creates a new instance of the Example class, passing

it the string "hello" to store as var. The following are some examples of cases in

which the value of var is used to influence the program, without any assignment

statements.
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Case 1

On line 17, we have a very basic case of variable propagation that would pass un-

noticed by the simple assignment-based approach. We assign new_var to the value

returned by Example.get_var, which is in this case the exact variable we are tracing.

As such, we should be interested in tracing new_var in order to see to where it prop-

agates the value of var. Line 17 is an assignment statement, but since the access to

var is hidden behind a function call (Example.get_var) rather than directly access-

ing the variable, this propagation would not be recognized by the simple algorithm.

As a result, any subsequent usage of new_var would, incorrectly, not be reported.

Case 2

On line 20, example_func is called, and is passed as an argument the result of

get_var. example_func presumably uses the argument that it is passed in a mean-

ingful way, which is precisely the kind of usage that we are interested in when tracing

var. However, since line 17 did not involve any assignment, the simple approach is un-

able to detect that var’s value is being passed to (and used in) example_func. Thus,

the assignment-based approach breaks down in instances where variables’ values are

propagated via function calls.

Case 3

On line 23-26, we have an example of var being used to guide the program’s control

flow. The conditional statement chooses a block of code to execute based on the value

of e.get_var(), i.e. var. This is certainly a case of code behavior being influenced

by var, but since it involves no assignments, it would not be detected by the simple

approach as a case of propagation. This is yet another case in which the assignment-

based approach is insufficient for discovering the full influence of a variable.
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Learnings

The previous three cases illustrate the difficulties that lie in writing a program that

accurately calculates application maintenance. It is clear that the simple approach

falls short of discovering the full influence that a given variable has on the codebase.

In particular, we identify the cases that a correct algorithm must handle:

∙ Propagation via return statement: In Case 1, var is returned from get_var.

As a function that directly exposes var, any instance of get_var being called

should then be treated equivalently to var itself. In general, when a function

returns a variable that is being traced, any calls to that function should be

treated like a traced variable.

∙ Propagation via function call: In Case 2, var is passed as an argument

to a function. The way that var is used within that function is therefore of

interest, and should be inspected for further propagation. A correct algorithm

must therefore be able to detect when a variable being traced is passed as an

argument to function calls. Furthermore, it must step inside that function, and

continue to trace the argument.

∙ Influence on program control flow: In Case 3, the value of var was used

to guide the logical flow of the program. The tracing algorithm should be able

to recognize and point out these cases of influence.

3.4 Variable Tracing Algorithm

As we saw in the previous section, there are numerous shortcomings of the simple,

assignment-based approach for tracing variables through the code. We then laid out

several requirements that a proper algorithm must fulfill in order to return complete,

correct results. In this section, we describe in detail the full algorithm that was

written to compute application maintenance while adhering to the aforementioned

constraints.
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Algorithm Phases

The algorithm is broken into three main phases:

1. Pre-processing: First, a representation of the codebase is constructed in-

memory. This pre-processing step converts each bare source code file into a

more workable object-oriented representation, on which operations can be con-

veniently performed.

2. Building relationships: Next, data structures representing relationships be-

tween function calls made by the program are built up. As we saw in Sec-

tion 3.3.2, function calls are an important mechanism for propagating variables

through the code. In these structures, we store information that directly con-

nects each function to functions that call it, or callers. This information is then

used in the third phase of the algorithm.

3. Traversal: Once the proper state has been set up, the actual traversal of the

code base for the paths of influence for a given variable must be executed. This

phase yields the final result, which is a number representing the total calculated

application maintenance.

These phases are described in detail in the following sections.

3.4.1 Source code pre-processing

In the second phase, we need to relate each function to its caller functions. Before

doing so, it is useful to have an in-memory object representation of each function, in

order to quickly access metadata about it (e.g. name, class, number of lines). Thus,

in this pre-processing phase, we create a map of function name to its corresponding

Function object. A simplified API of the Function class is shown in Figure 3-4.

The most important method of the class is Function.get_called_functions.

This method returns the names of all the functions called from within a particular

function. As such, it is used heavily in the second phase of the algorithm, when the

relationships between functions are built up.
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1 class Function:
2

3 def __init__(self , path , classname , name , lines , offset):
4 parent_classfile):
5 """ Arguments:
6 - path: str , path to the class file in
7 which this function is found
8 - classname: str , class that this function
9 belongs to

10 - name: str , this function ’s name
11 - lines: list of (line_num , line) tuples
12 for each line of this function
13 - offset: int , the
14 """
15

16 @staticmethod
17 def get_all_matches(line):
18 """ Returns all functions called on a given line.
19 Function calls may be nested.
20 """
21

22 def get_line(self , line_no):
23 """ Returns the line text of a specific line number.
24 """
25

26 def get_called_functions(self):
27 """ Returns the names of all functions called by
28 this function.
29 """
30

Figure 3-4: API of the Function abstraction
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In order to create a Function object for each function in the code, each source

code file is individually parsed. Since the code is written in Java, the lines pertaining

to each method of each class can be extracted by performing a linear scan while

keeping count of { and } characters, which delimit the beginning and end of each

method. Then, the lines are used to create a new Function object, which is then

stored in a map from function_name : Function. This map is an integral part of

the second phase, in which function relationships are built up.

3.4.2 Building relationships

In the next stage of the algorithm, we examine the ways in which function calls prop-

agate data through the program. We previously saw in Section 3.3.2 how functions

can be used to expose the variable being traced to a caller function (Case 1), or al-

ternatively, take in the variable being traced as an argument. In general, all types of

function calls encountered when scanning a program can be generalized into one of

two cases: upwards or downwards propagation. Intuitively, the "direction" asso-

ciated with each type of propagation refers to whether the data being propagated is

being returned "upwards" to the caller, or being passed "downwards" to a function

call. It is necessary to distinguish between types ("directions") of function calls in

order to properly trace data flowing through the program.

Upwards Propagation

For a particular variable of interest v, a function call that propagates v upwards

simply returns a variable whose value depends in some way on v. In its simplest

form, this is just a function that returns v itself. More complex examples are endless,

but include objects instantiated with v as a parameter, data structures containing v,

etc.

A few examples of upwards propagation are shown in Figure 3-5, with var_1,

var_2, and var_3 as products of the propagation. The variable being traced in these

examples is some global variable x. The simplest example is func_a, which just
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1 def func_a ():
2 return x
3

4 def func_b ():
5 b = func_a ()
6 return b
7

8 def func_c ():
9 return [func_a (), func_a (), func_a ()]

10

11 def main():
12 var_1 = func_a ()
13 var_2 = func_b ()
14 var_3 = func_c ()
15

Figure 3-5: Examples of upwards propagation via function calls

returns x itself. func_b is just a wrapper around func_a, and ultimately returns the

same value x. Lastly, func_c returns a list, with values populated from func_a. Since

all three functions return values that either are x or directly depend on the value of

x, it can be said that all three propagate their return values upwards to the caller

function (main).

Downwards Propagation

Conversely, for a particular variable of interest v, a function call that propagates v

downwards will do the opposite of upwards propagation: it will take v as an argument,

and use it to guide downstream logic or variables. In short, no value dependent on x

will be propagated back to the caller to be used.

In Figure 3-6, we can see a typical example of downwards propagation. In the

driver code, in main, var_1 is propagated downwards as an argument to Example.add_var,

which returns nothing. Rather than returning some value, Example.add_var uses its

argument to influence or modify data further down the chain of calls. Specifically, in

the figure, it appends the argument var to its internal list.
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1 class Example ():
2 def __init__(self):
3 self.values = []
4

5 def add_var(self , arg):
6 self.values.append(arg)
7

8 def func_a ():
9 return x

10

11 def main():
12 e = Example ()
13 var_1 = func_a ()
14 e.add_var(var_1)
15

Figure 3-6: Examples of downwards propagation via function calls

Categorizing Function Calls

With the two categories of function propagation in mind, we are now equipped to

categorize the function calls present in the program. Thus, we scan each function

found in the first phase of the algorithm for function calls within its body. To do so, we

simply use the method Function.get_called_functions. When called on a function

f, this method returns to us a list of all the functions called from within the body of f.

The functions are returned as a list of tuples of the form (called_function_name,

upwards), where upwards is a boolean, representing the direction of propagation of

that particular function call.

The mapping we build during this step is of the form function_name : { set

of all functions that call this function}. By mapping each function to the

functions that invoke it, in the traversal step, we will easily be able to walk propa-

gation paths backwards from a source. To build this mapping, we iterate over each

function F. For every function f called from within F, F is the caller, and f is the

callee. Thus, F is added to the set of functions attached to key f.
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3.4.3 Traversal

The final phase of the algorithm is the traversal of propagation paths. Having built

up the necessary data structures in the first two phases, the traversal is relatively

simple. Given a target variable v, we will treat it as our starting point, and find all

the code paths stemming from this source.

Finding source functions

The data structures we built up in the first two stages of the algorithm represent the

relationships between function calls in the program. However, in practice, we will be

given a certain variable to trace, not a source function. Thus, before traversing any

of the data structures, we must first determine the source function(s) that expose

the variable of interest. Once those source functions are determined, we will traverse

backwards from each one.

The value of the variable to be traced, v, is always mapped in from the database.

Commonly, v is an instance variable on a class, and is exclusively exposed to the rest

of the code via a getter method, which simply returns a safely accessible version of

the variable. In this case, that getter method would be the single source function for

v. In other cases, v may be exposed from multiple source functions. Either way, the

traversal always begins from a specific set of one or more source functions. Finding

such source functions is a matter of finding functions that directly reference and/or

expose v, which can be accomplished via individually scanning each function for its

variable usage.

Tracing paths

Once the source functions are identified, tracing is executed for each one. In this way,

all possible paths that the variable takes through the code will be found. Pseudocode

of the recursive traversal algorithm is shown in Figure 3-7. At a high level, given

a start function, we branch outwards to follow each subsequent function call that

propagates the return value to other places in the code.
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1 def traverse(start_func , start_line_num):
2 paths = {}
3

4 if start not called by any function:
5 paths[( start_func , start_line_num] = {}
6 return paths
7

8 links = all functions that call start_func
9

10 for each child link L in links:
11 child_key = (L.name , L.line_num)
12 upwards , propagator = L.upwards , L.propagator
13

14 if upwards:
15 child_paths = traverse (* child_key)
16 paths[child_key] = child_paths
17 else:
18 final_line_num = propagator_fn.first_line_num
19 final_link = (propagator , final_line_num)
20 propagated_paths = { final_link : {} }
21 paths[child_key] = propagated_paths
22

23 return paths
24

Figure 3-7: Pseudocode of the traversal algorithm

The algorithm is recursive, and the result is a nested series of maps representing

the paths that the variable takes through the code. At each step, we branch out one

step from the start function passed in. Since we have constructed a mapping of each

function to the functions that call (i.e. propagate) it, we can find the propagator

functions instantly (line 8). Next, for each propagator function f, there are two cases

for the direction of propagation: upwards or downwards.

∙ Upwards (lines 14-16): In the case that the f propagates the variable upwards,

the same process is recursively applied on this propagator function. As long as

the propagation is in the "upwards" direction, the algorithm will continue to

recursively step backwards in this manner, up the chain of function calls. We

add the result of the recursive call to the map.

∙ Downwards (lines 18-21): If f propagates downwards, there should be no

recursive call, because the propagation flows into the called function, rather
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than back up a chain of function calls. So, we step into the function call and

inspect all usages of the variable to be traced. To indicate this, we add one final

link to the map, consisting of f’s information.

The final result of a call to the traversal function is a series of nested maps, with

each subsequent layer of nesting representing one step on the variable’s path. This

path representation is in a convenient format to be transformed into a digestible

display for the user.

3.5 The Interface

Ultimately, the goal of the Co-Evolution Assistant is to be a developer tool. With this

in mind, it is ideal to provide an easy-to-interpret interface to users. The alternative

would be to have users run the bare code, and interpret the results manually. This

invites problems of general compatibility, and additionally requires the developer to

understand a substantial portion of the code in order to both run it and correctly

parse the results.

To avoid such overhead for developers, we created a lightweight web application,

which wraps the code for the analytical engine (Section 3.2). It provides a simple

interface for users to enter parameters of any proposed schema change, and reports

back the maintenance estimates for each of the four categories mentioned in 2.2.3.

3.5.1 User input

The input parameters available to the user are as follows:

∙ Source code paths: specify where the source code to be analyzed is located.

∙ Map table path: the location of the map table CSV file.

∙ Repository version: the Git commit hash of the version of the repository to

be analyzed.

∙ Schema change: the schema change, entered as a series of SCOs.
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Figure 3-8: Sample result table for a proposed schema change

3.5.2 Result interface

The result of submitting a schema change is presented to the user in a digest, broken

down into the four maintenance categories: schema, query, application, and map. An

example result table, obtained from running the Co-Evolution Assistant on a real

system, is shown in Figure 3-8. There is an additional column present, simple_add,

which is responsible for adding a small, constant amount of maintenance to the es-

timate in the case of creation of a new table or column. In this example, neither of

those cases are applicable. Additionally, the table groups each SCO by the database

table upon which it acts.

Two schema change operators were entered to produce this table: one DROP_TABLE

operation on table NATIONAL_FREIGHT, and one DROP_COLUMN operation on table

B2W_CKT_FR_DAYS. In the figure, the results table is fully expanded, to show the

details for each SCO. For schema, query, and map maintenance, the reported infor-

mation is straightforward: a file name, and a link to jump to each affected line in the

code. For application maintenance, however, the result is not so simple. As we saw
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Figure 3-9: Example tree-based view of a variable’s paths through the code

in Section 3.4, the result of tracing a variable through the code to compute its appli-

cation maintenance results in one or more paths, which represent the variable’s steps

through function calls. To display this efficiently, we designed a secondary interface

to display these paths.

Application Maintenance Summary

The overall result table links into the secondary application maintenance summary

page. This page displays every path that the variable takes through the code, in both

a combined tree-like format and an individual format. An sample nested tree view

is shown in Figure 3-9, for the variable logisticContract. The root of the paths is

the outermost function call, which in this case is getLogisticContract. This makes
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sense, as all paths should stem from the function that exposes logisticContract in

the first place. One layer in to the tree, we can see that the tree branches five ways -

indicating that logisticContract is accessed via getLogisticContract five times

throughout the code. In the second branch, as shown in the figure, by expanding the

code snippet, we can see that the path ends at the function setLogisticContract.
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Chapter 4

Discussion

In the first three chapters, we laid out the motivation for and implementation details

of the Co-Evolution Assistant. In this chapter, we put it to use on a real-world

use case. To do so, we use the Co-Evolution Assistant to analyze proposed schema

changes on B2W’s Checkout, a large industrial e-commerce platform.

4.1 B2W Checkout

The application to which we apply the Co-Evolution Asssistant, Checkout, is a large,

multi-modular system built by B2W, the largest South American online retailer [5].

It is a platform for handling the end-to-end customer experience as they shop online.

4.1.1 Characteristics

The Checkout codebase is large, and is comprised of more than 60 individual modules.

These include Order, Customer, Freight (order delivery), Inventory, Promotion,

Installment, Payment, Cart, and Account. Of these modules, the modules Order,

Customer, and Freight were the most important, and were iterated upon most heav-

ily by the engineers over the lifetime of Checkout.

The Checkout application is written in Java, and uses the Java Database Connec-

tivity (JDBC) Connector to connect to more than 40 Oracle database tables. Freight
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used the most database tables of any individual module by far, at 13. Since it is the

most complex and therefore best illustrate the full functionality of the Co-Evolution

Assistant, we use it for the examples in this chapter.

4.1.2 Applicability of Co-Evolution

B2W’s Checkout was an ideal candidate on which to validate the Co-Evolution As-

sistant, due to its fully-fledged development history and varied evolution patterns (in

addition to meeting the criteria outlined in 2.1.1 and 3.2.1). Over the course of its

74-month development period [5], it underwent significant structural overhaul, due in

some cases to precisely the types of schema changes that the Co-Evolution Assistant

is designed to help with.

4.2 Results

Here, we present the results of applying the Co-Evolution Assistant to the Freight

module of Checkout. While it is not possible to anticipate all future schema changes

to a system, we can still explore and analyze realistic schema changes to the codebase.

By doing so, we highlight how the Co-Evolution Assistant works in a practical setting.

4.2.1 Dropping Tables

In practice, the need for restructuring data in response to a changing business con-

dition is common. In one particular case, data in a single table must split out into

multiple tables. In terms of SCOs, this amounts to a drop table operation, accom-

panied by adding one or more tables, into which the data will be shifted. While

we cannot anticipate the schema structure of new tables, we can analyze the impact

caused by dropping the original table.

In general, these drop table SCOs are the most disruptive to the system, as they

affect variables in bulk, and require careful handling on the application side to keep it

safely intact. Referring to Table 2.2, we can see that a drop table operation requires

56



all four maintenance categories to be calculated. In terms of implementation, com-

puting the maintenance for dropping a table is effectively the same as computing the

maintenance for dropping each of the table’s constituent columns, and summing the

results for each one. This is precisely what the Co-Evolution Assistant does: given a

table to drop, it finds the maintenance associated with dropping each column in the

table, and reports back the sum total maintenance.

4.2.2 Walking through an Example Schema Change

In this example, we walk through the theoretical process of dropping one of the

Freight module’s main tables, B2W_CKT_FR_DAYS. We examine each maintenance

metric individually, and validate that the Co-Evolution Assistant satisfactorily and

thoroughly evaluates the impact of dropping the table.

Schema Maintenance

1 CREATE TABLE "SALES_B2W_WL_APP"."B2W_CKT_FR_DAYS" (

2 REGION_CODE VARCHAR2 (20),

3 INITIAL_WEIGHT NUMBER ,

4 FINAL_WEIGHT NUMBER ,

5 WAREHOUSE_ID NUMBER ,

6 CONTRACT_TYPE VARCHAR2 (5),

7 PROMOTION_TYPE VARCHAR2 (20),

8 PERIOD CHAR (1),

9 LOGISTIC_CONTRACT VARCHAR2 (20),

10 DAYS NUMBER ,

11 PRICE NUMBER ,

12 SPECIAL_DELIVERY CHAR(1 BYTE),

13 HR_CORTE NUMBER (2)

14 )

Listing 4.1: B2W_CKT_FR_DAYS schema

The schema of B2W_CKT_FR_DAYS is reproduced in Listing 4.1. Dropping the table

requires deleting the entire schema. As discussed before, the Co-Evolution Assistant
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will compute schema maintenance for each column individually, then combine the

results to represent the effect of dropping the entire table. In this case, the tool will

simply search for each column name in the schema individually, and report each one

back. In this way, the entire schema will be taken into account.

Query Maintenance

Similarly, for query maintenance, the basic idea is to search for each table variable in

all query definitions. By doing so, each query affected by the table will be highlighted.

In the case of B2W_CKT_FR_DAYS, there is one main query that pulls in data from the

database to the application side, represented (in a truncated form) in Listing 4.2. In

particular, it pulls the columns warehouse_id, days, price, logistic_contract,

and special_delivery into the application.

1 SELECT DISTINCT D.contract_type AS CONTRACT_TYPE ,

2 D.warehouse_id AS WAREHOUSE ,

3 P.vl_freight AS SALE_PRICE ,

4 D.days AS DAYS ,

5 D.price AS PRICE ,

6 D.logistic_contract AS LOGISTIC_CONTRACT ,

7 D.special_delivery as SPECIAL

8 FROM B2W_CKT_FR_DAYS D

9 INNER JOIN B2W_CKT_FR_REGION R ON ...

10 LEFT JOIN B2W_CKT_FR_PRICE P ON ...

11 AND D.contract_type = P.contract_type

12 AND D.warehouse_id = P.warehouse_id

13 AND ? BETWEEN P.initial_weight and P.final_weight

14 WHERE ? BETWEEN R.postal_code_start AND R.postal_code_end

15 AND ? BETWEEN D.initial_weight AND D.final_weight

16 AND ...

17 ORDER BY PRICE , DAYS

Listing 4.2: B2W_CKT_FR_DAYS query
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Like schema maintenance, the query maintenance for B2W_CKT_FR_DAYS can be

computed by simply scanning each existing query for instances of any variable present

in the schema definition. Any query affected by the table will then be detected and

presented in its entirety to the user.

Map Maintenance

For map maintenance, we are firstly required to have mapped each database variable

from the B2W_CKT_FR_DAYS table populating an application variable. Recall that the

purpose of the map table is to efficiently link from database variables to counterpart

application variables. As a result, we need only include map table entries for database

variables that end up propagating their value to some application variable.

While the table has 12 columns total (shown in Listing 4.1), by examining the

query, we can see that only 5 application variables are actually pulled from the

database: warehouse_id, days, price, logistic_contract, and special_delivery.

Furthermore, by examining the code that executes the query (Listing 4.3), we can

see that only four of the five variables actually have their values propagated to the

Freight object. Therefore, it is only necessary to create map table entries for those

four variables. The relevant entries are shown in Table 4.1.

1 public Object mapRow( ResultSet rs , int rowNumber ) throws

SQLException {

2 Freight f = new SimpleFreight ();

3 f.setCarrierTime( rs.getInt( "DAYS" ) );

4 f.setWarehouse( rs.getInt( "WAREHOUSE" ) );

5 f.setContract( rs.getString( "LOGISTIC_CONTRACT" ) );

6 f.setContractType( freightContractTypeRepository.

getByContractValue(rs.getString( "CONTRACT_TYPE" )) );

7 f.setSalePrice( rs.getBigDecimal( "SALE_PRICE" ) );

8 return f;

9 }

Listing 4.3: Execution and result manipulation of B2W_CKT_FR_DAYS query
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begin_hash end_hash Class App Variable Table Schema Variable
0 d2569... 86831... SimpleFreight.java warehouse b2w_ckt_fr_days warehouse_id
1 d2569... 86831... SimpleFreight.java carrierTime b2w_ckt_fr_days days
2 d2569... 86831... SimpleFreight.java contract b2w_ckt_fr_days logistic_contract
3 d2569... 86831... SimpleFreight.java contractType b2w_ckt_fr_days contract

Table 4.1: Relevant map table entries for B2W_CKT_FR_DAYS

Figure 4-1: Tree-based view of contract’s paths through the code

Application Maintenance

Lastly, the Co-Evolution Assistant will compute application maintenance for each of

the four mapped variables. However, rather than examine each of the four individu-

ally, which would result in greatly redundant patterns for each one, we instead follow

a single particular variable’s path through the code in depth. We then validate that

the Co-Evolution Assistant successfully and accurately finds the paths of propagation

through the code.

We inspect the application maintenance of the variable contract, mapped into

the SimpleFreight class. Of the four variables, contract is the best example of

multi-modular, multi-leveled propagation. Figure 4-1 shows a tree-based view of the

propagation of the variable. Green represents a function call within the Freight

module, while blue represents a call from within the separate Delivery module. We

can see that it is originally exposed from the SimpleFreight function getContract,

which is used by a single function from within Delivery, getLogisticContract.

From there, there is a three-way split, indicating that three separate functions call
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Figure 4-2: Result interface for contract’s paths through the code

getLogisticContract. Interestingly, each one of the three calls only setLogisticContract,

presumably with the result returned from getLogisticContract. In short, the

value mapped into contract from the database eventually gets propagated to the

Delivery class via three separate functions, where it is eventually set as the value

for logisticContract.

In Figure 4-2, we can see the results interface returned from the Co-Evolution

Assistant. It follows the tree structure presented in Figure 4-1, confirming that the

Co-Evolution Assistant was successful in finding the propagation paths of the variable.

4.3 Conclusions and Future Work

In this section, we showed how the Co-Evolution Assistant works in a practical set-

ting, on B2W’s Checkout application. It was successfully able to present an accurate
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maintenance estimate for potential realistic schema changes on the database. We saw

precisely how the Co-Evolution Assistant computes each piece of maintenance, and

validated its results against the expected outcome. In the application maintenance

case, the impact of dropping the B2W_CKT_FR_DAYS table spread across multiple mod-

ules of the application code. As a maintainer of the database considering whether to

make such a schema change, the complete information presented by the Co-Evolution

Assistant would inform the schema change decision beyond what is immediately ob-

vious by glancing at the code.

There are several ways in which the existing Co-Evolution Assistant presented in

this paper may be improved upon in the future. In Section 3.2.3, we justify the choice

to use static analysis for this version of the Co-Evolution Assistant, due to the need for

the tool to be generally applicable to ISs. However, it may be worthwhile to explore

dynamic analysis for future versions of the Co-Evolution Assistant, since a dynamic

solution could potentially provide more depth to the analysis of the code. This would,

however, still come at the cost of generalizability of the tool. In Section 3.2.2, we

discuss the choice to create the map table manually rather than programmatically,

though this too is a choice made to preserve the all-purpose nature of the tool. Finally,

an assumption made throughout this paper is that the database maintainer is the

one providing potential schema changes to the tool. However, there are interesting

possibilities centered around the idea of automatic schema change generation, in which

the tool would itself provide suggestions for optimal schema evolution.

In practice, the Co-Evolution Assistant has enormous practical use in informing

future design decisions centered around schema changes on a system’s database. By

understanding the far-reaching consequences of each schema change, decay on the sys-

tem can be mitigated proactively. In many existing systems, decay can be introduced

to both the application and database sides due to incomplete analysis of the impact of

schema changes, which are then made anyway. As a result, over time, decay builds up

in the system, compromising the integrity of both the database and the application

code. Our solution to this phenomenon, the Co-Evolution Assistant, aids the system

maintainer by presenting them with the full consequences of each schema change.
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Then, faced with a decision involving one or more schema changes, the maintainer is

quickly able to evaluate each one, and make the choice that minimizes decay in the

system.
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