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requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics

Abstract

The prolific discovery of habitable zone residing exoplanets via indirect detection
methods have spurred many in the astrophysics and space technology community to
call for the prioritization of funding for a direct exoplanet imaging space telescope,
such as the NASA/JPL proposed HabEx mission. Though the state-of-the-art in op-
tical technology suggests near-term feasibility, successful and efficient high-contrast
imaging remains a problem. A promising solution is formation flying an external
occulter in front of the observatory to suppress host starlight and allow for imaging
of the obscured exoplanet. However, recent analyses have demonstrated that for
the required separation distance between the spacecraft, angular slew maneuvers
to retarget the formation line-of-sight between stars in a Design Reference Mission
(DRM) demand a significant amount of fuel, restricting the potential science yield
of a five year mission. It can be found that many of these analyses use traditional,
impulsive control solutions to slew the occulter between points in three-dimensional
positional space, or attempt exhaustive search methods to find less expensive al-
ternatives. These approaches are uninformed by the rich and complex dynamical
six-dimensional phase space in which the spacecraft truly lie. For this work it is as-
sumed that both the observatory and external occulter are operating near Sun-Earth
Lagrange point 2 (SEL2). Researchers across celestial mechanics, nonlinear dynam-
ics, chaos theory, and astrodynamics over the last century have made considerable
contributions to shedding light on the families and classes of natural trajectories
existing in the phase space about Lagrange points. However, it has only been in the
last few decades (and still continuing through the present) that it has been revealed
how to use these previously elusive pathways in mission design. All of this points to
a rich and underutilized design space for crafting naturally existing, or minimally
active-control assisted, low-fuel solutions to solve complex motion problems. The
difficulty lies in teasing out trajectories of interest in the often times opaque dy-
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namical structure. However, history has shown that by understanding the basic
classes of motion existing in the phase space through the lens of Dynamical Systems
Theory (DST) — which is concerned with qualitatively uncovering the structure of
solutions in a system’s phase space through the study of its equilibrium points, their
stability, sensitivity to parameters, and the vector flow connecting these points —
it can be done.

This thesis investigates the use of natural solutions to frame and solve the forma-
tion retargeting maneuvers of an observatory/external occulter exoplanet imaging
mission. By illuminating the classes of natural motion that can be exploited, fuel
costs can be minimized, but more importantly, the set of all available paths con-
textualized within the dynamical landscape. This provides a baseline from which
solutions can be interpreted and mission design trade-offs analyzed. To this end,
a Trajectory Design Methodology (TDM) was developed that guides the space-
craft along the natural periodic and quasi-periodic motion of the CR3BP phase
space’s center manifold. The TDM determines the fuel-minimizing path, under the
constraints of the analysis, that passes the formation line-of-sight through the max-
imum number of stars within an extended time window. Since the framework is
dynamically informed, the incremental costs of deviating from this maximal path,
to achieve a specific science objective, can be readily considered. A sample mission
analysis demonstrating these contributions is provided.

Thesis Supervisor: David W. Miller
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Thesis Supervisor: Sara Seager
Title: Class of 1941 Professor of Physics and Planetary Science

Thesis Supervisor: Richard Linares
Title: Charles Stark Draper Assistant Professor
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Chapter 1

Introduction

1.1 Motivation

To date, The NASA Exoplanet Archive [1] registers just over four thousand con-

firmed exoplanet discoveries with about an equal many candidates awaiting final

verification. Of these, a fraction are known to lie within a band of distances from

their host star that could potentially support liquid water — the habitable zone.

The culmination of this data, beginning largely with the discovery of 51 Pegasi b in

1995 [74], represents a leap in our understanding of the cosmos. Yet, the boundary

of our knowledge is shallow in comparison to estimates of the size of the Universe,

which indicate that on average each star hosts a planet, in galaxies consisting of one

hundred billion stars, in one hundred billion different galaxies.

For many, these statistics evoke romanticism for a bygone era of exploration, ad-

venture, and renewal — ideas that are equally encapsulated and motivated by hope:

simply, that places unknown may hold something great. In that regard, there will

never be a greater physical unknown than the Universe. Philosophically, as human

beings we are driven by the desire for community and to know our surroundings —

which is why questions relating to our identity and place in the cosmos are as old

as our awareness of it. Scientifically, our motivation is more nuanced with questions
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related to the characterization of planets, their formation, and the uniqueness of life,

which then drive instrument design and rigorous measurements made by spacecraft.

First and foremost, this thesis is motivated by all of these questions. The land-

scape of scientific and technological advancement still needing to be spanned to

bring us to the ultimate discovery of a planet like ours remains large. However, as

indicated by the rapid advancements made since the confirmation of 51 Pegasi b

and the state-of-the-art, this could realistically occur during our lifetime. It is the

hope of the author that the result of this body-of-work would be one out of many

others that will contribute to the fulfillment of this age long endeavor.

1.1.1 Science: Direct-Exoplanet Imaging

Nearly 99%1 of all exoplanet discoveries have been detected and later confirmed

via indirect methods. A majority of these discoveries are credited to the success-

ful Kepler Space Telescope [16, 17, 57] which utilized transit photometry to sense

and deduce parameters — such as orbital period, radius, and mass2 — of exoplan-

ets as they eclipsed their host stars. Similar to Kepler, the follow up Transiting

Exoplanet Surveying Satellite (TESS) [91] launched in 2018 has already begun suc-

cessfully making discoveries using this transit method, narrowing the sub-Neptune

sized exoplanet candidate list for future science missions. However, through transit,

information is only received second-hand from measured disturbances made of the

dim planet’s much easier to detect stellar host instead of from the planet itself.

Undoubtedly, indirect detection methods have led to unprecedented discoveries

in a short span of time. However, the depth of insight gleaned of habitable zone

residents stops short of identification of an exoplanet as Earth-like. Ultimately,

nothing beats first-hand knowledge. Consequently, direct-imaging exoplanet capa-

1NASA Exoplanet Archive [1]: confirmed exoplanets categorized via imaging discovery method
over total confirmed exoplanets. All directly imaged exoplanets to date are large and outside the
habitable zone due to the current technical challenges.

2For more information, refer to Winn [118].
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bilities have become the focus of research in a wide-variety of technical disciplines.

Beyond providing tangible images of extra-solar planets in the habitable zone, such

agency would allow for sampling of light directly from the planet and permit spec-

troscopic characterization of its atmosphere to reveal its composition and search for

biosignatures.

The capacity to directly-image exoplanets is limited by how effectively its host’s

starlight can be suppressed. A dilemma that has been likened by scientists to

finding a firefly next to a lighthouse. From the perspective of an observatory, a

given habitable zone residing exoplanet (at a distance of 5-parsecs) has an angular

separation from its host star on the order of 200 milliarcseconds. This and their

relative brightness require 10−10 contrast between the two objects for direct detection

[87, 111]. The high-contrast imaging problem described is listed as the root of two

out of the four major technical advances needed to enable a direct-imaging exoplanet

observatory mission [32].

Significant developments have been made towards two different solutions. One

of these is the coronagraph. A popular solution with attraction partly due to its

heritage and success in other contrast imaging problems, such as in heliophysics [71] –

from which it gets its name. A coronagraph is a mask that lies in the optical pipeline

of the telescope and blocks out a disk of unwanted light, allowing a fainter, off-axis

object/light source to be observed by the optical instrument. Though coronagraphs,

as applied to direct exoplanet imaging, provide the advantage of rapid retargeting

between star systems of interest, they are limited. For the level of contrast needed for

direct exoplanet imaging, the sensitivity demanded by the coronagraph to maintain

the required contrast dictates the observatory requirements (i.e., thermal control,

pointing control, optics design, etc.) to the limits of the state-of-the-art, including

a 10 picometer level instrument wavefront stabilization [87]. Even if these costly

technical hurdles are surpassed, the coronagraph’s inherent outer working angle and

current required optical design return low throughput of signal, potentially limiting
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Figure 1-1: Artistic rendering of a reference observatory and starshade occulter [32]

its ability to spectroscopically characterize the exoplanets in question.

Alternatively, researchers in conjunction with the NASA Jet Propulsion Lab-

oratory are developing an external (starshade) occulter, depicted in Figure 1-1.

Similar to an internal coronagraph, the objective of the starshade is to suppress

host starlight while allowing light from the target exoplanet to pass through to the

observatory instrument suite. However, the starshade is external to the telescope

and is itself an independent spacecraft designed to fly in formation with the tele-

scope. It’s distinctive flower petal/radially apodized shape provides a very effective

dark shadow, capable of the 10−10 level contrast needed for exoplanet imaging when

positioned between a star and the line-of-sight of the observatory. For the external

occulter, contrast and inner working angle are independent of the telescope aper-

ture and frees the system from complex, specialized optical design and wavefront

correction [97]. Combined with no outer working angle, high-throughput of signal

is achieved yielding a solution that is much better suited for spectroscopy than the

coronagraph.

In many ways, the external occulter appears to be the most effective and promis-

24



ing solution to obtaining high-contrast imaging. However, the cost of choosing the

external occulter and forgoing the stability burdens levied by the coronagraph on

observatory design is the creation of an unprecedented and potentially fuel intensive

guidance and control formation flying problem3. Stated succinctly, for each star in

a given Design Reference Mission (DRM) — i.e., a schedule of target star systems

to image — the external occulter, assumed operating in the Sun-Earth L2 envi-

ronment4, must slew to align itself between the observatory instrument and target

star, maintaining a fixed separation distance of tens of thousands of kilometers ax-

ially5, and within a 1𝑚2 area laterally during imaging for the required instrument

integration time [32].

Current estimates claim that the retargeting (angular slew) maneuvers at the re-

quired large separation distance between the spacecraft make the external occulter

a fuel limited system, and ultimately capable of imaging fewer targets (even if more

effectively) than the coronagraph6. As an example, initial studies for starshade inte-

gration with the planned WFIRST mission demonstrate severe fuel restrictions [112].

However, many of these analyses use traditional impulsive control solutions to slew

the occulter between points in three-dimensional positional space [58,100,112]. This

approach is uninformed by the rich and complex six-dimensional phase space in

3It should be noted that while formation flight is consider one of the major technical hurdles
engineers will need to overcome to enable an external occulter based direct-imaging mission, it is
not the only one. The Starshade Technology Development Activity (S5) documentation lists at
least three other key technical gaps [117]. These are related to validating (through the contin-
ued development of high-fidelity models and demos) the external occulter’s starlight suppression
technology (note, this also includes reducing sunlight scattering around the edges of the starshade
petals), sensing and control of the formation’s lateral displacement during imaging, manufacturing
the petal shapes under the tolerances required by imaging, and robust deployment mechanisms to
maintain the integrity of that shape during operation. Though important to note, these additional
technical gaps are not addressed in this thesis.

4This is a fair assumption since this is an ideal operating environment for observatories. Major
mission concepts for future direct exoplanet imaging telescopes are projected to operate in this
regime including HabEx [32] and LUVOIR [110].

5The exact value is dependent on the external occulter size — which is on the order of tens of
meters

6Due to both large slew times and potentially shorter mission lifetime as the HabEx mission
predicts the external occulter running out of fuel in five years [32]
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which the spacecraft truly lie. Researchers across celestial mechanics, nonlinear

dynamics, chaos theory, and astrodynamics over the last century have made consid-

erable contributions to shedding light on understanding the families and classes of

natural trajectories existing in the phase space about Lagrange points. However, it

has only been in the last few decades (and is still continuing to the present) that

it has been revealed how to use these previously elusive pathways in mission de-

sign [47]. All of this points to a rich and underutilized design space for crafting

naturally existing, or minimally control assisted, low-fuel solutions to solve com-

plex motion problems. The difficulty lies in teasing out trajectories of interest in

the often times opaque dynamical structure. However, history has shown that by

understanding the basic classes of motion existing in the phase space through the

lens of Dynamical Systems Theory (DST) — which is concerned with qualitatively

uncovering the structure of solutions in a system’s phase space through the study of

its equilibrium points, their stability, sensitivity to parameters, and the vector flow

connecting these points — it can be done.

1.1.2 Engineering: Opening the Trajectory Design Space

In addition to the scientific motivation of addressing a critical need of future direct

exoplanet imaging missions, secondary engineering motivations abound. Primarily,

these lie within the field of multi-body astrodynamics and trajectory design. His-

torically, the problem of characterizing the motion of a particle under the attraction

of multiple massive bodies has been opaque. Despite progress over the last century

in moving beyond two-body analytical solutions to mapping out the Circular Re-

stricted Three-Body Problem (CR3BP) phase space (Section 2.2), understanding

of how to maximize utilization of the set of available, natural trajectories is still

developing. The building of trajectory design methodologies, as demonstrated in

this thesis, that further employ different classes of solutions/stability regimes in the

dynamical phase space for a larger variety of missions is of merit in itself.
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1.1.3 Additional Applications

Other applications exist beyond astrophysics/observatory pointing and high-contrast

imaging. The results developed in this thesis will in general extend to any three-

body Lagrange point environment. In the current political climate, significant at-

tention is being paid to the cis-lunar (specifically Earth-Moon L1) region of space.

It may be of interest for manned exploration applications to place a spacecraft to

observe and characterize the operating environment from an EML1 vantage point.

Strategically manipulating positioning along the center manifold, including chang-

ing location along the surface of invariant tori guided by its vector flow, could prove

advantageous in these situations.

1.2 Literature Review

This thesis intersects three disciplines of study: direct-exoplanet imaging, Dynam-

ical Systems Theory as applied to trajectory design, and formation flying guidance

and control. Foundational work and the state-of-the-art of each field are highlighted

in the following sections. Many of these studies were instrumental in inspiring the

research proposed in this document, and consequently builds on their results. These

cases are emphasized.

1.2.1 Direct Exoplanet Imaging

The first reported exoplanet discovery by direct imaging was of a gas giant, several

times larger in mass than Jupiter, about the young brown dwarf 2M1207 in 2004. As

described by authors Chauvin et al. [20], the finding was made using infrared wave-

front sensing and the adaptive optics instrument NACO of the European Southern

Observatory’s Very Large Telescope (VLT). In 2009 the Hubble Space Telescope,

with onboard coronograph instrument, made the first direct detection of an exo-
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planet in the visible spectrum (a gas giant three times the mass of Jupiter), and

furthermore, orbiting a bright star (Fomalhaut) [54]. Four more gas giants were dis-

covered using infrared direct imaging orbiting HR8799; three of these in 2008 [72]

and the fourth in 2010 [73].

Though these findings are encouraging, they are rare and have occurred only for

special classes of planets. Only about 1% of the over 4,000 confirmed exoplanets

have been directly imaged [1]. Of these, all have been giant planets far from their

host star. Additionally they have either been young — such that they have retained

sufficient heat from formation, making them either bright enough for detection in

the visible range (e.g., Fomalhaut) or hot enough for the infrared [98] (e.g., HR8799)

— or orbiting brown dwarfs, which are markedly dim compared to the sun (e.g.,

2M1207). These special cases and similar have a lower bar of required imaging

contrast that happen to be within the current capabilities of telescope suppression

techniques. Research effort has been spent on furthering search capabilities and

narrowing candidates for imaging such classes of planets, both under the lens of

current [79]7 [19, 46]8 [62]9 and future [18]10 capabilities.

Studies suggest that atmospheric distortions will limit contrast for ground based

telescopes to 10−8, even when combining extreme adaptive optics and next gener-

ation extremely large telescopes (ELT) [23, 105]. Thus, the most promising path

of obtaining regular direct imaging of exoplanets is through space-based telescopes.

However, as described by Crill and Siegler [23], in-space, starlight suppression tech-

nology is still orders of magnitude in contrast away from achieving direct imaging of

rocky, Earth-like planets in the habitable zone. The authors provide an overview of

the two technologies in development to overcome these deficiencies: the aforemen-

tioned coronagraph and external occulter.

7Gemini Planet Imager – searching for giant planets and brown dwarfs.
8Adaptive optics and coronagraphy for ground based exoplanet detection.
9Direct detection via optical interferometry.

10Extreme adaptive optics for 30m class telescopes and giant planet detection.
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Dating back to 1939, the coronagraph was initially designed by Bernard Lyot to

observe the solar corona [71]. As discussed in Chapter 1, the coronograph lies inter-

nal to the observatory optics, requiring active wavefront control via deformable mir-

rors to achieve the stability required to handle speckling caused by diffraction along

support structures and optical imperfections [23, 97, 106]. As previously described,

this method has been used successfully on ground and space based telescopes (i.e.,

Hubble) for giant exoplanet imaging. However, achieving the stability characteris-

tics needed to attain 10−10 contrast would drive heavy requirements throughout the

observatory design, including picometer class wavefront control [87]. Despite this,

Trauger [111] demonstrated in lab, the capability to attain 1.2×10−10 contrast with

a Hybrid Lyot Coronagraph.

The external occulter was first envisioned by Spitzer in 1962 [104]. It has since

been studied and developed into the JPL starshade concept [97] and provides high-

contrast while removing the burden of complex optical/stability design from the

telescope. At full-scale, the starshade is tens of meters in diameter and requires

tens of thousands of kilometers of separation from the observatory for operation.

Thus, testing occurs at a reduced scale [42,99]. The level of contrast is limited only

by the manufacturing precision of the approximated radially apodized shape as well

as the occulter size and corresponding spacecraft separation distance.

The rapid advancements in high-contrast imaging technology have led to both

direct exoplanet imaging add-on capabilities for planned missions as well as detailed

studies for near-future, direct-imaging-focused, flagship observatories. For exam-

ple, The James Webb Space Telescope will be carrying a Mid-Infrared instrument

for characterization of young giant exoplanets [24]. Largely as a technical demon-

stration, WFIRST is slated to be the first observatory to carry a high-contrast

coronagraph. Furthermore, studies are taking place to evaluate the feasibility of

starshade integration with WFIRST [23,112]. Two primary candidates in competi-

tion to become the next generation great observatory — and currently at in-depth
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study phase — are the Large UV Infrared Surveyor (LUVOIR) [110] and the Hab-

itable Exoplanet Observatory (HabEx) [32, 33]. Both cite direct exoplanet imaging

as a primary objective. While LUVOIR is designed for segmented aperture coron-

agraphy, the main HabEx design incorporates both a coronagraph instrument [27]

and starshade integration. For HabEx, the two would work in tandem, with the

coronagraph — less capable of spectral characterization, but more nimble — would

search for exoplanets during long starshade slew maneuvers. However, a recent tan-

gential study — named HabEx Lite [87] — is exploring the benefit of neglecting

the coronagraph altogether. This starshade only option greatly reduces the stability

requirements and complexity of optical design on the observatory, resulting in a tele-

scope of half the mass as the original configuration. The only question of concern is

the perceived reduction in volume of star systems that can be imaged due to current

estimates of the starshade’s fuel consumption and slew times.

1.2.2 Dynamical Systems Theory and Trajectory Design

This survey will be limited to the study of the Circular Restricted Three-Body

Problem (CR3BP) phase space and trajectory design.

Obtaining qualitative understanding of the classes of solutions provided by a

system of differential equations is the first step in trajectory design. Usually, insight

into the phase space begins with finding equilibrium points and classifying their sta-

bility. This is no different for the Circular Restricted Three-Body Problem. Despite

their namesake, the three collinear libration (equilibrium) points were discovered

by Leonard Euler (1767) [28], while the two off-axis points (L4, L5) were found by

Lagrange (1772) [63]. While others, such as Jacobi (1836) [51] and Hill (1877) [45]

made important contributions along the way, it was Poincaré’s (1899) [85] methods

to obtain qualitative understanding of the phase space that later broke through the

otherwise largely opaque problem.

Interest in the three-body problem gained a resurgence in the 1960s due to the
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space race and the advent of modern computing. At this time, researchers were

attracted to the advantages of placing a spacecraft in the vicinity of Sun-Earth (or

Earth-Moon) L1 and L2. However, the leading strategies of attack were numerical

analyses made recently approachable by computers, as opposed to the Dynamical

Systems Theory (DST) understanding of the phase space as proposed by Poincaré.

The objective at the time could be summarized as searching for highly sensitive

initial conditions that yield useful trajectories for libration point missions. To that

end, Szebehely [109] compiled much of the known information of the three-body

problem at the time and obtained some of the first numerical solutions. Famously,

Farquhar [29] is credited with finding halo orbits to be viable trajectories for a

libration point mission. Due to the highly sensitive nature of the phase space, dif-

ferential corrector algorithms11 were employed to converge higher order analytical

approximations of halo orbit initial conditions found using perturbation methods.

Richardson [90] developed the widely used third-order solution used for seeding a

halo orbit initial condition solver. Several flight mission about Lagrange points

spawned out of this work (ISEE-C [115], SOHO [25], WIND [80], ACE [107]). All

trajectories for these missions were very similar. Largely, this is due to the fact

that strictly numerical approaches do not incorporate substantial theoretic under-

standing of the classes of solutions available, nor understanding of how to leverage

relationships and transitions between trajectories available in the design space.

Though they had gained less traction at the time, researchers such as Conley

[21] and Llibre et al. [66], had in fact been concurrently exploring the multi-body

astrodynamics problem from the perspective Dynamical Systems Theory. Several

studies were released during the last quarter of the twentieth century illuminating

the invariant manifold structure of the CR3BP phase space and the natural pathways

connecting the classes of motion (e.g., [34, 36,38,52]).

Howell, Barden, and Lo [47] made a significant contribution with their 1997

11For more detail, refer to section 3.1.1.
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paper “Applications of Dynamical Systems Theory to Trajectory Design for a Libra-

tion Point Mission,” summarizing the dense insights gained on the CR3BP phase

space into a clearly executable trajectory design methodology. This was partly built

on Barden’s work on the utility of invariant manifolds [6, 7] and shortly thereafter

led to further insight into the characterization and use of the center manifold in

mission design [8]. These methodologies eventually led to the successful, low fuel

trajectory design for the Genesis mission [67, 70]. Koon, Lo, Marsden, and Ross

both summarized and extended this work in Dynamical Systems, The Three-Body

Problem, and Space Mission Design, [61] leading to larger scale understanding of

natural transport phenomena through the solar system (the Interplanetary Trans-

port Network) [69, 93].

These breakthroughs have spurred numerous publications from academia; far

too many to list. However, a notable contribution integral to this work has been the

planar periodic orbit database recently made public by Restrepo and Russell [88],

which includes thousands of initial conditions for planar periodic orbits existing

in our solar system12. Additionally, the work of Olikara and Scheeres [81] and

Baresi et al. [13], on the analysis and development of quasi-periodic solutions on the

center manifold invariant tori, were critical for the success of this thesis. As will be

highlighted in the next section, though there has been some academic interest in

DST applied to spacecraft formation flight, there has been little to no application

that meet the very specific needs of an observatory/external occulter mission.

1.2.3 Spacecraft Formation Flying Guidance and Control

Many texts exist on the subject of spacecraft formation flight [22]. Murray and

Durmott [78] provide a particularly comprehensive derivation of Hill’s equation for

the relative motion of a spacecraft near the secondary celestial body in a three-body

system, starting from the CR3BP formulation and assuming small mass parameter
12Several three-body systems were considered.
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𝜇. The well known Hill-Clohessy-Wiltshire equations of relative motion for a space-

craft quickly emerge by neglecting mutual gravitational attraction terms (i.e., the

secondary body becomes a spacecraft of negligible mass).

Hosts of research problems concerning formation flight have been addressed and

solved over the decades, such as the development of fuel-minimizing control laws

that overcome J2 perturbation for earth orbiting spacecraft [2, 95]. The focus of

this section is specifically on understanding the state-of-the-art in formation flight

within the CR3BP phase space and analyses directly applied to external occulter

operations.

Barden and Howell [8, 9] investigated the center manifold of the CR3BP phase

space to categorize classes of solutions and bifurcations between regions available

for trajectory design. These include planar periodic, three-dimensional periodic,

and quasi-periodic motion. The authors note that quasi-periodic solutions exist on

the surface of tori surrounding the three-dimensional periodic solutions, and could

potentially be used for constellations or interferometric formation flying missions.

The periodicity of configurations of shapes on the torus were studied by analyzing

the stability and time evolution of points on the surface. The intuition gained from

these papers will be used through the remainder of this thesis. Other works describ-

ing formation flying control of interferometers are prevalent [37, 41, 53]. However,

it should be noted that this problem is quite different than the one in question.

Interferometers attempt to maintain a stable relative shape among all spacecraft

in orbit for the duration of the imaging mission. However, the challenge of an ob-

servatory/external occulter mission is not to maintain a specific shape, but how

to slew/maneuver between different target points in space in the most natural/fuel

efficient way possible. However, these techniques may prove to be useful when con-

sidering holding formation during extended sensor integration (imaging) time13.

13Though important, this problem is considered beyond the scope of this thesis and is left for
future work.
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Of particular interest are the contributions made by Baresi [11, 14] who studied

the use of quasi-periodic tori for formation flying applications. The author’s objec-

tive was to obtain and characterize bounded relative orbital motion between space-

craft operating about planets and small bodies. Though the contributions made to

understanding the computation of quasi-periodic tori were widely used in this thesis,

the formation flying applications analyzed, in general, do not extend to the obser-

vatory/external occulter retargeting needs pursued. Henry and Scheeres [44] also

studied the use of quasi-periodic tori for passive formation flight (bounded relative

motion), developing an analysis tool called the ellipse map to aide in the design of

such relative trajectories.

As a final note, Hsiao and Scheers [50,96] produced formation-flying, stabilizing

controllers about unstable trajectories. The application was directed toward inter-

ferometers about a halo orbit, using Hill’s equations. The work relied on linearized

relative motion dynamics to produce a nonlinear, continuous controller that elimi-

nates motion projected onto the stable and unstable manifolds of the corresponding

periodic orbit. Fuel consumption, assuming low-thrust ion engines, are reported to

be on the order of meters per second over a five year span (1000 km separation).

However, there is still much work to be done before something similar could be

applied to an observatory/external occulter formation flying mission. For instance,

how to manipulate the motion of the formation — or transition between solutions

— in a manner that could cover different parts of the celestial sphere on command is

yet to be determined. Additionally, further understanding of the limits of the linear

analysis (i.e., at what separation distance do the assumptions break down and the

controller fail) and stability guarantees would need to be developed. Ultimately,

this direction was not pursued in this thesis.
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Observatory and External Occulter Formation Flight

The final point to consider will be the state-of-the-art in formation flight as applied

directly to an observatory/external occulter system14. As far as the author is aware,

little consideration has been made into the role of Dynamical Systems Theory or how

classes of solutions naturally existing in the CR3BP phase space can be utilized to

help solve this problem. Applications to starshade integration with WFIRST [113]

— where the Design Reference Mission, and thus imaging schedule, is fixed — cite

concerning levels of fuel consumption15. However, the authors note that fuel costs

for the same maneuvers can be reduced by several factors when performed at more

favorable times of the year (i.e., when they align more closely with the natural grav-

itational tides provided by the CR3BP). This highlights the potential consequences

of applying control independently of knowledge of the dynamics of the system —

that is, maximizing exploitation of nature versus fighting it. Millard and Howell [76]

arrive at a similar conclusion in their study of controlling formation flying space-

craft imaging arrays through a set DRM. These studies all show fuel consumption

on the order of thousands of kilograms. Leitner [64] and Folta [31] consider a more

general starshade mission and cite similar numbers. Folta [31] also solved several

fixed DRMs using low-thrust propulsion, reducing the total fuel consumed. How-

ever, trajectory design methods providing insight into how to interpret solutions or

exploit the natural dynamics were not developed

The current state-of-the-art in formation flight specific to the external occulter

is credited to Soto [100, 101]. Soto’s contribution focused on the complex task of

optimal scheduling of imaging the exoplanets — which includes managing integra-

tion time, keep-out zones due to bright celestial objects, mission lifetime, and other

imposed timing constraints. However, control and maneuvering is determined by

14Though not explicitly mentioned, for those interested in sensing between observatory and
external occulter for feedback control, refer to Scharf [94]

15This is using simple, impulsive Δ𝑉 maneuvers to arrive from point A to point B on schedule.
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impulsive maneuvers uninformed by the natural dynamics. Kolemen [58, 59] did

provide a methodology to design the set of formation retargeting sequences using

low-thrust-propulsion-based, minimum-fuel optimal control transfers (with ordering

framed and solved as a Traveling Salesman Problem). However, neither knowledge

of dynamical structures nor the natural flow of the phase space/solutions were ex-

plicitly exploited or included in the design. Thus, any low-fuel trajectories selected

were found by means of an exhaustive search with no mechanism to interpret them

via natural phenomena.

1.3 Research Gap and Problem Statement

From the literature survey it is apparent that the observatory/external occulter

formation retargeting problem has not yet been considered from the perspective of

Dynamical Systems Theory. Instead, current methods are uninformed by the under-

lying dynamics and either neglect the development of a trajectory design method-

ology altogether (for the case of studies with a fixed DRM) or rely on exhaustive

search methods. The results are paths that are difficult to contextualize within the

dynamical landscape. Alternatively, by rooting a trajectory design methodology

from the onset in DST, the design process can become informed by the natural

flow and structure of the phase space, allowing for the efficient search of solutions

aligning with natural phenomena. Additionally, by knowing how these paths pass

through the phase space and which dynamical structures can be exploited, gener-

ated “fuel-optimal” trajectories can quickly be adapted to included specific stars of

interest. More importantly, this could be accomplished through understanding of

the incremental cost of adding these diversions from the optimal path — providing

a baseline from which informed, design trade-off decisions can be made. Finally,

this approach would also provide a foundation for future work, opening an immense

design space of natural solutions that can continue to be developed in potentially
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limitless ways. This thesis, with overarching objective summarized in the follow-

ing problem statement, seeks to provide a framework that begins to address these

research gaps16.

Thesis Problem Statement

To develop a trajectory design methodology — for the retargeting ma-

neuvers of an observatory/external occulter formation flying mission at

Sun-Earth L2 — rooted in Dynamical Systems Theory, that maximizes

exploitation of natural solutions, thereby decreasing fuel costs while min-

imizing sacrifice to science efficiency.

1.3.1 List of Contributions

Provided is a list of the contributions made by this thesis to address the technical

gap summarized by the problem statement and advance the state-of-the-art.

Contributions:

∙ A trajectory design methodology for the retargeting maneuvers of an obser-

vatory/external occulter formation flying mission operating at Sun-Earth L2,

rooted in Dynamical Systems Theory, that exploits the natural motion pro-

vided by the center manifold of the Circular Restricted Three-Body Problem

phase space. This includes:

– A search method to find the set of natural trajectories on the quasi-

periodic torus (for the external occulter) that naturally pass the forma-

tion line-of-sight through alignment with all reachable stars in a given

time window
16Note, the terminal constraints on fuel costs and science efficiency are added to ground the

work back to ultimate objective of an observatory/external occulter formation flying mission: to
image as many candidate exoplanets as possible.
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– A method to determine and order the transfers between natural solutions

on the torus that yields the maximum number of intercept between the

formation line-of-sight and the set of available target stars within a given

time window.

– A method to connect the natural solutions on the torus — through

minimum-fuel, low-thrust transfers — into a continuous trajectory, pass-

ing the formation line-of-sight through the maximum number of target

stars in a given time window

– A method for combining the results of individual time window analyses

into a global solution across an extended time horizon.

∙ A queryable database of three-dimensional periodic and quasi-periodic orbits

existing in the CR3BP phase space. This includes a large infrastructure of

solvers and tools for mission designers to further develop and interact with

the database — including rapid retrieval of the set of orbits that achieve

a given mission objective. The database includes halo orbits, surrounding

quasi-periodic tori, butterfly orbits, near-rectilinear halo orbits, and natural

connections between select family members.

1.4 Thesis Outline

This thesis presents a trajectory design methodology for the retargeting maneu-

vers of an observatory/external occulter formation flying mission operating near

Sun-Earth L2. The first chapter provides an introduction and motivation of the

research problem, a survey of relevant literature and the state-of-the-art, a research

gap analysis and problem statement, and a list of contributions made by this thesis

that begin to address that gap. The remaining chapters are outlined below:
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Chapter 2: Background Theory and Concept of Operations

Relevant background theory is provided including an introduction to Dynamical

Systems Theory, the Circular Restricted Three-Body Problem phase space, and

more specifically, the center manifold existing near the collinear libration points. A

Concept of Operations for an observatory/external occulter formation flying mission

that inspired the Trajectory Design Methodology is provided, based on exploitation

of the center manifold, extending a design database of periodic and quasi-periodic so-

lutions in the phase space, and optimal methods of transfer between these database

solutions.

Chapter 3: Database Development

This chapter describes the development of the three-dimensional periodic and quasi-

periodic torus database first introduced in the Concept of Operations. Solution

methods for both cases are described as well as details of the software infrastructure

developed for creating and interfacing with the database. Included in the discussion

are details on stability analysis, bifurcation analysis, and computation of stable and

unstable manifold solutions.

Chapter 4: Trajectory Design Methodology

This chapter outlines the Trajectory Design Methodology (TDM) developed to plan

and solve the sequence of retargeting maneuvers for an observatory/external occul-

ter formation flying mission. The methodology exploits the previously cataloged17

periodic and quasi-periodic natural motion provided by the center manifold of the

CR3BP phase space near SEL2. The TDM is divided into three steps: finding solu-

tions on quasi-periodic tori that match formation alignment conditions with target

stars, ordering the solutions along the dynamical flow of the phase space, and trans-

ferring between the ordered solutions. Simple examples are provided for each of

17That is, in the periodic and quasi-periodic torus database of Chapter 3
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these steps and/or details of their software implementation.

Chapter 5: Sample Mission Analysis

A sample mission analysis is performed — demonstrating the TDM developed in

Chapter 4 — that is based on the Habitable Exoplanet Observatory (HabEx) study’s

target star list. After acknowledging relevant assumptions, the mission is analyzed

by applying the TDM to a series of quarter-period time windows. The local maxi-

mal paths solved for each time window are then combined to determine the global

maximal path for the formation across an extended time horizon — such as a full

mission lifetime. Estimates of fuel and science efficiency are performed and the re-

sulting framework contextualized within the state-of-the-art. It is shown that by

illuminating the classes of natural motion that can be exploited, fuel can potentially

be minimized, but more importantly, the set of all available paths understood within

the dynamical landscape — ultimately providing a baseline from which trajectories

can be interpreted and mission design trade-offs analyzed.

Chapter 6: Conclusion

A summary of the thesis and research contributions is presented as well as sugges-

tions for future work.

40



Chapter 2

Background Theory and Concept of

Operations

This chapter presents background theory pertinent to the design and interpreta-

tion of trajectories that exploit the natural solutions of a nonlinear system’s phase

space. Section 2.1 provides a primer on Dynamical Systems Theory (DST) — the

framework in which this thesis is rooted. Section 2.2 introduces the phase space of

interest, defined by the Circular Restricted Three-Body Problem (CR3BP), while

section 2.3 focuses on its center manifold subspace — which contains the families of

bounded motion near the collinear Lagrange points. Finally section 2.4 sketches a

Concept-of-Operations (CONOPS) for how these naturally occurring structures can

be used to design the sequence of retargeting maneuvers for an observatory/external

occulter formation flying mission. This CONOPS frames the approach of this thesis

and guides the remaining chapters.
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2.1 Dynamical Systems Theory

Consider a set of ordinary differential equations describing the vector flow of a

system

ẋ(𝑡) = 𝑓(x(𝑡), 𝑡;𝜇) (2.1)

where x ∈ R𝑛 is its state — that is, a minimum set of independent variables that

together describe the system (e.g., position and velocity), and from which all future

states can be predicted given knowledge of all future inputs. Furthermore, it is made

explicit that the system depends on some set of parameters 𝜇 ∈ R𝑚. Adopting the

Newtonian convention ẋ = 𝑑x
𝑑𝑡

, the function 𝑓(x(𝑡), 𝑡;𝜇) describes the time rate of

change of the state, and is, in general, nonlinear and explicitly depends on time.

The system considered in this work — of a small body in a gravitational field —

is known to be both nonlinear and autonomous, that is, described by differential

equations that do not explicitly depend on time1. All future analyses are restricted

to this case.

The word trajectory and solution are used interchangeably, and both refer to a

unique time history x(𝑡) that satisfies equation 2.1. The set of all possible states

make up the phase space of the system. Assuming 𝑓(·) is Lipschitz continuous, then

existence and uniqueness of solutions stemming from real valued initial conditions

guarantee that trajectories are dense in the phase space [92]. A well developed phase

portrait depicting these trajectories — plotted as a vector field for lower-dimensional

systems — can give great qualitative insight into the classes of solutions available.

Often times, the phase space spans R𝑛, but on occasion — usually in association with

periodic motion — can be more naturally represented through cylindrical, spherical,

or toroidal topological spaces [116].

1Note: the state of the system x is still time dependent. However, while the differential equation
is dependent on a time varying state, the structure of the differential equation itself is not changing
with time. This is what is meant by an autonomous system
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Figure 2-1: The phase portrait of a simple pendulum.

Dynamical Systems Theory is concerned with uncovering the qualitative struc-

ture of solutions in a system’s phase space, as opposed to solving for individual,

analytical (or numerical) trajectories2. This is especially true for nonlinear systems

where analytical solutions may be either highly elusive or nonexistent. Through

DST, 𝑛−dimensional complex, nonlinear system can be studied, and their topology

— including equilibrium points, their stability, sensitivity to parameters, and the

vector flow connecting these points — revealed. When combined, whole families

of solutions (such as limit cycles and other forms of nonlinear oscillators) can be

discovered that together describe natural transport through the system.

This philosophy is best exemplified by the simple pendulum, described through

the following system of nonlinear differential equations and phase portrait depicted

in Figure 2-1.

�̇� = 𝑦 (2.2)

�̇� = − 𝑔

𝐿
sin𝑥 (2.3)

All expected classes of motion are captured in this graphic, including stable

2However, when combined, qualitative structure through DST provides context for individual
solutions that may otherwise be obtained.
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equilibrium points3 at 𝑥 = 0 and multiples of 2𝜋4, unstable saddle points at multiples

of 𝜋5, simple harmonic motion about the stable equilibrium points (closed curves),

and in the case of a high energy system, continuous spinning (top-most and bottom-

most trajectories). Compare this result to the analytical solution obtained by taking

a small angle approximation about 𝑥 = 0, which fails for large-amplitude deviations

from the equilibrium point and yields no knowledge or intuition outside its individual

scope.

For comprehensive texts on the subject of Nonlinear Dynamics, Dynamical Sys-

tems Theory, and Chaos Theory refer to Wiggins [116], Strogatz [108], and Koon,

Lo, Marsden, and Ross [61].

2.2 The CR3BP Phase Space

This section introduces the Circular Restricted Three-Body Problem (CR3BP) sys-

tem of equations and summarizes the classes of natural solutions existing in its phase

space. The theory and findings presented are the culmination of decades of research

on the application of Dynamical Systems Theory to multi-body astrodynamics that

have proven to be seminal to the field of study. Several resources exist in the lit-

erature that comprehensively describe these developments [6–8, 34, 47, 49, 61]. The

reader is referred to the referenced texts for any details that may have either been

omitted in this review or require further clarification.

2.2.1 Deriving the CR3BP System of Equations

Astrodynamics is the study of the natural motion of man-made objects in space.

Primarily, this falls under the modeling and prediction of a spacecraft’s state under

the influence of a gravitational field and trajectory design. Consider a spacecraft
3These are states 𝑥𝑒 such that �̇� = 𝑓(𝑥𝑒;𝜇) = 0.
4This corresponds to a downward pendulum position.
5This corresponds to an upward pendulum position.
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operating in our solar system far from any planet. Neglecting perturbations, such as

solar radiation pressure, it’s motion is governed by the gravitational pull exerted by

all massive bodies in the Universe. This system of differential equations describing

this motion is modeled via Newtonian mechanics as follows:

𝑚r̈ = −
𝑛∑︁

𝑖=1

𝐺𝑚𝑀𝑖

||r𝑖 − r||3 (r𝑖 − r) (2.4)

where 𝑚 and r are the mass and position of the spacecraft respectively and 𝑀𝑖 and

r𝑖 are the mass and position of the 𝑖𝑡ℎ massive body. Including all celestial bodies

is not feasible, even when restricting to just those in the solar system, as doing

so yields a system of equations that are intractable and proven to have no closed

form solution [85]. Thankfully, gravitational forces drop off by 𝒪(𝑟−2). Due to the

large distances between bodies in the solar system, often times it is reasonable to

neglect all but the influence of the closest (or most massive) celestial body — such

as when operating in orbit about a planet or when using a patched conic approach

for interplanetary travel. This two-body assumption is attractive due to it yielding

well-understood, closed-form, analytical solutions6. However, for some regions of

space, this assumption strips away dense sets of useful families of trajectories from

mission design as well as valuable intuition of how natural objects transit the solar

system.

For many important operating environments, a good compromise is the addition

of a third body to the dynamical system. The three-body problem, with a few addi-

tional simplifying assumptions, adds enough complexity to qualitatively capture the

richness of the full multi-body phase space, while also remaining approachable for

qualitative analysis through Dynamical Systems Theory7. The aforementioned as-

sumptions together make up the Circular Restricted Three-Body Problem (CR3BP)

6For more information on the two-body problem and patched conic methods refer to Prussing
and Conway [22].

7Note, the three-body problem was also proven by Poincaré to possess no analytical solutions.
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system of equations, which are derived through the remainder of this section.

The CR3BP formulation is constructed by assuming a three-body system where

the mass of two of these bodies are much greater than the third — 𝑀1,𝑀2 ≫ 𝑚3

Furthermore, if 𝑀1 > 𝑀2, then the body of mass 𝑀1 is named the primary and

𝑀2 the secondary. The body of mass 𝑚3 is assumed to be a particle, and for this

application, the spacecraft. It is further assumed that the orbital motion of the

primary and secondary are each circular about the system center-of-mass — the

barycenter — and are coplanar. The coordinate system of reference is defined as

a rotating frame 𝑥 − 𝑦 (refer to Figure 2-2) with origin placed at the barycenter.

The frame rotates with a constant angular rate equivalent to that of the circular

orbital motion. Thus in the rotating frame, 𝑀1 and 𝑀2 are fixed at their respective

distances from the origin on the 𝑥-axis, as compared to their perceived rotational

motion from an inertial frame 𝑋 − 𝑌 with the same origin.

The system is non-dimensionalized by mass unit 𝑀* = 𝑀1 + 𝑀2, unit of length

𝐿* equal to the distance between 𝑀1 and 𝑀2, and unit of time 𝑇 * such that 𝑀1 and

𝑀2 complete one revolution in the 𝑋−𝑌 frame in a non-dimensional time of 2𝜋. In

Figure 2-2: Rotating and inertial frames where 𝑀1 is the Sun and 𝑀2 is the Earth
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these units, 𝐺 = 1 where 𝐺 is the constant of Newton’s universal law of gravitation.

The mass parameter is defined as follows:

𝜇 =
𝑀2

𝑀1 + 𝑀2

(2.5)

yielding

𝜇1 =
𝑀1

𝑀1 + 𝑀2

= 1 − 𝜇 𝜇2 = 𝜇 (2.6)

In the rotating frame, the secondary is located at a distance 𝜇1 along the 𝑥−axis

and the primary at −𝜇2. The equations of motion for the CR3BP are derived

starting from Newton’s second law expressed in the inertial frame (X-Y)

F3 = 𝑚3Ẍ3 = −𝐺𝑀1𝑚3

𝑅3
13

R13 −
𝐺𝑀2𝑚3

𝑅3
23

R23 (2.7)

where 𝑅13 is the position of 𝑚3 relative to the primary and 𝑅23 is the position

of 𝑚3 relative to the secondary. The CR3BP system of equations are obtained

after converting equation 2.7 to the rotating frame via Coriolis’ Theorem and non-

dimensionalizing:

�̈�− 2�̇� − 𝑥 = −𝜇1(𝑥 + 𝜇2)

𝑟31
− 𝜇2(𝑥− 𝜇1)

𝑟32
(2.8)

𝑦 + 2�̇�− 𝑦 = −𝜇1𝑦

𝑟31
− 𝜇2𝑦

𝑟32
(2.9)

𝑧 = −𝜇1𝑧

𝑟31
− 𝜇2𝑧

𝑟32
(2.10)

where

𝑟1 =
√︀

(𝑥− 𝜇2)2 + 𝑦2 + 𝑧2 , 𝑟2 =
√︀

(𝑥− 𝜇1)2 + 𝑦2 + 𝑧2

The CR3BP possess a well-known integral of motion called the Jacobi constant
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(equation 2.11) and is a measure of the energy of the system.

𝐽𝑐 = 𝑥2 + 𝑦2 + 2
(︀𝜇1

𝑟1
+

𝜇2

𝑟2

)︀
− �̇�2 − �̇�2 − �̇�2 (2.11)

2.2.2 Classifying Solutions

The CR3BP equations yield five equilibrium points — named Lagrange (libration)

points. Three of these (L1, L2, and L3) are collinear with 𝑀1 and 𝑀2 — along the

rotating frame 𝑥-axis — and are unstable. Points L4 and L5 are stable and exist

symmetrically off the 𝑥-axis, forming the points of equilateral triangles with the

primary and secondary bodies. Intuitively, these equilibrium points represent the

balance of gravitational and centrifugal forces as observed in the rotating frame.

Qualitative understanding of the solutions available in the CR3BP phase space

is at first best gained by studying the phase space near the equilibrium points —

specifically the collinear points L1 and L2. The CR3BP system is both conservative

and Hamiltonian8. Recall that the phase space is six-dimensional, thus linearizing

about one of the unstable libration points and examining the eigendata yields six

eigenvalues. Of these, one is stable, one is unstable, and four are center — the latter

existing as complex conjugate pairs. This type of equilibrium point is classified

as having center × center × saddle stability9. One would expect from the saddle

classification that in general, trajectories depart hyperbolically along the direction of

the unstable eigenvector, while a single pair of trajectories asymptotically approach

the libration point along the stable eigenvector direction. Locally, this is the case.

Furthermore, from the center pairs, one would predict the existence of periodic

motion. In fact, for a Hamiltonian system such as this, Lyapunov center theorem

ensures their existence in dense families [34]. These orbits exist in the immediate

8For references on Hamiltonian systems see Moser [77] and Wiggins [116]
9Many texts exist in the literature that describe how this result is obtained. For a particularly

comprehensive resource, refer to Koon, Lo, Marsden, and Ross [61]
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Figure 2-3: Planar Lyapunov family of orbits about Earth-Sun L2

vicinity of the equilibrium point in two varieties, planar Lyapunov orbits (which are

fixed to the rotating 𝑥 − 𝑦 plane) and the out-of-plane vertical Lyapunov orbits.

Figure 2-3 depicts a dense family of these planar periodic solutions existing near

Sun-Earth L2.

Prior analyses have revealed that for a critical orbital amplitude along the planar

Lyapunov family, a phase space bifurcation10 occurs (i.e., a change in the structure

of solutions) [43]. Three-dimensional periodic trajectories — halo orbits — emerge

out of the planar case at this condition (refer to Figure 2-4). These trajectories —

characterized by bounded, out-of-plane periodic motion — have been the foundation

of trajectory design for libration point missions.

Similar to its neighboring Lagrange point, these orbits are nominally unstable11.

This can be demonstrated by intersecting a point along the orbit with a surface of
10For a more detailed discussion on phase space bifurcations, see section 3.1.3
11Note, that there is a small subset near the end of the halo orbit family (within the near-

rectilinear halo orbit sub-classification) that are in fact stable. However, these will not be of focus
in this thesis.
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Figure 2-4: Projection of a halo orbit about SEL2 onto the rotating frame orthogonal
planes

dimension (𝑛 − 1) — where 𝑛 is the dimension of the phase space — normal to

the flow. The stability of the perioidic orbit can be determined by analyzing how a

perturbed trajectory re-intersects the surface after each period of revolution, where

— as depicted in Figure 2-5 — each of these intersections will appear as a point.

A discrete map capturing this behavior is called a Poincaré (or first return) map

(Σ : 𝑧𝑛 ↦→ 𝑧𝑛+1). Thus, if 𝑧𝑝 is the point of intersection of a periodic orbit on this

surface then 𝑧𝑝 = Σ(𝑧𝑝). If the orbit is stable/unstable, the points on the the surface

will converge/diverge from 𝑧𝑝.

For the CR3BP system, the state transition matrix Φ(𝑡, 𝑡0) along a trajectory

can be computed by numerically solving the following differential equation:

Φ̇(𝑡, 𝑡0) = 𝐷𝑥𝑓(𝑥;𝜇)Φ(𝑡, 𝑡0), Φ(𝑡0, 𝑡0) = 𝐼6 (2.12)
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Figure 2-5: Reference 2D Poincaré surface embedded in 3D space

where the 𝐷𝑥𝑓(𝑥;𝜇) is the Jacobian of the CR3BP system of equations, 𝐼6 is the

6 × 6 identity matrix, and 𝑡 > 𝑡0
12. The monodromy matrix — 𝑀 ≡ Φ(𝑇, 0) —

is obtained by selecting a point on the periodic orbit and integrating equation 2.12

over a full period: 𝑇 . This serves as a local, linear approximation of the Poincaré

map for the surface of section at that point [61]. The eigendata of 𝑀 reveals the

stability of the orbit. It is known that for halo orbits, the eigenvalues take the

following form (as presented by Howell, Barden, and Lo [47]):

𝜆1 > 1, 𝜆2 = (1/𝜆1) < 1, 𝜆3 = 𝜆4 = 1,

𝜆5 = 𝜆*
6 = 1/𝜆6 |𝜆5| = |𝜆6| = 1

where 𝜆*
6 is the complex conjugate of 𝜆6. Note, since this is a discrete map, sta-

ble/unstable modes lie within/outside the unit circle respectively. Thus, it can

readily be seen that halo orbits maintain the same stability characteristics of their

associated libration point: center × center × saddle. Similar trajectories to those

12Note, since Φ̇(𝑡, 𝑡0) is a 6 × 6 matrix, solving 2.12 translates to solving thirty-six differential
equations simultaneously
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near the equilibrium point also appear in the neighborhood of the halo orbits. For

a given solution, hyperbolic trajectories depart along its unstable eigenvector di-

rection, while those along the stable eigenvector asymptotically approach the orbit.

All the unstable (stable) trajectories emanating from the periodic orbit make up a

dense invariant manifold surface called the unstable (stable) manifold respectively.

The solutions corresponding to the four remaining center modes together make up

the invariant center manifold. For the purposes of this thesis, the following terms

are defined:

manifold — a collection of orbits (solutions) that together form a surface

of dimension (𝑛− 1) that locally has the structure of Euclidean space

invariant manifold — a surface of solutions such that a solution starting

on the invariant manifold surface remains on its surface for all time

A trajectory on an invariant manifold can be described by equation 2.13:

∀x(𝑡) ∈ �̄� 𝐼 if x𝑗(𝑡0) ∈ �̄� 𝐼 → x𝑗(𝑡) ∈ �̄� 𝐼 ; ∀𝑡 ≥ 𝑡0 (2.13)

where x𝑗(𝑡) is a trajectory, and �̄� 𝐼 is an invariant manifold whose surface is com-

posed of trajectories satisfying the above property. From this perspective a qualita-

tive picture of the natural transport of mass in three-body celestial systems can be

grasped. The six-dimensional phase space near the collinear Lagrange points can

be envisioned as being composed of subspaces of stable and unstable invariant man-

ifolds linked by the center manifold of bounded solutions. Therefore, theoretically

fuel-free trajectories can be selected that once entered, will asymptotically transport

spacecraft toward/away-from periodic orbits. The difficulty lies in teasing out the

specific trajectories of interest in the often times opaque dynamical structure.

From this understanding, Howell, Barden, and Lo [47] developed a methodology

to design trajectories for a mission orbiting an unstable libration point that exploits

these natural solutions. The steps are summarized as follows:
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1. Select a halo orbit with characteristics (e.g., amplitude) that achieves the

mission objective. Numerically solve for the solution.

2. Compute the stable and unstable invariant manifold directions through the

monodromy matrix evaluated at a set of points along the orbit.

3. Globalize the manifolds to obtain the transfer trajectory solution space.

4. Select solutions on the manifold that allow for efficient Earth-to-halo-orbit

transfer and halo-orbit-to-Earth return (if necessary).

For more information on how to numerically solve for the initial conditions of

a halo orbit using a differential corrector scheme, refer to section 3.1. To glob-

alize the manifold, simply select a point on the orbit, perturb it along the local,

linearly-approximated direction of the (un)stable manifold and propagate the non-

linear time evolution of that point backwards (forwards) in time. Repeating this for

several points along the orbit yields an approximation for the surface of the invariant

manifold. An equivalent mathematical expression is provided as follows:

x𝑠(x0) = x0 + 𝜖Y𝑠(x0) → x𝑠 ∈ �̄� 𝑠 (2.14)

x𝑢(x0) = x0 + 𝜖Y𝑢(x0) → x𝑢 ∈ �̄� 𝑢 (2.15)

where x0 is a point on the orbit, 𝜖 is a small perturbation constant, and Y𝑠 (Y𝑢) is

the stable (unstable) eigenvector of the monodromy matrix respectively.

The Genesis Mission

Howell, Barden, and Lo’s [47] DST approach to trajectory design is most clearly

displayed in its successful application to the NASA Genesis mission [67]. Launched

in 2001, Genesis was a probe sent to Sun-Earth L1 to collect solar wind particles

53



Figure 2-6: The Genesis Mission trajectory (as published by Lo et al. [67])

and return them to Earth. Beyond being the first robotic sample-return mission,

the Genesis trajectory was the first to be designed using a Dynamical Systems

Theory based approach — specifically by exploiting the operating halo orbit’s stable

and unstable manifold to achieve low-energy return and transfer trajectories to

and from Earth. According to legend, Martin Lo of the NASA Jet Propulsion

Laboratory contacted Professor Kathleen Howell of Purdue University and requested

a low-energy mission trajectory within a week that satisfied the following high-level

requirements: efficient travel to Sun-Earth L1, followed by entrance into a periodic

orbit about the Lagrange point, maintenance for two years, and finally a daytime

return to earth over Utah. The trajectory shown in Figure 2-6 was developed and

delivered on time. By maximizing the use of low-fuel paths found in nature, the

entire mission trajectory was designed to require only one deterministic fuel burn

(∆𝑉 ≈ 6 to 36𝑚/𝑠)13, demonstrating not only tremendous fuel savings, but a leap

in understanding of the interplay between three-body problem phase space and

trajectory design.

13Note: this does not include stochastic corrective maneuvers.
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Figure 2-7: Poincaré surface of center manifold (modified from Goméz et al. [35])

2.3 The Center Manifold

As discussed in section 2.2.2, the six-dimensional CR3BP phase space — near the

collinear libration points — is composed of solutions on the surface of stable and

unstable invariant manifold subspaces, linked by the center manifold surface of

bounded solutions. This is a consequence of the center × center × saddle stability

structure shared by the equilibrium points and their periodic trajectories. In an

investigation aimed at furthering qualitative intuition of their utility for trajectory

design, Barden and Howell [9] surveyed the families of solutions that compose the

center manifold and the natural phenomena yielding transition between them. Re-

vealed is a rich, yet approachable trajectory design space ideal for use in a formation

flying mission.

The constant energy Poincaré surface of the center manifold shown in Figure 2-7

(originally published by Goméz et al. [35]) summarizes their findings. Six classes

of motion in three distinct regions of the phase space are qualitatively captured.

Each region contains a periodic solution (single point on the surface). These are

the vertical Lyapunov orbit in the center, northern halo orbit to the left, and south-
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θ2

Figure 2-8: Parameterization of motion along a torus

ern halo orbit to the right14 respectively. Additionally, quasi-periodic solutions —

represented as rings surrounding the periodic orbits — exist in each region.

Similar to a coupled oscillator, quasi-periodic orbits (QPO) can be characterized

by (at least) two fundamental frequencies of oscillation (𝜔1 and 𝜔2)15. By definition,

if 𝜔1/𝜔2 ∈ Q (i.e., the ratio of the frequencies is rational) then the motion is periodic

(returns to the same point after some time 𝑇 ). However, if 𝜔1/𝜔2 /∈ Q (i.e., the ratio

is irrational), then the orbit will continuously wrap and wind — densely covering the

surface of a torus — while never repeating or closing. This torus — parameterized by

two angles (𝜃1 and 𝜃2) — is the natural topological representation for these solutions:

(T2 : 𝜃1×𝜃2). As illustrated in Figure 2-8, while 𝜃1 — the longitudinal angle — wraps

around its circumference, 𝜃2 — the latitudinal angle — winds inward, through it.

Any point on the surface of the torus — and thus along the quasi-periodic trajectory

— can be represented by these two angles. The solution of the dynamical flow under

this topology is expressed simply as follows:

T2 :

⎧⎪⎨⎪⎩𝜃1(𝑡) = 𝜃1,0 + 𝜔1(𝑡− 𝑡0)

𝜃2(𝑡) = 𝜃2,0 + 𝜔2(𝑡− 𝑡0)

(2.16)

14Note: the northern and southern halo orbit are mirror images of each other in the 𝑥− 𝑦 plane.
15The following discussion will be restricted to the case of QPO parameterized by two frequencies

(and thus angles). As will be seen, the orbits/tori of interest are completely described as such.
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Figure 2-9: Illustration of invariant circle and torus number 𝜌

where 𝜃1,0 and 𝜃2,0 are the initial latitudinal and longitudinal phase of the solutions

and 𝑡0, the initial time. It is assumed that a diffeomorphism exists between the

torus manifold and six-dimensional Euclidean space: 𝑢(𝜃1, 𝜃2) : T2 → R6.

Thus, the torus itself is an invariant surface of constant energy, yielding the

condition that any solution starting on the torus remains on its surface for all future

time. Since both 𝜔1 and 𝜔2 are fixed, it follows that the circular cross section of the

torus — the set of all points for a fixed 𝜃1 — is invariant well. Consider the invariant

circle illustrated in Figure 2-9. Each solution starting at 𝜃1,0 and any initial phase

𝜃2,0 ∈ [0, 2𝜋), when propagated for the longitudinal period of revolution 𝑇 = 2𝜋/𝜔1,

returns to the same invariant circle — i.e. 𝜃1(𝑇 ) = 𝜃1,0 + 𝜔1𝑇 = 𝜃1,0 + 2𝜋 — but

rotated in latitude by angle 𝜌 = 𝜃2(𝑇 ) − 𝜃2,0 = 2𝜋(𝜔2/𝜔1). The latter quantity is

termed the torus number.

2.4 Formation Flying Concept of Operations

This section sketches a Concept of Operations that exploits the natural solutions of

the CR3BP center manifold subspace to solve the sequence of retargeting maneuvers

for an observatory/external occulter formation flying mission. Both an extended
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database — of periodic and quasi-periodic solutions — and optimal methods of

transfer between these solutions are leveraged in this methodology. This CONOPS

frames the approach of this thesis and guides the remaining chapters.

Exploiting the Center Manifold

As discussed in section 2.3, the center manifold subspace contains the families of

bounded motion near the collinear Lagrange points. Since it is assumed that the

spacecraft operate in the Sun-Earth L2 region, these solutions make ideal candi-

dates to exploit for formation retargeting. Recall that each of the three-dimensional

periodic halo orbits is surrounding by dense families of quasi-periodic invariant tori

(QPT). Thus, it can be conceived that by constraining the external occulter motion

to quasi-periodic solutions on the surface of a torus relative to the observatory —

operating from the inner halo orbit — the formation line-of-sight (LOS), and there-

fore its trace on the celestial sphere, can be commanded. Ultimately, this is the

mission-wide objective for the retargeting maneuvers: to trace a path16 on the ce-

lestial sphere that intersects all of the target stars in the DRM. Figure 2-10 provides

an illustration of the formation exploiting the center manifold solutions.

Extending the Design Database

Quasi-periodic tori exist within dense families of varying amplitude from their par-

ent halo orbit. By strategically planning efficient transfers between solutions on

a given torus, the external occulter can effectively manipulate the formation LOS

vector to reach multiple regions of the celestial sphere, and therefore target select

stars17. In 2018, Restrepo and Russell [88] publicly released a database of thousands

of planar periodic orbits created from a meticulous and efficient search through sev-

eral three-body systems. Two-dimensional orbits do not possess the characteristic
16That is, from the formation LOS. For a more detailed description, see section 2.5.1.
17It is assumed that the observatory is evolving kinematically in this scenario — refer to section

4.1
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Figure 2-10: Illustration of the formation exploiting the center manifold solutions.

motion sought for this application. However, it is well documented how to take pla-

nar periodic orbits and find the bifurcation condition from which three-dimensional

orbital families are born18. A contribution of this work19 will be to develop a three-

dimensional periodic orbit and quasi-periodic torus database. This catalog will pro-

vide quick and efficient search for pathways of the formation LOS across the celestial

sphere, as well multitudes of additional natural structures that can be explored in

future work20.

Transferring Between Solutions

Efficient means of transfer by the external occulter between solutions on the torus

(as provided by the design database) needs to be determined if low-fuel tracings

through the target stars of a DRM is to be achieved. It is shown in section 4.1

that this tasks corresponds to manipulating the latitudinal angle 𝜃2 of the torus

topology. It is expected that a future, fully explored set of retargeting maneuvers

that optimally solve a DRM, will require a combination of both manipulating this

latitudinal phase on a single torus’ surface, and transfer of the formation between
18For a further discussion of these topics, refer to section 3.1.3
19Refer to Chapter 3 for a full description.
20For suggestions, refer to section 6.2.
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different halo/QPT combinations to open different pathways21.

2.5 Simulating the Formation

The following section demonstrates how to convert the formation LOS to angle coor-

dinates in the ICRS J2000 frame. For any time 𝑡, the distance from the observatory

operating on the halo orbit and the external occulter on the quasi-periodic torus is

defined as follows

r(𝑡) = x𝑄𝑃𝑇 (𝑡) − xℎ𝑎𝑙𝑜(𝑡) (2.17)

where x𝑄𝑃𝑇 and xℎ𝑎𝑙𝑜 are the position of the occulter and the observatory respec-

tively, expressed in the three-body system rotating frame. The formation LOS vector

in the rotating frame is simply the unit vector along the distance vector.

r̂(𝑡)𝐿𝑂𝑆 =
r(𝑡)

|r(𝑡)| (2.18)

The ICRS J2000 frame is aligned with the Earth equatorial coordinate system.

Thus, two rotations are required to convert the formation LOS vector to the inertial

frame. The first converts the vector from the rotating frame at time 𝑡 to the inertial

frame with origin at the three-body system barycenter and aligned with the ecliptic

plane. The second rotates the resulting frame about its 𝑥-axis 23.43 degrees, to

align with the Earth equatorial frame. It is assumed that the target stars are at a

great enough distance that their location on the celestial sphere is unchanged from

the perspective of a reference frame centered at the three-body system barycenter

and one at Earth. These rotation matrices and their subsequent application to the

formation LOS vector are expressed below:

21Note, searching across different halo orbits and tori is beyond the scope of this thesis, and is
left for future work. Refer to section 4.1 and 6.2.
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𝑅𝑒𝑞 =

⎡⎢⎢⎢⎣
1 0 0

0 cos (23.43𝑜) − sin (23.43𝑜)

0 sin (23.43𝑜) cos (23.43𝑜)

⎤⎥⎥⎥⎦ , 𝑅 =

⎡⎢⎢⎢⎣
cos (𝑡) − sin (𝑡) 0

sin (𝑡) cos (𝑡) 0

0 0 1

⎤⎥⎥⎥⎦ (2.19)

r̂𝐼𝐿𝑂𝑆 = 𝑅𝑒𝑞𝑅r̂𝐿𝑂𝑆 (2.20)

where 𝑅 and 𝑅𝑒𝑞 are the first and second rotation matrices respectively and r̂𝐼𝐿𝑂𝑆 is

the formation LOS vector expressed in the ICRS J2000 inertial frame. This vector

can be converted to angle coordinates — longitude (𝜃1) and latitude (𝜃2) — via the

following formulae:

𝜃1 = 𝜃𝑙𝑜𝑛𝑔 = tan−1

(︂
𝑟𝐼𝑦
𝑟𝐼𝑥

)︂
(2.21)

𝜃2 = 𝜃𝑙𝑎𝑡 = tan−1

(︃
𝑟𝐼𝑧√︁

(𝑟𝐼𝑥)2 + (𝑟𝐼𝑦)2

)︃
(2.22)

where 𝑟𝐼𝑥, 𝑟𝐼𝑦, and 𝑟𝐼𝑧 are the 𝑥, 𝑦, and 𝑧 components of the formation LOS vector

expressed in the ICRS J2000 inertial frame, respectively. Since the location of all

target stars are also expressed in this thesis by a longitude-latitude pair in the

ICRS J2000 inertial frame, the result of equations 2.21-2.22 can be considered the

projection of the formation LOS vector onto the celestial sphere.

2.5.1 Interpreting Formation Flying Plots

The main visualization tool used to interpret the results of this thesis is the plot

of the formation’s line-of-sight tracing across the celestial sphere. Figure 2-11 is

provided as an example. A trace is defined as the time evolution of the formation

LOS vector, rotated to the J2000 inertial frame, and projected to angle space (lat-
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itude, longitude) on the celestial sphere. In general, multiple traces are shown per

plot (expressed as the thin colored lines in the figure), each representing a simulation

starting from a different initial condition by the external occulter, on the torus. The

gold line specifically represents the projection of the initial invariant circle — from

the perspective of the formation — onto the celestial sphere. All QPT solutions

start on this invariant circle, separated by phase angle, thus all traces start from

this line22. These concepts are further developed in section 4.1. In the example plot

provided, the trajectories are simulated for a quarter-period of revolution and the

set of target stars represented by red dots.

Refined database solutions
Target Star
Invariant Circle

Trace Across Celestial Sphere  
Invariant Circle

Refined database solutions
Target Star

Figure 2-11: Example plot illustrating multiple LOS tracings on the celestial sphere.

22It should be emphasized that the stars are static in this visualization (since it is based on an
inertial frame of reference). However, the same is not true for the torus surfaces and halo orbits,
and thus, their simulated formation LOS tracings on the celestial sphere. They are derived from a
rotating frame that can be related to the inertial frame through a rotation matrix that is a function
of time. Thus, the exact shapes and geometry in which they manifest on the plot is dependent on
the initial time 𝑡0 of the simulation, as well as the relative position of the spacecraft within that
rotating frame. This 𝑡0 anchors the initial relative position of the rotating frame with respect to
the inertial frame.
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Chapter 3

Database Development

This chapter details the design and development of a three-dimensional periodic

orbit and quasi-periodic torus database. Recall that in the CR3BP phase space, the

center manifold contains the invariant set of all bounded solutions near the collinear

libration points1. In Chapter 2, a Concept of Operations was introduced that iden-

tified the natural periodic and quasi periodic motion within this subspace — specif-

ically halo orbits and their surrounding quasi-periodic tori — as ideal candidates

to be exploited by a formation flying observatory and external occulter spacecraft

operating in the SEL2 environment, respectively.

Solutions on the manifold exist within dense families [8], highlighting the need

for infrastructure to efficiently manage and explore the trajectory design space. In

response, a database of three-dimensional periodic and quasi-periodic orbits was

created, equipped with a software suite that allows mission designers to rapidly re-

trieve and analyze candidate solutions that meet a mission objective. The toolkit,

developed in the Julia language, incorporates a robust and diverse set of differential

corrector algorithms (to converge solutions to the precision needed for numerical

propagation in the chaotic phase space), quasi-periodic orbit solvers, adaptive con-

tinuation algorithms (to extend orbital searches along families), robust stability

1Refer to section 2.3 for an in-depth discussion.
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index tracking for phase space bifurcation detection, period-doubling bifurcation

solvers, and a manifold visualizer (projected onto configuration space) with mesh-

ing algorithm, among others. The database was designed with general mission con-

straints in mind and includes over 23,000 periodic orbits — including both northern

and southern families of halo orbits, near rectilinear halo orbits, butterfly orbits,

and planar Lyapunov orbits within the Sun-Earth L2 & L1, and Earth-Moon L2 &

L1 regions — as well as over fifty million quasi-periodic solutions existing on the tori

surrounding the SEL2 halo orbits. Details on the development of the periodic orbit

and quasi-periodic torus database are presented in sections 3.1 and 3.2 respectively.

This work was inspired by Restrepo and Russell [88] who performed a global

search for planar periodic orbits along the CR3BP phase space of multiple ce-

lestial systems, uncovering and categorizing several types of families. This study

does not perform the same exhaustive search, but instead focuses on specific three-

dimensional families of interest. However, as the authors’ point out, three-dimensional

periodic orbits are birthed from planar periodic orbits — which can be identified via

known bifurcation conditions (refer to section 3.1.3). Thus, one can consider this

contribution as a minor extension of their work.

3.1 Generating Periodic Solutions

This section documents the theory and methods employed to develop the peri-

odic orbit database. Solutions are stored by their initial conditions — converged

to thirteenth-order accuracy2 — by the method of differential corrections (section

3.1.1). Section 3.1.2, describes the method in which solutions are continued across

families, while section 3.1.3 details how families of interest are targeted by their bi-

furcation conditions, signaled by the tracked stability indices of the solutions across

their families. Finally, section 3.1.4 provides important details regarding software
2In this chapter, "order of accuracy" will refer to the number of digits of precision converged

for a given solution.

64



implementation, demonstrating the toolkit created for interacting with the database.

3.1.1 Method of Differential Correction

Recall from section 2.1, that any trajectory in the phase space can be uniquely

determined through knowledge of its state x(𝜏) = [𝑥, 𝑦, 𝑧, �̇�, �̇�, �̇�] at any time 𝜏

along the flow. This allows for efficient storage of periodic solutions in the database,

which are saved by their converged initial conditions x0
3 and period of revolution 𝑇 .

The orbits themselves possess center × center × saddle stability. Therefore, small

variations in the state, including unavoidable numerical inaccuracies, will cause the

periodic solutions to diverge exponentially in time — when propagated — along

its unstable manifold. Thus, it is necessary for the initial states be computed to a

high level of accuracy in order to delay noticeable deviations long enough for the

propagated trajectory to be of general utility. As a rule of thumb, it has been found

that convergence to at least tenth-order is required, which usually allows for multiple

periods of revolution. All entries in the periodic orbit database have been solved to

𝒪(10−13).

This was accomplished by the method of differential correction (also called shoot-

ing method). As an overview, the algorithm — seeded with a guess of the initial

state — targets a desired end condition4 of the trajectory at a future (potentially

unknown) point in time. The initial state is then incrementally corrected at each

iteration — via predicted variations of the flow downstream — until the desired end

condition is met within some error tolerance. Several comprehensive resources exist

on differential correction applied to the CR3BP phase space [39,48,61]. The reader

is referred to these texts for details that may be omitted from this brief overview.

3Note, solving a trajectory (or solution) will refer to computing its initial conditions from this
point forward. Additionally, it should be noted that since the CR3BP phase space is time invariant,
the initial time 𝜏0 can be set equal to zero without loss of generality, and hence, neglected.

4For example, periodicity.
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Approximating variations along the trajectory

The differential corrector method uses predicted variations of the flow along a tra-

jectory to inform the algorithm at each iteration how to adjust its initial conditions

to achieve the desired terminal state. A linear approximation of this relationship,

following the outline provided by Grebow [39]5, is derived below.

The objective is to estimate the variation of the state of the trajectory at time

𝜏𝑖+1 — where x𝑖+1 = x(𝜏𝑖+1) — given the variation applied at a previous time

x𝑖 = x(𝜏𝑖). It is assumed that ∆𝜏 = 𝜏𝑖+1 − 𝜏𝑖 > 0. Thus, x𝑖+1 represents the

solution of the flow with initial condition x𝑖 evaluated for ∆𝜏 . This relationship is

expressed in equation 3.1.

x𝑖+1 = 𝜑(∆𝜏 ;x𝑖) (3.1)

It follows that the variation of the terminal state can be expressed via equation

3.2.

𝛿x𝑖+1 = 𝜑(∆𝜏 + 𝛿𝜏𝑖+1;x𝑖 + 𝛿x𝑖) − x𝑖+1 (3.2)

where 𝛿x𝑖 represents the variation in the initial conditions and 𝛿𝜏𝑖+1, the variation

in the final time required to reach the new final condition. A Taylor series expansion

performed on equation 3.2 yields the following:

x𝑖+1 + 𝛿x𝑖+1 = 𝜑(∆𝜏 ;x𝑖) +
𝜕𝜑

𝜕x𝑖

⃒⃒⃒⃒
x𝑖,Δ𝜏

𝛿x𝑖 +
𝜕𝜑

𝜕𝜏

⃒⃒⃒⃒
x𝑖,Δ𝜏

𝛿𝜏𝑖+1 + H.O.T. (3.3)

where by definition, 𝜕𝜑
𝜕x𝑖

⃒⃒⃒⃒
x𝑖,Δ𝜏

= Φ(𝜏𝑖+1, 𝜏𝑖) — i.e., the state transition matrix eval-

5For further details, including how to handle contemporaneous and non-contemporaneous vari-
ations in the state, refer to this work.
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uated from 𝜏𝑖 to 𝜏𝑖+1 — and 𝜕𝜑
𝜕𝜏

⃒⃒⃒⃒
x𝑖,Δ𝜏

= 𝑓(x𝑖+1) = ẋ𝑖+1 — the vector flow at 𝜏𝑖+1.

By neglecting higher order terms and substituting equation 3.1 into 3.3, the linear

approximation to the variations of the flow is obtained (equation 3.4).

𝛿x𝑖+1 = Φ(𝜏𝑖+1, 𝜏𝑖)𝛿x𝑖 + ẋ𝑖+1𝛿𝜏𝑖+1 (3.4)

Differential Correction Strategy

The differential correction strategy manipulates the initial conditions at each iter-

ation, guided by the variational relationship provided in equation 3.4, to achieve

a desired terminal state. In the space about the libration points, Roy and Oven-

den’s Periodicity Theorem [48] informs that three-dimensional periodic solutions are

symmetric about the 𝑥 − 𝑧 plane [48]. Exploiting this knowledge reduces the de-

grees of freedom of the problem, greatly simplifying its method of solution. This is

demonstrated below.

All initial conditions of the periodic solutions are constrained to lie on the plane

of symmetry, fixing both 𝑦0 = 0 and its variation, 𝛿𝑦0 = 0. Furthermore, the mirror

condition ensures that the orbit passes through the symmetric plane perpendicularly,

fixing both �̇�0 = �̇�0 = 0 as well as their variations, 𝛿�̇�0 = 𝛿�̇�0 = 0. Thus, the initial

conditions take the following form:

x0 = [𝑥0, 0, 𝑧0, 0, �̇�0, 0] (3.5)

In the formulation, �̇�0 is free to change (i.e., be corrected), as well as one of the

two remaining states. The other, — either 𝑥0 or 𝑧0 — must be fixed (its variation

set equal to zero). An added benefit of exploiting symmetry is that only half the

orbit needs to be computed. Thus the initial condition is propagated until the 𝑥− 𝑧

plane is intercepted (for the first time): this state is x𝑓 . Fixing 𝑥0, substituting

the symmetry conditions into equation 3.4, and taking the inverse of the resultant
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matrix yields the updated variational relationship expressed in equation 3.6.

⎡⎢⎢⎢⎣
𝛿𝑥0

𝛿�̇�0

𝛿𝜏

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝜕𝑦𝑓
𝜕𝑥0

𝜕𝑦𝑓
𝜕�̇�0

�̇�𝑓
𝜕𝑥𝑓

𝜕𝑥0

𝜕�̇�𝑓

𝜕�̇�0
�̈�𝑓

𝜕𝑧𝑓
𝜕𝑥0

𝜕�̇�𝑓

𝜕�̇�0
𝑧𝑓

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

0

𝛿�̇�𝑓

𝛿�̇�𝑓

⎤⎥⎥⎥⎦ (3.6)

Periodicity is achieved when the terminal state crosses the 𝑥 − 𝑧 plane perpen-

dicularly — i.e., 𝑦𝑓 = �̇�𝑓 = �̇�𝑓 = 0. Note that the condition on 𝑦𝑓 is enforced by the

propagation event handler. In general, the initial conditions guessed at the onset of

the algorithm will yield non-zero �̇�𝑓 , �̇�𝑓 . If this is the case, the results from equation

3.6 are used to update the initial conditions on 𝑥𝑜 and �̇�𝑜, as shown in equation 3.7

𝑥0,𝑐 = 𝑥0 − 𝛿𝑥0

�̇�0,𝑐 = �̇�0 − 𝛿�̇�0

(3.7)

This process is repeated, starting by propagating the corrected initial conditions

until the 𝑥 − 𝑧 plane is intercepted, until both |𝛿�̇�0| < 𝜖 and |𝛿�̇�0| < 𝜖. Where 𝜖 is

some user-defined error tolerance.

Alternatively, if 𝑧0 is fixed instead of 𝑥0, the equations 3.6 and 3.7 are updated

to equations 3.8 and 3.9 respectively.

⎡⎢⎢⎢⎣
𝛿𝑧0

𝛿�̇�0

𝛿𝜏

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝜕𝑦
𝜕𝑧0

𝜕𝑦
𝜕�̇�0

�̇�

𝜕�̇�
𝜕𝑧0

𝜕�̇�
𝜕�̇�0

�̈�

𝜕�̇�
𝜕𝑧0

𝜕�̇�
𝜕�̇�0

𝑧

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

0

𝛿�̇�𝑓

𝛿�̇�𝑓

⎤⎥⎥⎥⎦ (3.8)

𝑧0,𝑐 = 𝑧0 − 𝛿𝑧0

�̇�0,𝑐 = �̇�0 − 𝛿�̇�0

(3.9)

It should be noted that studies applying multiple shooting (two-level) differential
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correction schemes can often times be found in the literature. This alternative for-

mulation is more robust than the single-shooting method and can help solutions con-

verge in particularly sensitive regions of the phase space, such as near singularities.

However, this was not considered for this application as the simpler single-shooting

method met the database objective without any issues.

3.1.2 Continuation

The objective of the database is to compute a discrete sampling of solutions across

several families of interest. The process of finding and computing nearby family

members from a previously converged orbit is called continuation. This is performed

for periodic solutions by simply linearly extrapolating from prior two converged ini-

tial conditions, by some small perturbation 𝜀 along the free states of the differential

corrector method6. For example, if 𝑥0 was fixed, 𝑧0 and �̇�0 are updated as follows:

𝑧0,𝑛𝑒𝑤 =
𝑧0,2 − 𝑧0,1
𝑥0,2 − 𝑥0,1

𝜀 + 𝑧0,2 (3.10)

�̇�0,𝑛𝑒𝑤 =
�̇�0,2 − �̇�0,1
𝑥0,2 − 𝑥0,1

𝜀 + �̇�0,2 (3.11)

x0,𝑛𝑒𝑤 = [𝑥0,2 + 𝜀, 0, 𝑧0,𝑛𝑒𝑤, 0, �̇�0,𝑛𝑒𝑤, 0] (3.12)

Since 𝜀 is applied directly to the fixed state, that dimension is considered the

search direction. The differential corrector is then applied, with x𝑛𝑒𝑤 as the initial

guess, to converge the new family member to the order of accuracy required. When

less than two solutions are present in the database, the continuation method is

initialized by perturbing the initial solution along the search direction only.

The fixed state is always set as the most rapidly changing of the two dimensions.

As consequence, the search direction is adaptive. This check — simply determining

6Note, more complicated and robust methodologies could be utilized — such as cubic spline
interpolation — as well as techniques to handle reflections (i.e., cases when families fold back on
themselves). However, these paths were not pursued in this thesis.
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the greater of the two: |𝑥0,2 − 𝑥0,1| or |𝑧0,2 − 𝑧0,1| — is performed after converging a

solution and before continuation.

3.1.3 Stability of Periodic Solutions and Bifurcations

Section 3.1.2 discussed how to continue solutions to obtain a discrete sampling of

orbits across a family. It was shown that the parameter 𝜀 ultimately determines the

fineness of the database. Lowering the value yields a denser representation of the

available solutions within a family, but at the cost of computing additional members.

Its selection should reflect this trade-off. On the contrary, loss of resolution caused

by raising the value of 𝜀 can be aided by the software infrastructure. Section 3.1.4

demonstrates the suite of tools developed to both search among the discrete entries

of the database and interpolate solutions within its gaps.

It remains to be seen how specific families of periodic orbits can be targeted

within the phase space. Recall from section 2.2, the stability of a periodic orbit

is determined from the eigenvalues of the monodromy matrix — which is simply

the state transition matrix evaluated after one period Φ(𝑇, 0) for a point along the

orbit. These eigenvalues, six in total, come in three reciprocal pairs — (𝜆𝑖, 1/𝜆𝑖),

𝑖 = 1, 2, 3 — which can be summarized by the set of stability indices defined below7:

𝑏𝑖 = 𝜆𝑖 +
1

𝜆𝑖
(3.13)

Note, since the monodromy matrix is a discrete map for a point along the orbit,

stability is determined by where the eigenvalues lie in the complex plane with respect

to the unit circle. The stability indices fully capture this information. It follows

that |𝑏𝑖| > 2 corresponds to a pair of eigenvalues where one is stable and the other

7Many texts exist defining and working with stability indices in the CR3BP phase space. Refer
to Hénon [43], Howell & Campbell [49], and Papadakis and Zagouras [82] as a start.
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unstable, |𝑏𝑖| ≤ 2 to a pair of center eigenvalues lying on the unit circle, and |𝑏𝑖| = 2

specifically to the case of two eigenvalues lying jointly on the real axis at either the

point (1,0) or (-1,0). This final case is of critical importance. It will be shown that

it is by tracking how the stability indices change and pass through this condition

across a family that the birthing of new types of solutions can be predicted.

Bifurcations

In Dynamical Systems Theory, a bifurcation is a structural change in the system’s

phase space caused by varying a parameter — such as Jacobi constant or orbital

amplitude — past some critical value. In general, crossing the bifurcation condition8

alters some stability characteristic of the flow, such as that of periodic solutions

and/or equilibrium points. In some applications this can be destructive, as stable

equilibrium points can abruptly switch to become unstable — for example, when

increasing the axial load on a beam until it buckles. In other cases, a bifurcation

can mean the birth of new, and potentially useful, classes of motion. In the CR3BP

phase space, bifurcations can be triggered by varying the orbital amplitude/distance

away from the Lagrange point9 as is naturally done through continuation. At times,

new families of periodic orbits are birthed through this process.

It is the stability indices that signal bifurcation conditions as they are tracked

across a family [39, 43, 49]. For the classes of solution of interest, this occurs when

any of the indices crosses through |𝑏𝑖| = 2. This translates to the collision of two

eigenvalues at the point (1,0) or (-1,0) on the complex plane — for 𝑏𝑖 = 2 and

𝑏𝑖 = −2 respectively. If |𝑏𝑖| crosses in the direction of increasing value then the pair

previously corresponding to a center mode slide along the unit circle (as complex

conjugates) until colliding on the real axis and splitting off as a stable/unstable pair.

This case is illustrated in Figure 3-1. The reverse case occurs when crossing |𝑏𝑖| = 2

8That is, the critical value of the parameter.
9Simply 𝑥0 and 𝑧0
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Figure 3-1: Collision of eigenvalues at (1,0) on the complex plane as the stability
index crosses |𝑏𝑖| = 2.

from the opposite direction.

It is well known that three-dimensional halo orbits bifurcate from the planar

Lyapunov family in this way. As the orbital amplitude of the planar orbits increase

one of the stability indices crosses the bifurcation condition. The set of initial

conditions at which this occurs can be solved within a specified error tolerance

using a bisection search method. Once found, the initial condition is perturbed in

the direction of the eigenvector corresponding to the two eigenvalues that collided.

This value is seeded as the initial guess for the differential corrector, which then

converges to the first member of the halo orbit family10.

The near rectilinear halo orbits do not explicitly bifurcate from the halo orbits,

but instead represent of a subset of the family, classified as those with all stability

indices within a small bound of ±2 [119].

Butterfly orbits are birthed from the near rectilinear halo orbit family of the

Earth-Moon system under a period-doubling bifurcation near the six-day-period

10Currently this process of switching families is done manually, after the continuation procedure
across a family of solutions is completed. Automating this task so is left for future work.

72



members [40]. Again the bifurcation condition can be found by observing when

|𝑏𝑖| = 2 is crossed. A similar procedure to the halo orbits is followed where the guess

of the initial conditions for the first orbit is found by perturbing the NRHO solution

at the bifurcation condition along the corresponding eigenvector.

On a practical note, the stability indices need to be tracked, and thus labeled,

consistently when generating the database (i.e., 𝑏1 is appropriately labeled 𝑏1, 𝑏2

is labeled 𝑏2, etc.) so that there are no discontinuities in the values. This is ac-

complished in the continuation procedure by comparing both the value and rate of

change (via a finite difference) of the indices to the two previous database entries.

This prevents false positives if any cross each other in value.

3.1.4 Software Implementation

The software infrastructure developed to both build and interact with the periodic

orbit database was written in the Julia language. Julia is a dynamically typed,

general-purpose programming language built with high performance in mind [15].

Through its high-level syntax, developers can reap the productivity of popular script-

ing languages such as Python or MATLAB. However its design, which interplays

carefully selected technologies such as multiple dispatch and just-in-time (JIT) com-

pilation, allows the code to run with the performance of a statically-typed, compiled

language, such as C or Fortran.

The field of astrodynamics has strong, historical links to traditional scientific

computing languages (e.g., Fortran). However, the advantages of Julia are hard

to ignore. A study performed by Eichhorn et al. [26] compared the performance

of six programming languages (Fortran, C++, Java, MATLAB, Python, and Ju-

lia) applied to four classic astrodynamics problems. The authors found that Julia

overall offered comparative performance to the compiled languages for the cases an-

alyzed, surpassing interpreted languages on all accounts. These reasons supported
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the decision to work within the Julia framework11. As a final note, Verner’s “Most

Efficient” 9/8 Runge-Kutta method — called through the Julia “DifferentialEqua-

tions.jl” package [86] (which also provides built-in event handling) — was used for

numerical propagation throughout this thesis.

Database Interaction and Visualization

The final periodic orbit database is composed of over twenty-three thousand solu-

tions (𝜀 = 10−4)12. Represented are the planar Lyapunov, northern halo orbit, and

southern halo orbit families of the SEL1, SEL2, EML1, and EML2 regions, as well

as the northern and southern butterfly orbits near EML2. As discussed in section

3.1.3, near rectilinear halo orbits are subsets of the halo orbit families, and are thus

included by default. For each solution, its six-dimensional (initial) state on the ro-

tating frame’s 𝑥− 𝑧 plane (converged to thirteenth-order accuracy), orbital period,

Jacobi constant, and stability indices are recorded. Several elements of the software

toolkit developed to interact with the database are demonstrated in the following

subsections.

Visualizing the families

The orbital families — projected onto three-dimensional configuration space — can

be visualized by creating a triangular mesh between adjacent orbits in the database.

This is accomplished by constraining the numerical propagator to solve for an equal

number of points along each trajectory, and ordering the resultant states along the

paths into a sequence of mesh vertices, as illustrated in Figure 3-2. This result can

11It should be noted, that it is the position of the author that continued research and development
on the application of the Julia to problems in astrodynamics is needed before any sort of formal
conclusions on performance (as compared to compiled and scripting languages) are drawn.

12This refers to the step size during continuation, section 3.1.2. To give a sense of the compu-
tational cost, several hundreds of converged solutions were achieved across the halo orbit families
within minutes. This was performed on a laptop computer equipped with a 2.8 GHz Quad-Core
Intel Core i7 processor and 16GB of memory.
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then be passed to a 3D mesh plot function in a graphing library of choice. Continuing

this method across a family produces a surface plot of the set of solutions. Several

examples from the database are provided in Figure 3-3.Developing the Database: 3D Visualization
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Figure 3-2: Illustration of triangular meshing between orbits methodology
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Figure 3-3: Visualization of several orbital families, projected onto the configuration

space of the CR3BP rotating frame
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Plotting data across a family and searching for solutions

The software structure allows mission designers to plot parameters stored in the

database across a family with a single function call. Figure 3-4 displays the plots of

𝑥0 versus 𝑏2 (left) and 𝑥0 versus 𝑇 (orbital period) (right), for the SEL2 Northern

Halo family.

[ nd ]

[ n
d

]

Figure 3-4: Plotting data across the SEL2 Northern Halo family

A “search periodic orbit database” function call allows orbits of interest — se-

lected from the graphs — to be extracted from the database. The function is passed

the family name, parameter of choice, value requested, and a series of flags and re-

turns either the closest solution stored in the database matching the value, or solves

for the orbit within a specified error tolerance using a bisection search method com-

bined with a differential corrector. With this functionality, the solutions(s) matching

the bifurcation condition |𝑏𝑖| = 2 can be extracted.

Finding Stable and Unstable Manifold Solutions

As a final note, the stable and unstable manifold solutions of unstable periodic

orbits can be generated with a call to a single black box function. Figure 3-5

displays the unstable and stable manifold generated for an EML2 and EML1 halo
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orbit respectively. The intersection of these manifold with the 𝑦− 𝑧 plane (rotating

frame) is shown in Figure 3-6. This data can be used to design transfer maneuvers

through the Earth-Moon region.

orbit 1
orbit 2

orbit 2
orbit 1

Figure 3-5: Unstable and stable manifolds for halo orbits in the EML2 (orbit 1) and

EML1 region (orbit 2) respectively.

y [nd]

z [
nd

]

Figure 3-6: Intersection of orbit 1’s unstable manifold (blue) and orbit 2’s stable

manifold (orange) on the rotating frame’s 𝑦 − 𝑧 plane.
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3.2 Generating Quasi-Periodic Invariant Tori

This section describes the development of the quasi-periodic torus (QPT) database.

Recall from section 2.3, the center manifold is dense with quasi-periodic solutions

— on the surface of tori — that surround13 the periodic orbits. Of these quasi-

periodic tori, numerous types of families can exist. In an attempt to manage this

large design space, the database was restricted to only the region of interest for

the formation flying mission. Thus, only the QPT solutions surrounding the SEL2

northern halo orbits were generated, and of those, only the constant period —

equal to that of their parent halo orbit — family computed14. It will be shown

that even when narrowing the scope of computation to this subset, the resultant

QPT database grows vastly greater than the periodic orbit database. In section

3.2.1 the GMOS method of computing QPT solutions — accomplished by pairing a

differential corrector with the stroboscopic mapping condition of the tori’s invariant

circle — is documented. Finally, section 3.2.2 provides a discussion on the specifics

of software implementation, including exploiting high-performance computing and

database interaction and visualization.

3.2.1 GMOS: The QPT Solution Algorithm

This section presents the GMOS method implemented to compute the QPT solutions

of the quasi-periodic orbit database. As documented by Baresi [13], two notable pro-

cedures exist that exploit the method of differential corrections to converge toroidal

solutions in the phase space of interest15. Named after their originators, these are the

KKG [60] and GMOS [12,81] algorithms. In his study, Baresi performed a detailed

13This is specifically for the case of halo orbits. The tori of Lissajous trajectories are related
(and near) the planar Lyapunov and vertical period orbits but do not specifically surround them.

14For further explanation of why only this family was considered, refer to sections 4.1 and 5.1.
15Note, the author also presents two partial differential equation solvers. However, in order to

maintain consistency with the periodic orbit database solution methods, these were not explored
in this thesis.
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comparison of the two methods concluding that the GMOS algorithm is superior

in both flexibility and accuracy. It should also be noted how the two algorithms

differ in their design. While KKG employs surface of sections to characterize the

evolution of solutions on the torus, GMOS relies on stroboscopic mappings, which

due to the properties of the invariant circle — as will be shown — is a more natural

framework for parameterizing the problem.

Several resources exist in the literature that comprehensively describe the GMOS

algorithm [12–14, 75, 81]. The reader is referred to these texts for any details that

may be either omitted in this review or require further clarification16.

Initializing the Solver

Recall from section 2.3 that the torus is invariant, meaning that all solutions starting

on its surface remain on the surface for all future time. This behavior is best char-

acterized by the torus’ cross section — the invariant circle. Under a stroboscopic

mapping, solutions return to the same invariant circle from which they began, ro-

tated by the torus number 𝜌. Since solutions are dense on the quasi-periodic torus17,

the invariant circle can be considered the locus of initial states — that when prop-

agated for at least one period — cover the torus. Thus, one can gain an accurate

representation of the solutions available to each QPT by solving for a discrete set

of 𝑁 points on its invariant circle. These points are equally spaced and their lat-

itudinal phase 𝜃2 (subscripts dropped from this point forward) obtained as the set

of 𝜃𝑖 = 2𝜋𝑖/𝑁 for 𝑖 = 0, 1, 2, ..., 𝑁 − 1. It should be noted, the invariant circle is

not unique for a given QPT. In fact there are an infinite many (one at every cross

section of the torus). However, due to the invariance property, only one needs to

16For example, how to compute the stable and unstable invariant manifolds associated with a
QPT.

17In actuality, it is a single solution that makes up the torus when propagated for an infinite time
horizon — constantly winding and wrapping about the surface, never intersecting itself. However,
for practical, finite time horizon problems, it appears as a continuum of solutions dependent on
the starting latitudinal phase on the torus. For further explanation refer to section 4.1.1
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be solved to gain the full information of the torus. The constraints added to the

differential corrector of the GMOS solver ensure that the computed solutions lie on

the the same invariant circle.

The GMOS algorithm pairs a differential corrector with the invariance condition

of the torus to compute 𝑁 solutions on its invariant circle. As with the periodic

solutions of section 3.1, the algorithm needs to be seeded with a good initial guess

for each of these states. Recall, the ultimate objective is to find the set of tori that

surround a given halo orbit. It is known that the eigenvector with corresponding

eigenvalues on the unit circle — obtained from the Poincaré map of the periodic

orbit — points in the direction of the center subspace containing the quasi-periodic

solutions [8]. Thus one can obtain the set of initial guesses by perturbing the halo

orbit initial conditions by some 𝜖 along this eigenvector direction, and rotating the

corresponding vector by the set of 𝜃𝑖. These individual perturbations are defined by

equation 3.14,

u0,𝑖 = 𝜖(cos (𝜃𝑖)Re[𝜈] − sin (𝜃𝑖)Im[𝜈]) (3.14)

where u0,𝑖 is the initial guess with respect to the halo orbit condition18, Re[𝜈] is the

real component of the corresponding eigenvector, and Im[𝜈] its imaginary compo-

nent. The torus number also needs to be estimated, which can be accomplished as

follows:

𝜌0 = tan−1 Im[𝜆]

Re[𝜆]
(3.15)

where Re[𝜆] and Im[𝜆] are the real and imaginary components of the eigenvalue

corresponding to 𝜈 respectively. This initialization procedure is only performed for

the first torus solution found per halo orbit. Continuation methods are to then used

18such that x𝑜,𝑖 = x𝐻 + u0,𝑖 is the state in the rotating frame corresponding to the initial guess
on the invariant circle.
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to converge to all subsequent solutions.

Exploiting the Invariance Condition

The GMOS algorithm computes a discrete set of solutions on the torus by incre-

mentally correcting the vector of free variables Z, until a targeted set of terminal

states — defined relative to Z by the error vector F(Z) — are achieved within some

tolerance. The vector of free variables uniquely defines the torus and is constructed

as follows:

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

...

u𝑁−1

u𝑁

𝑇

𝜌

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.16)

where u𝑖 is the initial state of the 𝑖𝑡ℎ solution19 on the discretized invariant circle (𝑁

total), 𝑇 is the period (i.e., stroboscopic mapping time) of the torus, and 𝜌 is the

torus rotation number. When satisfied, the error vector F(Z) — built from a set of

carefully selected conditions — constrains the set of 𝑁 solutions to a uniquely iden-

tified invariant circle, and thus, quasi-periodic torus. These conditions are outlined

in the remainder of this section.

The GMOS algorithm is anchored by the the invariance condition of the quasi-

periodic torus. This characteristic of the flow can be expressed as follows:

u𝑖(𝜃𝑖 + 𝜌) = 𝜑(𝑇 ;u𝑖(𝜃𝑖)) (3.17)

19That is, converged six-dimensional state vector defined relative to the halo orbit initial condi-
tions.
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where 𝜑(𝑇 ;u𝑖(𝜃𝑖)) is the stroboscopic map (i.e., mapping time of one period, 𝑇 )

applied to the initial state u𝑖(𝜃𝑖) defined by its phase on the invariant circle 𝜃𝑖.

The combined longitudinal and latitudinal flow along the torus causes the mapped

solution to return to the invariant circle, but rotated in phase from the starting

location by the torus number 𝜌. If a rotation operator can be defined that effectively

removes the torus rotation from the imaged state, then the invariance condition

could be expressed as a mathematical constraint:

𝑅−𝜌[𝜑(𝑇 ;u𝑖(𝜃𝑖))] − u𝑖(𝜃𝑖) = 0 (3.18)

where 𝑅−𝜌 is this operator. Equation 3.18 is a function of u𝑖, 𝜌, and 𝑇 , that when

satisfied, ensures that u𝑖 lies on the invariant circle of the torus.

Note that the states u𝑖 are equally distributed in 𝜃 along the invariant circle.

This outcome of the stroboscopic map formulation allows for the discretized invariant

circle to be naturally represented by a series of Fourier coefficients — which can be

obtained by multiplying the states by the Discrete Fourier Transform matrix show

below.

𝐷 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑒𝑗𝑘1𝜃1 𝑒𝑗𝑘1𝜃2 . . . 𝑒𝑗𝑘1𝜃𝑁

𝑒𝑗𝑘2𝜃1 𝑒𝑗𝑘2𝜃2 . . . 𝑒𝑗𝑘2𝜃𝑁

...
... . . . ...

𝑒𝑗𝑘𝑁𝜃1 𝑒𝑗𝑘𝑁𝜃2 . . . 𝑒𝑗𝑘𝑁𝜃𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ (3.19)

where 𝑗 =
√
−1, k = [−1

2
(𝑁 − 1)...,−1, 0, 1, ..., 1

2
(𝑁 − 1)] is the vector of indices

(note that this assumes that 𝑁 is odd), and 𝜃𝑖 = 2𝜋𝑖/𝑁 for 𝑖 = 0, 1, 2, ..., 𝑁 − 1. It

follows that a matrix realization of 𝑅−𝜌 can be constructed that rotates the resulting

coefficients by the desired angle and converts them back to Euclidean space — with

torus angle removed — by the inverse DFT. This is expressed as follows:
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𝑅−𝜌 = 𝐷−1𝑄(−𝜌)𝐷 (3.20)

where 𝑄(−𝜌) is the diagonal matrix that rotates the Fourier coefficients of the state

by −𝜌 (equation 3.21). The inverse DFT matrix is defined in equation 3.22.

𝑄(−𝜌) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑒−𝑗𝑘1𝜌 0 . . . 0

0 𝑒−𝑗𝑘2𝜌 . . . 0
...

... . . . ...

0 0 . . . 𝑒−𝑗𝑘𝑁𝜌

⎤⎥⎥⎥⎥⎥⎥⎦ (3.21)

𝐷−1 =
1

𝑁

⎡⎢⎢⎢⎢⎢⎢⎣
𝑒𝑗𝑘1𝜃1 𝑒𝑗𝑘2𝜃1 . . . 𝑒𝑗𝑘𝑁𝜃1

𝑒𝑗𝑘1𝜃2 𝑒𝑗𝑘2𝜃2 . . . 𝑒𝑗𝑘𝑁𝜃2

...
... . . . ...

𝑒𝑗𝑘1𝜃𝑁 𝑒𝑗𝑘2𝜃𝑁 . . . 𝑒𝑗𝑘𝑁𝜃𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ (3.22)

The invariance condition, applied to all states on the invariant circle, is the first

constraint of the error vector F(Z), and is defined in vector-matrix form below

𝑐1(X1,X0) = [𝑅−𝜌 ⊗ 𝐼6]X1 −X0 (3.23)

where 𝑅−𝜌 ⊗ 𝐼6 is the Kronecker product between rotation operator and the 6 × 6

identity matrix, X1 is the 6𝑁 × 1 vector of the mapped initial states, and X0 is the

6𝑁 × 1 vector of initial states (shown below).

X1 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜑(𝑇 ;u1)

𝜑(𝑇 ;u2)
...

𝜑(𝑇 ;u𝑁)

⎤⎥⎥⎥⎥⎥⎥⎦ , X0 =

⎡⎢⎢⎢⎢⎢⎢⎣
u1

u2

...

u𝑁

⎤⎥⎥⎥⎥⎥⎥⎦
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Additional Constraints

The invariance constraint on its own cannot uniquely define a quasi-periodic torus20.

A second condition (e.g., on energy, 𝜌, etc.) — added to the error vector F(Z) —

is required to achieve this. The following constraint was selected to generate the

constant period family of QPT solutions:

𝑐2(𝑇, 𝑇𝑓𝑖𝑥𝑒𝑑) = 𝑇 − 𝑇𝑓𝑖𝑥𝑒𝑑 (3.24)

where 𝑇𝑓𝑖𝑥𝑒𝑑 is the desired period of the torus. Recall, the invariant circle also needs

to be uniquely identified on the torus21. This is accomplished by adding two phase

constraints [81] to the error vector that exploit a previously converged member of

the database, Z̃22. The first is as follows:

𝑐3
(︀
X0, X̃0,

𝜕X̃0

𝜕𝜃1

)︀
=

1

𝑁
< X0 − X̃0,

𝜕X̃0

𝜕𝜃1
> (3.25)

where X̃0 is the vector of converged states on the invariant circle of the previously

solve QPT and < ·, · > represents the vector inner product operation. The partial

derivative of X̃0 with respect to longitudinal angle is provided below:

𝜕X̃0

𝜕𝜃1
=

2𝜋

𝑇

(︂
𝑓(X̃0) −

𝜌

𝑇

𝜕X̃0

𝜕𝜃2

)︂
(3.26)

where 𝑓(X̃0) =
˙̃
𝑋0 is the vector flow of the previously converged states. The partial

derivative of X̃0 with respect to latitudinal angle is provided below:

20Note that equation 3.23 provides 6𝑁 equations, and Z is of dimension 6𝑁 + 2.
21It can both shift in longitudinal space and rotate in latitude while satisfying the first two

constraints. The importance of this is especially true during the continuation procedure, where the
algorithm can converge to a different invariant circle of the same torus if not properly constrained
[75]

22Note, to compute the first element of the database, one can perturb two sets of initial guesses
along the halo orbit’s center subspace eigenvector. One that simulates a previously converged
solution and the other (perturbed from the previous), which will serve as the true first initial guess
that will be passed to the GMOS algorithm. A special thanks to Dr. Nicola Baresi for providing
this tip.
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𝜕X̃0

𝜕𝜃2
= [𝐷−1𝑊𝐷 ⊗ 𝐼6]X̃0 (3.27)

where,

𝑊 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑗𝑘1 0 . . . 0

0 𝑗𝑘2 . . . 0
...

... . . . ...

0 0 . . . 𝑗𝑘𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ (3.28)

The second phase constraint can be computed readily thereafter, as shown in

equation 3.29.

𝑐4
(︀
X0,

𝜕X̃0

𝜕𝜃2

)︀
=

1

𝑁
< X0,

𝜕X̃0

𝜕𝜃2
> (3.29)

Psuedo-arclength continuation was employed to help compute solutions across

the QPT family. Its condition is added to the error vector as a fifth constraint as

follows:

𝑐5(X0, X̃0, 𝑇, 𝑇 , 𝑇
′, 𝜌, 𝜌, 𝜌′, 𝛿𝑠) =

1

𝑁
< X0 − X̃0,X

′ > +(𝑇 − 𝑇 )𝑇 ′ + (𝜌− 𝜌)𝜌′ − 𝛿𝑠

(3.30)

where 𝛿𝑠 is the step length and Z′ is the family tangent, computed as follows:

Z′ =

⎡⎢⎢⎢⎣
X′

𝑇 ′

𝜌′

⎤⎥⎥⎥⎦ =
1

𝛼

(︃⎡⎢⎢⎢⎣
X0

𝑇

𝜌

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
X̃0

𝑇

𝜌

⎤⎥⎥⎥⎦
)︃

(3.31)

where23,

23Again, a special thanks to Dr. Nicola Baresi who provided insight into this normalizing
constant.
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𝛼 =

√︂
1

𝑁
< X′,X′ > +(𝑇 ′)2 + (𝜌′)2

Putting it Together

The error vector, consisting of the invariance condition (equation 3.23), period con-

straint (3.24), phase conditions (equations 3.25 and 3.29), and the pseudo-arclength

contuation condition 3.30, is constructed as shown in equation 3.32.

F(Z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1(X1,X0)

𝑐2(𝑇, 𝑇𝑓𝑖𝑥𝑒𝑑)

𝑐3
(︀
X0, X̃0,

𝜕X̃0

𝜕𝜃1

)︀
𝑐4
(︀
X0,

𝜕X̃0

𝜕𝜃2

)︀
𝑐5(X0, X̃0, 𝑇, 𝑇 , 𝑇

′, 𝜌, 𝜌, 𝜌′, 𝛿𝑠)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.32)

As with all differential corrector methodologies, the Jacobian of the error vector

F(Z) with respect the set free variables Z is required (provided in equation 3.33).

𝒟𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑐1
𝜕X0

𝜕𝑐1
𝜕𝑇

𝜕𝑐1
𝜕𝜌(︀

𝜕𝑐3
𝜕X0

)︀𝑇
0 0(︀

𝜕𝑐4
𝜕X0

)︀𝑇
0 0

0 1 0(︀
𝜕𝑐5
𝜕X0

)︀𝑇 𝜕𝑐5
𝜕𝑇

𝜕𝑐5
𝜕𝜌

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.33)

The nontrivial partial derivatives of the Jacobian matrix are provided below.

Starting with the invariance constraint,

𝜕𝑐1
𝜕X0

= [𝑅−𝜌 ⊗ 𝐼6]Φ− 𝐼6𝑁 (3.34)

where Φ is the block diagonal matrix of state transition matrices (computed from

𝑡0 = 0 to 𝑡𝑓 = 𝑇 ) for each state on the invariant circle and 𝐼6𝑁 is the 6𝑁 × 6𝑁
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identity matrix. The partial derivatives with respect to the period and torus angle

are computed as follows:

𝜕𝑐1
𝜕𝑇

= [𝑅−𝜌 ⊗ 𝐼6]Ẋ1 (3.35)

𝜕𝑐1
𝜕𝜌

= −[(𝐷−1𝑊𝐷) ⊗ 𝐼6][𝑅−𝜌 ⊗ 𝐼6]X1 (3.36)

where Ẋ1 = 𝑓(X1) is the vector flow of the mapped initial states. The partial

derivatives of the phase constraints and pseudo-arclength continuation condition

readily follow from the formulation, as shown in equations 3.37-3.39.

𝜕𝑐3
𝜕X0

=
1

𝑁

𝜕X̃0

𝜕𝜃1
(3.37)

𝜕𝑐4
𝜕X0

=
1

𝑁

𝜕X̃0

𝜕𝜃2
(3.38)

𝜕𝑐5
𝜕X0

=
1

𝑁
X′ 𝜕𝑐5

𝜕𝑇
= 𝑇 ′ 𝜕𝑐5

𝜕𝜌
= 𝜌′ (3.39)

Finally, the correction step can be applied to the vector of free variables Z. The

procedure is iterated until the norm of the error vector falls below a user defined

tolerance.

Z𝑐 = Z− [(𝒟𝐹 )𝑇 (𝒟𝐹 )]−1(𝒟𝐹 )𝑇F (3.40)

Once converged, the initial guess of the subsequent family member is provided

as follows: Z0 = Z0,𝑐 + 𝛿𝑠Z′.
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3.2.2 Software Implementation

The QPT database software infrastructure was developed in the Julia language24.

Approximately 2,000 quasi-periodic tori of increasing size25 were computed for 1,200

different halo orbits of the northern SEL2 family. For each of these tori, their

invariant circle was discretized by 𝑁 = 21 states. Thus, approximately fifty million

total solutions were computed and stored, making the QPT database three orders

of magnitude greater in size than the periodic orbit database.

The computational cost of running the GMOS algorithm over the total number of

solutions far exceeded the demands of the periodic orbit database. However, in the

lexicon of high-performance computing, this is an embarrassingly parallel problem.

The family of tori surrounding each halo orbit can be solved independently from each

other26, opening the door for the problem to be approached as a series of parallel

batch jobs. Through the MIT SuperCloud and Lincoln Laboratory Supercomputing

Center [89], the work was split across sixty-four Intel Xeon Gold 6248 processors.

This resource reduced the time to compute the total number of solutions in the

database from the order of years27, to less than a month.

3.2.3 Database Interaction and Visualization

Each QPT solution stored in the database contains 𝑁 = 21 converged initial con-

ditions on its invariant circle as well as its orbital period 𝑇 , torus number 𝜌, and

average separation distance from its parent halo orbit28. Specific tori are found

readily within the database by first calling the search functionality of the periodic

24For further discussion on the selection of Julia as the development language, refer to section
3.1.4.

25That is, of increasing radius of the invariant circle.
26However, tori within a family cannot be solved independently since the method of continuation

depends on previously computed members.
27In serial on a laptop computer equipped with a 2.8 GHz Quad-Core Intel Core i7 processor

and 16GB of memory.
28Computed for 3,000 points along the natural dynamical evolution of the trajectories.
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orbit database to find a halo orbit of interest. This halo orbit is then passed to a

“search QPT Database” function along with a search criteria (such as 𝜌, or average

separation distance from halo orbit) and search value. The closest QPT solution

in the database to the desired value is then returned29. Various mechanisms for

plotting combinations of the halo orbit, invariant circle, and QPT solutions were

developed, an example with all of these overlaid is shown in Figure 3-7.

halo orbit

QPT invariant circle
QPT invariant circle

halo orbit N=21 QPT solutions

x

x y

z

x y

z

Figure 3-7: Halo orbit with invariant circle overlaid (left) and QPT solutions (right)

29Note, a search by bisection method for finding solutions within the gaps of the database as
left for future work.
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Chapter 4

Trajectory Design Methodology

The Trajectory Design Methodology (TDM) presented in this chapter satisfies the

thesis objective introduced in section 1.3. It is rooted in Dynamical Systems The-

ory in the spirit that maximizing the exploitation of natural solutions correlates to

lower fuel costs. This is accomplished by leveraging the periodic and quasi-periodic

torus database of Chapter 3, which provides the design space of natural, bounded

motion for the observatory and external occulter spacecraft respectively. Addition-

ally, transitioning between elements of the database, preferentially in a dynamically

informed manner, is necessary for successful operation. This process is described

in section 4.3. It should be noted that ultimately, the TDM is a composition of

design decisions, and the one presented is just a single manifestation of these pos-

sibilities. Thus, the objective of this chapter is demonstrate a foundation — built

from the onset in DST — that is both adaptable to competing mission objectives

and a platform from which future work can develop.

The Trajectory Design Methodology divides the spacecraft operating life cycle

into a series of more manageable time windows (TW), solving for a sequence of

trajectories constrained to the quasi-periodic torus from which the external occulter

can transition. The occulter is fixed to the toroidal surface at the formation align-

ment condition for each target star, only departing to later re-enter during transfers.
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Find QPT Solutions

Order Solutions

Transfer Between Solutions

compute fuel optimal TPBVP 
transfers between ordered stars

Time Window 1

determine and order all possible 
paths under constraints; select 

path that traverses the max 
number of stars in the TW

find initial phase(s) on the IC 
whose trajectories pass through 

all available stars in the TW

Time Window 2

repeat for next time window

complete TW1 and 
 begin TW2

send TW data 
to TDM solver

TDM Solver

Figure 4-1: The Trajectory Design Methodology overview

The observatory remains in its operating halo orbit, undisturbed1, throughout the

mission. Only a subset of stars are reachable by the formation line-of-sight within

a given time window. For each of these time windows, the TDM process can be de-

scribed in three steps: 1) Find the set of trajectories on the torus that pass through

all stars reachable in the time window, 2) Determine and order all possible paths

under a given set of constraints and extract the path that traverses the maximal

number of stars within the time window, and 3) Transit between the optimally or-

dered solutions in a dynamically informed, fuel-optimal way. This process is then

repeated for the subsequent time window. A graphical representation of this process

is provided in Figure 4-1.

In this chapter, sections 4.1, 4.2, and 4.3 describe the three steps of the TDM

1In reality, stationkeeping is required to maintain the orbit. However, this is neglected in the
analysis
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respectively. Chapter 5 demonstrates the Trajectory Design Methodology through

its application to a sample mission.

4.1 Finding Solutions on the Torus

The objective of the first step of the Trajectory Design Methodology is to find

combinations of naturally existing, ballistic trajectories on the surface of quasi-

periodic tori (QPT) and periodic solutions (i.e. halo orbits) that pass the formation

line-of-sight (LOS) through the target stars of a design reference mission2. Even

by restricting the motion of the spacecraft to these subspaces of the Sun-Earth L2

region’s center manifold, limitless combinations of QPT and halo orbits are still

available to the mission designer. This can be observed in the database developed

in Chapter 3, which is a discretization of the continuous families of halo orbits and

their surrounding quasi-periodic tori3. Thus, careful consideration needs to be made

to reduce the search space to a manageable subset.

Two options immediately present themselves. The first is to consider utilizing

multiple halo orbits and/or QPT combinations for a single mission, selected from a

subset of the database bounded by a range on some parameter such as amplitude

or energy. The second is to utilize a single halo orbit and QPT for the duration of

the mission. This option has several advantages. First, restricting the analysis to a

single halo orbit frees the observatory from having to transfer between solutions, thus

simplifying operations and reducing fuel consumption for the spacecraft. This also

provides adaptability in the likely case that the operating halo orbit is determined

by design constraints outside of formation flight. Second, quasi-periodic solutions

are dense on the torus (refer to section 2.3). Since QPT nominally surround their

2Recall from the CONOPS of section 2.4, the observatory operates in the halo orbit while the
occulter is bounded to the surface of the QPT.

3Recall from section 3.2.1 that even QPT come in many different varieties including constant
energy, constant frequency ratio, and constant mapping time families. Refer to McCarthy [75] for
how to solve for all three.
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parent halo orbit, any point on the celestial sphere is in theory reachable by a single

halo/QPT combination, providing ample design space for mission planning while

eliminating the complexity of handling multiple surfaces of solutions. Finally, the

principles developed for this simplified case are general frameworks and can be scaled

up to more complex solutions in the future. For these reasons, the later option was

selected for this thesis4. Section 5.1 details the criteria made in selecting the QPT

for the analysis in this thesis.

It should be noted that these simplifying assumptions restrict certain aspects the

analysis. For instance, though any latitude and longitude on the celestial sphere can

theoretically be reached by a single torus, the precise separation distance between

the observatory and external occulter at any point on its surface is determined by

the structure of the specific QPT (which if chosen wisely — again see section 5.1 —

can get the spacecraft within a known bound) and dynamical flow. Direct exoplanet

imaging will require a specific and precise separation distance. It seems promising

that by expanding the design space to include multiple tori of varying amplitudes,

periods, energies, etc, natural solutions that meet these additional criteria can be

included. However, these considerations are beyond the scope of this thesis, where

only retargeting between stars is considered. For more discussion on the scope of

future work that can stem from this body of research, refer to section 6.2.

4.1.1 Parameterizing the Search Space

By fixing the operating halo orbit of the observatory, the problem reduces to find-

ing the set of solutions on the toroidal surface that pass the formation line-of-sight

vector through each of the target stars. Accomplishing this task requires an under-

standing of how these tracings manifest on the celestial sphere so that they can be

4It is recognized that global fuel-optimal solutions are likely not found by constraining the
design space to a single halo orbit and QPT. The aim of this thesis is to provide a new path for
future work that will continue to maximize exploitation of the naturally available, dense trajectory
design space. For further discussion see sections 5.4 and 6.2
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differentiated, evaluated, and subsequently selected or discarded. This process is

called parameterizing the search space. Figure 4-2 (top) illustrates the importance

of this step. Graphed are the formation LOS tracings initialized at the twenty-one

invariant circle solutions provided by the database for a single QPT. In this figure,

they are propagated for a full period5. A first glance shows promise of good cover-

age of the celestial sphere as expected, but it is impossible by visual inspection to

distinguish the curves from each other, and thus extract any meaningful character-

istics. However, upon restricting the propagation time to a smaller window, such

5Recall, the database QPT share the same period as their parent halo orbit by design and are
discretized by twenty-one points along the invariant circle.

propagated full period

propagated 25% period

Database solutions
Target Star

Database solutions
Target Star

Trace Across Celestial Sphere

Figure 4-2: Database solutions for a single torus propagated for a full period (top)
and single time window — quarter period — (bottom).
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as a quarter of the period, individual features become much more distinguishable.

This case is shown at the bottom of Figure 4-2.

Most notable are their starting location and direction of flow6. All solutions start

from the same invariant circle — the cross-section of the torus — and are initially

equally separated in phase angle. The projected formation LOS from all points on

the circle is marked by the bold gold line in the graph7. From this figure, it is clear

that the individual solutions are distinguishable by their starting location on the

invariant circle. Thus, it is the natural phase space representation of the surface of

solution — the torus — that provides the parameterization we seek. These are the

latitudinal and longitudinal angles transformable back into to Euclidean space via

the diffeomorphism 𝑢(𝜃1, 𝜃2) (refer to section 2.3).

Expanding further, recall that the torus is made dense by a single quasi-periodic

solution that is continuously-winding and never-intersecting. Thus, the invariant

circle can be considered a locus of solution points. In the theoretical case of infinite

time, a solution starting from any initial phase angle would eventually pass through

any and every point on the torus, completely covering the manifold, yielding 𝜃2,0 —

the starting latitudinal angle (phase) on the initial invariant circle8 — an irrelevant

parameter. However, for the applicable finite-time-horizon problem, 𝜃2,0 becomes

a crucial dial, directly shifting solutions of interest along the projected invariant

circle curve on the celestial sphere. Furthermore, by restricting the subset of tori

to families with equal period to the underlying halo orbit, as has been done in this

thesis, the longitudinal angle (𝜃1) becomes equivalent to (and can be replaced by)

time.

To summarize, finding solutions on the torus corresponds to finding the set of
6Recall from section 2.5.1 that this also inherently depends on 𝑡0, the initial time of the sim-

ulation, since it anchors the rotating frame to the J2000 inertial frame. From this point forward,
this dependency is assumed and no longer explicitly stated.

7This is better illustrated in Figure 4-4.
8From this point forward, initial invariant circle corresponds to the invariant circle solved for

in the database by the GMOS algorithm. For the purposes of this thesis, this invariant circle
represents the locus of initial conditions by their initial phase angle.
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𝑀 points — defined by initial latitudinal phase angle 𝜃2,0,𝑖=1:𝑀 ∈ [0, 2𝜋) — on the

invariant circle, that when propagated for time 𝑡𝑖 < 𝑇𝑤, yield alignment of the

formation LOS with the 𝑀 available target stars in the time window, where 𝑇𝑤

is the length of the time window. Of course, the external occulter cannot exist

on all 𝑀 solutions simultaneously. Instead the TDM must determine an optimal

ordering (and transfers) between a subset of the available solutions that maximizes

total number of intercepts and minimizes total fuel consumption. These steps are

covered in sections 4.2 and 4.3 respectively.

4.1.2 Refining Database QPT Solutions

Every QPT database entry is discretized by 𝑁 = 21 points around its initial in-

variant circle. As discussed in Chapter 3, 𝑁 was chosen to balance computational

cost and the resolution of solutions readily available per torus. In consequence, 𝑁

initially constrains the fineness of the search space parameter 𝜃2,0. Figure 4-2 (bot-

tom) illustrates the resulting LOS tracings — made from the 𝑁 database solutions

of a QPT propagated along a quarter-period time window — projected onto the

celestial sphere. As can be seen, the curves are sparse, leaving large angular gaps in

the celestial sphere untraversed, with several target stars nominally lying in between

solutions. The objective of this step of the TDM is to uniquely determine the so-

lutions, by their initial phase, that pass the LOS through each target star available

in a time window. To accomplish this, a finer discretization of the initial invariant

circle is needed.

QPT database entries are members of continuous families, where each invariant

circle of converged solutions builds upon the previously solved member of smaller

size. This is done by expanding the same N points by a small 𝛿 in radius from

the parent halo orbit and providing these new points to the QPT solver algorithm9.

9This is a simplified explanation, refer to 3.2.1 for a more in-depth discussion on pseudo-
arclength continuation.
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Algorithm 1 Refine Invariant Circle
1: procedure RefineInvariantCircle(Xi, 𝑁, 𝛼, 𝜌)
2: push!(Xref , Xi) ◁ insert in dequeue
3: for 𝑗 = 1 : 𝛼− 1 do
4: X = (𝑅−(2𝜋𝑗/𝑁𝛼) ⊗ 𝐼6)Xi ◁ 𝐼6 is the 6 × 6 identity matrix
5: XjN+i = solveQPTGMOSFixed𝜌(X, 𝜌, ...)
6: push!(Xref , XjN+i)
7: end for
8: return Xref

9: end procedure

Recall from section 3.2.1 that the GMOS QPT solution method works by enforcing

the invariance condition of the torus (reproduced below):

𝑅−𝜌[𝜑(𝑇 ;u𝑖(𝜃𝑖))] − u𝑖(𝜃𝑖) = 0 (4.1)

where 𝜑(·) is the stroboscopic map, which is applied to some initial condition u𝑖

defined at an initial phase on an invariant circle 𝜃𝑖. Recall, after being propagated

for the longitudinal period 𝑇 , the solution returns to the same invariant circle from

which it started, but rotated in phase by 𝜌. The rotation operator 𝑅−𝜌[·] defined

in equation 4.1 can be employed to increase the density of points on the invariant

circle by a scalar multiple of 𝑁 . This process is outlined in Algorithm 4.110.

The objective is to increase the total number of solutions on the invariant circle

by a factor 𝛼. Since all points on the invariant circle should be equally spaced, their

final phase separation should become 𝛾 = 2𝜋/𝑁𝛼. This is accomplished through

the rotation operator (line 3), which transforms the original 𝑁 converged invariant

circle solutions into their Fourier coefficients and rotates them by 𝛾. Figure 4-3

provides an illustration of this step. Since the original 𝑁 points are converged to

sub-tenth-order accuracy, the new points should nearly lie on the same invariant

circle as the original. To ensure that they do, the GMOS solver is run on the new
10Note, since the database torus solutions are already converged to a high level of precision,

this refinement process may be skipped in favor of a simpler two-dimensional interpolation based
approach. However, this methodology was not tested in this work.
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set of points, fixing the torus angle 𝜌 to the value saved in the database as opposed

to the longitudinal period11. This change corresponds to swapping two digits in the

error Jacobian. This procedure is repeated 𝛼− 1 times.

Figure 4-4 displays the results of an invariant circle refined by a factor of 𝛼 = 5

for a total of 105 initial phases. As can be seen, a much denser picture is obtained for

possibilities of tracing the formation LOS across the celestial sphere. Furthermore,

target stars can much more readily be associated with a nearest neighbor solution,

and thus, an initial latitudinal phase angle: 𝜃2,0.

γ

Original N Points

N new points made by
rotating original N by    and
rerunning GMOS solver

γ

Figure 4-3: Doubling the discretization refinement of the database QPT invariant
circle (𝛼 = 2)

11Note: the GMOS phase conditions are enforced by refining the previous and subsequent
database entries without calling GMOS, and applying the conditions accordingly. Although math-
ematical guarantees are not provided that the invariant circle does not slip in phase, the precision
of the original points combined with the added constraints allow us to considered it negligible for
the purposes of this thesis. The alternative of solving all the points together as a batch can quickly
become unwieldy depending on the size of 𝛼
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Refined database solutions
Target Star
Invariant Circle

Trace Across Celestial Sphere  
Invariant Circle

Refined database solutions
Target Star

Figure 4-4: Refined invariant circle solutions propagated for a quarter period

4.1.3 First Pass Search: Search by Sorting

A two-step process is presented to find the QPT trajectories that pass the formation

line-of-sight through all available target stars in a given time window: a coarse, first

pass followed by a second, fine pass. The first pass, “Search by Sorting” is performed

by searching through a sorted data structure to find the set of discrete initial phase

angles from the refined invariant circle whose corresponding solutions yield closest

approach to each target star available in the time window.

The data structure is a matrix of tuples, where each column represents a target

star in the DRM and each row, an initial phase angle on the refined invariant circle.

To fill the entries of the matrix, each initial condition on the refined torus — denoted

by its phase — is numerically propagated for the duration of the TDM time window.

The error (equation 4.2) from the solution to each target star is the computed as

the Euclidean distance in latitude-longitude space between the star and the point

of closest approach by the solution.
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Figure 4-5: Data structure created from database entries: a matrix of tuples (left)
that when sorted by column (right) reveal the QPT trajectories that pass the for-
mation LOS closest to each star in the DRM

𝑒𝑗𝑖 = min
𝑘

||(𝜃𝑗𝑘,1, 𝜃𝑗𝑘,2) − (𝜃𝑖𝑡𝑠,1, 𝜃
𝑖
𝑡𝑠,2)||2 (4.2)

where 𝑒𝑗𝑖 is the error between the 𝑗𝑡ℎ trajectory and 𝑖𝑡ℎ target star, (𝜃𝑖𝑡𝑠,1, 𝜃
𝑖
𝑡𝑠,2) is

the latitude and longitude of the 𝑖𝑡ℎ target star, and (𝜃𝑗𝑘,1, 𝜃
𝑗
𝑘,2) is the latitude and

longitude of the 𝑗𝑡ℎ trajectory evaluated at the 𝑘𝑡ℎ integration point. Each matrix

element is then filled with a four-tuple consisting of the target star’s identifying star

number, the trajectory’s initial phase angle, the error 𝑒𝑗𝑖, and the trajectory’s time

to intercept star 𝑖: 𝑡𝑖 where 𝑡𝑖 < 𝑇𝑤. A pictorial representation of the data structure

is provided in Figure 4-5 (left).

The rows of each column of the data structure are then sorted by error so that

the first row of the newly sorted matrix — see Figure 4-5 (right) — provides the ini-

tial phase and error for the closest approaching trajectory to each star in the DRM.

A threshold is defined, and any star whose closest approaching trajectory’s error

lies above this threshold is deemed unavailable in the time window and discarded.

Similarly, trajectories that do not rank first in the available stars sorted data struc-

ture columns are discarded. The final result is a collection of the initial phases on

the refined invariant circle whose corresponding solutions pass the formation LOS

tracings closest to each available target star in the time window. These trajectories
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Trace Across Celestial Sphere
Discarded Trajectory
First Pass Trajectories
Unavailable Star
Available Star

Figure 4-6: First pass search for trajectories for the first time window

(colored) and selected stars (blue) are shown in Figure 4-6 against a backdrop of

gray discarded stars and solutions.

4.1.4 Second Pass Search: Search by Shooting

The second phase: “Search by Shooting” is a fine pass search that drives the error

down further by converging to solutions in between the discrete initial phases of the

refined invariant circle. This is accomplished through a bisection search algorithm,

which is sketched as Algorithm 4.2. For simplicity it is assumed here that the phase

of interest lies between 𝜃2,0,𝑖+1 and 𝜃2,0,𝑖 and that 𝜃2,0,𝑖+1 > 𝜃2,0,𝑖.

Note that in lines six and seven of the algorithm, the original 𝑁 invariant circle

points from the database are rotated by the newly computed phase angle 𝜃2,𝑛𝑒𝑤.

Its corresponding initial condition in Euclidean space is solved through the GMOS

algorithm with fixed torus number 𝜌 (this is similar to the invariant circle refine-

ment procedure of section 4.1.2). The desired state at 𝜃2,𝑛𝑒𝑤 is saved, the rest are
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Algorithm 2 Bisection Search Algorithm Sketch
1: while err>tol && 𝛿𝜃>threshold do
2: 𝛿𝜃 = 1

2
|𝜃2,0,𝑖+1 − 𝜃2,0,𝑖|

3: 𝜃2,𝑛𝑒𝑤 = 𝜃2,0,𝑖 + 𝛿𝜃
4: X = (𝑅−𝜃2,𝑛𝑒𝑤 ⊗ 𝐼6)Xi

5: XjN+i = solveQPTGMOSFixed𝜌(X, 𝜌, ...)
6: Xnew = XjN+i[1 : 6] ◁ save new IC state @ 𝜃2,𝑛𝑒𝑤, discard the rest
7: (𝜃𝑘,1, 𝜃𝑘,2) = formationFlightSimulation(Xnew,Xhalo)
8: 𝑒𝑟𝑟 = min𝑘 ||(𝜃𝑘,1, 𝜃𝑘,2) − (𝜃𝑡𝑠,1, 𝜃𝑡𝑠,2)||2
9: 𝜃2,0,𝑖 = argmin𝜃2(err(𝜃2,0,𝑖+1),err(𝜃2,0,𝑖))

10: 𝜃2,0,𝑖+1 = 𝜃2,𝑛𝑒𝑤
11: end while

discarded. In lines eight and nine, the formation flight simulation is run for the

newly solved initial condition and its error with respect to the desired target star

computed. The phase angle — from the following: (𝜃2,0,𝑖+1, 𝜃2,0,𝑖, 𝜃2,𝑛𝑒𝑤) — corre-

sponding to maximum error is discarded. The process repeats with the remaining

two phase angles until some limit on error or tolerance is reached.

The final QPT solutions found by the second-pass search method are projected

onto the celestial sphere and plotted with the target stars they intercept in Figure

4-7. Thus obtained for a given time window are the subset of available targets

stars from the DRM12, the set of trajectories on the torus that naturally pass the

formation LOS through these stars13, and the time to intercept each star starting

from each initial condition. This result satisfies the objective of the first step of the

Trajectory Design Methodology.

4.2 Ordering Solutions

Section 4.1 demonstrated how to find the set of trajectories on the quasi-periodic

torus that naturally lead to alignment between the formation LOS and the set

12Whic are identified by their star number.
13Which are identified by their initial latitudinal phase on the invariant circle.
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Figure 4-7: Second pass search for trajectories for the first time window

of available target stars within a given time window. In general, each trajectory

provides a path to intercept a single star (this can be observed in Figure 4-7).

Clearly, the external occulter cannot exist on all paths simultaneously and must

transition between the solutions in a manner that maximizes the total number of

stars imaged. Since the quasi-periodic torus is an invariant surface, transitions

connecting natural trajectories must, in general, be forced solutions. However, due

to constraints — such as time and thruster saturation — not all transfers are feasible.

Thus, starting from any star, the occulting spacecraft has a potentially limited choice

of subsequent stars to which it can next transition14.

The objective of the second step of the Trajectory Design Methodology15 is

14Note: transition here means transfer the spacecraft via active control to the subsequent star’s
QPT solution in time for formation/star alignment

15As previously discussed, as well as in section 6.2.2, the TDM is a composition of design
decisions. The methodology outlined in this chapter reflects the objective of balancing fuel costs
and science efficiency, as outlined in the thesis statement, however, it can and should be adapted
to future competing mission objectives. This should be a subject of future work.
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Figure 4-8: Illustration of the tree-based structure of the star ordering and maximal
path search problem.

to select and order the targets stars available in the time window into the set of

all feasible paths, and extract the path that intercepts the maximum number of

stars16.As illustrated in Figure 4-8, this can be formulated as a search problem over

a singly-connected graph17.

4.2.1 Graph Search Method

Figure 4-8 illustrates the tree-based structure of an example star ordering and max-

imal path search problem. The graph is directed, with nodes corresponding to

available stars. Each node is labeled with its identifying star number, and edges
16Note, solution of the boundary value problem that frames the set of transfers between solutions

is covered in section 4.3.1.
17A singly-connected graph has a tree-based structure with no loops.
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indicate feasible transitions between stars and their direction18. For instance, since

star 1 is a parent of star 5, a transition from star 1 to star 5 is possible given the

underlying constraints, however, the reverse is not true. Additionally, since star 2

is a child of every star (and a parent of none), it can be concluded from the graph

that it is a terminal star; that is, no other star’s alignment condition can be reached

from star 2 within the time window. Thus, the longest path from root to leaf on the

graph is the ordered path that yields the maximum number of intercepts. This is

called the maximal path, and in the example given, is shown in gold. It should be

interpreted as the order in which the external occulter should transfer between the

QPT solutions corresponding to the stars (e.g., stars 1, 6, 3, 7, 5, and 2 respectively).

Section 4.3 will cover how to compute these transfer maneuvers.

Feasible transitions are determined through a set of star transit rules that govern

the search process. These can be set by the mission designer to meet a specific

criteria but at minimum must include that transitions can only occur forward in

time. Recall that the first step of the TDM outputs not only QPT solution for a

each available star, but also the time to intercept (𝜏). Thus, a transition from star

i to star j can only occur for time windows less than the period if 𝜏𝑖 > 𝜏𝑗. It is

recommended that constraints are also made that correlate to thruster saturation

levels19.

4.2.2 Solving the Search Problem

The search problem is solved recursively20, taking inspiration from the field of Dy-

namic Programming. The method is outlined below:

1. Determine the moves available (feasible transitions) to each star from the star

18Note, the cost of a transfer is not considered in this step, only that it is feasible.
19To show how the star tranist rules can be applied in a sample mission, see section 5.1.1.
20It is acknowledged that there are many ways to approach a tree-based search. A variety of

methods should be explored and compared in future work.
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transit rules21 — this is equivalent to determining the children to each star in

the graph (Figure 4-8).

2. Recursively score each star based on the number of remaining moves available.

Start with terminal stars — those with no children, and hence no available

available moves — these receive a score of zero.

3. Each subsequent star is scored as the maximum score of its children plus one.

4. Progressively work backwards, scoring the stars from those with smallest num-

ber of children to those with the largest. This ordering process will minimize

the number of cases where a star’s child has not been scored before the parent

is attempted. If this occurs simply push it further down the stack for a later

attempt.

5. The star with the maximum score yields the maximal path. To extract the

path, simply start at that star, select its maximum scoring child, followed

by that child’s maximum scoring child, and so forth until a terminal star is

reached.

6. If multiple paths share a maximum score, select the one with minimum lati-

tudinal phase change between the ordered solutions.

4.2.3 Simple Ordering Example

A simple example of a star ordering problem solved via the graph search method

is provided in this section. For illustrative purposes, the following simplified star

transit rules are applied: 1) transitions can only occur forward in time, and 2) the

maximum latitudinal angle that can change between QPT solutions is limited to 0.8

21Again, refer to section 5.1.1 for the set of star transit rules applied to a sample mission.
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radians: (∆𝜃2,𝑚𝑎𝑥 = 0.8)22.

Figures 4-9-4-11 illustrate the steps of the graph search method applied to the

example problem. Note that though similar, this problem does not produce the

same graph show in Figure 4-8. Figure 4-9 demonstrates determining the moves

available for the first four stars (all others omitted). Figure 4-10 demonstrates

the stars being recursively scored. Finally, Figure 4-11 demonstrates extraction of

the maximal path. Note: two stars shared a maximum score, thus the one with

minimum latitudinal phase change was selected.
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Figure 4-9: Step 1 of the graph search method illustrated.

22Note, this value is chosen for illustrative purposes only and does not represent any physical
significance. In the sample mission analysis, this method of constraining Δ𝜃2,𝑚𝑎𝑥 is eschewed
altogether in favor of a heuristic method that relates transfer conditions to thruster saturation.
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Figure 4-10: Steps 2-4 of the graph search method illustrated.

1. Compute moves available to each star ID

1 2 4 75 63 8

τ = 0 2 37 4 6 1 5

0.1 0.3 0.05 0.95 0.35 0.5 0.7 0.9

1 2 4 75 63 8

0 2 37 4 6 1 5

0.1 0.3 0.05 0.95 0.35 0.5 0.7 0.9

Star 1: {2,5,6,7,8}

θ2,0 /2π =
1 2 4 75 63 8

0 2 37 4 6 1 5

0.1 0.3 0.05 0.95 0.35 0.5 0.7 0.9

1 2 4 75 63 8

0 2 37 4 6 1 5

0.1 0.3 0.05 0.95 0.35 0.5 0.7 0.9

Star 2: ∅

1 2 4 75 63 8

τ = 0 2 37 4 6 1 5

0.1 0.3 0.05 0.95 0.35 0.5 0.7 0.9

1 2 4 75 63 8

0 2 37 4 6 1 5

0.1 0.3 0.05 0.95 0.35 0.5 0.7 0.9

Star 3: {2,5,7}

θ2,0 /2π =
1 2 4 75 63 8

0 2 37 4 6 1 5

0.1 0.3 0.05 0.95 0.35 0.5 0.7 0.9

1 2 4 75 63 8

0 2 37 4 6 1 5

0.1 0.3 0.05 0.95 0.35 0.5 0.7 0.9

Star 4: {2,5,7}

Star 1: {2,5,6,7,8}
Star 2: ∅
Star 3: {2,5,7}
Star 4: {2,5,7}
Star 5: ∅
Star 6: {2,3,4,7,8}
Star 7: {2,5}
Star 8: {2,4,5,7}

2. Recursively score each star based on number of remaining moves available

Star 2: ∅ +0

Star 5: ∅ +0

+0

+0

Star 7:

2

5

+1

+0

+0

Star 4:

2

5

+17
+2

+0

+0

Star 8:

2

5

+17
+3

+0

+0

Star 3:

2

5

+17
+2

4 +2

+0

+3

Star 6:

2

+1

+4 3

7

8

+2

+0

+3

Star 1:

2

+1

+5 5

7

8

+0

6 +4

4 +2

3. Extract maximal path

+0

+2

Star 1:

2

+1

+5 5

7

8

+0

6 +4 1 6 8 4 7

2

5

Δθ=2.2

Δθ=2.25

Figure 4-11: steps 5-6 of the graph search method illustrated.
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4.3 Transferring Between Solutions

The final step of the Trajectory Design Methodology is to connect the solutions

identified on the quasi-periodic torus23 that naturally yield alignment between the

formation and the path of stars sequenced and selected in step two24. This is accom-

plished through a series of transfer maneuvers, that ultimately produce a continu-

ous trajectory through the time window, intercepting all stars in the maximal path.

This section demonstrates a method for computing these transfers25 in a manner

that satisfies the objectives of this thesis.

4.3.1 Minimum Fuel-Optimal Control Problem Formulation

and Solution

Depending on the boundary conditions of the problem, the design space of feasible

transfers between two QPT trajectories can be dense with solutions. Thus, special

care needs to be taken to ensure that those computed meet both the constraints of

the mission and the overarching thesis objective. Recall from section 1.3, the TDM

should maximize the opportunity to exploit natural solutions — in an effort to

reduce fuel consumption — while minimizing sacrifices to science efficiency. These

are oftentimes competing objectives. However, they can be balanced by framing

each transfer as a minimum-fuel optimal control problem. As discussed in this

section, solutions to this class of problems are expected to maximally exploit natural

phenomena. Combining this approach with the star ordering method of section 4.2

ensures that the maximum number of stars is reached under the thruster saturation

limits.

It should again be noted that the TDM is a composition of design choices, and

23Recall, this was accomplished in step one of the TDM: refer to section 4.1 for a detailed
discussion.

24Refer to section 4.2.
25Note, this includes the control and state history for each maneuver.
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many directions could be taken that still satisfy its guiding philosophy. This is

especially true for the transfer problem. The TDM presented in this thesis is just

one set of possible decisions. There is still significant room for innovation in this

domain, it is believed and encouraged that improvements can still be made through

community engagement. See section 6.2 for a discussion on other directions that

were explored to solve the transfer problem as well as recommendations for future

work.

Transfers as Two-Point Boundary Value Problems

The ordered star list produced by step two of the TDM naturally frames each in-

dividual transfer as a two-point boundary value problem with fixed final time. To

demonstrate, consider a transfer between two subsequent stars from the list: star 𝑖

and star 𝑖 + 1. Recall, the maximal path describes the set of stars sorted by their

time of intercept, 𝜏 . Thus, it is known that 𝜏𝑖+1 > 𝜏𝑖. It is assumed that the forma-

tion is aligned with star 𝑖 at initial time 𝑡0 = 𝜏𝑖. Since the observatory is assumed

to operate ballistically in the halo orbit, it will arrive at the formation alignment

condition for star 𝑖 + 1 at final time 𝑡𝑓 = 𝜏𝑖+1. Thus, the external occulter must

do the same — fixing the final time of the transfer maneuver. If x0,𝑖 and x0,𝑖+1

are the initial conditions on the invariant circle leading to formation alignment for

stars 𝑖 and 𝑖+ 1 at their respective intercept times26, then the initial and final state

conditions of the occulter are fixed to x(𝑡0) = 𝜑(𝜏𝑖;x0,𝑖) and x(𝑡𝑓 ) = 𝜑(𝜏𝑖+1;x0,𝑖+1)

respectively, where 𝜑(𝜏 ;x0) is the solution of the flow at time 𝜏 starting from initial

condition x0.

It is important to note that not all two-point boundary value problems with

fixed final time have a solution. For the purposes of this thesis, these cases can be

correlated to the maximum thrust producible by the onboard propulsion and built

in to the star transit rules (refer to section 4.2.1), which evaluate if a transfer is

26These are the QPT solutions found in step one of the TDM.

111



feasible during star ordering. Section 5.1.1 demonstrates how this is done for the

sample mission analyzed.

Problem Formulation and Solution

Feasible transfers have the potential to have multiple solutions. The objective of the

TDM is to solve each two-point boundary value problem in the most fuel efficient

way possible. This is accomplished by solving the constrained minimum-fuel optimal

control problem formulated in equations 4.3 - 4.6.

min
u

𝐽(u) = min
u

∫︁ 𝑡𝑓

𝑡0

[︂ 6∑︁
𝑖=1

𝑢𝑖(𝑡)

]︂
𝑑𝑡 (4.3)

subject to:

ẋ(𝑡) = 𝑓(x,u) (4.4)

0 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥 (4.5)

𝑡0 = 𝜏𝑖, 𝑡𝑓 = 𝜏𝑖+1, x(𝑡0) = 𝜑(𝜏𝑖;x0,𝑖), x(𝑡𝑓 ) = 𝜑(𝜏𝑖+1;x0,𝑖+1) (4.6)

where u is the control input and x is the state. Equation 4.4, where 𝑓(x,u) repre-

sents the vector flow, constrains the problem to the CR3BP phase space. Equation

4.5 enforces thruster saturation limits27. Finally, equation 4.6 fixes the two-point

boundary value conditions described at the start of this section. Both the optimal

control history and resulting trajectory as a function of time are sought as a function

of time.

Certain classes of minimum-fuel optimal control problems with linear constraints

can be solved analytically via Pontryagin’s Minimum Principle. A characteristic

control history (in the absence of singular arcs) typically emerges termed “bang-

27To avoid adding absolute values to the integrand, the number of thrusters was doubled. That is,
instead of having three thrusters for control of motion in the 𝑥, 𝑦, and 𝑧 direction. Two thrusters
are added per axis, one in the positive direction and one in the negative. This appears in the
equations of motion as such: �̇� = 𝑓(𝑥) + 𝑢𝑥,𝑝 − 𝑢𝑥,𝑛. By enforcing that 𝑢𝑖 ≥ 0 and solving, this
becomes an equivalent (and better behaved) problem for a min-fuel cost function
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off-bang,” which refers to its pattern of saturating the thrusters until a natural

trajectory connected to the final state in configuration space is reached, coasting

along the natural solution, and saturating the thrusters in the terminal phase until

the end conditions are met. For a more comprehensive discussion on minimum-fuel

optimal control problems and their classes of solutions refer to Kirk [56].

However, the problem defined above is a nonlinear program, and cannot be

solved analytically. Instead, a dedicated trajectory optimization software package

is required to solve this problem numerically. Though the transfer solutions may

not be as simple as a “bang-off-bang” pattern, it is anticipated that by enforcing

the minimum-fuel objective in the problem formulation, that the solver will exploit

natural trajectories whenever they are available. The commercially available MAT-

LAB software program GPOPS-II, which uses hp-adaptive Gaussian quadrature

collocation methods to solve multi-phase nonlinear optimal control problems, was

selected for its stability, ease of programming, and wide-spread use in both industry

and academia. For more information on the GPOPS-II solution methods, refer to

Patterson and Rao [84].

Interpreting Transfer Solutions via DST

The discussion on minimum-fuel optimal control solvers, and their potential ex-

ploitation of natural trajectories, leads to the question if these solutions are inter-

pretable via the tools of Dynamical Systems Theory. This was the subject of a series

of papers by Lo and Anderson [3–5,68] who investigated low-thrust trajectory design

for Jovian moon tours. The authors concluded, through the use of Poincaré sections,

that invariant manifolds play a significant role in traversing the unstable regions of

the CR3BP phase space and that their optimization, given no prior knowledge of

these natural solutions, converged to these paths. It is believed that a similar study

of the solutions produced in the fuel-efficient transfers between QPT solutions would

be a fruitful endeavor. However, this is left for future work.
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Chapter 5

Sample Mission Analysis

This chapter demonstrates the Trajectory Design Methodology described in Chapter

4 through its application to a sample mission with target stars taken from the

HabEx Interim Design Report [32]. These stars are tabulated with their Hipparcos

number and location on the celestial sphere (right ascension and declination — ICRS

J2000 frame) in Appendix B. Recall, the TDM was designed to be a foundation

— built from the onset in DST — that is both adaptable to competing mission

objectives and a platform from which future work can develop. Quantitative results

on fuel expenditure and ∆𝑉 are provided, however, these largely reflect the TDM

objective selected1 and the assumptions made in the analysis (section 5.1). Thus,

in the spirit of DST, emphasis is placed instead on the qualitative insights gained

through applying this framework to solve the sample mission. In general, this can

be summarized by two major steps. The first is a segmented analysis — documented

in section 5.2 — that produces the local maximal path and trajectory for several

subsequent time windows. The second — demonstrated in section 5.3 — combines

the results of the local analyses to produce the global maximal path across an

1Recall, the TDM was designed to find the maximal path through a given time window. That is,
the path that passes the formation LOS through the maximum number of stars, made continuous
via the set of minimum-fuel, optimal, low-thrust transfers. Refer to sections 5.4 and 6.2.2 for more
realistic mission scenarios that should be considered in the future.
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extended time horizon. In addition, a star targeting analysis — documented in

section 5.4 — is demonstrated, which showcases the adaptability of the TDM and

its ability to contextualize alternative paths against competing objectives. Finally,

section 5.5 considers the capabilities of the TDM framework within the context of

the state-of-the-art.

5.1 Assumptions and Considerations

Several assumptions were made to scope this thesis to a tractable, yet representative,

problem that is both insightful to the greater exoplanet imaging mission and scalable

to increasing complexity. These assumptions are outlined in this section. First,

the trajectory design space for the analysis is currently restricted to a single halo

orbit and quasi-periodic torus for the observatory and external occulter respectively.

Recall, this is inherent to the current TDM formulation (section 4.1). For further

discussion on the implications of this assumption refer to section 6.2.3.

The observatory is assumed to operate in a Sun-Earth L2 northern halo orbit

with an out-of-plane amplitude of 513,166 km and a period of nearly six months.

The projection — in non-dimensional units — of the orbit onto the planes formed

by the axes of the Sun-Earth rotating frame is shown in Figure 5-1. Table 5.1 lists

key parameters characterizing the halo orbit, such as the out-of-plane amplitude,

Z amplitude 0.003430 [nd] = 513,166 km
𝑇𝑝 3.090597 [nd]=0.490854 yrs
𝐽𝑐 3.000758 [nd]
𝜈1 1252.234 [nd]
𝜈2 1.848699 [nd]
𝜈3 2.000000 [nd]

Table 5.1: Observatory SEL2 halo orbit parameters
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Figure 5-1: The observatory SEL2 northern halo orbit, plotted in the Sun-Earth
system’s rotating reference frame – non-dimensional units.

period 𝑇𝑝, Jacobi constant 𝐽𝑐, and its stability indices 𝜈𝑖
2.

As previously noted, the external occulter is assumed to exploit the set of so-

lutions available from a single quasi-periodic torus throughout the duration of the

mission. The QPT was chosen from the constant-period family surrounding the ob-

servatory halo orbit detailed in Table 5.1. The period3 of the family was constrained

to be equivalent to that of the halo orbit. Of those present in the family, the torus

with average separation distance from its parent halo orbit4 equal to 100,000 km —

which is representative of the required separation distance for the formation during

2Refer to section 3.1.3 for a discussion on how to interpret the stability indices.
3That is, the time in which a trajectory on the torus maps back to the same invariant circle

from which it started.
4Evaluated across one period, at three thousand equally space points in time, for all twenty-one

trajectories saved in the database for the torus.
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imaging — was selected. Table 5.1 lists several parameters of the QPT including

the diameter of the invariant circle and torus number, 𝜌.
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Figure 5-2: The external occulter operating QPT, plotted in the Sun-Earth system’s

rotating reference frame – non-dimensional units.

IC diameter 100,000 km

𝑇𝑝 3.090597 [nd]=0.490854 yrs

𝐽𝑐 3.000738 [nd]

𝜌 0.455290 [rad]

Table 5.2: External Occulter QPT parameters
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The TDM demonstrated in this thesis is currently restricted to the problem of

slewing the external occulter to transfer the formation LOS between target stars. An

operational direct exoplanet imaging mission will require the spacecraft to inertially

fix their line-of-sight — maintaining precise separation and lateral displacement

conditions — at each star for the required instrument integration time. This problem

is considered beyond the scope of this thesis and is not included in the sample mission

analysis. Instead, retargeting of the formation LOS to star 𝑖 + 1 in the maximal

path (determined in step two of the TDM) begins immediately upon alignment

with star 𝑖. Since only transfer is considered, the external occulter is assumed to

be a particle of mass 𝑚. Where 𝑚 = 1200 kg, in accordance with the NASA S5

Starshade Report [30]. The observatory is also considered to be a particle, though

this is inconsequential since its state evolves kinematically in its orbit. Actuation

is restricted to the use of low-thrust, ion propulsion engines to minimize fuel mass.

Finally, the analysis is restricted to the Circular Restricted Three Body Problem

phase space; no additional disturbances are included. Despite these assumptions, it

is should be noted that this sample mission analysis is meant to be demonstrative

of a general framework that can, and should be scaled up to more complex solutions

in the future. As the framework evolves, so should the complexity of cases added

to the analysis. For a more detailed discussion on recommendations for future work

that relates to these assumptions, refer to section 6.2.

5.1.1 Star Transit Rules

Recall, the set of feasible retargeting maneuvers available to the external occulter

after each formation/star alignment is determined by the star transit rules of section

4.2.15. Ultimately, the objective is to determine if the two-point boundary value

5Here, a feasible retargeting maneuver refers to the ability — or lack thereof — of the external
occulter to transfer from its current state on the torus to a subsequent QPT trajectory that will
yield formation alignment with a target star at a known future time. From section 4.3, it was
demonstrated that these transfers are the solution of a two-point boundary value problem with
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problem constraining the transfer maneuver is solvable. For the purposes of this

thesis, these cases can be correlated to the maximum thrust producible by the

onboard propulsion.

While ordering the trajectory optimization software to attempt every possible

transfer within the time window would guarantee an answer, this brute force method

would be an inefficient use of computational resources. Instead a two-layer heuristic

method was employed. The premise is as follows: when analyzing the feasibility of

transfers between QPT solutions, thruster saturation will manifest itself as a curve

in (∆𝜃0,2,∆𝑡) space, where ∆𝜃0,2 is the change in initial latitudinal angle between

the two QPT solutions defining the initial and final conditions of the transfer, and

∆𝑡 is the fixed time of transfer. Any transfer between solutions on the torus can be

defined by these two parameters. For a given propulsion system, every transfer of

∆𝜃0,2 will have a corresponding ∆𝑡𝑠𝑎𝑡 at which the thrusters will saturate; yielding

the condition that all transfers commanded within ∆𝑡 < ∆𝑡𝑠𝑎𝑡 are not solvable,

while those constrained to ∆𝑡 > ∆𝑡𝑠𝑎𝑡 are solvable. After evaluating and plotting

several ∆𝜃0,2, these saturation points fit to a curve. In general, solvability is state

dependent, and a given ∆𝜃0,2 will have multiple ∆𝑡𝑠𝑎𝑡; though these values are

found to be tightly grouped. To capture this uncertainty, upper and lower bounds

are determined empirically and placed around the saturation curve. The analysis

then proceeds as follows:

∙ For a given transfer, determine ∆𝜃0,2 and ∆𝑡. If the point (∆𝜃0,2,∆𝑡) is outside

of the bounds and to the left of the saturation curve, then mark the transfer

as unsolvable and discard.

∙ If the point (∆𝜃0,2,∆𝑡) is outside the bounds and to the right of the saturation

curve, then mark the transfer as feasible (solvable).

∙ If the point (∆𝜃0,2,∆𝑡) is anywhere within the bounds of the saturation curve,

fixed final time, which often fail to have a solution.
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Figure 5-3: Saturation curves for NSTAR and NEXT ion propulsion engines.

attempt to solve the two-point boundary value problem and mark the transfer

according to its success or failure.

These feasibility constraints are dependent on the actuators selected, and it is ex-

pected that a more capable propulsion system will shift the curves favorably. This is

precisely what was observed. The analysis was performed for both the NSTAR [103]

and NEXT [83] ion propulsion engines. Their computed saturation curves are shown

together in Figure 5-3. The curve for the NEXT engine (which saturates at 236

mN of thrust) is shifted to the left of the NSTAR engine (with maximum thrust

of 90 mN), corresponding to a greater space of solvable solutions for the former

configuration. Figure 5-4 summarizes the performance for the NSTAR (left) and

NEXT (right) thrusters. The saturation points are shown as inverted triangles, the

quadratic curve fit through those points is shown in black, and the bounds applied

around the curve are shown in red. The curves are reflective across ∆𝜃0,2 = 𝜋,

acknowledging the periodic structure of the invariant circle. Every transfer combi-
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Figure 5-4: TPBVP solutions plotted in (∆𝜃0,2,∆𝑡) space, with saturation curves
shown for NSTAR and NEXT ion propulsion engines.

nation within Time Window 1 (refer to section 5.2) was directly computed by the

GPOPS-II solver and marked as a red dot if the solution did not exist (DNE) or

blue if a solution was found. The discard and save conditions are explicitly marked

on the left image. Thus, as compared to the NSTAR engine, the higher performing

NEXT thruster configuration opens a larger space of transfers that are both solvable

and do not need to be directly computed. All future analysis will assume use of this

engine, and will correspondingly use the heuristic regions illustrated in the right

figure to frame the star transit rules during the star ordering step of the TDM.

Final Selection of the Maximal Path

It was mentioned in section 4.2.2 that multiple paths6 can exist through a given

time window that yield an equivalent number of star alignments. In general, a

trajectory designer can select from these paths in accordance with the mission ob-

jective. For the TDM developed, the path expending the minimum amount of fuel7

6Path here refers to a sequence of stars in a time window to target, and not specifically the
external occulter trajectory that will pass the formation LOS through them.

7Under the two point boundary value problem with fixed final time constraints.
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from those yielding the maximum number of intercepts is desired. This path is

selected — when multiple are encountered — as the one that minimizes the to-

tal change in initial latitudinal phase between its corresponding QPT solutions:

∆𝜃𝑡𝑜𝑡𝑎𝑙2,0,𝑗 = (
∑︀𝑛−1

𝑖=1 |𝜃𝑖+1
2,0,𝑗 − 𝜃𝑖2,0,𝑗|) — where 𝑛 is the total number of star intercepts of

path 𝑗 and 𝜃𝑖2,0 is the latitudinal phase of the QPT solution on the initial invariant

circle that passes the formation LOS through target star star 𝑖. This heuristic is

consistent with the solution parameterization expressed in section 4.1.1, and has

predicting the desired path in all time windows analyzed. Figure 5-5 illustrates the

set of LOS tracings formed by simulating the trajectories that pass the formation

alignment through each of the "maximal paths" available within Time Window 5.

The path of minimum fuel expenditure, costing 13.26 kg, is shown in green. That of

maximum fuel expenditure, costing 17.95 kg is shown in red. All others in between

these extremes are plotted in gray. Thus, by choosing the path that maximizes

exploitation of natural solutions, one can save over 4.5 kg for just this one time

window.

Unavailable Star
Available Star
Max Fuel Path

Min Fuel Path
Intermediate Path

Invariant Circle

mfuel,tot (kg) �Vtot (km/s)

Path 1 17.091 0.585
Path 2 17.809 0.610
Path 3 16.691 0.572
Path 4 16.792 0.575
Path 5 16.313 0.559
Path 6 17.031 0.583
Path 7 13.183 0.452
Path 8 13.901 0.476
Path 9 14.053 0.481
Path 10 14.153 0.485
Path 11 13.675 0.468
Path 12 14.393 0.492

80

Trace Across Celestial Sphere

7

89

1843

39

34

16 40

105

Figure 5-5: Trace of all paths leading through the maximum number of star inter-
cepts for Time Window 5. The path corresponding to minimum fuel expenditure is
marked in green, while the path of maximum fuel expenditure is marked in red.
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5.2 Time Window Analyses: Finding Local Maxi-

mal Paths

This section demonstrates the Trajectory Design Methodology applied to four sub-

sequent time windows, each a quarter period in length (0.123 years). This is a

segmented analysis that individually produces the local maximal path and trajec-

tory for each of these windows. Together, they form a basis for computing the global

maximal path across an extended time horizon (e.g., a full mission). This latter task

is accomplished via the procedure documented in section 5.3. As a note, the analysis

was extended through Time Windows 5 – 10, the results of which are cataloged in

Appendix A.

Beyond characterizing their performance, the objective is to gain qualitative

insight into how the maximal paths selected by the TDM fit into the greater dy-

namical landscape. To that end, three figures are provided for each time window

analyzed. First is the set of LOS tracings simulated from each initial phase on the

refined invariant circle8 (see section 4.1.2), which provides a dense visualization of

the flow across the celestial sphere through each segment of time. Second is a plot

of the subset of tracings, made by the converged QPT solutions found by the search

by shooting method of section 4.1.4. These two plots are effectively the output of

the first step of the TDM, with the latter illustrating the set of pathways passing

through each available target star within the time window. The final plot shows the

tracing made by the simulated trajectory through the maximal path, made continu-

ous by the transfers computed in step three of the TDM. Tables detailing estimates

of the fuel mass and ∆𝑉 for each transfer are included.

8Here, “starting from each initial phase,” refers to the initial condition of the external occulter
— since the observatory starts from the same halo orbit initial condition. These tracings are
produced by simulation.
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Time Window Analyses: Results

Recall from section 4.2 that in order to maximize science efficiency, the TDM first

finds the set of paths that pass the formation LOS through the maximum number

of stars available in the time window. If there are multiple paths passing through

an equal, maximum number of stars, the path of lowest fuel consumption from

that subset is selected. This competing objective directly manifests in the results

obtained. While in general it is observed that the TDM selects local maximal

paths that align well with the dynamical flow, individual transfer maneuvers can be

observed that deviate from this trend to greater maximize the total science yield.

Ultimately, the decision to pursue these additional, costly stars at the expense of

fighting nature (and thus, fuel) will need to be determined by the mission designer9.

It should be noted though that the TDM provides the dynamical context from which

these trade-off decisions can be made. For a deeper discussion and analysis on the

incremental cost of targeting individual stars, refer to section 5.4.

This behavior is best observed in the results of the Time Window 1 analysis,

summarized by Figures 5-6 and 5-7. The local maximal path intercepts six target

stars 10 for a total estimated cost of 10.204 kg of fuel and 0.350 km/s of ∆𝑉 (refer

to section 5.5 for a discussion on how these estimates were computed). An effective

way of contextualizing the results within the dynamical landscape is to observe the

angle at which the maximal path crosses the tracing produced by the natural flow.

Figure 5-6 (top) illustrates a dense view of these tracings (shown again in Figure

5-7 in grey to highlight the maximal path in green). Transfers that minimize this

angle generally align well with natural solutions. On the contrary, segments of the

9It should be noted that the trivial case exists such that if the TDM were designed to strictly
maximize fuel-efficiency, without considering science yield, only one star would be intercepted for
each window for zero cost (since the formation would reach its alignment condition ballistically
and no further transfers would be made). Thus, to make any sort of interesting progress for real
mission, the objectives need to be balanced. For further discussion, refer to section 6.2.2.

10It should be noted that from the perspective of the formation, stars 74 and 75 are close
in latitudinal/longitudinal space, and are thus indistinguishable from each other on the celestial
sphere plots.
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maximal path that pass nearly perpendicular to the flow rely heavily on the onboard

thrusters to fight the natural dynamics at the expense of fuel. This phenomena can

be observed in the cost of transfer between stars 79 to 55. This maneuver accounts

Invariant Circle
Maximal Path

Unavailable Star
Available Star

TW1

Star ID Transfer 79 ! 55 55 ! 74 74 ! 75 75 ! 4 4 ! 32 Total

mfuel (kg) 5.156 2.515 0.022 2.201 0.310 10.204
�V (km/s) 0.177 0.086 0.001 0.075 0.011 0.350

32

Trace Across Celestial Sphere

Trace Across Celestial Sphere

Trace Across Celestial Sphere
Database Solutions
Target Star
Invariant Circle

Discarded Trajectory
Isolated Trajectories
Unavailable Star
Available Star

4

75 74

55
79

Figure 5-6: Time Window 1: tracings starting from the refined invariant circle (top),
and the subset that pass through each available star in the time window (bottom).
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Invariant Circle
Maximal Path

Unavailable Star
Available Star

TW1

Star ID Transfer 79 ! 55 55 ! 74 74 ! 75 75 ! 4 4 ! 32 Total

mfuel (kg) 5.156 2.515 0.022 2.201 0.310 10.204
�V (km/s) 0.177 0.086 0.001 0.075 0.011 0.350

32

Trace Across Celestial Sphere

Trace Across Celestial Sphere

Trace Across Celestial Sphere
Database Solutions
Target Star
Invariant Circle

Discarded Trajectory
Isolated Trajectories
Unavailable Star
Available Star

4

75 74

55
79

Figure 5-7: Time Window 1: path leading to the maximum amount of star intercepts
in the minimum amount of fuel (green). Table summarizing each transfer included.

for 50% of the fuel expenditure across the entire time window. From Figure 5-7, it

is evident this transfer does is in fact run nearly perpendicular to several natural

transit paths. However, following this maneuver, the TDM selects four stars that

are relatively “well-aligned” with the flow and together have a total retargeting

cost equal to the first. In the future, mission designers will need to either weigh

selecting or forgoing these hard-to-reach stars or further tune the TDM objective

to handle these case under the mission constraints. For recommendations on how

these concepts should be approached in future work, refer to section 6.2.2.
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A different scenario can be viewed in the maximal path produced through Time

Window 2 (Figure 5-8 and 5-9). In this region, the TDM converged to a local

maximal path that, in general, aligns well with the natural flow tracings.

TW2 Database Solutions
Target Star
Invariant Circle

Discarded Trajectory
Isolated Trajectories
Unavailable Star
Available Star

Trace Across Celestial Sphere

Trace Across Celestial Sphere

Figure 5-8: Time Window 2: tracings starting from the refined invariant circle (top),
and the subset that pass through each available star in the time window (bottom).
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TW2

Star ID Transfer 83 ! 116 116 ! 92 92 ! 71 71 ! 5 Total

mfuel (kg) 0.811 0.389 2.317 0.749 4.226
�V (km/s) 0.028 0.013 0.079 0.026 0.146

Invariant Circle
Maximal Path

Unavailable Star
Available Star

Database Solutions
Target Star
Invariant Circle

Discarded Trajectory
Isolated Trajectories
Unavailable Star
Available Star

Trace Across Celestial Sphere

Trace Across Celestial Sphere

Trace Across Celestial Sphere

5

71

92

83

116

Figure 5-9: Time Window 2: path leading to the maximum amount of star intercepts
in the minimum amount of fuel (green). Table summarizing each transfer included.

As a result, a total of five stars are intercepted for just over 40% of the fuel cost

of the six intercepts made in Time Window 1. These were performed at a cost of

4.226 kg of fuel and 0.146 km/s of ∆𝑉 .

The plots corresponding to Time Window 3 are provided in Figures 5-10 and

5-11. Only two stars can be targeted within this segment under the current TDM

constraints. The cost is a total of 5.661 kg of fuel and 0.194 km/s of ∆𝑉 . It can be

observed that solutions at the top left of the plot reach an apex in latitude, allowing

for the possibility of retargeting previously intercepted stars. However, it should be

noted that the apex does not imply that stars above this latitude are unreachable.

The formation LOS tracing is dependent on both the natural flow and position of the

rotating frame with respect to the inertial frame. It can be observed in Appendix

A that other windows later in the year provide intercept of stars outside the scope

of these first four.
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TW3 Database Solutions
Target Star
Invariant Circle

Discarded Trajectory
Isolated Trajectories
Unavailable Star
Available Star

Trace Across Celestial Sphere

Trace Across Celestial Sphere

Figure 5-10: Time Window 3: tracings starting from the refined invariant circle

(top), and the subset that pass through each available star in the TW (bottom).
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TW3

Star ID Transfer 97 ! 57 57 ! 3 Total

mfuel (kg) 2.550 3.111 5.661
�V (km/s) 0.087 0.107 0.194

Invariant Circle
Maximal Path

Unavailable Star
Available Star

Database Solutions
Target Star
Invariant Circle

Discarded Trajectory
Isolated Trajectories
Unavailable Star
Available Star

Trace Across Celestial Sphere

Trace Across Celestial Sphere

Trace Across Celestial Sphere

3

97

57

Figure 5-11: Time Window 3: path leading to the maximum amount of star inter-
cepts in the min. amount of fuel (green). Table summarizing each transfer included.

Finally, the results of Time Window 4 are summarized in Figures 5-12 and 5-13.

Here, the TDM again converges to a local maximal path that aligns well with the

natural flow, intercepting five target stars for a total cost of 4.334 kg of fuel and 0.148

km/s of ∆𝑉 . Though Time Window 4 completes an orbital period of revolution,

tracings do not repeat themselves until the rotating reference frame completes a

revolution about the inertial, celestial frame. For the Sun-Earth system this takes

nearly a year, and can be observed starting in Time Window 9.
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Database Solutions
Target Star
Invariant Circle

Discarded Trajectory
Isolated Trajectories
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Figure 5-12: Time Window 4: tracings starting from the refined invariant circle
(top), and the subset that pass through each available star in the TW (bottom).
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TW4

Star ID Transfer 35 ! 33 33 ! 22 22 ! 41 41 ! 113 Total

mfuel (kg) 0.103 0.435 1.071 2.725 4.334
�V (km/s) 0.149 0.015 0.037 0.093 0.148

Trace Across Celestial Sphere
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Trace Across Celestial Sphere
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Available Star
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Available Star

35

33

22

41

113

Figure 5-13: Time Window 4:path leading to the maximum amount of star intercepts
in the min. amount of fuel (green). Table summarizing each transfer included.

5.3 Combining Time Windows: Finding Global Max-

imal Paths

The ultimate objective of the sample mission analysis is to produce the global max-

imal path across an extended time horizon — such as a full period, year, or mission.

This is accomplished by combining the local results of the segmented time window

analyses demonstrated in section 5.2. The procedure outlining this task is docu-

mented below11.

First, it is assumed that all steps of the TDM for 𝑁 subsequent time windows

have been precomputed and their results stored. The objective is to combine the

11To note, both the individual time window and combined time window analyses were completed
on the order of hours using a laptop computer equipped with a 2.8 GHz Quad-Core Intel Core i7
processor and 16GB of memory.
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data from the 𝑁 segments into a single, continuous time window and produce the

global maximal path12. This is done in a backwards fashion.

1. Determine the set of feasible transfers between the stars of Time Window 𝑁−1

and Time Window 𝑁 . This effectively stitches the time windows together by

providing the set of all possible connecting trajectories.

2. Recursively re-score the stars of both time windows via the star transit rules

outlined in section 5.1.1, starting from the terminal stars of Time Window

𝑁 , working down to the root stars of Time Window 𝑁 − 1. (At this point

the data from these two time windows are effectively combined. The maximal

path through Time Windows 𝑁 − 1 and 𝑁 can be extracted or the analysis

continued through subsequent windows.)

3. To connect Time Window 𝑁−2, determine the set of feasible transfers between

the available stars of Time Windows 𝑁 − 2 and 𝑁 − 1 only. It is assumed

that Time Window 𝑁 is far enough in the future that skipping Time Window

𝑁 − 1 and transferring directly to the stars of Time Window 𝑁 is always

suboptimal, with respect to the objective of maximizing the total number of

star alignments13.

4. Recursively re-score all stars within the analyzed time windows (𝑁−2 through

𝑁). This reflects the objective that the maximal path through the extended

time horizon is sought.

5. Continue the process until Time Window 1 is connected.

12As with the local analyses, maximal path refers to the path that intercepts the formation
LOS with the maximum number of stars in the extended time horizon. If multiple exist, the
minimum-fuel path is selected.

13Part of the computational savings made by breaking an extended time window into smaller
segments are realized in this step. Computing the set of feasible transfers between available stars
is the most expensive step of the TDM. By restricting these calculations to the stars within a time
window and adjacent time windows, needless complexity is discarded.
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The constraint is added that the formation cannot retarget the same star consec-

utively. To clarify, the external occulter is restricted from slewing from alignment

with star 𝑖 to alignment with star 𝑖. There has to be at least one other unique

star imaged in between revisits. This case can appear if a given star is available to

two subsequent time windows. As a final note, it is believed that the methodology

described would apply well to a receding time horizon formulation — as inspired by

the field of Model Predictive Control. Instead of the batch method described, the

time window analysis would be resolved at the end of each star alignment, and the

maximal path recomputed to the end of the segment. However, this study is left for

future work. For further discussion refer to section 6.2.

Combining Time Windows: Results

To demonstrate the extended time horizon analysis, the global maximal path through

Time Windows 1 – 2 and Time Windows 1 – 4 were computed. The results are sum-

marized in Figures 5-14 and 5-15 respectively. Similar to the segmented analysis,

fuel consumption and ∆𝑉 costs are provided, however, emphasis is placed on the

qualitative insight gained into how the TDM selects stars from the local path to

produce the global trajectory.

First, it should be noted that the global maximal path is not simply the su-

perposition of the local maximal paths for each window stitched together. Instead,

the algorithm reoptimizes for the global solution given all available data. This can

be observed in Figure 5-14, which illustrates the global maximal path across the

first two time windows. While the algorithm incorporates the first six stars from

the maximal path of Time Window 1, the transfer between stars 32 and 83 that

would graft-in the local solution of Time Window 2 is not feasible under the given

constraints. This limits the total number of stars that can be targeted to eight total

intercepts, which is less than what the individual window analyses would suggest.
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TW1+2

Star ID Transfer 79 ! 55 55 ! 74 74 ! 75 75 ! 4 4 ! 32 32 ! 71 71 ! 5 Total

mfuel (kg) 5.155 2.515 0.022 0.309 1.809 1.805 0.749 12.762
�V (km/s) 0.177 0.082 0.001 0.011 0.011 0.062 0.026 0.437

Trace Across Celestial Sphere Invariant Circle
Maximal Path

Unavailable Star
Available Star

79

5

71

32

4

74
75

55

Figure 5-14: Time Windows 1 & 2 combined: Path leading to the max amount of
star intercepts in the min amount of fuel. Table summarizing each transfer included.

This is performed at a cost of 12.762 kg of fuel and 0.437 km/s of ∆𝑉 14.

Similar behavior can be observed in the global maximal path produced through

Time Windows 1 – 4 (refer to Figure 5-15), where thirteen total stars are intercepted.

In this extended time horizon, the algorithm incorporated all stars from the local

maximal path for both Time Windows 1 and 4. However, only the last two stars

of the local maximal path from Time Window 2 were included, none from that of

Time Window 3 made the list. Instead, one star that was previously suboptimal

(star 118) was selected in their place. This is achieved at a cost of 24.333 kg and

1.480 km/s of ∆𝑉 .

As a final note, the combined maximal path through Time Windows 1 – 10 (just

over 1.2 years) is provided in tabular form at the end of Appendix A. Thirty-seven

total star intercepts were achieved costing a total of 110.277 kg of fuel and 3.777

14As discussed in section 5.2, the performance of the maximal path directly reflects the TDM
objective. Since it seeks first to maximize science yield, expensive maneuvers that deviate from the
natural flow can occur. The objective can and should be adapted to meet future mission objectives.
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Star ID Transfer 79 ! 55 55 ! 74 74 ! 75 75 ! 4 4 ! 32 32 ! 71 71 ! 5 Total

mfuel (kg) 5.180 2.557 0.022 2.205 0.307 1.780 0.692
�V (km/s) 0.177 0.088 0.001 0.076 0.105 0.610 0.024

Star ID Transfer 5 ! 118 118 ! 35 35 ! 33 33 ! 22 22 ! 41 41 ! 113

mfuel (kg) 3.376 3.935 0.074 0.424 1.012 2.769 24.333
�V (km/s) 0.116 0.135 0.003 0.015 0.035 0.095 0.0833

Unavailable Star
Available Star
Max Fuel Path

Min Fuel Path
Intermediate Path

Invariant Circle

Invariant Circle
Maximal Path

Unavailable Star
Available Star

55

7475

4

32

71

5

35

33

22

41

79

113

118

Figure 5-15: Time Windows 1-4 combined: Path leading to the max amount of star
intercepts in the min amount of fuel. Table summarizing each transfer included.

km/s of ∆𝑉 . It should be noted that the final maximal path through the ten time

windows contains several star revisits. This reflects the objective of finding the

trajectory that maximizes the number of star alignments, agnostic to their identity,

in the minimum amount of fuel. In reality, science — not engineering — will drive

this decision. The complexities of prioritizing certain stars and specific revisits (over

fuel or total number of alignments) will need to be integrated into the framework

to adapt to the needs of future missions. A cursory examination of this problem is

provided in section 5.4.

5.4 Adapting the TDM: Targeting Select Stars

It was demonstrated in section 5.3 how to combine the results from subsequent

time window analyses to produce the global maximal path across an extended time
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horizon — such as a full period, year, or mission. It should be noted that this result

is comprehensive, and effectively solves the observatory/external occulter formation

flying retargeting problem as scoped for this thesis15. Referring to the problem

statement introduced in section 1.3, a Trajectory Design Methodology was sought

that maximizes exploitation of natural solutions to retarget the formation LOS,

while minimizing sacrifice to science efficiency. It is argued that the framework

developed — by constraining formation alignments to occur along the surface of a

quasi-periodic torus, extracting the maximum sequence of stars that can be feasibly

retargeted within a time window, and connecting the natural solutions through

optimized, minimum-fuel transfers — presents a novel approach that satisfies this

objective under the aforementioned assumptions.

Despite this, in no way is it claimed that the maximal path produced is the

globally optimal solution. A host of directions can be taken to further develop this

work, stripping back assumptions to add realism and complexity, pursuing more

topological structures of the CR3BP design space, and adapting to competing mis-

sion objectives. Most of these considerations are left — and encouraged — for future

work (refer to section 6.2). However, one key scenario is highlighted and considered

necessary for examination.

The method in which the demonstrated TDM selects and orders stars into paths

is agnostic to their identity. Though this feature is consistent with objective of this

thesis, a more realistic mission scenario would prioritize targeting certain stars over

others, potentially at the cost of total fuel consumed and/or raw number of inter-

cepts16. Thus, tallying multiple revisits to the same star — as was observed in the

combined maximal path for Time Windows 1 – 10 — would likely be an undesirable

outcome in this case. Ultimately, it is advocated that a balanced approach should

15Refer to section 5.1 for a discussion on how this scope is defined.
16A realistic scenario could also be that if a subset of target stars are prioritized — and a low

raw number of intercepts is an acceptable outcome — then fuel could be saved by reducing the
total number of retargeting maneuvers overall.
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be taken. One way this could be accomplished is by enforcing alignment with the

desired subset in step two of the TDM while still adhering to the natural flow of the

phase space by retaining steps one and three. The result will be the desired exploita-

tion of natural solutions while capturing as many lower-priority stars as possible in

between the targeted subset.

The TDM framework was designed to be adaptable to all of these scenarios. A

cursory examination of this problem is provided, demonstrating the trade-off in fuel

for targeting specific stars — and hence selecting alternative trajectories — instead

of following the maximal path. This is performed first for a single time window, and

then extended to multiple.

5.4.1 Targeting Select Stars: Single Time Window

This section analyzes the cost of targeting stars outside the maximal path. To start,

only a single time window is considered — Time Window 1 (assumed a representative

case). In the spirit of the maximal path formulation, the case of multiple windows

— demonstrated in the following subsection — is analyzed by combining the results

from individual segments.

The objective is to contextualize the performance of the maximal path — in

both number of stars intercepted and fuel cost — with respect to all alternative

paths. The first step in accomplishing this task is to compute all possible paths

passing through the 44 target stars available in the time window. Recall, step two

of the TDM formulates the time windowed star ordering problem as a search over

a directed, singly-connected graph 4.2.1. To create the tree-based structure, the set

of all feasible retargeting maneuvers from each star is determined and stored. In

the graph, stars are represented by nodes, and edges connect parent stars to their

children in the direction of feasible transition. Just as the maximal path can be

determined recursively, the set of all possible paths can be determined starting at

the terminal stars (graph leaves) and working backwards until all roots are reached.
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In total, 1267 paths were determined to traverse the time window 17, each starting

from the trace of the initial invariant circle and ending at a terminal star. The total

fuel mass expended (cost) for the external occulter to complete all available paths

was computed via the minimum-fuel optimization formulation formulated in section

4.3. Figure 5-16 presents a plot of each path (numbered 1 through 1267) versus total

fuel mass consumed in kilograms. The paths are grouped and colored according to

the total number of target stars they intercept.

Only two 6-star paths exist. The maximal path — costing 10.2 kg of fuel as

documented in section 5.2 — and path 1267, costing 13.9 kg of fuel. The two paths

vary only in their root node. Three star paths make up the majority of the total

number. Interestingly, the path of maximum fuel consumption is a three star path

17One-star paths are considered trivial and omitted for non-terminal stars, since such a path
starts on its corresponding QPT solutions and reaches the alignment condition ballistically.
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Figure 5-16: Plot of all paths available within Time Window 1 and their correspond-
ing cost in fuel mass (kg).
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Path Number Star ID Transfer 𝑚𝑓𝑢𝑒𝑙 (kg)
50 2 → 99 18.713
91 66 → 111 7.305
399 36 → 14 → 35 12.304
537 113 → 14 → 35 1.515
753 79 → 45 → 99 27.861
877 25 → 26 → 23 → 91 1.342
1026 52 → 74 → 75 → 32 9.170
1228 79 → 55 → 75 → 4 → 32 10.257
1267 41 → 55 → 74 → 75 → 4 → 32 13.908

Table 5.3: Data corresponding to sampled paths from Figure 5-16.

(consuming 27.9 kg). This is due to the fact that having less stars to intercept

would allow for more time for longer, and more expensive transfers. The mean fuel

consumption for each path type is provided in the top left corner of the figure. It

can be seen that for the high density paths (i.e., 3, 4, and 5 star paths), the mean

fuel consumption varies on the order of a kilogram or less. Even the 6 star path

mean (though only two data points exist) is less than two kilograms more than that

of the 5 star paths. As suspected, this seems to indicate that fuel consumption is

connected more to the specific stars that are ordered and not the total number stars

that are ordered in itself. Nine representative paths (close to the mean and outliers)

were sampled, their location marked on the figure, and their star IDs and consumed

fuel provided in Table 5.4.1.

Figure 5-17 (top) provides a stacked histogram, illustrating the total number of

paths passing through each target star, by path type. The bottom figure presents

a box plot outlining the mean and range of fuel consumed for the paths passing

through each star. From the histogram, it can be deduced which stars are reachable

by which type of path. For instance stars 51, 33, 61, and 45 — among others —

cannot be reached by anything greater than a 3 star path. Thus, if one of these is

prioritized, it would be at the expense of total number of intercepts. As previously

discussed, this does not directly translate to low fuel consumption. While the paths
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intercepting stars 33 and 61 have a mean below 5kg and maximums below 10kg,

the paths passing through star 45 have a mean of approximately 15kg with a range

varying from nearly 1 kg to 27 kg.
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Figure 5-17: Histogram of total number of paths passing through each available star
in Time Window 1 (top) and Box plot of the fuel consumed for the paths passing
through each available star. (bottom)
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must go through star 30
100 possible paths

Invariant Circle

Min. Fuel Path

Unavailable Star
Available Star

Max. Fuel Path
Alternative Path

Star ID Transfer mfuel (kg)
min. fuel path 79 ! 55 ! 30 ! 9 ! 73 7.769
max. fuel path 41 ! 55 ! 30 ! 115 15.478

Trace Across Celestial Sphere

Invariant Circle

Min. Fuel Path

Unavailable Star
Available Star

Max. Fuel Path
Alternative Path

41

79

9

30
55

73

115

Figure 5-18: Plot of all paths through TW 1 passing through star 30.

Once all possible paths through the time window are found, it is trivial to search

through the set to find those passing through a specific star. Figure 5-18 illustrates

the formation LOS tracings on the celestial sphere for all paths passing through

star 3018. From that subset, the maximal path can be determined. That is, the

minimum-fuel trajectory that intercepts the maximum number of stars, including

star 30. This is a 5 star path costing 7.769 kg of fuel (∆𝑉 = 0.191 km/s). Thus,

the trade-off for choosing to pass through star 30 is one less star intercept than the

overall time window maximal path. However, approximately 2.5 kg are saved. The

overall most fuel expensive path passing through star 30 (15.478 kg of fuel and 0.387

km/s of ∆𝑉 ) is also provided.

The paths passing through two or more select stars can be found as the inter-

section of the subsets of the paths passing through each star. If the intersection is

18There are 110 total, many are fractions of others since theoretically, a path can start from any
star’s QPT solution and transit ballistically to its alignment condition.
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must go through star 30 & 104

Invariant Circle

Min. Fuel Path

Unavailable Star
Available Star

Max. Fuel Path
Alternative Path

Star ID Transfer mfuel (kg)
min. fuel path 79 ! 55 ! 30 ! 104 7.245
max. fuel path 41 ! 55 ! 30 ! 104 10.882

Trace Across Celestial Sphere

41

79

30
55

104

Figure 5-19: Plot of all paths through TW 1 passing through stars 30 & 104.

empty, an infeasible transfer exists between two or more of the stars. Thus, com-

pletion will require multiple time windows. Figure 5-19 demonstrates the set of all

paths through Time Window 1 passing through both stars 30 and 104. Ten of these

exist, of which the maximal path passes through four stars (including 30 and 104)

and costs 7.245 kg of fuel (∆𝑉 =0.179 km/s).

5.4.2 Targeting Select Stars: Multiple Time Windows

The analysis can be extended to include multiple time windows. In the same spirit

as finding the combined maximal path across an extended time horizon, the time

windows can be solved individually and their results combined. As an example, the

maximal path passing through stars 30, 18, 118, and 8 was computed (Figure 5-20).

These stars appear in Time Windows 1, 2, 3, and 4 respectively. Each time window

was solved independently, as demonstrated in the previous subsection, and their
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resulting paths joined via knowledge of feasible transitions between them19. A total

of 6000 paths were found. Sixteen of these were found to pass through the maximum

number of twelve stars. The minimum fuel path of these was calculated to cost 47.6

kg (∆𝑉 =1.03 km/s) of fuel and the maximum 54.14 kg (∆𝑉 =1.30 km/s). Note,

this is double the cost of the overall maximal path computed in section 5.3 for Time

Windows 1 – 4.

Solving the target selection problem by computing all available paths and finding

their intersection quickly becomes intractable when extending the analysis beyond

six time windows. A recursive scoring method that constrains the search through

the stars of interest should be developed. However, this is left for future work.

19Recall, this was obtained in section 5.3min fuel 47.577, 54.142
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Figure 5-20: Time Windows 1-4: Plot of minimum fuel and maximum fuel maximal
paths, passing through stars 30, 18, 118, and 8.
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5.5 Performance Considerations

The objective of this section is to contextualize the performance of the TDM to

other observatory/external occulter formation flight methodologies available in the

literature. Prior to this, a brief summary of the methods employed to estimate the

costs of the transfer maneuvers in both fuel mass and ∆𝑉 is provided.

Estimating Expended Fuel Mass and ∆𝑉

The fuel mass consumed by each transfer maneuver is estimated throughout the

sample mission analysis via the Tsiolkovsky Rocket Equation (5.1).

𝑚𝑓𝑢𝑒𝑙 =

∫︁ 𝑡𝑓

0

�̇�𝑓𝑢𝑒𝑙(𝑡)𝑑𝑡 =

∫︁ 𝑡𝑓

0

𝑇 (𝑡)

𝐼𝑠𝑝𝑔0
𝑑𝑡 ≈

𝑁∑︁
𝑘=0

𝑇𝑘

𝐼𝑠𝑝𝑔0
∆𝑡𝑘 (5.1)

where 𝑇𝑘 is the commanded thrust at time step 𝑘 of the transfer maneuver (out-

putted by the trajectory optimization software package), 𝐼𝑠𝑝 is the specific impulse

of the spacecraft propulsion system, and 𝑔0 is the acceleration due to gravity (on

Earth). The transfer ∆𝑉 can be computed in a similar manner, as shown in Equa-

tion 5.2.

∆𝑉 ≈
𝑁∑︁
𝑘=0

|𝑇𝑘|
𝑚𝑠/𝑐

∆𝑡𝑘 (5.2)

where 𝑚𝑠/𝑐 is the mass of the spacecraft.

5.5.1 Contextualizing the Methodology

In this section the capabilities of the TDM framework are considered within the con-

text of the state-of-the-art. First, it is important to acknowledge the large breadth

of technical challenges that make up a fully scoped observatory/external occulter,

exoplanet imaging mission. In consequence, all studies have made a series of un-

derlying assumptions, in order to frame a research problem that is both tractable
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for study within a reasonable amount of time, and impactful. Often times these as-

sumptions only partially overlap, and more importantly, focus on different technical

challenges. Thus, the objective of this section is not to simply exhibit a competing

approach to designing an observatory/external occulter formation flying mission,

but to provide context to how pieces — that is, independent contributions such as

this thesis — can potentially fit into a greater whole in the future.

As far as the author is aware, Kolemen [58, 59] was the first to consider the

retargeting observatory/external occulter formation flying problem from the context

of star ordering and mission design. This analysis assumed operation in the Sun-

Earth L2 environment, with dynamics governed by the CR3BP equations of motion

and the observatory operating from a halo orbit. The occulter motion was not

designed to be constrained or influenced by any specific class of motion20. The

star ordering problem was solved by an exhaustive search method. That is, all

combinations of the minimum-fuel optimal control problem to transfer the external

occulter between the alignment conditions of all stars in the DRM were solved. The

path through these transfers was then ordered and solved as a Traveling Salesman

Problem. It should be noted that neither knowledge of dynamical structures, nor the

natural flow of the phase space/solutions were explicitly exploited or included in the

design. The author achieved 150 observations at a 50,000 km separation distance

for a total of 3.6 km/s of ∆𝑉 and 80 kg of fuel, using low-thrust propulsion [59].

However, the external occulter was modeled identically to the SMART-1 spacecraft,

which has a dry mass of 267 kg. This is almost a fifth of the value used in this

analysis. When matching the mass and thruster constraints to those of the SMART-

1 analysis, it was found that the estimated fuel consumed to traverse the maximal

path for Time Window 1 dropped by a fifth as well (to 2.2 kg), extrapolating this

scaling factor to the combined Time Windows 1 – 10 result suggests a comparable 22

kg of fuel consumed in about 1.2 years with 37 stars imaged. It is critical to note,

20The author did consider the possibility of operating from a QPT [58] but did not implement.
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however that all analysis performed in this thesis exploited a torus with average

separation distance of 100,000km. A fair comparison would require this value to be

equal among methodologies. This is left for future work.

Soto [100–102] continued Kolemen’s work, specifically tackling the complex imag-

ing constraints of a direct-imaging, formation flying mission. The environmental

assumptions are the same as Kolemen’s, except that solar radiation pressure (SRP)

is included in the dynamical model. However, only impulsive maneuvers via bi-

propellant thrusters (𝐼𝑠𝑝 = 308s) were considered. Furthermore, the separation dis-

tance was restricted to approximately 37,000 km over a three year mission. While

twenty-nine observations were made, a total of 2.094 km/s of ∆𝑉 was accumulated

during this time, costing 1750 kg of fuel. Again, the contribution made by Soto in

handling imaging constraints should be noted (e.g., imgaging keep-out zones due to

instrument blinding by celestial bodies/reflectance, integration time, life-time con-

straints, observation blocks due to shared instrument time, etc.) since they are crit-

ical for considering a fully-scoped mission. As discussed in section 6.2.1, integrating

these considerations into the TDM should be of high-priority moving forward.

Finally, Folta et al. [31], Leitner [65], and Webster et al. [112] each examined

mission scenarios with a fixed DRM — implying that star ordering was constrained.

Thus, only point-to-point transferring costs for the external occulter across the

sequence was considered, and a design/optimization methodology/framework was

not developed. Fuel costs for cases solved using impulsive maneuvers range on the

order of thousands of kilograms, and a separation distance of 72,000 km and a 1000

kg external occulter assumed21. However, Folta also solved several DRMs using

low thrust propulsion at a separation distance of 72,000 km, reducing the total fuel

consumed to a level near 200 kg. It is unclear how many stars were targeted in the

study, their angular separations, timing constraints, or maximum thrust available

21Note: Webster [112] simulated a separation distance of 36,000 km and thus reports lower
numbers.
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(although an specific impulse of 4100s was used).

This thesis, having focused on designing the retargeting maneuvers of an ob-

servatory/external occulter formation flying mission, also builds on the work of

Kolemen [59]. By rooting the Trajectory Design Methodology in Dynamical Sys-

tems Theory, the design process is informed by the natural flow and structure of the

phase space, allowing for the efficient search of solutions aligning with this phenom-

ena, as opposed to exhaustive search methods. As demonstrated, by understanding

how these paths pass through the phase space, trajectories can quickly be adapted

to included specific stars of interest. This methodology, combined with the database

developed, opens an immense design space of natural solutions including continuous

families of quasi-periodic tori and periodic orbits that can continue to be developed

in potentially limitless ways (refer to section 6.2). However, the subject of this re-

search would benefit greatly from combining the contributions of this thesis with

Soto’s work [100], since handling the imaging constraints would be the next step to

further ground this retargeting methodology to real-life mission constraints. This

task is left to future work.

149



150



Chapter 6

Conclusion

This thesis investigates the use of natural solutions to frame and solve the formation

retargeting maneuvers of an observatory/external occulter exoplanet imaging mis-

sion. By illuminating the classes of natural motion that can be exploited, fuel costs

can be minimized1, but more importantly, the set of all available paths contextual-

ized within the dynamical landscape. This provides a baseline from which solutions

can be interpreted and mission design trade-offs analyzed. To this end, a Trajectory

Design Methodology — introduced in Chapter 4 — was developed that leverages the

natural periodic and quasi-periodic motion of the CR3BP phase space’s center man-

ifold to guide the spacecrafts’ motion. The TDM determines the fuel-optimal2 path

that passes the formation LOS through the maximum number of stars within an ex-

tended time window. Since the framework is dynamically informed, the incremental

costs of deviating from this maximal path, to achieve a specific science objective,

can be readily considered. This was accomplished by rooting the Trajectory Design

Method within Dynamical Systems Theory perspective — which provides the lens

from which the qualitative structure of the phase space can be analyzed. Its steps

1As previously stated, this is ultimately dependent on the mission objective: which should
be reflected in the TDM formulation. What the TDM provides is the flexibility to select, plan,
contextualize, and evaluate these low fuel paths with respect to their effect on science yield.

2That is, under the given two-point boundary value problem with fixed final time constraints.
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are summarized below.

Trajectory Design Methodology Summary

1. Divide: the problem into a series of finite time horizons — only search for

paths up to a specified point in the future (e.g., quarter period).

2. Find: trajectories that pass the formation LOS through a maximum number

of stars available in this time horizon: Trajectories lie on the same torus

surrounding the operational halo orbit of the observatory and are uniquely

defined by their initial phase on the invariant circle. The torus is defined by a

constant longitudinal period equal to the halo orbit.

i Run a first pass search: via a sorted tuple data structure containing the

stars and initial 21 phase solutions provided by the database. Obtain the

closest database entry to each star of interest.

ii Refine: the initial phases by bisection and GMOS solver to converge to

solutions in-between the discrete database entries.

3. Order: the solutions by time of intercept (equivalent to longitudinal angle)

and initial latitudinal phase using a tree-based search inspired by dynamic

programming. Find the maximal feasible pass through of stars with minimal

∆𝜃2,0.

4. Transfer: between solutions via a minimum-fuel optimal control solver using

low-thrust propulsion. Frame the problem as a sequence of two-point boundary

value problems with fixed final time.

5. Repeat: for the next time window

The classes of natural periodic orbits and quasi-periodic tori exploited by the

TDM were made readily available for search and analysis by the database cataloged
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in Chapter 3. Included are descriptions of the differential corrector methods used

to converge solutions in the dynamically sensitive Circular Restricted Three-Body

Problem Phase space, as well as details on the design of the software infrastruc-

ture developed in the Julia language. In Chapter 5, The TDM is demonstrated

on a sample mission analysis, with target stars taken from the HabEx study. A

summary of the final contributions made by this thesis is provided in section 6.1.

Recommendations for future work are provided in section 6.2.

6.1 Contributions

A summary of the contributions made by this thesis is provided in this section.

∙ A trajectory design methodology for the retargeting maneuvers of an obser-

vatory/external occulter formation flying mission operating at Sun-Earth L2,

rooted in Dynamical Systems Theory, that exploits the natural motion pro-

vided by the center manifold of the Circular Restricted Three-Body Problem

phase space. This includes:

– A search method to find the set of natural trajectories on the quasi-

periodic torus (for the external occulter) that naturally pass the forma-

tion line-of-sight through alignment with all reachable stars in a given

time window

– A method to determine and order the transfers between natural solutions

on the torus that yields the maximum number of intercept between the

formation line-of-sight and the set of available target stars within a given

time window.

– A method to connect the natural solutions on the torus — through

minimum-fuel, low-thrust transfers — into a continuous trajectory, pass-

ing the formation line-of-sight through the maximum number of target
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stars in a given time window

– A method for combining the results of individual time window analyses

into a global solution across an extended time horizon.

∙ A queryable database of three-dimensional periodic and quasi-periodic orbits

existing in the CR3BP phase space. This includes a large infrastructure of

solvers and tools for mission designers to further develop and interact with

the database — including rapid retrieval of the set of orbits that achieve

a given mission objective. The database includes halo orbits, surrounding

quasi-periodic tori, butterfly orbits, near-rectilinear halo orbits, and natural

connections between select family members.

6.2 Future Work and Recommendations

The Trajectory Design Methodology was designed to be a foundation — built from

the onset in DST — that is both adaptable to competing mission objectives and

a platform from which future work can develop. Demonstrated is a general frame-

work, guided by the philosophy that complex trajectory design should be rooted

in understanding of the underlying dynamical landscape and that natural solutions

should be exploited whenever possible. However, in no way is this work considered

complete. A host of nearly limitless directions can be taken to both search for global

fuel-optimal solutions and understand the formation retargeting problem within the

context of Dynamical Systems Theory. The recommendations for future work gen-

erally fall within three categories. The first is in stripping back assumptions and

adding additional realism/complexity to the trajectory design process. The second

expands on the design decisions made to construct the TDM. The final category is

in expanding the scope of the trajectory design space. Several points of interest are

detailed below.
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6.2.1 Eliminating Assumptions and Adding Complexity

As indicated in section 5.1, several assumptions were made to scope the thesis to

a tractable, yet representative, problem that is both insightful to the greater exo-

planet imaging mission and scalable to increasing complexity. It is believed that the

inherit adaptability of the Trajectory Design Methodology satisfies this objective.

In that regard, the recommendations for future work presented are considered as

additions/developments to the foundation developed in this thesis and not in any

way negating the progress made.

The first set of assumptions considered pertain to the dynamical model. This

thesis considered only the Circular Restricted Three-Body Problem (CR3BP) phase

space for the analysis and construction of trajectories. Though qualitatively, the

structure of solutions developed are expected to continue to more complex mod-

els [8], a full mission analysis will need to account for additional environmental

disturbances. Chief of these will be solar radiation pressure (SRP). The external

occulter in many ways resembles a solar sail. Thus, in general, additional fuel will

need to be consumed to counteract its effects. Adding SRP to the CR3BP model is

as straightforward as computing the expected acceleration from a model and adding

it to the vector flow (equations 2.8)-2.10 3. A separate study on the specific im-

pact of SRP on formation retargeting and fuel costs would be insightful, as well as

considerations of how — if at all — it can be leveraged in design. Ultimately, the

objective would be to move completely beyond the CR3BP phase space into a full

ephemeris model. Solutions generated can be converted from the lower to higher

fidelity model with the assistance of a two-level differential correction process —

which breaks trajectories into multiple segments and corrects the set along a series

of patch points [39,61]. Finally, a full six-degree of freedom model (position and atti-

tude) should to be developed for each of the spacecraft, and the torque requirements

for pointing (as opposed to just positional alignment) computed.
3This was done by Soto [39] in his observatory/external occulter formation flight study.
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The second set of assumptions concern the imaging constraints of the greater

mission. Only formation retargeting — i.e., realignment of the spacecraft LOS from

one target star to the next — was considered in this thesis. Realistic constraints for

a full mission are much more complex. The primary two that should be added to the

analysis are keep-out zones (i.e., accounting for sun, earth, or other bright celestial

body exclusion angles) and fixing the formation LOS during imaging. Currently, it

is assumed that thruster saturation and timing alone determine the set of reachable

stars within a time window. In reality, imaging constraints — such as blinding by

celestial objects, including the sun, and reflected light from the external occulter —

often determine the eligibility of a target. Given a model or set of logical conditions,

these constraints can naturally be included during the star ordering step of the TDM.

Finally, the spacecraft need to not only pass their LOS through each target star (as

is currently assumed), but fix it in inertial space during imaging for the required

integration time [55]. Furthermore, this needs to be accomplished while meeting

precise separation and lateral displacement conditions between the spacecraft4. One

avenue that could be considered to assist with this problem is searching for — and

potentially aligning imaging at — points in the phase space where the formation

have non-zero velocity in the rotating frame yet pass through zero velocity in the

inertial frame. As previously noted, Soto [100] focused his analysis on handling

these imaging constraints. Integrating the formulation presented in his work into

the TDM of this thesis should be of high-priority moving forward.

6.2.2 Exploring Further Design Decisions

Ultimately, the TDM is a composition of design decisions, and the one presented is

just a single manifestation of these possibilities. Many directions could be taken to

develop a framework that still satisfies the guiding philosophy of exploiting natural

solutions when possible, indicating that there is still significant room for innovation
4Section 6.2.3 considers dynamical structures that can assist with this problem.
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in this domain. This was first considered in section 5.4, where the effects of deviating

from the maximal path to target specific stars was examined. In general, competing

mission objectives can be handled by augmenting the TDM, such as electing to

revisiting stars of high-science-value over lower priority stars yet to be imaged5.

To assist with these decisions, dynamic ordering and selection constraints could be

created that weight multiple objectives and depend on both the present state and

history of observations. A means to fully automate this process would need to be

developed. A promising direction is to implement a receding time horizon approach

— as is performed in the field of model predictive control — that recomputes the

optimal (or set of available) path(s) after every star intercept. The method of

combining multiple time windows for the star targeting case (section 5.4) should

also be further developed to include a recursive star scoring method — as was

developed for the maximal path formulation — so that full set of all possible paths

do not need to be directly computed.

As a quick note, it was originally desired to develop a continuous controller

that could directly manipulate the latitudinal frequency of solutions on the torus

to skirt along its surface, as opposed to the method implemented of computing

fuel-optimal control solutions via a trajectory solver. However, in general, applying

control changes the energy of the spacecraft. Since the torus is a constant energy

solution, this causes the spacecraft to depart, piercing through surfaces of solutions

until the thrusting ceases. However, as with optimal orbital plane changes, there

may be specific conditions in which thrust can be applied that do not change the

spacecraft’s energy. This is a potential direction that could be explored. Regardless,

the design of controllers that are directly informed by the underlying dynamics

should be pursued. However, if the fuel-optimal control methods are continued,

future work should employ the methods of Lo and Anderson [3–5, 68] to interpret

the solutions within the dynamical landscape.

5Note, this simply a subcase of the targeting specific star scenario analyzed in section 5.4.
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A final interesting investigation to mention would be the pairing of the series

of formation retargeting maneuvers with attitude control. In a future full mission

scenario, where on-board thrusters are used to point the spacecraft, differential

thruster firing could be used pair lateral and rotational motion achieving multiple

objectives simultaneously. The effects of the converse scenario — where attitude or

retargeting maneuvers disrupt or counteract each other — should also be considered.

6.2.3 Expanding the Scope of the Design Space

The final point considered is in expanding the scope of the trajectory design space.

Over one thousand periodic solutions and tens of millions of QPT were computed

in the SEL2 region for the orbital database. However, the current analysis was re-

stricted to a single orbit and invariant torus. Developing the TDM to search for

paths along the full database would open an immense set of new possibilities of how

natural motion can be exploited for the observatory/external occulter formation

flying problem. Since an infinite number of solutions are present within each fam-

ily, a means to manage and guide the search would need to be determined. These

directions could be explored incrementally. For example, the effects of changing

the halo/QPT combination along members of the halo orbit family6 could first be

inspected. This analysis could then be followed by a study conducted by fixing the

halo orbit and operating from tori of varying amplitude. Ultimately, the objective

would be to gain intuition into how and when (if ever), the spacecraft should jump

between solutions. A scenario where this could be particularly useful is in meeting

the spacecraft separation distance required during imaging, since the toroidal fami-

lies vary continuously in amplitude from their parent halo orbit7. Even beyond the

6Recall, this corresponds to varying the halo orbit amplitude and distance from the Lagrange
point. It is assumed that the average distance of the QPT from the parent halo orbit is held
constant.

7The alignment condition on one torus family member may meet the separation requirement
for one target star, but not another — and vice versa.
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database, there are multiple types of QPT families that were not computed (e.g.,

constant torus angle 𝜌, constant energy, varying period). It is believed that the two-

dimensional torus plots8 introduced by Baresi and Kawakatsu [10] could potentially

be a powerful tool in helping interpret and compare the utility of different tori in

such an investigation. In essence, there are near limitless combinations of naturally

existing solutions yet to be considered, and all hold the potential for discovery of

a global optimal solutions that maximally exploit natural phenomena when paired

with an augmented TDM.

8These two-dimensional plots represent the "unraveled" torus surface, where the longitude and
latitude over a revolution are plotted on the 𝑥 and 𝑦 axes respectively. This representation allows
an investigator to project physical quantities — such as radial velocity, the location of stars on
the celestial sphere, etc. — onto the torus, as opposed to the inverse case of projecting the quasi-
periodic solutions onto the inertial, celestial sphere — as was done in this thesis. The advantage is
that from this perspective, the dynamical flow on the torus is represented by sets of simple diagonal
lines across the plane, with slope equal to 𝜔2/𝜔1 (refer to equation 2.16). This may provide an easy
way to visualize and compare the utility of different tori. However, target stars will not appear
static in this visualization. Thus, if they are to be included in the plot, a means to capture their
motion sweeping across the plane would need to be determined.
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Appendix A

Sample Mission: Additional Time

Windows

Plots from the analysis for Time Windows 5-10 are provided in this appendix. Addi-

tionally, Time Windows 1-10 can be combined via the method described in section

5.3. The maximal path is provided in Table A.1. A total of 37 target stars are

intercepted within 1.227 years for an estimated 110.277 kg of fuel and 3.777 (km/s)

of ∆𝑉 . To quote from section 5.3, "It should be noted that the final maximal

path through the ten time windows contains several star revisits. This reflects the

objective of finding the trajectory that maximizes the number of star alignments,

agnostic to their identity, in the minimum amount of fuel. In reality, science —

not engineering — will drive this decision. The complexities of prioritizing certain

stars and specific revisits (over fuel or total number of alignments) will need to be

integrated into the framework to adapt to the needs of future missions — which will

in general mean selecting suboptimal paths with respect to fuel. For a preliminary

look at this problem, refer to section 5.5."
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Database solutions
Target Star
Invariant Circle

Invariant Circle
Maximal Path

Unavailable Star
Available Star

TW5

Star ID Transfer 39 ! 16 16 ! 18 18 ! 40 40 ! 80 80 ! 89 Total

mfuel (kg) 0.780 5.806 2.031 3.279 1.352 13.247
�V (km/s) 0.027 0.199 0.070 0.112 0.046 0.454

39

16

18

40

80

89

Discarded Trajectory
Isolated Trajectories
Unavailable Star
Available Star

Figure A-1: Time Window 5: solutions available on the refined invariant circle (top),
and the subset of converged trajectories that pass the formation LOS through each
available star in the time window (bottom).
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mfuel (kg) 0.780 5.806 2.031 3.279 1.352 13.247
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Figure A-2: Time Window 5: Path leading to the maximum amount of star inter-
cepts in the minimum amount of fuel.
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Database solutions
Target Star
Invariant Circle

Invariant Circle
Maximal Path

Unavailable Star
Available Star

TW6

Star ID Transfer 56 ! 60 60 ! 72 72 ! 9 9 ! 49 Total

mfuel (kg) 1.515 8.615 6.302 0.454 16.888
�V (km/s) 0.052 0.295 0.216 0.016 0.578
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9

49

Discarded Trajectory
Isolated Trajectories
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Available Star

Figure A-3: Time Window 6: solutions available on the refined invariant circle (top),
and the subset of converged trajectories that pass the formation LOS through each
available star in the time window (bottom).

Database solutions
Target Star
Invariant Circle

Invariant Circle
Maximal Path

Unavailable Star
Available Star

TW6

Star ID Transfer 56 ! 60 60 ! 72 72 ! 9 9 ! 49 Total
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Figure A-4: Time Window 6: Path leading to the maximum amount of star inter-
cepts in the minimum amount of fuel.
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Database solutions
Target Star
Invariant Circle

Invariant Circle
Maximal Path

Unavailable Star
Available Star

TW7

Star ID Transfer 9 ! 72 72 ! 37 Total

mfuel (kg) 0.556 2.322 2.879
�V (km/s) 0.019 0.080 0.099

9
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37

Discarded Trajectory
Isolated Trajectories
Unavailable Star
Available Star

Figure A-5: Time Window 7: solutions available on the refined invariant circle (top),
and the subset of converged trajectories that pass the formation LOS through each
available star in the time window (bottom).
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Figure A-6: Time Window 7: Path leading to the maximum amount of star inter-
cepts in the minimum amount of fuel.
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Database solutions
Target Star
Invariant Circle

Invariant Circle
Maximal Path

Unavailable Star
Available Star

TW8

Star ID Transfer 29 ! 10 10 ! 74 74 ! 55 55 ! 72 72 ! 1 Total

mfuel (kg) 2.700 1.560 0.462 3.420 0.916 9.058
�V (km/s) 0.092 0.053 0.158 0.117 0.031 0.310

29
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74
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Discarded Trajectory
Isolated Trajectories
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Figure A-7: Time Window 8: solutions available on the refined invariant circle (top),
and the subset of converged trajectories that pass the formation LOS through each
available star in the time window (bottom).
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Figure A-8: Time Window 8: Path leading to the maximum amount of star inter-
cepts in the minimum amount of fuel.
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Database solutions
Target Star
Invariant Circle

Invariant Circle
Maximal Path

Unavailable Star
Available Star

TW9

Star ID Transfer 86 ! 41 41 ! 25 25 ! 26 26 ! 23 23 ! 91 Total

mfuel (kg) 2.662 6.134 1.086 0.301 0.070 10.252
�V (km/s) 0.091 0.210 0.037 0.010 0.002 0.351
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Figure A-9: Time Window 9: solutions available on the refined invariant circle (top),
and the subset of converged trajectories that pass the formation LOS through each
available star in the time window (bottom).
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Figure A-10: Time Window 9: Path leading to the maximum amount of star inter-
cepts in the minimum amount of fuel.

166



Database solutions
Target Star
Invariant Circle

Invariant Circle
Maximal Path

Unavailable Star
Available Star

TW10

Star ID Transfer 83 ! 116 116 ! 120 120 ! 92 92 ! 71 Total

mfuel (kg) 0.865 3.235 4.775 3.921 12.796
�V (km/s) 0.030 0.111 0.164 0.134 0.438
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Discarded Trajectory
Isolated Trajectories
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Figure A-11: Time Window 10: solutions available on the refined invariant circle
(top), and the subset of converged trajectories that pass the formation LOS through
each available star in the time window (bottom).
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Figure A-12: Time Window 10: Path leading to the maximum amount of star
intercepts in the minimum amount of fuel.
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Star ID Transfer 𝑚𝑓𝑢𝑒𝑙 (kg) ∆𝑉 (km/s)
79 → 55 5.179 0.177
55 → 74 2.557 0.088
74 → 75 0.022 0.001
75 → 4 2.205 0.076
4 → 32 0.307 0.011
32 → 71 1.780 0.061
71 → 5 0.692 0.024
5 → 118 3.376 0.116
118 → 66 1.076 0.037
66 → 94 2.694 0.092
94 → 86 1.475 0.051
86 → 79 0.122 0.004
79 → 88 7.891 0.270
88 → 43 2.096 0.072
43 → 18 2.616 0.090
18 → 40 1.958 0.067
40 → 80 3.304 0.113
80 → 89 1.330 0.046
89 → 72 8.637 0.296
72 → 9 6.193 0.212
9 → 49 0.444 0.015
49 → 79 1.938 0.066
79 → 29 7.023 0.241
29 → 10 2.694 0.092
10 → 74 1.563 0.054
74 → 55 0.438 0.015
55 → 72 3.352 0.115
72 → 1 0.969 0.033
1 → 79 1.602 0.055
79 → 25 2.847 0.098
25 → 26 1.097 0.038
26 → 42 1.312 0.045
42 → 116 17.537 0.601
116 → 120 3.257 0.112
120 → 92 4.767 0.163
92 → 71 3.927 0.134
Total 110.277 3.777

Table A.1: Table of the global maximal path through Time Windows 1-10 combined.
Included are the list of targets stars as well as the estimated fuel mass and ∆𝑉
required to complete each transfer.
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Appendix B

Table of Target Stars

Presented are the list of stars targeted in the sample mission analysis of Chapter 5.

Presented are the target stars published in the HabEx study’s Interim Report [32].

The same stars were chosen for analysis in the sample mission of Chapter 5. The

right ascension (RA) and declination for each star were collected from the SINBAD

astronomical database [114].

HIP Star Number RA (hr) RA (min) RA (sec) DEC (deg) DEC (min) DEC (sec)

71683 1 14 39 36.494 -60 50 2.3737

54035 2 11 3 20.194 35 58 11.5682

16537 3 3 32 55.8449634 -9 27 29.731165

114046 4 23 5 52.03545455 -35 51 11.05875752

104214 5 21 6 53.93961007 38 44 57.89702436

104217 6 21 6 55.26406519 38 44 31.36214091

37279 7 7 39 18.1195 5 13 29.9552

1475 8 0 18 22.88496679 44 1 22.63727192

108870 9 22 3 21.6542295 -56 47 9.537018193

8102 10 1 44 4.0834226 -15 56 14.926552
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HIP Star Number RA (hr) RA (min) RA (sec) DEC (deg) DEC (min) DEC (sec)

105090 11 21 17 15.26885765 -38 52 2.510022611

49908 12 10 11 22.14002092 49 27 15.24915875

19849 13 4 15 16.319726 -7 39 10.338087

88601 14 18 5 27.28518 2 30 0.3558

97649 15 19 50 46.99855 8 52 5.9563

25878 16 5 31 27.39584753 -3 40 38.02155182

96100 17 19 32 21.590299 69 39 40.234737

29295 18 6 10 34.61525102 -21 51 52.65802119

45343 19 9 14 22.77545197 52 41 11.79284076

73184 20 14 57 28.00089285 -21 24 55.72689756

3821 21 0 49 6.2907161 57 48 54.67574

84478 22 17 16 13.3627375 -26 32 46.13309153

99461 23 20 11 11.93848533 -36 6 4.353559455

15510 24 3 19 55.6509352 -43 4 11.217495

99240 25 20 8 43.6094697 -66 10 55.443275

99701 26 20 13 53.39639035 -45 9 50.47346032

114622 27 23 13 16.9747821 57 10 6.076520993

12114 28 2 36 4.90238448 6 53 12.43158871

3765 29 0 48 22.97634387 5 16 50.209562

2021 30 0 25 45.07036 -77 15 15.286

7981 31 1 42 29.76349327 20 16 6.660242064

113283 32 22 56 24.0532946 -31 33 56.03506461

85295 33 17 25 45.23230437 2 6 41.1236681

22449 34 4 49 50.4109057 6 57 40.588294

86974 35 17 46 27.5266778 27 43 14.437984

61317 36 12 33 44.5448195 41 21 26.924857

64924 37 13 18 24.3142756 -18 18 40.304648

1599 38 0 20 4.2599713 -64 52 29.25476

23311 39 5 0 48.99913461 -5 45 13.22034196

32984 40 6 52 18.0504547 -5 10 25.36616519

84720 41 17 19 3.83574 -46 38 10.4467

99825 42 20 15 17.39165586 -27 1 58.7135846

27072 43 5 44 27.790894 -22 26 54.180763
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HIP Star Number RA (hr) RA (min) RA (sec) DEC (deg) DEC (min) DEC (sec)

17378 44 3 43 14.9008787 -9 45 48.208444

57939 45 11 52 58.76838016 37 43 7.240082865

64394 46 13 11 52.3937856 27 52 41.453553

15457 47 3 19 21.6963205 3 22 12.715139

57443 48 11 46 31.07199197 -40 30 1.279976346

105858 49 21 26 26.6048372 -65 21 58.314484

56452 50 11 34 29.48628408 -32 49 52.81989327

56997 51 11 41 3.015935829 34 12 5.882438337

81300 52 16 36 21.44929977 -2 19 28.51248573

68184 53 13 57 32.0591734 61 29 34.29935805

8362 54 1 47 44.83362505 63 51 9.00733143

29271 55 6 10 14.47411941 -74 45 10.96358713

58345 56 11 57 56.2063624 -27 42 25.36424248

13402 57 2 52 32.12818537 -12 46 10.97064946

14632 58 3 9 4.0198629 49 36 47.799638

10644 59 2 17 3.235387641 34 13 27.24344485

57757 60 11 50 41.718239 1 45 52.991019

86400 61 17 39 16.9163262 3 33 18.875718

88972 62 18 9 37.41628109 38 27 27.99592156

3093 63 0 39 21.8055114 21 15 1.716052732

12777 64 2 44 11.987042 49 13 42.41112

42808 65 8 43 18.03040054 -38 52 56.5700256

78072 66 15 56 27.1826948 15 39 41.8205

47080 67 9 35 39.50180534 35 48 36.48407023

67927 68 13 54 41.07892 18 23 51.7946

72848 69 14 53 23.7667403 19 9 10.081308

23693 70 5 5 30.65617823 -57 28 21.7289318

109176 71 22 7 0.662057274 25 20 42.3761385

69972 72 14 19 4.834136742 -59 22 44.53502748

107556 73 21 47 2.4442395 -16 7 38.233507

15330 74 3 17 46.16326057 -62 34 31.15424748

15371 75 3 18 12.81854126 -62 30 22.91730028

77257 76 15 46 26.61442914 7 21 11.04164744
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HIP Star Number RA (hr) RA (min) RA (sec) DEC (deg) DEC (min) DEC (sec)

41926 77 8 32 51.49583115 -31 30 3.062906467

26779 78 5 41 20.33572837 53 28 51.81062985

80686 79 16 28 28.13964655 -70 5 3.822057572

43587 80 8 52 35.81132821 28 19 50.95690137

40693 81 8 18 23.94696925 -12 37 55.81020257

24813 82 5 19 8.475463075 40 5 56.58964388

10798 83 2 18 58.50469439 -25 56 44.47347686

58576 84 12 0 44.46115932 -10 26 46.05502359

85235 85 17 25 0.098270858 67 18 24.15014156

80337 86 16 24 1.290597026 -39 11 34.73461124

51459 87 10 30 37.58036785 55 58 49.93641669

22263 88 4 47 36.29176076 -16 56 4.041927355

46853 89 9 32 51.4338939 51 40 38.281102

7513 90 1 36 47.84216 41 24 19.6443

98036 91 19 55 18.792563 6 24 24.342501

116771 92 23 39 57.0413764 5 37 34.647529

544 93 0 6 36.78409436 29 1 17.41039011

79672 94 16 15 37.27037212 -8 22 9.981989277

16852 95 3 36 52.14480225 0 23 58.53691774

53721 96 10 59 27.97386449 40 25 48.92238892

12843 97 2 45 6.203440566 -18 34 21.47862997

102422 98 20 45 17.375554 61 50 19.616737

84862 99 17 20 39.56753951 32 28 3.877348066

25278 100 5 24 25.46297733 17 23 0.729080928

42438 101 8 39 11.70432653 65 1 15.26827319

70497 102 14 25 11.7970287 51 51 2.676894

75181 103 15 21 48.15111711 -48 19 3.462483973

102485 104 20 46 5.7326265 -25 16 15.231155

28103 105 5 56 24.2930042 -14 10 3.718884

59199 106 12 8 24.8165241 -24 43 43.950354

47592 107 9 42 14.41652543 -23 54 56.05407907

49081 108 10 1 0.656779927 31 55 25.2168485

5262 109 1 7 13.88427484 49 33 19.66550726

3583 110 0 45 45.59296562 -47 33 7.146506536
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HIP Star Number RA (hr) RA (min) RA (sec) DEC (deg) DEC (min) DEC (sec)

95447 111 19 24 58.20024068 11 56 39.88231262

82860 112 16 56 1.6892483 65 8 5.263139

86796 113 17 44 8.703634228 -51 50 2.591049123

95501 114 19 25 29.90139 3 6 53.2061

88745 115 18 7 1.53971 30 33 43.6896

3909 116 0 50 7.588589216 -10 38 39.58481106

71284 117 14 34 40.81718085 29 44 42.46368598

77760 118 15 52 40.54113721 42 27 5.451105113

50954 119 10 24 23.7059714 -74 1 53.803578

112447 120 22 46 41.5811758 12 10 22.385447

173



174



Appendix C

Bibliography

[1] RL Akeson, X Chen, D Ciardi, M Crane, J Good, M Harbut, E Jackson,
SR Kane, AC Laity, S Leifer, et al. The nasa exoplanet archive: data and
tools for exoplanet research. Publications of the Astronomical Society of the
Pacific, 125(930):989, 2013.

[2] Kyle T Alfriend, Srinivas R Vadali, and Hanspeter Schaub. Formation flying
satellites: Control by an astrodynamicist. Celestial Mechanics and Dynamical
Astronomy, 81(1-2):57–62, 2001.

[3] Rodney Anderson and Martin Lo. The role of invariant manifolds in low thrust
trajectory design (part i). In AIAA/AAS Astrodynamics Specialist Conference
and Exhibit, page 288, 2004.

[4] Rodney Anderson and Martin Lo. The role of invariant manifolds in low
thrust trajectory design (part ii). In AIAA/AAS Astrodynamics Specialist
Conference and Exhibit, page 5305, 2004.

[5] Rodney L Anderson and Martin W Lo. Role of invariant manifolds in
low-thrust trajectory design. Journal of guidance, control, and dynamics,
32(6):1921–1930, 2009.

[6] Brian Barden. Using Stable Manifolds to Generate Transfers in the Circular
Restricted Problem of Three Bodies. PhD thesis, Purdue University, 1994.

[7] Brian Barden. Applications of Dynamical Systems Theory in Mission De-
sign and Conceptual Development for Libration Point Missions. PhD thesis,
Purdue University, 2000.

[8] Brian T Barden and Kathleen C Howell. Fundamental motions near collinear
libration points and their transitions. Journal of the Astronautical Sciences,
46(4):361–378, 1998.

175



[9] BT Barden. Formation flying in the vicinity of libration point orbits spaceflight
mechanics 1998. In Proceedings of the AAS/AIAA Space Flight Mechanics
Meeting, Monterey, 1998, pages 969–988, 1998.

[10] N Baresi and Y Kawakatsu. Quasi-periodic motion around phobos: Applica-
tions to the martian moons exploration (mmx). In International Symposium
on Space Technology and Science (ISTS), Fukui, Japan, pages 1–8, 2019.

[11] Nicola Baresi. Spacecraft formation flight on quasi-periodic invariant tori.
2017.

[12] Nicola Baresi. Spacecraft Formation Flight on Quasi-Periodic Invariant Tori.
PhD thesis, University of Colorado, Boulder, 2017.

[13] Nicola Baresi, Zubin P Olikara, and Daniel J Scheeres. Fully numerical meth-
ods for continuing families of quasi-periodic invariant tori in astrodynamics.
The Journal of the Astronautical Sciences, 65(2):157–182, 2018.

[14] Nicola Baresi and Daniel J Scheeres. Bounded relative motion under zonal
harmonics perturbations. Celestial Mechanics and Dynamical Astronomy,
127(4):527–548, 2017.

[15] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A
fresh approach to numerical computing. SIAM review, 59(1):65–98, 2017.

[16] William J Borucki, David Koch, Gibor Basri, Natalie Batalha, Timothy
Brown, Douglas Caldwell, John Caldwell, Jørgen Christensen-Dalsgaard,
William D Cochran, Edna DeVore, et al. Kepler planet-detection mission:
introduction and first results. Science, 327(5968):977–980, 2010.

[17] William J Borucki, David G Koch, Gibor Basri, Natalie Batalha, Timothy M
Brown, Stephen T Bryson, Douglas Caldwell, Jørgen Christensen-Dalsgaard,
William D Cochran, Edna DeVore, et al. Characteristics of planetary candi-
dates observed by kepler. ii. analysis of the first four months of data. The
Astrophysical Journal, 736(1):19, 2011.

[18] Brendan Bowler. Imaging extrasolar giant planets. Publications of the Astro-
nomical Society of the Pacific, 128(968), 2016.

[19] G Chauvin. Two decades of exoplanetary science with adaptive optics. Adap-
tive Optics Systems VI, 10703, 2018.

[20] G. Chauvin, A.M. Lagrange, C. Dumas, B. Zuckerman, D. Mouillet, I. Song,
J.L. Beuzit, and P Lowrance. A giant planet candidate near a young brown
dwarf-direct vlt/naco observations using ir wavefront sensing. Astronomy &
Astrophysics, 425(2), 2004.

176



[21] C.C. Conley. Low energy transit orbits in the restricted three-body problem.
SIAM Journal of Applied Mathematics, 16(4), 1968.

[22] Bruce A Conway and John E Prussing. Orbital Mechanics. Oxford University
Press, 1993.

[23] Brendan P Crill and Nicholas Siegler. Space technology for directly imaging
and characterizing exo-earths. In UV/Optical/IR Space Telescopes and In-
struments: Innovative Technologies and Concepts VIII, volume 10398, page
103980H. International Society for Optics and Photonics, 2017.

[24] Camilla Danielski et al. Atmospheric characterization of directly imaged exo-
planets with jwst/miri. The Astronomical Journal, 156(6):276, 2018.

[25] V Domingo, B Fleck, and Arthur I Poland. The soho mission: an overview.
Solar Physics, 162(1-2):1–37, 1995.

[26] Helge Eichhorn, Juan Luis Cano, Frazer McLean, and Reiner Anderl. A com-
parative study of programming languages for next-generation astrodynamics
systems. CEAS Space Journal, 10(1):115–123, 2018.

[27] AJ Eldorado et al. Numerically optimized coronagraph designs for the habit-
able exoplanet imaging mission (habex). In Space Telescopes and Instrumen-
tation 2018: Optical, Infrared, and Millimeter Wave, 10968, 2018.

[28] Leonhard Euler. De motu rectilineo trium corporum se mutuo attrahen-
tium. Novi commentarii academiae scientiarum Petropolitanae, pages 144–
151, 1767.

[29] Robert Farquhar. The control and use of libration-point satellites. Technical
report, NASA TR R-346, 1970.

[30] Thibault Flinois, Michael Bottom, Stefan Martin, Daniel Scharf, et al. S5:
Starshade technology to trl5 milestone 4 final report: Lateral formation sens-
ing and control. Technical report, Jet Propulsion Laboratory, California In-
stitute of Technology, 2018.

[31] David Folta. Formation flying of a telescope/occulter system with large sep-
arations in an l2 libration orbit. 2008.

[32] B Scott Gaudi, Sara Seager, Bertrand Mennesson, Alina Kiessling, Keith
Warfield, Gary Kuan, Kerri Cahoy, John T Clarke, Shawn Domagal-Goldman,
Lee Feinberg, et al. The habitable exoplanet observatory (habex) mission con-
cept study interim report. arXiv preprint arXiv:1809.09674, 2018.

177



[33] B. Scott Gaudi, Sara Seager, Bertrand Mennesson, Alina Kiessling, Keith R.
Warfield, Kerri Cahoy, John T. Clarke, Shawn Domagal-Goldman, Lee Fein-
berg, Olivier Guyon, N. Jeremy Kasdin, Dimitri Mawet, Peter Plavchan, Tyler
Robinson, Leslie Rogers, Paul Scowen, Rachel Somerville, Karl Stapelfeldt,
Chris Stark, Daniel Stern, Margaret Turnbull, et al. The habitable exoplanet
observatory. Nature Astronomy, 2(8):600–604, 2018.

[34] G Gómez and Mondelo J. The dynamics around the collinear equilibrium
points of the rtbp. Physica D: Nonlinear Phenomena, 157(4):282–321, 2001.

[35] G Gómez, A Jorba, J Masdemont, and C Simó. Final report: Study refinement
of semi-analytical halo orbit theory. ESOC Contract Report, Technical Report,
8625:89, 1991.

[36] G Gómez, A Jorba, J Masdemont, and C Simó. Study refinement of semi-
analytical halo orbit theory. Final Report, ESOC Contract, (8625/89), 1991.

[37] G Gómez, M Marcote, JJ Masdemont, and JM Mondelo. Zero relative ra-
dial acceleration cones and controlled motions suitable for formation flying.
Journal of the Astronautical Sciences, 53(4):413–432, 2005.

[38] Gerard Gómez, A Jorba, Jt Masdemont, and C Simó. Study of the transfer
from the earth to a halo orbit around the equilibrium pointl 1. Celestial
Mechanics and Dynamical Astronomy, 56(4):541–562, 1993.

[39] D Grebow. Generating periodic orbits in the circular restricted three-body
problem with applications to lunar south pole coverage. MSAA Thesis, School
of Aeronautics and Astronautics, Purdue University, 2006.

[40] Daniel J Grebow, Martin T Ozimek, Kathleen C Howell, and David C Folta.
Multibody orbit architectures for lunar south pole coverage. Journal of Space-
craft and Rockets, 45(2):344–358, 2008.

[41] Nicholas Hamilton, David Folta, and Russell Carpenter. Formation flying
satellite control around the l2 sun-earth libration point. In AIAA/AAS As-
trodynamics Specialist Conference and Exhibit, page 4528, 2002.

[42] Anthony Harness, Steve Warwick, Ann Shipley, and Webster Cash. Ground-
based testing and demonstrations of starshades, 2016.

[43] M Hénon. Vertical stability of periodic orbits in the restricted problem. i.
equal masses. Astronomy and Astrophysics, 28:415, 1973.

[44] Damennick B Henry and Daniel Scheeres. Generalized spacecraft formation
design through exploitation of quasi-periodic tori families. In AIAA Scitech
2020 Forum, page 0950, 2020.

178



[45] George William Hill. On the part of the motion of the lunar perigee which
is a function of the mean motions of the sun and moon. Acta mathematica,
8(1):1–36, 1886.

[46] Sasha Hinkley. Adaptive optics observations of exoplanets, brown dwarfs,
and binary stars. Proceedings of the International Astronomical Union,
7(S282):181–188, 2011.

[47] Kathleen Howell, Brian Barden, and Martin Lo. Application of dynamical
systems theory to trajectory design for a libration point mission. Journal of
the Astronautical Sciences, 45(2), 1997.

[48] Kathleen C Howell and Henry J Pernicka. Numerical determination of lissajous
trajectories in the restricted three-body problem. Celestial Mechanics, 41(1-
4):107–124, 1987.

[49] KC Howell and ET Campbell. Three-dimensional periodic solutions that bi-
furcate from halo families in the circular restricted three-body problem (aas
99-161). ADVANCES IN THE ASTRONAUTICAL SCIENCES, 102:891–910,
1999.

[50] FY Hsiao and DJ Scheeres. Design of spacecraft formation orbits relative to a
stabilized trajectory. Journal of Guidance, Control, and Dynamics, 28(4):782–
794, 2005.

[51] Carl GJ Jacobi. Sur le mouvement d’un point et sur un cas particulier du
probleme des trois corps. Compt. Rend, 3:59–61, 1836.

[52] Angel Jorba and Josep Masdemont. Dynamics in the center manifold of the
collinear points of the restricted three body problem. Physica D: Nonlinear
Phenomena, 132(1-2):189–213, 1999.

[53] Seungyun Jung and Youdan Kim. Formation flying along halo orbit using
switching hamiltonian structure-preserving control. In 7th European Confer-
ence for Aeronautics and Aerospace Science, pages 2017–39, 2017.

[54] Paul Kalas, James Graham, Eugene Chiang, Michael Fitzgerald, Mark
Clampin, Edwin Kite, Karl Stapelfeldt, Christian Marois, and John Krist.
Optical images of an exosolar planet 25 light-years from earth. Science,
322(5906):1345–1348, 2008.

[55] Dean R Keithly, Dmitry Savransky, Daniel Garrett, Christian Delacroix, and
Gabriel Soto. Optimal scheduling of exoplanet direct imaging single-visit ob-
servations of a blind search survey. Journal of Astronomical Telescopes, In-
struments, and Systems, 6(2):027001, 2020.

179



[56] D.E. Kirk. Optimal Control Theory: An Introduction. Dover Books on Elec-
trical Engineering Series. Dover Publications, 2004.

[57] David G Koch, William J Borucki, Gibor Basri, Natalie M Batalha, Timo-
thy M Brown, Douglas Caldwell, Jørgen Christensen-Dalsgaard, William D
Cochran, Edna DeVore, Edward W Dunham, et al. Kepler mission design, re-
alized photometric performance, and early science. The Astrophysical Journal
Letters, 713(2):L79, 2010.

[58] Egemen Koleman. Optimal Configuration of a Planet-Finding Mission Con-
sisting of a Telescope and a Constellation of Occulters. PhD thesis, Princeton
University, 2008.

[59] Egemen Kolemen and N Jeremy Kasdin. Optimization of an occulter-based
extrasolar-planet-imaging mission. Journal of guidance, control, and dynam-
ics, 35(1):172–185, 2012.

[60] Egemen Kolemen, N Jeremy Kasdin, and Pini Gurfil. Multiple poincaré sec-
tions method for finding the quasiperiodic orbits of the restricted three body
problem. Celestial Mechanics and Dynamical Astronomy, 112(1):47–74, 2012.

[61] Wang Sang Koon, Martin W Lo, Jerrold E Marsden, and Shane D Ross. Dy-
namical systems, the three-body problem and space mission design. California
Institute of Technology, Pasadena, CA, USA, 2006.

[62] S Lacour, M Nowak, J Wang, O Pfuhl, F Eisenhauer, R Abuter, A Amorim,
N Anugu, M Benisty, JP Berger, et al. First direct detection of an exoplanet
by optical interferometry-astrometry and k-band spectroscopy of hr 8799 e.
Astronomy & Astrophysics, 623:L11, 2019.

[63] Joseph-Louis Lagrange. Essai sur le probleme des trois corps. Prix de
l’académie royale des Sciences de paris, 9:292, 1772.

[64] Jesse Leitner. Formation flying system design for a planet-finding telescope-
occulter system. In UV/Optical/IR Space Telescopes: Innovative Technologies
and Concepts III, volume 6687, page 66871D. International Society for Optics
and Photonics, 2007.

[65] Jesse Leitner. Formation flying system design for a planet-finding telescope-
occulter system. volume 6687, pages 6687 – 6687 – 10, 2007.

[66] Jaume Llibre, Regina Martinez, and Carles Simo. Transversality of the in-
variant manifolds associated to the lyapunov family of periodic orbits near
l2 in the restricted three-body problem. Journal of Differential Equations,
58:104–156, 1985.

180



[67] Martin Lo, Bobby Williams, Williard Bollman, Dongsuk Han, Yungsun Hahn,
Julia Bell, Edward Hirst, Robert Corwin, Philip Hong, and Kathleen Howell.
Genesis mission design. In AIAA/AAS Astrodynamics Specialist Conference
and Exhibit, page 4468, 1998.

[68] Martin W Lo, Rodney L Anderson, Try Lam, and Greg Whiffen. The role of
invariant manifolds in lowthrust trajectory design (part iii). page 190, 2006.

[69] Martin W Lo and Shane D Ross. Low-energy interplanetary transfers using
lagrangian points. NASA Tech Brief, 23, 1999.

[70] MW Lo and KC Howell. Trajectory design using a dynamical systems ap-
proach with application to genesis. 1997.

[71] Bernard Lyot. The study of the solar corona and prominences without eclipses
(george darwin lecture, 1939). Monthly Notices of the Royal Astronomical
Society, 99:580, 1939.

[72] Christian Marois, Bruce Macintosh, Travis Barman, B Zuckerman, Inseok
Song, Jennifer Patience, David Lafrenière, and René Doyon. Direct imaging
of multiple planets orbiting the star hr 8799. Science, 322(5906):1348–1352,
2008.

[73] Christian Marois, B Zuckerman, Quinn M Konopacky, Bruce Macintosh,
and Travis Barman. Images of a fourth planet orbiting hr 8799. Nature,
468(7327):1080, 2010.

[74] Michel Mayor and Didier Queloz. A jupiter-mass companion to a solar-type
star. Nature, 378(6555):355, 1995.

[75] Brian P McCarthy. Characterization of Quasi-Periodic Orbits for Applications
in the Sun-Earth and Earth-Moon Systems. PhD thesis, Purdue University
Graduate School, 2019.

[76] Lindsay D Millard and Kathleen C Howell. Optimal reconfiguration maneuvers
for spacecraft imaging arrays in multi-body regimes. Acta Astronautica, 63(11-
12):1283–1298, 2008.

[77] Jürgen Moser and Walter T Kyner. Lectures on Hamiltonian systems. Num-
ber 81. American Mathematical Soc., 1968.

[78] Carl D Murray and Stanley F Dermott. Solar system dynamics. Cambridge
university press, 1999.

181



[79] Erc Nielson et al. The gemini planet imager exoplanet survey: Giant
planet and brown dwarf demographics from 10-100 au. arXiv preprint
arXiv:1904.05358, 2019.

[80] KW Ogilvie and MD Desch. The wind spacecraft and its early scientific results.
Advances in Space Research, 20(4-5):559–568, 1997.

[81] Zubin P Olikara and Daniel J Scheeres. Numerical method for computing
quasi-periodic orbits and their stability in the restricted three-body problem.
Advances in the Astronautical Sciences, 145(911-930), 2012.

[82] KE Papadakis and CG Zagouras. Bifurcation points and intersections of fam-
ilies of periodic orbits in the three-dimensional restricted three-body problem.
Astrophysics and space science, 199(2):241–256, 1993.

[83] Michael Patterson, John Foster, Thomas Haag, Vincent Rawlin, George
Soulas, and Robert Roman. Next: Nasa’s evolutionary xenon thruster. In
38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, page
3832, 2002.

[84] Michael A Patterson and Anil V Rao. Gpops-ii: A matlab software for solving
multiple-phase optimal control problems using hp-adaptive gaussian quadra-
ture collocation methods and sparse nonlinear programming. ACM Transac-
tions on Mathematical Software (TOMS), 41(1):1–37, 2014.

[85] Henri Poincaré and R Magini. Les méthodes nouvelles de la mécanique céleste.
Il Nuovo Cimento (1895-1900), 10(1):128–130, 1899.

[86] Christopher Rackauckas and Qing Nie. Differentialequations. jl–a performant
and feature-rich ecosystem for solving differential equations in julia. Journal
of Open Research Software, 5(1), 2017.

[87] David Redding, Keith Coste, Otto Polanco, Claudia Pineda, Kevin Hurd,
Howard Tseng, Jose Quezada, Stefan Martin, Joel Nissen, Kevin Schulz, et al.
Habex lite: a starshade-only habitable exoplanet imager alternative. In Space
Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave,
volume 10698, page 106980X. International Society for Optics and Photonics,
2018.

[88] Ricardo L Restrepo and Ryan P Russell. A database of planar axisymmet-
ric periodic orbits for the solar system. Celestial Mechanics and Dynamical
Astronomy, 130(7):49, 2018.

[89] Albert Reuther, Jeremy Kepner, Chansup Byun, Siddharth Samsi, William
Arcand, David Bestor, Bill Bergeron, Vijay Gadepally, Michael Houle,

182



Matthew Hubbell, et al. Interactive supercomputing on 40,000 cores for ma-
chine learning and data analysis. In 2018 IEEE High Performance extreme
Computing Conference (HPEC), pages 1–6. IEEE, 2018.

[90] David Richardson. Halo orbit formualtion for the isee-3 mission. Journal of
Guidance and Controll, 3(6), 1980.

[91] George R Ricker, Joshua N Winn, Roland Vanderspek, David W Latham,
Gáspár Á Bakos, Jacob L Bean, Zachory K Berta-Thompson, Timothy M
Brown, Lars Buchhave, Nathaniel R Butler, et al. Transiting exoplanet sur-
vey satellite. Journal of Astronomical Telescopes, Instruments, and Systems,
1(1):014003, 2014.

[92] Rodolfo Rosales. Various Lecture Notes for 18385. MIT Department of Math-
ematics, September 2012.

[93] Shane D Ross. The interplanetary transport network: Some mathematical
sophisstication allows spacecraft to be maneuvered over large distances using
little or no fuel. American Scientist, 94(3):230–237, 2006.

[94] Daniel P Scharf, Stefan R Martin, Carl Christian Liebe, Zahidul H Rahman,
Carl R Seubert, Martin Charles Noecker, and George H Purcell. Precision
formation flying at megameter separations for exoplanet characterization. Acta
Astronautica, 123:420–434, 2016.

[95] Hanspeter Schaub, Srinivas R Vadali, John L Junkins, and Kyle T Alfriend.
Spacecraft formation flying control using mean orbit elements. Journal of the
Astronautical Sciences, 48(1):69–87, 2000.

[96] Daniel J Scheeres, F-Y Hsiao, and NX Vinh. Stabilizing motion relative to
an unstable orbit: applications to spacecraft formation flight. Journal of
Guidance, Control, and Dynamics, 26(1):62–73, 2003.

[97] Sara Seager, Margaret Turnbull, William Sparks, Mark Thomson, Stuart B
Shaklan, Aki Roberge, Marc Kuchner, N Jeremy Kasdin, Shawn Domagal-
Goldman, Webster Cash, et al. The exo-s probe class starshade mission. In
Techniques and Instrumentation for Detection of Exoplanets VII, volume 9605,
page 96050W. International Society for Optics and Photonics, 2015.

[98] Andrew J Skemer, Mark S Marley, Philip M Hinz, Katie M Morzinski,
Michael F Skrutskie, Jarron M Leisenring, Laird M Close, Didier Saumon,
Vanessa P Bailey, Runa Briguglio, et al. Directly imaged lt transition exo-
planets in the mid-infrared. The Astrophysical Journal, 792(1):17, 2014.

183



[99] Daniel Smith, Steven Warwick, Tiffany Glassman, Michael Novicki,
Megan Richards, Anthony Harness, and Keith Patterson. Measurements of
high-contrast starshade performance in the field, 2016.

[100] Gabriel Soto, Dean Keithly, Daniel Garrett, Christian Delacroix, and Dmitry
Savransky. Optimal starshade observation scheduling. In Space Telescopes
and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, volume
10698, page 106984M. International Society for Optics and Photonics, 2018.

[101] Gabriel Soto, Amlan Sinha, Dmitry Savransky, Christian Delacroix, and
Daniel Garrett. Starshade orbital maneuver study for wfirst. In Techniques
and Instrumentation for Detection of Exoplanets VIII, volume 10400, page
104001U. International Society for Optics and Photonics, 2017.

[102] Gabriel J Soto, Dmitry Savransky, Daniel Garrett, and Christian Delacroix.
Parameterizing the search space of starshade fuel costs for optimal observation
schedules. Journal of Guidance, Control, and Dynamics, 42(12):2671–2676,
2019.

[103] James S Sovey, Vincent K Rawlin, and Michael J Patterson. Ion propulsion
development projects in us: Space electric rocket test i to deep space 1. Journal
of Propulsion and Power, 17(3):517–526, 2001.

[104] Lyman Spitzer. The beginnings and future of space astronomy. American
Scientist, 50(3):473–484, 1962.

[105] Karl Stapelfeldt. Extrasolar planets and star formation: science opportu-
nities for future elts. Proceedings of the International Astronomical Union,
1(S232):149–158, 2005.

[106] Karl Stapelfeldt. Exo-c: Imaging nearby worlds coronagraph probe mission
study: Final report. 2015.

[107] Edward C Stone, AM Frandsen, RA Mewaldt, ER Christian, D Margolies,
JF Ormes, and F Snow. The advanced composition explorer. Space Science
Reviews, 86(1-4):1–22, 1998.

[108] Steven Strogatz. Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, and Engineering. Westview Press, 2 edition, 2015.

[109] Victor Szebehely. Theory of orbits: The restricted problem of three bodies.
Science, 160(3827), 1968.

[110] LUVOIR Team et al. The luvoir mission concept study interim report. arXiv
preprint arXiv:1809.09668, 2018.

184



[111] John T Trauger and Wesley A Traub. A laboratory demonstration of the
capability to image an earth-like extrasolar planet. Nature, 446(7137):771,
2007.

[112] Casandra Webster and David Folta. Understanding the sun-earth libration
point orbit formation flying challenges for wfirst and starshade. Technical
report, IWSCFF 17-74 NASA Goddard Space Flight Center, 2017.

[113] Cassandra M Webster et al. Wide-field infrared survey telescope and starshade
formation flying dynamics at sun-earth l2. 69th International Astronautical
Congress, 2018.

[114] Marc Wenger, François Ochsenbein, Daniel Egret, Pascal Dubois, François
Bonnarel, Suzanne Borde, Françoise Genova, Gérard Jasniewicz, Suzanne
Laloë, Soizick Lesteven, et al. The simbad astronomical database-the cds
reference database for astronomical objects. Astronomy and Astrophysics Sup-
plement Series, 143(1):9–22, 2000.

[115] K-P Wenzel. The isee-c mission and the ims. In The scientific satel-
lite programme during the International Magnetospheric Study, pages 81–85.
Springer, 1976.

[116] Stephen Wiggins. Introduction to applied nonlinear dynamical systems and
chaos, volume 2. Springer Science & Business Media, 2003.

[117] P Willems. Starshade to trl5 (s5) technology development plan. Technology
Report, Jet Propulsion Laboratory, 2018.

[118] Joshua N Winn. Exoplanet transits and occultations. Exoplanets, 1:55–77,
2010.

[119] Emily M Zimovan, Kathleen C Howell, and Diane C Davis. Near rectilinear
halo orbits and their application in cis-lunar space. In 3rd IAA Conference on
Dynamics and Control of Space Systems, Moscow, Russia, page 20, 2017.

185


	List of Figures
	List of Tables
	Introduction
	Motivation
	Science: Direct-Exoplanet Imaging
	Engineering: Opening the Trajectory Design Space
	Additional Applications

	Literature Review
	Direct Exoplanet Imaging
	Dynamical Systems Theory and Trajectory Design
	Spacecraft Formation Flying Guidance and Control

	Research Gap and Problem Statement
	List of Contributions

	Thesis Outline

	Background Theory and Concept of Operations
	Dynamical Systems Theory
	The CR3BP Phase Space
	Deriving the CR3BP System of Equations
	Classifying Solutions

	The Center Manifold
	Formation Flying Concept of Operations
	Simulating the Formation
	Interpreting Formation Flying Plots


	Database Development
	Generating Periodic Solutions
	Method of Differential Correction
	Continuation
	Stability of Periodic Solutions and Bifurcations
	Software Implementation

	Generating Quasi-Periodic Invariant Tori
	GMOS: The QPT Solution Algorithm
	Software Implementation
	Database Interaction and Visualization


	Trajectory Design Methodology
	Finding Solutions on the Torus
	Parameterizing the Search Space
	Refining Database QPT Solutions
	First Pass Search: Search by Sorting
	Second Pass Search: Search by Shooting

	Ordering Solutions
	Graph Search Method
	Solving the Search Problem
	Simple Ordering Example

	Transferring Between Solutions
	Minimum Fuel-Optimal Control Problem Formulation and Solution


	Sample Mission Analysis
	Assumptions and Considerations
	Star Transit Rules

	Time Window Analyses: Finding Local Maximal Paths
	Combining Time Windows: Finding Global Maximal Paths
	Adapting the TDM: Targeting Select Stars
	Targeting Select Stars: Single Time Window
	Targeting Select Stars: Multiple Time Windows

	Performance Considerations
	Contextualizing the Methodology


	Conclusion
	Contributions
	Future Work and Recommendations
	Eliminating Assumptions and Adding Complexity
	Exploring Further Design Decisions
	Expanding the Scope of the Design Space


	Sample Mission: Additional Time Windows
	Table of Target Stars
	Bibliography

