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Abstract

This thesis documents an experimental and theoretical investigation of nano
scale fracture and fatigue of a resonant single crystal silicon micro electro-
mechanical device. Nano scale time dependent crack growth has been ob-
served: crack extensions of 10 to 300 nm have been measured with an accu-
racy of approximately 2.5 nm; crack velocities on the order of 2.0 x 10~ m/s
have also been accurately measured. It is postulated the 10 to 40 A silica
layer that forms on the surface of freshly cleaved silicon is continuously at-
tacked by water vapor in the environment. As the crack propagates through
this layer, fresh silicon is continuously exposed, oxidized, and statically fa-
tigued. The fatigue mechanism is rate limiting. Starter pre-cracks do not
exponentially grow with stress intensity, as observed with macro scale static
fatigue specimens, ultimately causing failure. The measurements were made
by detecting the shift in natural frequency of a specially designed microme-
chanical fatigue test structure constructed from boron doped single crystal
silicon. The structure is a cantilever beam with an end plate and gold inertial
mass. Bridge electrodes extend over the plate, and with interface electron-
ics and a phase sensitive control system, drive the structure continuously at
resonance and sense its motion. Fatigue crack propagation is measured by
detecting shifts in the natural frequency caused by the extension of a pre-
crack introduced near the base of the cantilever. The pre-crack is formed
by a series of nanoindentations that traverse the full width of the unetched
beam.



Chapter 1

Introduction and Literature
Review

1.1 Introduction

Micromechanical fabrication techniques have revolutionized the ability of de-
signers to miniaturize electro-mechanical systems for use in compact low cost
sensors, actuators, and transducers. Micromechanical devices have found
many diverse applications in fields such as inertial guidance and control,
fluid sensing, acoustics, robotics, and biomechanics to name a few. More
exotic and novel components such as springs, gears, motors, and linkages are
being fabricated and tested[13][42]. As the field emerges, other applications
will be discovered opening new vistas of research and development.

A high level of engineering sophistication in several disciplines is required
to successfully design micromechanical devices, and integrate associated elec-
tronic systems, subsystems, a. nardware. Consequently, much effort is
focused on fabrication processes and systems engineering. However, little
attention is given to investigating failure processes and structural reliability.
The commercial use of micromechanical devices will lead to a greater em-
phasis on structural reliability as questions arise dealing with the ability of a
particular device to meet performance specifications under various operating
conditions.

Tackling such an issue in a unified way that would reveal the nature and
interaction of different failure mechanisms presents a variety of problems.



Micromechanical devices vary greatly in size, shape, and function. The ma-
terials and processes used to fabricate the devices vary as well. All these
factors will in some way affect the relative susceptibility of the device to
differing modes of failure, and will dictate to an extent the type of testing
methodology that is appropriate. For example, testing a micromechanical
gas sensor for environmental stress corrosion cracking may be more critical
than testing for shock loading capability, while the reverse would be true of
a micromechanical accelerometer(19).

It is necessary to establish fatigue and fracture testing techniques that
have broad appeal and application sc that failure analyses of micromechanical
devices can evolve to yield useful information for micromechanical designers
and scientists. Information gained from such tests could be readily shared
with others, thereby building a common body of knowledge. The aim of this
research is to introduce and demonstrate a novel fatigue testing technique
particularly suited for micromechanical testing, and to utilize this technique
in an analytical and experimental investigation of the fatigue effects in a
specially designed micromechanical test structure.

1.2 Literature Review

1.2.1 Current Research on Micromechanical Devices

The micromechanical test structure considered in this thesis is constructed of
single crystal silicon through a step by step fabrication process that involves
diffusing boron into an n-type silicon wafer in a pattern identical to the de-
vice. The heavy concentration of boron makes the diffused silicon resistant
to chemical etching. Therefore, after all other processing steps are complete,
the wafer chip can be immersed in an etch solution that dissolves the undif-
fused portion of the wafer leaving a “released” structure free to move and
vibrate. The etch is anisotropic and proceeds along the < 111 > planes of the
undiffused silicon until the planes intersect at which time no further etching
occurs. The boron diffusion occurs at high temperature, 1150°C, with the
diffusion time controlled by the desired thickness of the device: the longer the
time, the thicker the device. A consequence of diffusing boron into silicon is a
high state of residual tensile stress which is a result of the silicon atoms being
substitutionally replaced by the smaller boron atoms causing the lattice to



contract. A further consequence of this diffusion is a high dislocation density
caused by the displaced silicon atomns. The concentration of the boron at the
surface is approximately 1.0 X 10%° atoms/cm-s. This fabrication method
differs from polysilicon processing in that single crystal silicon is removed by
selective anisotropic etching as opposed to chemically depositing polysilicon
on a wafer substrate.

Currently, no effort has begun in analyzing fatigue in heavily boron-doped
single crystal silicon micromechanical devices, nor has fatigue data been re-
ported for polysilicon structures. Within the micromechanical field, polysili-
con is the primary fabrication material, and as a result, polysilicon structures
and their mechanical properties are a subject of intense research. However,
efforts directed toward understanding the mechanical behavior of polysilicon
on a fundamental level tend to be focused on characterizing the properties of
the material, particularly Young’s modulus. Such emphasis is a result of the
large degree of variability in the growth mechanisms of polysilicon. Grain
sizes and surface roughness vary considerably from one production run to
another, and from one laboratory to the next. Small differences in tem-
perature, humidity, oxygen content, and so on have profound effects on the
makeup and quality of the polysilicon. Making quantifiable and generalized
statements about fatigue with such variability would be difficult. However,
extremely high quality single crystal silicon, grown almost to perfection, is
universally available and often used in devices requiring a high degree of me-
chanical stability and repeatability in material behavior. For example, open
loop resonant micromechanical structures used as inertial sensors must meet
drift specifications on the order of a few ppm. Such properties remove many
uncertainties, making single crystal silicon an ideal material for materials
research on a fundamental level; including, fatigue testing on a microme-
chanical scale. It can be said with reasonable assurance that single crystal
silicon devices constructed by the boron diffusion process will have virtually
identical mechanical properties fromn device to device regardless of where the
device is fabricated.

The work of Gabriel and Behi is a good example of the kind of empirical
experimental research being conducted on polysilicon structures [14]. In their
experiment, friction and wear are characterized using a polysilicon microme-
chanical turbine that rotates about a concentric shaft fixed to the silicon
substrate. The turbine is spun using an air jet exiting from a micropipette,
and a helium/neon laser with associated optics records the angular velocity
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of the turbine wheel. Measurements were made of the increase in diame-
ter of the center hole of the wheel after rotating for a specified period of
time, and of the deceleration profile of the turbine when the gas stream was
stopped. Such techniques and measurements provide empirical data, but the
next step is correlating such data to quantitative models that predict wear
lifetimes and friction properties given appropriate attributes of the material
such as surface roughness, grain size, and hardness.

Tai and Muller developed a technique for determining Young’s modulus
by measuring the deflection of a polysilicon microbridge using a force measur-
ing stylus [41]. The accuracy of such a measurement, however, is dependent
on how well one knows the geometry of the bridge structure and the residual
stresses, if any, which could affect the stiffness.

1.2.2 Fracture of Silicon Micromechanical Devices

Fan and Howe developed a structure to measure the fracture toughness, K¢,
of polysilicon microbridges subjected to a high residual tensile stress [12].
At the center of the structure, the configuration of the bridge resembles
a compact tension specimen with a deep notch. When the microbridge is
etched the residual stress either fractures the bridge at the notch, or does
not, depending on the specific geometry used. Fan and Howe claim that
performing a number of tests with different geometries establishes an upper
and lower bound for Kj¢. In conclusion, Fan and Howe determine a “critical
geometry” defined as the ratio of fracture toughness to an assumed residual
stress. Kjc values or “critical geometry” factors obtained from such tests,
however, must be scrutinized carefully for two reasons. First, the notch is a
stress concentration, rot a crack; therefore, when the device is etched, it may
be that given a high prestress the state of stress at the root of the notch may
exceed the cohesive strength of the polysilicon initiating a crack which in
turn gives a K well in excess of the actual Kjc. Second, the residual stress
can only be inferred, it is not measured directly, which introduces some error.

A potentially promising approach to fracture toughness testing of mi-
crodevices was conducted by Johansson and Schweitz (23]. In their experi-
ment, single crystal silicon micro-cantilevers, electrochemically etched, were
deflected by a force and displacement sensing diamond tipped stylus un-
til fracture. The thickness, length, and width of the cantilevers varied from
8—16um, 75—500um, and 75—240um, respectively. The test was perfcrmed
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in situ in a scanning electron microscope giving immediate observations of
the fracture surface without handling or exposure to the environment. The
advantage of this approach lies in the visual resolution and depth of field
possible with the SEM which allows for accurate positioning of the stylus
over the cantilever. Clearly, without the depth resclution of a SEM, posi-
tioning the stylus over the cantilever while viewing it at an angle with an
optical microscope would be very difficult. Otherwise, a method for placing
the stylus over the cantilever must be devised for the stylus would hide the
cantilever from view when the microscope objective is above the cantilever.
Johansson and Schweitz, however, did not compute a K¢ based on a known
crack initiation site and corresponding K factor. Rather, they computed
the fracture stress from beam theory, and correlated the result to random
surface flaws generated during fabrication. The fracture stresses averaged
about 2% of Young’s modulus which is very close to the 2.06% reported by
Eisner [8]. Eisner fractured silicon whiskers in tension with diameters on
the order of 1um. Tensile loading was accomplished using micromanipula-
tors and a damped pendulum bob. Peterson and Read also fractured silicon
whiskers in bending and reported fracture stress values as high as 2.6% of
E [35).

Experiments similar to that of Johansson and Schweitz were conducted
with a nanoindenter by Nix and Weihs [21]{22]. The nanoindenter was used
to measure the bending stiffness of gold and LPCVD (Low Pressure Chem-
ical Vapor Deposition) SiNx micro-cantilevers deflected at the tip. Young's
modulus was then computed using beam theory equations. Although frac-
ture experiments were not conducted, it is possible to use the nanoindenter
to deflect micro-cantilevers until fracture with a known stress intensity factor
associated with a pre-crack.

1.2.3 Fracture Toughness of Single Crystal Silicon

Fracture toughness experiments on silicon have been performed and docu-
mented by several researchers. Chen and Leipold determined the fracture
toughness of single crystal silicon as a function of the orientation of the crys-
tal axes. K¢ values were determined for the < 111 >, < 110 >, and < 100 >
planes to be 0.82 M N/m*/?,0.90 MN/m>/2,0.95 M N/m?/?, respectively [5].
In their experiment, a Knoop diamond indentation initiated a pre-crack on
the top surface of a beam which was then fractured in four point bending.

5



Later, Chen and Leipold determined the ;¢ of single crystal silicon in the
< 111 > plane to be 1 MN/m3? [4]. A double torsion test specimen was
used where pre-cracking was accomplished by driving a wedge into a notch
machined into the edge of the silicon specimen. Chen and Hsu reported that
the lower K¢ value determined in [5] was Cue to residual compressive stress
in the region of the indentation site [3].

1.2.4 Stress Corrosion Fatigue in Ceramics and Sili-
con

Subcritical crack growth in glass and ceramics is well documented with a large
body of literature available for review. A.G. Evans and S.M. Wiederhorn have
published many informative articles about stress corrosion cracking in silica,
alumina, glass, and other ceramics. Evans gives a good review of the various
test configurations and procedures used to determine K¢ values for brittle
materials [10]. In this article, Evans discusses single edge cracked tension
specimens, three point bending, compact tension, double cantilever, tapered
double cantilever, double torsion, constant moment, and wedge loaded dou-
ble cantilever tests; equations for the corresponding K; are also given. Also
discussed is the relation between the crack growth rate and compliance of
the specimen. Wiederhorn gives a good review and discussion of the char-
acterization of subcritical crack growth in ceramics [45]. In Wiederhorn’s
article, crack propagation data for silica is presented showing the depen-
dence of humidity and stress on crack velocity and the three characteristic
regions of subcritical crack growth on 'fi—‘: versus K plots. Region I, or the
slow growth region, is attributable to a stress corrosion reaction at the crack
tip enhanced by the presence of stress. In region I, crack growth depends on
the rate of the chemical reaction at the crack tip, and exponentially on the
applied stress. Region II, or the stress independent region, is a flat region
where the crack velocity is independent of stress but depends strongly on the
rate of water transport to the crack tip. Region III, or the fast growth region,
is independent of water content and exponentially dependent on stress. It
is generally accepted that crack growth in Region III is related to the struc-
ture of the material itself rather than environmental factors. Generally, these
curves are determined by applying a static stress to a test specimen and mea-
suring directly or indirectly the crack growth. Evans has shown that these



three regions also characterize subcritical crack growth in ceramic materi-
als that are dynamically loaded either through constant strain rate or stress
rate conditions [11]. Magida et al. developed lifetime predictions and design
criteria for static and dynamic loading of a machinable glass ceramic used
in the construction of NASA’s Gamma Ray Observatory [29]. Ritter et al
studied the effect of temperature and humidity on delayed failure of optical
glass fibers [36]. The fatigue model used in the analysis exponentially relates
crack velocity to an activation energy that is overcome by the presence of a
stress intensity. Temperature and the partial pressure of water are included
in the model directly. A comparison is made between the activation energy
calculated and other values previously reported in the literature.

Fatigue data on silicon is less well documented and understood. Chen
and Knapp performed a stress corrosion experiment with single crystal sili-
con bars that were pre-cracked by a Knoop microhardness tester and stati-
cally loaded in four point bending [6]. The surface of the beam was wetted
with a wick with various liquids including distilled water, and the time to
fracture recorded. The loading was on the order of 95% of the fracture load
of those specimens which failed instantly. The beams which survived the
initial loading were monitored for a period of up to two weeks. None failed,
therefore Chen and Knapp concluded that stress corrosion cracking does not
occur in the liquid environments they tested. However, it should be noted
that direct measurements of the extension of the pre-crack were not made,
and that it is possible the load was not sufficient to give a stress intensity
above the stress corrosion threshold value. Calculations of the K factor
for those beams which did not fail were not made. Wong and Holbrook per-
formed a similar experiment where single crystal silicon wafers were indented
and pre-cracked with a Leitz Miniload microhardness tester equipped with
an optical microscope [49]. The radial cracks were measured as a function of
time in both ambient air and deionized water. Wong and Holbrook reported
they did not observe crack healing, nor crack extension, and ultimetely con-
cluded that stress corrosion cracking does not occur in silicon because of
the formation of a protective oxide layer on the surface of the silicon. The
explanation given is that the molar mismatch between the oxide and silicon
causes a compressive stress at the crack tip which cancels the residual tensile
field of the indentation thereby removing the driving force for crack exten-
sion. Although this explanation is entirely valid for indentation experiments,
external loads need to be applied to maintain a I; above the threshold for
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stress corrosion cracking to occur. It should also be noted that the silicon
dioxide layer which forms on the surface of silicon exposed to air or water
is subject to stress corrosion cracking. Bhaduri and Wang measured sub-
critical crack growth in single crystal silicon using load relaxation methods
with pre-cracked double torsion specimens [2]. Plots of crack velocity ver-
sus stress intensity are presented with corresponding slopes and intercepts.
Their results show region III behavior in ambient air at 10% humidity and
liquid water. Interestingly, region II behavior was observed when an electric
field was applied to the specimen. The slope and intercept of the fatigue
curves associated with these cases appeared constant when voltages of 15
and 50 volts were applied. No definitive explanation was given for electri-
cally enhanced subcritical cracking, although Bhaduri and Wang indicated
that other research xrs had found an electromechanical effect in silicon where
hardness values decreased when a potential of a few volts was applied [44](1].
Such experiments would be of interest to the micromechanical community
because micromechanical devices are electrically excited, and small currents
do flow through the structure including flexural members that provide the
necessary degrees of freedom. Bhaduri and Wang’s findings for silicon in air
and water are reasonable considering that silicon is instantly oxidized to form
a thin layer of silicon dioxide, or silica, when exposed to a moist environment.
It is the silica which is attacked by moisture. As a crack propagates through
the material pure silicon is continuously exposed which is then oxidized and
subjected to the stress corrosion reaction. Chen and Leipold used acoustic
emission monitoring and load relaxation methods to determine if subcritical
cracking was present in single crystal silicon [4]. Pre-cracked double torsion
specimens were used. No load relaxation was observed during the hold times
suggesting the absence of subcritical cracking. However, these hold times
were on the order of 5-10 minutes which may not have been long enough to
detect any changes. Acoustic emission monitoring also revealed no subcriti-
cal cracking during the hold period. However, it is unlikely a stress corrosion
reaction in single crystal silicon would be detected by such a technique be-
cause of the absence of grain boundaries and discontinuities in the material
that would produce a measurable emission.



1.2.5 Plasticity in Silicon

Plasticity in silicon has been investigated on a fundamental level by a num-
ber of researchers. Hirsch et al. studied the effect of doping on disloca-
tion mobility in single crystal silicon using a microhardness indenter on a
heated stage [37]. He found doping enhances dislocation motion, n dop-
ing being more effective than p doping, at temperatures of approximately
400°C. Although this temperature is higher than the practical limits of a
micromechanical device, the highest p type doping concentration used in the
test was 2 x 10'8 atoms/cm™> which is considerably less than the concen-
trations used to fabricate microdevices. The typical surface concentration
of a micromechanical device produced by boron diffrsion is on the order of
1x10%° atoms/cm™>. Furthermore, silicon diffused with boron has a substan-
tial dislocation density, which is not the case with wafers doped during the
melt. Such wafers are virtually dislocation free. The mechanism of disloca-
tion motion is attributed to electrically charged kinks which bridge secondary
Peierls potentials. Theses kinks migrate in the direction of the dislocation
line given adequate thermal energy and applied stress [20]. Haasen also de-
veloped expressions for kink migration based on activation energies necessary
to overcome the Peierls potential {16]. Rybicki and Pirouz evaluated fracture
and indentation plasticity in silicon using a microhardness tester and disloca-
tion free float zone single crystal silicon [39]. P type silicon was boron doped
in the melt to a concentration of 4.5 x 10'7 atoms/cm™, and n type silicon
was phosphorous doped to 6 x 10'® atoms/cm™>. Rybicki and Pirouz found
that doping affects hardness to a small extent, with n type doping giving the
greatest dislocation mobility. The brittle to ductile transition temperature
was reduced 15°C in the p material, and 35°C for the n type material. The
DBTT for pure undoped silicon is 660°C. Considering the high DBTT of
silicon and the relatively small effect doping has on this temperature, room
temperature dislocation motion should be negligibly small; therefore, dy-
namic fatigue of p-type silicon at room temperature is not expected. No
doping related effects on fracture toughness were observed.

1.2.6 Conclusion

From review of the literature, fatigue in heavily boron doped micromechan-
ical structures is an open question. Stress corrosion fatigue appears to be



present in single crystal silicon, and may be enhanced by an electrical poten-
tial. Room temperature dynamic fatigue should not be a factor because of
the high DBTT, and the relative insensitivity of this temperature to doping
concentration.a
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Chapter 2

Fatigue Test Structure Design

2.1 Test Structure Layout (Generation 1)

Figures 2.1 and 2.2 are diagrams of the generation 1 micromechanical fatigue
test structure. The dimensions shown correspond to the T38 series of fatigue
devices which were the first operational devices fabricated providing prelimi-
nary test data. A cantilever beam 11.5 ym x 130 pm x 2.9 pm thick is etched
free from the surface of a silicon wafer. At the free end of the cantilever is a
rectangular plate 120 um wide by 157 um long. This plate provides area for
electrostatic forcing and sensing, and gold metallic plating which is used as a
counterweight to lower and adjust the natural frequency. The volume etched
beneath the beam and plate extends to a depth of approximately 70 pm.
Gold bridge electrodes are used to electrostatically drive the cantilever and
sense its motion.

10 pm from the base of the cantilever a pre-crack or crack initiation site
is introduced into the surface of the beam. A small extension of a crack
from this site reduces the total stiffness of the beam causing a significant
change in resonant frequency. Therefore, driving the cantilever continuously
at resonance while simultaneously measuring the frequency is a method by
which the rate of propagation of a crack from the initiation site can be
determined. The location of the crack initiation site, near the base of the
cantilever, maximizes the frequency sensitivity to cracking and the bending
moment applied to the crack.

The method of fatigue testing proposed in this experiment is analogous to

11
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compliance testing on a macro-scale where a constant load or displacement
is applied to a pre-cracked specimen and the corresponding change in load
or displacement is measured as a function of time and correlated to crack
growth. However, in this experiment, the frequency is measured which in
turn is related to a stiffness change at the crack site.

The cantilever configuration has a number of advantages. First, and
foremost, is simplicity. The geometry does not present unusual difficulties
in analyzing the dynamics of the structure, or in determining the internal
stresses. Furthermore, a tensile stress field will be generated in the vicinity
of the crack initiation site so that mode I fracture and fatigue behavior should
dominate. The device is free standing, meaning that it is connected at one
point only to the base; therefore, the structure stress relieves itself from the
lattice contraction caused by the boron diffusion[48]. If this contraction is
not free to occur when the device is etched, as in a structure connected at two
points, significant tensile stresses can be generated. A large pretension in the
structure would likely cause uncontrolled breakage at the crack initiation site
during etching. Lastly, the bridge electrodes allow a deep well to be etched
beneath the beam and plate minimizing viscous air damping.

The dimensions corresponding to the plan view of the device, Figure 2.1,
are fixed by the photomask. However, the thickness dimensions shown in
the cross section, Figure 2.2, are process variables which can be varied by
altering diffusion and deposition times.

2.2 Dynamic Modeling

An accurate dynamic model of the device is necessary to make predictions
of the resonant frequency, and the anticipated frequency shift given a known
crack geometry and extension. A number of alternatives are available for
modeling. A three degree of freedom lumped system was chosen for three
reasons. First, a discrete system simplifies the analysis versus solving the
partial differential equation of a Bernoulli/Euler beam with a mass and in-
ertia at the free end. Second, the effects of cracking and damping are easily
included; plant modeling for control system design is simplified, and addi-
tional stiffnesses, such as that associated with flexing of the end plate, can
be incorporated if necessary. Thirdly, for an uncracked uniform beam, two
degrees of freedom appear to be the minimum necessary for accurate pre-
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dictions of the first mode frequency because the large mass and inertia of
the end plate produce translational and rotational inertial forces that tend
to act independently in deflecting the beam. Single degree of freedom mod-
els do not fully account for this effect as shown later by the relatively high
frequencies calculated.

In order to solve the equations of motion of the device many parame-
ters must be computed: masses, inertias, stiffnesses, damping constants, and
electrostatic forces. Furthermore, other important factors must be calculated
including output voltages, control system parameters, stress intensities, sur-
face tension forces, critical clearances in the electrode air gaps, electrode
buckling calculations, and additional dynamics such as torsional modes and
out of plane bending. To optimize the design of the fatigue structure many
test cases must be analyzed until the best combination of dimensions and
variable process parameters can be found that satisfies the requirements of
the fatigue experiment and the fabrication process. Because of the large
number of calculations involved in a single analysis, a design program was
written in PASCAL to serve as the principal design, modeling, and analysis
tool. This program is called the FTEST2.PAS design program. A copy of
the code is included in Appendix G. Appendix G.1 contains the input file
for the T38 design.

2.2.1 Derivation of Matrix Equations

In this section, Lagrange’s equations are used to derive the matrix equations
of motion of the system. A polynomial is chosen approximating the beam
deflection and satisfying the geometric boundary conditions at the fixed end.
Continuity must also be preserved on the interior of the beam to at least
first order except at the crack site where a rotational spring that models the
crack produces a discontinuity in slope. Equations 2.1 and 2.2 are used to
as the approximation.

va(z, 1) = vr(t) (;‘)2 + valt) (;-)3 0<z<ly  (21)

ac

v(z,2) = wa(2) (;-)2 + vs(t) ({—)3 10z —ly) la<z<le (22)

The form of Equations 2.1 and 2.2 is that of a cantilever statically deflected
by an external moment and force applied at the free end. By modeling
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this way, it is implicitly assumed the beam always responds statically to the
inertial forces and torques of the end plate. Considering the large mass of
the end plate (M = 1.51 x 10~? kg), relative to the mass of the beam (m, =
9.97 x 10~2 kg), the inertial forces of the beam will be almost negligible;
therefore, the approximation should be close to the actual deflection. n(t)
and vy(t) are time varying independent degrees of freedom and 6(t) is the
motion at the crack site. Equation 2.1 satisfies the geometric boundary
conditions at the fixed end of the cantilever and preserves continuity to second
order anywhere in the interior of the beam over the specified region; likewise
for Equation 2.2. At z = g, continuity in displacement must be maintained,
however, continuity in slope is not because of the rotational spring, K,. The
boundary conditions therefore are:

ve(0,¢) = 0 (2.3)
va(lab,t) = v,,(e,,b,t) (2.4)
Ov,(z, 1) _
( e ) _ 0 (2.5)
Ovy(z, 1) _ [ 9va(z,t) _
(—_02: ),:co,, (——&r s = 0(t) (2.6)
where
Oua(z,t) _ 201 3vz ,
b - ecw + ) 0<z< oy (2.7)
6vb(z,t) _ _2& 3_vg_ 2
- 3—3: — = lzcx+ egcz +0 eab S z ..<_ eac (2'8)

Figure 2.3 defines the coordinate system and displacement vector of the
deflected cantilever. Also shown are the nonconservative external forces of
the driving electrode and damping.

Using the Bernoulli/Euler model, the strain energy stored in the can-
tilever can be written as follows.

EI o (&v,\" EI [t (8) 1., 5
V=— A (622) d.‘t-l-—é— (——) d$+§]&,-0 (2.9)

2 ., \ Oz
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Figure 2.3: Micromechanical Cantilever

The strain energy stored in the cantilever reduces to an integration over the
entire length of the beam, because the second derivative of v, and v, are
identical. The strain energy can be simplified to the following equation.

EI fta (v, 1., .,
V=" /o (Eﬁ) do + 3 K, 0 (2.10)

The kinetic energy of the tip mass and beam are given by Equations 2.11
and 2.12 respectively.

Ti = oM {[”"““”(ax?t) ] +[ (7). }
=, r=Lac

1. (8%, )\° ;
ol (azat),,:,“ (1)
. _ l lab .2 l lac .2
Tg = 2m/o v;(z) dz + 2m/l“ v;(z) dr (2.12)

where,

m = mass/length of beam: (l:—n-g-)
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M = mass of end plate: (kg)

I = rotational inertia of end plate: (kg n?)
¢, = distance from point C to c.g. of end plate along x axis: (m)

f,, = height of c.g. of end plate along y axis: (m)

Substituting Equations 2.1 and 2.2 into Equations 2.10, 2.11, and 2.12, and
performing the indicated operations gives the following set of equations.

V= 2;5(:](1)3 + 3vy0; + 3v3) + %I\’,ﬁz (2.13)
Ty = %M {(fo’l + oy + (3065 + (Caty + (52 + C60ebc)2}
+%i (72—, + %ﬁbz + 0)2 (2.14)
where,
G = (1 + 28‘?—95)
G = (1 + 3%’)
(s = (l + %if)
A
G = 3
- e (4058 8) bl (33 (5) 4 (5))
e (m-5(2) +3(E)
+T§oz (% + laclas(lab — lac) — %) (2.15)



For £,, > . and O, = Oy
LRV CAN Y (Al
12 3 \lyp 48
11 (tac)' 1k
20 4 \{, 5
eﬂé.{.eg(g ) — _3_b ~  -8c
3 actab\Cab — ac 3 ~ 3

and with the following definitions

Q

Q
-
I~ N
N‘&
a 12
e |a
S——
LY

vz = 00
, K,
Kg = 7%:

the potential and kinetic energies can be rewritten as follows.

V= [3 (v1 + 3vv0 + 3vd) + 21\303 (2.16)

Ty = SM{(Gon+ Gatn G + (G + Goi + Cots)'}

1-/2. 3 2
+§I (r“v1+ o —Ug + ebc) (2.17)
. mby (0} D102 02 mly, . .  mly. .  mlac.
Ts="—5 (?*T*‘% 1 — it + =g (218)

Using Equations 2.16, 2.17, and 2.18, the Lagrangian, L, can be written
in terms of vy, vz, and vs.

L=Ty+Tg-V. (2.19)
Lagrange’s equations are written as follows.
.j_t (%\) _ % - g (2.20)
% (gf;) _ g—f; -5 (2.21)
% (%) _ ?9(% Y (2.22)



Substituting Equations 2.16, 2.17, 2.18, and 2.19 into Equations 2.20 through
2.22 gives

41 ml,
(M(<$+<3)+ 13

ac

) v + (M(C1C2 + (aGs) + 6?21 + mé“) v; +

] mlac) . 4FEI 6 El -
v3 +

2
(M(C1C3 + Cale) + T B + g =5 (2.23)

(Mae+ao+g+ mls) i1+ (M +3+ s iy 4

ac

31 m&,c) s 6 EI 12 E'Iv2 _=5, (2.24)

M ((2€s + (sGe) + it + 5 2 nt =

ac

2] ml,.\ .
(M(C1C3 + aCe) + i + —4—') by +
¢

(M(CzCa + (se) + Eye,,_ + m5“°) by +

mé,.

(M((§ +)+ é— + 3 ) s+ Kpvs = =3 (2.25)
be

Expressions for the generalized forces, =, =3, and =3 will be derived in a later
section. First, the frequencies of the system will be computed and compared
to that obtained for single degree of freedom models. Defining

Al | ml,,
my = MG+ + 5+ (2.26)
| 61  ml,.
myz = M(GG+ (als) + o TG_ (2.27)
21 lac
mis = M(GG+Cale) + Tt + m__4__ (2.28)
ma = M2 (2.29)
9l  ml,
mp = M(G+G)+ 7zt m7 (2.30)
31 0,
mas = M((ls + CsCe) + it + -125— (2.31)
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ma

ma2

the matrix equation of motion can be written as

my; My M3
Mg Mo M3
ma; M3z M33

or,

Defining

= my3

ma3
MG+ ¢+

4EI
Iz

ac

6 EI
€

0

k12

12 EI
4

0

= ks

k23
Kg

O k1,
) + | kn
U3 k3

MU+KU=R

my My2 — M
= avlig
ma; M22

LN

kl 2 k 13
k22 k23
k32 k33

+

m3 _
[ =

[m13 mzs] =M(T;

m33=M3

21

i

(2.32)
(2.33)

(2.34)
(2.35)

(2.36)

(2.37)
(2.38)

(2.39)

(2.40)
(2.41)
(2.42)
(2.43)

=

=2

{11 1]
w
[ —

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)
(2.49)



["“ b2 ) _K, (2.50)

kZl k22
ki | _
| =K (2.51)
23

[ ks ks | =KE (2.52)

= { %: } (2.53)

%" } (2.54)

e e,
g: g: S:
|
I |
——

2]

2] (%) o [2 ] () (%) oo

To analyze the dynamics of the cantilever system without cracking, the
third row and column of the matrix equation of motion is eliminated giving
the following equation.

M,U,+KsUs =Ry (2.56)

The free vibration problem is solved by setting R4 = 0 and substituting
a solution of the form

Uy=¢,e (2.57)
into Equation 2.56. For nontrivial solutions,
K4 —w’Myul =0 (2.58)
The determinant is expanded and solved for the natural frequencies:
_ (A2 — AB)1/2
R (4 . 48) (2.59)
A+ (A2 —4B)\/?
wy, = \[ + ; ) (2.60)
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where,

kyymag + kaamyy — 2my2k12
2
my M2 — My
.2
ky1 ka2 — kiy

myymaz — mfz

A =

B =

Numerical values will be given for w;, and w,,, but first two single degree of
freedom models will be evaluated.

2.2.2 Single Degree of Freedom Models

Two single degree of freedom models are now presented which illustrate the
relative inaccuracy of these idealizations in computing the natural frequency.
In the first model, rotational inertia effects are neglected by assuming the
motion is predominately translational. A point load is applied at the center
of gravity of the structure, point G, in Figure 2.3 and the deflection computed
at point C, v.. The spring constant associated with v, is as follows.

3 EI
[

—————ac (1 " -3;—;35) (2.61)

K. =

Excluding damping, summing forces in the vertical direction at point C gives
the following equation of motion.

Mo, + Ko, = Fr (2.62)

The frequency for this model is given as follows.

/Kc
we =\[31 (2.63)

The second model includes rotational inertia. Summing moments about
point A in Figure 2.3 gives the equation of motion.

iAé 4+ K¢0 =Ty (264)
where,

TA = FT(Zac + ecd)
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DOF | Model Type | Frequency (Hz)
2 Lagrangian wy, = 2745
wy, = 102153
1 Translational w, =4554
1 Rotational wy = 3246

Table 2.1: Frequency Comparison for T38 Series

To = M(Cogo+lac) +1
9 = 2
Tl
K 331(1+5°f5)
‘o = 3legs
oc 1+-2T:c_

The natural frequency for this model is as follows.

wp = ‘/% (2.65)

2.2.3 Model Comparison

Table 2.1 compares the calculated frequencies for the different dynamic mod-
els. Details of these calculations are performed in Appendix A. Although it
may appear that the two degree of freedom model is a rather complex and
elaborate approach to a relatively simple problem, Table 2.1 shows substan-
tial differences in the calculated frequencies for the single degree of freedom
models versus the two degree of freedom model. Because the frequencies
are higher, the single degree of freedom models represent stiffer structures;
therefore, to obtain a particular K at the crack site a lower displacement
would be calculated than for the two degree of freedom model. This fact
has important implications on the overall design of the structure because the
total travel of the end plate is limited by the air gap dimension under the
bridge electrodes. This dimension is constrained by the fabrication process
to at most about 12um. In essence, accurate dynamic modeling of the device
in this investigation is the key to obtaining the correct stress intensity at the
crack initiation site given the limited travel ot the end plate. It is the trans-
lational and rotational inertia forces of the end plate that must produce the
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necessary displacements and stresses to initiate and propagate a subcritical
crack through the material. Fatigue in brittle solids occurs only over a nar-
row range of stress intensity factors; therefore, careful design and accurate
predictions of frequency and displacement is necessary for success.

2.2.4 Finite Element Modal Analysis

As explained in the previous section, accurate dynamic modeling of the struc-
ture is critical for success. In the derivation of the equations of motion for the
cantilever system, two key assumptions were made which could have signifi-
cant bearing on the accuracy of the model. First, the end plate was assumed
to act as a rigid body, and second, a 2 degree of freedom Bernoulli/Euler
model was assumed to be an adequate representation of the displacement
of the uncracked beam. In fact, the end plate flexes a small amount, some
shear deformation occurs in the beam, and the polynomial representing the
beam displacement is more complex than assumed in Equations 2.1 and 2.2.
Therefore, to verify the validity of the equations of motion, and to check
the calculations performed in the design program, FTEST2.PAS, a finite el-
ement modal analysis of the structure was performed using ABAQUS. The
dynamics of the end plate were analyzed separately to determine if additional
degrees of freedom should be included in the equations of motion to account
for the flexibility of the end plate. The input data lists and pertinent output
data for the cantilever system and end plate are included in Appendix B.

Modal Analysis of End Plate

Figure 2.4 is a plot of the end plate mesh. The dimensions are identical to
those shown in Figure 2.1. Four node shell elements model the silicon plate,
and eight node brick elements model the gold counterweight. A Cartesian
rectangular coordinate system is located on the centerline of the plate on the
fixed edge as shown in Figure 2.4. Figures 2.5 through 2.7 display the first
three modes of the end plate. The frequency of the first bending mode of
the end plate determines whether or not the end plate can be treated as a
rigid body in the dynamic analysis. If this frequency is at least a factor of 4
larger than the first mode of the plate and cantilever structure, the dynamics
of the end plate can be ignored. The finite element analysis computes this
first mode frequency to be 25.6 KHz which is a factor of 9 greater than the
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Figure 2.4: End Plate Mesh
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= 25.6 KHz

Figure 2.6: Mode 2 (Torsion) w; = 148.34 KHz
27

Figure 2.5: Mode 1 (Bending) w1




Figure 2.7: Mode 3 (Bending) w3 = 291.82 KHz

first mode of the system, 2745 Hz. Given the large separation of the two
frequencies in the frequency spectrum, the dynamics of the end plate will
have negligible effect and can be ignored.

The FTEST2.PAS design program also computes the first mode of the
end plate using beam theory and a single degree of freedom dynamic model.
The model used in the program is similar to the one presented in Section 2.2.2
that includes rotational inertia. The design program computes a value of 28.5
KHz which is approximately 10% higher than the value computed from the
finite element analysis. As expected, the single degree of freedom approach
leads to a stiffer structure with a higher natural frequency; however, the
level of accuracy obtained with the design program is sufficient to ensure
that flexing of the end plate is not significant.

Modal Analysis Cantilever System

Figure 2.8 is a plot of the cantilever and plate system mesh. Thirteen two
node beam elements model the cantilever. The model of the end plate re-
mains unchanged. Figures 2.9 through 2.11 display the first three modes
of the system. The first bending mode of the cantilever and end plate sys-
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Figure 2.8: Mesh Plot of Cantilever and Plate System

Figure 2.9: Mode 1 (Bending) w, = 2720 Hz
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10.3 KHz

Figure 2.10: Mode 2 (Bending) w,

Figure 2.11: Mode 3 (Torsion) w3 = 21.0 KHz
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tem has a frequency of 2720 Hz which is within 1% of the value, 2745 Hz,
computed by the design program FTEST2.PAS. The second mode is a combi-
nation of bending in the xy plane and torsion about the x axis. The torsional
component is small and occurs by dynamic coupling through the product of
inertia Ixz. The cross product, Ixz, occurs because the center of gravity of
the structure is located ap; roximately 8.3um above the x axis; therefore,
motion in the xy plane couples into torsion about the x axis because the
translational inertia forces acting at the center of mass acts through a lever
arm with respect to the lengthwise axis of the beam. The bending frequency
in the xy plane computed by the design program is 12.8 KHz which is 19%
higher than the frequency computed by ABAQUS, 10.3 KHz. The higher
frequency is accounted for by two factors. First, a single degree of freedom
model for bending is employed which is inherently stiffer than a multi degree
of freedom model; and second, the torsional coupling is neglected. Although,
the calculated value is somewhat high, the accuracy achieved with the design
program is still adequate enough to ensure this mode occurs at a frequency
approximately a factor of 4 greater than the first bending mode. The third
mode is again a combination of torsion about the x axis and bending in the
xy plane. Contrary to the second mode, the torsional component is large and
the bending component small. The design program calculates a torsional fre-
quency of 22.5 KHz, which is 7% greater than the value, 21.0 KHz, computed
by ABAQUS. Better accuracy is obtained in predicting this mode because
the beam is prismatic (a constant cross section) so that torsion is accurately
modeled by a single degree of freedom: the angular rotation of one cross
section relative to the next. The difference in calculated frequency is again
caused by neglecting the coupling into bending motion in the xy plane.

2.2.5 Nonlinear Dynamics

In Section 2.2.1, the equation of motion for the cantilever system, Equa-
tion 2.55, was derived including a rotational spring to account for the addi-
tional compliance of the pre-crack. However, this compliance behaves nonlin-
early. As the beam travels upward through the zero displacement position,
the crack closes giving zero compliance for the rotational spring; likewise, as
the crack opens, the compliance of the spring increases to its previous value.
To analyze this problem, the equation of motion for the uncracked beam can
be solved, and at the zero displacement position, use this solution as an ini-

31



tial condition for the equation of motion of the cracked beam system. When
the cantilever returns to the zero displacement position, use the solution of
the cracked beam dynamics as an input to the uncracked system, and so on
until a steady state condition is reached. The frequency at this condition will
be close to an average of the first mode frequencies of the two systems. This
approach is purely numerical, and therefore, lacks the advantages of work-
ing with linear equations. Furthermore, insight is lost by not having simple
mathematical expressions to examine. Rather, a quasi-linearization of the
system is desirable such that Equation 2.55 can be corrected accordingly,
then analyzed using standard linear modal analysis techniques.

Dynamic systems with nonlinear elements can be analyzed using “describ-
ing functions”. The method has been extensively developed for nonlinear
control systems which operate with nonlinearities such as relays, backlash,
static friction, and actuator saturation [43]. It is assumed that given a peri-
odic input to the system, the effects of the nonlinearities are smoothed out by
feedback and the filtering of the controller and plant. Therefore, the output
remains essentially periodic despite the nonlinearities.

To determine the effect of the nonlinear compliance of the pre-crack, the
moment at any point in the beam is first computed.

0%v,(z,t)

Mo(:l‘,t) = EI——a?_ (266)
_ 0%vy(z,t)

- 2l (2.67)

Either equation above will suffice in computing Moy, for the second derivative
of v, and v, are equal. Setting r = ¢,y gives the moment at the crack site
which can be written in vector notion as follows. Recall that U(t) is the
vector of genera<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>