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Abstract

Innovations in chemistry are often informed by decades of accumulated chemical knowledge encoded
into manually constructed reaction templates and rules of reactivity. Examples include retrosyn-
thetic analysis for organic synthesis planning; chemical reaction mechanism generation for complex
combustion, pyrolysis, and low-temperature oxidation processes; and elucidation of low-energy cat-
alytic pathways. Nonetheless, all known chemistry is dwarfed by the vastness of chemical space,
most of which still lies unexplored. De novo reaction discovery is rare but presents an enormous
potential to uncover novel synthetic routes and key pathways in reaction mechanisms. Automated
potential energy surface exploration has become a promising method to search for new reaction
pathways, albeit at the expense of costly quantum mechanical calculations.

Therefore, this thesis develops methods to enable more computationally efficient discovery while
also correctly determining thermochemistry and kinetics to allow for the construction of accurate
reaction mechanisms.

By utilizing automated transition state finding algorithms based on quantum chemistry, the
thesis assesses which algorithm is most viable for the efficient discovery of new reactions, and it
identifies key pathways of an important ketohydroperoxide system. It demonstrates that quantum
chemical data can be used with emerging machine learning methods to estimate molecular thermo-
chemistry. Leveraging a large data set of low-quality data in combination with a small data set of
high-accuracy data in a transfer learning approach enables predictions that significantly improve
upon group additivity methods, which are common in automated mechanism generation, and upon
machine learning models that only use density functional theory data. Furthermore, an automated
workflow is developed to further enhance high-level quantum chemistry calculations using bond
additivity corrections.

While quantum chemistry calculations are incredibly useful at providing highly accurate data,
their high cost—especially when applied to thousands of reaction pathways—limits their utility for
discovering new chemistry. Therefore, this thesis improves the throughput of automated discovery
via a combination of quantum chemistry data generation and reactivity prediction using deep learn-
ing. It automatically generates a data set of tens of thousands of elementary chemical reactions
that are used to train a novel activation energy prediction model, which can quickly assess the
importance of new reactions.

Thesis Supervisor: William H. Green
Title: Hoyt C. Hottel Professor in Chemical Engineering
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Chapter 1

Introduction

Innovations in chemistry are often informed by decades of accumulated chemical knowledge encoded

into manually constructed reaction templates and rules of reactivity. An example is the computer-

generation of chemical kinetic models in complex systems, such as combustion and pyrolysis, the

importance of which has long been recognized in the scientific community.1–3 Detailed (microkinetic)

mechanisms attempt to enumerate all relevant elementary reaction steps along with their rates. By

modeling a system in this manner, the potential for extrapolation to new conditions and systems

is greatest and individual reactions can be investigated with quantum chemistry. Nonetheless, all

known chemistry is dwarfed by the vastness of chemical space, most of which still lies unexplored.4

De novo reaction discovery is rare but presents an enormous potential to uncover novel, key pathways

in reaction mechanisms.

Intricate chemical processes may require mechanisms with thousands of species and more than

ten thousand reactions.5,6 Figure 1.1 illustrates the sizes of some published mechanisms and how

they have grown over the years. As a result of the large model sizes, which require thousands of

parameters, manual construction of detailed chemical mechanisms is very tedious and often not

tractable.7 Automated reaction mechanism generation8–11 very significantly reduces the amount of

manual effort required and has enabled successful generation of complex radical-driven mechanisms

for many different systems.12–21

Automated reaction mechanism generation is only possible if thousands of thermochemical and

kinetic parameters can be rapidly estimated to sufficient accuracy. While several estimation algo-

rithms exist,11,22–24 limited data often do not afford the required accuracy and more sophisticated

algorithms would be needed. Automated reaction mechanism generation also relies on reaction

templates that are based on rules of reactivity manually established over decades of research.11

Therefore, it is not suitable for discovering novel chemistry, especially for systems that have not

had the same amount of attention as combustion and pyrolysis. For example, new reactions that

were discovered by Magoon et al.25 significantly altered the results reported by Vandewiele et al.16

in their study of jet fuel pyrolysis, and the novel pathway reported by Jalan et al.26 has been shown

13
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one-step reaction. Combustion chemistry research through
detailed kinetic modeling has proceeded since the pioneering
work of Dixon-Lewis and coworkers in 1960s [5,6]. At
beginning, the development of detailed kinetic models is
only limited to fuels with small molecules, such as H2 and
CH4. With the development of experimental and theoretical
methods, more and more detailed kinetic models have been
proposed for gaseous fuels and liquid fuels. Detailed reviews
about the development of combustion chemistry research
before 2000 can be found in Refs. [7–10].
The combustion chemistry research grows rapidly with

the development of computational combustion and computer
power, especially after 2000. A wide range of studies have
been performed on the combustion chemistry of liquid fuels,
such as alkanes, cycloalkanes, aromatics, alcohols, esters,
and surrogate fuels. Figure 1 shows kinetic models devel-
oped in the past decades [11]. As reviewed by Klippenstein
[12], a great part of papers published on Combustion and
Flame in 2015 are related to the kinetic modeling research.
Meanwhile, the accuracy and applicability of kinetic models
are also emphasized in recent years [13]. More and more
theoretical studies have been performed to obtain accurate
rate constants, which greatly help improve the performance
of kinetic models. To extend the application conditions
of kinetic models, comprehensive validations have been
performed for models of many typical hydrocarbon fuels

and biofuels. This mainly results from the rapidly growing
combustion diagnostics, providing extensive speciation data
and global parameters.
Two major concerns about the development of combustion

chemistry are: (1) how to make kinetic models more chem-
ical rigorous; (2) how to better serve for the practical com-
bustion technology. For a long time, the concept to develop
kinetic models is at the balance of fully chemical rigorous
models and engineering applicable models. Detailed kinetic
models that contain large chemical information usually are
not applicable for numerical simulation of practical combus-
tion devices since the computation power is limited by the
use of turbulent model and enormous grid numbers. Mean-
while, reduced kinetic models will inevitably lose necessary
chemical information to predict many chemistry-controlled
phenomena such as ignition, extinction, flame propagation,
and pollutant formation. Therefore, for the first concern, the
chemical rigorousness of a kinetic model definitely relies on
the advances in combustion diagnostic methods and theoreti-
cal calculation methods. For the second concern, the applica-
tion of kinetic models with more inclusive chemical informa-
tion in numerical simulation of practical combustion devices
relies on the advances in computation power, turbulent flame
simulation methods, and model reduction methods.
This review summarizes the recent progress in combustion

chemistry research and highlights the challenges and perspec-

Figure 1         Correlation between number of reactions and number of species for various published kinetic models of hydrocarbons and bio-derived fuels [11] (color
online).Figure 1.1. Typical sizes of published kinetic models.5,6 Reprinted by permission from Springer Nature:

Science China Chemistry “Challenges and Perspectives of Combustion Chemistry Research” Yuan W., Li
Y., Qi F., c○ 2017.

to be influential in low-temperature oxidation.27 To enable routine discovery of new reactions across

many systems, methods for exploring unknown chemical space—without human bias—become nec-

essary. The goal of this thesis is to provide methods for finding unknown reactions automatically

and to enable more accurate estimation of parameters relevant in automated mechanism generation.

1.1 Automated reaction mechanism generation

Simply stated, a reaction mechanism is a list of reactions, ideally elementary, along with their kinetic

parameters and thermochemical parameters for all of the species involved in the reactions. Several

software packages exist for generating reaction mechanisms automatically. They include Reaction,8

EXGAS,9 Genesys,10 and the Reaction Mechanism Generator (RMG).11

RMG uses tens of reaction templates, also known as families, in a rate-based algorithm28 to

generate a chemical mechanism.11 Figure 1.2 illustrates a simplified version of the basic RMG

expansion algorithm. The initial species with their respective concentrations are loaded into the

“core”. In each iteration, all possible reactions between the species in the core are generated using

the reaction families, which may lead to new species that populate the “edge”. The system is then

simulated as an isothermal batch reactor and the edge species with the highest production rate is

added to the core at the end of the iteration. This procedure is repeated until certain termination
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Fig. 8. Flowchart of the rate-based algorithm as implemented in RMG. The generated mechanism contains the final set of species and reactions in the core.

Fig. 9. Schematic depicting expansion of the model core as RMG proceeds.

criteria for which to end the simulation (i.e. a specified end time or
goal conversion for some initial species). The initial species in the
reaction system are placed into the ‘‘core’’ of the model and RMG
determines all the possible reactions that can result from the core
species, generating a list of possible product species on the ‘‘edge’’.
The reactor is initialized at t = 0 and integrated in time until the
flux Ri =

dCi
dt to an edge species i exceeds ϵRchar , where ϵ is the

user-specified error tolerance and Rchar is the characteristic flux of
the system, defined by:

Rchar =


j

R2
j species j ∈ core. (7)

The edge species with the largest flux is brought into the
core, and the reaction generation and integration steps are
repeated until the termination criteria is satisfied, generating
the final kinetic model, which now contains all the species and
reactions that have significant fluxes at the reaction conditions.
The expansion of the model core is depicted in Fig. 9.

Currently, there are two reactor types that can be simulated
within RMG. The first is the SimpleReactor, which is an
isothermal, isobaric reactor in the gas phase. The second is the
LiquidReactor, which is isothermal and isochoric reactor in the
liquid phase. More information regarding liquid phase solvation
and diffusion-limited kinetics estimation is detailed in Section 3.2.

3. Additional features

A number of additional features in RMG include the ability to
automatically generate pressure-dependent rate coefficients, reac-
tions in the liquid phase, estimation of transport properties, and
sensitivity analysis. In addition, the latest version of CanTherm is
bundled within RMG and can be used to calculate thermochemical
and kinetic quantities through transition state theory when used
in conjunction with quantum chemistry software. In order to as-
sist browsing the database and working with RMG-style species
representations, a web front end has been developed and hosted
on http://rmg.mit.edu, where many tools for RMG are available.

Figure 1.2. Expansion of an RMG model.11 In each iteration, all possible reactions are generated between
species in the core and the edge species with the highest flux is moved to the core. The figure is licensed
under CC BY 4.0, c○ 2016 Gao C.W., Allen J.W., Green W.H., West R.H.

criteria are satisfied. To obtain the reaction rates necessary for simulating the system in each

iteration, RMG computes the rate constant of a reaction by averaging across a hierarchical tree of

rate estimation rules.11 A separate tree exists for each reaction family. As reactions are generally

assumed to be reversible, the reverse rate constant is calculated in a thermodynamically consistent

manner using29

𝑘f
𝑘r

= 𝐾∘
eq = exp

[︂
−Δrxn𝐺

∘(𝑇 )

𝑅𝑇

]︂
(1.1)

𝑘f is the forward rate constant, 𝑘r is the reverse rate constant, 𝐾∘
eq is the equilibrium constant,

Δrxn𝐺
∘(𝑇 ) is the Gibbs free energy change of reaction, 𝑅 is the gas constant, and 𝑇 is the tempera-

ture. Δrxn𝐺
∘(𝑇 ) can be computed using the thermochemical parameters of each species: enthalpy of

formation, entropy, and heat capacity. RMG estimates these parameters using group additivity22,23

and the hydrogen bond increment method.24

As already alluded to previously, the existing RMG reaction templates may not encode all

necessary transformations, thereby precluding the incorporation of novel reactions. Furthermore,

parameter estimation errors during the mechanism growth phase may cause important reactions to

not be included if the production rate of a species is underestimated. Therefore, a methodology for

discovering novel chemistry and improved parameter/property estimation are desirable.

1.2 Automated discovery of chemical reactions

In order to discover novel chemical reactions that are not restricted to the heuristics imposed by

software like RMG, experimental or first-principles (ab initio) methods become necessary. However,

some kinetically significant reactions might be very difficult to detect and measure experimentally

because of very low concentrations or difficulties in isolating specific reactions.7 Theoretical methods,

including quantum chemistry and molecular dynamics, naturally isolate reactions and concentration

dependence is not an issue.

In quantum chemistry, ab initio discovery is possible by solving the time-independent Schrödinger
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Figure 1.3. Simplified representation of a reactive potential energy surface. The black dots mark the
location of minima corresponding to reactant and products, and the red dots mark the location of saddle
points corresponding to transition states. The arrows follow the minimum energy paths.

equation for several nuclear configurations, which produces a potential energy surface (PES). The

equation is given by30

𝐻̂Ψ = 𝐸Ψ (1.2)

𝐻̂ is the Hamiltonian operator, Ψ is the wave function, and 𝐸 is the electronic energy. In general,

Equation (1.2) cannot be solved analytically and the PES is of very high dimensionality, which

leads to large computational cost. As a result, many different approximation methods exist, with

popular ones ranging from density functional theory (DFT) to high-accuracy coupled cluster theory.

A simplified representation of a potential energy surface in two dimensions is shown in Figure 1.3.

The most important points on the surface are stationary points, where the force acting on atoms is

zero. A minimum, as indicated by the valleys in Figure 1.3, corresponds to a stable chemical species

and a first-order saddle point, which is a maximum in one direction and a minimum in all other

directions, corresponds to a transition state. The steepest descent path going in both directions

from the saddle point is the reaction path known as the minimum energy path (MEP). Computing

the second derivative matrix (Hessian) at stationary points yields the information necessary for
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computing statistical mechanical partition functions. The partition function of a stable species

gives rise to its thermochemistry29 and the partition functions of reactant and transition state

enable calculating the rate constant for the reaction using transition state theory (TST).31–33

Minimizations to obtain optimized intermediates (reactants and products) can be completed

routinely and systematically,34 but obtaining transition states is associated with significantly more

difficulty due to the non-convex optimizations to first-order saddle points. In general, the problem

is to find all relevant transition states and associated products given a reactant. The high dimen-

sionality of the PES greatly complicates this search. For use in automated reaction mechanism

generation, only the reactions with large enough rates are required, which most often correspond

to the reactions with small potential energy barrier heights. Many different transition state search

algorithms exist, of which a non-exhaustive set is described in Chapter 2. Many additional methods,

several based on molecular dynamics,35–38 are being actively developed. Recent reviews provide an

overview of many of the methods.39–41

1.3 Machine learning in chemistry

Machine learning has undoubtedly had a tremendous impact in recent years with many examples

making headlines outside of the scientific community. Popular reinforcement learning models have

revolutionized many games: AlphaZero has achieved performances in chess and Go that were pre-

viously not thought possible.42 The follow-up model, MuZero, can achieve better-than-grandmaster

performance even when the rules of the game are not provided.43 Even complex video games like

StarCraft II are starting to be dominated by machine learning models.44 In other areas, the BERT

natural language processing model,45 human face generation,46 and medical radiograph diagnosis47

have also made the news. A significant contributor to the machine learning boom was the seminal

performance by Krizhevsky et al. on the ImageNet classification task.48

Machine learning in chemistry has not yet enjoyed the same level of popularity as it has in

computer science but Figure 1.4 shows that this is rapidly changing. Machine learning is a very broad

term for many different parameter estimation techniques, which include quantitative structure-

activity relationships (QSAR) that have been popular in chemistry for a long time.49 Deep learning

generally refers to the use of deep artificial neural networks, which have the benefit that they do

not require manual feature engineering, which is required for traditional machine learning methods.

They also strongly benefit from the large data sets that are becoming more and more prevalent in

the chemical and biological sciences. Their training time only scales linearly with the number of

training data and the time to evaluate a deep learning model is independent of the training data

size. While often considered to be a “black box” model, deep neural networks can be integrated with

physically meaningful representations in chemistry (e.g., graph convolutions50–52) that are starting

to enable physical interpretation.
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Figure 1.4. Number of Web of Science articles for machine learning in chemistry related topics from 2000
to 2019 (the exact search term was (“machine learning” OR “artificial intelligence” OR “deep learning”) AND
chemi* ).

As evidenced by Figure 1.4, summarizing the entire literature on deep learning in chemistry is

nearly impossible, but there exist many current reviews. They mostly deal with organic synthe-

sis planning (retrosynthesis, reaction prediction, product ranking),53–58 drug/materials design and

discovery,54–57,59–61 and quantum chemistry.54,55,57–59,62 Less frequent topics include structural bi-

ology,59 spectroscopy,54 literature extraction,54 sensors,55 deep generative modeling to generate and

optimize molecules,63 optimization of reaction parameters and process conditions,57,58 analytical

chemistry and catalysis,58 and applications in chemical engineering.64

Kinetic mechanism elucidation has so far been mostly limited to the methods described in Sec-

tion 1.1, but deep learning methods are promising for enhancing automated mechanism generation

by enabling more efficient discovery of novel reactions and improved kinetic and thermochemical

parameter estimation. In fact, the poor scaling of electronic structure methods with molecular

size mentioned in Section 1.2 may preclude purely quantum-chemistry-based discovery, whereas

new deep learning techniques coupled with the increasing availability of chemical data sets may

greatly improve the scalability of reaction discovery. However, quantitative data for high-accuracy

molecular property prediction and reaction discovery is generally still lacking.

1.4 Thesis overview

My thesis has made several contributions toward developing methods to uncover novel reactivity

and to enable improved estimation of thermochemical parameters. Chapter 2 examines reaction

discovery using only quantum chemistry. Chapter 3 introduces machine learning methods to create
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a thermochemistry estimator using molecular graph input. Chapter 4 builds upon Chapter 2 by

generating a large data set of reactions using quantum chemistry and Chapter 5 uses this data to

learn a model of chemical reactivity. The following outlines the chapters in more detail.

Chapter 2 investigates automated transition state finding algorithms and assesses their viability

for ab initio automated reaction discovery. It focuses on a ketohydroperoxide important in liquid

phase autoxidation and in gas phase partial oxidation and pre-ignition chemistry for which only

a few pathways are known due to its low concentration, instability, and various analytical chem-

istry limitations. We discovered 75 elementary-step unimolecular reactions through a combination

of DFT with several automated transition state search algorithms: the Berny algorithm coupled

with the freezing string method, single- and double-ended growing string methods, KinBot, and the

single-component artificial force induced reaction method. This joint approach significantly outper-

formed previous manual and automated transition state searches—68 of the discovered reactions

were previously unknown and completely unexpected. We showed that the low-barrier chemical

reactions involve promising new chemistry that may be relevant in atmospheric and combustion

systems. The chapter highlights the complexity of chemical space exploration and the advantage of

combined application of several approaches. When a combined approach is not feasible, the single

most promising method was the single-ended growing string method.

Chapter 3 develops a new thermochemistry estimator that leverages small, but high-quality

data sets to provide accurate estimates for automated reaction mechanism generation. For deep

neural networks to be effective, they require large training data sets which are only available at low

levels of theory, whereas automated reaction mechanism generation frequently requires data at the

level of high-accuracy quantum chemistry methods beyond DFT. To overcome these limitations,

we calculated new high-level data sets and derived bond additivity corrections to significantly im-

prove enthalpies of formation. We adopted a transfer learning technique to train neural network

models for the prediction of thermochemical parameters that achieve good performance even with

relatively small sets of high-accuracy data. The training data for the entropy model was carefully

selected so that important conformational effects were captured. Along with the newly developed

thermochemistry predictors, we implemented an automated method for deriving bond additivity

corrections that can be used to enhance high-quality data generation in the future.

Chapter 4 uses the most promising automated transition state finding method in Chapter 2,

the single-ended growing string method, to generate a data set of tens of thousands of elementary

chemical reactions. It thereby addresses the current scarcity of quantitative chemical reaction data,

especially of atom-mapped reactions. We used automated potential energy surface exploration to

generate 12 000 organic reactions involving H, C, N, and O atoms calculated at the 𝜔B97X-D3/def2-

TZVP quantum chemistry level by performing geometry optimizations and frequency calculations

for reactants, products, and transition states of all reactions. Additionally, we extracted atom-

mapped reaction SMILES, activation energies, and enthalpies of reaction. We showed that the data
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is made up of very diverse reactions spanning across a wide range of activation energies, including

many reactions of kinetic relevance.

Chapter 5 addresses the problem of the large computational cost of quantum chemistry calcula-

tions for finding unknown reactions. Using the data developed in Chapter 4, we developed a deep

learning model to train an activation energy predictor which can quickly assess the importance of

new candidate reactions. We constructed the model in a chemically meaningful way such that it

predominantly learns from the parts of the molecules that contribute most to the activation energy.

Moreover, we constructed the model in a way such that it is not restricted to specific reaction

templates as mentioned in Section 1.1, but can produce an estimate for any atom-mapped reaction.

Chapter 6 highlights some of the limitations of the research in this thesis and the current state-

of-the-art and accordingly proposes future directions of study.
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Chapter 2

Unimolecular reaction pathways of a

γ-ketohydroperoxide from combined application

of automated reaction discovery methods

This work has previously appeared as Grambow, C. A.; Jamal, A.; Li, Y.-P.; Green, W. H.; Zádor,

J.; Suleimanov, Y. V. Unimolecular Reaction Pathways of a 𝛾-Ketohydroperoxide from Combined

Application of Automated Reaction Discovery Methods. J. Am. Chem. Soc. 2018, 140, 1035–

1048. The artificial force induced reaction method calculations were enabled by Adeel Jamal and

the KinBot calculations were done by Judit Zádor. Yi-Pei Li wrote the code to align reactant and

product structures. Yury Suleimanov analyzed many of the results. The code for reproducing the

results is available at https://github.com/cgrambow/AutomaticReactionDiscovery.

2.1 Introduction

For several decades, chemists have been trying to develop theoretical approaches to predict the

reactivity of specific chemical compounds and to guide chemical discovery. Recent advances in

electronic structure theory and high-performance computer technologies should make it possible

to achieve this long-standing goal, and so achieve a much better understanding of systems where

multiple reactions are occurring simultaneously.1,2 Complex chemistry is common in combustion

chemistry,3 polymerization,4 catalysis,5–7 and environmental processes,8 all of which are subject to

continuous study due to their fundamental and industrial importance. A fundamental understanding

of all chemical compounds and elementary reactions of a given chemical process can facilitate the

design of more effective technologies.9 In general, multiple competing reaction paths exist, which

lead to a variety of products, especially if initial species are highly reactive (e.g., radicals, peroxides,

and catalytic intermediates) or if a system is at high temperature. Historically, new reactions were

discovered experimentally by the serendipitous detection of unexpected products. New reactions
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can also be discovered serendipitously on the computer.10–12 Recently, Zimmerman has intentionally

discovered several important new reactions using quantum chemistry.13,14 However, existing search

techniques are CPU-intensive and sole reliance on experiments to find new reactions is insufficient.

With modern computational capabilities, it should become possible to discover all the important

reaction pathways more reliably and more rapidly than is possible using experiments alone.

A potential energy surface (PES) is a multidimensional function of atomic coordinates that

provides comprehensive information on all reaction paths. Its local minima correspond to reac-

tants, intermediates, and products. These are generally easy to characterize due to simple chemical

bonding rules (in most cases) making it relatively easy to predict their 3D geometries. Numerical

optimization of these geometries is straightforward because the negative of the gradient along the

PES always points downhill (i.e., it is a local minimization problem).15 In fact, automated searches

for local and global minima have already proved to be very successful.16 A more challenging task

is to detect and characterize first-order saddle points that connect local minima along minimum

energy paths (MEPs), which are necessary to describe most transition states (TSs), the key regions

of the PES to calculate reaction rate coefficients. Predicting geometries of TSs is more difficult.

Numerical procedures for saddle points must step uphill in one certain direction (the reaction coordi-

nate, usually unknown a priori) and downhill in all other orthogonal directions—a more challenging

task than finding a local minimum.17 Typically, many low-energy saddle points exist in the vicinity

of minima, which correspond to torsional rearrangements and lead to different conformations of a

given minimum structure. Reactive TSs are mostly higher in energy and correspond to a change in

bonding. Additionally, if one saddle point can be found that directly connects two structures in a

reactive event, often many additional saddle points exist, several of them representing conformers

of the TS.18 Another concern is that the dimension of a PES (3𝑁 − 6) increases with the number

of atoms (𝑁) in the system. Therefore, construction and subsequent global mapping of PESs have

prohibitive computational costs even for reactive systems consisting of only 5–6 atoms. At present,

most saddle points are found by human-guided exploration of reaction pathways. Human expecta-

tions and chemical intuition bias such an approach, usually limiting the search to expected reaction

paths. The process is also slow and tedious. It is therefore highly desirable to develop efficient

methods for automatically searching for unexpected TSs and corresponding reaction pathways on

PESs.

Several effective methods for automatically searching reaction pathways with given reactant(s)

have been proposed recently. Some of these methods are based on adding an external tempera-

ture/pressure control or artificial forces in the initial reactive system, which drive the reaction to

occur in the direction of different products. These include, but are not limited to, metadynam-

ics,19 an ab initio nanoreactor,20 and the artificial-force-induced reaction (AFIR) method.21 While

the former two are based on molecular dynamics (MD) with special techniques to accelerate the

evolution of the reactive system, the artificial force induced reaction (AFIR) strategy of the global
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reaction route mapping (GRRM) method utilizes specially designed minimization functions that are

composed of the adiabatic PES and an artificial force term. In the case of a unimolecular initial re-

actant channel, this strategy, called single-component AFIR (SC-AFIR), utilizes local optimization

procedures between two fragments to explore the reactions possible due to intramolecular pathways.

Several methods which are conceptually similar to AFIR have also been proposed. These are the

single-ended growing string method (SSM),22 in which several nodes along coordinates (defined

in terms of bonds, angles, and torsions) are added to the reactant(s) to drive the search towards

a desired product, and the coordinate driving method (CD),23 which uses constrained electronic

structure optimizations along a series of proposed reaction coordinates in order to detect feasible

reaction pathways.

An alternative strategy is to use a two-step approach. During the first step, a set of possible

product channels is generated using graphical (or combinatorial) rules based on the concept of

the chemical bond17,24 or using a heuristic generation of high-energy reactive complexes followed

by their relaxation to minima.25 During the second step, the algorithm attempts to connect them

with the reactant channel using double-ended saddle point search methods, such as freezing string

(FSM)17,26 or growing string (GSM) methods.24,27 Nudged elastic band methods could also be

used.28,29 It is also possible to heuristically generate guess structures for the TSs30 which are further

refined by conventional methods, such as the Berny method,31–33 as is implemented in the KinBot

program.34,35 If one TS has been identified, programs such as MSTor can automatically search for

its conformers,36,37 and the rate constant can be calculated from the set of conformers, e.g., by

multistructural transition state theory.38

In addition, it is worth noting that some methods based on machine learning algorithms have

recently been proposed for the prediction of organic chemistry reactions.39 However, the predictive

capabilities of such approaches are implicitly limited by the range of reaction types contained in

the training set used, and usually more explicitly limited by the use of specific reaction templates.

Therefore, these methods are unlikely to discover a new and unexpected types of reactions.

While the aforementioned methods have been successfully applied to some organic (and or-

ganometallic) reactions for searching reaction pathways,2,3,13,14,17,40 it is difficult to assess which

methods are most effective, since the simulations were performed separately for different systems

using different algorithms. There is a paucity of comparative studies and understanding of reaction

discovery algorithm performance. In the present work, we aim to address this issue by performing a

joint study of the unimolecular decomposition and isomerization of a 𝛾-ketohydroperoxide (KHP),

due to the importance of this class of molecules in autoxidation and low-temperature combustion

chemistry.10,41–43 We have already studied the chemistry of this KHP using the Berny method and

FSM for which six unimolecular decomposition saddle points were found.17 Thus, this system also

serves as a reference point for the methods that were available to us when we initiated this project

and that we selected for the present calculations. This includes one single-ended (SSM) and two
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double-ended (FSM and GSM) methods, the heuristic KinBot algorithm, and SC-AFIR. In the

following sections, we discuss the rich chemistry discovered using these methods and the advantages

of such a joint approach. We also compare the performance and analyze the main pitfalls of each

method. We hope that the results of this work will lead to the development of more cost-effective

and reliable automated reaction discovery methods for general application in complex chemical

systems.

2.2 Computational procedures

2.2.1 Combinatorial search using string methods and berny optimization

The computational procedure for the automated identification of reaction pathways using string

methods is nearly identical to the one previously proposed by us for the freezing string method

(FSM).17 In the present study, we considered only breaking and forming a maximum of three bonds

and only allowed products with permissible valences (e.g., maximum of four for carbon). In addition,

the breaking of double (or higher order) bonds was not permitted. Products were only added to the

set of new products if their connectivity was different from all other products and if they were not

isomorphic with the reactant molecule (i.e., conformational changes were not counted as reactions).

This procedure resulted in a set of 4324 possible product structures.

Reaction Mechanism Generator (RMG) thermodynamic libraries44 and Benson’s group additiv-

ity approach45 were used to estimate the standard reaction enthalpies, Δ𝐻∘
r , for all the generated re-

actions. We did not attempt to discover reactions with an estimated Δ𝐻∘
r higher than 20 kcalmol−1.

Following this filtering step, 562 product structures remained. In order to verify whether the group

additivity estimates were a sufficient proxy for the true reaction energies, more accurate estimates

using density functional theory (DFT) were calculated for the set of filtered reactions. This analysis

showed that group additivity was sufficient for the reaction filtering step, although several reactions

were included in the filtered set that would have been excluded based on the DFT criterion, and

it is possible that some additional reactions would have been included; however, we chose to only

consider the set of 562 products, as this already constitutes a very broad search space.

Initial geometries of the reactant and product(s) were generated by constructing linear connec-

tions based on rules corresponding to the hybridization of atoms and by constructing ring structures

from templates as implemented in the Open Babel program.46 The energies of generated structures

were minimized using the MMFF94 force field also implemented in the program. When the product

channels contained two or three fragments, they were translated and rotated in space in order to

maximize the overlap with the initial reactant molecule while constrained by a minimum distance

from each other. The dihedral angles of rotatable bonds were also modified to further maximize the

overlap.
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The reactant and product conformers were optimized using Berny optimization at the B3LYP/6-

31+G* level of theory implemented in the Gaussian 09 program.47 Searches for guess transition state

(TS) structures were initiated using the three string methods: FSM, GSM, and SSM.

For FSM, we used the same default spacing parameters as in our previous study17 (20 nodes, 6

perpendicular gradients per node). For this work, we rewrote the FSM algorithm, included more

termination criteria checks and interfaced it with Gaussian 09. We also added one restarting option

which we found to provide more stability to the FSM calculations: When the electronic structure

calculation failed, the previous gradient was used for a given node. This was not done if the

node had just been generated in the interpolation step of the FSM algorithm where a previous

gradient calculation was not yet available. We also set the maximum number of nodes to 40 in

order to terminate the FSM calculation when it becomes stuck and ends up oscillating back and

forth between geometries.

For GSM and SSM, we also used standard spacing parameters and settings (100 maximum

iterations, exactly 11 nodes for GSM, a maximum of 30 nodes for SSM with a minimum node

spacing of 1.0Å) and used the program developed by one of the authors of those methods.48 After

successful generation of the string paths, the first reactive peak was selected as an initial guess TS

structure provided that at least one bond changed in the structure, which was determined using

automatic identification of bonds as implemented in Open Babel.46

The next step was the optimization of these guess structures using the Berny optimization

algorithm as implemented in Gaussian 09. While the GSM and SSM code already incorporates a

Hessian-free exact saddle point search, we nevertheless reoptimized the structures with the Berny

algorithm for consistency across all methods. This was required anyway for GSM paths where the

first reactive barrier closest to the reactant was not the maximum barrier in the entire GSM path,

since the GSM code only completes an exact saddle point search for the highest energy structure.

Finally, intrinsic reaction path (IRC) calculations were performed to verify whether the detected

saddle point corresponded to the expected reactant and product paths.

2.2.2 Single-component artificial force induced reaction method

For SC-AFIR,21,49 we used the M06-2X/3-21G level of theory50 to enable inexpensive searches along

the SC-AFIR paths. To be consistent with the other methods, we then reoptimized all critical

points from the SC-AFIR search with B3LYP/6-31+G* using Berny optimization in Gaussian 09,

including IRC calculations leading to products. It should be noted that only mechanistic studies

were considered and gradient calls are not reported here for the SC-AFIR calculations. We set the

𝛾-value of the SC-AFIR function to 400 kJmol−1 to encompass a large search space, and considered

all artificial forces to every fragment within KHP through intramolecular interactions.
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2.2.3 Heuristic KinBot approach

KinBot is a heuristic search program, which proposes sensible guesses for certain types of very

broad reaction classes based on hard-won chemical knowledge.34,35 For instance, during internal

abstractions of atoms or groups, symbolically
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2.3 Heuristic KinBot Approach 

KinBot is a heuristic search program, which proposes sensible guesses for certain types of very 

broad reaction classes based on hard-won chemical knowledge. [34] For instance, during internal 

abstractions of atoms or groups, symbolically , the atom that is being placed 

from one connectivity to another (B) is typically half-way between the original A and final C 

atoms, with further prescriptions for bond angles, for instance depending on the relative positions 

of A and C in the molecule, or the type of the atoms involved. Creating these prescribed centers 

automatically and systematically essentially obviates human effort and eliminates human mistakes 

(hence the name, KinBot = “Kinetics roBot”), while still capitalizing on the knowledge we 

gathered for certain types of reactions. Note that KinBot was initially created and optimized for 

reactions involving C, H, and O atom containing radicals. Creating heuristics for radicals is a much 

simpler task than creating ones for closed shell molecules, because the sensible, i.e., low energy, 

, the atom that is being

placed from one connectivity to another (B) is typically halfway between the original A and final C

atoms, with further prescriptions for bond angles, for instance depending on the relative positions

of A and C in the molecule, or the type of the atoms involved. Creating these prescribed centers

automatically and systematically essentially obviates human effort and eliminates human mistakes

(hence the name, KinBot = “Kinetics roBot”), while still capitalizing on the knowledge we gathered

for certain types of reactions. Note that KinBot was initially created and optimized for reactions

involving C, H, and O atom containing radicals. Creating heuristics for radicals is a much simpler

task than creating ones for closed shell molecules, because the sensible, i.e., low-energy, pathways in

a radical decomposition or isomerization almost always involve the radical center. For closed shell

molecules, such as the KHP in this study, it is harder to predict (and code) the preferred pathways.

In the KinBot case, we analyzed the synergetic effect of the joint application of several ap-

proaches. For this purpose, the corresponding calculations were performed in two steps. During

the first run, similar to the other methods, we used KinBot’s default reaction types and parameters

without any prior knowledge about the KHP chemistry. In the second run, we extended the reac-

tion types and included some variations to allow for more proposed structures than previously while

taking into account the chemical reactions detected in the first run and by the other four methods

(FSM, GSM, SSM, and SC-AFIR). Most significantly, in the first run, KinBot’s constraints limited

the search space primarily to the transfer of H atoms to other atoms, but in the second run KinBot

considered transferring every atom type to every other one since many reactions of this type have

been observed with the other methods. As a result of relaxing KinBot’s criteria, the possibilities

were significantly expanded resulting in the detection of significantly more channels. Because of the

different nature of these calculations, we will distinguish the KinBot results from the first calcula-

tions (as a “blind method assessment”) and the second calculations (as an “extended guided run”)

throughout the chapter as well as in the relevant figures and table. Note that a similar “refining”

approach could be implemented for the other methods. For instance, in the case of the string meth-

ods (FSM/GSM/SSM), inclusion of zwitterionic structures in the initial set of product channels

as well as inclusion of channels with Δ𝐻∘
r higher than 20 kcalmol−1 would lead to the detection

of more channels. However, in the present study, we limit ourselves only to illustrative refining of

KinBot calculations due to the flexibility of the KinBot algorithm and the ease of implementing

modifications in the corresponding code.

In Figure 2.1 we summarize the broad reaction types invoked by KinBot for KHP. It is important

to note, however, that many times the intended reactions do not happen, but often the calculations
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Figure 2.1. The schematics of the reactions invoked by KinBot automatically for KHP. The exact bond
lengths, angles, and dihedrals depend on the type of the atoms in the active center and the length of the
chain between A and C.

converge rapidly to a slightly different, yet chemically significant saddle point. It is possible to

increase the number of templates further to allow for even more complex rearrangements, but we

did not extend beyond the ones in Figure 2.1.

When constructing the corresponding 3D structures for the reaction types in Figure 2.1, moving

the atoms in the reactive center to their desired positions all at once is not feasible in most cases,

because it causes the other, spectator atoms to clash, which, in turn leads to the rapid fragmentation

or chaotic rearrangement of the structure in the subsequent optimization steps. To achieve these

generic, but prescribed steric structures in the reactive center of the molecule, KinBot manipulates

some large-amplitude motions, typically involving rotations around the appropriate dihedral angles,

in a stepwise fashion. In each step, a constrained optimization is carried out at a very cheap

level of theory to lead the structure approximately along a MEP-like valley. We used HF/STO-3G

(first, generic run) and AM1 (second, expanded run) as cheap levels in this work, both of which

have negligible computational costs, especially considering that in these constrained optimizations

(all bond lengths are frozen) only a greatly reduced dimensionality gradient is needed for most

steps. Once the desired conformation was achieved, we invoked the Berny algorithm to optimize

the structure to a first-order saddle point at the B3LYP/6-31G* level of theory. Finally, for the

successfully optimized structures we used IRC calculations to identify the reactant and the products,

considering success if the reactant is the initial structure and the product is not. KinBot does not

check whether the found saddle point is the intended one or not. KinBot also uses Gaussian 0947

to carry out both the constrained and the final optimizations.

2.3 Comparative analysis of methods

Although the comparative analysis of the methods presented in this section focuses on rather tech-

nical aspects of the present calculations, we note that automated reaction discovery methodology

is in an early stage and such an analysis can significantly improve the capability of discovering new

and important chemistry.
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2.3.1 Computational/statistical details

The statistical details of the automated search calculations are summarized in Table 2.1. This in-

cludes the total number of channels tested, total number of gradient calls (excluding IRC), total

number of detected valid (i.e., reactive) saddle points, number of channels with wrong reactants,

number of conformational saddle points, number of crashed searches, and the sources of failures.

The statistics on the energy barriers and detected chemical reactions are discussed in the following

subsections. Table 2.1 shows that SSM detected the highest number of chemical reactions corre-

sponding to elementary steps of converting 𝛾-ketohydroperoxide; 371 out of 562 channels resulted

in detecting valid (i.e., reactive) saddle points. However, most of these channels correspond to du-

plicates (either exact duplicates or duplicates due to the same reaction with different but equivalent

hydrogens) and only 50 saddle points are truly unique. Nevertheless, SSM provides the highest

number of unique saddle points among all methods tested in the present work with GSM discover-

ing 46 unique saddle points. However, Table 2.1 shows that the cost for such success is rather high.

The computational expenses of these two growing string methods, estimated as the total number

of gradient calls, were more than an order of magnitude higher than those of the FSM calculations.

From this perspective, FSM represents an inexpensive alternative; 39 unique saddle points were

detected and the total number of gradient calls was smaller by a factor of ten compared to GSM

and SSM.

Rough estimates using all geometries of the detected saddle points in the KinBot study show

that the Hessian matrix calculations are approximately five times more expensive than the corre-

sponding gradient calculations at the high level of theory (B3LYP/6-31+G*), therefore, the initial

construction of the Hessian adds only a negligible cost to its updates, which require only the gra-

dients. The cost of the highly constrained Hessian calculations used to pre-optimize the structures

is negligible at the HF/STO-3G (first run) or AM1 (second run) levels. This means that the com-

putational expense of KinBot (first run) was about eight times less than that of FSM, with the

total number of saddle points detected by KinBot being slightly lower (32 in the first run). When

KinBot was run with the extended set of rules, it was still about three times cheaper than FSM and

detected more saddle points (48). Unfortunately, we were unable to extract the total number of

gradient calls for the SC-AFIR calculations as we did not have access to the corresponding source

code. The total number of unique saddle points detected by SC-AFIR was rather small (7).

For the three string methods, the ratio of the average number of gradient calls per successfully

detected reaction is 308 (FSM):793 (GSM):1221 (SSM). These numbers take into account both the

string method and Berny optimization steps. This ratio is in line with previous estimates for string

method calculations,22,24,26,27 which indirectly shows that all three string methods provide equally

good saddle point guess structures for subsequent Berny optimization in cases where the saddle

point was eventually successfully detected. However, it is clearly different from the ratio for the
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Table 2.1. Summary of the automated detection of elementary chemical reaction steps using string methods
(FSM, GSM, SSM), SC-AFIR, and KinBot.

Method FSM GSM SSM SC-AFIR
KinBot
First run
(Generic)

KinBot
Second run
(Expanded)

Channels
(𝑁channel)

562 562 562 74l 200 443

Gradients
(w/o IRC) 65 420a 756 227a 649 589a N/A 8046a (10 093b) 23 458a (25 333c)

Valid TSs
(𝑁detected) 153 27%d – 215 38%d – 371 66%d – 17 23%d – 83 42%d – 162 37%d –

∙ Unique 39 7%d 26%e 46 8%d 21%e 50 9%d 14%e 7 10%d 41%e 32 16%d 39%e 48 11%d 30%e

∙ Duplicatesg 102 18%d 67%e 155 28%d 72%e 297 53%d 80%e 10 14%d 59%e 51 26%d 61%e 114 26%d 70%e

∙ Equivalent
hydrogensh

12 2%d 8%e 14 2%d 6%e 24 4%d 6%e 0 0%d 0%e 0 0%d 0%e 0 0%d 0%e

∙ Intendedi 19 3%d 12%e 24 4%d 11%e 27 5%d 7%e 14 19%d 82%e – – – – – –
∙ Unintended 134 24%d 88%e 191 34%d 89%e 344 61%d 93%e 3 4%d 18%e – – – – – –

Wrong reactant 85 15%d – 39 7%d – 23 4%d – 4 5%d – 13 6%d – 22 5%d –

Conformational 3 0.5%d – 13 2%d – 0 0%d – 53 72%d – 48 24%d – 69 16%d –

Crashed
(𝑁crashes)

321 57%d – 295 52%d – 168 30%d – – – – 56m 28%d – 190m 43%d –

∙ Berny
failure

230 41%d 72%f 36 6%d 12%f 20 4%d 12%f – – – – – – – – –

∙ Gradient
failurej

91 16%d 28%f 88 16%d 30%f 124 22%d 74%f – – – – – – – – –

∙ Maximum
iterations

0 0%d 0%f 171 30%d 58%f 18 3%d 11%f – – – – – – – – –

∙ Dissociativek 0 0%d 0%f 6 1%d 2%f 6 1%d 4%f – – – – – – – – –
aB3LYP/6-31+G*. bGradients in HF/STO-3G constrained minimization steps. cGradients in AM1 constrained
minimization steps. d1/𝑁channel × 100% (percentage of total number of channels). e1/𝑁detected × 100% (percentage
of total valid saddle points). f1/𝑁crashes × 100% (percentage of total crashed searches). gProduct and saddle point
have the same adjacency matrix as a unique reaction product and saddle point. hReaction is a duplicate because
energetically equivalent hydrogens undergo the same reaction but with different atom indices. iFor double-ended
FSM and GSM: reaction that connects reactant and product structure specified in the input; for single-ended SSM:
reaction that contains the bond changes that correspond to the driving coordinates specified in the input; for SC-
AFIR: reaction where the IRC calculation at the high level matches the products predicted by the low-level AFIR
calculation; KinBot does not test this. jUmbrella term for any error in the electronic structure program during a
single gradient calculation. kCombinatorially generated reactions do not include barrierless dissociation reactions so
these channels are placed together with crashed searches. lFor SC-AFIR, the total number of channels is the number
of first-step channels as given by the low-level M06-2X/3-21G search. mKinBot crashed searches includes internal
coordinate failures in the pre-optimization phase and any type of error in the Berny optimization.

number of gradient calls in the corresponding total calculations from Table 2.1 suggesting that our

procedure of detecting saddle points can be optimized in the future. For instance, Table 2.1 shows

that many string method calculations resulted in crashed searches. FSM calculations crashed in

more than 50% of cases; 321 out of 562 channels finished with an error. Interestingly, the source

of errors is different for all string methods. For FSM, the crashed searches were primarily due to

failure of the Berny optimization step (∼70%). Within the Berny optimization failures, almost 60%

were due to reaching the maximum number of optimization steps (100), which signifies the inability
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to converge to a transition state structure in a reasonable amount of time. Approximately 20% of

Berny optimization failures resulted from redundant internal coordinate errors in Gaussian 09. It

is possible that such errors could be prevented by restarting the optimizations, but they typically

are a result of chemically unreasonable geometries. Fewer than 20% of Berny optimization failures

were due to convergence issues in the SCF calculations. Apparently, the maximum from the FSM

path often provides a poor guess structure for further optimization17 and often leads to crashes.

Moreover, such guess structures can lead to saddle points which do not connect directly to the

initial reactant; 85 wrong saddle points were detected in the FSM calculations. Note that GSM

and SSM also detected a high number of saddle points for wrong reactant channels, 39 and 23,

respectively. In such cases, GSM string paths exhibit multiple elementary steps with apparently

bad guess structures for further Berny optimization.

For GSM, a high number of crashes (295) was also observed, although most of them originated

from reaching the maximum number of iterations inside the GSM algorithm (100 per channel),

most probably due to the impossibility of constructing a growing string path in a limited number

of iterations in cases where the string contains multiple elementary steps. It should be noted that

such a path profile does not imply that a single-elementary-step profile does not exist for the same

reaction, but GSM does not attempt to exclusively search for single-step pathways in its current

implementation. Among the string methods, SSM exhibited the lowest amount of crashes, mainly

from convergence failures encountered in the external quantum chemistry package Gaussian 09

during gradient calculations. While analyzing/fixing failures of external software packages is not

included in the scope of the present study, the other sources of crashes can be considered as “essential”

failures of the algorithms as they require many gradient calls and lead to undesired results. To

summarize our comparison between the string methods, we point out that SSM provides the highest

number of detected saddle points, although many of them are duplicates. It also exhibits the lowest

number of crashes and undesired channels, that is, wrong reactant(s) or conformational saddle

points. However, it requires more gradient calls per successfully detected channel than the other

string methods.

For SC-AFIR, we located 74 channels resulting from KHP as a reactant, 53 of which lead back

to the reactant. The IRC scans and analysis of atom indices show that all of these channels are

torsional conformation changes, that is, they do not result from bond scission and rearrangements.

The reason for such a result is likely due to the different nature of the SC-AFIR algorithm, which

treats saddle points relatively equally, whereas the string methods more strongly bias the search

space by directly specifying reactants and products to only obtain reactive saddle points. Similarly,

KinBot automatically performs conformational rearrangements before directly searching for reactive

saddle points, thus leading to a smaller percentage of conformational saddle points relative to the

total number of channels. The level of theory used for the SC-AFIR calculations (M06-2X/3-21G),

which may enable more accurate treatment of long-range dispersion interactions resulting from
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intramolecular hydrogen bonding interactions involving any of the three oxygen atoms, may also

somewhat influence the SC-AFIR search,51 although further study would be required to validate

this hypothesis. It is possible that dispersion interactions may only become significant with a

larger basis set. After Berny optimization of saddle point structures at the B3LYP/6-31+G* level,

72% of the channels found were conformational saddle points (see Table 2.1). Yet, from the 17

saddle points corresponding to chemical reactions, 41% were unique. Meanwhile, 59% were exact

duplicates (which includes different TS conformers), suggesting that SC-AFIR was relatively efficient

at locating unique saddle points after the high level optimization. Additionally, it is possible that

some saddle points that exist on the B3LYP/6-31+G* PES may not exist on the M06-2X/3-21G

PES. Recently, Maeda and Harabuchi showed that SC-AFIR settings can be tuned in order to

discover many more reactions and result in a performance that is comparable to the other methods.52

For KinBot, the percentage of crashed searches is comparable to the string methods (28% and

43% in the first and second runs, respectively) but the number of undesired saddle points (conforma-

tional or leading to wrong reactant(s)) is higher (61 and 91 in the first and second runs, respectively),

originating mainly from conformational saddle points (48 and 69 in the first and second runs, re-

spectively), that is, points that do not correspond to a real chemical reaction event. KinBot is most

efficient in that it has the highest percentage of detected unique saddle points relative to its total

number of channels searched. KinBot crashed for two main reasons: (1) the created guess structure

was too far from any saddle points, so the number of maximum iterations (100) was reached in the

Berny optimization, or (2) the Cartesian geometry modifications prescribed by KinBot could not

be completed in redundant coordinates in Gaussian. While the first mode of failure is clearly an

intrinsic property of KinBot, that is, not all saddle points can be predicted using templates, the

second mode of failure can be prevented by taking smaller steps between consecutive geometry mod-

ification steps or imposing a looser convergence criterion for the intermediate step. We applied such

techniques to minimize the second failure mode in the second run. In addition, in the second set of

KinBot calculations finer IRC profiles were constructed leading to the detection of new channels.

For example, a finer IRC profile may result in the detection of a biradical structure, which otherwise

would not be detected if the IRC calculation steps past the shallow biradical well. It is interesting

to note that although the total number of channels for the extended KinBot run was significantly

larger than the total number of channels in the first run, 443 versus 200 (see Table 2.1), there were

a significantly larger number of crashes, thus only resulting in 162 additional valid channels while

yielding 16 additional unique channels. Evidently, some of the additional channels that KinBot

explored in the extended run were less chemically feasible and resulted in worse initial saddle point

structures, which then ran into errors during the Berny optimization step. This behavior is more

similar to that observed with the string methods in that it renders KinBot less efficient at finding

valid channels compared to the first run, but it significantly increases the number of unique saddle

points found.
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2.3.2 Statistics on energy barriers

Figure 2.2a shows the histograms of the energy barriers of the reactions detected by FSM, GSM,

SSM, SC-AFIR, and KinBot (first generic run). We are reporting energy differences relative to the

(a)

(b)

Figure 2.2. Histograms of the energy barriers (𝐸𝑎) of the chemical reactions of unimolecular decomposition
and isomerization of 𝛾-ketohydroperoxide (with 8 equal-width bins containing the number of detected saddle
points within each bin). (a) Reactions detected by FSM, GSM, SSM, SC-AFIR, and KinBot (first, generic
run). (b) Reactions detected by KinBot during the first (generic) and second (expanded) runs.

reactant excluding the zero-point energy. Note that small differences in the energy barriers and

reaction energies occur because the located transition states connect two relevant isomers along
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all different reaction pathways and may be different for each method. For FSM and GSM, the

intended channel is the reaction that connects reactant and product structures specified in the

input; for SSM it is the reaction that contains the bond changes that correspond to the driving

coordinates specified in the input; for SC-AFIR it is the reaction where the IRC calculation at the

high level matches the products predicted by the low-level AFIR calculation. However, the energy

range of the conformers of the reactant was less than 5 kcalmol−1 for the set of reactant structures

for all discovered reactions. All string methods have comparable energy barrier distributions and

demonstrate a large peak in the intermediate range. The spread of energy barriers discovered by

GSM is larger than that of FSM and KinBot, while SSM exhibits both the largest spread and

finds the lowest barrier saddle points among the string methods. KinBot tends to avoid very high-

barrier saddle points and is good at finding fairly low-barrier reactions. Figure 2.2b shows that this

tendency remained in the extended run in which significantly more channels (48) were detected.

However, as a result of extending the reaction rules such that all atom types are transferred to all

other atom types, many more high-energy reactions were found in the second run, thus creating a

histogram more similar to that of SSM. SC-AFIR also tends to find the lowest energy barriers; 6

out of 7 detected reactions have an energy barrier below 55 kcalmol−1.

Figure 2.3 shows how the barrier heights obtained from the string methods compare to the barrier

heights after Berny optimization of the saddle points. Clearly, FSM differs significantly from both

GSM and SSM in that most of the FSM barriers are much greater than the corresponding optimized

barrier heights. This again highlights the low quality of saddle point guess structures obtained from

the FSM algorithm and explains the large number of crashes in the subsequent Berny optimization.

Due to the exact saddle point search implemented in both growing string methods, the barrier

heights of their guess geometries agree much better with the Berny optimized barrier heights for

both GSM and SSM. Interestingly, there exist some GSM barriers that are lower in energy than the

corresponding Berny barriers. This stems from the fact that an exact saddle point search is only

initiated for the highest energy structure in the GSM code if the string is composed of multiple

elementary steps. If the first elementary step in the string does not contain the maximum energy

point, then the saddle point of the first step is not optimized and may lie in a lower region on the

PES. Compared to FSM, the GSM saddle point guess structures are of much higher quality, as

indicated by energies closer to the Berny optimized energies, even though some of them have not

yet undergone the exact saddle point search as part of the string method (as just discussed). This

is due to the gradual convergence of the string to a minimum energy path with subsequent GSM

iterations, which does not take place in FSM, in which all structures are frozen in place after initial

optimization. For SSM, only single step paths exist due to the nature of the algorithm, such that all

SSM barriers are larger than the Berny optimized barriers (within numerical accuracy). For both

GSM and SSM, some points lie relatively high above the line of equality. These are mostly points

where the predicted saddle points from GSM/SSM converged to a chemically different saddle point
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Figure 2.3. Comparison of the barrier heights from the three string methods (SM) to the optimized barrier
heights after Berny optimization. The dashed line represents the line of equality.

after Berny optimization. This is likely a result of the differences in the saddle point optimization

algorithm implemented in GSM and SSM versus the Berny algorithm. It is also possible that some

error is incurred due to the fact that GSM and SSM only construct an approximate Hessian, whereas

the first step in the Berny optimization is the calculation of an analytical Hessian.

2.4 Analysis of identified chemical reactions

The previously outlined procedure found 75 distinct transition states originating from 3-hydroper-

oxypropanal, 68 of which were completely unexpected. Each search algorithm except for SC-AFIR

discovered several TSs not found by any of the other methods. Figure 2.4 summarizes all identified

products of the unimolecular one-step decomposition and isomerization of KHP obtained by all five

methods (with two sets of results for KinBot).

In total, 75 unique reactions were identified using all five methods. This significantly outperforms

our previous FSM study17 where only six chemical reactions were detected (reactions 4, 37, 47, 59,

69, and 72), which is partially due to the difficulties with the previous FSM calculations mentioned

above as well as a result of the fact that the overwhelming majority of new chemical reactions have

high-energy saddle points. In the previous study, such FSM profiles were discarded. Interestingly,

in the present study, reactions 4 and 59 were detected by the other methods and not by FSM.

Apparently, such discrepancy between the present and previous FSM calculations originates from

the sensitivity of FSM to slight changes in starting geometries and the subsequently generated

suboptimal saddle point guess structures. Another possible explanation is the different level of

theory used previously (M06-2X/6-311++G*).17 In addition, the reverse channel of reaction 17 was

published in literature this work was being conducted.53
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Figure 2.4. Automatically identified products of unimolecular reactions of 𝛾-ketohydroperoxide
(OOCCC––O) using the FSM, GSM, SSM, KinBot (first and second runs), and SC-AFIR methods. *Reac-
tions discovered previously (reactions 1, 37, 47, 59, 69, 71 in Ref. [17] and reaction 17 in Ref. [53]).

2.4.1 Comparison with the existing chemical kinetic database

The present results also significantly outperform the existing RMG kinetic database where only

four of the detected reactions (reactions 37, 40, 47, and 56) are present (Figure 2.5). In addition,

RMG predicts 13 other chemical reactions which were not detected in the present study by any

of the methods. Comparison between the present results and the RMG kinetic database suggests

that the simple rules implemented in the RMG package may predict the correct bond breaking

but they do not take into account additional internal H-transfers which stabilize the products. For

instance, reaction 74 in Figure 2.4 has a similar RMG counterpart (RMG11 in Figure 2.5) but

involves an additional H-transfer between the products, which stabilizes and reduces the overall

product energy. In addition, the RMG library does not take into account channels with unusually

long bond distances in the transition state that are detected in the present study (reactions 3, 4,

34, 36, 62) (note, however, that the bond lengths are not long enough for these reactions to be

called roaming ones). Thus, the present work also suggests improvements to the RMG rules that
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Figure 2.5. Unimolecular reactions of 𝛾-ketohydroperoxide generated using the RMG kinetic database.
RMG6 corresponds to R37, RMG7 to R40, RMG16 to R56, and RMG17 to R47.

could be implemented in the future. However, it is important to note that all of the methods in

this study are primarily looking for saddle points, whereas some important dissociation channels

(e.g., H elimination from the carbonyl group, see RMG13 in Figure 2.5) are barrierless (at least at

the DFT level), therefore, the real number of reaction channels is always larger than the number

of reactive saddle points for closed shell systems. For example, the Jalan et al. paper features

the O–OH homolytic scission as the lowest barrierless channel, with a 49.5 kcalmol−1 barrier at

the CCSD(T)//M06-2X level.10 Our B3LYP calculations predict a ∼58–88 kcalmol−1 range for

the water elimination channels. Given the tightness of these channels, the homolytic scission will

dominate over the found saddle points. Moreover, some of the other reactions predicted by RMG

involve additional biradical products, which are likely formed by high barrier processes that would

have been excluded in the initial thermodynamic filtering for FSM/GSM/SSM and were also not

found from suboptimal saddle point guesses that converged to unintended saddle points.

2.4.2 Types of identified chemical reactions

The reactions presented in Figure 2.4 are divided in the following way: H2O + malondialdehyde

channels (reactions 1–5); formation of biradical products including carbenes and Criegee interme-

diates (reactions 6–17); products with zwitterionic structures including (reactions 18–27); channels

with three products except zwitterionic structures (reactions 28–31); channels with cyclic products

(reactions 32–46); stable (not radical or zwitterionic) unimolecular noncyclic channels (reactions

47–57); H2 elimination channels (reactions 58–62); another, non-malondialdehyde H2O elimination

channel (reaction 63); CH2 –CH2 bond breaking and forming two noncyclic products (reactions
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64–68); CHO–CH2 bond breaking channels (reactions 69–73); HOOH elimination channels (reac-

tions 74 and 75). Note that the reactions are grouped into these somewhat loosely defined groups

primarily for orientation (for instance, the Criegee intermediates in reactions 15–17 can also be

represented as their zwitterionic resonant structures). Also note that some of the detected reactions

lead to the same product(s). For instance, we detected five different routes for H2O elimination

forming malondialdehyde (reactions 1–5). We labeled these as separate reaction channels, because

their mechanisms are distinct, which would, for instance, gain importance in an experimental study

using isotopically labeled KHP. We emphasize that our choice of considering such saddle points as

fundamentally different is somewhat subjective especially since no rigorous conformational search

was done to find the lowest energy conformers of the saddle points for any of the methods tested in

the present work; however, channels marked as separate do not appear to be simple conformers of

any other channels. It should be noted that SSM, SC-AFIR, and KinBot are capable of initiating

multiple searches which could end in the same product because the product structure is not explic-

itly prescribed initially, whereas FSM and GSM only allow for one search per product. This enables

SSM, SC-AFIR, and KinBot to find multiple distinct transition states corresponding to the same

product. However, the initial set of reactions for SSM is the same as that for FSM and GSM in

this study so that the methods can be compared directly in terms of their ability to find the same

reactions. It is possible that this explains why KinBot was able to find all five routes leading to

malondialdehyde, whereas none of the other methods were able to find all of those channels.

The majority of the detected reactions proceed through breaking two bonds (52), while the

number of reactions with three bonds being broken is more than a factor of two smaller (21).

Interestingly, we also observed one reaction with only one bond breakage (reaction 19 detected by

all the methods) and one with four bond breakages (reaction 63 detected by FSM, SSM, and KinBot)

even though none of these methods were targeted at reactions with four bond breakages. It is also

worth noting that some of the detected product structures are highly unstable (e.g., the biradical

structure in reaction 10 and the zwitterionic trivalent O structure in reaction 20) and therefore are

expected to undergo fast subsequent reactions. Note that for these cases the nature of the product

is sometimes very sensitive to the conformer of the saddle point and how the IRC is carried out

(step lengths, etc.). Some conformations stabilize the biradicals, while others lead to ring-closures or

further decomposition. For instance, the products of reaction 10 could rapidly undergo beta scission

to yield the products corresponding to reaction 28. These reactions, if important kinetically, require

further dynamical investigations (such as the analysis of plateau regimes of the real-time correlation

function responsible for describing elementary chemical reactions in order to rigorously separate

chemical events and detect the corresponding product channels), which lies outside the scope of

this work. Some of the high-energy structures found by KinBot were a result of the reaction type

extension in the second KinBot run. In the extended search, KinBot attempted to transfer all atom

types to all other ones, which led to the additional discovery of reactions 8 and 18.
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2.4.3 Exclusiveness of identified chemical reactions

Only four reactions were detected by all five methods: 1, 19, 37, and 74. If we exclude SC-AFIR, 18

reactions were detected by the remaining four methods (including FSM, GSM, SSM, and the first

run of KinBot): 1, 2, 14, 15, 16, 19, 28, 30, 37, 47, 48, 51, 58, 64, 69, 71, 73, and 74. Including the

results of the second KinBot run in the comparison adds three more reactions: 8, 13, and 39. Still,

the reproducibility of the four methods is low in terms of the total number of channels found for

each method. Except SC-AFIR, each method was able to detect some reactions exclusive to that

method, although the majority of such saddle points are high in energy. The string methods detect

several such exclusive reactions (7, 20, 35, and 72 from FSM; 22, 42, 43, and 65 from GSM; 23, 24,

38, 44, 68, and 75 from SSM). During the first run, KinBot also detects a few of them (5, 12, 17, 45,

66), but during the second “expanded” iteration the total number of exclusive reactions has more

than doubled (13, 25, 27, 34, 46, 61, 62 in addition to the original set).

All five methods were able to detect the channel with the lowest energy barrier (approximately

35 kcalmol−1)—formation of 1,2-dioxolan-3-ol (reaction 37) which, as indicated in Section 2.1, is

the first step in the so-called Korcek mechanism.10 However, among the string methods, only GSM

finds the Korcek reaction from the combinatorially intended product channel while FSM and SSM

detect the corresponding saddle point from unintended channels. Interestingly, SSM was able to

detect another enantiomer of 1,2-dioxolan-3-ol formed via the mechanism similar to the Korcek

one (reaction 38), although its barrier is significantly higher (67.2 kcalmol−1). KinBot detects the

Korcek reaction as an internal 1,2-addition channel, a generic reaction from the first run. All

methods except SC-AFIR were also able to detect the second lowest energy saddle point, for the

reaction forming acetaldehyde and formic acid (reaction 69).

FSM often generates paths with multiple barriers (most noticeable reactions are 33, 37, 49,

62, 64, 70, and 72). In the previous study,17 such profiles were discarded but the present results

show that such cases can still lead to a discovery of the saddle points for single elementary steps

(although typically with high energy barriers). Interestingly, in the previous study,17 the Korcek

reaction (reaction 37) was detected by FSM from the intended channel while the present FSM

calculations detected it from the Berny optimization of the maximum along the string path for

another channel, again confirming the seemingly random nature of the method and high sensitivity

to the choice of input parameters.

SSM finds more intended reactions, however many of them represent a transfer of equivalent

hydrogen atoms; only 9 out of 27 SSM channels are unique (see Table 2.1). This does not outnumber

the FSM and GSM statistics by a lot, 7 out of 19 and 11 out of 24, respectively. Only three reactions

were detected by all three string methods from the intended channels (reactions 9, 47, and 51) while

the majority of saddle points detected by the string methods originate from unintended channels.

Whether to consider this as a drawback of the proposed approach is not obvious. Many of the
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detected channels were unexpected and were not even included in the initial set of product channels

(e.g., zwitterionic structures such as in reaction 19 where only one bond breaks and excessive

valences are encountered, or reactions 48 and 49 where the products are isomorphic with the reactant

molecule). However, our approach can easily fail if one has a specific reactant and product in mind.

Because many saddle points were detected from unintended channels with string paths containing

multiple elementary steps, it is expected that refining the initial set of channels to focus on more

easily accessible single elementary steps would lead to a higher percentage of intended reactions,

although this would limit the breadth of discovered reactions.

2.4.4 Chemical reactions with low-energy barriers and potentially important
chemistry

Twenty-five chemical reactions with energy barriers below 40 kcalmol−1 (either forward or reverse

channels) are summarized in Figure 2.6. Only two reactions (37 and 69) satisfy this criterion in

the forward direction and both of them were detected in the previous FSM study,17 suggesting

that there is a low probability of finding additional low-energy channels (although not guaranteed).

However, one can notice a significant number of previously unexpected reverse channels with low-

energy barriers, many of which involve biradical and zwitterionic structures.

Several of the low-barrier reverse reactions leading to the formation of KHP involve Criegee in-

termediates as the reactant (reactions 15–17). These radicals play an important role in atmospheric

chemistry and are in the focus of current intense research.53–62 Reaction 17 involves the reaction of

the simplest Criegee intermediate (CI) with vinyl alcohol (VA), which leads to KHP in a practically

barrierless reaction. Vinyl alcohol is a detectable tautomer of acetaldehyde in flames63 and in the

atmosphere.64,65 Interestingly, the reaction of the same CI with acetaldehyde (reaction 16) has a

fairly noticeable barrier of 23 kcalmol−1 when the product is KHP. According to Jalan et al., CI

can also react with acetaldehyde in a barrierless manner, but such a reaction leads to a secondary

ozonide.62 Another pair of low-barrier chemical reactions presented in Figure 2.6 is H2 fission by

a 3-carbon Criegee intermediate (reaction 15) with 𝐸𝑎 = 16 kcalmol−1 and a reaction involving

a similar biradical structure (reaction 11) which exhibits a much smaller barrier of 5 kcalmol−1.

However, reactions of CI with H2 are likely not of relevance in the atmosphere due to the low

concentration of hydrogen molecules.66

The zwitterionic structures detected in reactions 18–27 contain hypervalent O-atoms, which

made their discovery highly surprising. They were not included in the product set of the string

methods used in the present study due to their unusual valency and were thus discovered serendip-

itously. However, because KinBot does not consider products to guide its search, the H-transfer to

the inner O atom of the –OOH groups was an allowed step. It is notable that six out of ten detected

reactions of these zwitterionic structures fell within our category of “low-energy” barriers. Reac-
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Figure 2.6. Energy barriers (𝐸𝑎) of 25 chemical reactions of unimolecular decomposition and isomerization
of 𝛾-ketohydroperoxide for which 𝐸𝑎 is below 40 kcalmol−1 (either for the forward or reverse channel). Note
that bars representing the barrier heights are not stacked but overlapped for each reaction.

tion 23 forms water oxide67,68 and the other channels form ylides of varying complexity. Although

usually unstable in the gas phase, certain subgroups of zwitterions often appear in biochemical

studies (under physiological conditions, a variety of biomolecules, such as amino acids, exist as

zwitterions) and in organic synthesis. The present results particularly contribute to the chemi-

cal knowledge for zwitterionic structures with positively and negatively charged atoms in the O2
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fragment. This has potential implications on the chemistry of alkylperoxides, a class of species im-

portant in low-temperature autoignition and many atmospheric chemistry problems. For instance,

it has been shown that water elimination from alkylperoxy radicals can involve zwitterionic states.11

Apart from water oxide, the ylides discovered by the automated search have not been analyzed in

much detail in literature. Schalley et al. conducted an extensive characterization of the PESs of

methanol oxide and dimethyl ether oxide69 and Vereecken et al. recently discovered the relevance

of alcohol and ether oxides in atmospheric chemistry systems involving a Criegee intermediate.70

Alcohol oxides, such as those in reactions 18, 19, 21, 24, 25, and 26 are expected to undergo rapid

tautomerization to the corresponding hydroperoxides, whereas ether oxides are more stable.69,70 In

particular, reaction 27 involves a cyclic ether oxide for which isomerization to an alkylperoxide is

expected to be associated with a very significant energy barrier indicating that the species could be

long-lived enough to participate in other reactions, although it is not clear in which chemical systems

such a species would be present in significant amounts. To the best of our knowledge, carboxylic

acid oxides, such as those in reactions 20 and 22, have not been reported in literature, and the low

barrier of the reaction between formic acid oxide and ethylene indicates that these species could

potentially be relevant if the tautomerization to the corresponding peroxy acid is slow enough.

Another interesting class of structures, carbenes, was detected in reactions 12, 7, 13, 14, 6 (sorted

according to the height of the corresponding energy barriers in Figure 2.6). These reactions were not

expected as the forward reactions are associated with large energy barriers. The version of group

additivity used for the creation of the filtered data set mostly underestimates the endothermicity

for such reactions compared to more accurate B3LYP energies, which led to their inclusion in the

set of filtered reactions. Reaction 6 corresponds to an intramolecular O–H insertion (or internal

H-shift), while the remaining four reactions are intermolecular insertions. Both are common types

of carbene reactions; however, the context in which they were discovered is surprising. The observed

“kinetic” preference of carbene insertion into an existing bond is in accordance with the common

rule for carbene X–H insertion: Reactions 12 (X = H) and 7 (X = O) have lower energy barriers

than reactions 13 and 14 (X = C). The intramolecular carbene insertion reaction 8 (O–C) was not

included in Figure 2.6 due to an energy barrier higher than 40 kcalmol−1. Our results show that the

carbene insertions occur in single elementary steps, which is possible because we are only considering

the singlet surface for this study,71 whereas triplet carbenes would have to react in a sequence of

two steps. Reaction 7 is notable due to the reaction with hydrogen peroxide, which is present in

most combustion models and therefore might constitute a valid path to KHP. Even if the carbene

is only present for short amount of times, its singlet state will result in high rate coefficients, and

might make such a reaction important. Cyclopropene, or its isomers allene and propyne, is produced

in a reaction between methylene and acetylene,72,73 and is relevant in combustion systems.74 It is

conceivable for oxygen atoms to add to the double bond in cyclopropene, which could then undergo

further ring-opening to the carbene in reaction 7. Alternatively, it would be possible for oxygen
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to react directly with acetylene, the product of which could then react with methylene and also

lead to the carbene. We note that such thoughts are purely hypothetical at this point, but they

may warrant further investigation, which could show that species like the carbene in reaction 7 are

important in combustion systems. Similarly, reaction 13 involves a carbene that might be formed

from vinoxy radicals, which are also important in combustion systems,75 and thus may be a relevant

reaction in such systems.

Although the low-barrier chemical reactions described above are potentially important, calculat-

ing rate coefficients for all of the reactions is not the goal of the present work. However, we decided

to investigate one reaction (17) in more detail as it involves promising new chemistry that may be

relevant in atmospheric systems. A characterization of KHP formation resulting from the reaction of

CI with VA, reaction 17, was published by Vereecken during the preparation of this manuscript.53 In

accordance with our findings, Vereecken found that the reaction proceeds through a van der Waals

complex and a subsequent shallow barrier. Apart from the brief mention in Ref. [53], we are not

aware of any other publications that have studied this reaction in greater depth, even though its

small submerged barrier suggests a fast rate, which may render it important in atmospheric systems.

In general, tautomerization of acetaldehyde to VA is associated with a high barrier in the gas

phase, although it has been discovered that photo-tautomerization of acetaldehyde is a viable process

in the atmosphere, which can lead to up to 21% stable VA produced from excited acetaldehyde.65,76

Due to the large energy of CI and VA relative to KHP, it should be possible to skip the KHP

well at finite pressures and to obtain other bimolecular decomposition products of KHP directly.

Likely candidates are the products obtained from the dissociation of the oxygen single bond in the

hydroperoxy group of KHP, which yields two radicals (note that such products were not included

in the search space for the automated TS search methods because the methods are not suitable for

purely barrierless processes). To obtain quantitatively accurate results, we reoptimized the relevant

geometries and calculated frequencies at the UM06-2X/aug-cc-pVTZ level of theory with an ultrafine

integration grid and tight SCF convergence criteria. We subsequently calculated energies with the

RCCSD(T)-F12a/cc-pVTZ-F12 method. The PES for the CI + VA network is shown in Figure 2.7.

The Arkane code, distributed as part of RMG,44 was used for all kinetic rate calculations.

One-dimensional hindered rotor scans were completed for all rotatable bonds to enable accurate

calculation of relevant partition functions. Frequencies were scaled by a factor of 0.971, consistent

with Ref. [77]. For pressure-dependent calculations, the one-dimensional master equation was solved

using the Reservoir State approximation employing an exponential down collisional energy-transfer

model with nitrogen as the bath gas and using an average downward collisional energy transfer of

150 cm−1 and an active 𝐾-rotor and inactive 𝐽-rotor.65 Lennard-Jones parameters were estimated

using the RMG website (https://rmg.mit.edu/). The rate of formation of the van der Waals

complex was not assumed to affect the overall rate, the justification for which is shown in a more

in-depth analysis in Ref. [78]. The rate for the barrierless dissociation of KHP to the two radical
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products was estimated from an analogous reaction of ethyl hydroperoxide.79

The rate constant for the reaction of CI and VA was calculated as 3.7× 10−11 cm3molecule−1 s−1

at 298K, which is faster or on the same order of other dominant reactions of the Criegee interme-

diate.80 At atmospheric conditions, virtually all of the flux is towards the two radical products

including OH and none of the product is obtained in the KHP form, which indicates that this reac-

tion may be a significant source of OH and alkoxy radicals in the atmosphere and could help explain

the underprediction of OH in current models compared to experiment.81,82 However, it should be

noted that the majority of Criegee intermediates available for reaction with VA in the atmosphere

have larger substituent groups as a result of easier collisional stabilization after their production

from larger primary ozonides.81 Therefore, thermalization to KHP will be more likely for larger

CI. A priori, it is conceivable for CI to add to the double bond in VA instead of forming KHP,

which can lead to two separate ring structures depending on the orientation during the addition

reaction (in fact, one of the structures is identical to the product of the first step of the Korcek

mechanism). Rate calculations for these reactions showed that they are not relevant at atmospheric

conditions. Reaction with OH and O2 constitutes the main reaction of VA in the atmosphere with

a total rate constant of 6.8× 10−11 cm3molecule−1 s−1 at 298K.83 The concentration of stabilized

CI in the atmosphere is associated with significant uncertainty and ranges from approximately

103 to 5.5× 104molecule cm−3 for global average concentrations and has peak concentrations of

105molecule cm−3.80,84 Global average OH concentration can be estimated as 106molecule cm−3.83

This suggests that the branching ratio between the reaction of CI and VA and the reaction of OH

and VA is approximately 0.05 at peak CI conditions, although this estimate is quite variable based

on uncertainties in the concentrations and in the calculated rates.

As it is beyond the scope of the current study, we did not evaluate the effect of different sub-

stituents in CI, which are known to strongly affect rate constants.80 Such an analysis may lead to

more competitive rates of the CI + VA reaction. Enols other than vinyl alcohol may also play a

role in atmospheric chemistry and could also undergo reaction with CI in a similar process. For

example, acetylacetone exists predominantly in its enol form and is expected to be present in the

atmosphere due to its widespread use in industry and ensuing release.85 Such stable enols may be

especially prone to reacting with Criegee intermediates, as photochemical activation is not required

for their production, which may even render them important in nighttime conditions. Therefore, a

subsequent study analyzing both the effect of substituents in CI and the reactivity towards stable

enols would be of significance.

2.5 Conclusions

Transition states (TSs) for 68 previously unknown reactions of the simplest 𝛾-ketohydroperoxide

were discovered automatically by combining five different saddle-point-search algorithms. This sig-
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Figure 2.7. Potential energy surface of the Criegee + vinyl alcohol reaction at the RCCSD(T)-F12a/cc-
pVTZ-F12//UM06-2X/aug-cc-pVTZ level of theory, which proceeds through a barrierless formation of a
van der Waals complex followed by a shallow transition state to KHP, which can dissociate to two radicals.
Well-skipping directly to the radical products is the preferred channel at atmospheric pressures. All values
include the zero-point energy.

nificantly broadens the chemical knowledge for the present system and for all 𝛾-ketohydroperoxides.

The single-ended growing string method (SSM) found TSs leading to 50 distinct products, the most

of all methods tested, while the single-component artificial force induced reaction method (SC-

AFIR) detected the fewest (7). The remaining methods demonstrated intermediate results: TSs to

39 product channels were discovered by the freezing string method (FSM), 46 were discovered by

the double-ended growing string method (GSM), and 32 were found by KinBot (generic run). The

present FSM results outperform the previous ones,17 where only six reaction channels were detected

using the same method, showing that the overall performance of the method is highly dependent

on the input parameters and the internal details of the computational procedure. All of the meth-

ods were able to detect the reaction with the lowest energy barrier, which corresponds to the first

step of the so-called Korcek mechanism.10 However, among the string methods, only GSM detected

the Korcek reaction when searching for this channel, while FSM and SSM found this saddle point

serendipitously while searching for TSs corresponding to different products. All methods, except

for SC-AFIR, detected several exclusive channels (i.e., reactions detected only by a given method).

SC-AFIR found the highest percentage of conformational saddle points.

Analysis of the reverse reactions leading to the formation of 𝛾-ketohydroperoxide reveals promis-

ing new chemistry with low energy barriers for reactions involving zwitterions, biradicals, including

carbenes, and Criegee intermediates. Similar species are in the focus of current intense research

and we show that several of the detected reactions may be relevant in atmospheric and combustion
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chemistry. In particular, we study the reaction of the simplest Criegee intermediate with vinyl

alcohol in more detail, which leads to 𝛾-ketohydroperoxide via a submerged barrier reaction with

possible well-skipping to two radical products, by calculating the rate constant for this reaction at

atmospheric conditions and comparing it to other possible decay processes of vinyl alcohol. As a

result of our analysis, directions for subsequent chemical rate studies have been formulated exhibit-

ing a clear example of the benefits of applying automated TS search algorithms for the discovery of

new chemical reactions.

The present results highlight the complexity of chemical space exploration and the sensitivity

to input parameters and level of theory of the methods assessed in the present work. They also

demonstrate the power of joint application of several automated approaches for discovery of ele-

mentary chemical reactions since none of the above listed methods is greatly superior to the others

and all methods discover TSs not detected by any other algorithm (except SC-AFIR). Moreover,

chemical knowledge obtained using one or more methods can be used to improve the performance

of another method. For example, during the second iteration of the KinBot calculations, selected

due to its flexibility and the ease of implementing modifications, the reaction types were extended

using the chemical knowledge obtained in the first run by all five methods resulting in significant

improvement; TSs leading to 16 additional product channels were detected by the extended version

of KinBot. At the same time, such results also show that it is impossible to determine how exhaus-

tive an automated search was, as none of the methods are capable of finding all of the reactions and

there is no guarantee that all reactions can be discovered by the joint approach.

Our analysis also shows various sources of crashed searches and excessive (useless or repetitive)

computation for the methods selected for the present comparative study. We hope this information

can be used to improve future applications of the methods. In the future, we plan to extend the

present work to similar algorithms based on other representative methods for saddle point detection,

such as the nudged elastic band method,28,29 conjugate peak refinement,86 the ridge method,87 and

others. We envision that similar method assessment for bimolecular chemical reactions would be a

natural subsequent step for the community.

The results of this study indicate a vast number of unexpected elementary-step chemical reac-

tions remain to be discovered, and that despite the weaknesses of existing TS search algorithms,

this reaction discovery process can be greatly accelerated by automated search of potential energy

surfaces.
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Chapter 3

Accurate thermochemistry with small data sets:

A bond additivity correction and transfer

learning approach

Much of this work has previously appeared as Grambow, C. A.; Li, Y.-P.; Green, W. H. Accurate

Thermochemistry with Small Data Sets: A Bond Additivity Correction and Transfer Learning

Approach. J. Phys. Chem. A 2019, 123, 5826–5835. Yi-Pei Li wrote significant parts of the

code. Allen Mark Payne was involved in developing the automated framework for fitting bond

additivity corrections described in Section 3.6. The code for training the machine learning models is

available at https://github.com/ReactionMechanismGenerator/DataDrivenEstimator and the

bond additivity correction code is distributed in the Arkane package as part of RMG available at

https://github.com/ReactionMechanismGenerator/RMG-Py.

3.1 Introduction

Rapid and accurate estimation of molecular properties is a vital component of many chemistry and

materials science applications.1,2 In particular, automated reaction mechanism generation requires

estimates of chemical kinetic rates and molecular thermochemistry, which is typically used to calcu-

late reverse reaction rates from the relationship between the Gibbs free energy change of a reaction

and the equilibrium constant.3,4 The temperature-dependent Gibbs free energy of reaction can be

computed from the enthalpies of formation, entropies, and heat capacities if one has means for

accurately predicting those molecular properties.

In an ideal world, thermochemical properties for all relevant chemical species would be obtained

from experiments or high-quality electronic structure calculations. Realistically, the cost associated

with obtaining data for each species in this manner would be tremendous because the process of

generating a large reaction mechanism may involve more than a million distinct species (including
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species in reactions later determined to be numerically negligible). An alternative method proposed

several decades ago and still in use today is the group additivity method, which decomposes each

molecule into groups and sums up the thermochemical contributions from each group. The group

values were originally derived from a regression on experimental data,5 but today most group values

are derived from quantum chemistry calculations.6–8 Group additivity can be applied very rapidly

to large numbers of molecules and can provide highly accurate results for some classes of molecules.

For example, the thermochemistry of hydrocarbons without cycles is predicted particularly well,9

but more exotic species, especially heteroatom-containing and fused cyclic compounds, are ill-suited

for the group additivity method. Careful collection of new data, manual selection of new groups, and

a renewed fitting procedure are required every time incompatible species are encountered, although

there have been some efforts toward automatic group selection for a limited set of molecules.10

Alternatives are provided by the much more flexible frameworks arising in the field of machine

learning. A host of new machine learning methods, especially deep learning methods, have become

available for not only the classical areas of computer vision and natural language processing11 but

also for chemical property predictions.12–18 Machine learning methods can easily be applied to

different chemical domains, and training a model that is useful across a broad range of chemistry

does not require significant manual engineering of features. The downside is that most methods

require very large molecular data sets for training, which are usually only available at low levels

of theory.19 In addition, machine learning models most often treat molecules as rigid structures

or graphs, even though effects due to different conformers, especially for entropy, are important in

reality.20

To overcome the limitation of data set size, a common technique in machine learning called trans-

fer learning can be employed, in which knowledge learned by training in one domain is transferred to

a second domain.21 In this context, the first domain is a large quantity of low-level density functional

theory (DFT) calculations and the second domain is a much smaller collection of thermochemical

data from experiments and high-quality quantum mechanical calculations. The information gained

from training on a wide array of chemistry greatly enhances the ability to learn from the limited

amount of high-level data. Transfer learning and a related technique, Δ-machine learning, have al-

ready been successfully employed for energy predictions of molecular geometries,22,23 and the benefit

of transfer learning has been explored across many molecular data sets.24

Because high-accuracy data are scarce, our first goal is to construct an enthalpy of formation data

set composed of high-quality explicitly correlated coupled cluster calculations. We also constructed

entropy and heat capacity data sets using high-quality DFT calculations. Moreover, we wish to

further improve the quality of the enthalpy data by deriving bond additivity corrections (BACs),

which are a simple method to correct for systematic errors in energy calculations of electronic

structure methods.25 After the new data sets are supplemented with experimental data, the second

goal is to train transfer learning models that leverage both existing large low-quality data sets and
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the newly created, but much smaller, high-quality data sets to obtain models that yield predictions

of high accuracy. Furthermore, we aim to create an entropy prediction model capable of accounting

for conformational effects by carefully selecting its training data. The ultimate goal is to use the

models as part of the Reaction Mechanism Generator (RMG) software3 and to replace its group

additivity scheme.

3.2 Computational details

3.2.1 Transfer learning

Transfer learning is a frequently used technique in the machine learning community in which knowl-

edge learned by a model on some task is applied to a different task. Often, a lot of data are available

for simpler prediction tasks while only limited data exist in related domains of interest. In the con-

text of molecular property prediction, obtaining large amounts of training data using low-level DFT

calculations is a straightforward task, but compiling large sets of wave function-based calculations is

associated with significantly higher cost. A transfer learning model in this realm is initially trained

on low-level DFT calculations and subsequently refined using the limited high-accuracy data.

A schematic of the complete model used here is shown in Figure 3.1. The molecular representa-

tion and the foundation for the model are based on models used in the studies by Li et al.26 and by

Coley et al.,18 both of which are based on so-called graph convolutions.27,28 We refer the interested

reader to the descriptions provided in those papers and will limit ourselves here to a concise expla-

nation with a more in-depth treatment of the transfer learning module. Molecules are represented

as labeled undirected graphs 𝑀 = (𝐴,𝐵), which are ordered pairs of vertices 𝐴 corresponding to

the atoms and edges 𝐵 corresponding to the bonds. A bond is then given by the unordered pair

of atoms (𝑥, 𝑦) ∈ 𝐵 with 𝑥, 𝑦 ∈ 𝐴. Each atom 𝑎 ∈ 𝐴 is associated with an atom feature vector f𝑎

which aggregates the following descriptors: atomic number, the number of non-hydrogen neighbors

(heavy atoms), the number of hydrogen neighbors, and ring membership. Similarly, each bond

(𝑎, 𝑦) ∈ 𝐵 is associated with a bond feature vector f𝑎𝑦 only containing information about ring mem-

bership. Conventional models might use the bond order and aromaticity indicators as additional

features, but these were not included here because the model was found to perform equally well

without. This also removes the requirement of selecting specific resonance structures to train on.

The ring membership descriptor counts how many rings of each size an atom or a bond is part

of. Effectively, this encodes a kind of simplified representation of global molecular structure in the

feature vector. All other features only describe the local neighborhood around an atom and the

atom itself. Alternatively, or in addition to this, a global attention mechanism29 could be added

on top of the graph convolutions to incorporate distal information. The base model is composed of

a graph convolutional neural network that converts the molecular representation described by the
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Figure 3.1. Transfer learning model architecture using a base model to learn a molecular embedding and
neural network parameter initialization.

set of all f𝑎 and f𝑎𝑦 to a fixed-length molecular feature vector (fingerprint), which is then passed

through a final hidden layer before the output layer. The output vector has a single element for the

enthalpy of formation model and for the entropy model, and seven elements for the heat capacity

model in order to predict heat capacities at seven different temperatures simultaneously. The graph

convolution essentially takes each f𝑎 and f𝑎𝑦 and passes them through neural network layers to in-

corporate nearest neighbor features into new feature vectors for each atom. This process is repeated

for a total of three iterations, thus incorporating information up to a depth of three into the feature

vector for each atom. Subsequently, the resulting atom feature vectors are combined and sparsified

using a softmax activation function to yield the molecular fingerprint.

The base models are trained on B3LYP/6-31G(2df,p) data. The transfer learning models are

separate models trained on CCSD(T)-F12/cc-pVDZ-F12//B3LYP/6-31G(2df,p) data with bond

additivity corrections for enthalpy of formation and on 𝜔B97X-D3/def2-TZVP for entropy and

heat capacities. The quantum mechanical data for the transfer learning models are combined with

experimental data. Then, 5% of the available training data for each model were used as validation

data sets for early stopping and separate test sets are used to measure model performance. A more

detailed description of the data sets will follow in Section 3.3. The transfer learning models do not

retrain the graph convolutions and instead use the learned fingerprint embedding from the base
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models directly. Additional knowledge is transferred from the base models to the transfer learning

models by initializing their weights using the fully trained weights from the base models.

All models are trained using the Adam optimizer30 with a mean squared error loss function and

a batch size of one. The learning rate is given by 𝜂 exp(−𝑡/𝜏) where 𝜂 is the initial learning rate, 𝑡 is

the epoch, and 𝜏 is a decay time constant. The molecular fingerprints have a length of 512, the final

hidden layer contains 50 units with a hyperbolic tangent activation function, and the output layer

is linear. For all models, 5% of the training data were reserved for early stopping, and the learning

rate parameters were set to 𝜂 = 7× 10−4 and 𝜏 = 30. The hyperparameters vary for the transfer

learning models. We considered two different enthalpy models: one trained on experimental and

coupled cluster data and one trained on only coupled cluster data. For the former, 𝜂 = 2× 10−5,

and for the latter, 𝜂 = 5× 10−5, and 𝜏 = 30 for both. Entropy and heat capacity models used

𝜏 = 103. The entropy model further used 𝜂 = 2× 10−4, whereas the heat capacity model used

𝜂 = 5× 10−5. The results were most sensitive to batch size and learning rate. Before training,

the data for the entropy and heat capacity models were normalized by subtracting the mean and

dividing by the standard deviation of the training data.

While all of the models were trained with a mean squared error loss function, a more intuitive

metric for assessing results is the mean absolute error (MAE), which will be reported throughout

this paper. In addition, 95% confidence intervals (CI) calculated as twice the root-mean-square

error (RMSE), which are commonly reported in thermodynamic tables,31 are listed as well. The

models were trained using the DataDrivenEstimator package available on GitHub.32

3.2.2 Thermochemistry calculations

Electronic structure calculations were performed at a variety of levels of theory. The B3LYP/6-

31G(2df,p) level of theory is used for low-level geometry optimizations and frequency calculations

(used for calculating low-level enthalpies of formation, entropies, and heat capacities). A scale

factor of 0.965 is applied to the computed harmonic frequencies used to compute the zero-point

energy (ZPE).33 High-level geometry optimizations and frequency calculations were performed at

the 𝜔B97X-D3/def2-TZVP level of theory corrected by a scale factor of 0.975 (used for calculating

entropies and heat capacities at the higher level of theory).34 High-level energies were calculated

at the CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-31G(2df,p) level of theory (used for calculating

high-level enthalpies of formation). The double-𝜁 basis set was selected in order to allow for a large

number of coupled cluster calculations while maintaining reasonable accuracy (the accuracy after

fitting bond additivity corrections is shown in Section 3.4.1). The geometries for some molecules

selected for CCSD(T)-F12 calculations were taken directly from the published QM9 data set.19

They were not reoptimized, and we did not attempt to confirm that they are the lowest-lying

conformers. For new geometry calculations, the lowest energy conformer was selected based on a
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conformer search using RDKit35 and the MMFF94 force field. For enthalpy calculations at 298K,

contributions from other conformers can mostly be neglected.20 On the other hand, entropy is more

strongly affected by conformational variations, so we only calculated molecules without rotatable

bonds for the entropy models and for molecules with rotatable bonds we captured conformational

effects implicitly by using experimental data (a more detailed description of the data sets is available

in Section 3.3). All DFT calculations made use of the Q-Chem 5.1 electronic structure code36 and

the coupled cluster calculations used Molpro 2015.37–39

Standard ideal gas statistical thermodynamic models were used to compute rigid rotor har-

monic oscillator (RRHO) partition functions. Enthalpies and entropies were calculated at 298K

and heat capacities were calculated at seven different temperatures—300K, 400K, 500K, 600K,

800K, 1000K and 1500K. Symmetry contributions are not included in the entropies because RMG

incorporates them automatically during mechanism generation. Therefore, the partition function

for entropy was not divided by the external symmetry number. In fact, training a machine learning

model to predict entropies that are symmetry-corrected is a more difficult task because the model

has to implicitly learn symmetry numbers, which instead could easily be applied after training a

model that does not include symmetry. Of course, correct computational determination of symme-

try numbers, whether by estimating point groups from three-dimensional molecular geometries or

from a computation based on a molecular graph representation, is a complex task in itself already

discussed in the literature40–42 and is outside the scope of this study.

Calculation of the enthalpy of formation follows the atomization energy approach detailed by

Curtiss et al.43 using the atomization energy supplemented with experimental data for the atoms.

The enthalpy of formation at 298K for molecule 𝑀 is given by

Δf𝐻
∘
298(𝑀) = Δf𝐻

∘
0 (𝑀) + Δ𝐻∘

0→298(𝑀)−
∑︁

𝑎∈𝐴(𝑀)

Δ𝐻∘
0→298(element𝑎) (3.1)

where Δf𝐻
∘
0 (𝑀) is the calculated enthalpy of formation at 0K and the other two terms are cor-

rections to go from 0K to 298K for the molecule and the atoms, respectively. Δ𝐻∘
0→298(𝑀) is the

enthalpy increment for the molecule evaluated from ideal gas partition functions. Δ𝐻∘
0→298(element)

are the enthalpy corrections for atoms, which are known and tabulated, e.g., in CODATA.44 It is

an experimental correction for elements in their reference states renormalized per constituent atom.

For example, the correction for carbon corresponds to graphite and the correction for hydrogen

corresponds to one half of H2(g). The enthalpy of formation at 0K is given by

Δf𝐻
∘
0 (𝑀) =

⎡⎣ ∑︁
𝑎∈𝐴(𝑀)

Δf𝐻
∘
0 (𝑎)

⎤⎦−Δat𝐻
∘
0 (𝑀) (3.2)

where Δf𝐻
∘
0 (𝑎) denotes the experimental enthalpy of formation at zero Kelvin for a gas phase
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Table 3.1. Atomic energies, experimental enthalpies of formation, and enthalpy corrections in kcalmol−1.

Element 𝑎 𝐸0(𝑎)
a (CCSD(T)-F12) 𝐸0(𝑎)

b (B3LYP) Δf𝐻
∘
0 (𝑎)

c Δ𝐻∘
0→298(element𝑎)c

H −313.64 −313.93 51.630± 0.001 1.01

C −23 712.31 −23 749.21 169.98 ± 0.10 0.25

N −34 215.55 −34 251.89 112.53 ± 0.02 1.04

O −47 060.07 −47 103.74 58.99 ± 0.02 1.04

aCalculated using RCCSD(T)-F12a/cc-pVDZ-F12 with spin-orbit corrections from Ref. [47, 48]. bFrom
Ref. [19]. cFrom Ref. [43].

atom 𝑎 with reference to its standard state. These experimental enthalpies are for the individual

atoms themselves, for example, Δf𝐻
∘
0 (C) corresponds to the carbon atom and not to graphite.

Highly accurate values are available for some atoms in the Active Thermochemical Tables.31,45 The

atomization energy at 0K is given by

Δat𝐻
∘
0 (𝑀) =

⎡⎣ ∑︁
𝑎∈𝐴(𝑀)

𝐸0(𝑎)

⎤⎦− 𝐸0(𝑀) (3.3)

where 𝐸0(𝑀) denotes the calculated electronic energy of the molecule including its scaled zero-

point energy. The electronic energy of an atom 𝐸0(𝑎) usually includes spin-orbit corrections.46

The calculated electronic energies as well as the experimental enthalpies for the atoms and their

elemental enthalpy corrections are listed in Table 3.1.

3.2.3 Bond additivity corrections

Atomization energies obtained from ab initio calculations are often not very accurate, because atoms

and standard-state forms of some elements (e.g., graphite, O2(3
Σ

–
g )) have significantly different

electronic states than the closed-shell organic molecules studied here. To improve the accuracy of

the formation enthalpy, it is common to use bond additivity corrections (BACs), which are empirical

corrections to molecular energies and enthalpies of formation that use a few fitted parameters to

correct for systematic errors in electronic structure calculations for some bond types. Fitting the

parameters to a set of relatively few (tens or hundreds) low-uncertainty experimental data can

significantly improve the error of calculations relative to experimental data and generalizes well

beyond molecules in the reference data set because the corrections are specific to atoms and bonds

rather than the molecule as a whole.

Two different types of BACs are found in literature. One possible implementation corrects for

specific bond types (C–H, C–C, C–O, C––C, etc.) by adding a parameter for each type that adds

a correction to the molecular energy based on how many times the bond occurs in a molecule.49 In
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this case, the BAC scheme is given by

ΔBAC
f 𝐻∘

298(𝑀) = Δf𝐻
∘
298(𝑀) +

∑︁
𝑏∈𝐵(𝑀)

𝐶(𝑏) (3.4)

where 𝐶(𝑏) is a parameter for bond type 𝑏. By limiting the corrections to only explicitly encoded

bond types, resulting energies could be problematic for molecules that do not fit well into the

set of molecules that can be created from the set of bond types, such as molecules that possess

significant resonant character. Extending the corrections to transition states and ions could also be

problematic. Instead, we choose a method that does not require labeling of bond types by using

bond distances and atom identities instead, which are readily available from electronic structure

calculations. This procedure is based on the method developed by Anantharaman and Melius.25

We note that while Anantharaman and Melius refer to the method as “bond additivity correction”,

there are no parameters for specific bond types, only for atoms, but we adopt their nomenclature

for consistency in the literature.

Bond additivity corrections to the computed enthalpy of formation, Δf𝐻
∘
298, are composed of

molecular, atomic, and bond-wise corrections:

ΔBAC
f 𝐻∘

298(𝑀) = Δf𝐻
∘
298(𝑀)− 𝐸BAC(𝑀)−

∑︁
𝑎∈𝐴(𝑀)

𝛼(𝑎)−
∑︁

𝑏∈𝐵(𝑀)

𝐸BAC(𝑏) (3.5)

𝐸BAC(𝑀) is a molecular correction term given by

𝐸BAC(𝑀) = 𝐾

⎛⎝𝑆(𝑀)−
∑︁

𝑎∈𝐴(𝑀)

𝑆(𝑎)

⎞⎠ (3.6)

where 𝑆(𝑀) and 𝑆(𝑎) are spin quantum numbers for the molecule 𝑀 and the atom 𝑎, respectively.

The first sum in Equation (3.5) captures corrections due to all atoms in the molecule where 𝛼 is

a fitted parameter for each atom type. The second sum in Equation (3.5) contains corrections for

each bond present in the molecule and can be further decomposed as

𝐸BAC ((𝑥, 𝑦)) =
√︀

𝛽(𝑥)𝛽(𝑦)𝑒−𝜉𝑅𝑥𝑦 +
∑︁

𝑤∈𝑁(𝑥)∖𝑦

[𝛾(𝑤) + 𝛾(𝑥)] +
∑︁

𝑧∈𝑁(𝑦)∖𝑥

[𝛾(𝑧) + 𝛾(𝑦)] (3.7)

where 𝑅𝑥𝑦 is the bond distance between atoms 𝑥 and 𝑦, 𝛽 and 𝛾 are additional parameters for each

atom type, the set of atoms immediately adjacent to atom 𝑎 is denoted by 𝑁(𝑎), and 𝜉 is set to 3Å−1

based on the value used by the developers of the method.25 The first term in Equation (3.7) has a

negative exponential dependence on bond distance, which means the term will be more significant

for shorter distances common in unsaturated bonds. The second and third terms sum over the

neighbors of 𝑥 and 𝑦, respectively, thus correcting for errors due to adjacent atoms. Note that each
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Table 3.2. Bond additivity correction parameters (kcalmol−1).

Element 𝛼 𝛽 𝛾

H −0.9000 14.5704 0.1501

C 2.8338 0.0048 −0.0346

N 1.8315 0.0336 0.0118

O 1.1964 0.0099 0.0024

sum contains the parameter corresponding to the atom whose neighbors are being summed over.

The method uses three parameters per element, 𝛼, 𝛽, 𝛾, for a total of only twelve parameters for the

four elements HCNO. Compared to the BACs in Equation (3.4), this is typically a smaller number

of parameters. Here, we do not fit the molecular correction shown in Equation (3.6) because it was

not found to provide any additional improvement and destroys the size consistency of the electronic

structure calculation.25

We fit BAC parameters for the high-level coupled cluster calculations but do not consider them

for the low-level DFT-derived enthalpies of formation used to train the base model because it is only

used to obtain a good molecular representation and suitable initialization for the high-level model.

To fit the parameters, we performed a regression with mean squared error loss function. The fitted

parameters are shown in Table 3.2.

In order to facilitate deriving bond additivity corrections in the future, we have implemented a

system to automatically execute quantum chemistry calculations for a data set of reference species

and to fit corrections for the calculated data. This procedure is described in more detail in Section 3.6

and an example application for a DFT method is shown there.

3.3 Data sets

Training effective machine learning models is to a certain extent an exercise in data set selection and

curation. As such, we are using an array of representative data sets from literature and proprietary

sources and some created by ourselves. Many of the electronic structure calculations and geometries

are either taken directly from the popular QM9 data set19 with up to nine non-hydrogen atoms, or

subsets of molecules are selected from the set of all molecules in QM9 in order to be calculated at a

different level of theory. QM9 properties, which include the results of energy and harmonic vibra-

tional frequency calculations, are available at the B3LYP/6-31G(2df,p) level of theory. Because we

are only interested in HCNO-containing molecules and because diffuse functions were not included

in the basis set, we removed all fluorine-containing molecules. We also removed the set of molecules

that failed the consistency check described in the original publication, which involves converting

force field, semi-empirical, and density functional theory (DFT) geometries to InChI strings and

verifying that they are identical.19 Other than the high-accuracy data for fitting bond additivity
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Table 3.3. Enthalpy of formation (Δf𝐻
∘
298), entropy (𝑆∘

298), and heat capacity (𝐶p) data sets.

Data set Name Property Level(s) Size

1 bac_fit Δf𝐻
∘
298 CCa , expt. 147

2 bac_test Δf𝐻
∘
298 CCa , expt. 412

3 base Δf𝐻
∘
298, 𝑆∘

298, 𝐶p DFT-lowb ∼130k
4 tf_h_1 Δf𝐻

∘
298 CCa ∼10k

5 tf_h_2 Δf𝐻
∘
298 expt. ∼3k

6 tf_s 𝑆∘
298 DFT-highc+expt. ∼3k

7 tf_c 𝐶p DFT-highc+expt. ∼2k
8 tf_h_testd Δf𝐻

∘
298 GAe , DFT-lowb , CCa+expt. ∼1.2k

9 tf_s_testd 𝑆∘
298 GAe , DFT-lowb , DFT-highc+expt. ∼0.3k

10 tf_c_testd 𝐶p GAe , DFT-lowb , DFT-highc+expt. ∼0.2k
aCCSD(T)-F12/cc-pVDZ-F12//B3LYP/6-31G(2df,p) + BAC. bB3LYP/6-31G(2df,p). c𝜔B97X-D3/def2-
TZVP. dContain the same molecules. eGroup additivity.

corrections, experimental data were obtained from a version of the NIST-TRC database,50 hence-

forth simply referred to as NIST data. An overview of the data sets is given in Table 3.3. We only

considered species with an even number of electrons, i.e., no doublet radicals.

For fitting the bond additivity corrections, we selected a data set of highly accurate experimental

enthalpies of formation (bac_fit) and calculated the corresponding coupled cluster enthalpies of

formation. The uncertainty in each experimental enthalpy value in the bac_fit data set is at most

0.5 kcalmol−1, but the majority are significantly lower. In thermodynamic tables, uncertainty is

typically provided as 95% confidence intervals, which approximately correspond to two standard

deviations to the left and to the right of the mean.31 For the most part, the uncertainty in these

data adhere to that standard, but we were not able to verify the uncertainty quantification used in

some of the sources. This set of 147 enthalpy values spans diverse chemical species of both small and

large size involving most permutations of bonds between HCNO atoms. It is obtained from a variety

of sources49,51–53 including the Active Thermochemical Tables.31,45 We selected an additional set of

412 molecules from the NIST data for testing the fitted BACs (bac_test). The test set molecules

are selected to have a more varied set of molecules; in particular bac_test includes somewhat

larger molecules and potentially more complex electronic structure effects. Unlike bac_fit, the

uncertainties of bac_test are not readily available, so there is an assumption that the experimental

data are reasonably well-known.

As described earlier, enthalpies of formation, entropies, and heat capacities are first trained on

a large data set of low-quality data (base) and then on a smaller data set of high-quality data. The

low-quality data (base) are taken as the roughly 129 000 HCNO molecules in the QM9 set filtering

out those with identified inconsistencies, supplemented by 1700 molecules from the NIST-TRC,
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bac_fit, and bac_test data sets recalculated at the B3LYP/6-31G(2df,p) level of theory to match

the level of QM9 (base). The additional molecules correspond to those that do not overlap with

the species already present in QM9.

There are three different transfer learning models: an enthalpy of formation model, an entropy

model, and a heat capacity model. For each of these models, the training data sets are composed

of both calculated and experimental data. The experimental data contain many molecules that are

significantly larger than those in QM9 with up to 42 non-hydrogen atoms.

For the enthalpy of formation model, the high-quality training data are a combination of the

147 experimental data points for fitting BACs (bac_fit), experimental data for about 2700 NIST

molecules (tf_h_2), and a selection of approximately 9800 explicitly correlated coupled cluster calcu-

lations (CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-31G(2df,p) + BAC) corresponding to molecules

sampled at random from QM9 (tf_h_1). Note that nonrandom selections can improve model per-

formance,26,54 but such an active selection scheme is not the focus of the present study.

The entropy model is trained on 2300 NIST data and 900 𝜔B97X-D3/def2-TZVP DFT calcula-

tions (tf_s). The NIST entropy data are of mixed accuracy, with some data from direct experimen-

tal measurements but much of the data coming from indirect methods and extrapolations. Internal

and external symmetry number contributions are calculated using RMG for each NIST molecule

and are removed from the experimental entropy because the goal is to train a model that can be

used in RMG, which adds its computed symmetry contributions in during a reaction mechanism

simulation. The 900 DFT calculations correspond to molecules randomly selected from QM9 with

the constraint of being exclusively composed of cyclic or polycyclic cores without rotatable bonds.

The heat capacity model is trained on 1100 NIST data points and the same 900 𝜔B97X-D3/def2-

TZVP DFT molecules (tf_c). The experimental heat capacities are from a mix of direct and indirect

methods, with considerable variance in error bars. Then, 5% of the training data available for each

model were reserved as a held-out validation data set to stop the training before overfitting.

Lastly, we selected molecules for test sets (tf_h_test, tf_s_test, tf_c_test) that are not

present in any of the training data sets. For each property, the selection consists of roughly 10%

of all molecules with available high-accuracy data. Because all molecules for which high-accuracy

data are available are also present in the low-accuracy training data, each molecule in the test sets

has both high- and low-accuracy properties. For example, none of the molecules in tf_s_test are

in tf_s or base.
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3.4 Results and discussion

3.4.1 Bond additivity corrections

As outlined previously, we calculated enthalpies of formation using the atomization energy method

and then added corrections. Here, we compare the accuracy of the calculated values with and

without fitted bond additivity corrections (BACs). The level of theory for the single point energy

calculations is CCSD(T)-F12a/cc-pVDZ-F12, which will also be referred to as F12 for simplicity.

BACs are fitted to minimize the difference between F12 enthalpies of formation calculated from

quantum chemistry and the corresponding experimental data for the bac_fit data set in Table 3.3.

Overall, the fitting procedure reduced the average error across bac_fit very significantly. Before

adding BACs, the MAE between the F12 enthalpies of formation and the high-accuracy experimental

data was 8.98 kcalmol−1 and the RMSE was 10.45 kcalmol−1. This very large error is surprising

considering it has previously been shown that chemical accuracy (1 kcalmol−1) is possible with a

double-𝜁 basis for certain molecular reaction energies.55 Of course, there is a large error-canceling

effect between reactant and products for both atoms and bonds when calculating reaction energies

that does not occur for enthalpies of formation calculated from atomization energies because the

electronic structure of molecules and atoms is very different. Figure 3.2 shows that the error across

bac_fit increases roughly linearly with increasing numbers of heavy atoms in a molecule. Such

a trend indicates there is a large systematic error in the uncorrected values that scales with the

number of heavy atoms. Knizia et al. report an MAE of 1.86 kcalmol−1 for CCSD(T)-F12a with a

double-𝜁 basis set for atomization energies,55 which is significantly smaller than our error. However,

they are benchmarking against conventional CCSD(T)/CBS instead of experimental data and 47

out of the 49 molecules in their benchmark data set only have one or two non-hydrogen (heavy)

atoms each. As shown in Figure 3.2, The errors for molecules in the bac_fit data set containing

one or two heavy atoms are in line with those reported by Knizia et al. on their test set. We are not

aware of any discussion regarding abnormal enthalpies of formation with double-𝜁 CCSD(T)-F12a

in the literature, potentially because most studies that employ explicitly correlated coupled cluster

methods use triple-𝜁 and larger basis sets, which are prohibitively expensive for the present study.

After adding fitted BACs, the MAE computed across bac_fit is reduced to only 0.70 kcalmol−1

and the RMSE becomes 1.18 kcalmol−1 (95% CI: 2.36 kcalmol−1). Furthermore, the systematic er-

ror in Figure 3.2 has been removed. In fitting BACs, the atomic energies 𝐸0(𝑎) in Equation (3.3)

have effectively been redefined by adding corrections for each element (given by the 𝛼 values in

Equation (3.5)). As hypothesized, the derived BACs generalize well, which is demonstrated by a

reduction in MAE from 13.90 kcalmol−1 to 0.98 kcalmol−1 for the test set bac_test (RMSE de-

creases from 14.74 kcalmol−1 to 1.31 kcalmol−1), demonstrating that double-𝜁 calculations can yield

good results if corrected with BACs. The uncertainties in the experimental enthalpy of formation

values for the test set are not known and are likely higher than the very accurate data in bac_fit,
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Figure 3.2. Enthalpy of formation errors vs. the number of heavy atoms in each molecule before (F12) and
after (BAC) fitting bond additivity corrections on data set bac_fit.

which may be part of the reason for the slightly larger error across bac_test. Fitting parameters

for specific bond types instead of using three parameters per atom type (using Equation (3.4) in-

stead of Equation (3.5)) would lead to an almost identical reduction in error (MAE: 0.67 kcalmol−1,

RMSE: 1.16 kcalmol−1 for bac_fit) but may be sensitive to the resonance structure used for each

molecule. Additionally, with that approach the atom corrections would be absorbed as part of the

bond corrections instead of being treated separately.

The distribution of errors with and without BACs is shown in Figure 3.3. Each error is com-

puted as the subtraction of the experimental value from the calculated value. The systematic error

observed in Figure 3.2 manifests itself as a very wide range of errors much greater in magnitude than

after fitting BACs. The majority of enthalpies of formation computed from atomization energies are

in error by more than 5 kcalmol−1. Including BACs leads to a tight distribution centered at zero

with all but two molecules in error by less than 5 kcalmol−1. The highest error of 6.80 kcalmol−1

corresponds to phenyl isocyanate. An error of such a large magnitude will cause issues in reaction

mechanism generation, but the likelihood of such errors is small. Using a triple-𝜁 basis would most

likely reduce the probability of large errors even further, but computational restrictions necessitated

the use of a double-𝜁 basis here.

As before, the BAC procedure generalizes well to the test set bac_test as shown in the second

panel of Figure 3.3. After fitting BACs, none of the molecules in bac_test are in error by more

than 5 kcalmol−1.
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Figure 3.3. Distribution of enthalpy of formation errors relative to experiment (calculated minus exper-
imental value) in the bac_fit data set (a) and the bac_test data set (b) before (F12) and after (BAC)
fitting corrections.

3.4.2 Transfer learning

First, the three base models (Figure 3.1), one for enthalpy of formation, one for entropy, and one

for heat capacities, were trained on the base data set (Table 3.3). In order to train the enthalpy

of formation transfer learning model, BACs were applied to all high-level CCSD(T)-F12/cc-pVDZ-

F12 data to form data sets tf_h_1 and tf_h_test. The training data for the transfer learning

enthalpy of formation model are the combination of the coupled cluster (tf_h_1) and experimental

data (tf_h_2). Similarly, the training data for entropy and heat capacity are both a combination

of high-level DFT and experimental data (tf_s and tf_c, respectively). The transfer learning

models used the mapping that converts a molecular graph to a fixed-length vector learned during

training of the base models. The remaining neural network parameters were initialized using the

corresponding weights in the base models. For all models, the molecules in the test data sets,

tf_h_test, tf_s_test, and tf_c_test, are identical and their properties are available at both the

70



low and high level so that performance can be measured both in terms of precision and accuracy.

In this context, model precision is measured by how well the model predictions match the values at

the level of theory of the training data:

precision =
1

𝑁

𝑁∑︁
𝑖=1

⃒⃒⃒
𝑝model
𝑖 − 𝑝*𝑖

⃒⃒⃒
(3.8)

Here, 𝑝*𝑖 is the value of the property at the same level of theory as the data used to train the model.

Equation (3.8) corresponds to MAE and the equation for RMSE is analogous. Model accuracy

is measured by how well the model predictions match the true values of the property, which are

approximated using experimental data or coupled cluster data:

accuracy =
1

𝑁

𝑁∑︁
𝑖=1

⃒⃒⃒
𝑝model
𝑖 − 𝑝𝑖

⃒⃒⃒
(3.9)

Here, 𝑝𝑖 corresponds to the “true” value of the property. Naturally, high accuracy is the most

desirable property of a machine learning model for property prediction. Additionally, RMG was used

to calculate group additivity estimates of the thermochemical properties for the test set molecules

to enable comparison to current RMG predictions.3,8

The accuracies are shown in Table 3.4 in terms of mean absolute error (MAE), root-mean-

square error (RMSE), and 95% confidence interval (CI). For all three properties, the predictions

afforded by the transfer learning model are clearly better than those of the base model and especially

those of group additivity. Therefore, the transfer learning model is more suitable for simulations

in RMG. Because of the molecules available in the QM9 database, the test set contains many

complex structures, such as fused and bridged polycyclic compounds with several heteroatoms.

These types of molecules are especially difficult to model with group additivity because contributions

to thermochemistry are not solely additive across the groups present in the molecule but are strongly

influenced by less local contributions like ring strain. Even though the group additivity scheme

implemented in RMG has sophisticated ring strain corrections,8 it lacks the ability to model many

such molecules. If the test set were only composed of linear hydrocarbons, it would be very likely

that group additivity would outperform the transfer learning model since group additivity was

trained to even higher-accuracy data than most of the training data used here. For more complex

RMG simulations involving fused cyclic molecules, the transfer learning model is a better choice.

The precisions for the base models are shown in Table 3.5. The precisions for the transfer

learning models are identical to their accuracies, so they are the values in Table 3.4. Except for the

MAE corresponding to enthalpy of formation, the precisions of the base models are significantly

worse than those of the transfer learning models, which is surprising given the amount of data

the base models were trained on. However, this effect is compounded by the fact that many of
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Table 3.4. Test set (tf_h_test, tf_s_test, tf_c_test) accuracies of enthalpy of formation (Δf𝐻
∘
298),

entropy (𝑆∘
298), and heat capacity (𝐶p) predictions for the transfer learning models (TF), the base models,

and group additivity (GA). Δf𝐻
∘
298 in kcalmol−1 and 𝑆∘

298/𝐶p in calmol−1 K−1.

Δf𝐻
∘
298 MAE RMSE 95% CI

TF 1.78 2.80 5.60

Base 4.76 6.47 12.94

GA 9.99 16.17 32.35

𝑆∘
298 MAE RMSE 95% CI

TF 0.80 1.16 2.31

Base 9.74 13.67 27.34

GA 11.25 18.51 37.02

𝐶p
a MAE RMSE 95% CI

TF 0.74 1.21 2.41

Base 2.48 3.32 6.63

GA 3.41 5.44 10.88

aAverage across seven temperatures.

Table 3.5. Test set (tf_h_test, tf_s_test, tf_c_test) precisions of enthalpy of formation (Δf𝐻
∘
298),

entropy (𝑆∘
298), and heat capacity (𝐶p) predictions for the base models only. Δf𝐻

∘
298 in kcalmol−1 and

𝑆∘
298/𝐶p in calmol−1 K−1.

Property MAE RMSE 95% CI

Δf𝐻
∘
298 1.69 3.51 7.03

𝑆∘
298 1.50 2.23 4.46

𝐶p
a 2.34 5.85 11.70

aAverage across seven temperatures.

the molecules in the test set are drawn from the data with experimentally available properties,

which are proportionally underrepresented in the training data for the base models compared to

molecules drawn from QM9. For example, the MAE calculated across the validation sets used for

early stopping (which are randomly drawn from the training data) is 1.56 kcalmol−1 for the base

model and 1.42 kcalmol−1 for the transfer learning model, which are similar in magnitude. Similarly,

for the validation data sets the MAE is 0.85 calmol−1K−1 and 0.76 calmol−1K−1 for the entropy

base and transfer learning models, respectively, and 0.60 calmol−1K−1 and 0.71 calmol−1K−1 for

the heat capacity base and transfer learning models, respectively. Regardless, this indicates that

less than a tenth of all available molecules have to be calculated at the high level or obtained from

experiment in order to train a model that reaches the same precision as a low-level model trained

on all available molecules.

As mentioned in previous sections, entropy is strongly affected by conformational effects.20 Ex-
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Table 3.6. Test set (tf_s_test) accuracies and precisions of entropy (𝑆∘
298) predictions in calmol−1 K−1

for the transfer learning model (TF) and the base model split by molecules with and without internal rotors.

Accuracy MAE RMSE 95% CI

TF (no rotors) 0.72 1.10 2.19

TF (with rotors) 0.85 1.19 2.37

Base (no rotors) 1.44 1.75 3.51

Base (with rotors) 14.12 16.85 33.70

Precision MAE RMSE 95% CI

Base (no rotors) 0.96 1.33 2.65

Base (with rotors) 1.78 2.58 5.16

perimental data naturally include all the important conformers and internal rotors. However, the

quantum chemistry calculations used here are for a single conformer, and they do not include cor-

rections for internal rotation. Table 3.6 shows that combining experimental and quantum chemistry

calculations into a single training set affords predictions of nearly identical quality for molecules

with and without internal rotors. Because the training data for the base model are composed ex-

clusively of static electronic structure calculations, its accuracy and precision for molecules with

internal rotors is lowered significantly.

Parity plots and frequency distributions of the errors for the different transfer learning models

are shown in Figure 3.4. The error distributions show that while most molecules are predicted

well by the transfer learning model, several predictions are poor, albeit more accurate than the

base model and group additivity on average. In theory, prediction quality can be improved by

providing more information in the form of input atom and bond featurization, for example, by

incorporating molecular geometry, but molecular representation in RMG is inherently graph-based

and lacks geometrical information. Furthermore, thermochemistry may be strongly affected by

different molecular geometries. Rapid estimation of molecular geometries may be possible with

distance geometry based three-dimensional embedding and subsequent force field optimization as is

available in cheminformatics packages like the RDKit,35 but exhaustive conformer searches for the

selection of the lowest energy conformation may be prohibitively expensive for large molecules in

RMG and it is not clear when distance geometry-based approaches might fail.

Obtaining nearly 10 000 high-level data points for the enthalpy of formation model, as was done

in this study, is already associated with large computational cost. Therefore, it is important to know

how much data are really needed to obtain acceptable results. To assess this, we trained different

models on various fractions of the approximately 9800 F12 data (tf_h_1 in Table 3.3) and tested

on all of the remaining data. For example, the smallest training set considered by us is composed

of 81 molecules with the test error being reported on the remaining 9724 molecules. The results are
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Figure 3.4. Parity plots of the experimental and high-level electronic structure calculations (“true”), and
the values predicted by the transfer learning models (“predicted”) for the test sets tf_h_test, tf_s_test,
and tf_c_test. Dashed lines of 10 kcalmol−1 and 5 calmol−1 K−1 are shown to guide the eye. Frequency
distributions of the signed errors (“predicted”−“true”) are superimposed. The heat capacity plot is for the
values at 1500K, which have the largest errors.

shown in Figure 3.5. Remarkably, the MAE is already smaller than 3 kcalmol−1 when only training

on 81 molecules. This suggests that only very few data points are required to adapt the information

learned during training of the base model to be suitable for predictions in the high-level domain.

Predictions of practical importance can already be achieved with less than 1000 high-level training

data, which is less than 1% of the low-level training data used in the base model. Interestingly,

the lowest error in Figure 3.5 is smaller than the error in Table 3.4, even though the experimental

molecules were not included here and the usual assumption in machine learning is that more data

lead to smaller errors. However, the experimental data tend to be more diverse than the molecules

in the tf_h_1 data set, at least in terms of molecular size, which renders the learning task somewhat

more difficult and may explain this difference.

3.5 Conclusions

With the continual development of new methods and the rapid expansion of molecular databases,

machine learning is ideally suited for chemical property prediction in automated reaction mechanism

generation. Because most methods are agnostic to the type of input molecule, machine learning

frameworks are much more flexible than conventional (e.g., group additivity) ones. Nonetheless,

the amount of required training data is usually very large, and these data are especially difficult

to obtain at levels of theory that are of practical importance. To address this issue, we created an

extensive data set of explicitly correlated coupled cluster enthalpies of formation, albeit still much

smaller than available low-quality data sets. We fitted bond additivity corrections to reduce the

mean absolute error compared to experiment to less than 1 kcalmol−1. We also collected an array

of experimental data and calculated additional high-level density functional data for new entropy

and heat capacity data sets.
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Figure 3.5. Test error of enthalpy of formation model with varying number of CCSD(T)-F12 training data
points. The test error is computed across all molecules in data set tf_h_1 that were not trained on.

In order to train useful machine learning models with the comparatively small amount of high-

quality training data, we employed a transfer learning approach to predict enthalpy of formation,

entropy, and heat capacities at several temperatures. Three base models were trained on 130 000

molecules, which were used to initialize parameters in the high-level neural network models and

which provided learned molecular embeddings to convert molecular graphs into appropriate fixed-

length vector representations. Subsequent training of the transfer learning models resulted in models

capable of thermochemical property prediction with accuracies far exceeding those of the base

models and group additivity. By combination of an experimental data set containing molecules

with many rotatable bonds with a DFT data set only composed of rigid molecules, the entropy

and heat capacity transfer learning models achieve equally accurate predictions for molecules with

and without rotatable bonds. We showed that fewer than 1000 high-level training data points are

required to obtain a useful enthalpy of formation model.

Several improvements can be made to both the methods and the data in the future. The larger

error of the test sets compared to the validation data sets used for early stopping and the presence

of predictions with large errors hint at issues with generalizability to significantly different chemical

domains. To combat this issue, the current model design could be improved by incorporating

novel ideas from methods that have been shown to generalize well to larger molecules, for example,

incorporating 3D geometries into the graph convolution or constructing the convolution in a more

atom-wise fashion.13 The current data sets contain no radicals, but thermochemical predictions of

radical species are still possible in RMG by using the hydrogen atom bond increment method (HBI)

to predict their properties from their stable counterparts.56 Alternatively, radicals could be directly

included in the training data, thus directly enabling prediction of their properties without the need

75



for HBI. Moreover, the developed models are limited to the realm of organic chemistry and extension

to transition metal chemistry is not trivial due to difficulties with generating training data.

We have shown that transfer learning coupled with novel high-quality data are an effective tech-

nique to obtain accurate thermochemistry predictions suitable for automated reaction mechanism

generation while only requiring small data sets on the order of a few thousand molecules. We expect

that further refinement of the methods and data will lead to general-purpose property prediction

schemes in the near future.

3.6 Appendix: Automated bond additivity corrections

In Section 3.2.3, we provide details on the two different types of bond additivity corrections and

how they can be derived given a high-accuracy reference data set. To be useful for a wide range

of users, many different BACs must be available. Different computational budgets and different

molecular sizes necessitate different levels of theory for quantum chemistry calculations and, there-

fore, different BACs. In order to minimize the amount of manual effort required and to allow

for straightforward comparisons between different methods, we developed an automated system to

compute enthalpies of formation at the desired level of theory for a reference set of molecules and

to derive the corresponding BACs.

3.6.1 Reference data and least squares regression

To be more generally useful, a more extensive and more accurate reference data set than that

described in Section 3.3 is necessary. We curated a list of very low uncertainty data originating

mostly from the Active Thermochemical Tables,31,45 but some molecules were obtained from the

Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion,57

from the NIST Computational Chemistry Comparison and Benchmark Database,58 from Benson,59

from the NIST Chemistry WebBook,60,61 from Cioslowski et al.,51 and from Pedley et al.62 The

vast majority of species have uncertainties that are at most 1 kJmol−1 with the exception of some

sulfur-containing molecules, for which up to 2.3 kJmol−1 uncertainty was allowed because such data

are difficult to obtain. The reference data include singlets, doublets, triplets, anions, cations, and

are composed of H, C, N, O, S, F, Cl, and Br elements.

As mentioned in Section 3.2.3, two different BAC methods are popular: The method by Pe-

tersson et al.49 (Petersson-type, Equation (3.4)) which fits one parameter per bond type and the

method by Anantharaman and Melius25 (Melius-type, Equation (3.5)) which fits three parameters

per atom type and a molecular parameter. Both of these methods have been implemented in the

Arkane thermodynamics and kinetics package available within RMG.3 Fitting Petersson-type BACs

is possible with a simple linear least squares regression, whereas the nonlinear term in Equation (3.7)
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necessitates a nonlinear least squares solution for Melius-type BACs. We use a trust region reflective

algorithm to solve the optimization.63

3.6.2 Test case: ωB97M-V/def2-TZVPD bond additivity corrections

In addition to the results reported in Section 3.4.1, we selected the 𝜔B97M-V/def2-TZVPD DFT

method as an additional test case, because it has been shown to be an extremely promising density

functional.64,65 If adding BACs to DFT calculations were to enable thermochemical predictions close

to chemical accuracy (1 kcalmol−1), then more expensive methods (e.g., coupled cluster) may not

be necessary for the accuracy required in reaction mechanism generation and good thermochemical

data could be obtained for molecules that are too large for more expensive methods.

The quantum chemical calculations and subsequent thermochemistry calculations were per-

formed automatically for the molecules in the reference database at the 𝜔B97M-V/def2-TZVPD

level using the ARC software package.66 The results after fitting are shown in Figure 3.6. As ex-

pected, even the accuracy before fitting was already excellent for a DFT method. After fitting,

Petersson-type BACs slightly outperform Melius-type BACs in terms of mean errors but the results

are similar. Indeed, these errors are comparable to some higher level coupled cluster methods and

enable generating thermochemistry data of sufficient accuracy for reaction mechanism generation

at DFT cost.

The results in Figure 3.6 are measured across the entire reference database. We also wanted to

determine how the different types of BACs perform on a separate molecular test set. Figure 3.7

shows such a comparison. The test molecules were selected because they include molecules with

nonstandard bond lengths, that is, those that might benefit from the explicit dependence on bond

length in the Melius-type BACs (Equation (3.7)). For example, dinitrogen trioxide has an extremely
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Figure 3.6. Comparison of Melius- and Petersson-type bond additivity corrections for the 𝜔B97M-V/def2-
TZVPD method.
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which contain unusual bond lengths. The molecules are sorted based on the magnitude of the difference of
errors.

long N–N bond, whereas 2-butynedinitrile has short C–––N bonds. As shown in Figure 3.7, Melius-

type BACs indeed perform better for unusually elongated bonds (e.g., nitrobenzene, dinitrogen

trioxide) and molecules with nonstandard electronic structure (e.g., propynylidene), but they per-

form slightly worse for “normal” molecules and, surprisingly, significantly worse for the C–––N triple

bonds in 2-butynedinitrile. Evidently, an explicit correction for the C–––N bond type in Petersson-

type BACs provides the improved performance, whereas Petersson-type BACs cannot distinguish

between a normal-length N–N single bond and a strongly elongated N–N single bond. Therefore,

the choice of BAC-type will depend on the molecule that corrections are being applied to, although

Petersson-type BACs seem to perform well in a wide variety of situations.

Figure 3.8 shows the parameter correlation matrix for Petersson-type BACs. Clearly, some

parameters are strongly correlated. For example 𝐶(C−H) is strongly correlated with 𝐶(C−C),

𝐶(C−N), 𝐶(C−O), and 𝐶(C−S). This is not surprising because C–H generally appears with other

single bonds such that their effect cannot be decoupled. The 𝐶(N−O) and 𝐶(N−−O) parameters

are also strongly correlated because the two bond types very often occur together in nitro groups.

Therefore, this correlation is a result of labeling the nitro group resonance structure in a specific

manner. Adding an additional parameter for bonds with non-integer bond order may reduce such

effects.

The parameter correlation matrix for Melius-type BACs is shown in Figure 3.9. Even though

there are fewer parameters, more parameters are correlated with each other. Most notably, the

correlations between 𝛼 and 𝛽 parameters indicate that fitting atomic energy corrections in addition

to bond corrections cannot generally occur in an uncorrelated fashion. Additionally, the strong
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Figure 3.8. Parameter correlation matrix for Petersson-type bond additivity corrections.

correlations between different 𝛽 parameters indicate that joining two 𝛽 parameters into a single

bond-type parameter like in Petersson-type BACs might be preferred since 𝛽 parameters occur in

pairs in Equation (3.7) anyway.

An issue with the reference dataset is that it is heavily biased towards common molecules, i.e.,

those containing many C–C and C–H bonds (e.g., alkanes). However, often users are interested in

applying to BACs to less common molecules with nonstandard bonding and electronic environments,

as it is more likely that calculations are not yet available for such molecules. In these cases, it would

be desirable to more heavily weight the parameter estimation toward molecules with uncommon
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Figure 3.9. Parameter correlation matrix for Melius-type bond additivity corrections.

substructures that are underrepresented in the data. The code implemented in Arkane can perform

this weighting automatically by first extracting substructures, all of which are shown in Figure 3.10,

and computing the weights for each molecule in the least squares optimization so that molecules

with underrepresented substructures obtain larger weights. The weight for each molecule 𝑀 is given

by

𝑤𝑀 =
1

|𝑆𝑀 |
∑︁
𝑠∈𝑆𝑀

1

𝑛𝑠
(3.10)

where 𝑆𝑀 is the set of substructures in the molecule and 𝑛𝑠 is the total number of substructures of

type 𝑠 across all molecules in the reference database. Figure 3.11 shows a comparison of weighted

and non-weighted Petersson fits for a test set of molecules that were selected based on the occurrence

of “unusual” features. For example, sulfuryl chloride contains two atom types that are not common

in many combustion and pyrolysis reaction mechanisms, and 1,3-benzodithiole-2-thione contains an

unusual aromatic ring system involving multiple sulfur atoms. Figure 3.11 shows that substructure-

weighting improves the performance for such molecules (e.g., 1H-imidazole, 1,3-benzodithiole-2-

thione, 1,3,5-trioxane, dinitrogen trioxide, and sulfuryl chloride) while not resulting in unacceptable

errors for more common molecules (e.g., octane, propyl benzene, pentanol).
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Figure 3.10. Substructures present in the bond additivity correction reference data.
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of molecules, containing “usual” (e.g., octane) and “unusual” (e.g., sulfuryl chloride) molecules alike. The
molecules are sorted based on the magnitude of the difference of errors.
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Chapter 4

Reactants, products, and transition states of

elementary chemical reactions based on

quantum chemistry

Much of this work has previously appeared as Grambow, C. A.; Pattanaik, L.; Green, W. H.

Reactants, Products, and Transition States of Elementary Chemical Reactions Based on Quantum

Chemistry. Sci. Data 2020. Lagnajit Pattanaik performed the reaction template analysis. The

code for generating new data is available at https://github.com/cgrambow/ard_gsm.

4.1 Background and summary

Rapid advancements in computational methods for chemical synthesis planning and automated re-

action mechanism generation, especially in the area of machine learning, are causing a significant

shift in how such problems are tackled. Deep learning approaches are replacing conventional quan-

titative structure-activity relationships often based on support vector machines, decision trees, or

linear methods like partial least squares.1,2 These new systems are becoming widely available for

computer-aided retrosynthesis,3 reaction outcome prediction,3 high-throughput virtual screening,4

and more general molecular property prediction.5,6 Computational approaches are also increasingly

common in reaction mechanism generation due to the large number of species and reactions that

are generally required for accurate descriptions of phenomena like pyrolysis, combustion, and at-

mospheric oxidation.7–9 Frequently, this involves characterizing chemical pathways with quantum

chemistry,8 but deep learning methods have also recently been applied to estimate thermochemistry

during mechanism generation.10,11

While computers already outperform humans at qualitatively predicting reaction products12,13

and successful yield predictions have been demonstrated for limited datasets,14,15 quantitative reac-

tion information is still elusive in large databases like Reaxys,16 Pistachio,17 and the United States
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Patent and Trademark Office database.18 Reaction yield, time, and some quantitative conditions

like temperature are sometimes available, but there is usually no information on reaction kinetics.

If such data were available, calculation of derived properties—such as minimum reaction times and

branching ratios—would be possible. Our goal is to provide a quantitative dataset of reactions that

enables the calculation of such data and can lead to more efficient drug design and help in deciding

which reactions are important in mechanism generation.

Computationally generating a dataset of reactions is significantly more complex than only cal-

culating stable equilibrium structures because transition states (TSs) of chemical reactions cannot

be enumerated in the same manner as stable molecules. Even if the reactant and product structures

are known, the exact TS geometry has to be found via a human-guided search or with expensive

automated TS finding methods. Here, we use automated potential energy surface exploration to

generate the dataset of reactions, which has been shown to be successful in cases when many reac-

tion pathways have to be evaluated.19–21 More specifically, we rely on the growing string method22

to automatically optimize reaction paths and TSs.

We report quantum chemical data on more than 16 000 reactions in the form of reactants,

products, and TSs at the B97-D3/def2-mSVP level of theory, and 12 000 reactions at the 𝜔B97X-

D3/def2-TZVP level of theory. The data include the raw output from geometry optimizations and

frequency calculations in addition to atom-mapped SMILES, activation energies, and enthalpies of

reaction. All reactions are gas-phase calculations involving up to seven carbon, oxygen, or nitrogen

atoms per molecule. The reactants are sampled from GDB-7, a subset of GDB-17,23 meaning that

all reactions have a unimolecular reactant but potentially multi-molecular products. Figure 4.1

illustrates the dataset generation process and the resulting space of reactions in terms of their

activation energies and enthalpies of reaction.

4.2 Methods

4.2.1 Overview

The dataset generation procedure started by selecting molecules from GDB-7,23 generating con-

formers, and optimizing the lowest-energy conformer. An exhaustive set of driving coordinates

subject to valence and connectivity constraints were generated for each reaction. Reaction paths

were calculated with the growing string method,22 which searched along each of the driving coordi-

nates. Products and TSs discovered in this way were reoptimized, duplicate reactions were removed,

and checks were performed to verify the reactions. The generated reactions were then refined at a

higher level of theory. Because of the large number of density functional theory (DFT) calculations

required, the massively parallel nature of the calculations was exploited by running thousands of

calculations in parallel on a supercomputer.
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Figure 4.1. Reaction data generation and visualization of reaction space. During data generation, many
reactants are optimized, hundreds of reaction paths for each reactant are searched with an automated
transition state finding method, and the resulting products are optimized. The reaction space spans a wide
range of activation energies and is visualized with a bivariate kernel density estimate (using a Gaussian kernel)
of the probability density of the activation energy and enthalpy of reaction. The visualization encompasses
both forward and reverse reactions.

4.2.2 Reactant optimization

Because of the unfavorable scaling of quantum chemical calculations, we only considered molecules

with at most seven heavy atoms (C, N, O). All molecules with six or fewer heavy atoms were selected

from GDB-7 (∼770) and a random selection of ∼430 molecules were selected from the set with seven

heavy atoms. Starting from the SMILES strings, we embedded several hundred conformers for each

molecule using RDKit24 with the ETKDG distance geometry method25 and relaxed their geometries

using the MMFF94 force field implemented in RDKit. The lowest energy structure was selected for

each molecule and optimized at both the B97-D3/def2-mSVP with Becke-Johnson damping level of

theory26 and the 𝜔B97X-D3/def2-TZVP27 level of theory with Q-Chem 5.1.28 We ascertained that

none of the molecules contained imaginary frequencies. All calculations, including the subsequent

string method calculations, were done in the singlet state and used a spin-unrestricted ansatz because

the bond distortions occurring in the corresponding TSs might be better treated with an unrestricted

formulation. The def2-mSVP basis set in the Karlsruhe def2 basis set family29 is a modified version

of def2-SV(P), which corrects for an overestimation of bond lengths involving hydrogen.30 All DFT

calculations used the SG-2 standard quadrature grid, which is of sufficient quality for B97-based

functionals.31
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4.2.3 Potential energy surface exploration

The most demanding and most time-intensive step of the reaction generation process is the optimiza-

tion of reaction paths to the minimum energy paths (MEPs) containing the correct TS structures.

We accomplished this in an automated fashion by using the single-ended growing string method

(GSM)22 at the B97-D3/def2-mSVP level of theory. GSM performs the reaction path optimiza-

tion using a set of delocalized internal coordinates, which means that the resulting MEPs may be

slightly different than those obtained via a reaction path following procedure in mass-weighted inter-

nal coordinates.32 Single-ended methods only require a reactant structure to find reactions whereas

double-ended methods additionally require knowledge of the product.33,34 A priori specification of

the product can be problematic when there is no simple elementary step connecting reactant and

product. Single-ended GSM solves this issue by only requiring a set of driving coordinates to initiate

the reaction path search.

In our case, the driving coordinates are specified as bond transformations in terms of primitive

internal coordinates. The direction given by the primitive internal coordinate vector is projected

onto the nonredundant delocalized internal coordinates,35 which is the space in which the reaction

path optimization occurs. This results in a single tangent vector that represents all of the driving

coordinates simultaneously. Importantly, this allows all other coordinates to change without con-

straint during the optimization, thus allowing necessary angle, torsion, and even additional bond

changes to occur. Once a path has been grown, the entire path is optimized towards the MEP while

monitoring the number of TSs along the path and truncating it if more than one TS is detected—

ensuring that the reaction is elementary. As a result of this, not all bond changes given in the

driving coordinates are guaranteed to occur. Towards the end of the path optimization, an exact

TS search takes place guided by curvature information from the string.

In order to obtain many reactions, we generated an exhaustive list of driving coordinate sets for

each reactant subject to a few constraints. Because elementary reactions usually involve few bond

changes, we specified that at most two bonds could be broken, at most two bonds could be formed,

and a total of at most three bonds could be changed. A “bond” in this sense ignored bond orders and

only considered whether two atoms were connected to each other. Note that these constraints were

only selected to ensure a computationally tractable number of driving coordinates. As described in

the previous paragraph, these limits did not apply during the actual path optimization, they were

only used to specify the initial search direction. We also ignored driving coordinates involving only

a single bond change as these would likely correspond to barrierless associations or dissociations.

Driving coordinates involving equivalent hydrogens were not included. Equivalent hydrogens only

differ in their atom indices, e.g., a hydrogen atom that is part of a methyl group is considered to

be equivalent to another hydrogen in the same methyl group. Lastly, the driving coordinates were

further limited based on the valences of the expected product structures. Hydrogen atoms must
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have one bond, carbons can be connected to a minimum of two and a maximum of four atoms,

oxygen to a minimum of one and a maximum of two, and nitrogen to a minimum of one and a

maximum of three.

This process usually resulted in several hundred sets of driving coordinates per reactant. Fol-

lowing each GSM calculation, the endpoint of the paths were subjected to additional geometry

optimizations to ensure that the product structures were at a minimum. For each reactant, there

were many duplicate reactions. Instead of discarding all of them, up to four duplicates of the same

reaction were retained for additional TS optimization in case some of the optimizations fail. While

GSM already produces a mostly optimized TS structure, the additional optimization step ensured

that the TSs were optimized to high accuracy.

4.2.4 Reaction verification and extraction

After the additional TS optimizations, duplicate reactions were filtered out again. If duplicates

were present, the lowest-barrier reaction was retained. Differences in barrier height may arise due

to different TS conformers. Although GSM provided an optimized MEP for each reaction, it is

possible that some reactions containing incorrect transition states remained. These were filtered

out according to a normal mode analysis described in the Technical Validation section.

To convert from three-dimensional geometries to SMILES,36 connections and bond orders could

be perceived with Open Babel.37 However, there were cases where the derived bond orders were

chemically unreasonable, for example, the resulting SMILES often contained adjacent radical atoms

which most likely correspond to double bonds. To eliminate unreasonable structures, we converted

the Open Babel molecule to InChI,38 which only treats bond orders implicitly and resolves the

issue. A downside to using InChI is that tautomers are assigned the same string, but this can be

circumvented by converting to a nonstandard InChI containing a fixed-hydrogen layer. Additionally,

atom ordering was lost in the InChI conversion. We reconstructed the atom map by converting to

an RDKit molecule and determining the graph isomorphism between the original molecule and

the RDKit molecule without considering bond orders. In the future, an alternative procedure for

perceiving SMILES could be implemented based on natural bond orbital analysis.39

The activation energies were extracted by adding the zero-point energies from a harmonic vibra-

tional analysis to reactant, product, and TS energies and computing the difference between resulting

TS and reactant energies. Similarly, enthalpies of formation were determined based on the difference

of product and reactant energies.

4.2.5 Refinement

B97-D3/def2-mSVP strikes a reasonable balance between cost and accuracy for potential energy

surface exploration, but does not provide particularly accurate energies. Therefore, we refined the
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discovered pathways using 𝜔B97X-D3/def2-TZVP. As mentioned earlier, reactants were already

optimized with 𝜔B97X-D3/def2-TZVP. Reactions were extracted as described in the preceding sub-

section, but some duplicates were retained to increase the probability of successful reoptimization.

Only the duplicate with the smallest activation energy was retained in the end. Products and TSs

were then reoptimized with 𝜔B97X-D3/def2-TZVP and the final high-level reactions were extracted

as before.

4.3 Data records

Q-Chem output files, extracted SMILES, activation energies, and enthalpies of formation are avail-

able for 16 365 B97-D3/def2-mSVP reactions and for 11 961 𝜔B97X-D3/def2-TZVP reactions.40

The raw log files are stored in two compressed archive files, b97d3.tar.gz and wb97xd3.tar.gz for

B97-D3/def2-mSVP and 𝜔B97X-D3/def2-TZVP data, respectively. Each archive contains a sepa-

rate folder for each reaction labelled rxn######, where ###### denotes the reaction number padded

with zeros. Within each folder are the three log files for a reaction, r######.log for the reactant,

p######.log for the product, and ts######.log for the transition state. Each log file contains the

output of a geometry optimization and harmonic vibrational analysis.

Atom-mapped SMILES, activation energies, and enthalpies of formation for each reaction are

listed in the comma-separated values files b97d3.csv and wb97xd3.csv for the B97-D3/def2-mSVP

and 𝜔B97X-D3/def2-TZVP levels of theory, respectively. The reactions are listed in the same order

as the corresponding folders in the archive files. The columns in the comma-separated values files

are explained in Table 4.1.

Table 4.1. A description of the columns in the comma-separated values files.

Column label Description

idx Reaction index
rsmi Reactant SMILES
psmi Product SMILES
ea Activation energy (kcalmol−1)
dh Enthalpy of reaction (kcalmol−1)

During the potential energy surface exploration, many duplicate reactions were encountered

which were filtered out. Additionally, reactions that did not pass the tests described in the Technical

Validation section were removed from the final list. Nonetheless, all of these calculations also

produced optimized transition states, although the reactants and products were not verified for many

of them and duplicate transition states exist. These data may still prove to be useful if only transition

state structures are required or if additional calculations are done to obtain the corresponding

reactants and products. Therefore, the log files for all successfully optimized transition states at
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both levels of theory are stored in ts_with_dup_b97d3.tar.gz and ts_with_dup_wb97xd3.tar.gz.

There are 69 366 B97-D3/def2-mSVP transition states and 24 987 𝜔B97X-D3/def2-TZVP transition

states.

4.4 Technical validation and analysis of reactions

Although the growing string method produces an optimized minimum energy path that should

contain the correct TS in most cases, insufficient path discretization and reoptimization of TS ge-

ometries can lead to convergence failures or result in incorrect transition states. We performed

several checks to filter out incorrect reactions. We ensured that all TSs have exactly one imaginary

frequency. Reactions were also removed if the energy during the TS optimization changed by more

than 3 kcalmol−1 relative to the highest energy on the growing string path. The most important

check that we performed was to verify that the atomic displacements for the imaginary frequency

matched the bond changes that occurred going from the proposed reactant to product. For each

proposed reaction, we determined which bonds were changing in the reaction and ensured that

the imaginary frequency normal mode displacements along those bonds were larger than the dis-

placements along all the other bonds. This indicated that movement along the reaction coordinate

mostly involved atoms undergoing significant change in the reaction. After all these changes, there

is still the possibility that some of the transition states are incorrect. As a final check, we removed

all of the reactions where the imaginary frequency of the transition state was less than 100 cm−1 in

magnitude, as these typically correspond to conformational changes.

To avoid excessive computational cost, DFT methods had to be used to generate the reaction

dataset. The functional chosen for the string method calculations, B97-D3, does not provide accu-
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Figure 4.2. Distribution of differences between B97-D3 and 𝜔B97X-D3 activation energies.
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rate activation energies, but was selected due to its low computational cost. However, 𝜔B97X-D3

has been shown to yield excellent quantitative barrier heights with a 2.28 kcalmol−1 root-mean-

square deviation from reference data that is estimated to be more than ten times as accurate as

the best density functionals,41 which makes this data very useful. Figure 4.2 illustrates the striking

difference between activation energies calculated with B97-D3 and those calculated with 𝜔B97X-D3.

In many cases, B97-D3 severely underestimates the barrier with an average error of 10 kcalmol−1.

Therefore, the following analyses were only completed for the 𝜔B97X-D3 data.

In order to show that the dataset provides a reasonably diverse set of reactions spanning many

different chemistries even though constraints were set on the number of atoms and driving coordinate

generation parameters, it is necessary to characterize the types of reactions. Figure 4.1 already shows

that the range of activation energies and enthalpies of formation is very large. Even high-energy

reactions involving barriers of up to 200 kcalmol−1 are included in the dataset. If the data are

used to learn reaction prediction models, including such high-energy paths is important in order

to not bias models towards the low-energy regions. Figure 4.3 shows that even though the driving

coordinates were limited to three bond changes, significantly more complex reactions involving more
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Figure 4.3. The distribution of activation energies split by the number of bond changes in the 𝜔B97X-D3
reactions. Bond changes only consider changes in connectivity between atoms, irrespective of bond order.
The distributions are scaled to have equal area.
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Figure 4.4. The number of times each type of bond change occurs in the 𝜔B97X-D3 reactions. For example,
C–N denotes both forming a bond between C and N atoms and breaking a bond between the atoms. This
also includes a change in the bond order between the two atoms.

bond changes occur in the dataset. Nonetheless, most elementary reactions predominantly occur

with only two or three bond changes. Furthermore, the median activation energy increases with an

increasing number of bond changes, which is expected.

Instead of simply counting the number of bond changes, the reactions can be classified based

on the types of bonds that are changed. Figure 4.4 shows that all combinations of bond changes

between H, C, N, and O atoms occur in the dataset with many examples present for all reaction

types. H–H changing reactions are the rarest because they only correspond to hydrogen molecule

formation.

We characterized the reaction diversity by automatically extracting a set of general templates.

We only focused on the reactive center by using the GetReactingAtoms method in RDKit to isolate

atoms changing in the reaction. The molecular fragments in the reactants and products identified

as the reactive center were then concatenated together to form the reaction template. In addition

to the connectivity of the reacting atoms, the only features considered were atom identity, charge,

aromaticity, and bond type. Figure 4.5 shows the results of this automated extraction. Many

templates only have a single reaction example and only the eight most popular templates have more

than 100 reaction examples, highlighting the diversity present in the dataset.

Lastly, Figure 4.6 characterizes how the pairwise atom distances change for all reactions, mea-

sured as the change going from reactant to transition state. The distribution of distance changes

show that the changes for most reactions fall within a normal range, but there exists a significant

tail containing some reactions with large changes. Interestingly, the second plot in Figure 4.6 shows

that these large changes do not necessarily correspond to reactions with very high activation en-

ergies. However, an average increase in activation energy can be observed for those reactions with
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Figure 4.5. Automatically extracted reaction templates. The reactions were grouped with very general
reaction templates that only consider connectivity of atoms in the reactive center, atom identity, charge,
aromaticity, and bond type. The top 20 templates are denoted with SMARTS strings.42

normalized distance changes up to 0.3Å.

4.5 Usage notes

With the exception of the growing string method code, which is available from the developers of

the method,43 and the Q-Chem quantum chemistry package, all code necessary to reproduce the

generated data is available on GitHub.44 The repository contains several scripts, which should be

run in the following order:

∙ parse_qm9.py: Converts the QM9 data directory,45 which contains the GDB-9 SMILES along
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Figure 4.6. Distribution of normalized distance changes (left) and relationship to activation energy (right).
The normalized distance change for each reaction is calculated by computing the pairwise distances between
all atoms in the reactant and transition state. The pairwise distances are summed and normalized using the
number of atoms. The distance change is then the difference between transition state and reactant. The
bars in the right plot correspond to one standard deviation above and below the median of each bin.

with quantum mechanically derived properties, to a pickled file containing a list of MolData

objects, which store the information in QM9 as Python objects.

∙ make_opt_jobs.py: Performs conformer searches and makes Q-Chem input files for opti-

mization of reactant geometries based on the QM9 SMILES. The geometry optimizations

themselves have to be performed with Q-Chem outside of the code, preferably in a massively

parallel fashion on a supercomputer.

∙ create_gsm_jobs.py: Reads the geometry optimization outputs of the reactant optimiza-

tions, generates driving coordinates, and writes the files required for the GSM calculations.

The GSM code has to be compiled separately.43 The GSM calculations also have to be run

separately and should produce output files with a gsm#.out format, where # corresponds to

each reaction path.

∙ create_prod_optfreq_jobs.py: Reads the string endpoints from the successfully completed

GSM calculations and writes the Q-Chem input files for the product optimizations.

∙ create_ts_optfreq_jobs.py: Extracts the TS geometries from the GSM output files, re-

moves duplicate reactions using the output from the product optimizations, and writes the

Q-Chem input files for additional TS optimizations.

∙ extract_reactions.py: Extracts the unique reactions using the reactant, product, and TS

optimization outputs in the form of a comma-separated values file containing SMILES, ac-

tivation energies, and enthalpies of reaction. Can also write the file path information of all

relevant log files to the CSV output, which can be used to copy the log files for every reaction.
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∙ refine_reactants.py: Writes Q-Chem input files for reoptimization of the reactants at the

higher level of theory.

∙ refine_products_and_ts.py: Uses the same method as implemented in extract_reactions.py

to extract reactions and write Q-Chem input files for the reoptimization of products and TSs

at the higher level of theory. After running the Q-Chem jobs, extract_reactions.py can be

run again to extract the high-level reactions.

If desired, the levels of theory and the reaction generation settings can be changed in the config

folder.
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Chapter 5

Deep learning of activation energies

Much of this work has previously appeared as Grambow, C. A.; Pattanaik, L.; Green, W. H. Deep

Learning of Activation Energies. J. Phys. Chem. Lett. 2020, 11, 2992–2997. Lagnajit Pattanaik

assisted with extracting the reaction types by providing code to characterize the bond changes of

each reaction. The code for training and evaluating the machine learning models is available at

https://github.com/cgrambow/chemprop/tree/reaction.

5.1 Introduction

Activation energy is an important kinetic parameter that enables quantitative ranking of reactions

for automated reaction mechanism generation and organic synthesis planning. Achieving reliable

activation energy prediction is an integral step toward the complete prediction of kinetics. Machine

learning, particularly deep learning, has recently emerged as a promising data-driven approach for

reaction outcome prediction1–6 and for use in organic retrosynthetic analysis.7–10 These methods

leverage massive data sets of organic reactions, such as Reaxys11 and Pistachio.12 However, the

methods operate on qualitative data that indicate only the major reaction product and mostly lack

any information regarding reaction rates. Moreover, many of the organic chemistry reactions are

not elementary. The data used by Kayala and Baldi1 and Fooshee et al.2 are an exception, but

quantitative information is still missing.

Linear methods, like Evans-Polanyi relationships13 and group additivity models,14–17 have been

successfully used in automated reaction mechanism generation to estimate rate constants, but they

are limited in scope and applicability. New parameters have to be derived for each reaction family,

and predictions far from the training data often go awry. Nonlinear decision trees provide more

flexible models for the estimation of kinetics but are also most effective when they are specific to a

reaction family.18 Neural networks may be a promising alternative as large data sets become more

readily available.

Recently, some quantitative reaction prediction research using neural networks has become avail-
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able, but it is limited in its application. Gastegger and Marquetand developed a neural network

potential for a specific organic reaction involving bond breaking and formation, likely the first of its

kind.19 Allison described a rate constant predictor for a specific reaction type involving reactions

with OH radicals.20 Choi et al. looked specifically at activation energy prediction using machine

learning.21 However, their training data were composed of reactions in the Reaction Mechanism

Generator (RMG)18 database that comprised many similar reactions such that a random test split

yielded ostensibly good results. Their issue stems from the fact that the vast majority of the RMG

database is composed of just two reaction families: hydrogen abstraction and addition of a radical

to a multiple bond. Reactions within the same family tend to have similar kinetics. Therefore,

a model trained on such data performs particularly well for the two reaction types but not well

for others. Moreover, the model of Choi et al. required knowledge of the reaction enthalpy and

entropy to make a prediction. Singh et al. similarly predicted reaction barriers for a small data set

of dehydrogenation reactions involving dissociation of N2 and O2 on surfaces.22 Their model also

required the reaction energy as additional input.

Our goal is to develop a deep learning model to predict activation energies across a wide range of

reaction types that does not depend on any additional input and requires only a graph representa-

tion of reactants and products. Such a model would be useful as a first step in deep learning-based

estimation of kinetics for automated reaction mechanism generation (e.g., in RMG18) or would

allow for quantitative ranking of reaction candidates that were generated via combinatorial enumer-

ation of potential products given a reactant.23 Training such a model requires suitable quantitative

data. We use data based on large-scale quantum chemistry calculations,24 but high-throughput

experimentation25 is also starting to become a valuable source of new data.

5.2 Methods

To effectively learn activation energy, we must encode the atoms involved in a reaction that change

significantly in a way that they contribute most to the predicted property. To accomplish this,

we extend a state-of-the-art molecular property prediction method, chemprop, developed by Yang

et al.,26 to work with atom-mapped reactions. Figure 5.1 shows a schematic of the method, which

will be explained in the following. Our modified code is available on GitHub in the reaction branch

of chemprop.27 The code also includes the trained model in the model directory that can be directly

used with the predict.py script in chemprop.

5.2.1 Neural network architecture

The method of Yang et al. is a directed message passing neural network (D-MPNN) for molecular

property prediction, which is a type of graph convolutional neural network.28–30 Graphs naturally

represent molecules in which atoms are the vertices and bonds are the edges. Our method extends
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Figure 5.1. Illustration of neural network model used to predict activation energy given a chemical reaction.
The difference fingerprint approach emphasizes atoms that change during the reaction.

the chemprop architecture in order to encode reactions instead of molecules by using a difference

fingerprint approach, which is similar to that of Coley et al..5

The same D-MPNN operates on the reactant and product graphs, 𝐺𝑅 and 𝐺𝑃 , separately

to create a learned representation for each atom in the reactant and each atom in the product.

Hydrogens are explicit in the graphs because they are often directly involved in the reactions. We

subtract the representations for corresponding atoms between reactants and products from each

other to generate a reaction embedding for each atom. We then aggregate these embeddings prior

to the final activation energy prediction.

To operate on a molecular graph, 𝐺 = (𝑉,𝐸) with vertices (atoms) 𝑉 and edges (bonds) 𝐸,

we require initial atom features {𝑥𝑣 | 𝑣 ∈ 𝑉 } and initial bond features {𝑒𝑣𝑤 | 𝑣𝑤 ∈ 𝐸}. The atom
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features comprise a one-hot encoding of the atomic number, the degree, the formal charge, the chiral

tag, the total number of hydrogens, and the hybridization; an aromaticity flag; the atomic mass;

and whether the atom is in a ring of size 𝑠 for 𝑠 ∈ [3, 10]. The bond features indicate whether the

bond is a single, double, triple, or aromatic bond; whether it is conjugated; whether it is in a ring;

whether it is in a ring of size 𝑠 for 𝑠 ∈ [3, 10]; and they contain a one-hot encoding of the bond

stereochemistry. Since the ring membership features for atoms and bonds are one-hot vectors, they

are able to encode all different-size rings that they are part of. We obtained all of the features using

RDKit.31

The following illustrates the message passing procedure. Note that some layers may include bias

parameters, but the equations do not show them explicitly. We obtain the initial hidden state of a

bond 𝑣𝑤 in an embedding operation given by

ℎ0𝑣𝑤 = 𝜏 (𝑊𝑖 cat(𝑥𝑣, 𝑒𝑣𝑤)) (5.1)

where 𝜏(·) is the ReLU activation function, 𝑊𝑖 ∈ Rℎ×(ℎ𝑥+ℎ𝑒) is a learned matrix, and cat(𝑥𝑣, 𝑒𝑣𝑤) ∈
Rℎ𝑥+ℎ𝑒 represents the concatenation of atom and bond features. ℎ𝑥 and ℎ𝑒 are the sizes of the initial

atom and bond features, respectively. We determined the optimal hidden size to be ℎ = 1800 using

the hyperparameter optimization procedure described later. The network calculates messages at

the next time step as

𝑚𝑡+1
𝑣𝑤 =

∑︁
𝑘∈{𝑁(𝑣)∖𝑤}

ℎ𝑡𝑘𝑣 (5.2)

where 𝑁(𝑣) denotes the neighbors of atom 𝑣. The hidden state is updated by

ℎ𝑡+1
𝑣𝑤 = 𝜏

(︀
ℎ0𝑣𝑤 +𝑊𝑚𝑚𝑡+1

𝑣𝑤

)︀
(5.3)

where 𝑊𝑚 ∈ Rℎ×ℎ is another learned matrix and adding ℎ0𝑣𝑤 connects every hidden state to its

original embedding. This proceeds iteratively for 𝑡 ∈ {1, . . . , 𝑇}, and we set 𝑇 = 5. We then convert

bond fingerprints to atom fingerprints according to

𝑚𝑣 =
∑︁

𝑤∈𝑁(𝑣)

ℎ𝑇𝑤𝑣 (5.4)

ℎ𝑣 = 𝜏 (𝑊𝑎 cat(𝑥𝑣,𝑚𝑣)) (5.5)

where 𝑊𝑎 ∈ Rℎ×(ℎ𝑥+ℎ) is a third learned matrix. Equations (5.4) and (5.5) are another message

passing step, so the total number of message passing iterations is 𝑇+1 = 6. We apply the operations

in Equations (5.1) to (5.5) to both the reactant and the product to yield ℎ
(𝑅)
𝑣 and ℎ

(𝑃 )
𝑣 , respectively,

for all atoms 𝑣 in the molecular graph.
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Next, we obtain the embedded difference atom fingerprints as

𝑑𝑣 = 𝜏
(︁
𝑊𝑑

(︁
ℎ(𝑃 )
𝑣 − ℎ(𝑅)

𝑣

)︁)︁
(5.6)

where 𝑊𝑑 ∈ Rℎ×ℎ is a learned matrix. We sum the difference fingerprints to obtain a feature vector

for the reaction

𝑟 =
∑︁
𝑣∈𝐺

𝑑𝑣 (5.7)

Before generating an estimate for the activation energy, we calculate 200 global molecular features

using RDKit31 for both the product and the reactant and append their difference to the reaction

feature vector

𝑟 = cat(𝑟, 𝑓𝑃 − 𝑓𝑅) (5.8)

where 𝑓𝑃 and 𝑓𝑅 are the product and reactant RDKit features, respectively. The purpose of these

features is to capture global structural information in addition to the local information that is built

up in the message passing steps. See Ref. [26] for more information.

Finally, the reaction feature vector with a linear activation enables estimation of the activation

energy ̂︀𝐸𝑎 = 𝑤ᵀ
𝑎𝑟 (5.9)

where 𝑤𝑎 ∈ Rℎ+200 is a learned vector. We observed that a multitask prediction of both the

activation energy and the enthalpy of reaction significantly improves the activation energy estimate.

Therefore, the model has a second output to predict the enthalpy of reaction

Δ ̂︀𝐻𝑟 = 𝑤ᵀ
𝑒𝑟 (5.10)

which is supplied during training but no longer used during evaluation.

The idea behind constructing difference fingerprints is to subtract out the effects of atoms that

do not change significantly in the reaction, and, therefore, do not contribute much to the activation

energy prediction. This requires that atom-mapped reactions are available, which is often not the

case, but developing methods for automatic atom mapping is an active area of research.32–34 With

large molecules, even atoms that do not change their covalent bonding environment may have large

difference fingerprint magnitudes because they may strengthen van der Waals attractions between

different parts of the molecule or sterically hinder certain transition states.

5.2.2 Data sources

We train our model on a newly developed gas-phase organic chemistry data set of elementary

atom-mapped reactions based on density functional theory (DFT).24 These data span a diverse set
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of reactions with at most seven heavy atoms involving carbon, hydrogen, nitrogen, and oxygen.

Reactions are available at two different levels of theory: B97-D3/def2-mSVP and 𝜔B97X-D3/def2-

TZVP. Both levels are used in a transfer learning approach similar to that in Ref. [35], but we

measure the final model performance against the 𝜔B97X-D3/def2-TZVP data. We augment our

data by including all of the reverse reactions, as well, which essentially doubles the training data

and may further help in subtracting out the effect of distant atoms. This results in a total of

33 000 B97-D3/def2-mSVP and 24 000 𝜔B97X-D3/def2-TZVP reactions. The activation energies,

𝐸𝑎, provided in the data set are not obtained by fitting to an Arrhenius form, but they represent

the difference of transition state and reactant electronic energies, each including zero-point energy.

The reactions in automated reaction mechanism generation often involve radicals because large

chemical mechanisms are usually driven by radical propagation reactions. We use the same method-

ology as described in Chapter 4, using an unrestricted DFT formalism, to compute an additional

2024 B97-D3/def2-mSVP and 1367 𝜔B97X-D3/def2-TZVP reactions24 starting from a random se-

lection of reactants using the data published by St. John et al..36 As described in Chapter 4, we

ensured that the normal mode displacements for the mode corresponding the single imaginary fre-

quency of each transition state are congruent with the bond changes of the reaction. The set of

radical reactions is available online.37 As with the non-radical reactions, the reverse reactions are

used to augment the radical reaction data.

5.2.3 Training and hyperparameter optimization

We partition the data into training, validation, and testing sets using a scaffold split, which bins the

data based on the Murcko scaffolds of the reactants calculated by RDKit.31 Ref. [26] describes the

exact partitioning procedure. To obtain a better measure of model performance, we use a 10-fold

cross-validation approach. The validation data sets, used for hyperparameter optimization and early

stopping, consist of 5% of the available data. Even though the model produces ̂︀𝐸𝑎 and Δ ̂︀𝐻𝑟 as

outputs, we only use the error in ̂︀𝐸𝑎 to determine early stopping. We schedule the learning rate as

follows: a linear learning rate increase from the initial learning rate to the maximum learning rate

over a given number of warm-up epochs followed by an exponential decrease to the final learning

rate over the course of the remaining epochs.

Training proceeds in two parts. First, we train the base model with the low-level B97-D3/def2-

mSVP data. We then initialize the parameters of the final model using those of the base model and

train the final model on the high-level 𝜔B97X-D3/def2-TZVP data. This transfer learning approach

makes better use of all available data and enables improved accuracy of the final model.

We determin the architecture and other hyperparameters using the hyperparameter optimization

code supplied with the chemprop package.26 In addition to the hidden size, ℎ, and other architectural

parameters, we optimize several training hyperparameters including the batch size, the number of
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Table 5.1. Optimized training hyperparameters.

Hyperparameter Base Model Final Model

Batch size 50 10
Number of epochs 80 60
Initial learning rate 10−5 10−4

Maximum learning rate 10−3 10−4

Final learning rate 10−5 10−6

Number of warm-up epochs 3 1

epochs, the initial learning rate, the maximum learning rate, the final learning rate, and the number

of warmup epochs. Table 5.1 shows the optimized parameters.

5.3 Results and discussion

To assess whether the trained model can make useful predictions across a wide range of chemical

reactions, the test set should contain reactions that are sufficiently different from those in the

training data, i.e., out-of-domain data. To generate such a data split, we partitioned our data

on the basis of the scaffold splitting technique, which has been shown to approximate time splits

that are common in industry and are a better measure of generalizability than random splits.26 We

performed the split on the basis of the scaffold of the reactant molecule. Moreover, to obtain a less

variable estimate of the model performance, we evaluated the model using 10-fold cross-validation.

A split into 85% training, 5% validation, and 10% test data yields a test set mean absolute error

(MAE) of 1.7± 0.1 kcalmol−1 and a root-mean-square error (RMSE) of 3.4± 0.3 kcalmol−1, where

the indicated bounds correspond to one standard deviation evaluated across the ten folds. While

this error is quite small given the diverse nature of the data, which span an activation energy range

of 200 kcalmol−1,24 the true error is confounded by the accuracy of the 𝜔B97X-D3 method used to

generate the training and test data, which itself has an RMSE of 2.28 kcalmol−1 measured against

much more accurate reference data.38

Because the model does not take three-dimensional structural information into account and

because the training and test sets include only a single conformer for each molecule (not necessarily

the most stable one), some of the error is due to conformational variations of the reactant or

product structures. More accurate models could be based on the molecular geometries, which have

been shown to work well for molecular property prediction and the development of neural network

potentials.39 Nonetheless, we do not employ such information here because it is often not readily

available in applications when one wishes to rapidly predict activation energies, like in automated

reaction mechanism generation.
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5.3.1 Error analysis

More fine-grained results are shown in Figure 5.2. The parity plot in Figure 5.2a shows that

accurate predictions are made across the entire activation energy range, and this accuracy is even

maintained in regions where data are sparser. Furthermore, there seems to be no systematic over-

or underprediction, and large outliers are relatively infrequent. This is further shown in the error

histogram in Figure 5.2b, which indicates that only very few reactions have errors in excess of

10 kcalmol−1. Depending on the application, the model may be sufficiently accurate for quantitative

predictions if errors slightly in excess of those of the 𝜔B97X-D3 method are acceptable. An MAE

of 1.7 kcalmol−1 implies that rate coefficients differ by a factor of 2.4 from the true/DFT value at

1000K on average, which is often quite acceptable. However, this error increases to a factor of 17.5

at 300K. Moreover, entropic effects that would typically be captured in the pre-exponential factor

used in Arrhenius expressions are not taken into account in this analysis and would constitute an

additional source of error.

Regardless, the results show that the model is suitable for ranking a list of candidate reactions

by their likelihood of occurring. This may lead to an improvement over qualitative reaction outcome

prediction approaches by enabling a more quantitative ranking. However, a direct comparison is

not currently possible because such approaches are generally not based on elementary reactions and

involve multiple steps in solvated environments. A promising, immediate application of the model

could be to enable discovery of novel reactions from species in large chemical mechanisms. Reaction

candidates can be generated from each molecule in a mechanism by changing bonds systematically

to enumerate potential products.23 The deep learning model can then assess which candidates have

the lowest barriers and warrant further evaluation. Such a reaction discovery process would proceed

in a template-free manner, whereas conventional reaction mechanism generation software is based

on templates to restrict the allowable chemistry.18

Figure 5.2c also shows that the model strongly benefits from additional training data, and the

typical decrease in the slope of the learning curve is not yet evident. However, this is partially

because hyperparameter optimization was performed on an 85:5:10 split. Optimization for the

points at lower training ratios would lead to improved performance and show a more typical curve.

Unlike our model, other methods for the estimation of activation energy and kinetics, such

as the decision tree estimator used in the RMG software,18 are often applicable only within a

specific reaction family/template. The decision tree templates implemented in RMG are based on

known reactivity accumulated over decades and manually curated into reaction rules. Conversely,

the training data for the deep learning model are obtained from systematic potential energy surface

exploration and contain many unexpected reactions that do not fall within the space encoded by the

RMG templates. In fact, only 15% of all reactions in the data used for this study have a matching

template in RMG (shown in Figure 5.3). There is no statistically significant difference between
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Figure 5.2. Deep learning model results. (a) Parity plot of model predictions vs. “true” (𝜔B97X-D3) data
for the first fold. (b) Histogram of prediction errors (predicted minus “true”) for the first fold. (c) MAE
vs. the number of training data points for the deep learning model. The error bars indicate one standard
deviation calculated across the ten folds. (d) Distributions of errors (outliers not shown) for the six most
frequent reaction types (first fold). Each reaction type includes only the bond changes occurring in the
reaction, e.g., +C-H,–C-H,–C-C means that a carbon-hydrogen bond is formed, a different carbon-hydrogen
bond is broken, and a carbon-carbon single bond is broken in the reaction.

the deep learning model performance on RMG-type reactions and on non-RMG-type reactions

(𝑝 ≤ 0.05), which shows that our template-free model can be applied to many reactions that do not

fit into expected reaction families and may be useful for discovering new and unexpected reactions.

Figure 5.2d illustrates that the test set error is not the same across all reaction types (examples

of each reaction type are shown in Figures 5.4 to 5.9), but the reasons for this are not obvious. The

+C-H,–C-H,–C-C type leads to the formation of carbenes via hydrogen transfer and ring opening

and has a distribution of errors similar to that of the +C-H,–C-H,+C-C type, which is its reverse.

Of the most frequent reaction types, the largest errors are associated with the +C-O,–C-C,–C-O

type, which is similar to the +C-H,–C-H,–C-C type but involves the transfer of a hydroxy group

instead of a hydrogen or the rearrangement of a cyclic ether. The last three reaction types shown

in Figure 5.2d generally have small errors, although the +C-H,+C=O,–C-H,–C-C,–C-O type has

a tail skewed toward larger errors, potentially because of its unusual zwitterion/carbene product.

Interestingly, the model generally performs poorly for reactions with three heavy atoms as shown
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Figure 5.3. Number of reactions that match each RMG family.

in Figure 5.10, perhaps because the training data are dominated by larger molecules.

5.3.2 Reaction embeddings

To assess whether the reaction encoding learned by the model is chemically reasonable, we em-

bedded the encodings in two-dimensional space using t-distributed stochastic neighbor embedding

(t-SNE).40 The activation energy gradient in Figure 5.11 demonstrates that the model has learned

to organize reactions it has not seen during training in a sensible manner that correlates with re-

activity. Moreover, different regions in this representation of reaction space correspond to different

reaction types. The six most frequent reaction types (same as those in Figure 5.2d) are highlighted

in Figure 5.11. Because the reaction types are based only on the bond changes, the reactions within

each type involve many different chemical functionalities; still, the model learns to cluster reactions

of the same type together. The same analysis is conducted using principal component analysis

(PCA) in Figure 5.12, but the separation into reaction-type clusters is not as striking because the

first two PCA components capture only 46% of the total variance. Nonetheless, the clustering is still

evident and a method like PCA allows new reaction samples to be transformed into the embedded

space whereas t-SNE does not.
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Figure 5.4. +C-H,–C-H,–C-C type reactions.
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Figure 5.5. +C-H,–C-H,+C-C type reactions.
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Figure 5.6. +C-O,–C-C,–C-O type reactions.
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Figure 5.7. +C-H,+C=O,–O-H,–C-C,–C-O type
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Figure 5.10. MAE split by the number of heavy atoms involved in each reaction.

5.3.3 Side chain analysis

To further show that the model behaves correctly when different functional groups are present, we

analyzed the effects of substituting hydrogen atoms with side chains containing different functional

groups and verified the model predictions using DFT. The analysis was conducted by selecting two

reactions, one with a substitutable hydrogen close to the reaction center (at a distance of 1) and one

with a substitutable hydrogen far from the reaction center (at a distance of 3), and substituting the

hydrogens using different functional groups (side chains). The groups were chosen as the homologous

methyl, ethyl, and propyl chains; an amino group; and a hydroxy group. Figure 5.13 illustrates the

original and substituted reactions.

As shown in Figure 5.14, both the amino and hydroxy groups have a significant negative effect

on the activation energy when the substitution occurs close to the reactive center. Interestingly,

the more electronegative hydroxy group does not reduce the barrier as strongly as the amino group.

The deep learning model agrees well with the DFT calculations, except in the case of the hydroxy

group, where it predicts a barrier lower than that for the amino group. When the substitution

occurs far from the reactive center, none of the side chains results in significant differences from the

original barrier; and the deep learning predictions agree well with the DFT results.

This side chain analysis also agrees with the earlier hypothesis that the difference fingerprints

(recall Figure 5.1) should, on average, have a smaller contribution to the activation energy for
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Figure 5.11. t-Distributed stochastic neighbor em-
bedding (t-SNE) of the learned reaction encodings
for the test set of the first fold. The embeddings
correlate with the activation energy (top). The re-
actions cluster in t-SNE space on the basis of their
reaction type. Shown are the six most frequent re-
action types (bottom). Each reaction type includes
only the bond changes occurring in the reaction, e.g.,
+C-H,–C-H,–C-C means that a carbon-hydrogen
bond is formed, a different carbon-hydrogen bond
is broken, and a carbon-carbon single bond is bro-
ken in the reaction.
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Figure 5.12. Principal component analysis (PCA)
of the learned reaction encodings for the test set of
the first fold. The first two components capture 46%
of the total variance. The reactions cluster in PCA
space on the basis of their reaction type. Shown are
the six most frequent reaction types (bottom). Each
reaction type includes only the bond changes occur-
ring in the reaction, e.g., +C-H,–C-H,–C-C means
that a carbon-hydrogen bond is formed, a differ-
ent carbon-hydrogen bond is broken, and a carbon-
carbon single bond is formed in the reaction.
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Figure 5.13. Substitution of side chains at a location close to the reactive center (hydrogen 7) for an example
reaction (left) and at a location far from the reactive center (hydrogen 8) for a different example reaction.
The topmost reactions are the original reactions and the following reactions involve different substitutions
of the hydrogen atoms.
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Figure 5.15. Investigation of how the difference fingerprint norm, i.e., contribution to the activation energy
prediction, changes as atoms move farther from the reactive center. The reactive center is defined as those
atoms that undergo bond changes in a reaction.
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Figure 5.16. Comparison of test set error distributions for non-radical and radical reactions.

atoms farther from the reactive center, although some distant atoms may influence the reactivity

via electronic or steric effects. Figure 5.15 shows that the contribution, measured by the norm of

the difference fingerprint, does indeed decrease for atoms that are farther from the reactive center.

5.3.4 Radical reactions

The model reported in the previous sections was not trained using the additional radical reaction

data. To investigate whether accurate predictions are also possible for reactions containing radicals,

we combined the two data sets described in Section 5.2.2 and retrained the model. The results, split

by whether or not the reaction contains radicals, are shown in Figure 5.16 for a single fold. Even

though the combined data is composed only of 11% radical reactions, there is no significant difference

between the performance on reactions that contain radicals and those that do not. Therefore, this

model is a suitable candidate for use in automated mechanism generation, where radical reactions

are very common.

5.4 Conclusion

With quantitative data becoming more readily available through advances in high-throughput ex-

perimentation and more extensive computational resources available for data generation using, for

example, quantum chemistry, quantitative predictions of reaction performance based on large train-

ing sets are becoming increasingly more feasible. Here, we have demonstrated that activation
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energies for a diverse set of gas-phase organic chemistry reactions, including radical reactions, can

be predicted accurately using a template-free deep learning method. We expect that automated re-

action mechanism generation software can strongly benefit from such a model, whether to estimate

kinetics or to enable discovery of new reactivity. Further generation of large quantitative data sets

will likely result in rapid development of novel machine learning algorithms suitable for predicting

such quantities.
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Chapter 6

Recommendations for future work

Through a combination of quantum chemistry and machine learning, this thesis has developed im-

proved methods to discover new reactions and compute thermochemical and kinetic parameters that

may be important in high-temperature radical-driven mechanisms, atmospheric chemistry systems,

and potentially even organic synthesis. It has shown that quantum chemical automated transition

state finding algorithms are systematic and thorough at finding new reactions, especially those with

low barriers, and can be used in a massively parallel approach to generate tens of thousands of

reactions spanning a wide range of chemical space not subject to human bias or intuition. With

machine learning research permeating the chemical sciences and a plethora of novel methods being

developed, this thesis has capitalized on the quickly growing research by implementing new methods

for thermochemical and kinetic parameter estimation. We have shown that thermochemistry can

be estimated to near chemical accuracy with machine learning and that automated bond additivity

corrections can significantly improve the estimates provided by cheap quantum chemistry methods.

We demonstrated that a deep learning model for the estimation of activation energies is suitable

to significantly scale up the discovery of chemical reactions. Nonetheless, several limitations of the

methods and models remain, especially in the machine learning area. Overcoming these challenges

in the future will be crucial for more accurate and more pervasive reaction discovery, and chemical

parameter estimation.

6.1 Enhancing bond additivity corrections

Chapter 3 demonstrated that relatively cheap quantum chemistry methods, for example, coupled

cluster with small basis sets or density functional theory methods, can provide very accurate en-

thalpies of formation using simple bond additivity correction (BAC) schemes. However, in order

to be useful for the entire community, BACs must be derived for many different combinations of

quantum chemistry methods and basis sets. Deriving an exhaustive set of BACs is nearly impossi-

ble due to the sheer number of available methods and basis sets, but selecting the most promising
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methods with the most promising basis sets will enable a comprehensive comparison that can be

used to determine which method and basis set are most suitable given a desired accuracy and com-

putational cost. Additionally, the BACs in Chapter 3 should be enhanced by including a better

torsional treatment when computing the partition functions from quantum chemistry calculations,

as enthalpy of formation can also be influenced by internal rotations.1 Specifically, one-dimensional

hindered rotor treatments are a popular, automatable method for calculating torsional partition

functions.2,3 Over time, a large database of corrections should be accumulated in the Arkane code

available in the RMG software.4

Error-canceling balanced reactions provide an alternative to BACs for calculating accurate en-

thalpies of formation.5,6 Isodesmic reactions, which conserve the types of bonds in a reaction, are

an example of such reactions and can also be derived in an automated fashion.7 Implementing such

a scheme and comparing it to BACs will also be important for the thermochemistry and automated

mechanism generation community so that the best method can be chosen in any given situation.

While simple parametric BAC models have been successful for many systems and methods, more

complicated methods, especially neural networks, may be a promising alternative for deriving BACs

that would not require defining empirical functional forms and may be able to overcome some of

the limitations described in Section 3.6.

6.2 Improving reaction discovery and kinetics estimation

6.2.1 Generating multimolecular reactions

Chapters 2 and 4 showed that automated transition state finding algorithms can be used to discover

extensive sets of reactions in unimolecular systems. While the products of these reactions may be

multimolecular, true multimolecular reactions with more than one reactant and more than one

product have not been generated in large numbers. In theory, the current methods can be directly

applied to systems containing two or more reactions, but it can be reasonably assumed that reaction

discovery would not be efficient due to the significant increase in the number of degrees of freedom

as a result of the many different orientations two or more molecules can have toward each other.

For example, if the reacting sites on two molecules are pointed away from each other, an automated

transition state finding method will have to undergo additional work to rotate the molecules into a

suitable orientation lest the transition state optimization fail. Additionally, it stands to reason that

the discovered reactions could be biased more significantly toward high-barrier processes because

there exist factorially more combinations of how to pair reactants together. Future work should

address these issues by judiciously choosing reactant combinations and developing heuristics for

orienting reactants. The work by Dewyer and Zimmerman can serve as a suitable starting point for

this problem.8,9
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6.2.2 Estimating kinetics

Chapter 5 provides the first important step toward temperature-dependent kinetics estimation by

predicting activation energies, but complete rate estimation requires at least the prediction of the

Arrhenius pre-exponential factor in addition to the activation energy. An alternative approach could

be to directly predict the molecular partition functions of the reactants and transition state of the

reaction.10 A flexible and general approach for estimating rates would be desirable in automated

mechanism generation because the existing approach is based on template-specific hierarchical trees

of rate estimation rules, which have to be constructed manually, although automated approaches

for decision tree generation are also being explored.11

6.3 Addressing limitations of machine learning in chemistry

The encouraging results of Chapters 3 and 5 indicate that machine learning methods are well-suited

for automated mechanism generation and automated reaction discovery. Nonetheless, there exist

many limitations that must be overcome for its continued success and to enable its widespread

application.

6.3.1 Building interpretable models

In chemistry, an abundance of physical models with clearly-defined, explanatory equations exist,

which naturally enables chemically meaningful interpretation of the model predictions. In deep

learning, the opaque decision-making process of neural networks leads to a lack of explanatory

models that are not useful for guiding human reasoning.12,13 In fact, it is precisely due to the existing

physical models that the improvement afforded by deep learning in chemistry is not as significant

as in computer science where physical models are not common.12 While this may currently limit

the usefulness of novel methods, there exists significant potential for progress in this area.14 Several

papers that try to combine the benefits of neural networks with physical models are starting to be

published. Pfau et al. developed an approach to solve the Schrödinger equation without the need

for a finite basis set by using a neural network ansatz for the wave function which obeys the required

Fermi-Dirac statistics.15 Their model can outperform coupled cluster theory in strongly-correlated

systems but has to be retrained for each new molecule, which severely limits its applicability. Schütt

et al. overcome this issue by training a model to directly predict the Hamiltonian matrix from which

chemical properties can be derived that are defined as quantum mechanical operators on the wave

function.16 Sinitskiy and Pande also overcome the limitation by training a deep neural network to

compute electron densities in addition to energies.17

Instead of integrating chemical domain knowledge with deep neural networks, several approaches

to enable interpretability revolve around analyzing the importance of hidden units18 or adding layers
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that quantify the contributions of each atom.19–21

Ultimately, additional research is required in both of the areas mentioned above to satisfy the

needs of chemists and chemical engineers attempting to use such models for novel discovery.

6.3.2 Overcoming data scarcity

While further advances in method development are necessary for the continued success of machine

learning in chemistry, additional data sources and superior ways of dealing with small data are just

as important. One of the most significant issues is the significant difficulty associated with obtaining

large quantities of chemical data. The reasons for this are that obtaining data is costly,13,22 currently

available data is severely limited compared to data sets in computer science,12 and it can even be

difficult to validate model results because success can often only be proved using experiments.23

Furthermore, training data are often inherently biased and can lead to non-generalizable models.13

For example, machine learning models may learn irrelevant patterns as demonstrated in the yield

prediction study by Ahneman et al., which showed that their models were learning the hidden

structure inherent in their data set.24–27 If training data are not carefully scrutinized, it can also be

very easy to train a model that learns a nonsensical prediction. For example, a seemingly accurate

model of protein affinity predictions can be obtained due to redundancies in the training data even

if the data involve affinities toward many different proteins but does not provide the protein target

as input to the model.28,29 It should be noted that the authors of the studies in Refs. [28] and [29]

do not mention this inconsistency in their papers.

Luckily, significant progress toward improving data limitations is being made and does not al-

ways require more data. Transfer learning, as described in Chapter 3, is one way of dealing with

data scarcity, but other approaches exist. A promising direction that should be explored in further

research uses unsupervised techniques, especially autoencoders and generative models, to obtain

a transferable continuous molecular representation that could be used as input for subsequent su-

pervised problems or could be used to directly sample new molecules or reactions with desirable

properties.30 There exist at least 166 billion organic molecules with up to 17 heavy atoms.31 Training

an unsupervised model to learn a molecular representation on significant fractions of those molecules

could potentially lead to much more generalizable models. While such large models do not yet seem

to be common in chemistry, with the largest ones using only one million molecules,32 models with

hundreds of millions of parameters trained on billions of words are now being published routinely in

the area of natural language processing.33,34 Extending models trained on relatively small molecules

to work with larger molecules may be possible using hierarchical modeling, which has been demon-

strated successfully for polymers.35

Although improving transferability will certainly lead to better models, knowing when to trust

the model predictions is extremely important both for deciding whether to use a prediction in an
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actual application and for choosing which new data points to train on.14 Uncertainty quantification

of neural network predictions is becoming more pervasive, but the estimated uncertainty and the

true error are often not strongly correlated, thereby leaving room for significant improvement.36,37
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