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Abstract

The social cost of air pollution depends on both its biophysical impacts on health
and productivity and the dynamic avoidance behaviors citizens proactively adopt.
The literature has almost exclusively focused on the direct impacts, and the limited
research looking into the avoidance behaviors has only considered monetary defensive
expenditure. Building upon a theoretical framework incorporating the broader pol-
lution costs into existing economic models, I derive empirical evidence of the hidden
opportunity cost and social cost of pollution avoidance behaviors. For opportunity
cost, I focus on the foregone outdoor leisure activities and the related welfare loss
due to pollution avoidance, relying on billions of cell phone location inquiries from
10,499 parks all over China. Using the pollution blown from upwind cities as the
instrumental variable for local pollution, I show that heavy PM2.5 pollution reduces
park visitation by 10% in northern Chinese cities. If the number of heavily-polluted
days reduces by 25% in northern China, the welfare gain from leisure activity is about
83.5 million USD. For social cost, I show that pollution awareness affects commuting
behaviors, by conducting a survey for 2,258 non-vehicle commuters in Zhengzhou,
China. If fully aware of exposure risk, up to 14.8% of non-vehicle travelers intend to
switch to motor vehicle commuting (private car/ taxi) on polluted days, 13.9% fewer
people are willing to choose active commuting even if they can receive a subsidy, and
soft policies like Green Nudge completely lose effect. This avoidance behavior gen-
erates more emissions for the society and creates a “mitigation-avoidance dilemma”
for transportation policies. The thesis calls for more attention to quantifying the
broader social impacts of pollution by including the non-market value of avoidance
behaviors; these impacts create substantial welfare loss and social challenges awaiting
more balanced policy decision-making to consider these trade-offs.

Thesis Supervisor: Professor Siqi Zheng
Title: Professor in Department of Urban Studies and Planning
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Chapter 1

Introduction

1.1 Motivation

Particulate matter (PM) air pollution, which is predominantly the result of fossil fuel

combustion, is recognized as the most deadly form of air pollution globally. In 2015,

ambient air pollution was considered the fifth ranking mortality risk factor with expo-

sure to PM2.5 estimated to have caused 4.2 million deaths (Cohen et al. 2017). About

98% of cities in low- and middle-income countries and 56% of cities in high-income

countries fail to meet the World Health Organization (WHO) air quality guidelines

(Organization and Others 2016). According to the Air Quality Life Index (AQLI),

particular air pollution cuts global life by nearly 2 years relative to the level deemed

safe by the WHO, which makes it more serious than communicable diseases like HIV/

AIDs or behavioral killers like cigarette smoking and even wars 1. In China, the life

expectancy loss exceeds 5 years in many northern cities where coal burning factories

are located in clusters. Recently, scholars also notice that air pollution severely affects

human capital and productivity (Graff Zivin and Neidell 2013). A growing literature

has begun to establish the causal link between pollution and outcomes ranging from

labor supply, productivity, cognitive performance, etc. Given the importance of hu-

man capital as an engine for economic growth and innovations, the lasting impacts

on productivity could be more severe than the acute morbidity.
1https://aqli.epic.uchicago.edu/pollution-facts/
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Understanding the likely economic impacts of air pollution is of tremendous prac-

tical value to both the policymakers and the public since the perspectives on how

pollution risk matters compared with other local challengings are largely inconsistent

due to their incomparability. In the United States, the Office of Management and

Budget (OMB) must report to the Congress annually on the benefits and costs of

major federal regulation. How to identify, quantify and even monetize the marginal

costs and benefits associated with environmental policies has become a crucial issue

in the policy debates, so that different dimensions of policy decisions can be made

comparable and negotiable. Given the seminal role of such quantification, researchers

have struggled to provide empirically founded estimates of both the non-market eco-

nomic value of pollution damages and their distributive impacts on diverse population

groups accounting for the heterogeneous behavioral responses. To communicate pol-

icy impacts in economic values, researchers have begun to quantify the mortality cost

using the Value of Statistical Life (VSL) (Ashenfelter and Greenstone 2004), calcu-

late morbidity burden through cost-of-illness (Jo 2014), and estimate the labor market

outcomes affected by pollution (T. Chang et al. 2016). These significant efforts have

greatly increased the saliency of air pollution consequences, yet the hidden cost in

avoidance behaviors are still omitted in the cost structure of pollution and thus in

the benefits of mitigation policies as well.

In fact, although existing literature predominantly focus on the health and pro-

ductivity impacts of pollution exposure, individuals are rarely passive victims who

take no actions to self-protect. When people take avoidance behaviors, they either

have extra consumption or change behaviors (Figure 1-1). Given that these choices

are not preferred in the counterfactual scenario where no pollution exists, they in-

evitably create new costs. While it is clear that defensive expenditure carries cost,

the significance of the behavioral responses without market price is much less obvi-

ous. Understanding these hidden costs is not trivial. On one hand, neglecting the

hidden costs of behavioral adjustments will underestimate the benefit pollution mit-

igation policies can create, thus slowing the progress of pollution control if decisions

are made based on cost-benefit analysis. On the other hand, it is important for the
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policy makers to acknowledge the cost of individual avoidance behaviors, so that the

health benefits of public information encouraging voluntary self-protection can be

better balanced with its costs on society.

Figure 1-1: Structure of social cost of pollution.

In this thesis, I aim to incorporate individual behavioral responses in the wide-

applied health economic model and to characterize the hidden costs of these avoidance

behaviors. Specifically, with theoretical advancement motivating conceptual thinking,

I enrich the policy optimization model by adding the opportunity cost and social cost

of avoidance behaviors. I then derive rich empirical evidence using quasi-experimental

and experimental designs to demonstrate how the two cost elements are reflected in

real-world behavioral decisions of outdoor leisure (i.e., park visitation) and outdoor

mobility (i.e., commuting) activities (Figure 1-1). The implicit value of subjective

well-being lost tied with the forgone leisure activity constitutes the opportunity cost.

While the avoidance behaviors in the transportation sector create social cost since

citizens can become emission producers. Air pollution can be substantial determi-

nants of behavioural patterns that underlie costly public crises. Understanding the

interaction between nature and human systems will help the policy makers to bet-

ter understand the toll of air pollution and its distributive impacts, so that tailored

regulation can be implemented to preserve public welfare.
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1.2 Research questions

This thesis aims to unveil the hidden cost of air pollution through quantifying the

behavioral responses in outdoor leisure and outdoor mobility activities to reduce pol-

lution exposure. Efforts are made to investigate the non-market value and behavioral

mechanisms underlying the avoidance behaviors. Specifically, I answer the following

research questions in this thesis:

(1) How does air pollution impede outdoor park visitation?

Several sub-questions are asked in this chapter to fulfill the goals stated above:

What are the average effects of marginal PM2.5 concentration increase and that of

heavy pollution? What is the inter-day temporal dynamics of the impacts? What

is the dose-response function of this impact? How does the impact vary by regions,

income, park types and time? And finally, what is the implicit economic cost bundled

with the foregone leisure?

When answering these questions, big data analytical strategies are utilized to max-

imize the generalizability and comprehensiveness of the empirical evidence. Special

identification strategies are designed to make causal inferences, and back-of-envelope

analysis is used to make nationwide estimation on non-market cost generated through

foregone outdoor leisure activities. The quantification of opportunity cost provides

evidence that people’s voluntary avoidance behaviors, though reducing the health

impacts of air pollution, still causes substantial welfare loss to the urbanites.

(2) How does air pollution alter commuting behaviors?

Similarly, the research thread in this chapter is driven by several sub-questions:

How does the health perception on ambient PM2.5 pollution exposure affect mobility

choices? Would the avoidance behaviors in the transportation sector create social

cost and render policy dilemmas for promoting public health and urban sustainabil-

ity? What are the behavioral pathways and individual heterogeneity underlying the

decisions? What are the implications for green transportation policies encouraging

active commuting?

Since commuting behaviors are largely constrained by home-job locations and

16



the availability of transportation alternatives, there can be huge heterogeneity across

individuals. I thus lay specific emphasis on understanding the decision-making mech-

anisms by conducting a large scale survey. Taking advantage of the survey data, I

have detailed information on individual’s home-job locations, mobility constraints,

tailored exposure risk during commuting, socio-demographics, risk preferences and

personal habits to help predict what types of people will be more affected by pollu-

tion in their mobility choice. Furthermore, I designed a Randomized Controlled Trial

with information interventions treatment to project the commuting choice landscape

when people are increasingly informed about the individual level health information,

and evaluate the broader impacts on the effectiveness of hypothetical transportation

policies. These exercises have direct policy implications for the government.

1.3 Thesis structure

For the rest of this paper, Chapter 2 reviews the recent empirical studies quantifying

the social cost of air pollution, including both the biological impacts on health and

productivity, and the human avoidance behaviors related to outdoor leisure activities

and transportation behaviors. The research gap and contribution of this paper are

also integrated in the review chapter. Chapter 3 introduces the modeling framework

of optimal policy designs of pollution regulation, and promotes theoretical advance-

ment in encompassing broader social cost beyond health and productivity in the cost

structure of air pollution. Chapter 4 illustrates the empirical strategies and evidence

with respect to pollution and outdoor leisure activities. Chapter 5 presents the anal-

ysis of pollution and commuting behaviors. Chapter 6 synthesizes the findings and

discusses future work and policies.
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Chapter 2

Literature Review

This study fits into the growing literature on empirically-derived estimates of the

social cost of air pollution. The following sections summarize the existing empirical

evidence of the impacts of air pollution on health and productivity, outdoor leisure

activities and commuting behaviors. While the first one is more well-developed, the

other two research realms are relatively under-studied, and thus become the focus of

this thesis. I summarize the gaps and limitations of existing research and explain how

that motivates me to explore the research questions I listed in the previous chapter.

2.1 Impacts of pollution on health and productivity

Particular matter (PM) is a mixture of many organic and inorganic chemical com-

ponents (Sillanpää et al. 2006), with some of them directly toxic or lead to systemic

inflammation leading to adverse health outcomes (Y. Chen et al. 2013; Ebenstein et

al. 2017; Dockery et al. 1993). The relationship between pollution and health has

been well-documented. Many environmental health and economics research has uti-

lized quasi-experimental designs to quantify the impacts of air pollution on mortality

and monetize the cost through Value of Statistical Life (VSL) (Ashenfelter and Green-

stone 2004). Similar studies are conducted all over the world, including US (Chay

and Greenstone 2003; Dockery et al. 1993), Europe (Luechinger 2014), China (C. W.

Cheung, He, and Pan 2020; H. Zhao et al. 2019; Ebenstein et al. 2017), Korea (Bae,
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Lim, and Hong 2020), India (Greenstone and Hanna 2014), etc. Lelieveld et al. 2015

has presented global evidence on how pollution affects premature mortality world-

wide synthesizing the data from the global atmospheric chemistry model and global

burden of disease. In addition, As many of the chronic health impacts are reflected

in morbidity rather than death, there are rich papers documenting the link between

pollution and communicable diseases, such as lung cancer (Pope et al. 2011), car-

diovascular and respiratory diseases (Williams et al. 2019; Moretti and Neidell 2011;

Neidell 2009). Some of these papers proxy the social cost of pollution through medical

and hospitalization costs (Deryugina et al. 2016; Giaccherini, Kopinska, and Palma,

n.d.).

In addition, the adverse effect of pollution is not only reflected in physiological

systems, but also in the cognitive systems of human-being. Previous research has

quantified the cognitive impacts of pollution using exam scores (X. Zhang, Chen,

and Zhang 2018; X. Chen, Zhang, and Zhang 2017; Marcotte 2017; Lavy, Ebenstein,

and Roth 2014) and cognitive biases observed in the financial market (J. J. Li et al.

2017; Heyes, Neidell, and Saberian 2016). These cognitive shocks not only happen

contemporaneously. The nascent empirical literature has also found that childhood

exposure can have lasting impacts on the human capital outcome later in life (Currie

et al. 2014). Pollution, as a consequence, significantly impedes human capital for-

mation and reduces labor output. (Hanna and Oliva 2015) presents evidence that air

pollution in Mexico reduces labor supply. (T. Chang et al. 2016) finds that ambient

PM2.5 of 10𝜇𝑔/𝑚3, which readily penetrates indoors, reduces the productivity of in-

door pear-packing workers by $0.41 per hour (approximately 6% of hourly earnings).

The productivity impacts on service and knowledge sectors are equally significant.

According to (T. Y. Chang et al. 2019) , a 10-unit increase in the air pollution index

(API) decreases the number of daily calls handled by a worker of Ctrip by 0.35% on

average which declines largely linearly with pollution levels.
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2.2 Pollution and outdoor leisure activities

Beyond mortality, morbidity and productivity, air pollution also impacts the mental

well-being of humans, which has been measured by expressed sentiment on social

media (Zheng et al. 2019), interviews (Smyth, Mishra, and Qian 2008) and surveys

(Barrington-Leigh and Behzadnejad 2017; X. Zhang, Zhang, and Chen 2017; Zijlema

et al. 2016; Power et al. 2015; Luechinger 2009). However, the specific behavioral

mechanisms directing those changes, though crucial for risk modelling and effective

interventions, is not well-understood.

The sacrifice of outdoor leisure activities for pollution avoidance is one of the most

important moderators between pollution and subjective well-beings. Rich literature

has documented that outdoor leisure activity has significant non-market contributions

to both physiological health and psychological well-being (Brajša-Žganec, Merkaš,

and Šverko 2011; Kerr et al. 2012; Wolsko and Lindberg 2013; Korpela et al. 2014;

Manferdelli, La Torre, and Codella 2019). This is especially important for China,

which has a culturally rooted lifestyle of participation in outdoor physical and leisure

activity (Lü et al. 2015). Some literature leverage surveys to document the impacts

of pollution on mundane urban park activities. (Jiang, Huang, and Fisher 2019) relies

on stated preference survey and faceto-face survey in a specific urban park of Beijing

to show that pollution has a negative impact on the maximum number of visits a

park may receive. (Roberts, Voss, and Knight 2014) uses self-reported survey data

with logistic regression models and estimates statistically significant linkages between

PM2.5 and leisure-time physical inactivity in the US. The impacts on leisure activities

constitute a key social cost of pollution that has heretofore been absent from policy

discussions.

Beyond the contribution to well-being, outdoor leisure activity is closely related to

the tourism sector, which constitutes 10.4% of global GDP (World Travel & Tourism

Council 2019). As proposed by (Sönmez and Graefe 1998), health risk is an impor-

tant component of travel risks, and perceived travel risks have negative impacts on

tourists’ travel intention (Qi, Gibson, and Zhang 2009). Several empirical research
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using survey data to document the linkage between pollution and general travel inten-

tion. (Peng and Xiao 2018) uses structural equation modelling (SEM) and confirms

that smog in Beijing induces perception of experience risk and directly influences

Chinese residents’ travel dissatisfaction. (Law and Cheung 2007) finds that visitors

are willing to pay additional departure tax to fund air quality improvements in Hong

Kong. The major limitation of the survey studies is that there might be reporting

issues such as memory bias. Alternatively, some literature begins to look at how air

pollution affects visitation of a specific type of park using objective data. (Poudyal,

Paudel, and Green 2013) fits monthly visitation data of the Great Smoky Mountain

National Park (GSMNP) into a number of time-series econometric models, and finds

that improving the average visibility by 10% (5.5 km) could increase one million recre-

ational visits annually. (C.-M. Chen, Lin, and Hsu 2017) shows that as the number

of bad-air-quality days increases by one, the tourists traveling at the Sun Moon Lake

in Waiwan would fall by 25,725 people. (Graff Zivin and Neidell 2009) documents

the impact of consequent ozone alerts on visitation of Los Angeles Zoo and Botanical

Gardens and Griffith Park Observatory, and finds the phenomenon of "alert fatigue"

on the second successive day receiving the alert. The largest scale of research in

this thread of literature is (Keiser, Lade, and Rudik 2018), who uses instrumental

variable regression to estimate the impacts of ozone pollution on visitation of US

national parks which have hundreds of millions of visitors travelled to every year.

Nevertheless, due to data availability constraints, these research predominantly look

at only one park or one type of park. Which makes it difficult to understand the

distributive impacts across park types. For example, the city parks where local citi-

zens use for exercise and leisure might have completely pollution sensitivity compared

with tourism attractions. Meanwhile, the limited geographical coverage of park case

studies poses difficulties in quantifying the social cost due to the lack of generaliz-

ability to the national level. In Chapter 4, I exploit the richness of the dataset to

look into the impacts for different types of parks and in cities of different regions with

different income levels, not only providing representative qualifications for the whole

nation, but also supporting the mapping of distributive effects rarely encompassed in
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previous studies.

Finally, from a policy perspective, scholars predominantly view the avoidance

behavior of reducing outdoor activities as the policy target, and intensively investigate

how pollution alerts can better assist voluntary self-protections (Lee et al. 2020; H.

Chen et al. 2018). However, few papers ever look at the foregone leisure as an

unignorable opportunity cost accompanying this avoidance behavior. The neglection

of this hidden cost will lead to over-emphasis on citizens’ self-protection and lack

of incentives for top-down pollution mitigation policies, since information campaigns

encouraging self-protection are usually very cheap. To fill in this gap, I not only

comprehensively estimate the nation-wide impacts of pollution on visitation for all

types of park, but also monetize the lost economic value of those foregone activities

to better support the policy decision-makings. This valuation is especially important

in the context of a developing country with relatively severe air pollution problems

like China, since the saliency of pollution issue induces avoidance behaviors.

2.3 Pollution and commuting behaviors

When quantifying the cost of avoidance behaviors itself, existing literature predom-

inantly focus on the defensive expenditure, such as air purifiers (Liu, He, and Lau

2018), face masks (J. Zhang and Mu 2018; Sun, Kahn, and Zheng 2017; Ito and

Zhang 2016), and pharmaceutical purchases (Deschênes, Greenstone, and Shapiro

2017). These market costs are easily quantifiable into monetary value due to the

availability of market price, however, it neglects the broader social consequences of

pollution avoidance from broader channels of behavioral changes. It is known that

transportation contributes significantly to local air pollution in urban context (Kheir-

bek et al. 2016; Abu-Allaban et al. 2007), while at the same time, travel modes

explained much more of commuters’ exposure variability than meteorology (Caplin

et al. 2019). Urban mobility would be one of the most important behavioral dimen-

sions to look at due to its uniqueness in individual’s choice architecture where social

responsibility and self-protection might contradict in transportation mode choice.
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Since different commuting modes are exposed to different pollution concentrations

(Cepeda et al. 2017), and have varied inhalation and lung deposition (Quist et al.

2018), knowledgeable citizens might switch commuting modes as a channel of self-

protection. On one hand, previous literature has found that people significantly

reduce physical activities (Yu, An, and Andrade 2017) and biking (P. Zhao et al.

2018) in response to high air pollution levels in developing countries. This poses a

policy dilemma to balance the two interrelated factors of minimising environmental

hazards and promoting active lifestyles (F. Li et al. 2015). Recently, an emerging

thread of science literature considers exposure risk and exercise benefit together to

investigate the optimal balance of cycling under pollution as a function of time (Tainio

et al. 2016; Giles and Koehle 2014; Mueller et al. 2015; Doorley, Pakrashi, and Ghosh

2015; Z. J. Andersen et al. 2015). Yet whether behavioral choices follow the same

pattern remains to be undiscovered.

On the other hand, the specific uniqueness of avoidance behaviors in the trans-

portation sector is that residents themselves can act as a pollution emitter themselves

if motor vehicles are preferred under pollution. Some studies begin to acknowledge

the importance of this problem by testing the effectiveness of public voluntary in-

formation programs related to pollution alert on reducing driving on polluted days.

However, the results are largely inconsistent. Cutter and Neidell (2009) relies on re-

gression discontinuity (RD) design and finds daily traffic volumes decrease by 3-3.5%

when information programs like ‘Spare the Air’ (STA) advisories are issued in Califor-

nia. Applying a similar identification strategy, Noonan (2014) fails to find any effect

of ozone alert in Atlanta on driving and argues that the free transit offer California

was promoting along with STA might bias the previous estimation. Welch, Gu, and

Kramer (2005) also fails to find significant effects of ozone alert on overall ridership on

Chicago Transit Authority trains, but admits that an aggregate measure of ridership

might mask subtle and complex shifts in travel behavior (e.g., some reduce travel-

ing while others increase). More detailed investigation into the heterogeneity across

population and the underlying behavioral mechanisms is essential to understand the

inconsistency of observed transportation behaviors in response to air pollution, which
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might be more multifaceted and subtle than health and leisure behaviors.

A key difference between the US and Chinese context is that China has a much

more severe pollution problem, and the pollution alert in China sets public health

avoidance rather than the green nudge advisories as the primary goal. Meanwhile,

like most developing countries, the primary pollutant in China is particulate matter

rather than ozone, and public health literature has documented a more severe health

impact of particulate matter (OECD 2016). If we look at the commuting choice as an

individual trade-off between self-protection and altruism, the balance point is likely

to shift towards the risk averse side due to the apparent larger private cost compared

with the limited public benefit reducing one car on the road could provide. There

is already some evidence which suggests more unwillingness to reduce driving for

people with lung diseases who weigh the health impacts higher (Skov et al. 1991).

Whether the health perception of pollution will cause normal citizens to adopt more

frequently the motor vehicle for commuting under a heavy polluted scenario is thus a

highly relevant yet largely understudied empirical question which Chapter 5 will try

to approach.
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Chapter 3

Theoretical Framework

Understanding the value of reducing air pollution matters for pollution regulation

policy and risk management, yet synthesizing the quantification evidence from mul-

tifaceted impact domains requires a comprehensive theoretical framework. In this

chapter, I will first present the schematic architecture of social cost of pollution ac-

counting for avoidance behaviors, and then incorporate the relationships into existing

economic models to facilitate optimal pollution policy derivation.

3.1 Social cost of air pollution

The estimation structure of social cost of air pollution usually follows the impact

pathway approach, which calculates the economic costs of air pollution tracing from

emissions, exposure, biophysical impacts and valuation of economic costs (OECD

2016). This methodology has been used in many policy contexts to provide empirical

evidence. For example, previous studies have used the impact pathway approach to

study the benefits of several directives and technology options aimed to improve air

quality in the EU (European Commission 2013). And the US EPA has also evaluated

the benefits of the Clean Air Act (DeMocker 2003) using this method.

A distinct feature of the structure I presented in Figure 3-1 is the integration of

a behavioral layer where an individual’s dynamic avoidance behaviors and its corre-

sponding economic costs are also considered in the equilibrium. The new structure
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wishes to emphasize the fact that what public health and economic statistics can

capture are the residual impacts after individuals’ voluntary avoidance behaviors.

Citizens already paid the avoidance toll to reduce adverse biophysical impacts. Ig-

noring the avoidance costs will underestimate the damage of pollution on the whole

society, especially for the group of people who are health conscious and adopt abun-

dant precautionary measures to reduce exposure. Learning from social cost of climate

presented by (Diaz and Moore 2017), the social cost of pollution I formulated takes

into account both the biophysical impacts with its corresponding productivity con-

sequences (as the health and productivity outcomes discussed in the literature of

Section 2.1) and the avoidance behaviors with its monetary and non-market costs

(the emphasis for this research). I also add in policies in the framework. The mit-

igation policy will directly impact pollution drivers, while information policies like

alerts and education campaigns will nudge avoidance behaviors. Both policies will

reduce the health and economic damages of pollution, yet the avoidance costs should

be taken into account when making the judgement of which policy is most efficient

in achieving the goal.

Figure 3-1: Schematic representation of air pollution social cost estimations.

Having the improved estimation structure not only fills in the gap of the neglected

social cost, but also conveys an important message that the impacts of pollution on

our human system is beyond the vulnerable groups (e.g., child and elderly) and oc-

cupations (e.g., outdoor low-skilled workers). The mass citizens need to spend extra

money on defensive expenditure, reduce their engagement in welfare-enhancing out-
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door leisure and physical activities. This creates economic, physiological and psycho-

logical burdens on individual citizens. Furthermore, in the urban system, personal

avoidance behaviors can create social consequences. It is especially of relevance in

transportation systems where urbanites are not only victims of pollution, but the

emission generator themselves. This neglected dimension of social cost is projected

to further increase when citizens are more informed about the micro-level pollution

conditions and better educated about its corresponding health risk. And when the

governments increasingly favor information policies to encourage voluntary avoidance

behaviors.

3.2 Economic model with broader avoidance cost

Upon the social cost estimation structure, it is crucial for us to understand how

the empirical evidence researchers document for each impact pathway can be orga-

nized to formulate the economic model of optimal environmental policy designs. The

economic model I develop builds on the seminal model characterizing health as an

investment goods (Grossman 1972), its derivation to examine environmental health

(Graff Zivin and Neidell 2013), and the nascent work on the economics of climate

change adaptation (Carleton et al. 2019).

For simplicity, health is modeled as a function of pollution level p and the avoid-

ance behaviors taken b, which is a vector K of endogenous variables b = {𝑏1, ...𝑏𝑘}

including all avoidance behavior choices available to individuals. Such as purchasing

defensive equipment, reducing outdoor activities, etc. The health production function

would be characterized as:

𝐻 = 𝑓(b(𝑝), 𝑝) (3.1)

Which allows the pollution avoidance behaviors to enter the health function. And

since the change in pollution level affects health outcomes through both the direct

biophysical impacts and the behavioral adjustment, the health cost of air pollution

by changing the received pollution level from 𝑝1 to 𝑝2 would thus be:
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𝐻𝑒𝑎𝑙𝑡ℎ 𝑖𝑚𝑝𝑎𝑐𝑡𝑠 = 𝑓(b(𝑝2), 𝑝2) − 𝑓(b(𝑝1), 𝑝1) (3.2)

Formula 3.2 is the residual biophysical effect from the health dimension. A full

measure of the economic damage of pollution must account not only for the net effect

accounting for avoidance behavior adjustment, but also the cost of the behaviors

themselves. Thus the total cost of health impacts tied with increased pollution level

from 𝑝1 to 𝑝2 is:

𝑉 𝑎𝑙𝑢𝑒 𝑜𝑓 ℎ𝑒𝑎𝑙𝑡ℎ 𝑖𝑚𝑝𝑎𝑐𝑡𝑠 =
𝜕𝑈

𝜕𝐻
[𝑓(b(𝑝2, 𝑝2))−𝑓(b(𝑝1, 𝑝1))]

1

𝜆
+[𝐴(b(𝑝2))−𝐴(b(𝑝1))]

(3.3)

Where 𝜕𝑈
𝜕𝐻

is the utility change with respect to the change in health, and 1
𝜆

is the

shadow price of utility change which can be obtained through individual utility max-

imization and lagranene theory (i.e., first order condition). If we simplify x to a

numeraire good, 1
𝜆

would simply take the form of 1
𝜕𝑈
𝜕𝑥

. From the formula we can

see that if the costs of avoidance 𝐴(b) were omitted from this calculation, we could

underestimate the overall economic burden of pollution.

To have a more complete view of the pollution impacts beyond health, we can

characterize the utility function of individuals U= U (X, L, H) to depend on health

(H), consumption (X) and leisure (L). Letting I denote non-wage income, such as

interest, dividends etc, and W denote wage. Since pollution will affect productivity,

wage W will be characterized as a function of pollution as well which could be af-

fected through reduced working time or reduced labor productivity: 𝑊 = 𝑔(b(𝑝), 𝑝).

When individual maximize their utility given the budget constraints, the maximiza-

tion problem can be expressed as:

𝑚𝑎𝑥𝑋,𝐿,𝑏Γ = 𝑈(𝑋,𝐿,𝐻) + 𝜆[𝐼 + 𝑊 − 𝑐𝑥𝑋 − ℎ(𝑏)𝑏)] (3.4)

Where h(b) denotes the pecuniary cost of avoidance behavior b. Solving the first

order conditions will give us the shadow price of utility 1
𝜆

as mentioned in the last

paragraph. Under this framework, individual citizens will choose the avoidance invest-
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ment to equalize the marginal cost of avoidance with the marginal benefit of health

improvement. The optimal level of avoidance behavior individual chooses after the

optimization would be denoted as b*.

Optimal regulation requires policy choices that balance the costs and benefits of

regulation to maximize social welfare. Denoting the cost of pollution regulation as 𝑐𝑅,

optimal pollution regulation occurs at the point where the marginal cost of regulation

R is equal to the marginal benefit associated with reduced health and productivity

loss, as well as the saved avoidance cost:

𝜕𝑃

𝜕𝑅
𝑐𝑅 =

𝑑𝑊

𝑑𝑃
+

𝜕𝑈

𝜕𝐻

𝑑𝐻

𝑑𝑃

1

𝜆
+

𝜕𝑏

𝜕𝑃
𝑐𝐴

=
𝑑𝑔(b(𝑝), 𝑝)

𝑑𝑃⏟  ⏞  
productivity

+
𝜕𝑈

𝜕𝐻

𝑑𝑓(b(𝑝), 𝑝))

𝑑𝑃

1

𝜆⏟  ⏞  
health welfare impacts

+
𝜕𝑏

𝜕𝑃
(
∑︁
𝑘

𝜕

𝜕𝑏𝑘
[ℎ(𝑏*) + 𝑢(𝑏*) + 𝑠(𝑏*)]])⏟  ⏞  

avoidance behavior costs

(3.5)

Where the three main chunks of the formula represents the economic impact due to

productivity changes, the welfare value of health impact, and the avoidance behavior

changes. The key distinction between the formula 3.5 and conventional wisdom to

calculate the benefit of pollution is the acknowledgement of the behavioral responses

to pollution change 𝜕𝑏
𝜕𝑃

and the quantification of broader welfare impacts of avoid-

ance behaviors accounting for the pecuniary cost h(b*), utility cost u(b*)of foregone

activities (opportunity cost), and the social cost of self-protection behaviors s(b*).

The sum of these three types of avoidance costs are denoted as A(b*). To quan-

tify the impacts of non-marginal change could simply build the integration of the

marginal impacts. For example, the avoidance cost change given the budget con-

straint ℎ(𝑏)𝑏 + 𝑥𝑐(𝑥) = 𝐼 + 𝑊 . Then a pollution change from 𝑝1 to 𝑝2 would be

characterized as:

𝐴(𝑏*(𝑝2, 𝐼 + 𝑄)) − 𝐴(𝑏*(𝑝1, 𝐼 + 𝑊 )) =

∫︁ 𝑝2

𝑝1

𝜕[ℎ(𝑏*) + 𝑈(𝑏*) + 𝑠(𝑏*)]

𝜕𝑏

𝑑𝑏*

𝑑𝑃
𝑑𝑃 (3.6)

In this thesis, I focus on the u(b*)and s(b*)dimensions which are rarely explored
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in existing research. Outdoor leisure activity would be the major part of foregone

utility u(b*), and we can further formulate u(b*)as 𝜕𝑈
𝜕𝐿

1
𝜆
: the welfare cost of leisure.

In Chapter 4, I will quantify the impact of air pollution on avoidance behavior of

reducing outdoor leisure activity measured by park visitation, and utilize the existing

evidence of the utility value of leisure to quantify the opportunity cost. For the social

cost of avoidance behavior s(b*), I focus on transportation behaviors, since it is the

most typical urban activity likely to be affected by air pollution and at the same time

imposes significant social consequences. In Chapter 5, I study how health perception

of air pollution affects commuting mode choice. The characterization of s(b*)need

large scale panel data covering the whole nation to quantify the feedback system

between personal avoidance transportation behaviors to societal pollution rebound.

I can only illuminate the importance of accounting for this unintended social impact

based on the empirical evidence from a case study at this stage. But the detailed

survey data allows me to look into the deterministic factors of behavioral changes,

and uses information intervention to test out its potential impacts on sustainable

transportation policies.
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Chapter 4

Pollution and Outdoor Leisure

Activity

When people reduce pollution exposure by canceling outdoor leisure activities, they

have implicitly conveyed the message that the health costs of pollution exposure out-

weighs the utility they can get from outdoor leisure. As a result, the value of forgone

outdoor leisure, reflects the lower bound of the part of pollution costs neglected from

previous research. In this chapter, I focus on one of the most common outdoor leisure,

park visitation. I empirically estimate the impacts of air pollution on park visitation,

and take one-step further to make a back-of-envelope analysis of the corresponding

opportunity costs of the foregone leisure activity.

4.1 Data

The primary data for our analysis come from three sources: mobile phone (MP) posi-

tioning data from Tencent’s location-based service (https://heat.qq.com), weather

data from national meteorological monitoring stations and air pollution data from

national monitoring stations. All these data cover all cities in China for the whole

year of 2017 and are on hourly resolution.

The mobile phone (MP) positioning data from Tencent contains the real-time ge-

ographic coordinates of more than 900 million users and more than 60 billion location
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requests per day all over China in 2017 (Figure 4-1a). In total, I have 10,499 parks

all over China in the data set, comprehensively including 19 categories (Figure 4-1b).

I calculate the number of location points lying within the boundary of each park on

an hourly basis to formulate the panel data set of park visitation. Thus each park

visitation unit represents one activity hour for a person.

I match the park-level hourly visitation index with hourly weather data from

the closest station of the 2000 national meteorological monitoring stations. Weather

variables comprehensively include temperature, precipitation, relative humidity, wind

speed, wind direction, and air pressure. The cloud coverage data is collected from

MERRA-2, M2T1NXRAD project (https://disc.gsfc.nasa.gov/datasets/M2T1NXRAD

_V5.12.4/summary). Meanwhile, I collect hourly air pollution data including PM10,

PM2.5, O3 and overall Air Quality Index (AQI) from 1500 pollution monitoring sta-

tions in China. Hourly air quality data has been published by the Ministry of Ecology

and Environment of China on its official website since 2013. Compared with weather

monitoring stations, pollution monitoring stations are more clustered in high pop-

ulation density areas which leave some parks without a station close enough to be

representative (Figure 4-1c and 4-1d). As a result, I constructed the pollution level

of each park through spatial interpolation applying the kriging spatial prediction

method (Cressie 2015).

Table 4.1 displays the summary statistics for each of the variables used in esti-

mation. On average, there are more than 4000 park visitation (i.e., person activity

hour) per day. The average PM2.5 level all over China across the whole year is around

45 𝜇𝑔/𝑚3, about five times the US average PM2.5 level. The distribution of weather

controls are also presented for references.

4.2 Empirical Strategy

Careful quasi-experimental designs are required to obtain the reliable estimation of

pollution cost. To investigate the impacts of local air pollution on park visitation, I
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(a) Cell-phone location data from Tencent
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Figure 4-1: Display of core data sets.

model the impacts of local pollution (i.e., PM2.5) through a fixed-effect model:

𝑙𝑜𝑔(𝑌𝑖𝑐𝑡 + 1) = 𝛽𝑃𝑀𝑃𝑀25𝑖𝑐𝑡 + 𝑋𝑖𝑐𝑡𝛾 + 𝛿𝑖 + 𝜃𝑑𝑜𝑤 + 𝜇𝑐𝑡 + 𝜀𝑖𝑐𝑡 (4.1)

Where i indexes park, c indexes the city the park falls in, t indexes time which is

detailed into an hourly level. The outcome variable of interest 𝑌𝑖𝑐𝑡 is the visitation

number for park i in city c on date t. Only day-time between 6 AM to 9 PM is

considered since there should be limited activity at night yet the pollution level might

still be high. I exclude the small parks with daily visitation less than 1000, and add one

to ensure non-negative when taking log transformation. 𝑃𝑀25𝑖𝑐𝑡 is the average PM2.5
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Table 4.1: Summary Statistics of Data.

Variables Mean SD Min Max N

Park visitation
Average whole nation 4394.92 9336.02 6 1,001,180 2,483,865
(northern cities) 3918.576 6462.66 6 347,600 959,647
(southern cities) 4698.29 10778.8 6 1,001,180 1,513,633

Pollution
AQI 72.01 45.84 1 500 2,476,983
PM2.5 (𝑔/𝑚3) 44.68 38.1 1.33 496 2,476,871
PM2.5 (IV) 1.6 1.58 0 22.52 2,436,116

Weather
Temperature (∘𝐶) 17.68 10.17 -35.61 43.48 2,481,672
Wind Speed (m/s) 2.92 1.26 0 21.39 2,481,668

Relative Humidity (%) 64.77 19.29 1.38 100 2,481,672
Cloud coverage (%) 49.44 30.96 0 100 2,483,865
Precipitation (mm) 2 7.95 0 289.7 2,483,865

Note: All variables are summarized per park per day level.

level at park i in city c on date t. Control variable 𝑋𝑖𝑐𝑡 includes other weather variables

(i.e., temperature, temperature2, precipitation, wind speed, humidity, air pressure,

and cloud coverage) and a dummy variable indicating holidays. Taking advantage of

the panel data structure, we include park fixed effect (𝛿𝑖), day-of-week fixed effect

(𝜃𝑑𝑜𝑤), and city by month fixed effects (𝜇𝑐𝑡). This setting allows me to control for the

unobservable spatial, cyclical within-week, and locally seasonal variations in pollution

and park visitation, and exploit the exogenous daily fluctuations in temperature across

the same park within the same hour overtime to identify the causal effect. Including

a series of high-dimensional fixed effects can largely address the endogeneity problem

caused by omitted variables. The standard errors are clustered at the park level to

non-parametrically adjust for arbitrary within-unit autocorrelation in the disturbance

term 𝜀𝑖𝑐𝑡.

Since local air pollution is endogenous to local activities. For example, as more

people drive to the parks, the emissions around the park will increase, causing a

positive correlation between pollution and park visitation. To avoid this bias, I employ

the imported pollution from upwind cities as an instrument for the air pollution level

of the city of interest. Since the pollutant transmission process is not instant, we use

daily and city level pollution instead of hourly and park level air pollution to proceed
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the IV estimates. Specifically, we instrument the 𝑃𝑀25𝑐𝑡 variable in equation 4.1 by

𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑢𝑝
𝑐𝑡 which is calculated by the following formula:

𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑢𝑝
𝑐𝑡 =

∑︁
𝑗

𝑚𝑎𝑥(cos 𝜃𝑐𝑗𝑡, 0) × 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑗𝑡

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑗

60𝑘𝑚 < 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑗 < 300𝑘𝑚

(4.2)

The imported pollution of city c is obtained through all cities j which have distance

to city c within the range between 60 km to 300 km. The lower bound of distance

is set to circumvent the autocorrelation among closed cities, while the upper limit is

set to exclude the cities so far away which cannot be reached by wind. We add a

cosine function applying to the angle between wind direction and the line connecting

city c with city j to ensure that only upwind cities are considered. Similar methods

are applied by (Bayer, Keohane, and Timmins 2009; Keiser, Lade, and Rudik 2018;

Zheng et al. 2019). Large and significant first stage results of the IV regressions are

presented in the main regression table to consolidate that weak instrument bias is not

a concern in our setting.

Figure 4-2: PM2.5 instrument construction illustrations.
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4.3 Results

In the results section, I will first present a series of specifications to demonstrate

the impacts of pollution on park visitation. I then explore the temporal dynamic

of inter-day activity substitution. Third, I investigate the dose response function to

map the non-linear relationship between pollution and activity. Fourth, I compare

the coefficient estimates by different park types, by cities with different income levels,

and by time to explore the heterogeneity. Finally, I make a back-of-envelope analysis

of the economic cost of the foregone leisure induced by heavy air pollution taking into

account the contingent valuation of outdoor leisure by Chinese citizens.

4.3.1 Main effect

Due to winter heating and more adverse meteorological conditions such as frequent

temperature inversion formation, most of the heavy pollution sequences take place in

winter (Figure 4-3a). Given the data pattern, I will mainly focus on the winter period

(from December to February) to investigate how air pollution impedes outdoor leisure

activity in China. The pollution situation gets worse as we pass across Huai River

to the northern part of China (Figure 4-3b), since the central heating is implemented

in northern China, which has more than 83% generated by coal burning in 2016

(Myllyvirta and Shen 2018).

Table 4.2 displays the results from both fixed effect regressions and instrumental

variable models. All regressions control for weather (i.e., temperature, precipitation,

wind speed, humidity, cloud coverage, air pressure), common seasonal factors by

cities (city-month fixed effects), and unobserved factors specific to each park (park

fixed effects). Column 1 and 4 of Table 4.2 present the fixed-effects estimate of the

response of daily log visitation to daytime average PM2.5, which is smaller than the

IV specification (Column 2 and 5) using PM2.5 concentration in upwind cities. Since

local PM2.5 concentration is endogenous, i.e., park visitation will reversely increase

pollution if people drive to the parks, we rely on the IV specification as our preferred

empirical strategy. Column 3 and 6 present the first stage of IV estimation, and we
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(a) Season (b) Region

Figure 4-3: Pollution distribution by seasons and regions.
(a) PM2.5 concentration distribution in winter and other seasons all over China. (b) Pollu-
tion distribution of northern and southern China in winter.
Note: the vertical dashed line displays 150 𝜇𝑔/𝑚3, which is the threshold for heavy pollution
of PM2.5 in China.

can see that PM2.5 concentration in upwind cities is a good predictor of local air

pollution thus is valid to provide the exogenous shocks in local pollution which we

are looking for. The parameters estimated in Column 2 and 5 of Table 4.2 suggests

that a 10 𝜇𝑔/𝑚3 increase in PM2.5 is associated with about 0.2% decrease in park

visitation on average nationwide. When PM2.5 level is above 150 𝜇𝑔/𝑚3, that is,

lying in the heavy or severe pollution range defined by Chinese Ministry of Ecology

and Environment, daily park visitation falls by 4.8% on average.

Our primary estimates suggest that daily increases in PM2.5 do have a small neg-

ative effect on outdoor leisure activity, yet there are stark differences across regions.

Table 4.3 displays the IV estimates by regions (i.e., northern or southern China). The

results indicate that only citizens in northern China are adjusting outdoor leisure ac-

tivities in response to air pollution. Even under heavy PM2.5 conditions, people in

southern China still remain their activity patterns as usual. These differences could

be attributed to the differences in living style, yet more likely, to the differences in

pollution awareness. Higher frequency of heavily polluted events in northern cities

increases people’s awareness of air pollution problems and behaviors like checking the

pollution index and alerts more oftenly. This is consistent with a survey research on
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Table 4.2: Impacts of PM2.5 on park visitation in winter.

Marginal contribution Heavy PM2.5 (> 150 𝑔/𝑚3)

(1) FE (2) IV (3) FS (4) FE (5) IV (6) FS
(log visit) (log visit) (PM2.5) (log visit) (log visit) (heavy PM2.5)

PM2.5 -0.0001*** -0.0002*** -0.0118*** -0.0475***
(0.00001) (0.00002) (0.0015) (0.0063)

IV_PM2.5 11.3154*** 0.0396***
(0.1139) (0.0006)

Controls Yes Yes Yes Yes Yes Yes
Fixed Effects Yes Yes Yes Yes Yes Yes
IV No Yes No Yes
Adjusted R2 0.8962 0.8956 0.579 0.8966 0.8958 0.3363
N 612,679 603,142 603,142 617,061 604,910 604,910

Note: Control variables include daily weather conditions (i.e., temperature, the square of
temperature, precipitation, wind speed, relative humidity, air pressure, and cloud coverage) and
holiday dummy. Fixed effects include day-of-week FE, park FE and city-by-month FE.
Standard errors cluster within parks.
** p<0.01; ** p<0.05; * p<0.1

tourism in Hong Kong finding that Asian tourists appear to be more conscious of air

quality than Western vitistors (C. Cheung and Law 2001).

4.3.2 Temporal lag

Previous results suggest that park visitation responds contemporaneously to changes

in PM2.5 pollution level as people having the health awareness to make avoidance

behaviors. Yet from the behavioral perspective, the responses to air pollution may be

more dynamic. For example, the temporary fall in outdoor activities on a given day

caused by air pollution could be compensated for by an increase in activities in the

subsequent clean days. However, a polluted day could also have enduring negative

impacts on the activities in the following days if people fail to update the pollution

situation in time or fall into an inertia to stay home on the couch. Which of these

two effects dominates is an empirical question.

To clearly understand the temporal dynamic of pollution impacts, I next test for

the lagged effects of air pollution. Since the pollution levels of consecutive days are
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Table 4.3: Impacts of PM2.5 on park visitation by regions.

Marginal contribution Heavy PM2.5 (> 150 𝑔/𝑚3)

(1) (2) (3) (4)
North South North South

PM2.5 -0.0004*** 0.00004 -0.0987*** 0.0183
(0.00004) (0.00003) (0.0083) (0.0135)

Controls Yes Yes Yes Yes
Fixed Effects Yes Yes Yes Yes
IV Yes Yes Yes Yes
Adjusted R2 0.8867 0.8998 0.8859 0.9001
N 235,131 368,011 235,189 369,721

Note: Control variables include daily weather conditions (i.e., temperature, the square of
temperature, precipitation, wind speed, relative humidity, air pressure, and cloud coverage) and
holiday dummy. Fixed effects include day-of-week FE, park FE and city-by-month FE.
Standard errors cluster within parks.
** p<0.01; ** p<0.05; * p<0.1

highly correlated, simply including the lagged variables in regression can cause severe

multicollinearity problems. The inconsistency caused by including lagged variables

are especially problematic when unobserved individual effects are controlled and the

differences residuals are used for estimation (Nickell 1981). In order to address this

issue, a cubic distributed lag function is applied here to estimate the temporal lagged

effect of pollution. The model assumes that the effect over time is a smooth cubic

function, which is more suitable for the case at hand. Similar estimation strategy was

adopted by (Burkhardt et al. 2019) to study the lagged impact of air pollution on

crime. By including a cubic lag function of three-day lags of PM2.5 in the primary

model, I find that same day PM2.5 has the largest impacts which is slightly lower than

the impact captured by primary specification due to serial correlation in air pollution

(Figure 4-4). The impact of 1 day lag is about one half the contemporaneous effect,

and the negative coefficient remains to be significantly negative even till 3-day lags. It

seems that instead of making up for the loss in outdoor activities in previous pollution

sequences, people have the inertia to stay home even when the pollution level declines,

which further magnifies the negative impacts pollution will have on outdoor leisure.
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Figure 4-4: Lagged marginal effects.
Note: the y axis indicates how 1 𝜇𝑔/𝑚3 PM2.5 increase affect park visitation.

4.3.3 Dose response

Since the impacts of pollution might not be linear, I apply two strategies to capture the

nonlinear effects. First, I rely on non-parametric binned regressions which decompose

PM2.5 level into categories according to the classification of Technical Regulation on

Ambient Air Quality Index (HJ633-2012) of China. Compared with Excellent or

Good pollution level (i.e., PM2.5 < 75 𝜇𝑔/𝑚3), park visitation drops by 2.8%, 5.4%

and 7.9% during light (PM2.5: 75 115 𝜇𝑔/𝑚3), medium (PM2.5: 115 150 𝜇𝑔/𝑚3)

and heavy pollution (PM2.5> 150𝜇𝑔/𝑚3 ) respectively (Figure 4-5a).

Second, I try to model the dose response functions of pollution on park activity

in a flexible format, thus I replace the PM2.5 level with a restricted cubic spline with

knots at the 25th, 50th, 75th and 95th percentiles (equivalent to PM2.5 level at 30,

61, 109, 232 𝜇𝑔/𝑚3 respectively). In this way, instead of binning into categories, I

separately fit the regression curves with a polynomial of degree 3 between the knots

and require that the individual curves be defined in such a way that they meet at

the knots to support "smooth" joins. As shown in Figure 4-5b, the negative impacts

of PM2.5 on park visitation continuous to increase as the pollution level moves away

from 0 in an approximate linear format, with the slope only slightly larger after 100

𝜇𝑔/𝑚3.
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(a) Binned regression (b) Restricted cubic spline

Figure 4-5: Dose response function of PM2.5 on park visitation in northern China.

4.3.4 Heterogeneous effects

The average treatment effect identified is likely to mask important differences in the

sensitivity across diverse populations. To inform environmental policies, researchers

must produce rigorous and balanced evidence not only of the breadth and magni-

tude of the impacts, but also of how they are distributed across regions and time.

To examine the potential distributive impacts of air pollution on park activities in

northern China, I separately estimate the impacts for cities with high and low income

(delineated by the medium value of per capita income for all northern cities) with

the same instrumental variable and two stage least square estimation strategy as the

main model. There are sizable differences across cities. The results (Figure 4-6a)

show that only people in northern cities with high average income are actively avoid-

ing exposure by reducing outdoor leisure in response to air pollution. This depicts

a health awareness inequality across income groups which might induce people in

poorer regions to be more exposed to air pollution. I further consolidate the income

differences in avoidance behaviors by mapping the impacts of pollution on golf court

visitation, an activity type which is mostly adopted by the urban rich. The result

shows that golf activities are indeed much more affected (around -60%, nearly six

times more responsive) compared with other parks (Figure 4-6b).

Taking advantage of the broad coverage of our big data, I not only tested the
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differential impacts across regions, but also how different activity types (i.e., different

park destinations at different times) are unevenly impacted by pollution within the

same city. From the spatial dimension, I find that tourism attraction is not as pollu-

tion sensitive compared as normal city parks (Figure 4-6b), probably because tourists

have their plans for vacation which will not be easily modified by pollution once they

arrive in the new city. Similar evidence that tourists are less affected has been doc-

umented in the impacts of pollution on broader urban activities in China (Yan et

al. 2019). Further results for temporal heterogeneity depict that leisure activities on

weekends and holidays are much more affected by pollution than daily recreation and

exercising activities on workdays (Figure 4-6c).

(a) By city incomes
(b) By park types

(c) By time

Figure 4-6: Heterogeneous impacts of heavy PM2.5 pollution on park visitation.

4.3.5 Economic Valuation

Finally, we can put the estimated results into context by generating some back of the

envelope estimates of the value of foregone leisure to support the cost-benefit analysis

for policy designs. In the previous section, I show that heavy PM2.5 pollution in

northern cities decreases park visitation activities by 9.87% in winter per city per day

(no significant effect for southern cities). Since the park activity is measured by the

number of cell-phone location requests within each park on an hourly basis, each unit

represents one person activity hour. In northern China, the average park activity

hours on the not heavily polluted days is 3,356 (95% CI: 3,142, 3,570) across all parks

in winter. This translates into 331 (95% CI: 310, 352) less park activity hours per
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day per park, or 0.88 million (95% CI: 0.82 million, 0.94 million) less park activity

hours per day across the 2,658 parks in northern cities in our dataset because of the

heavy air pollution.

To understand the economic implications, studies in North America usually refer

to the Recreational Use Values Database which was published by Oregon State Uni-

versity, summarizing the consumer surplus (non-market value) derived from different

outdoor recreational activities obtained through 421 economic valuation studies (such

as (Chan and Wichman 2017)) in $ per person per activity day. Yet the studies for

China is very limited. I source my economic valuation data from a meta-analysis

study (Wang et al. 2013), in which the authors collected literature by searching

the Chinese National Knowledge Infrastructure (CNKI) database and use the benefit

transfer model based on meta-analysis to construct the valuation index. Across their

results, the valuation of activities likely to take place in parks (such as hiking and

sightseeing) is $53.73 (in 2005 USD) per person per activity day, which is $71.17 in

2020 USD.

Using these values and conservatively assuming that people spent 3 hours in park

per day (Since hour data is at person-hour unit rather than person-day), I estimate

that the costs of heavy pollution events on park visitation in China is $20.8 million
1 (CI: $19.5 million, $22.3 million) in 2020 USD per day across all cities in northern

China. This data can also be used to understand the potential social impacts of

Chinese national mitigation strategies to meet the air pollution targets. According

to the "Defend the Blue Sky Three Year Action Plan" (《打赢蓝天保卫战三年

行动计划》), China has established the goal towards 2020, aiming at reducing the

heavy and severe polluted days by 25% compared with 2015. The heavy polluted

days are predominantly driven by the IAQI index of PM2.5. By collecting data

for all cities in 2015, I calculate that the average PM2.5 heavy and above pollution

sequences in northern China is 16 days per year. Improving by 25% would translate

into an improvement of at least 4 days per year. That translates into dollar value

indicating that the policy will have $83.5 million (CI: $77.8 million, $89.2 million)
1(0.88 million park activity hour reduction/ day * $71.17 welfare loss/ day) / (3 hours/day)

45



benefit per year in removing the outdoor leisure activity constraints created by air

pollution in northern China. If accounting for the park tickets of many parks and

the benefits from reducing the medium and light polluted days, the total benefits

of pollution mitigation policy would be even higher. These costs demonstrate real

additional benefits of reducing pollution which will not be captured in the mortality

and morbidity data.

This value is much smaller than the estimation from the World Bank based on

VSL and labor output, which estimates the air pollution cost in 2013 for China was

about 1,634 billion USD (Bank, World Bank, and Institute for Health Metrics and

Evaluation 2016). However, these two estimations are not comparable since I only

measure one typical outdoor leisure activity and only look at the heavy polluted days

which has direct linkage to the environmental policy documents of China to deliver

quantifiable benefits of mitigation policies. The World Bank, instead, measures the

aggregated impacts of all days above WHO standard (i.e., 10 𝜇𝑔/𝑚3) and attributes

all the welfare value bundled with the life expectancy loss to the costs of pollution.

Whenever things come to death, the value is huge. However, valuing human life is

usually controversial and makes the estimation biased towards a limited proportion of

vulnerable people. A more comparable research would be a recent paper investigating

the defensive expenditure in China during the heavily polluted sequences (J. Zhang

and Mu 2018). It quantifies the total saving for the society on defensive expenditure

of facemask given pollution improvement would be 187 million USD. The foregone

leisure cost from park visitation is on the same magnitude as the monetary expendi-

ture of defensive devices. And as people become more educated about the pollution

impacts, both costs are expected to increase, though the cost of pollution measured

by mortality, morbidity, and productivity might be decreasing with more avoidance

behaviors.
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4.4 Discussion and Policy Implications

The leisure cost of pollution avoidance presented in this chapter sheds new light on

the value of air pollution mitigation policies. It illuminates a part of opportunity

cost, which has a wide impact beyond the health vulnerable groups, yet has not been

captured in the mortality, morbidity or economic data researchers are able to rely on

for empirical evaluation. When individuals make the choice to stay home and sacrifice

the leisure activities they can possibly enjoy outdoors, the behavior itself reveals their

trade-offs between the pollution risk and welfare gained in leisure. As a result, the

foregone benefits of leisure can be viewed as a private opportunity cost to create

better "personal air quality", and should be viewed as part of the pollution cost. To

my knowledge, this is the first paper to comprehensively evaluate the welfare cost of

foregone leisure caused by pollution using a large scale objective data set covering

different types of parks. And the first paper tries to quantify the non-market cost of

pollution avoidance behavior in a developing country.

The preferred model estimates that heavy PM2.5 pollution in China leads to a 5%

decrease in park visitation on average across all parks all over China in 2017 winter.

Only northern cities of China, where pollution problem is more severe, have shown

a significant leisure reduction, with about 10% decrease in response to pollution. In

contrast to inter-day substitutions to compensate for the lost activity, I document

that the impact of pollution can last more than 3 days by creating an inertia for

people to go out. Furthermore, I estimate the dose response function of pollution on

park visitation, and find a nearly linear decrease in activity as pollution increases,

suggesting a continuous impact of pollution on days well below the heavy pollution

threshold. The avoidance behavior in reducing outdoor leisure is more concentrated in

higher income regions, has higher sensitivity for daily activities taking place at normal

city parks than tourism attractions, and having large impacts for non-working days.

I estimate that heavy air pollution events in northern China creates a welfare cost of

$334 million per year. And thus the 25% reduction of heavy and severe polluted days

by 2020 promoted by China can have the benefit in leisure for at least 83.5 million
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(CI: $77.8 million, $89.2 million) per year.

Quantifying and communicating the opportunity cost of foregone urban activities

can instill the sense of relevance of the pollution impacts to the larger population

beyond vulnerable groups. It conveys the message that air pollution is not simply

a health invader, but is forcing the mass urbanites to sacrifice their quality of life

which most urban policies are striving to improve. However, the estimations used

in this chapter still have some limitations. First, these are lower bound results since

I only estimate the impacts of the heavily polluted days, which have the largest

impacts on leisure activities and can be reflected in policy targets to make projections.

However, people start to respond in even less polluted scenarios according to the dose

response function presented in the result section. And even for people who still go

to the park, the experience satisfaction might be lower due to lower visibility which

cannot be captured in my evaluation. Second, I only focus on northern cities for the

valuation since there lacks the empirical evidence to show that southern cities are

responsive. This might mask the impacts on particular cities or on particular groups

of people in the south who have higher pollution awareness. Third, there lacks a

reliable leisure value dataset for developing countries like China, thus more research

in non-market valuation is required to have a more accurate estimation of social

cost. The improvement in the advancement in non-market valuation in developing

countries can also allow for more papers to investigate other types of leisure activities

potentially sacrificed due to air pollution.
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Chapter 5

Pollution and Commuting Behavior

Beyond leisure activity, other human behaviors such as mobility choice will be im-

pacted by air pollution as well. In this chapter, I focus on the impact of pollution

on commuting behaviors relying on a large scale survey in Zhengzhou, China. Unlike

leisure activities, commuting trips are defined by home-job locations and are con-

strained by the availability of transportation alternatives. I designed and conducted

a sequential randomized controlled trial (RCT) with a team from MIT Sustainable

Urbanization Lab (SUL) to explore the avoidance behaviors reflected in commuting

choices. I model the decision-making mechanisms as a function of objective exposure

risk and personal characteristics. And use hypothetical scenarios to investigate the

implications of pollution avoidance for transportation policies.

5.1 Study context and pollution monitoring

The study takes place at Zhengzhou, the capital city of Henan province, China. The

seasonal variation of air pollution in Zhengzhou is huge, with winter heating leading

to a substantial increase in air pollution (Figure 5-1a). In about three months in a

year, the average PM2.5 level is above 100 𝜇𝑔/𝑚3.

The Zhengzhou local government has made great efforts to combat air pollution

over the past years. First, Zhengzhou has plate-based driving restrictions, forbidding

private cars to circulate one day per week on weekdays from 7 AM to 9 PM. Since
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2017. This restriction was strengthened in December due to year-end air quality per-

formance evaluation. Instead of restricting two last digits for each day, the restriction

is based on an even/odd number in December, meaning half of the cars are forbid-

den to drive on each workday. Second, Zhengzhou is planning to expand the subway

network from 5 lines to 21 lines (Wikipedia contributors 2019) and is expanding their

BRT system all over the city. Third, though having the dockless bike-sharing systems

run by private companies, the Zhengzhou government also sponsors dock-based pub-

lic bike systems to offer free bike services for local residents in order to solve the last

mile problem and encourage active commuting. Recently, in the new "Green Travel

Action Plan (2019-2022)" (《绿色出行行动计划（2019—2022年）》) published by

Zhengzhou government describing the strategies in the recent three years to promote

green travel, more emphasis on encouraging green travel is laid on cultivating green

travel habits and culture than the command and control policies. The severe air

pollution problem accompanied with the extensive investments in public policies and

public infrastructure to promote green traveling makes Zhengzhou the ideal context

to study the relationship between air pollution and sustainable commuting behaviors,

as well as how these interactions will potentially impact local green transportation

policies.

(a) PM2.5 trend (b) Job Location

Figure 5-1: Pollution context and sample distribution.

The survey was conducted in July, 2019. Our major target group is non-vehicle

commuters whose job location is around Zhengzhou CBD area, with a total 2285
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valid participants. Figure 5-1b shows the spatial distribution of the job locations of

our respondents. We focus on non-vehicle users because those commuters are more

affected by air pollution, and also because we want to partially avoid the experimenter

demand effect since vehicle users have a strong incentive to under report driving

for social image concerns. Among all participants, approximately 20% of people use

active modes (i.e., biking or walking) for daily commuting (Figure 10 (a)) and average

home-job walking distance is 7.92 km (Figure 10 (b) for distance distribution).

To enhance the representativeness of survey participants to local citizens, we con-

ducted stratified randomization based on employment sectors to diversify the sectoral

coverage and to approximate the distribution with local census data. To ensure sur-

vey quality, we contacted dozens of local companies around CBD and recruited 60

local college graduate students to assist us implementing one-on-one surveys by vis-

iting those local companies (Fig B-1). All those volunteer surveyors have taken our

training courses and were supervised by one group leader from our core research team

on the ground. The information interventions are presented using a standard tem-

plate designed by our team, so that every participant receives information with the

same displaying format and wordings. Researchers informed the respondents that

they will not peer at their answers, and respondents committed to telling the truth

at the beginning of the survey. If any respondents answered questions too fast or

appeared to be very impatient, the student will inform the group leader to record the

questionnaire ID so that we can delete those answers from the server in real time.

Air pollution level varied significantly across transportation modes (Cepeda et al.

2017). In order to understand the micro-level pollution exposure during commuting

and provide individual tailored exposure information, our research team rented four

professional air pollution monitoring equipment of Fairsense to conduct two-weeks’ on-

site monitoring. We chose three representative commuting routes around Zhengzhou

New District CBD (Fig B-2), and along each route, peak-hour air pollution concen-

tration in different transportation environments (i.e., bus, subway, car, bike/ walk)

were monitored two times per day. The final pollution levels were translated into ex-

posure indices per commuted mode inputting inhalation rate and individual tailored
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(a) Commuting modes (b) Home-job walking distance

Figure 5-2: Commuting modes and home-job distance of the survey participants.

commuting time for each transportation mode suggested by (Cepeda et al. 2017)

(Table A.1). To make the index easily accessible for the local residents, we translated

the exposure amount into smoking index referring to the epidemiological findings that

"one cigarette per day is the rough equivalent of a PM2.5 level of 22 𝜇𝑔/𝑚3" ("Air

Pollution and Cigarette Equivalence - Berkeley Earth", 2015), and adjusting by pollu-

tion concentration and exposure time. Cigarettes equivalent for monthly commuting

by modes are displayed in bar charts for pollution exposure information intervention

(Fig B-3). The exposure magnitude and relative exposure by modes are displayed in

Fig B-4a.

5.2 Survey designs

Questionnaires are designed and collected through Qualtrics. Survey takes 15-20 min-

utes, including an opening video introducing the iPad interface of electronic question-

naire, informed consent, four rounds of commuting choices questions, two information

intervention, and some socio-demographics habits and preferences characterization

questions (Figure 10). All respondents are asked to make four rounds of commuting

choices. Each round of choices is bundled with three questions: their primary mode

of commuting, whether they are willing to switch to active commuting (i.e., biking or

walking) given a reasonable amount of subsidy, and what is the minimum amount of
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subsidy they are willing to accept for the switch. People who already choose active

commuting in the first question will not be asked follow-up questions.

Among the four rounds of choices, the first two rounds before the dash line are

under current pollution level (i.e., clean day scenario, since we conducted the survey

in July when PM2.5 concentration is less than 40 𝜇𝑔/𝑚3, while the second two rounds

are under hypothetical polluted scenario (i.e., with PM2.5 117 𝜇𝑔/𝑚3 1, the average

of the most polluted month in Zhengzhou 2018). A picture of Zhengzhou under

this pollution scenario is displayed in the survey (Fig B-4). We use the answers to

commuting behavior of Choice 1 to Choice 4 to get people’s baseline preference on a

clean day, updated preference on a clean day after first information intervention (O1

or H, illustrated in the next paragraph), preference under pollution scenario, and the

updated preference under pollution scenario given the second information treatment

(O2 or P) respectively.

Figure 5-3: Survey structure and group decompositions.

Based on the respondents’ job and home location, we formulate all information

treatment in an individual-tailored format to enhance effectiveness. Respondents

are randomly assigned into three groups, getting an information bundle of (O1 +

O2), (O1+P), (H+P) respectively (Figure 5-3). The exercise nudge intervention (H)
1We used the monthly average PM2.5 pollution level of the most polluted month in Zhengzhou,

2018. Due to the winter heating and adverse climate conditions in winter, Zhengzhou has about
three months having approximate this pollution level every year.
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shows the counterfactual time and cost during their commuting by different modes

and highlights exercise benefits of active commuting and quantifies the tailored calorie

consumption and expected weight loss if doing active commuting for a month. The

corresponding control information (O1) only shows time and cost by modes. For the

treatment 2 in polluted scenario, individual tailored pollution exposure by modes and

corresponding cigarettes equivalent were presented for information (P) in the format

displayed in Fig B-3, while irrelevant information was displayed for the control (O2).

Comparisons between treatment and control groups at different rounds enable us to

quantify the impacts of information controlling for survey round fixed effects. Due

to the large sample and stratified randomization designs, socio-demographics, health

condition and personal habits, as well as economic preferences are balanced across

groups (Table 5.1).

5.3 Results

In this section, I will answer four primary research questions relying on the survey of

2,258 non-vehicle commuters with a series of controlled experimental designs. First,

does air pollution alter the commuting mode choices due to health concerns? Second,

are people’s behavioral trade-offs between health benefit and cost for active commut-

ing in pollution consistent with scientific findings? Third, are there changes on the

intensive margin (i.e., people whose actual commuting modes unchanged yet unob-

served perception change) and what are the implications for transportation policies?

Fourth, what are the underlying determinants of the decision-making process? This

research differs from the previous empirical studies by modelling a non-homogeneous

response elasticity as a function of real exposure risk and rich personal characteristics

to depict behavioral rationality, and sheds light on the potential social consequences

of pollution avoidance behaviors.
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Table 5.1: Descriptive Statistics of Survey.

O1 + O2 O1 + P H + P All
(N = 762) (N = 764) (N = 759) (N= 2285)

Variables Mean SD Mean SD Mean SD Mean SD

Socio-Demographics
Gender, 1=Female 0.559 0.497 0.559 0.497 0.539 0.499 0.552 0.497
Age 29.676 7.082 30.131 7.229 29.87 7.315 29.893 7.209
Marital Status, 1=Mar-
ried

0.488 0.5 0.484 0.5 0.484 0.5 0.485 0.5

Household size
3 or less 0.424 0.494 0.424 0.495 0.415 0.493 0.421 0.494
4 or 5 0.446 0.497 0.441 0.497 0.476 0.5 0.454 0.498
6 or more 0.129 0.335 0.135 0.342 0.107 0.309 0.123 0.329
Household income
Less than 50 thousand
RMB

0.186 0.39 0.179 0.384 0.173 0.378 0.179 0.384

50-150 thousand RMB 0.543 0.498 0.529 0.499 0.528 0.5 0.533 0.499
150-300 thousand RMB 0.211 0.408 0.233 0.423 0.24 0.427 0.228 0.42
More than 300 thousand
RMB

0.05 0.218 0.052 0.223 0.05 0.218 0.051 0.22

Education
High school or lower 0.121 0.326 0.105 0.306 0.121 0.327 0.116 0.32
Some college 0.273 0.446 0.266 0.442 0.281 0.45 0.273 0.446
BA degree 0.508 0.5 0.495 0.5 0.472 0.5 0.491 0.5
Master degree or higher 0.093 0.291 0.13 0.336 0.117 0.322 0.113 0.317

Health and habits
Health condition
Not so good 0.22 0.415 0.186 0.389 0.182 0.386 0.196 0.397
Good 0.619 0.486 0.628 0.484 0.631 0.483 0.626 0.484
Excellent 0.16 0.367 0.186 0.389 0.184 0.388 0.177 0.382
Exercise habit
Never 0.282 0.45 0.287 0.452 0.312 0.464 0.294 0.456
Less than 3 days/ week 0.374 0.484 0.373 0.484 0.365 0.482 0.371 0.483
3 days or more/ week 0.184 0.388 0.203 0.402 0.181 0.385 0.189 0.392
Smoking habit, 1=yes 0.16 0.367 0.136 0.343 0.142 0.35 0.215 0.411

Economic Preferences
Risk preference
averse 0.26 0.439 0.255 0.436 0.283 0.451 0.266 0.442
neutral 0.515 0.5 0.489 0.5 0.495 0.5 0.5 0.5
seeking 0.225 0.418 0.256 0.437 0.222 0.416 0.235 0.424
Patient
low 0.119 0.324 0.121 0.326 0.105 0.306 0.115 0.319
medium 0.461 0.499 0.469 0.499 0.45 0.498 0.46 0.499
high 0.42 0.494 0.41 0.492 0.445 0.497 0.425 0.494
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5.3.1 Air pollution and commuting choice

I first examine whether people are switching commuting modes as a way of self-

protection. I try to first understand people’s choices on polluted days based on their

existing knowledge structure of the health impacts of pollution as well as exposure

by modes (Choice 3 of Figure 5-3), and then model the behavioral changes when

exposure information is presented (Choice 4).

Figure 5-4 depicts the commuting mode choices of Treatment Group 1 (O1+P)

under different scenarios. On polluted days, people already have the awareness to

change transportation modes for self-protection, and their status quo behaviors are

to increase indoor commuting (i.e., public transit or car) while decreasing outdoor

ones (i.e., bike, walk or electric bike). However, after we present with people their

personal pollution exposure information, we see a large reduction in respondents

choosing public transit and a large increase in motor vehicles (i.e., car/ taxi). Assum-

ing information is the only thing updated about their beliefs, the result indicates a

knowledge gap between people’s perceived pollution exposure and the reality, specifi-

cally, people seem to underestimate the exposure in public transit. The high pollution

exposure of public transit compared to vehicles (Fig B-4a) is primarily caused by two

reasons. First, there are only two subway lines crossing the Zhengzhou New District

currently, thus public transit involves active commuting for the last mile transition.

Second, public transit has less insulated in-carriage environment compared to the

closed window private car or taxi.

One concern for this within-group comparison is that people might behave dif-

ferently when we sequentially ask them one more round of question after the second

information intervention. To address this confounding factor, we calculate the treat-

ment effect of pollution exposure information (P) on commuting choices by comparing

Treatment Group 1 (O1+P) with Control (O1+O2) in Choice 4 controlling for base-

line mode choice, commuting distance and socio-demographic information (Table 5.2).

The only difference between the two groups is the provision of Commute Exposure

information by commuting modes. The results show that if fully aware of the pollu-
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Figure 5-4: Descriptive analysis of commuting choice.
Note: For Treatment Group 1 under different pollution scenarios.

tion exposure, active commuters will further reduce by 8.5% (95% CI: 5.3%, 11.7%)

and vehicle commuters (driving, taxi, or Uber/ Didi) will increase by 15% (95% CI:

11.1%, 18.5%) among all initial non-vehicle commuters. Therefore, when modeling

the pollution exposure risk and making a projection of emissions from driving, re-

searchers cannot naively assume that travelers are passive victims of pollution and

they won’t take any avoidance behavior to protect themselves. Our findings in Table

5.2 support the existence of such self protection behaviors and the resulting feedback

loop of aggravated emissions induced by such self-protection choices towards more

driving.

5.3.2 Health trade-offs in active commuting

Though significant effects of reduction in active commuting is documented, the real-

world decisions are likely quite heterogeneous and structured as a function of commut-

ing time. Specifically, the exposure risk continuously increases with active commuting

time, while the exercise benefits gradually level-off, constituting a break-even point

at which the health benefit and health cost cancel out with each other. Though in

western context, the benefits of exercise usually outweigh the adverse effect of pollu-

tion exposure at the population level (Caplin et al. 2019), the high ambient pollution
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Table 5.2: Treatment effect of pollution exposure information on commuting choice.

(1) (2) (3) (4)
VARIABLES Active Tendency Active Tendency Drive Tendency Drive Tendency

Commute Exposure -0.0870*** -0.0847*** 0.149*** 0.148***
(1=Yes) (0.0199) (0.0164) (0.0187) (0.0188)
Constant 0.231*** 0.259*** 0.0919*** 0.106*

(0.0153) (0.0592) (0.0105) (0.0602)

Observations 1,526 1,505 1,526 1,505
R-squared 0.012 0.337 0.04 0.053
Controls NO YES NO YES
Choice 4 4 4 4
Group O1+P vs O1+O2 O1+P vs O1+O2 O1+P vs O1+O2 O1+P vs O1+O2

Note: Robust standard errors in parentheses. Control variables include income, education,
gender, marriage status, commuting distance and baseline commuting choice.
*** p<0.01; ** p<0.05; * p<0.1

level of many developing countries might change the story for long-time commuters.

From a scientific study by (Tainio et al. 2016), at the given pollution scenario in the

survey, the break-even point is 60 minutes’ cycling. Since commuting is composed of

two-way trips, active commuting within 30 minutes per trip would likely have exercise

benefits that outweighs exposure cost in our scenario context.

To compare people’s real behaviors with this scientific finding, I queried the biking

time given individual’s home and job location from Amap and modelled the treatment

effect of pollution exposure information (P) by biking time sextiles (i.e., I calculate

the treatment effect showed in Table 5.2 by each sub-group, comparing Treatment

Group I and Control Group). Figure 5-5 shows that though biking within 30 minutes

has exercise benefit outweighs pollution cost, people who live close to the job location

also intentionally switch from active commuting to other transportation modes to

hedge against their subjective perception of exposure risk.

This risk averse response pattern can be partially explained by the anecdotal evi-

dence that local residents are very pessimistic about air pollution in Zhengzhou. From

our survey, 82% think winter air quality is bad or terrible. 73.48% think air pollution

in Zhengzhou largely or severely impacts their health (Figure 5-6a); Table A.2). The

fact that behavioral trade-offs are more sensitive towards self-protection should be

58



cautiously interpreted as bounded rationality, since citizens do not have the scientific

knowledge to precisely compare health impacts across two dimensions. However, the

results suggest that when putting forward information policies like pollution expo-

sure education or air pollution alert, policy makers should acknowledge the negative

interaction between public health targets of reducing pollution risk and increasing

physical activities, and be cautious about the potential unintended consequences of

increased transportation emissions caused by increased usages of motor vehicles when

people being risk averse and over-protective.

Figure 5-5: Active commuting reduction after informed pollution exposure by coun-
terfactual biking time.

5.3.3 Implications for active commuting policies

According to the "Green Travel Action Plan 2019-2022" of Zhengzhou, a shift from

top-down command and control transportation policies to financial and soft policies

encouraging green travel is emphasized. In this section, I model the transportation

behaviors and perceptions under two public policies aiming at increasing active com-

muting: financial subsidy and green nudge. This will not only provide us insights
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(a) Zhengzhou air quality in winter (b) Pollution health impacts

Figure 5-6: Participants’ perception of air quality.

into the effectiveness of green policies in breaking the vicious circle created by air

pollution, but also help us understand the changes on the intensive margin where

the revealed transportation choice remained unchanged yet the reluctance for active

commuting still be intensified by air pollution.

Financial incentives such as taxes and subsidies are common policies to encourage

active commuting and are extensively studied in existing literature (Martin, Suhrcke,

and Ogilvie 2012). For the four rounds of commuting choices in the survey, I not only

elicited people’s mode choices, but also asked non-active commuters whether they

are willing to switch to active commuting given a reasonable amount of subsidy and

what is their minimum willingness to accept (WTA). Similar to the last section, I first

make a descriptive analysis of Treatment Group 1 (O1+P) to exploratively understand

people’s choices under perceived and informed pollution scenarios compared to the

baseline. I find that the proportion of people willing to change provided subsidy

decreases from 76.7% to 63.4% on a polluted day, and further decreases to 55.8% when

citizens are more educated about the pollution exposure in different transportation

environments. Assuming the government has the capacity to provide tailored subsidy

according to each one’s willing to accept, the average cost needed to subsidize people’s

active travel increases from 4.37 RMB/trip to 5.04 RMB/trip on a polluted day

and further increase to 5.51 RMB/trip if micro-environment pollution exposure is

available.

60



To get a pure treatment effect, I compare the answers to questions related to

subsidy on Choice 4 by comparing Treatment Group 1 (O1+P) and the Control Group

(O1+O2) controlling for socio-demographics, baseline and commuting distance. Table

5.3 and Table 5.4 show that when people are fully informed of the pollution exposure

by modes, 13.9% (95% CI: 10.0%, 17.8%) fewer people can be potentially affected by

the financial subsidy and the average willing-to-accept (WTA) increases by 1.6 RMB

(95% CI: 0.8, 2.3).

Table 5.3: Treatment effect of pollution exposure information on willingness to change
to active modes.

(1) (2) (3)
VARIABLES Willing to change (WTC) Willing to change Change of WTC

Commute Exposure -0.146*** -0.140*** -0.139***
(1=Yes) (0.0244) (0.0214) (0.0199)
Constant 0.703*** 0.648*** -0.00857

(0.0166) (0.0716) (0.0628)

Observations 1,526 1,507 1,507
R-squared 0.023 0.277 0.036
Controls NO YES YES
Choice 4 4 4
Group O1+P vs O1+O2 O1+P vs O1+O2 O1+P vs O1+O2

Note: Robust standard errors in parentheses. Control variables include income, education,
gender, marriage status, commuting distance and baseline commuting choice.
*** p<0.01; ** p<0.05; * p<0.1

In order to understand people’s trade-offs perception on the intensive margin, I

model the willingness to change (WTC) and willingness to accept (WTA) as by coun-

terfactual biking time. Figure 5-7a indicates that people with counterfactual biking

time 28-60 minutes value the health cost of pollution exposure the most, by either

unwilling to change or substantially increasing WTA. The differences for extensive

and intensive margin can be partially explained by the selection bias, since people

who adopt active commuting for biking time longer than 30 minutes usually have

greater preferences for physical activities or having limited alternative transportation

choice. This highlights the crucialness of conducting a first hand survey to collect

information on the subjective dimensions which cannot be observed through revealed

studies.
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Table 5.4: Treatment effect of pollution exposure information on willingness to accept
(subsidy) to active modes.

(1) (2) (3)
VARIABLES Willing to accept Willing to accept Change of WTA

Commute Exposure 0.999** 1.080*** 1.563***
(1=Yes) (0.4760) (0.4050) (0.3810)
Constant 4.515*** -1.345 0.241

(0.2950) (1.0100) (1.0930)

Observations 962 872 838
R-squared 0.005 0.298 0.033
Controls NO YES YES
Choice 4 4 4
Group O1+P vs O1+O2 O1+P vs O1+O2 O1+P vs O1+O2

Note: Robust standard errors in parentheses. Control variables include income, education,
gender, marriage status, commuting distance and baseline commuting choice.
*** p<0.01; ** p<0.05; * p<0.1

Besides financial policies, behavioral policy intervention like nudge represents a

new set of tools for making public policy more cost efficient (Tannenbaum, Fox, and

Rogers 2017) and are increasingly adopted by government agencies to their policy

toolkits (Benartzi et al. 2017). Since green nudge is low-cost and preserves the

freedom of choice, this has been one of the most popular policy instruments to en-

courage active commuting. To understand the causal impact of green nudge in a clean

and polluted day scenario, I construct the comparisons between Treatment Group 2

(H+P) Control (O1+O2) for Choice 2, 3 and 4 (see Figure 5-3). The differences in

choices in Choice 2 and Choice 3 uncover the treatment effect of exercise nudge on

active commuting choice on clean and polluted days respectively. And the differences

in Choice 4 indicate the combined effect of exercise nudge and pollution exposure

education.

Table 8 shows that exercise nudge can increase active commuting by 9.7% (95%

CI: 6.7%, 12.8%) (Column 2) in clean days, with especially strong effects for people

having counterfactual biking time between 11 to 17 minutes (Figure 5-8a). However,

soft policies like nudge completely lost effect under polluted scenarios (Column 4)

in all biking time groups (Figure 5-8a). When both health benefit and health cost

information are presented, health cost completely dominates in directing people’s
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(a) Willingness to go active given subsidy (b) Minimum acceptable subsidy

Figure 5-7: Impact of pollution exposure information on changes on intensive margin
by counterfactual biking time.

commuting choices (Column 6) and the choices of Treatment Group 2 (H+P) in

Choice 4 are not distinguishable with those of Treatment Group 1 (O1+P) where

only pollution exposure treatment is presented (Figure 5-8b).

Table 5.5: Effectiveness of active nudge under different scenarios.

(1) (2) (3) (4) (5) (6)
VARIABLES Active Active Active Active Combined Combined

(clean) (clean) (polluted) (polluted) (polluted) (polluted)

Exercise nudge 0.0983*** 0.0973*** 0.0231 0.0242 -0.0716*** -0.0699***
(1=Yes) (0.0221) (0.0157) (0.0201) (0.0169) (0.0203) (0.0167)
Constant 0.202*** 0.141*** 0.177*** 0.353*** 0.231*** 0.310***

(0.0146) (0.0534) (0.0138) (0.0592) (0.0153) (0.0601)

Observations 1,521 1,496 1,521 1,496 1,521 1,496
R-squared 0.013 0.526 0.001 0.32 0.008 0.351
Controls NO YES NO YES NO YES
Choice 2 2 3 3 4 4
Group H+P vs H+P vs H+P vs H+P vs H+P vs H+P vs

O1+O2 O1+O2 O1+O2 O1+O2 O1+O2 O1+O2

Note: Robust standard errors in parentheses. Control variables include income, education,
gender, marriage status, commuting distance and baseline commuting choice.
p<0.01; ** p<0.05; * p<0.1
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(a) Exercise nudge (b) Exercise nudge and pollution exposure

Figure 5-8: Treatment effect of exercise nudge under different scenarios.
(a) Treatment effect of exercise nudge on active commuting under different pollution
scenario; (b) Combined effect of exercise nudge and pollution exposure information on
active commuting.

5.3.4 Determinants of the response

Beyond objective factors like built environment, a wide range of individual character-

istics determine travel decision making, such as socio-demographics, economic prefer-

ence, health conditions, and personal habits. In Figure 5-9, the responsive elasticity

to air pollution for different outcomes is modelled as a function of one characteristic

variable within each category. The full dimensions of all the covariates available are

summarized in Table A.5, Table A.6 and Table A.7.

The most important determinant of behavior is knowledge. I find that people with

higher education levels are less affected by pollution exposure information, suggesting

a lower knowledge gap before intervention. Unlike pollution exposure treatment, the

impact of active commuting nudge is homogeneous across education groups, having

significant positive effect on clean days and completely losing impact on polluted days.

Meanwhile, consistent with previous literature, I find that females are more sensitive

to pollution exposure risk (Table A.5 & Table A.6) while males are more responsive

to exercise nudge (Table A.7).

Many theories of human behavior assume a set of economic preferences driving

individual decision making (Falk et al. 2018). Among which, risk preference is most

relevant for behavioral changes when faced with air pollution exposure. To my knowl-
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edge, no one has linked economic preferences with air pollution adaptation behavior.

I measure risk preferences using the survey instruments suggested and validated by

(Falk et al. 2018)2 and show that people’s risk preference has good predictive power

on travel behaviors. Row 2 of Figure 5-9 depicts that risk averse people are more

sensitive to pollution exposure information by reducing active commuting more and

having higher increase in WTA, which is consistent with existing literature since risk

averse people weight losses more heavily than gains (Kahneman and Tversky 1979).

On the other hand, risk seeking people are more responsive to exercise nudge, and

gain information. Yet again, exercise nudge loses effects for all kinds of people under

the pollution scenario. Similarly, hyperbolic discounting in time preferences leads

to overweighting of near-term costs and underweighting of delayed benefits (Bhat-

tacharya, Garber, and Goldhaber-Fiebert 2015). I find that people with patient time

preferences are indeed more responsive to active commuting nudge yet the effect also

goes to zero when met with air pollution (Table A.7).

Habit is an essential element determining people’s exercise-related behaviors (Bhat-

tacharya, Garber, and Goldhaber-Fiebert 2015). When evaluating the benefits of

public policies, it is important to ask which group of people are responsive. Row 3 of

Figure 5-9 shows that active commuting nudge is not effective for people who do not

exercise at all, although this group of people would have the largest health benefits

gained from active commuting (Fishman 2016). And I find that people who exercise

more than 5 days per week are almost the only group who still outweighs exercise

benefit over pollution exposure on polluted days.

5.4 Discussion and Policy Implications

In this chapter, I provide evidence that people have the intention of switching com-

muting modes as a channel of air pollution avoidance behavior. Specifically, we see
2Though quantitative questions tend to have smaller measurement error, the length of survey

does not allow us to add in a complicated choice matrix to measure risk. (Falk et al. 2018) finds
that qualitative and quantitative questions give similar results under their questionnaire framing,
thus we exactly apply their qualitative question framing to measure the economic preferences.
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Figure 5-9: Heterogeneous treatment effect.
Impacts of pollution exposure treatment on active commuting tendency (Column 1 and
WTA (Column 2); Impacts of exercise nudge treatment on active commuting tendency
(Column 3).
Note: Consistent with the results section, the first two columns rely on Treatment Group 1
and Control Group to calculate the treatment effect of pollution exposure information on
active commuting behaviors and perceptions. The third column relies on Treatment Group 2
and Control Group to calculate the treatment effect of active commuting’s health benefit
information on commuting choice on clean and polluted days respectively.
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a clear tendency for people to reduce outdoor commuting for exposure avoidance,

yet people underestimate the pollution exposure of public transits in Zhengzhou.

Recently, we see continuous technology advancement in environmental Internet of

Things (IoT) applications to measure personal micro-environment pollution exposure,

accompanied with the increasing demand for fine-grained air quality data (Mamun

and Yuce 2019; Caplin et al. 2019). My results give the prediction that if people

are more educated about the personalized pollution exposure by commuting modes,

active commuting would further decrease by 8.5%, while driving increases by 14.8%,

creating double challenges to both public health and pollution mitigation. The com-

muting choices show a pessimistic feedback loop, in which the advertent behaviors of

citizens in response to air pollution further aggravate the local air pollution through

choosing dirtier yet more protective transportation modes. Given that transporta-

tion contributes significantly to local air pollutants and greenhouse gas emissions,

the omission of which will drive a wedge between ex ante engineering estimates of

program costs and ex post estimates of true social cost. The discrepancy can bias our

future projection of anthropogenic environmental changes and make policy makers

under-estimate the cost caused by environmental stressors in the social system.

Second, my results suggest that people seem to overreact to air pollution. Even

for people having much shorter commuting time than the break-even point (i.e., 30

minutes/ trip in our scenario), a substantial reduction in active commuting is docu-

mented. The results depict that people are not sophisticated enough to balance the

health gain and health loss of biking/ walking in pollution, instead, they tend to react

in an overly-protective way caused by the deep rooted negative impressions on local

air pollution. The results indicate a sad dilemma between intertwined public health

goals, reducing pollution exposure and advocating active living. And the contradicted

environmental policy targets of encouraging voluntary pollution avoidance and pol-

lution mitigations. More importantly, it emphasizes that policy makers should not

narrowly look at air pollution as a public health threat in objective exposure and focus

their efforts only on one policy goal: reducing exposure by alerting public informa-

tion. An integrated policy design can help exploit synergies between different policy
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objectives while avoiding harmful contradictions. For instance, a policy maker who

recognizes the unintended consequences of avoidance behaviors in the transportation

sector should improve the air quality in public transits by purifier operations, rather

than simply alerting people about high pollution which could nudge people to drive.

Third, I find that both financial subsidy and green nudge policies to encourage

active commuting are likely to be in vain under air pollution. Unlike previous research,

I model changes take place on the intensive margin by eliciting people’s willingness to

change and willingness to accept in addition to mode choices. I document that people

willing to adopt active commuting given subsidy decreases by 14% and minimum

subsidy requirement increases by 1.56 RMB on average when fully informed about

the pollution exposure risk. Meanwhile, though low-cost soft policies like nudge are

effective in encouraging active commuting by 10%, the effect completely goes away

in almost all sub-populations under the pollution scenario.

The results should be interpreted cautiously. First, the stated preference nature

of the survey makes the social image concerns and arbitrary answers hard to be

eliminated. Randomized controlled trials relying on objective documentation of com-

muting choices such as using smartphone GPS are preferred to validate the stated

preferences with revealed behaviors. Second, the current conclusion of risk averse

is in comparison with the trade-off curves suggested by science literature, which is

sensitive to the dose response function assumptions for the benefits and cost of pollu-

tion and exercise. Impacts of short-term air pollution episodes, where concentrations

significantly exceed the average air pollution levels for a few days, may induce ad-

ditional short term health effects. Last but not the least, more research efforts in

different cities and countries are required to cross-validate the external validity of

the conclusions. This case study in Zhengzhou is only a starting point to shed light

on the neglected social cost tied with pollution avoidance behaviors which is largely

understudied in existing literature, and to advocate for a more holistic view when

designing public policies to satisfy conflicting public goals. Nonetheless, the results

should not be interpreted as a deterministic evidence of human behaviors across all

contexts.
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Chapter 6

Conclusion

The avoidance behaviors of human-being under air pollution are not well-studied,

and the limited research on avoidance behaviors mainly focus on the monetary cost

bundled with defensive expenditure. For this paper, I empirically investigate the

impacts of two short-term avoidance behaviors with non-market opportunity cost and

unintended social cost respectively: reducing outdoor leisure activities and switching

transportation modes.

On one hand, I display that avoidance behaviors, though effective in reducing

exposure, can create welfare loss due to the foregone leisure activities. Cancelling

and reducing the duration of park visitation when faced with heavily polluted events

can deprive citizens from enjoying the social, physical and psychological well-being

benefits city parks can provide (van Wagoner n.d.). In this research, I quantify

not only the net effect of pollution on park activities, but also the temporal lagged

effects and dose-response function accounting for the non-linearity. Furthermore, I

take advantage of the detailedness of the dataset to show the distributive impacts,

including the heterogeneity across geographical regions, cities with different income,

parks with different functionality, as well as activity patterns at different times. A

back-of-envelope investigation of the social cost of the foregone leisure was conducted

and the results show a comparable economic value to the market value of defensive

expenditure, indicating that incorporating the non-market value is not a trivial thing.

On the other hand, I show that self-protected commuting behaviors can generate
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social consequences in building a vicious feedback loop between pollution and motor

vehicle usages. The risk averse tendency to protect one’s own health could make public

policies encouraging green travels powerless during the pollution events. Although

does not have the capacity to quantify the monetary cost of behavioral adjustment in

urban transportation sector, this is the first paper to look at the social consequences

of individual avoidance behaviors, and to project how this neglected dimension of

cost can be increasingly critical when urban citizens are getting more informed and

educated about micro-level pollution exposure risk. I acknowledge the fact that stated

preferences in surveys might be different from people’s actual behaviors due to the

potential report bias and experimenter demand effect. As the next step, we will

implement a Randomized Controlled Trial using smartphone App to objectively track

individual’s commuting choices and follow the participants for six weeks to map out

the within-subject differences for clean and polluted days. The effects of individual

tailored pollution exposure information and green travel subsidy will also be evaluated

through revealed behaviors to support more robust program evaluation and future

prediction.

As developed in the theoretical framework, I believe the two dimensions of hid-

den costs (i.e., opportunity costs and social cost) of pollution impacts linked with

avoidance human behaviors should be included in the estimation of social damages

of pollution and the benefits of mitigation policy. These cost elements are closely

related to urbanites’ quality of life and the establishment of green culture and social

cohesion. Though challenging, it is essential for researchers to seek innovative ways

to quantify the hidden costs with novel data, and incorporate these costs into policy

conversations. In addition, understanding avoidance behaviors are not cheap panacea

will help the policy makers to model the cost and benefits of industrial and pollution

mitigation policies more comprehensively, and be able to judge the public information

campaign nudging people to self-protect more critically.

The research question of interest and the methodologies developed in this thesis

is not only relevant in the Chinese setting, but also useful to study pollution avoid-

ance in other developing countries. For example, some Indian cities are becoming the
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most polluted ones in the world, with nearly a 9-years reduction in life expectancy

because of pollution. Since a large percentage of Indian households rely on biomass

cooking and agricultural practices like burning crop stubble is widespread, the pollu-

tion visibility is higher in Indian than in China. This, accompanied with the warmer

temperature supporting outdoor activities, can cause the hidden costs of the avoid-

ance behaviors to be even larger. Similarly, the estimation strategy is also readily

applicable to study other environmental problems, such as extreme temperature. As

well as the interactive effects of multiple environmental hazards on human behaviors.

There have been dramatic advances in understanding the physical science of pollution

and climate change, yet the social value of these advances depends on understanding

their broader social impacts on our human system. Understanding the social cost

of the environmental degradation is a domain requiring substantive research efforts,

otherwise, effective policy solutions with broad societal support will remain elusive.

Having said that, the estimation results and policy simulations practiced in this

research should be interpreted contingently. First, it is likely that the monetary es-

timation only quantifies a small part of the avoidance cost, since I only measure one

of the many types of leisure activities which are likely to be affected by air pollution.

Second, the survey data used to analyze commuting behaviors, though having the

advantage of supporting behavioral pathways analysis at individual level, are limited

in its geographical and population coverage to generalize to larger urban contexts.

Third, many long-term avoidance and adaptation strategies people could adopt, such

as migrating to cleaner cities (S. Chen, Oliva, and Zhang 2017) or spending longer

holidays in cleaner cities, are still missing in the improved evaluation picture I pro-

posed in Figure 1-1. With all these cautions in mind, I believe that this paper has

highlighted the key role of a systematic empirical analysis building the causal impacts

of air pollution on broader social sectors accounting for dynamic behavioral adjust-

ments. I hope that my work could draw more attention to the neglected avoidance

costs to support comprehensive behavioral modelling in pollution risk management

and more well-informed policy decision-makings.
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Appendix A

Supplementary Tables

Table A.1: Pollution and inhalation factors.

Pollution factor Inhalation factor

Car (with AC) 0.8 0.16
Bus 1.1 0.72
Subway 1.2 0.49
Bike 1 1
Walk 1 1

Note: Exposure of mode i for individual j = ambient PM2.5 level pollution factor of mode i
inhalation factor of mode i counterfactual commuting time taking mode i for individual j.
Cigarettes equivalent of mode i for individual j/ month= (ambient PM2.5 level × pollution
factor of mode i /22) × inhalation factor of mode i × (counterfactual commuting time taking
mode i for individual j /24) × 2 × 20.

Table A.2: Ways to judge pollution information.

rank Number of people fraction

Cell phone App 1693 74.09%
Judge from visibility 1048 45.86%
From searching engine main page 186 8.14%
EPA official website 167 7.31%
Monitor themselves 47 2.06%
Never check 41 1.79%
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Table A.3: Perception of Zhengzhou air pollution in winter.

Perception Number of people fraction

Terrible 1063 46.95%
Bad 794 35.07%
Normal 311 13.74%
Good 80 3.53%
Very good 16 0.71%

Table A.4: Perception of Zhengzhou air pollution on their personal health.

Perception Number of people fraction

Severe impact 845 37.36%
Large impact 817 36.12%
Some impact 499 22.06%
Small impact 81 3.58%
No impact 20 0.88%
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Table A.5: Heterogeneity of treatment effect of pollution exposure education.

Active tendency Driving tendency
TE SE TE SE

All -0.084*** (0.0164) 0.147*** (0.0189)

Demographics
Gender
Female -0.092*** (0.0435) 0.160*** (0.0260)
Male -0.068*** (0.0244) 0.125*** (0.0269)
Income
Less than 50 thousand -0.106** (0.0432) 0.161*** (0.0431)
50-150 thousand -0.0771*** (0.0227) 0.153*** (0.0248)
150-300 thousand -0.0826** (0.0330) 0.130*** (0.0403)
More than 300 thousand -0.0642 (0.0623) 0.184* (0.1020)
Education
< High school -0.155*** (0.0573) 0.175*** (0.0464)
College -0.137*** (0.0331) 0.163*** (0.0355)
BA -0.0499** (0.0219) 0.144*** (0.0266)
Grad school -0.00883 (0.0465) 0.125* (0.0663)

Habits
Exercise habit
Nearly never -0.0259 (0.0268) 0.0713* (0.0367)
1-2 days/ wk -0.0862*** (0.0288) 0.191*** (0.0318)
3-4 days/wk -0.128*** (0.0373) 0.174*** (0.0386)
>=5 days/wk -0.117*** (0.0443) 0.145*** (0.0516)
Smoking habit
No -0.0758*** (0.0186) 0.144*** (0.0213)
Yes -0.115*** (0.0361) 0.157*** (0.0400)

Health Perception and Condition
Health impact of pollution
Not severe -0.0489 (0.0353) 0.181*** (0.0353)
Severe -0.0933*** (0.0185) 0.138*** (0.0224)
Health condition
Bad/ Normal -0.0833** (0.0345) 0.0925** (0.0422)
Good -0.0807*** (0.0211) 0.174*** (0.0239)
Very good -0.126*** (0.0429) 0.113** (0.0468)

Economic Preference
Risk preference
Averse -0.119*** (0.0363) 0.154*** (0.0378)
Neutral -0.0837*** (0.0238) 0.185*** (0.0281)
Seeking -0.0515 (0.0341) 0.0816** (0.0409)
Time preference
Impatient -0.0515* (0.0306) 0.142*** (0.0333)
Patient -0.0806*** (0.0304) 0.105*** (0.0366)
Very patient -0.0832*** (0.0263) 0.190*** (0.0302)
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Table A.6: Heterogeneity of treatment effect of exposure information on WTC and
WTA.

Active tendency Driving tendency
TE SE TE SE

All -0.139*** (0.0199) 1.563*** (0.3810)

Demographics
Gender
Female -0.142*** (0.0283) 1.772*** (0.5720)
Male -0.134*** (0.0277) 1.327*** (0.4830)
Income
Less than 50 thousand -0.152*** (0.0496) 1.971* (1.1530)
50-150 thousand -0.151*** (0.0278) 1.493*** (0.4820)
150-300 thousand -0.104** (0.0407) 1.520** (0.6570)
More than 300 thousand -0.144** (0.0715) 1.681 (1.3660)
Education
< High school -0.121** (0.0582) 2.045* (1.1180)
College -0.114*** (0.0361) 1.116 (0.7380)
BA -0.172*** (0.0295) 1.720*** (0.4820)
Grad school -0.0642 (0.0578) 1.372 (2.1040)

Habits
Exercise habit
Nearly never -0.0853** (0.0361) 0.308 (0.4760)
1-2 days/ wk -0.209*** (0.0339) 2.208*** (0.7350)
3-4 days/wk -0.129*** (0.0450) 2.253** (0.9590)
>=5 days/wk -0.0695 (0.0572) 1.930** (0.7710)
Smoking habit
No -0.147*** (0.0227) 1.648*** (0.4500)
Yes -0.112*** (0.0420) 1.168* (0.7000)

Health Perception and Condition
Health impact of pollution
Not severe -0.123*** (0.0372) 0.194 (0.4680)
Severe -0.144*** (0.0234) 2.125*** (0.5030)
Health condition
Bad/ Normal -0.154*** (0.0497) 0.946 (0.5830)
Good -0.146*** (0.0245) 1.497*** (0.4560)
Very good -0.112** (0.0480) 2.496** (1.2360)

Economic Preference
Risk preference
Averse -0.135*** (0.0408) 2.739** (1.0600)
Neutral -0.152*** (0.0306) 1.515*** (0.4890)
Seeking -0.156*** (0.0419) 0.414 (0.7640)
Time preference
Impatient -0.147*** (0.0355) 1.022 (0.6830)
Patient -0.0853** (0.0377) 2.323*** (0.7540)
Very patient -0.175*** (0.0328) 1.236*** (0.4730)
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Table A.7: Heterogeneity of treatment effect of exercise nudge on clean and polluted
days.

Active tendency Driving tendency
TE SE TE SE

All 0.097*** (0.0157) 0.0253 (0.0169)

Demographics
Gender
Female 0.089*** (0.0208) 0.0273 (0.0227)
Male 0.103*** (0.0239) 0.0301 (0.0253)
Income
Less than 50 thousand 0.135*** (0.0382) 0.0327 (0.0432)
50-150 thousand 0.101*** (0.0208) 0.0228 (0.0229)
150-300 thousand 0.0437 (0.0331) 0.0173 (0.0336)
More than 300 thousand 0.160* (0.0855) 0.0895 (0.0692)
Education
< High school 0.120** (0.0538) 0.0616 (0.0627)
College 0.0966*** (0.0307) 0.032 (0.0352)
BA 0.0916*** (0.0207) 0.0271 (0.0208)
Grad school 0.121*** (0.0431) -0.0485 (0.0515)

Habits
Exercise habit
Nearly never 0.0447* (0.0267) -0.0151 (0.0274)
1-2 days/ wk 0.127*** (0.0269) 0.0312 (0.0295)
3-4 days/wk 0.0883** (0.0377) 0.0394 (0.0425)
>=5 days/wk 0.155*** (0.0453) 0.107** (0.0477)
Smoking habit
No 0.101*** (0.0178) 0.0281 (0.0187)
Yes 0.0819** (0.0359) 0.0225 (0.0401)

Health Perception and Condition
Health impact of pollution
Not severe 0.0916*** (0.0372) 0.0043 (0.0304)
Severe 0.102*** (0.0234) 0.0403** (0.0201)
Health condition
Bad/ Normal 0.0261 (0.0335) 0.0205 (0.0332)
Good 0.0985*** (0.0197) 0.0158 (0.0209)
Very good 0.165*** (0.0406) 0.0587 (0.0475)

Economic Preference
Risk preference
Averse 0.0491 (0.0337) 0.026 (0.0350)
Neutral 0.0979*** (0.0232) -0.0017 (0.0241)
Seeking 0.143*** (0.0325) 0.024 (0.0384)
Time preference
Impatient 0.0555* (0.0315) -0.0095 (0.0314)
Patient 0.103*** (0.0280) 0.0289 (0.0295)
Very patient 0.131*** (0.0242) 0.0419 (0.0268)
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Appendix B

Supplementary Figures

Figure B-1: Survey implementation on the ground in collaborated companies.

Figure B-2: Air pollution monitoring road map.
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Figure B-3: Information intervention webpage interface.

(a) Exposure by modes (b) PM2.5 scenario picture

Figure B-4: Pollution by modes and scenario picture.
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