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Abstract

In this thesis, several strategies for word rejection in a literacy tutor (an application
to help people learn how to read) are compared. Because we have no data collected
of people speaking to such a device, data had to be adapted from an existing speech
database to simulate the environment for rejection. Also tested are various criteria
for rejection, specifically: direct word score, two normalized forms of the word score,
and scores of the individual segments of each word. Each algorithm is tested and
compared for false rejection and acceptance (of correct and incorrect tokens,
respectively), and in addition for alignment errors of correct tokens.
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Chapter 1

Introduction

1.1 Literacy Tutor

The Spoken Language Systems group at MIT’s Laboratory for Computer Science
has been developing a system that helps people learn to read — a literacy tutor. It
presents text on a screen for the user to read, and then listens to what the user says.
As the user reads the words, the computer decides if they were prounounced well
enough, highlighting the words to indicate so. If the user has trouble with a word,
the computer gives him or her guidance by pronouncing the word, either using a
text-to-speech synthesizer, or by playing pre-recorded examples. Hopefully, through
this interactive feedback users could quickly improve their reading skills.

Such a tool would have many advantages. Children could learn to read without
taking parent’s time. Illiterate adults may feel less ashamed and be more willing to
work with a computer, than with a person. Also, it is likely that in the long run
it would cost less to teach people to read with computers than with adults. It also
seems that existing speech recognition technology, which is designed to recognize one
of many word sequences that a user can say, should be readily adaptable to this task
because it is known exactly what the user should say. The challenge is thus to verify

that they said what they were supposed to, and that they said it well enough.



1.1.1 Interface Issues

A number of interface issues quickly surface when developing this tool. For example,
a child who is learning to read will often pronounce a new word slowly, syllable
by syllable. It would be excellent if the literacy tutor could then highlight each
syllable the child pronounces, and allow words to be pronounced in this way, perhaps
emphasizing the exact syllable where the user went wrong when pronouncing the word.
Anocther concern is when to help the user — does the literacy tutor automatically
detect he or she is having trouble by long pauses, repeated failed attempts at the
word, or should there be some mechanism to ask for help, like a button to click or a
keyword to say (eg, “help!”)? It also seems reasonable to allow the user to pause, and
then start again not where they left off, but a few words prior, or even back at the
start of the sentence. The literacy tutor should expect this and handle it gracefully.
Assuming the speech recognition system runs in real time, the literacy tutor should
acknowledge the correct pronunciation of a word shortly after the word is pronounced;
there should not be too much delay.

Thus, while the heart of the literacy tutor is the algorithm to accept or reject the
words, there are many other important issues relating to the interface and operating
in real time, which may impose constraints on the algorithms. This thesis focuses
only on rejection algorithms and deals with real time consiraints only when they are

relevant and have an effect on the choice of rejection algorithm.



Chapter 2

Experiment Background

2.1 SUMMIT Speech Recognition System

The SUMMIT speech recognition system [4], currently being developed in MIT’s
Spoken Language Systems group, was used as the testbed for the rejection algorithms.
Bach of the algorithms analyzed is a2 small modification of the present SUMMIT
system.

SUMMIT is a segment based speech recognition system, consisting of roughly three
phases: acoustic analysis, classification, and lexical access. During acoustic analysis,
three attributes are computed: the pitch of the speech, the output of an auditory
model [3], and energy measurements in five bands. The auditory model produces
both a mean rate response and a synchrony response, each consisting of vectors of 40
coefficients (the outputs of each of the channels), at a frame rate of 200 per second.
Next, the speech is segmented, in a hierarchical manner, into likely phonetic units.
This stage uses the auditory mean-rate response as input, and produces a dendrogram
structure representing possible phonetic time boundaries and the segments between
them, with associated probabilities [1].

For each segment a set of acoustic measurements is computed based on the pitch,
energy, and auditory outputs of the frames near and within the segment, producing a
39 dimensional vector. Classification is done using a mixture diagonal gaussian model

for each phonetic unit, yielding a vector for each segment representing the probability
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that this segment is each of the phonetic units. Finally, a viterbi search finds the best
alignment of this phonetic network with a lexical network [5].

The lexicon consists of nodes connected by arcs, where each arc represents a
phonetic unit, and contains a weight representing the likelihood that this arc is used
(unlikely pronunciations tend to a low weight during training). Each word has a set
of initial nodes and final nodes; a path through this word must start at one of the
initial nodes and end at one of the final nodes. Because words may have different
pronunciations, there is in general more than one path through each word. Word-
pair constraints dictate which word may follow another in a sentence, and during the
viterbi search, these constraints are used to connect the final nodes of each word with
the initial nodes of possible subsequent words. In addition to the constraints of the
lexical network, the viterbi search allows insertions and deletions of segments, with
associated penalties. A deletion is when a segment that was expected was not seen in
the speech, and an insertion is an unnacounted for segment of speech in the acoustic
network.

Training is done iteratively to optimize the lexical arc weights, models (from
the mixture gaussian classifier), and various penalties (for insertion and deletions of
speech segments during viterbi alignment). Deletion penalties are optimized for each

model, while insertion penalties are optimized as a function of segment length.
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2.2 Experimental Setup

2.2.1 Test Data

We know of no data that has been collected of children and adults speaking to a
literacy tutor, so data had to be adapted from a different domain. To do this, a
subset of the speech data and corresponding word transcriptions from the Airline
Travel Information System database (ATIS) is used [2]. Each of the utterances is
assumed to represent a user correctly pronouncing the text. To obtain an example of
a user incorrectly pronouncing a word (ie, what should be rejected), one of the words
in the transcription is replaced by a word chosen at random from the lexicon. Thus,
the speech no longer matches the transcription, so the word where they differ ought
to be rejected.

This data has a number of problems. First, it does not capture some of the
qualities that people learning to read would exhibit. They would sound words out
slowly, especially long words, would pause quite a bit between words, and probably
speak quite a bit slower. When they have trouble (for example, maybe a child would
pronounce ‘cat’ as ‘kate’), what they say will be far more acoustically similar to what
they should have said than the above technique is assuming. A random word from
the lexicon is chosen as the incorrect word — no effort is made to choose a word that
is similar in sound. Finally, it is assumed that the people who spoke these utterances
pronounced all the words sufficiently well, or at least close enough to be accepted by
the literacy tutor. But if they were not clear in their pronunciations, the rejection
algorithm may fail on their words, making the algorithm look worse than it actually
is.

The number of sentences used for testing is 483, with a total of 3857 words. The
distribution of word lengths for the correct and incorrect tokens is shown in Figures
2-1 and 2-2. The correct words tend to be shorter than the incorrect words because
the incorrect words are chosen at random, while the correct words occur according to
their apriori distribution.

The version of SUMMIT used for these experiments was trained on 9711 utter-
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ances, drawn from both the MADCOW database (released by NIST) and ATIS data
collected at MIT [4]. For each of the algorithms, a subset lexicon is computed for each
utterance, consisting of only the nodes, arcs, and legal word transitions courresponding
to the words in the transcription. During the viterbi search insertions and deletions
are not allowed, for two reasons. First, all speech should be accounted for. It does not
seem reasonable, when creating a literacy tutor, to allow insertions of random speech,
nor deletions of segments that are needed to complete a word. Second, leaving them
out makes some of the computation and error analysis somewhat easier. This will
affect performance, to some extent, as the lexicon was trained allowing insertions and

deletions, but all algorithms should be affected approximately to the same extent.

2.2.2 Evaluation Strategy

The overall setup is shown in Figure 2-3. For the purposes of these experiments, a
rejection algorithm is formally defined as taking as input a speech waveform and a
word transcription, and producing a variable length vector of word-transition times.
The output length is variable because the algorithm may not find a given word (ie,
that word was rejected), and the search ends there (outputting the word times up to
that word). For these evaluations, there is no attempt to recover — once an algorithm

rejects a certain word in the utterance, it does not look for further words.
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Figure 2-1: Segment lengths of correct words
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Word Length

Figure 2-2: Segment lengths of incorrect words
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“I want to fly..." — > word times | > # correct rejected
Rejection Evaluation
| . # wrong acceptad
thresholds min-overlap max-time

Figure 2-3: Stages of rejection algorithm evaluation

There is an inevitable tradeoff of how many correct tokens are rejected versus how
many incorrect tokens are accepted. Where the algorithm falls on this tradeoff is a
function of the thresholds chosen. With a low threshold, a high percentage of the
incorrect tokens will be accepted, while a high threshold will tend to reject a high
percentage of thz correct tokens. The optimal threshold needs to be chosen according
to the relative costs of each of the errors. While it is a good idea to minimize the
number of incorrect tokens accepted, it is also important to avoid frustrating the user
with too many rejections. Measuring these errors is a matter of keeping track of four

counts for each algorithm:
e num_right_rej number of correct words rejected
e num_right total correct tokens
e num_incorrect_acc number of incorrect words accepted
e num_incorrect total incorrect tokens

Thus, first the correct word sequence is processed, consisting of N words. The
output is then examined for one of three kinds of errors: 1) a word was rejected
(rejection error), 2) the start or end time for a given word was too far from the
correct times of that word (temporal error), and 3) the overlap of a word in time with
the correct word is too little (overlap error). The correct word times are determined
through a forced alignment of the speech with the known word transcription. Overlap
errors may occur with very short words whose boundary times may be within the
maximum allowed window, but overlap very little with the forced aligned word. Thus,

for each word in the sentence, if that word was found to be an error, num_right_rej
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is incremented by one, and the number of words up to and including the error is
added to num_right. These two counts are summed across all utterances.

Once an error is found in the correct word sequence, the evaluation stops, incre-
ments the two counts, and goes on to the next sentence. For these evaluations, no
attempt is made to continuc looking for subsequent words, because some of the algo-
rithms tested are not able to resume after a word is rejected. While other algorithms
are more suited to resuming in a graceful manner, the lowest common denominator
had to be chosen to maintain a consistent evaluation strategy. In the real time sys-
tem, the user would repeat the rejected word until it is accepted, then go on to the
rest of the sentence. Note that an unfortunate side effect of this choice is that the
dataset size will shrink as thresholds become more stringent for each algorithm.

The worst errors are those where the word is simply rejected — in the real time
system, these are the only errors for correct tokens. Temporal and overlap errors
are measured during evaluation because of considerations for the interface of the real
time system. The user can click on words he or she has already said, and listen to
the portion of speech that the algorithm chose as that word. If the algorithm differs
too much in time from what is correct, this will not sound right. Thus, improving
temporal and overlap errors is worthwhile as well.

The next measure computed is the number of incorrect words accepted. For every
utterance, and for every word in the utterance, a word is chosen at random from the
lexicon to replace it. The speech and the modified transcription are processed, and
the output is checked to see if the substituted word was accepted or rejected. If it was
accepted, both num_incorrect_acc and num_incorrect are incremented. If a word
before the incorrect word was not found (ie, one of the correct words is rejected),
neither of the counts are incremented. Finally, if the incorrect word itself was not
found (this is the correct behavior), only num_incorrect is incremented.

From these counts, the two error measures, false acceptance and false rejection,
can be computed: false rejection is the ratio of num_right_rej and num_right, and
false acceptance is the ratio of num_incorrect_acc and num_incorrect. These two

measures provide a consistent means for evaluating and comparing each of the al-
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gorithms. Each rejection algorithm has several parameters that control how strict
the rejection is, and, in addition, evaluation of the algorithm takes two parameters:
MAX_TME (to determine temporal errors) and MIN_OVLP (to determine overlap er-
rors). During evaluation, MAX_TME was fixed at 0.10 seconds, and MIN_OVLP at 75%.
All of the algorithms also have a lookahead threshold, which determines how far into
the future it should wait until it is sure the current hypothesis for the word ending
is correct. This was fixed at 0.20 seconds during evaluation. In Section 4.1, these
parameters are changed for each of the algorithms, only to verify that changing them
affects each algorithm roughly to the same extent.

In the algorithms that follow, one should be careful in separating three aspects.
First, there is the unit level at which the algorithm operates — in these experiments,
the word level or the model level. This determines which units to focus on, and
which units are required to be “good enough” in some sense. The criterion for “good
enough” is the next dimension of the algorithm: how is it decided whether the unit
is accepted or rejected. In most of the algorithms, this criterion will simply be that
the score is above some fixed threshold, but in some of the pruning experiments this
threshold is a function of other variables. Finally, there is the algorithm itself: given
the unit level, and given some criterion that each unit must satisfy, how are the word

alignments computed?
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Chapter 3

Algorithms

3.1 Pseudo Word Spotting (PWS)

The first approach is a pseudo-word-spotting algorithm, named so because it has the
advantage of allowing the user to insert random speech before he or she actually
pronounces the expected word (for example: ‘Um’, ‘Uh’, ‘Oh man, I really don’t
know’). Real users would most likely tend to do this, so this sort of tolerance should
be expected from a literacy tutor. The problem, however, is that this is a relaxation of
the constraints that this task imposes, namely that words follow each other, exactly,
in time. When word spotting is allowed, short words (ie, ‘it’ or ‘the’) tend to have a
high false alarm rate because they are easily located in random speech.

The algorithm is implemented as follows. For a given sentence, a subset lexicon is
computed that contains only the nodes, arcs, and legal word transitions corresponding
to words and word transitions in the current sentence. Normal recognition is done,
using the subset lexicon. Next, the word locations are computed according to the
pseudo-code in Figure 3-1. The outer loop loops through each word in the sentence,
and the next loop loops through all time boundaries. At each time boundary, the
maximum word score is found by choosing a word-final node, tracing the correspond-
ing path back to where it first entered the word (lexical node and time boundary),
and subtracting the start score from the end score. This is done for all word final

nodes for this word at each time boundary, and the maximum word score is chosen
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as the score at the boundary (bound_max_score).

From bound_max._score, the algorithm derives the end time for a given word by
searching for the boundary with the best word score above a certain threshold, starting
with the time boundary that ended the previous word (zero at the beginning). Once a
possible maximum is found (ie, one above the threshold, and one above any previous
maxima), the algorithm continues looking for a certain lookahead into the future.
If the maximum word score is not exceeded within this lookahead time, it stops
looking and reports that boundary (max_bound) as the end of the word. Note that
no consideration is given to how low the overall score for the partial path is — all
that matters is the partial score due to the portion of the path through the current
word (hence the word-spotting nature of this algorithm).

The parameters of this algorithm are the word-score-threshold, and the lookahead.
In general, the lookahead should be kept as short as possible to avoid unreasonable
delay in accepting a word, but long enough to avoid triggering on false alarms. How
long it needs to be will actually depend on the threshold: as the threshold decreases,
there will be false alarms further from the true peak, so the lookahead will have to
be longer.

Figure 3-2 shows the resulting receiver operating characteristic (ROC), computed
by sweeping the word-score threshold across a wide range of values. There are two
curves — one showing only rejection errors, and the other showing all errors (including
temporal and overlap errors as well). The x-axis is the percentage of correct words
rejected (false rejection), and the y-axis is the percentage of incorrect words accepted
(false acceptance). When the threshold is too high (towards the bottom right of
each curve), a high percentage of the correct words are rejected, while low thresholds
allow too many incorrect words to be accepted. The graph tends to curve back at low
thresholds because false peaks are being spotted far away (greater than the lookahead)
from the true peaks, thus causing more temporal errors.

It seems somewhat disturbing that there are a very large number of temporal
and overlap errors (around 25%), but one should keep in mind that the temporal

parameters are somewhat strict (demanding the word end times be within .10 seconds
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last_bound = 0
for word in sentence
bound_max_score = —o00
max_bound = —o0
for bound from last_bound to num_bounds
max.score = —o0
for node in lexicon.word.final_nodes
end_score = scores[buund][node]
start_score = trace_to_word_initial(bound, node)
if (end_score - start_score > max._score)
max._score = score

if (max_score > threshold and max_score > bourd-max.score)
max_bound = bound
bound_max_score = max_score

if (max_bound # —oo and ((times[bound] - times[max_bound]) > lookahead))
word.end_boundary = max_bound
last_bound = max_bound

break

Figure 3-1: Pseudo-code to implement PWS

of the forced alignment, and overlap at least 75%). These errors can be explained
by both the stringency of these parameters, and by the means used to derive the
“correct” times (by forced recognition alignment). Also, most of the overlap errors
are very short words, because a slight change in the boundary times of these words
introduces a very large change in the overlap. Each of the algorithms examined in
this thesis exhibit the same large number of errors, so a more detailed analysis will

be postponed until Section 4.1.
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3.2 Max-sum-diff (MSD)

The second algorithm tested is called max-sum-diff (MSD). This was an initial at-
tempt to create an algorithm that takes better advantage of the constraint that words
must follow one another in time (ie, it does not allow random speech to separate the
expected words). Allowing it to take advantage of this constraint increases the per-
formance slightly over PWS, though the increase is quite a bit less than expected.

The algorithm is very similar to PWS, except for how the word score is derived for
each time boundary (see Figure 3-3 for pseudo-code). Instead of looking at just the
current word’s score, the score of the entire path from the beginning of the sentence
to the end of the current word is considered. Each word must contribute more than a
certain threshold to the overall path score. Thus, if the best total score up to the end
of word j is X, and the threshold is T, then a valid path ending with word j +1 must
have a net score X+T or more to be accepted, and need not use the best subpath
that ended at word j. The best score for the current word at the current boundary,
bound_max_score, is then used in the same way as PWS to locate the end of the
current word: look for a peak above a threshold, and look ahead to make sure there
is no other peak soon thereafter.

The ROC for max-sum-diff is shown in Figure 3-4. Also shown, for comparison,
is the ROC for PWS. Again, there are a very large number of temporal and overlap
errors. The advantage of MSD is not as substantial as was expected, and there is
certainly some question as to whether there is any advantage at all with regard to
rejection errors. There does seem to be a slight improvement of alignment (temporal
and overlap) errors, as words are forced to be closer to the end of the previous word.

This algorithm is unreasonable in that it does not allow much tolerance for words
that cannot attach themselves exactly at the maximum ending time boundary and
lexical node for the previous word. Specifically, if the current word attaches some-
where where the score is worse than the maximum for the previous word, it must
make up that difference and also add the threshold, before it will be accepted. Thus,

PWS was too lenient in its constraints, and MSD is too strict in its constraints.
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last_bound = 0
max._sum._past = 0
for word in sentence
bound_max_score = —o0
max_bound = —o0
for bound from last_bound to num_bounds
max_score = —o0
for node in lexicon.word.final_nodes
end_score = scores[bound][node]
if (end_score > max_score)
max_score = end_score

if (max_score - max_sum_past > threshold and max_score > bound_max_score)
max_bound = bound
bound_max_score = max_score

if (max_bound # —oo and ((times[bound] - times[max_bound]) > lookahead))
word.end_boundary = max_bound
max_sum_past = bound_max_score
last_bound = max_bound

break

Figure 3-3: Pseudo-code to implement MSD
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3.3 Word Pruning (WP)

The third algorithm tested, and overall the one yielding the best performance, is word-
pruning (WP). In this algorithm, at every time boundary, those word final lexical
nodes that don’t represent a sufficient match for the word ending there, according
to some criterion, are pruned. Given any criterion for rejection at the word level,
this algorithm is optimal in the sense that it will find a path (or partial path), if one
exists, that includes only words that satisfy the criterion. The other two algorithms
do not do this properly — PWS pays no attention to the path up to the current word,
and MSD will fail to find some paths that do satisfy the criterion for each word. If
there is such a path, or a partial path up to some word, where each word satisfies the
rejection criterion, this algorithm is guaranteed to find it, and otherwise fail.

WP is a relaxation from MSD because MSD was very strict in demanding that
the next word score be above a threshold better than the previous one, regardless of
how it connected to the end of the current word. In this sense WP is better because
it looks at the actual score each word contributes to the overall score, pruning those
points where it does not pass the criterion.

It should be emphasized that the choice of this algorithm is orthogonal to the
choice of the rejection criterion. Namely, no matter how it is decided whether a given
match to a word, or even a model, is good enough, pruning can be used to then search
for a path through the acoustic and lexical network such that every element (word or
model) in the path satisfies the criterion. Thus, several experiments to test different
criteria will be described. The first will use the same criterion as M5D and PWS: a
constant threshold for the word score.

The pseudo-code for the algorithm is shown in Figure 3-5. This differs from
the previous two algorithms because it alters the viterbi search during recognition.
However, it finds the word boundaries in a similar lookahead manner. Within the
viterbi search, pruning is done at each time boundary, before updating transitions
to following words, thus preventing the next word from attaching to the end of the

current word unless it passes the criterion. Using the simple word-score threshold
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% This is called for each boundary during the viterbi search
prune_word(word, bound, scores, threshold)
for node in lexicon.word.final_nodes
end_score = scores[bound][node]
start_score = trace_to_word_initial(bound, node)
if (end_score - start_score < threshold)
scores[bound][node] = —-o0

% This is called ofter recognition to compute word locations
last_bound = 0
for word in sentence
bound.max_score = —cc
max_bound = -o00
for bound from last_bound to num_bounds
max._score = —oo
for node in lexicon.word.final_nodes
if (scores[bound][node] > max_score)
max._score = score

if (max_score > —oo and max_score > bound_max_score)
max_bound = bound
bound_max_score = max_score

if (max_bound # —oo and ((times[bound] - times[max_bound]) > lookahead))
word.end_boundary = max_bound
last_bound = max_bound

break

Figure 3-5: Pseudo-code to implement WP

criterion for rejection, this pruning procedure, for every word final node, traces back
to where this word was first entered. If the net gain in score from the initial to final
lexical node of the word is above the threshold, the score is left as is, otherwise it is
set to —o0.

After the search is done, word start and end times are extracted in a manner very
similar to the previous two algorithms: the boundary with the maximum score for
the current word is sought, within a certain lookahead. One slight difference is that
instead of choosing the word score to maximize, the partial path score, ending at

the current word, is maximized. It is not necessary to trace back through the word
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Figure 3-6: Performance of Word-pruning, MSD, and PWS

because if the partial path score ending at the current word is not —oo, the current
word’s score must be above the threshold because it was not pruned. Also, all prior
words’ scores must also be above the threshold.

The ROC for this algorithm and criterion, along with those of PWS and MSD,
are shown in Figure 3-6. Word pruning offers a substantial increase in performance

for both rejection errors and temporal and overlap errors.

3.3.1 A Closer Look

In order to choose a reasonable criterion for rejection, it was necessary to examine
the scores of correct and incorrect tokens in closer detail. Figures 3-7 and 3-8 show
the distribution of these scores, as a function of word length (in segments). In these
graphs, each of the vertical clusters represents words with the same number of seg-
ments; within each cluster, the tokens are spread out in the x direction (by + 0.2

segments) to make the distribution more visible. The word-score on these graphs is

27



the pruning level required to reject each of the tokens. Thus, the rejection problem
is a matter of separating the two sets of data.

The actual threshold to prune a given word really depends on how the previous
word was pruned because this will change where (lexical node and time boundary)
the word can start. Thus, deriving these graphs directly from the data would have
been extremely time consuming. Instead, a reasonable shortcut was chosen: what
really needs to be measured is the best score for the word in the vicinity of where
that word was pronounced in the utterance (for the correct tokens). For the incorrect
tokens, the best score for the incorrect word is computed, starting near where the
previous word ended, and ending anywhere thereafter.

Each sentence with N words contributes N tokens to each of the graphs. First,
a forced recognition path is computed to obtain the alignment of the correct words.
Then, for each word, the best word-score starting and ending within a fixed time
window of the forced alignment, is computed — this yields the points in Figure 3-7.
The incorrect word scores are then computed by finding the best score for a word,
chosen at random from the lexicon, beginning within a fixed time window of the end
of the previous word, and ending anywhere. For the graphs, the allowed time window
was 0.3 seconds.

The strategy used to derive the data stands out very clearly in these graphs: the
separation for long words is very good. If real data were used instead, the incorrect
tokens would, most likely, sound more like the correct word they were replacing, and

their scores would be much closer to the correct scores.

3.4 Alternate Rejection Criteria

It is clear from the graph that simply choosing a constant threshold for the word score
is not optimal — the scores of correct and incorrect tokens vary substantially with
the number of segments in the word. As the number of segments increase, the mean
score of correct tokens increases, but the deviation does as well. Thus, some sort of

normalization is necessary so that longer words need a higher score to pass. This
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Correct Word Score vs Length
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Figure 3-7: Unnormalized correct word scores
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problem would be far more prevalent with real data because the separation between
correct and incorrect tokens would be less.

There are a few effects that should occur due to a simple constant threshold.
First, it is clear that the performance is not as good as it could be — there are better
curves to draw (thresholds optimized as a function of word-length) that could do the
separation better. The second effect is one of word-spotting for the word following
a long word when the threshold is low. A long word will tend to have a very high
maximum score, and thus for a large number of time boundaries before and after
the maximum-scoring time boundary, the score for the word will remain above the
threshold. This will allow the next word to attach itself across a wide band of time
boundaries, essentially allowing local word-spotting. This will affect both incorrect
and correct tokens. A normalizing scheme should help both of these problems, and

hopefully improve performance.

3.4.1 Model Specific Normalizing

The reason that longer words tend to have higher scores is that the models have
average scores above zero. So, as an initial attempt to normalize word scores, the
mean score for each model was measured by collecting a histogram of the model scores
used during forced alignment. Then, during pruning, a word’s score is normalized by
subtracting off the means of all the models in the word, and then the word score is
compared to a fixed threshold.

This did have the effect of moving the means of the correct words to approximately
zero across all number of segments, while the deviation remained approximately the
same as the unnormalized cases (see Figures 3-9 and 3-10). The incorrect word scores
fall even faster, as the number of segments increases. The performance, when tested
with the real pruning evaluation, was quite a bit worse. Figure 3-11 compares the
unnormalized constant-threshold case with the model-specific normalizing. There
is also a tremendous increase in temporal and overlap errors when model-specific
normalizing is used.

There seem to be two reasons for the substantial performance loss. First, during
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training of the models, the mean score of a given model is allowed to fluctuate to
whatever maximizes performance. The means would have centered themselves at
zero if that were optimal, but the fact that they did not means that their nox-
zero means are significant, and relevant to recognition performance. Models that
are very sure of themselves, or >ry different from other models, would have high
means to assert themselves during recognition. The second reason is apparent from
inspection of the distribution of correct and incorrect word scores for the normalized
and unnormalized cases. When the scores are unnormalized, the separation provided
by a constant threshold looks far better than the normalized case because, although
the mean score for correct tokens increases with word length, so does the deviation.
A constant threshold criterion looks like it would be closer to optimal when the word

scores are unnormalized than when they are normalized.

3.4.2 Retrospective Word Pruning

One of the problems with a constant threshold is that a very long word will have scores
above the threshold across many time boundaries, thus allowing local word spotting
for the word following it. Retrospective pruning is an attempt to minimize this effect.
For a given sentence, this algorithm chooses a word specific pruning threshold such
that the threshold for each word is either a fixed amount less than the maximum for
that instance of the word, or a minimum threshold, whichever is greater. Thus, if a
given word has a very high score, the threshold for that word will also be high (equal
to the maximum word score minus the umbrella threshold), hopefully minimizing the
number of time boundaries where the word is not pruned. This algorithm thus takes
three thresholds: the cutoff threshold, an umbrella threshold, and the lookahead.
The viterbi search starts assuming the threshold for all words is the cutoff thresh-
old, performing word pruning according to this threshold. Then, as the search pro-
gresses, if there is a word whose score is greater than the cutoff plus the umbrella,
the guess of what the threshold for that particular word should be is changed to
the maximum minus the umbrella, and the search backs up as far as necessary to

fix whatever will change. Specifically, it backs up to where this word started having
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Figure 3-11: Performance of normalized and unnormalized word-pruning

non-pruned scores because some of these will now be pruned. It is often necessary
to back up several times, each time changing a guess for the threshold for a given
word to a higher value. This process is guaranteed to terminate because, upon each
backup the cutoff threshold for some word increases, and word scores are necessarily
finite, so eventually, the correct thresholds are determined, and the search stops.

The performance increase due to retro-pruning was slight. Retro-pruning reduced
errors for the incorrect tokens, but at the same time hurt false rejections because the
correct tokens also took advantage of the implicit word-spotting. When the umbrella
threshold is too small, too many correct tokens are rejected; when it is too large,
the algorithm approaches normal pruning as word-spotting becomes more prevalent.
Figure 3-12 shows the ROC for simple word pruning, and then several additional
contours where the pruning threshold remained constant, but the umbrella threshold
varied.

Figure 3-13 compares the ROC for retrospective word pruning with an umbrella

threshold of 300 with constant threshold word pruning. The two criteria perform
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Figure 3-12: Performance of retro word pruning across many umbrella thresholds

roughly the same for rejection errors, but retrospective pruning reduces temporal and
overlap errors substantially. This is expected because retrospective pruning reduces

the local word spotting that would increase alignment errors.

3.5 Model Level Pruning (MLP)

The final criterion tested was at the model level, using a fixed threshold for each
model score. Instead of demanding that each word score be good enough, each model
within the word must now have a score above the cutoff threshold. Thus, if the viterbi
search with model pruning finds a path through the acoustic network and lexicon,
then that path consists of models that were all above the threshold. This would make
sense because as a person is pronouncing a word, every sound in that word ought
to be correct. By pruning at the word level, individual sounds within the word are
allowed to have poor scores.

The graph in Figure 3-14 compares word-pruning and model-pruning, both using
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Figure 3-13: Performance of retro-word-pruning with umbrella of 300
the constant threshold criterion, counting rejection errors. Performance of model
pruning is substantially worse than word pruning, presumably because the recognizer

is not a good enough model to make such strict demands on model scores. By pruning

at the word level, this inadequacy is glossed over to some extent.
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Chapter 4

Summary of Results

It is quite clear that word-pruning, using the retrospective criterion, overall performs
better than the other algorithms. Model specific normalizing and model pruning
both performed substantially worse. Table 4.1 summarizes the performance (% False
Acceptance) of each of the algorithms at two points (counting only rejection errors):
5% False Rejection and 10% False Rejection.

At the outset, three of the thresholds were fixed for comparison of each of the
algorithms, and for deriving the ROC in the graphs: lookahead was set at 0.20 sec-
onds, MAX_TME was set at .10 seconds, and MIN_OVLP was set at 75%. To verify
that these parameters affect each of the algorithms to approximately the same ex-
tent, several graphs were constructed to show ROC'’s for other operating points. As
the lookahead changes, the primary effect is to reduce temporal and overlap errors,
especially towards lower thresholds. Figures 4-1, 4-2, and 4-3 show the performance
of pseudo-word-spotting, max-sum-diff, and word-pruning across four values of looka-

heads (keeping MAX_TME and MIN_OVLP the same). It is quite clear from these graphs

Algorithm

False Acceptance at
5% False Rejection

False Acceptance at
10% False Rejection

Pseudo Word Spotting

13.2%

7.7%

Max Sum Diff 13.5% 7.4%
Word Pruning 7.3% 4.5%
Model Pruning 16.1% 6.6%

Table 4.1: Percent false acceptance of all algorithms (only rejection errors)

37




PWS Performance Across Several Lookaheads
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Figure 4-1: Pseudo-word-spotting performance as lookahead varies

that changing lookahead tends to change the performance of each in the same way
(ie, longer lookahead shifts the curves left).

Variations in the temporal threshold, MAX_TME, were tested. A curious effect
appeared as it varied from .10 to .30 seconds: while the number of temporal errors
did fall substantially as MAX_TME rose, it was almost entirely offset by an increase
in overlap errors. It seems that those tokens that were causing temporal errors were
being swapped over almost entirely to overlap errors.

Finally, three different thresholds for MIN_OVLP were tested: 75%, 50%, and 0%
(just ignore overlap errors entirely). These three curves, for each of the three algo-
rithms, are shown in Figures 4-4, 4-5, 4-6; they were computed using a lookahead of
0.20 seconds, and MAX_TME of 0.20 seconds. It is clear from these graphs that at the
chosen operating point for the two fixed thresholds, a large portion of the errors are

overlap errors.
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MSD Performance Across Several Lockaheads
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Figure 4-2: Max-sum-diff performance as lookahead varies
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Figure 4-3: Word-pruning performance as lookahead varies
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PWS Performance As Min_Ovip Varies
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Figure 4-4: Pseudo-word-spotting performance as MIN_OVLP varies
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Figure 4-5: Max-sum-diff perforinance as MIN_OVLP varies
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WP Performance As Min_Ovlp Varies
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Figure 4-6: Word-pruning performance as MIN_OVLP varies
4.1 Temporal and Overlap Errors

Each of the algorithms seems to exhibit a very large number of temporal and overlap
errors (somewhere between 20% and 30%), along with small variations between each
of the algorithms. To understand just why this is happening, the temporal and overlap
errors under constant threshold word-pruning, using a lookahead of 0.20 seconds and
MAX_TME of .10 seconds, were examined in some detail using a tool that showed more
closely what was occurring.

It quickly became clear that very short words account for almost all overlap errors
(as expected), and that most témpora,l errors tend to be quite close (just not below
0.10 seconds). Often the difference of one time boundary accounted for more than
that threshold. From the 10% false rejection point, three graphs were constructed
showing the magnitude of the errors, and the lengths (in seconds) of the words that
caused overlap errors. Figure 4-7 shows the percent overlap of the overlap errors:
those that overlapped with the correct word less than 75%. A large portion of these
errors fall above 50%. Figure 4-8 shows the word lengths of those words that caused
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Overlap % for Errors in Word-Pruning
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Figure 4-7: Percent overlap of overlap errors

overlap errors — they are very short. Finally, Figure 4-9 shows the distance, in time,
of the aligned word from the correct word, when greater than the threshold of .10
seconds. Most of these temporal errors fall below .20 seconds.

Thus, it seems that most of these errors can be attributed to the rather demanding
thresholds we set for temporal and overlap errors. The graphs of the previous section

show the substantial performance increase when they are relaxed somewhat.
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Word Length for Overlap Errors in Word-Pruning
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Chapter 5

Conclusion

With existing speech recognition technology, a reasonable literacy tutor could be
implemented today, using some modification of word-pruning with some formn of nor-
malization. The biggest impediment is the fact that no real data has been collected
— before such a system can be implemented, real data must be collected to model the
behavior of users. Once real data is collected, the run time issues can be addressed,
and normalization schemes and thresholds can be established for the rejection algo-
rithm.

It may also be necessary to develop new algorithms to, in general, train recognizers
not for optimization of performance, but of rejection. When some of the algorithms
tested were translated tc a real time system, a number of difficulties arose. One of
the most troubling was that while word scores tend to vary as a function of the length
of the word, there is also substantial variation from word to word of the same length.
Certain words would always receive low scores, presumably because their models had
low means. Such variance may be optimal for performance, but make consistent
rejection much more difficult. To deal with this directly, it may be necessary to
implement word-specific rejection, which would require a substantially larger amount
of data for training.

Much work must be done to deal with some of the interface and real time issues
that were not considered in this thesis. Because the literacy tutor is a feedback system,

the user will stop and repronounce a word if that word was rejected. The user may
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also back up a few words, or start the sentence again. Robust mechanisms need to be
developed to detect when the user is waiting for feedback, and deal with the resuiting
restarts accordingly. It is very important that the literacy tutor, even a prototype,
operate in real time to provide this feedback quickly, and to avoid frustrating the user.
It could certainly be worthwhile to cut a few corners during recognition, affecting
accuracy somewhat, in order to operate closer to real time. The whole issue of when

and how to help the user in pronouncing a word must also be examined closely.
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