MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Watermarking Cryptographic Capabilities

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Cohen, Aloni et al., "Watermarking Cryptographic Capabilities.” SIAM Journal on
Computing 47, 6 ([December 2018): 2157-2202 doi. 10.1137/18M1164834 ©2018 Authors

As Published: https://dx.doi.org/10.1137/18M 1164834
Publisher: Society for Industrial & Applied Mathematics (SIAM]
Persistent URL: https://hdl.handle.net/1721.1/127690

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher’s policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/127690

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. COMPUT. (© 2018 Society for Industrial and Applied Mathematics
Vol. 47, No. 6, pp. 2157-2202

WATERMARKING CRYPTOGRAPHIC CAPABILITIES*

ALONI COHENT, JUSTIN HOLMGRENT, RYO NISHIMAKI#,
VINOD VAIKUNTANATHANS$, AND DANIEL WICHSY

Abstract. A watermarking scheme for programs embeds some information called a mark into
a program while preserving its functionality. No adversary can remove the mark without damaging
the functionality of the program. In this work, we study the problem of watermarking various
cryptographic programs such as pseudorandom function (PRF) evaluation, decryption, and signing.
For example, given a PRF F', we create a marked program C that evaluates F (-). An adversary that
gets C cannot come up with any program C* in which the mark is removed but which still evaluates
the PRF correctly on even a small fraction of the inputs. The work of Barak et al. [CRYPTO 2001,
Springer, Berlin, 2001, pp. 1-18; J. ACM, 59 (2012), 6] shows that, assuming indistinguishability
obfuscation (i0), such watermarking is impossible if the marked program C evaluates the original
program with perfect correctness. In this work we show that, assuming iO, such watermarking is
possible if the marked program C' is allowed to err with even a negligible probability, which would
be undetectable to the user. We also significantly extend the impossibility results to our relaxed
setting. Our watermarking schemes are public key, meaning that we use a secret marking key to
embed marks in programs, and a public detection key that allows anyone to detect marks in programs.
Our schemes are secure against chosen program attacks where the adversary is given oracle access
to the marking functionality. We emphasize that our security notion of watermark nonremovability
considers arbitrary adversarial strategies to modify the marked program, in contrast to the prior
works [R. Nishimaki in EUROCRYPT 2013, Springer, Berlin, pp. 111-125].

Key words. watermarking, pseudorandom functions, indistinguishability obfuscation
AMS subject classification. 94A60

DOI. 10.1137/18M1164834

1. Introduction. Digital watermarking enables us to embed some special in-
formation called a mark into digital objects such as images, movies, music files, or
programs. We often call such objects marked. There are two basic requirements for
watermarking. The first is that a marked object should not be significantly different

*Received by the editors January 11, 2018; accepted for publication (in revised form) Septem-

ber 11, 2018; published electronically December 4, 2018. A preliminary version of this work appeared
in STOC 2016 [13]. This is the revised full version of it. This work is a merged version of Nishi-
maki and Wichs, IACR Cryptology ePrint Archive 2015/344, 2015 [26] and Cohen, Holmgren, and
Vaikuntanathan, IACR Cryptology ePrint Archive, 2015/373, 2015 [14] with additional results.

http://www.siam.org/journals/sicomp/47-6/M116483.html

Funding: This work was sponsored in part by the Defense Advanced Research Projects Agency
(DARPA) and the U.S. Army Research Office under contract number W911NF-15-C-0226. This work
was done in part while the first two authors were visiting the Weizmann Institute of Science, and in
part while the authors were visiting the Simons Institute for the Theory of Computing, supported by
the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF
grant CNS-1523467. The first author was supported in part by the NSF Graduate Student Fellow-
ship. The second author was supported in part by NSF Frontier CNS-1413920. The fourth author
was supported in part by a DARPA Safeware grant, NSF grants CNS-1350619 and CNS-1414119,
Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship, the NEC Corporation, and a
Steven and Renee Finn Career Development Chair from MIT. The fifth author was supported in
part by NSF grants CNS-1347350, CNS-1314722, CNS-1413964.

TMIT, Cambridge, MA 02139 (aloni@mit.edu, holmgren@mit.edu).

INTT Secure Platform Laboratories, 3-9-11, Midori-cho Musashino-shi, Tokyo 180-8585, Japan
(nishimaki.ryo@lab.ntt.co.jp). This work was done in part while the author was visiting Northeastern
University.

SMIT CSAIL, Cambridge, MA 02139 (vinodv@csail.mit.edu).

TNortheastern University, Boston, MA 02115 (wichs@ccs.neu.edu).

2157

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

http://www.siam.org/journals/sicomp/47-6/M116483.html
mailto:aloni@mit.edu
mailto:holmgren@mit.edu
mailto:nishimaki.ryo@lab.ntt.co.jp
mailto:vinodv@csail.mit.edu
mailto:wichs@ccs.neu.edu

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2158 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

from the original object. The second is that malicious entities should not be able to
remove embedded marks without somehow “destroying” the object (e.g., modify an
image beyond recognition).

There are many works on watermarking perceptual objects such as images, movies,
music files, etc. Most of them do not give a rigorous theoretical treatment and their
constructions are heuristic and ad hoc. (We briefly survey some of these works in
section 2.7). Barak et al. [5, 6], in their seminal work that laid the mathematical foun-
dations of program obfuscation, also proposed definitions for program watermarking.
Unfortunately, their results were all negative, showing that certain definitions of water-
marking are impossible to achieve. The work of Hopper, Molnar, and Wagner [18] pro-
poses general and rigorous definitions for watermarking schemes, and explores in depth
connections between the definitions, but does not provide any actual constructions.

Watermarking programs. Our first contribution is to define the notion of public-
key watermarking, building on the work of Hopper, Molnar, and Wagner [18] who
introduced a secret-key definition. We speak of a watermarking scheme for a circuit
class C = {Cxa}ren where each Cy is a set of circuits. A watermarking scheme for C
consists of procedures Mark(mk,) and Extract(zk,-) with a secret marking key mk
and a public extraction key zk. Given a circuit C, the marking procedure C «
Mark(mk, C) creates a marked circuit C' that evaluates C. Although we will see that
we cannot achieve perfect correctness, in which C(z) = C(x) for all inputs z, we will
be able to achieve statistical correctness where we allow a negligible error probability.
The extraction procedure Extract(zk, C*) outputs either that the circuit is marked
or unmarked. Note that a watermarking scheme should satisfy a property called
meaningfulness. This property means that for all circuits, we cannot extract a valid
mark from them under a randomly generated extraction key except with negligible
probability. This property is for excluding trivial watermarking schemes.

For security, we consider a game where a challenger chooses a random circuit
C «+ C, and gives the adversary the marked circuit C' <— Mark(mk, C). Intuitively,
we require that the adversary cannot come up with any circuit that correctly evaluates
C but does not have the mark embedded in it. This property is called unremovability.
Following [18] and adapting it to the public-key setting, we require that unremovability
holds against chosen circuit attackers, namely, adversaries that have oracle access to
Mark(mk, -).

More precisely, the adversary produces a circuit C* and we insist that either

(a) Extract correctly detects that the circuit is marked by outputting marked <«

Extract(zk, C*), or

(b) the circuit C* does not even approzimately compute C, meaning that C*(x) =

C(z) on at most an ¢ fraction of the inputs z.
The parameter ¢ is called the “approximation factor” and we can set it to some small
constant or even to any 1/poly fraction. (The smaller the e, the better the security
guarantee). During the attack, the adversary is also given the public extraction key zk
and access to the marking oracle Mark(mk, -) that he can query on arbitrary circuits
of his choice (even ones that are not in Cy). At this point, it is prudent to note that
the very first idea that comes to mind, namely, signing the circuit C' using mk, is not
a particularly good watermarking strategy as the adversary can simply strip off the
signature leaving a perfectly functional circuit.

We call the above type of watermarking “messageless” to denote that it only
distinguishes between marked and unmarked circuits. We also consider a stronger
version called “message-embedding” watermarking where the marking procedure can

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2159

be used to embed an arbitrary message into the circuit and the extraction procedure
should recover the message. Similarly to the above, the adversary’s goal is to force the
extraction procedure to recover a different message. (We refer the reader to section 4
for formal definitions.)

Why cryptographic programs? In this work, we focus on watermarking circuits
that are cryptographic in nature, such as circuits evaluating a pseudorandom function
(PRF) or implementing a signing or decryption procedure. One could reasonably ask,
why cryptographic programs?

First, we observe that in the security definition for watermarking, the challenge
circuit C has to be unknown to the adversary. For, if not, the adversary has a trivial
watermark removing strategy: given the marked circuit C, simply output C as the
mark-removed circuit. Since C' is an arbitrary program, it is very likely to be un-
marked; on the other hand, C is (approximately) equivalent to C in functionality.!
Thus, it is natural for the challenger to pick C' from a distribution with high min-
entropy (in this work, for simplicity, we consider picking circuits uniformly at random
from Cy).

Second, we observe that circuit families that are exactly learnable are not wa-
termarkable. This is because the adversary can simply invoke C' as a black box and
recover a description of the original circuit C' (or an equivalent version thereof) which
is again very likely to be unmarked.

This naturally leads us to consider families of circuits where random circuits from
the family are not exactly learnable, canonical examples of which are cryptographic
programs: PRFs; signing algorithms, and decryption algorithms. Jumping ahead, we
remark that unlearnability is a necessary but not sufficient condition for being able to
watermark a family of circuit. Indeed, we show families of PRF's that, despite being
strongly unlearnable, cannot be watermarked even with approximate correctness.

That said, we regard the question of coming up with meaningful definitions and
constructions of watermarking for general circuits (and even families of evasive cir-
cuits) as a challenging open question arising from this work.

Watermarking cryptographic programs: An application. To further highlight the
usefulness of watermarking cryptographic functions, we describe an application of
watermarking PRFs. However, we emphasize that the concept should have broader
applicability beyond this example.

Consider an automobile manufacturer that wants to put electronic locks on its
cars; the car contains a PRF F' and can only be opened by running an identification
protocol where it chooses a random input = and the user must respond with F(x).
When a car is sold to a new owner, the owner is given a software key (e.g., a smart-
phone application) consisting of marked program C that evaluates the PRF F () and
is used to open the car. The mark can embed some identifying information such as the
owner’s name and address. Even if the software key is stolen, the thief cannot create a
new piece of software that would still open the car while removing information about
the original owner.

Impossibility of watermarking? The work of Barak et al. [5, 6] initiated the first
theoretical study of program watermarking. They propose a game-based definition
which appears significantly weaker than the definitions we consider in this work (it is in
the symmetric-key setting with no marking/detection oracles given to the adversary),

LOne can attempt to get around this issue by requiring that the program output by the watermark
remover should be distinct from C' and C. However, it is also easy to defeat these definitions by
asking the watermarked remover to output an indistinguishability obfuscation of C.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2160 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

but requires perfect correctness. Unfortunately, they show that this definition is
unachievable assuming the existence of indistinguishability obfuscation.

The main intuition behind the negative result is to consider an attacker that
takes a marked program and applies indistinguishability obfuscation (i0) to it. If the
marked program implements the original program with perfect correctness then the
result of applying iO to it should be indistinguishable from that of applying iO to the
original program. Since the latter is unlikely to be marked, the same should apply to
the former. Therefore, this presents a valid attack against watermarking in general.

Barak et al. note that the above attack crucially relies on the perfect (rather than
merely statistical) correctness of the marked program, meaning that it correctly evalu-
ates the original program on every input. They mention that otherwise “it seems that
obfuscators would be useful in constructing watermarking schemes, because a water-
mark could be embedded by changing the value of the function at a random input,
after which an obfuscator is used to hide this change.” This idea was not explored
further in [5, 6] and it is far from clear if a restricted notion of obfuscation such as iO
(or even extractability obfuscation or virtual gray box) would be sufficient and what
type of watermarking security can be achieved with this approach. Nevertheless, this
idea serves as the starting point of our work.

1.1. Our results. We start by giving new formal definitions of program water-
marking, along the lines of what we described earlier. To avoid the [5, 6] impossibility
result described above, our definition allows for statistical rather than perfect correct-
ness. That is, for every circuit C' € Cy and every input x,

Pr[C(z) # C(z) | C + Mark(mk,C)] < negl()\),

where the probability is over the choice of the keys and the coin tosses of the Mark
algorithm. We call this strong approrimate correctness.

This seemingly small relaxation allows us to circumvent the impossibility results
and show algorithms to watermark large classes of PRF's, signature algorithms, and
decryption algorithms. Our main technical contribution is a method of watermarking
any family of puncturable PRFs (pPRFs).?2 Our scheme has a public-key extrac-
tion procedure and achieves security in the presence of a marking oracle. We get
a messageless scheme that allows for any € = 1/poly(\) approximation factor and a
message-embedding scheme that allows for approximation factors e = 1/2+41/poly(X).
In the case of message-embedding constructions, we show that there is an inherent
lower bound of € = 1/2. Both schemes rely on (polynomially secure) iO.

THEOREM 1.1 (informal). Assuming iO and injective one-way functions, there
is a watermarking scheme that is secure against chosen circuit attacks for any family
of pPRF's.

Theorem 1.1 shows that relaxing the correctness requirement to strong approx-
imate correctness allows us to watermark any family of pPRFs. A natural question
is whether one can watermark arbitrary PRFs. We show impossibility results match-
ing our constructions by demonstrating families of PRFs, signature, and decryption
algorithms that cannot be watermarked. We call such schemes waterproof.

2pPRFs [10, 11, 21] are PRFs where the owner of the key K can produce a punctured key Kz that

allows computation of the PRF on all inputs y # z. Moreover, given the punctured key, PRF i (z) is
pseudorandom. pPRFs can be constructed from one-way functions [10, 11, 21] or, more efficiently,
from several number-theoretic assumptions. [3, 8, 12].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2161

We start by observing that learnable functions are waterproof simply because
an adversary can learn a canonical representation of the function given any program
(even any oracle) that computes the function. Indeed, it is sufficient for the function
family to be non-black-box learnable. That is, the adversary should be able to use any
program that computes the function to extract a canonical representation. Such func-
tion families were defined in the work of Barak et al. [5] and are called unobfuscatable
functions. Indeed, [5, 6] show PRFs, signature, and decryption algorithms that are
strongly unobfuscatable—that is, an adversary can extract the canonical representa-
tion even given a program that only computes a function with strong approximate
correctness. This immediately gives us waterproof PRFs, signature, and decryption
algorithms. (See section 8 for more details.)

THEOREM 1.2 (informal). Assuming the existence of one-way functions, there
are waterproof PRFs and signature and decryption algorithms, even if (a) we only
require symmetric-key watermarking, and (b) we only require unremovability against
standalone adversaries that do not have access to Mark or Extract oracles.

We continue this line of thought and ask if we can further weaken the correctness
requirement and overcome this impossibility result. Namely, we consider a weak
approximate correctness requirement which states that the marked program C' agrees
with the original program C' on most inputs. (In contrast to strong approximate
correctness, here C can always make a mistake on some fixed set of inputs). We show
that even this relaxation does not help. Our proof of this result involves constructing
new types of robust unobfuscatable PRFs. (See section 8.3 for more details.)

THEOREM 1.3 (informal). Assuming the existence of one-way functions, there
are waterproof PRE's even under weak approzimate correctness (and even with relaz-
ations (a) and (b) as in Theorem 1.2).

2. Overview of our techniques.

2.1. Simplification: Token-based watermarking. Although our full water-
marking scheme relies on iO, our main technical insights are largely unrelated to
obfuscation. In order to elucidate our techniques clearly without getting entangled
in details of 1O, for the purposes of this introduction we consider a simplified model
of watermarking that we call token-based watermarking. We treat watermarked pro-
grams C «+ Mark(mk,...) as tamperproof hardware tokens which the adversary can
only access as a black box.? The adversary can arbitrarily compose hardware tokens

C1,...,Cq4 and create a new token C* = C* [61, ..., Cy] that has oracle access to the
tokens C; embedded inside of it. More formally, we can think of C* as an oracle
circuit with oracle gates to Cy, ..., Cy. The extraction procedure Extract(zk, C*) will

also treat any such token C* as a black box. The goal of the adversary is to create
a token C* which functionally approximates the challenge watermarked program C
but on which the extraction procedure fails to recover the correct embedded message.
Most of the interesting aspects of constructing watermarking schemes already come
up in the token-based setting.* However, the constructions in the token-based setting

3 Alternately, one can think of this setting as assuming that C is obfuscated with an “ideal
obfuscation” scheme. However, since software-only ideal obfuscation schemes don’t exist, it’s more
accurate to think of C' as a physical hardware token.

4For example, it’s immediately clear that ezact watermarking, where the marked program C is
functionally equivalent to the original program C, is impossible in this setting since in that case the
extraction procedure cannot distinguish between black-box access to the original unmarked program
C and the marked program C.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2162 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

become simpler and do not rely on obfuscation. Therefore, we view it as a useful
stepping stone to building intuition for our full results where the adversary gets the
complete code of the watermarked programs.

2.2. A high level approach. At ahigh level, to watermark a PRF F': {0,1}" —
{0,1}™, we create a token C that evaluates F correctly on almost all inputs x, except
for some special set of “marked points” X C {0,1}" which have negligible density
in {0,1}™. On the marked points, the watermarked program outputs specially con-
structed incorrect values that allow the extraction procedure to recover the embedded
message. We will ensure that marked points are indistignuishable to the adversary
from random inputs. Therefore, the adversary cannot create a new token C* that
agrees with C on a large fraction of random inputs (i.e., approximates F') but disagrees

with C on sufficiently many marked points so as to cause the extraction procedure to
fail.

2.3. A simple scheme with weak security. We start by considering a weak
notion of token-based watermarking security, where both the marking key mk and
the extraction key xk are secret and the adversary does not have access to either the
marking oracle Mark(mk, -) or the extraction oracle Extract(zk,-). We also consider a
messageless scheme where programs can only be marked or unmarked. In particular,
in the security game the adversary gets a single marked token C' «— Mark(mk, F') as
a challenge, where F' : {0,1}" — {0,1}" is chosen at random from a PRF family
F + F (and n, m are superlogarithmic). The adversary’s goal is to come up with some
new token C* = C*[C] that approximately evaluates F' but on which the extraction
procedure fails to detect that the program is marked: Extract(zk,C*) = unmarked.

This can be easily achieved as follows. Choose a polynomial set of ¢ marked
points X = {z1,...,z¢} C {0,1}" uniformly at random with corresponding random
outputs yi,...,y¢ < {0,1}™. Set mk = zk = (z1,...,2¢,y1,...y¢). To mark a
PRF F, the marking procedure C « Mark(mk, F') outputs a token C' that contains
Z1y-.., T, Y1, - ., Ye hard-coded and, on input z, if = x; for some i € [£], it outputs
y; else it outputs F'(z). The extraction procedure Extract(zk, C*) tests if on at least
one of the ¢ marked points x; € X the program evaluates to C*(z;) = y;. If so, it
outputs that the program is marked, and otherwise outputs unmarked.

To prove that the above scheme is secure, we notice that an adversary that gets
black-box access to a token C' +— Mark(mk, F) for a random unknown F <+ F cannot
distinguish between the marked points X = {z1, ..., 2.} and ¢ uniformly random and
independent inputs without breaking PRF security. This implies that the adversary
cannot come up with a new token C* = C*[C] such that C*(z) = C(z) is “correct”
on a large fraction of inputs z € {0,1}", but C*(z;) # C(z;) = y; for all marked
points z; € X, as this would imply distinguishing between random points and marked
points. More precisely, by setting ¢ = Q(\/e), where A is the security parameter,
we ensure that if the adversary creates any token C* = C* [5’] that agrees with the
marked token C' on even an e-fraction of inputs z € {0,1}", then C*(x;) = y; for
at least one marked point z; € X with overwhelming probability 1 — (1 — ¢)¢ and
therefore Extract(zk, C*) = marked as desired.

2.4. Challenges in allowing mark/extract oracles. Unfortunately, the above
scheme becomes completely insecure if the adversary has access to either a marking
oracle Mark(mk,-) or the extraction oracle Extract(zk,-), let alone if the extraction
key zk is made public. Let us describe the attacks.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2163

Attack using the extraction oracle. If the adversary gets the challenge marked
program C' < Mark(mk, F') as a token, he can create new tokens C’ = C’[C] such
that C’(z) = C(z) only for z satisfying P(z) = 1 where P is some predicate. By
querying the extraction oracle Extract(zk, C’) to see if such tokens are deemed marked
or unmarked, the adversary will learn whether there exists some marked point z; with
P(z;) = 1. By choosing such predicates carefully, these queries can completely reveal
the marked points.®

Attack using the marking oracle. Assume the adversary makes just one call to
the marking oracle with an arbitrary known PRF function F’ € F and gets back a
token C’ + Mark(mk, F'). In addition, the adversary gets a challenge token C' «+
Mark(mk, F') corresponding to a random unknown PRF F < F. The adversary can
easily remove the mark by creating a new token C*[é’ , 5] that gets oracle access to
C’" and C and does the following: on input , if C’(x) = F’(z) then output C(x)
else output some incorrect value (e.g., an independent pseudorandom output). The
circuit C* only differs from C on the marked points x; € X and therefore closely
approximates C on all but a negligible fraction of inputs. However, the extraction
procedure will fail to detect C* as marked.

2.5. Toward a fully secure token-based scheme. We now outline the main
ideas for how to thwart the above attacks and get a token-based watermarking scheme
with a public extraction key zk and with security in the presence of a marking oracle
Mark(mk, -).

Overview. Our first idea is to make the set of marked points X C {0, 1}" super-
polynomial, yet still of negligible density inside of {0, 1}"™. This will allow us to thwart
the attack using an extraction oracle and even make the extraction key xk public. In
particular, we ensure that even given the extraction key zk, which can be used to
sample random marked points = < X, the adversary still cannot distinguish such
points from uniformly random inputs. Thwarting the marking oracle attack is more
difficult. We need to ensure that the set of marked points X'r is different for each
PRF F that we will mark so that, even if the adversary can test if a point belongs to
Xp, for various PRFs F; that were queried to the marking oracle, the marked points
Xr for the challenge (unknown) PRF F will remain indistinguishable from uniform.
However, this creates a difficulty since the extraction procedure Extract(zk, 5) must
test the marked program C on the correct set of marked points Xr without knowing
the function F' from which C' was created. We solve this by ensuring that one can
find a marked point for the function I by querying F'. In particular, the extraction
procedure first queries C'(z) on some special (pseudorandom) “find point” z and then,
assuming C'(z) = F(z), uses the output C(z) to sample a marked point 2 < Xp.

5For example, a concrete instantiation of the above attack uses predicates of the form Py, (z) = 1
iff z[1,...,|w|] = w for some w € {0,1}* (i.e., the first |w| bits of x match w). By starting with w
being the empty string, the adversary can iteratively add a bit to learn if there exists some marked
point x; with P, |s(2;) = 1 for b € {0,1}. Whenever the above occurs for exactly one choice of
b € {0,1}, the adversary extends w := w||b and continues to the next iteration. If this happens
for both choices of b € {0,1} then the adversary branches the above process and continues down
both paths for w := w||0 and w := w||1. Since there are ¢ marked points, this process will only
branch ¢ times and the adversary will eventually recover all of the points X = {z1,...,z,}. Once
the adversary learns X, he can create a circuit C*[C] such that C*(z) = C(z) for any = ¢ X and
otherwise C*(z) outputs some incorrect value (e.g., an independent pseudorandom output). The
circuit C* closely approximates c (on all but a negligible fraction of inputs) yet the extraction
procedure fails to detect C* as marked.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2164 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

A concrete scheme. Let F be a PRF family consisting of functions F' : {0,1}" —
{0,1}*, where) is the security parameter and n is sufficiently large. Let (Gen, Enc, Dec)
be a chosen ciphertext attack (CCA) secure public-key encryption scheme with pseu-
dorandom cipherterts having message space {0,1}** and ciphertext space {0,1}".
Let G : {0,1}* — {0,1}" be a pseudorandom generator (PRG).

Keys: We sample a key pair for the encryption scheme (pk, sk) < Gen(1?) and
define the marking/extraction key mk, zk to be the secret/public key respec-
tively: mk = sk, 2k = pk.

Marking: For a PRF I € F, we define the set of marked points as

Xp = {z €{0,1}" : Decy(z) = (a|bllc) € {0,1}**, F(G(a)) = b}.

To mark a PRF F, the procedure C + Mark(mk, F') creates a token C defined

as follows:

Hard-Coded Constants: F, sk.

Input: z € {0,1}"

1. Try to decrypt al||b|c + Decg(z) with a,b,c € {0,1}*.
2. If decryption succeeds and F'(G(a)) =boutput ¢. // x € Xpisa
marked point
3. Otherwise output F(x).
Eztraction: The extraction procedure Extract(zk, C*) repeats the following ¢ times:

e Choose random a,c < {0,1}* and let 2 = G(a) and b = C*(2). /] z
is a find point.

e Choose = < Encyy(al/bl|c) and if C*(x) = c then output marked. // if
b= F(z) then z € Xp.

If all ¢ iterations fail, output unmarked. B
Intuitively, the construction relies on the fact that the marked program C' can recog-
nize marked points by using the decryption key. On the other hand the extraction
procedure can find the marked points for a function F' given a circuit C* that approx-
imates F' by querying C*(z), where z = G(a) is a find point. If the circuit answers
correctly on z so that F'(z) = C*(z) = b then the extraction procedure will be able to
correctly sample a marked point & < Enc,(al|b]|c).

Security analysis overview. For the security analysis, consider an adversary that
gets an extraction key wk = pk and makes g queries to the marking oracle with
arbitrary PRF functions F; € F and gets back marked tokens C; < Mark(mk, F;).
The adversary then gets a challenge marked token C' < Mark(mk, F) for a random
unknown PRF F' < F. The adversary can only query the tokens as a black box.

First, we claim that even given the above view, the adversary cannot distinguish
between getting random find/mark points z,z and completely random values 2/, z':

(view, z,) ~ (view, z’,z") :a,c«+ {0,1}",
z=G(a),b= F(z),x + Encyi(alb||c),z’, 2" + {0,1}".

To show this, we can first rely on CCA security to switch z to a uniformly random 2.
This is because black-box access to the marked tokens C; can be simulated by a CCA
oracle that never decrypts z (it’s unlikely that F'(z) = F;(z) for some ¢ and, therefore,

SFor simplicity, we assume ciphertexts are pseudorandom in {0,1}™. For our full construction we
will construct such schemes with additional puncturability properties using PRFs and iO. However,
we can generalize this to other domains beside {0, 1}" and, in the token-based setting, we could then
rely on standard constructions of CCA secure encryption such as, e.g., Cramer and Shoup [15].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2165

z is not a marked point for the queried functions F; with overwhelming probability)
while the challenge program C outputs C(z) = ¢ but this is indistinguishable from
C(z') = F(a') since both outcomes look random. We then rely on PRG security to
switch z to uniform.

Second, we claim that the above “indistinguishability” property immediately im-
plies “unremovability”. In particular, if the adversary manages to produce a token
C* that e-approximates the challenge program C' then, for a random 2/, 2’ + {0,1}",
the probability that C*(z') = C(z') and C*(z') = C(a’) is at least £2. Therefore, the
same must hold (up to a negligible difference) when z,z are a random find/marked
point. This means that each iteration of the extraction procedure outputs marked
with probability at least 2 and therefore the probability that none of the iterations
outputs marked is at most (1 — £2)* which is negligible as long as £ = Q(\/g?).

This analysis only provides lunchtime security where the adversary can query the
marking oracle only prior to seeing the challenge program C. This is because we
relied on the fact that, with overwhelming probability, none of the queried functions
F; will satisty F;(z) = F(z), where F' is the challenge PRF. This may not hold in a
stronger security model where the adversary can adaptively query the marking oracle
with function F; after seeing the watermarked version C' of the challenge PRF F.
However, we can salvage the same analysis and make it hold in the stronger model
if we assume the PRF family satisfies an additional injective property, meaning that
when F' # F' then F(z) # F'(z) for all inputs z. We can construct such PRFs under
natural assumptions such as decision decisional Diffie-Hellman (DDH) or learning
with errors (LWE).

Embedding a message. We can extend the above construction to embed a message
in the marked program. We do so by ensuring that the outputs of the marked circuit
on the marked points x encode information about the message msg, which can then
be recovered by the extraction procedure. In particular, instead of simply having the
marked circuit output the value ¢ encrypted in the marked point x, we make it output
c® msg, where msg is message we wish to embed. The extraction procedure can work
as above but in each iteration ¢ =1, ..., ¢, it recovers a candidate message msg,. We
simply test if there is a message which is recovered in a majority of the iterations.
If so we output it, and otherwise we output unmarked. A naive implementation of
this approach would only work for an approximation factor £ > 1/4/2 since only in
that case could we expect that C* answers correctly on both the find point and the
marked point simultaneously with probability > 1/2 so as to get a correct majority.
We show how to tweak the above approach to make it work for optimal approximation
factor € > 1/2 by testing C* on many marked points for each find point and taking a
majority-of-majorities.

On approzimation factors. One might claim that it is limiting to consider adver-
saries that output a circuit satisfying 1/poly()) for messageless watermarking schemes
(resp., 1/2 for message-embedding schemes). As we see in section 7.2, approxima-
tion factor 1/2 for message-embedding schemes is optimal. Approximation factor
1/poly(A) for the messageless scheme is essential in our proof as we saw in the tech-
nical overview in this section. However, we do not know such a lower bound for mes-
sageless schemes. There might be a possibility to achieve a messageless watermarking
scheme that satisfies negl(\) approximation factor. Therefore, whether approximation
factor negl(\) is possible or not is an interesting research problem.

2.6. Using i0. Last, we briefly mention our techniques for moving beyond
token-based watermarking. On a high level, we can simply obfuscate the water-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2166 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

marked programs C , instead of thinking of them as hardware tokens. However, the
fact that we only have iO rather than ideal obfuscation makes this step nontrivial.
Indeed, the token-based model can give false intuition since it allows us to watermark
any PRF family but we show that in the standard model there are PRF families that
cannot be watermarked. Nevertheless, it turns out that we can adapt the techniques
from the token-based model to also work in the standard model using iO. The main
differences are that (1) we need the PRF family F' that we are watermarking to be
a pPRF family; (2) instead of a standard CCA secure encryption, we need a special
type of puncturable encryption scheme where we can create a punctured secret key
which doesn’t decrypt a particular ciphertext. The latter primitive may be of inde-
pendent interest and we show how to construct it using i0. We use a careful sequence
on hybrids to show that the above changes are sufficient to get a provably secure
watermarking scheme in the standard model.

2.7. Related work. There has been a large body of work on watermarking in
the applied research community. Notable contributions of this line of research include
the discovery of protocol attacks such as the copy attack by Kutter, Voloshynovskiy,
and Herrigel [23] and the ambiguity attack by Adelsback, Katzenbeisser, and Veith [1].
However, these works do not formally define security guarantees, and have resulted
in a cat-and-mouse game of designing watermarking schemes that are broken fairly
immediately.

We mention that there are several other works [24, 25, 32] that propose concrete
schemes for watermarking cryptographic functions, under several different definitions
and assumptions. For example, the work of Nishimaki [25] gives formal definitions
and provably secure constructions for watermarking cryptographic functions (such as
trapdoor functions). The main aspect that sets our work apart from these works is
that they only consider restricted attacks which attempt to remove a watermark by
outputting a new program which has some specific format (rather than an arbitrary
program). In particular, for all of these schemes, the mark can be removed via the
attack described in [5, 6] where an adversary uses iO to obfuscate the marked program
so as to preserve its functionality but completely change its structure.

Barak et al. [5, 6] proposed simulation-based and indistinguishability-based defini-
tions of watermarking security; their main contribution is a negative result, described
earlier in the introduction, which shows that iO rules out any meaningful form of
watermarking that exactly preserves functionality. Finally, Hopper, Molnar, and
Wagner [18] formalized strong notions of watermarking security with approximate
functionality; our definitions are inspired by their work. Their definition considers
not just unremovability but also the dual notion of unforgeability which requires that
the only marked programs that an adversary can produce are functionally similar to
circuits already marked by a marking oracle. Cohen, Holmgren, and Vaikuntanathan
also gave a definition of unforgeability for watermarking based on that of Hopper, Mol-
nar, and Wagner, and achieved a watermarking scheme that satisfies unforgeability
and unremovability simultaneously under some parameter regime [14].

A subsequent sequence of works has sought to minimize the cryptographic as-
sumptions needed to watermark PRF families, albeit in a weaker security model (see
below). Starting from the general framework developed in this work, Boneh, Lewi, and
Wu showed that so-called private programmable PRFs [9] suffice to construct a fam-
ily of watermarked PRFs, but they were unable to instantiate this seemingly weaker
primitive from any nonobfuscation assumption. Kim and Wu then constructed a fam-
ily of watermarked PRF's from private translucent PRF's [22] and showed how to base

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2167

the latter on the subexponential hardness of LWE. Finally, Peikert and Shiehian [27]
presented a construction of privately programmable PRFs; also from subexponential
LWE. In addition to reducing security to lattice-based assumptions, these construc-
tions are able to achieve both unremovability and unforgeability while also reducing
the number of marked points to a polynomial.

A major drawback of the lattice-based constructions is that they achieve a weaker
notion of security. Specifically, they use a different definition of security that hand-
icaps the adversary by restricting the oracles available to it. Most significantly, the
adversary gets no access to an Extract oracle (let alone a public extraction key).
Extract-oracle attacks contribute substantially to the challenge of constructing water-
marking schemes. Second, the adversary’s Mark oracle cannot take circuits as input.
In the work of Kim and Wu, the Mark oracle receives a PRF key and gives the adver-
sary a marked PRF key. In the work of Boneh et al. [9], the Mark oracle samples and
marks a random circuit from the family, giving the adversary both the marked and
unmarked versions. These restrictions to the class of attacks available to the adver-
sary are central to the results of the two works. Finally, the approximation factors of
their schemes are worse than ours, that is, their approximation factors are 1 — negl()).

Baldimtsi, Kiayias, and Samari [2] presented a weaker model of watermarking
cryptographic functionalities and a concrete watermarking scheme for public-key en-
cryption in their model. Their watermarking scheme for public-key encryption is
based on one-way functions. In their model, a marking algorithm and an extraction
algorithm can share a state information. That is, their scheme is a stateful construc-
tion. This is a significant difference from ours.

Organization of the paper. In section 3, we provide preliminaries and basic def-
initions used throughout the paper. In section 4, we provide the definition of wa-
termarking. In section 5, we provide a new cryptographic object called puncturable
encryption, its construction, and its security proof. In section 6, we describe our main
result, namely, our PRF watermarking and its security proof. In section 7, we provide
several extensions to our main construction. In section 8, we provide negative results
on watermarking. In section 9, we conclude this paper.

3. Preliminaries.

3.1. Notation. For any n € N, we write [n] to denote the set {1,...,n}. For
two strings 21 and xs, 21|/z2 denotes a concatenation of 21 and xs.

When D is a distribution, we write y <— D to denote that y is randomly sampled
from D. If S is a set, then we will also write S to denote the uniform distribution on
that set.

We say that a function f : N — R is negligible if for all constants ¢ > 0, there
exists N € N such that for all n > N, f(n) < n~c.

We use the abbreviation PPT to denote probabilistic polynomial time.

If X = {X)}aeny and YV = {Y) }ren are two ensembles of random variables indexed
by A € N, we say that X and) are computationally indistinguishable if for all PPT
algorithms D, there exists a negligible function v such that for all A,

Zo <—X)\
Pr |D(zp) =b| 1 < Y} <
b+« {0,1}

+ ().

We write X &) to denote that X and) are computationally indistinguishable.
For two circuits C' and D, we write C' = D if C' and D compute exactly the same
function. If C' and D agree on an ¢ fraction of their inputs, we write C =, D.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2168 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

3.2. Definitions. In this section, we review basic notions and definitions used
in this paper.

Obfuscation. The notion of iO was proposed by Barak et al. [5, 6] and the first
candidate construction was proposed by Garg et al. [16].

DEFINITION 3.1 (iO [6, 16]). An indistinguishability obfuscator is a PPT algo-
rithm 1O satisfying the following two conditions.
Functionality: For every security parameter A € N and every circuit C, it holds
with probability 1 that
i0(1*,C) = C.
Indistinguishability: For all circuit families C° = {CV} and C' = {C}} such that
CY = C} are functionally equivalent and |CY| = |C4|, it holds that

{i0(1*,)}, ~ {i0(*)}, -

For simplicity, we write iO(C) instead of iO(1*,C) when the security parameter
A is clear from the context.
PRGs and functions. We review PRGs and several variants of PRFs.

DEFINITION 3.2 (PRG). A PRG G : {0,1}* — {0, 1} XN with stretch £(\) (¢
is some polynomial function) is a polynomial-time computable function that satisfies
G(Uy) ~ Uxte(n), where Uy, denotes the uniform distribution over {0,1}™.

DEFINITION 3.3 (PRFs). A PRF family F = {Fa}ren is a function family

where each function F' € Fy maps a domain D to a range R and satisfies the following
condition. For all PPT adversary A and F < Fy, it holds

Pr[AF0) = 1] — Pr[ARV) = 1]| < negl()),
where F(-) : D = R is a deterministic function and R is chosen uniformly at random

from the set of all functions with the same domain/range.

In this paper, we basically set D := {0,1}**) and R := {0,1}"™ for a pair of
polynomial-time computable functions n(-) and m(-).

The notion of puncturable (pPRF) was proposed by Sahai and Waters [10, 11,
21, 29).

DEFINITION 3.4 (pPRFSs). A pPRF family F is a function family with a “punc-
turing” algorithm Puncture where each function F' € Fy maps a domain {0, 1}”(') to
a range {0, 1}7”(') that satisfies the following two conditions.

Functionality preserving under puncturing: For all polynomial size sets S C
{0,1}"N) and for all x € {0,1}" M\ S, it holds that

Pr[F(z) = F{S}(z) | F < Fx, F{S} := Puncture(F, S)] = 1.
Pseudorandom at punctured points: For all polynomial size set
S ={z1,....z5} € {0,1}"W
it holds that for all PPT adversary A,

1(A) == |PrlAF{S},{F (i) }icp) = 1] — PrlA(F{S}, Up(ry.s)) = 1|
< negl()),

where F < Fy, F{S} := Puncture(F,S) and U, denotes the uniform distri-
bution over £ bits.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2169

THEOREM 3.5 (see [10, 11, 17, 21)). If one-way functions exist, then for all effi-
ciently computable n(-) and m(-), there exists a pPRF family whose input is an n(-)
bit string and output is an m() bit string.

DEFINITION 3.6 (injective pPRF). If a pPRF family F = {Fa}x satisfies the
following, we call it an injective pPRF family. For all F € F) and x,2’ € D, if
x # o', then F(x) # F(a').

Sahai and Waters showed that we can convert any pPRF into a statistically
injective pPRF [29]. Here, “statistically” means with probability 1 — negl(A) over the
random choice of F < Fy, F\(-) is injective.

DEFINITION 3.7 (injective bit-commitment). An injective bit-commitment func-
tion is a PPT algorithm Com which takes as input a security parameter X and a bit
b€ {0,1}, and outputs a commitment c, satisfying the following properties.

Computationally Hiding:

{Com(1*,0)}, = {Com(1*, 1)}, .
Perfectly Binding: For every A, it holds that

co + Com(1*,0)

¢+ Com(1M,1) | — 0-

Pr {co =

Injective: For every security parameter A, there is a bound {qnq on the number of
random bits used by Com such that Com(1*,- ;-) is an injective function on
{0,1} x {0, 1}rand,

DEFINITION 3.8 (universal one-way hash function). A wuniversal one-way hash
function (UOWHF) family H = {Hx}xren i a function family where each function
H € H) maps a domain D to a range R and satisfies the following condition. For all
PPT adversary A := (A1, As), it holds

(.’E, 8) — Al(l)\)a
Pr|z#2*ANH(x)=H(z") | H<+ Hy, < negl(A).
¥ Ay(1) H, 2, 5)
THEOREM 3.9 (see [28]). If one-way functions exist, then UOWHF's exists.

Hoeffding’s inequality. We will use the following well-known bound. If X;,..., Xx
are independent Bernoulli variables with parameter p, then

Pr

ZXi > (p+s)'N] §672€2N.

In particular, if N > 6%, then this probability is exponentially small in .

4. Definition of watermarking. We begin by defining the notion of program
watermarking. Our definition is similar to the game-based definition of Barak et
al. [6, Definition 8.4] (It is called occasional watermarking) with the main difference
that: (1) we allow “statistical” rather than perfect correctness, (2) the challenge circuit
to be marked is chosen uniformly at random from the circuit family (for example, in
the case of PRFs, this corresponds to marking a random PRF key), (3) we strengthen
the definition to the public-key extraction setting and give the attacker access to the
marking oracle.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2170 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

DEFINITION 4.1 (watermarking syntax). A message-embedding watermarking
scheme for a circuit class {Cx},cn and a message space M = { My} consists of three
PPT algorithms (Gen, Mark, Extract).

Key Generation: Gen(1*) takes as input the security parameter and outputs a pair
of keys (zk, mk), respectively, called the extraction key and mark key.

Mark: Mark(mk,C, msg) takes as input a mark key, an arbitrary circuit C (not
necessarily in Cy), and a message msg € My and outputs a marked circuit
C.

Extract: msg’ « Extract(zk,C’) takes as input an extraction key and an arbi-
trary circuit C', and outputs msg’ < Extract(zk,C’), where msg’ € M U
{unmarked}.

We are now ready to define the required correctness and security properties of a
watermarking scheme.

DEFINITION 4.2 (watermarking security). A watermarking scheme (Gen, Mark,
Extract) for circuit family {Cx} ¢y and with message space M = { M} is required to
satisfy the following properties.

Statistical Correctness: There is a negligible function v(\) such that for any circuit
C € Cy, any message msg € My, and any input x in the domain of C, it
holds that

(zk, mk) < Gen(1?)

~ >1- .
C + Mark(mk,C,msg) | — L=v()

Pr [é(x) =C(z) ‘

Extraction Correctness: For every C € Cy, msg € My and (zk, mk) < Gen(1*):
Pr[msg’ # msg | msg’ + Extract(zk, Mark(mk, C, msg))]| < negl()).
Meaningfulness: For every circuit C' (not necessarily in Cy), it holds that

<m,mk)lfcen (N)[Extract(xk, C) # unmarked] < negl(}).

e-Unremovability: For every PPT A we have
Pr[Exp™ (X, e) = 1] < negl(A),

where € is a parameter of the scheme called the approximation factor and
nrmv

Expy ™ (N, €) is the game defined next.
We say a watermarking scheme is e-secure if it satsifies these properties.

DEFINITION 4.3 (e-unremovability security game). The game Expy™ (X, e) is
defined as follows.

1. The challenger generates (zk, mk) + Gen(1*) and gives zk to the adversary
A.

2. The adversary has oracle access to the mark oracle MO. If MO is queried
a circuit C; (not necessarily in Cy) and message msg;, then it answers with
Mark(mk, C;, msg;).

3. At some point, the adversary makes a query to the challenge oracle CO. If CO
is queried with a message msg € My, it samples a circuit C' < Cy uniformly
at random and answers C < Mark(mk,C', msg).

4. Again, A queries many pairs of a circuit and a message to MQO.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2171

5. Finally, the adversary outputs a circuit C*. If it holds that C* =, C' and
Extract(zk, C*) # msg then the experiment outputs 1, otherwise 0.7

Our main construction achieves what we call “lunchtime security,” in which step
4 of the above game is omitted. This and other variations are discussed in section 7.

5. Puncturable encryption. One of our main abstractions is a puncturable
encryption system. This is a public-key encryption system in which the decryption
key can be punctured on a set of ciphertexts. We will rely on a strong ciphertext
pseudorandomness property which holds even given access to a punctured decryption
key. We will additionally require that valid ciphertexts are sparse, and that a de-
cryption key punctured at two ciphertexts {cg,c;} is functionally equivalent to the
nonpunctured decryption key, except possibly on {cg, ¢y}

In this section we define the puncturable encryption abstraction that we use
in section 6. We instantiate this definition in section 5.1 and prove its security in
section 5.2.

DEFINITION 5.1 (puncturable encryption syntax). Syntactically, a puncturable
encryption scheme PE for a message space M = {0,1}¢ is a triple of probabilistic
algorithms (Gen, Puncture, Enc) and a deterministic algorithm Dec. The space of ci-
phertexts will be {0,1}", where n = poly(¢,\). For clarity and simplicity, we will
restrict our exposition to the case when A = £.

Key Generation: (pk,sk) < Gen(1*) takes the security parameter in unary, and
outputs an encryption key pk and a decryption key sk.

Puncturing: sk{co,c1} < Puncture(sk, co, c1) takes a decryption key sk, and a set

{co,c1} € {0,1}™.8 Puncture outputs a “punctured” decryption key sk{co,c1}.
Encryption: ¢ < Enc(pk,m) takes an encryption key pk and a message m €
{0,1}¢, and outputs a ciphertext c in {0,1}".
Decryption: m or L < Dec(sk, ¢) takes a possibly punctured decryption key sk and
a string ¢ € {0,1}™. It outputs a message m or the special symbol L.

DEFINITION 5.2 (puncturable encryption security). A puncturable encryption
scheme PE = (Gen, Puncture, Enc, Dec) with message space M is required to satisfy
the following properties.

Correctness: We require that for all messages m,

(pk, sk) < Gen(1?)

¢ < Enc(pk,m) =1

Pr [Dec(sk,c) =m ‘
Punctured Correctness: We also require the same to hold for keys which are punc-
tured. For all possible keys (pk, sk) < Gen(1%), all strings co,c1 € {0,1}",
all punctured keys sk’ < Puncture(sk,co,c1), and all potential ciphertexts
c€{0,1}"\ {co,c1},
Dec(sk, c) = Dec(sk’, c).

Ciphertext Pseudorandomness: We require that in the following game, all PPT
adversaries A have negligible advantage.

GAME 5.3 (ciphertext pseudorandomness).
1. A sends a message m* to the challenger.

"The definition would be equivalent if we had required C* 22, c instead of C* = C, up to a
negligible difference in €, since by statistical correctness we have C =5 C for some § = 1 — negl()).
8We can assume that the set {co,c1} is represented as a list in sorted order.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2172 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

2. The challenger does the following:

Samples (pk, sk) < Gen(1%).

Computes encryption ¢* < Enc(pk, m*).

Samples r* < {0,1}™.

Generates the punctured key sk’ < Puncture(sk, {c*,r*}).
Samples b < {0,1} and sends the following to A:

(c*,r*,pk,sk’) if b=0,
(r*,c*, pk,sk’) if b=1.

3. The adversary outputs b’ and wins if b=1"V'.

Sparseness: We also require that most strings are not valid ciphertexts:
Pr [Dec(sk,c) # L | (pk,sk) < Gen(1%), ¢ + {0, 1}"] < negl()).

Remark 5.4. The notion of puncturable encryption is similar to that of punc-
turable deterministic encryption (PDE) introduced by Waters [31]. However, there
are differences between them: (1) PDE is symmetric key encryption, that is, an en-
cryption key is equal to a decryption key. (2) A key is punctured at plaintezts in PDE.
(3) Ciphertexts are not required to be pseudorandom in PDE. Therefore, puncturable
encryption is a stronger tool than PDE.

One of our contributions is the following theorem.

THEOREM 5.5. Assuming the existence of injective one-way functions, and an
indistinguishability obfuscator for all circuits, there exists a puncturable encryption
system.

We provide a construction of the puncturable encryption in the next section.

5.1. Construction. We construct a puncturable encryption scheme in which
the length n of ciphertexts is 12 times the length ¢ of plaintexts. Our construction
utilizes the following ingredients:

A length-doubling PRG : {0,1}* — {0, 1}

a family of injective pPRFs (see Definition 3.6) {F) : {0,1}3¢ — {0,1}%¢};°
a family of pPRFs {G) : {0,1}°¢ — {0,1}¢};

an injective bit-commitment Com using randomness in {0, 1}, which can in
fact be constructed by an injective one-way function. We only use this in our
security proof.

CONSTRUCTION 5.6 (puncturable encryption scheme PE).

Gen(1*): Sample functions F < Fx and G < Gy, generates pk as the iO of the
program E in Figure 1, and returns (pk, sk) := (iO(E), D), where sk is the
(unobfuscated) program D in Figure 2.

Puncture(sk, co, ¢1): Output sk’, where sk’ is the i©O of the program D' described
in Figure 3, that is, sk’ :==iO(D’).

Enc(pk,m): Take m € {0,1}*, sample r + {0,1}*, and output ¢ < pk(m,r).

Dec(sk,c): Take c € {0,1}2¢ and return m := sk(c).

The size of the programs is appropriately padded to be the maximum size of all modified
programs, which will appear in the security proof.

9As in [29], any pPRF family from {0,1}* — {0, 1}2’“+‘*’(1‘)g A) can be made statistically injective

(with no additional assumptions) by utilizing a family of pairwise-independent hash functions.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2173

Constants: Injective pPRF F : {0,1}*¢ — {0,1}°, pPRF G : {0,1}%¢ —
{0,1}*.
Inputs: m € {0,1}¢,r € {0, 1}~
1. Compute oo = PRG(r).
. Compute 8 = F(a||m).
. Compute v = G(8) @& m.
. Output («, 8,7).

=N

Fi1G. 1. Encryption program E (preobfuscation).

Constants: Injective pPRF F : {0,1}3 — {0,1}%, pPRF G : {0,1}*¢ —
{0,1}".
Inputs: ¢ = (a||f]|y), where a € {0,1}%, B € {0,1}%, and v € {0,1}*.

1. Compute m = G(B) ® 7.

2. If B = F(aljm), output m.

3. Else output L.

Fia. 2. Decryption program D.

Constants: Set {cy,c;} C {0,1}", injective pPRF F : {0,1}3 — {0,1}%, and
pPRF G : {0,1}°¢ — {0,1}".
Inputs: ¢ = (a||f]|y), where a € {0,1}%, 8 € {0,1}%¢, and v € {0,1}".

1. If ¢ € {cg, 1}, output L.

2. Compute m = G(8) @ ~.

3. If 8 = F(aljm), output m.

4. Else output L.

F1c. 3. Punctured decryption program D’ at {co,c1} (preobfuscation).

Remark 5.7. We note that in all of our obfuscated programs (including the hy-
brids), whenever a; or §; or v; for ¢ € {0,1} are treated symmetrically, then we can
and do store them in lexicographical order. A random ordering would also suffice for
security.

Correctness and punctured correctness. Correctness follows from the fact that iO
exactly preserves functionality, and observing in the punctured case that sk’ is defined
to be functionally equivalent to sk except on inputs in {co, c1}.

Sparseness. Sparseness follows from, for example, the length-doubling PRG; most
values of « are not in the image of PRG.

Therefore, what remains is proving ciphertext pseudorandomness. We provide
the proof in the next section.

5.2. Ciphertext pseudorandomness.

THEOREM 5.8. If F is an injective pPRF family, G is a pPRF family, PRG is a
PRG, Com is an injective bit-commitment function, and 1O is a secure 10O, then the
PE scheme above satisfies the ciphertext pseudorandomness.

Proof. We give a sequence of main rid distributions Hyb; through Hybs. The
goal of the hybrids is to reach a game in which the challenge encryption ¢y and the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2174 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

TABLE 1
An overview of hybrid distributions.

[Hybrid [o) [Bo [Yo [pk := 10 of below [sk’ := iO of below]
REAL | PRG(Z) | F(ao|m*) | G(Bo) @ m* E D’
Hyb; |random | F(aollm™*) | G(Bo) & m* E D’
Hyb, |random | F(ag|m*) | G(Bo) & m* E{apljm*, a1 |jm*} Di{ao||m*, a1|/m*}
Hybs |random| random |G(Bo)® m* E{ag||m*, a1||lm*} Di{aollm™, az||m*}
Hyb, |random| random |G(Bo)® m* |E{ao|m*,ai|lm*,Bo,B1}|Dij{oo||m*, a1]lm*, Bo, B1}
Hyb; |random| random random | E{ao|lm*, a1|[m*, Bo, B1} | Di{co|lm*, crllm*, Bo, B1}
RAND |random | random random E D’

random ciphertext ¢; are treated symmetrically in pk and sk’, and in which both are
sampled uniformly at random by the challenger. We proceed by iteratively replacing
pieces of ¢y by uniformly random values, puncturing F' and G as necessary. We give
an overview of the hybrids in Table 1.
REALy: The real distribution is defined by the real security game:
1. A sends a message m* € M to the challenger.
2. The challenger does the following:
(a) Samples an injective pPRF F : {0,1}3¢ — {0,1}°¢ and pPRF G :
{0,1}°¢ — {0,1}*.
Samples t <+ {0,1}¢,
ap = PRG(t) € {0,1}?,
By = F(ao||m"),
Y0 = G(Bo) ®m*.
Let co = ao||Bolv0-
(b) Samples ¢; + {0, 1}1%¢.
Parse ¢; = a1]|81]|m-
(c) Generates pk as the iO of Figure 1 and sk’ as the iO of Figure 3.
(d) Samples b < {0,1} and sends the following to A:

(co,c1,pk, sk’) if b=0,
(c1,co, pk,sk’) ifb=1.

3. The adversary outputs ' and wins if b =¥'.
That is, REALy is (co, c1, pk, sk’) and REAL; is (c1, co, pk, sk').

RAND: Before we define several hybrid distributions, we define an intermediate
hybrid between REALg and REAL;. We define RAND as (v, c1, pk, sk’), where
7" is a uniformly random element in {0, 1}1%¢.

Hyb,: We sample uniformly random g < {0, 1}%* for c.

Hyb,: We puncture programs FE and D’ at {«ag|/m*,a;|m*} by puncturing
F at {ap||m*,a1|lm*}. These modified programs E{ag|m*,ai|jm*} and
D'{ap||m*, az||m*} are described in Figures 4 and 5, respectively, where
B = F'(a1]|m*) and § = G(B) & m*.

Hybs: We sample uniformly random BO,B + {0,1}%¢ for ¢ and slightly modify
program Dj{ag|/m*, a1|jm*}. The modified program Dji{aolm*, aq||m*} is
in Figure 6.

Hyb,: We puncture programs E and D’ at {ag|m*, a1|jm*, Bo, $1} by puncturing
G at {fo, f1}. These modified programs are described in Figures 7 and 8.

Hybs: We sample uniformly random 7y < {0, 1}* for co.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2175

Encryption Program E{ag|m*, ai|jm*}
Constants: Punctured F’' = F{ap|/m*, a1||m*} and (not punctured) G.
Inputs: m € {0,1}¢,r € {0,1}%.
1. Compute o = PRG(r).
2. Compute 8 = F'(a||m).
3. Compute v = G(8) & m.
4. Output (o, 8,7).

F1G. 4. Program E{ao|lm*,a1||/m*} (preobfuscation).

Constants: Set {cp,c1} C {0,1}", punctured F’' = F{ag||m*,a1|m*}, G, and
the values aq, a1, B, ¥, m*.
Inputs: ¢ = (a||B|7), where a € {0,1}%, 3 € {0,1}%, and ~ € {0,1}*.
1. fa=a; and § = B and v = 4, output m*.
If ¢ € {cp, 1}, output L.
Compute m = G(5) @ .
If (a,m) € {(avg, m*), (a1, m*)}, output L.
If 8 = F'(a||m), output m.
Else output L.

O oUW

F1G. 5. Punctured program Dj{og||m*, a1||m*} in Hyb, (preobfuscation).

Constants: Set {cg,c1} C {0,1}", punctured F' = F{ag|/m*, aq||m*}, G, and
the values ag, ay.
Inputs: ¢ = (a||f]|y), where a € {0,1}%, B € {0,1}%¢, and v € {0,1}".
1. Removed branch.
If ¢ € {cp,c1}, output L.
Compute m = G(B) @ 7.
If (a,m) € {(avg, m*), (a1, m*)}, output L.
If 8 = F'(a||m), output m.
Else output L.

A e

F1G. 6. Punctured program D5{oo||m*, ai1|]|m*} in Hybs (preobfuscation).

Our goal is to prove REALy ~ Hyb, &~ Hyb, ~ Hyb, ~ Hyb, ~ Hyb, ~ RAND since we
can prove RAND ~ REAL; in the reverse manner and it means REAL ~ REAL,. O

LEMMA 5.9. If PRG is a pseudorandom generator, then Hyb, ~ Hyb, .

Proof of Lemma 5.9. These distributions are indistinguishable due to the pseu-
dorandomness of PRG. d

LEMMA 5.10. If F is an injective pPRF family and iO is a secure 10, then Hyb, ~
Hyb,.

Proof of Lemma 5.10. To prove this lemma, we define auxiliary hybrids.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2176 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

Constants: Punctured F' = F{ag||m*, a1||m*} and punctured G’ = G{fy, 51}
Inputs: m € {0,1},r € {0,1}*.
1. Compute o = PRG(r).
. Compute g = F'(a|m).
. Compute v = G'(f) & m.

=W N

. Output («, 8,7).

Fic. 7. Encryption program E{ag|/m*, a1||m*, Bo,B1} (preobfuscation).

Constants: Set {cg,c1} C {0,1}", punctured F' = F{ag||m*, a1|m*}, and
punctured G’ = G{So, 51}, and the values g, a1, Bo, f1, m*.
Inputs: ¢ = (a||f]|y), where a € {0,1}% and 3 € {0, 1}°*.
1. Remove branch.
If 8 € {By, B1}, output L.
Compute m = G'(8) @ .
If (a,m) € {(ag, m*), (1, m*)}, output L.
If 8 = F'(allm), output m.

STt N

Else output L.

F1G. 8. Punctured program D}{ao||m*, a1||m*} in Hyb, (preobfuscation).

Constants: Set {cg,c1} C {0,1}", punctured F’, and G, and the values g, a7,
B, 5, m*.
Inputs: ¢ = (a||f]|y), where a € {0,1}%, B8 € {0,1}%, and v € {0,1}*.
1. fa=a; and § = B and v = 4, output m*.
If ¢ € {co, 1}, output L.
Compute m = G(B) @ 7.
If B = F'(a||m), output m.
Else output L.

G

FIG. 9. Modified program of D' in Hyb? (preobfuscation,).

Hybi: We alter the generation of pk. We puncture F at ag||m* and o, ||m* and use
it for pk. That is, we use F' = F{ap||m*, a1||m*} to generate the encryption
program FE.

Hyb?: We modify the generation of sk’. The constants B = F(oq|jm*) and 4 =
G(B) ®m* are hard-coded. We add the following line in the beginning of sk':
Ifcea ||B||’3/, output m*. For reference, we describe the modified decryption
program from hybrid Hyb% in Figure 9.

Hyb‘;’: We again modify the generation of sk’. We add the following check: If
(a,m) € {(ag,m*), (a1, m*)}, output L. For reference, we describe the mod-
ified decryption for sk’ from hybrid Hyb? in Figure 10.

CrLAM. If F is an injective pPRF family and iO is a secure 0, then Hyb, ~ Hybi,
Proof of claim. A modified program that uses F' is functionally equivalent to E

because F' is never evaluated on strings of these forms due to the uniform randomness
of ag, 1. Values ay and vy are with high probability not in the image of PRG. Thus,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2177

Constants: Set {cg,c1} C {0,1}", punctured F’, and G, and the values «ag, a7,
B, 5, m”.
Inputs: ¢ = (a||f]|y), where a € {0,1}%, B8 € {0,1}%, and v € {0,1}*.
1. fa=a; and 5 = 3 and vy = 4, output m*.
If ¢ € {co, 1}, output L.
Compute m = G(8) ® .
If (a,m) € {(ag,m*), (a1, m*)}, output L.
If 8 = F'(aljm), output m.
Else output L.

SOt N

FiG. 10. Modified program of D’ in Hyb$ (preobfuscation).

the claim holds due to the functional equivalence explained above and the security of
10. d

Cram. If O is a secure 0, then Hybi ~ Hyb%.

Proof of claim. The decryption programs in these hybrids are functionally equiv-
alent, as alHB |9 is already a valid encryption of m*. Notice that these B do not
correspond to either the By or 51 (and similarly for 4). The claim holds due to the
functional equivalence explained above and the security of iO.]

CrLAIM. IfiO is a secure 10, then Hyb? ~ Hyb‘;’,

Proof of claim. The decryption programs in these hybrids are functionally equiv-
alent by two cases:

1. When (o, m) = (ag, m*), then either ¢ = ¢y, in which case sk’ already would
output L, or ¢ # cp, in which case sk’ rejects ¢ as an invalid ciphertext
(because every pair («, m) together define a unique valid ciphertext due to
the injective property of F).

2. When (o, m) = (a1, m*), we only reach this line if ¢ # a1||8]|5 (by the check
introduced in hybrid Hyb%). In this case, sk’ already rejects ¢ as an invalid

ciphertext.
Thus, the claim holds due to the functional equivalence explained above and the
security of iO.]

Cram. IfiO is a secure 0, then Hybif ~ Hyb,.

Proof of claim. In Hyb,, instead of using the unpunctured key for F in sk’, we
puncture F at the points ap||m* and aq|/m*. For sk’, the modified program is func-
tionally equivalent to that in the previous hybrid because—by the checks added in
the previous hybrid—F will never be evaluated on such inputs. 0

Thus, the lemma holds. 0

LeEmMA 5.11. If F is an injective pPRF family, Com is a secure injective com-
mitment, and iO is a secure 10, then Hyb, ~ Hyb,

Proof of Lemma 5.11. To prove the lemma, we define auxiliary hybrids.
Hyb%: We alter the generation of the the key sk’ in the security game. Instead of
using 8 = F(ay||m*), we sample 3 uniformly at random from {0, 1}°¢.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2178 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

Constants: Set {cg,c1} C {0,1}", punctured F’, G, and the values «g, aq, m*,

4.
Inputs: ¢ = (a||B]]7), where a € {0,1}%, 3 € {0,1}%, and 7 € {0, 1}".
1. For some i, if @« = a; and FALSE and v = 4, output m* (i.e., this never
happens).
If c € C, output L.
Compute m = G(5) @ ~.
If (a,m) € {(ag,m*), (a1, m*)}, output L.
If 8 = F'(aljm), output m.
Else output L.

SO N

F1c. 11. Modified program of DY in Hyb% (preobfuscation).

Hyb%: We change line 1 of Figure 5. Value 2 := Com(0; B) is hard-coded, and we
replace the check 8 = 3 with the check Com(0; B) = 2.

Hyb3: We change the hard-coded value 2 into Com(1; 3).

Hybgz We replace the expression Com(0; 3) = % with FALSE.

For reference, we describe sk’ from hybrid Hyb;l in Figure 11.

CraM. If F is an injective pPRF family, then Hyb, ~ Hyb%.

Proof of claim. This holds due to the pseudorandomness of F' at punctured
points.]

CramM. If Com is a secure injective commitment and 1O is a secure 10, then
Hybs ~ Hyb3.

Proof of claim. The modified decryption programs are functionally equivalent by
the injective property of Com. Thus, this holds due to the injective property of Com
and the security of iO.]

CramM. If Com is a secure injective commitment, then Hybg ~ Hybg’.

Proof of claim. This holds due to the computational hiding property of Com. 0O

CraMm. If Com is a secure injective commitment and iO is a secure 10, then

3 c 4
Hyb; ~ Hybs.

Proof of claim. The modified decryption programs are functionally equivalent
with high probability because of the perfect binding property of Com (which follows
from injectivity). In fact, we remove the entire line 1 as in Hyb,, which also preserves
functionality. Thus, the claim holds due to the functional equivalence explained above
and the security of i0O. O

CrAM. If F is an injective pPRF family, then Hyb;1 ~ Hybs;.

Proof of claim. This holds due the pseudorandomness of F' at the punctured
points. 0

Thus, the lemma holds. |
LEMMA 5.12. If G is a pPRF family and iO is a secure 10, then Hyb, ~ Hyb,.

Proof of Lemma 5.12. To prove this lemma, we define auxiliary hybrids.
Hyb3: We alter the generation of pk (see line 2(d) 4). We puncture G in pk at S
and f;.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2179

Hybg: We alter the generation of sk’, see line 2 of Figure 4. Instead of If ¢ €
{co,c1}: output L, we replace it with If 8 € {8y, 51 }: output L.

CrLAM. If G is a pPRF family and iO is a secure iO, then Hybg ~ Hybé.

Proof of claim. The encryption programs in these hybrids are functionally equiv-
alent by the sparsity of F since 5y and 1 are now chosen at random with high prob-
ability they are not in the image of F. Thus, the claim holds due to the functional
equivalence explained above and the security of :O. 0

Cram. If:iO is a secure 10, then Hybil), ~ Hybg.

Proof of claim. To see that the modified decryption programs in these hybrids
are functionally equivalent, we observe that with high probability, neither of these
lines has any effect.

Since with high probability, none of the 8y and 31 are in the image of F, if 5 €
{Bo, B1}—which is the case when ¢ € {cg, c; }—then sk’(c) = L with high probability,
even without the extra check.

We do not remove the check because checking if 5 € {8y, £1} will allow us to
puncture G on this set in the following hybrid. This holds due the functional equiva-
lence explained above and the security of iO.]

CLAaM. If G is a pPRF family and iO is a secure i0, then Hyb§ ~ Hyb,.

Proof of claim. In Hyb,, we alter the generation of sk’. We puncture G at
{Bo, 1} in sk’. This change is functionally equivalent because of the ostensibly useless
checks in the previous hybrid. Thus, the claim holds due the functional equivalence
explained above and the security of :O. O

Thus, the lemma holds. 0
LEMMA 5.13. If G is a pPRF family, then Hyb, ~ Hyb,.

Proof of Lemma 5.13. In Hyby, we sample o uniformly at random from {0, 1}*.
This change is indistinguishable by the pseudorandomness of G at the punctured
set. O

LEMMA 5.14. Under the same assumptions as in Theorem 5.8, Hybg ~ RAND.

Proof of Lemma 5.14. This is proved in the same way as Lemmas 5.9, 5.10, 5.11,
5.12, and 5.13.]

Therefore, the construction satisfies the ciphertext pseudorandomness.
Therefore, we complete the proof of Theorem 5.5.

6. Watermarking PRF's. In this section, we construct schemes for watermark-
ing any puncturable PRF family. One is secure against lunchtime attacks and the
other is fully secure. Both of them are in the public-key extraction setting. As we
explain in section 2.3, the simple scheme is not secure in these settings (the attacker
has access to the marking or extraction oracles).

For all of the schemes, let C be some pPRF family where, for C' < C,, we have
C(-) : Dy — Ry with Dy = {0,1}"™M_ and Ry = {0,1}™™ for some n(\),m(\) =
Q(X). We often drop A from Dy and Ry. We construct a watermarking scheme for
PRF evaluation of C. We identify the PRF evaluation circuits computing the function
C(+) and assume (without loss of generality) that the marking procedure just takes C
as an input.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2180 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

THEOREM 6.1. Assuming the ezistence of injective one-way functions and an in-
distinguishability obfuscator for all circuits, for all e(\) = & +1/poly(A), all message
spaces M = {0,1}* (for w = poly(X)), all integer functions n(A) = Q(X\), and
m(A) = Q(N) there exists a watermarking scheme with message space M which is
e-secure against lunchtime attacks for every pPRF ensemble {Cx}xen such that func-
tions C in Cy map {0,1}"™) — {0,1}m0),

If we assume pPRF family C = {C)},en satisfies a “nice” property, that is, the
injective property in Definition 7.1, and the mark oracle accepts only pPRF keys as
input, then we can show the full security in Definition 4.3 where the adversary has
access to the mark oracle even after the challenge program is given. See section 7.1
for the details.

Construction: Public-key extraction and security against lunchtime attacks. We
now construct a watermarking scheme with public-key extraction and with security
against lunchtime attacks in the presence of a marking oracle (see Definition 4.3). We
have already explained the challenges in constructing such a scheme in section 2.4.
We start with the scheme outline.

6.1. Scheme outline. Assume we want to mark a PRF family C with domain
D = {0,1}™ and range R = {0, 1}, where both n and m are sufficiently large. In this
overview, suppose for simplicity that the space of marks is {0,1}"™. Our construction
relies on a puncturable encryption scheme PE with ciphertext space C = {0,1}" and
message space M = {0,1}* for sufficiently large £. We follow the watermarking
framework described in the introduction, in which a marked program is changed on a
small set of marked points, determined by a set of find points which are not changed.

Roughly speaking, a marked point in our scheme is a valid ciphertext of PE.
A valid ciphertext when marking a program C' is defined as any encryption of any
plaintext a||b||c such that b = H(C(PRG(a))), where H is a UOWHF. On such inputs,
the marked program’s output is changed to G'(c) ® msg, where G’ is a publicly known
PRG and msg is the desired mark. Note that there are super-polynomially many
marked points, but yet they are only a negligible fraction of the total domain.

Given the above marking scheme, there is a natural procedure to extract the mark
msg. We first pick random values a,c < {0, 1}€/ 3 and compute the corresponding
find point o := PRG(a). Then we compute b := H(C’(«)) and use this to find the
corresponding marked-point « < PE.Enc(pk, a||b||c). Finally, we compute y = C'(z)
and record msg’ := y @ G'(¢) as a candidate for the embedded message. If C' =
Mark(C'), correctness is obvious. The bulk of our work is making extraction work for
arbitrary efficiently computable C” =, Mark(C).

In order to guarantee that the correct message is extracted with high probabil-
ity, we amplify our procedure in two steps. First, we fix a||b and sample multiple
independent c¢’s, extract as above, and take the majority result. We then repeat this
process with independently sampled a’s, again taking the majority result. Compared
to earlier versions of this work [14, 26], this “majority-of-majorities” approach allows
us to attain optimal thresholds for unremovability (any % + m)

6.2. A message-embedding construction. In this section, we formally con-
struct our main message-embedding watermarking scheme. We show it satisfies un-
removability in the public-key extraction setting and in the presence of a marking
oracle. We obtain a scheme in which unremovability holds for any approximation
factor e(A) = 1 + 1/poly ().

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2181

Constants: PE decryption key sk, pPRF F, circuit C, and message msg =
msg, ... [msg,.
Inputs: z € {0,1}".
1. Try to parse al/b||c||i < PE.Dec(sk,x), where |a| = |b] = |¢| = £/3 and
i€ [w].
2. If a||b|c|]i # L and H(C(G(a))) = b, output G'(c) & msg;.
3. Otherwise, output C(z).

F1G. 12. The program M, which is a modification of C (preobfuscated program).

Extract;(zk, C"):
1. Forj=1,...,0Q,
(a) Sample uniformly random a; + {0, 1}*/3.
(b) Compute b; = H(C'(G(a;))).
(¢) Run msgz(-J) <+ WeakExtract;(zk, C’, a;, b;).
2. If there exists a “majority-of-majorities message” msg; # L such that

{j: msggj) = msg; }| > Q/2, then output msg,; else output unmarked.

F1G. 13. The subroutine algorithm Extract;(zk,C’).

WeakExtract;(zk, C’, a,b):
1. Fork=1,... R,
(a) Sample ¢ + {0,1}*/3 and x, - PE.Enc(pk, a||b||ck 7).
(b) Compute msgz(-k) = G'(cx) & C' (xk).
(k)

2. Define the “majority message” msg,; such that [{k : msg;’ = msg;}| >

R/2 if such a msg; exists; otherwise, define msg;, = L.

F1G. 14. The subroutine algorithm WeakExtract;(zk, C’, a,b).

Setup. Our goal is to construct a watermarking scheme for a pPRF family C with
domain {0,1}"™ and range {0,1}™. For any positive integer w, let M = {0,1}*"™
denote the message space. We will think of messages msg € M as consisting of w/m
chunks in {0,1}™, so we will write msg = msg, || - - - ||msg,,. Let PE be a puncturable
encryption scheme with ciphertext length n and plaintext length ¢ + logw. Let G :
{0,1}*/3 — {0,1}™ and G’ : {0,1}*/% — {0,1}™ be PRGs, and let H : {0,1}" —
{0,1}*/3 be a UOWHF.

Construction. For any approximation factor (A) = 1 + p()), where p(}) is some
inverse polynomial, we set Q = Q(A) = A\/p(A\)? and R = R()\) = \/p(A\)? and define
our construction as follows.

Gen(1*): Sample a key pair (pk, sk) < PE.Gen(1*). Output (zk, mk), where zk =

pk and mk = sk.
Mark(mk, C, msg): Outputs the iO of circuit M constructed from C in Figure 12,
ie., iO(M).

Extract(ak, C'): For each i € [w], let msg, = Extract;(zk,C"), where Extract; is
defined in Figure 13. Extract; makes use of a subroutine WeakExtract;, which
is defined in Figure 14. Output msg,|| ... ||msg,,.

It is easy to check that this construction satisfies statistical and extraction correctness
and meaningfulness.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2182 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

PROPOSITION 6.2. The above construction satisfies Theorem 6.1.

6.3. Security proofs. To prove the proposition, we must prove e-unremovability
against lunchtime attacks.

Overview. Recall that in our scheme, there are two sparse sets of points: find
points, which are unchanged between a marked and unmarked program, and “mark
points,” which are changed. To extract from a circuit C’, one repeatedly performs
the following 4 steps, which we will refer to as weak extraction:

1. Sample a find point z, and queries C(x).
2. Use the resulting value to sample many mark points z1,...,z, where k =
AP
3. For each x;, query C(z;) to compute a guess msg,.
4. If some msg; occurs more than k/2 times, return it. Otherwise, return L.
If this procedure returns some message msg many times (more than half), then msg
is the extracted value.

Weak extraction can fail if C'(z) has been changed by the remover, or if most
of C(z1),...,C(xx) have been changed. The first happens with probability at most
1 — ¢ by the pseudorandomness of find points. The second happens with negligible
probability by a Chernoff bound. By repeating this process with many find points,
the error probability is reduced to negligible.

Proof of e-unremovability. First, we define two security experiments to state a
useful lemma that is used to prove Proposition 6.2. These two experiments are similar
to the unremovability security game, but the goal of the adversary is now to distinguish
a mark point of a marked program from a uniformly random string of the same length,
while first given access to a marking oracle and also given the corresponding find point.

For any PPT adversary D, we define the following two experiments, ExpiR)EAL(/\, 1)
and EXPEAND()‘)'

Expreat (A)

1. (zk, mk) + Gen(1%)

(5, msg) < DMark(mk.) (zf)
C <+ C and C + Mark(mk, C, msg)
a + {0,1}/3, b = H(C(G(a)))
¢+ {0,1}/3
zreaL < PE.Enc(pk, a||b]c[|7)

7. Finally, output D(s, C, a, TreaL)-
Expranp (A):-

SOt N

1. (zk, mk) + Gen(1%)

2. (s, msg) < DMark(mk,) (g1

3. C « C and C « Mark(mk, C, msg)
4. a < {0,1}*/3

5. TRAND < {0, 1}n

6. Finally, output D(s, é,a,xRAND).

LEMMA 6.3. Under the same conditions as in Theorem 6.1, for all PPT distin-
guishers D and for all i € [w], it holds that

‘PT[EXPEEAL(/\’ i) = 1] — Pr[Expganp(A) = 1]] < negl(A).
We also define a “many-message” version of these two experiments:

ExpreaL s (A1)
1. (2k, mk) + Gen(1?)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2183

2. (s, msg) < DMark(mk,) (y1)

3. C « C and C « Mark(mk, C, msg)

4. a <+ {0,1}¥/3, b = H(C(G(a))).

5. ¢+ {0,1}*/3

6. For j=1,... R:

sample zreaL,; < PE.Enc(pk, a||b||c||?)

7. Finally, output D(S, 5, a, CCREAL), where TreaL = (l'REAL,l, L. 7xREAL,R)-
Expranps (A):-

1. (zk, mk) + Gen(1%)

(s, msg) DMa'k(mk"")(:rk)

. C + C and C + Mark(mk,C, msg)
a « {0,1}¢/3

.Forj=1,... R:

sample zranp,; ¢+ {0,1}"

CUR W N

(=2}

. Finally, output D(S, C, a, mRAND)7 where ranD = ('IRAND,ly L. ,ATRAND,R)-

COROLLARY 6.4. For all PPT D and for all i € [w], it holds that
|Pr[Expgears (A, i) = 1] — Pr[Expranpr (M) = 1]| < negl(X).

Proof. This follows from a simple hybrid argument.]
Before proving Lemma 6.3, we first show that it would imply Proposition 6.2.

Proof of Proposition 6.2. We show that for every ¢ and every PPT adversary
(A13A2)7

(zk, mk) + Gen(1*)
(msg, s) + A?Aark(mk"")(l)‘, zk, mk)
Pr | Extract;(zk, C*) £ msg® AC* 2, C | C +C
C«+ Mark(mk, C, msg)
C* + Ay(s,0)
< negl()\).

Suppose for the sake of contradiction that a PPT adversary (A;,.As) wins this
game with nonnegligible probability. That is, with nonnegligible probability, Az out-
puts a program C* 2. C such that Extract;(C*) # msg(? with nonnegligible proba-
bility. For convenience of notation, let A denote the pointwise xor of C and C*. That
is, let A(z) = C*(2) @ C(z). Recall that e(A) = 3 + p(A). Because Extract; takes the
majority answer after running WeakExtract; many (A/p(\)?) times, it must be (by a
Chernoff bound) that for any such C*,

1
poly(\)

- 1
po~ = Pr [WeakExtracti(C*) # msg(l)} > 3~ p(N) +

for some polynomial poly. Since WeakExtract; only accesses C* in a black-box way,
and since we know that WeakExtract;(C) = msg(® with high probability, it must
be the case that C* differs from C at some of the points queried by WeakExtract;.
Furthermore WeakExtract; is robust against differences at mark points (since it suffices
for C* to agree with C at a majority of the queried mark points). Thus we have (by

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2184 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

a union bound) that

R
pe- <Pr{A(G(a)) # 0] + Pr 1k Az) £0AK € [R]} > 2| + negl().
a a+{0,1}*/? 2
x<PE.Enc(al|b]|?)

The first term corresponds to the probability of A changing the find point queried
by WeakExtract;, and the second corresponds to the probability of A changing many
mark points. The third term is the probability that WeakExtract;(C) # msg,;.

For the first term, we note that by the pseudorandomness of G(a), it must hold
that for all polynomials poly, there is a negligible negl such that

Pr|C* =, CA Pr[A(G(a)) # 0] > 1 —e(X) + < negl(\).

1
poly(A)

Indeed, otherwise we can break the security of G by running A, and empirically testing
1

whether the A output by As exhibits a o) advantage in distinguishing G(a) points
from random points. If it does, we evaluate A on our challenge to try to distinguish;
otherwise we guess randomly.

For the other term, Corollary 6.4 states that the z;’s are jointly indistinguishable
from independent and identically distributed random x;’s sampled from {0, 1}™, even
though A; has oracle access to Mark(mk,-,-). Combined with a Chernoff bound,

which states that

Prict=Cn e {sz Ay) £ 0} > ﬂ > pd;(A)_ —0,
this implies that for every polynomial poly,
Pr|C* . CA Pr [{xk : Axg) # 0} > R} > ! < negl(X)
ac{0,1}4/2 2 poly ()
€1,...,x g+ PE.Enc(al|b||d) |
Combining these four inequalities yields a contradiction. 0

Now we turn to proving Lemma 6.3.

Proof of Lemma 6.3. We define a sequence of hybrid experiments to prove this
lemma. We call all variables that D sees in the experiment Exp a view of D and denote
it by view(Exp).

Hyb,: This experiment is exactly the same as Expgea, (A, 7).

Hyb,: In this hybrid experiment, we change the marking oracle. For the adver-
sary’s queries (C(M), msg(D), ... (C@ msg(®), instead of generating marked
program C') < iO(M®), we set O « iO(M) {zg, 21}), where M) {zq, 21}
is defined in Figure 15, having hard-coded C'¥), sk’ < PE.Puncture(sk, xo, 1),
Zo := ZreaL, 1 < {0,1}", and msg®).

Hyb,: In this hybrid experiment, we change the marked challenge program C.
We use the punctured decryption key sk’ and hard-code the output values
corresponding to zg and x1 as yo = G'(c¢) and y; + {0,1}™, respectively.
That is, we set C « iO(M{zo,x1}), where M{xg,z1} is defined in Figure
16.

Hybs: In this experiment, zq is changed to be uniformly sampled from {0, 1}".

Hyb,: In this experiment, yo is changed to be uniformly sampled from {0, 1}™

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2185

Constants: punctured PE decryption key sk’ := sk{zg,z1}, pPRF key c,

- I msgl).

values x¢, 21, message msg(*) = msgg
Inputs: z € {0,1}".
1. If x € {0, x1}, then output C (z).
2. Compute al|b||c||i +— PE.Dec(sk’, x), where |a| = |b] = |c| = ¢/3, and
i€ [w].
If al|b|jc]|i # L and H(C™W(G(a))) = b, output G'(c) & msg.
4. Otherwise, output C*(z).

®

Fic. 15. Program M(){zq,z1} in Hyb,.

Constants: punctured PE decryption key sk’ := sk{zg,z1}, pPRF key F,
pPRF key C, values xq, x1, yo,y1, message msg = msg, || - - - | msg,,.

Inputs: z € {0,1}".

1. If x =z, for o € {0, 1}, then output y,-.

2. Compute al|b||c||i < PE.Dec(sk’,x), where |a| = |b| = |¢| = ¢/3 and
i € [w].
If a||b||c||i # L and H(C(G(a))) = b, output G'(c) & msg;.
4. Otherwise, output C(x).

i

Fi1a. 16. Program M{zo,z1} in Hyb,.

TABLE 2
An overview of hybrid experiment.

[Hybrid experiment | Challenge: iO(-) | Answers of MO: iO() | @0 | =]
ExpEEAL M M© TREAL none
Hyb, M M {zg,z1} TReaL | random
Hyb,, MA{xo,z1} M {zg,z1} TReaL | random
Hyb, M{xzo,z1} M(L){mo,aq} TRAND | random
EXPEAND M MY TRAND none

Expianp: The only changes from Hyb, are that the challenge program C and
marked keys CO forall . € [g] are changed back to the original programs but
the values xg remain random.

We describe an overview of the main hybrid experiments in Table 2.

LEMMA 6.5. If F is a pPRF family, H is a UOWHF, PE satisfies the punctured
correctness and sparseness, and 1O is a secure indistinguishability obfuscator, then

view(Hyb) ~ view(Hyb,).

Proof of Lemma 6.5. To prove the lemma, we define auxiliary hybrid experiments
Hyb}, for ¢« € [g], where the mark oracle gives iO(M) {xg,x1}) for the first + queries
cMCcW of D.

CrAIM. In Hybj,, the probability that H(C“+V)(PRG(a))) = b is negligible, where

b:= H(C(PRG(a))).

Proof of claim. If for some PPT D, this event happens with nonnegligible proba-
bility, we show how to invert H at a random input with nearly the same nonnegligible
probability, thus contradicting the one-wayness of H.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2186 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

Constants: punctured PE decryption key sk’ := sk{xo, 21}, punctured pPRF
key C' = C{x1}, values g, 21, Yo, Y1, message msg = msg, || - - - || msg,,.
Inputs: z € {0,1}".
1. If z = z, for o € {0, 1}, then output y,-.
2. Compute al|b||c||i +— PE.Dec(sk’, z), where |a|] = |b] = |¢|] = £/3, and
i € [w].
3. If alb||c||i # L and H(C'(G(a))) = b, output G'(c) ® msg;.
4. Otherwise, output C'(z).

Fic. 17. Program Mi{zo,z1} in Hybl.

We use the fact that C(PRG(a)) and, therefore, C(PRG(a)), is pseudorandom,
because up until this point in the game, the only information D has about C comes

from the marking oracle hard-coding zy = Enc(al|b||c) in its answers. So if b is
replaced by a random challenge H(r), C“*V)(PRG(a)) must still be a preimage of b
with nonnegligible probability. O

CrAIM. view(Hybg) ~ view(Hybit) for all v € [q].

Proof of claim. The only difference between Hyb) and Hyb4™ is the (z + 1)th
answer by the mark oracle. We show that the mark oracle’s answers are function-
ally equivalent in the two games, so indistinguishability follows from the security
of 10.

There are only two possible inputs on which M+ may differ in Hybj, and
Hybffrl7 namely, ¢ and x; due to the punctured correctness at nonpunctured points
of PE. We show that (with high probability) they, respectively, mapped to C“+1) (zq)
and C’(”l)(xl) without our changes, just as they do with our changes.

It holds that PE.Dec(sk,z1) = L with high probability since z; is uniformly
random and PE satisfies sparseness. Thus, M+ (z;) = C¢+Y(2;) in Hybj. This is
also true in Hyby™" since M@+ {zq, 2, }(z1) goes to the punctured-points branch.

On the other hand, z¢ decrypts as al|b||c||7, but by our previous claim, it cannot
be the case that H(C“+Y(PRG(a))) = b. Thus, M+ (z4) = C+V(x4) in Hyby. O

We completed the proof of the lemma by the two claims. 0

LEMMA 6.6. If C is a pPRF, PE satisfies the punctured correctness, and 1O is a
secure indistinguishability obfuscator, then view(Hyb,) ~ view(Hyb,).

Proof of Lemma 6.6. We define auxiliary hybrid experiments as follows.

Hybi: Instead of choosing challenge program C « iO(M), where the program
M is described in Figure 12, we now use punctured keys sk’ and C{zi}
and set C « iO(M;{xo,z1}), where M;{zq,z1} is defined in Figure 17,
yo := G'(¢) ® msg;, and y; := C(x1).

Hyb%: We choose uniformly random y; < {0, 1} and hard-code it in the program
M{a?o, .1‘1}.

CrAIM. view(Hyb,) ~ view(Hyb]).

Proof of claim. Program Mj{xzg, 21} is functionally equivalent to Program M in
Hyb,, because we just hard-coded the values for yo and y; which would be output
anyways. Also, replacing C' by C{xz1} does not change functionality because, by line
1, C' is never evaluated at ;. Thus, the claim holds due to the security of iO. O

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2187

CLAIM. view(Hyb!) ~ view(Hyb?).
Proof of claim. This follows from the pseudorandomness of C{x;} at ;. 0
CLAIM. view(Hyb?) ~ view(Hyb,).
Proof of claim. In Hyb,, C is unpunctured in the challenge program iO(M{z, 1 }),

but M{zg,z;} is still functionally equivalent to the program in Hyb? due to line 1.
Therefore, the claim holds due to the security of iO.]

The proof of the lemma follows from these three claims. 0

LEMMA 6.7. IfPE satisfies ciphertext randomness, then view(Hyb,) ~ view(Hyb;).

Proof of Lemma 6.7. This reduces to the ciphertext randomness property of PE.
If some PPT distinguisher D distinguishes Hyb, from Hyb;, we construct a PPT A
with nonnegligible advantage in the ciphertext pseudorandomness game.

First, A chooses a + {0,1}¥/3 ¢ « {0,1}*/3, C «+ C\, and a UOWHF H,
computes b := H(C(PRG(a))), and sends mg := al|b||c||¢ and uniformly random m; «+
{0,1}¢+1*l as a challenge. Then, the challenger of PE returns (c,, ¢1_o, pk, sk'), where
o € {0,1}, co < PE.Enc(pk,myg), c¢; < {0,1}", and sk’ = PE.Puncture(sk, cg,c1).

Now, A can perfectly simulate Hyb, and Hybs to D, using ¢, as zo. If 0 = 0,
then A perfectly simulates Hyb,. If o = 1, then A perfectly simulates Hyb;. Thus, A
can break the ciphertext pseudorandomness by outputting whatever D outputs. 0O

LEMMA 6.8. IfPE satisfies ciphertext randomness, then view(Hybs) ~ view(Hyb,).

Proof. In Hyb,, we change yo from G(a) to a truly random point. The indistin-
guishability of this change follows from the PRG security of G, since the adversary
receives no other information about a.]

LEMMA 6.9. Under the same assumptions of Theorem 6.1, view(Hyb,) ~
VieW(EXpEAND)'

Proof of Lemma 6.9. This proof mirrors the proof of Lemmas 6.5 and 6.6 (in
reverse manner).

Finally, Lemma 6.3 follows from Lemmas 6.5, 6.6, 6.7, 6.8, and 6.9.]

O

7. Extensions and variants of watermarking.

7.1. Stronger unremovability in a different model. In this section, we show
that if pPRF family C satisifies a special injective property, then the watermarking
scheme for C in the previous section satisfies the strongest security (Definition 4.3).

Difficulty with full security. There is only one part of the above security proof
which does not transfer to a “CCA2” version of the unremovability game. This is the
claim in the proof of Lemma 6.5, which states that the adversary cannot query the
marking oracle on a program C () such that H o C*) agrees with the H oC on a given
point PRG(a), where C' is the marked challenge program, H is a UOWHF, and a is a
random string. N

This clearly does not hold for queries made after seeing C. Indeed, D could then
query C' itself. We show that if

e the inputs to the mark oracle are pPRF keys instead of arbitrary circuits and
e the pPRF family satisfies a strong “key-injectivity” property
then unremovability still holds.

In order to achieve the strongest notion of watermarking unremovability, we

need to restrict ourselves to marking a pPRF family that satisfies the following key-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2188 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

injectivity condition. We further change the syntax of Mark, so that its input is no
longer an arbitrary circuit, but is actually restricted to functions in the family C.

DEFINITION 7.1 (key-injective pPRFs).

Pr [Ba, F' st. F' # FAF(a) = F'(a)] < negl(\).
F+F)y

In other words this says that with high probability over the choice of F', no other
F’ € F agrees with F anywhere. See Appendix A for concrete instantiations. If
we assume C satisfies the injective property in Definition 7.1, then only a negligible
fraction of inputs causes the collision C(a) = C“+1(a), that is, Lemma 6.5 still holds.

COROLLARY 7.2. Assuming the ezistence of injective one-way functions, and an
indistinguishability obfuscator for all circuits, for alle(X) = $+1/poly()), all message
spaces M = {0,1}", all integer functions n(A) = Q(A) and m(X\) = Q(N) there exists a
watermarking scheme with message space M which is e-secure for every key-injective
pPRF ensemble {Cx}ren such that functions C in Cy map {0,1}"N — {0, 1},

PROPOSITION 7.3 (informal). Assuming the DDH assumption or LWE assump-
tion, there exist key-injective families of pPRF's.

7.2. Optimality of (% + m)-unremovability. We now show that e-

unremovable message-embedding watermarking is impossible when ¢ < % This is

because an adversary can obtain two independent uniformly sampled circuits Cy and
C1, each marked with different messages (respectively, msg, and msgl); The adver-

sary then outputs a program C* such that C* =, ,5 Cy and C* =, C;. Since C*
can be generated in a way which treats Cy and C; symmetrically, we must have

Pr [Extract(C™) = msg,] = Pr[Extract(C™) = msg;] <

N | =

This impossibility clearly holds even in a setting where the adversary is extremely
limited in, e.g., the number and type of oracle queries he may make.

7.3. Variants.

Variant: List decoding. We note that our construction could also be modified to
satisfy e-unremovability for any e = 1/poly(\) by relaxing the correctness requirement
on Extract, allowing it to output a (small) list of possible messages rather than a single
message. For unremovability, we only require that the correct message appear in the
list. For example, in our construction, instead of outputting the “majority value” msg
such that [{i : msg = msg;}| is sufficiently large, we could just output all O(1/&?)
values of msg,. By signing the messages with a standard signature scheme, we can in
a black-box way ensure that the list of messages output by the detection procedure
only contain (in addition to the correct message) the messages that were embedded
in some watermarked circuit by some previous call to the marking oracle.

Variant: Messageless watermarking. In the case of messageless watermarking,
there is no challenge message. Instead, the message space is the singleton set M :=
{marked}. As a corollary of list-decodable watermarking scheme, we can achieve
messageless watermarking with security against any € > 1/poly ().

Variant: Marking PRF's with single-bit outputs. In our construction, we assumed
we were marking a pPRF whose outputs were {0,1}" for m = Q(X). This assumption
on m was not necessary. Indeed, any pPRF family mapping {0,1}" — {0,1} can
equally be construed as a pPRF family mapping {0,1}7~°¢™ — {0,1}™ and can

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2189

be marked as such. In doing so, we incur a loss in parameters. If the watermarking
scheme for m-bit outputs satisfied (1 — ¢)-unremovability, the watermarking scheme
for single-bit outputs will only satisfy (1 — =)-unremovability.

Variant: Unforgeability. The classic Irish folktale of “Clever Tom and the Lep-
rechaun” [20] tells of a farmer’s son who one day captures a leprechaun. The lep-
rechaun guides Tom through a field of bolyawn trees to the site of buried treasure.
Before Tom goes to fetch a spade, he ties his red garter round the nearest bolyawn
and forbids the leprechaun from removing it. When Tom returns with the spade,
“lo an’ behould, not a bolyawn in the field, but had a red garther, the very idintical
model o’ his own, tied about it.” Though the leprechaun could not remove the garter,
Tom had not forbade him from tying identical garters around the neighboring trees,
making it impossible for Tom to discover the gold.

In their treatment of watermarking definitions, Hopper, Molnar, and Wagner [18]
define a notion of unforgeability that is dual to unremovability. Intended to prevent
attacks like the leprechaun’s, unforgeability requires that the only marked programs
circuits that an adversary can produce are functionally similar to circuits marked
by a marking oracle. Whereas unremovability requires that a circuit is marked if it
is e-similar to some honestly marked circuit, unforgeability requires that a circuit is
marked only if it is é-similar to an honestly marked circuit, for some parameter § < €.

Achieving unforgeability and unremovability simultaneously has proved challeng-
ing. Cohen, Holmgren, and Vaikuntanathan [14] construct a watermarking scheme for
puncturable PRFs which achieves weak notions of unforgeability and unremovability
in a security model similar to this work, namely, against an adversary with a public
extraction key and who can query the Mark oracle with arbitrary circuits as input.
Subsequent works [2, 9, 22] have constructed watermarked PRF families that are both
unforgeable and unremovable, albeit in much weaker security models (see section 2.7
for futher discussion).

Note on statistical correctness. We mention that, by an averaging argument, the
statistical correctness requirement implies that for any distribution D over inputs
x, with overwhelming probability over the choice of the marked circuit C, we have
Pry p[C(z) = C(x)] > 1 — negl(A\). Therefore, this requirement is more meaningful
than simply insisting that C = C for some ¢ = 1 — negl(A). Additionally, the
statistical correctness requirement better captures the intuition that any algorithm
from which mk and zk are unknown should never see a differing input. Similar
reasoning motivated [6] to adopt the analogous correctness requirement in the context
of approximate obfuscation.

8. The limits of watermarking. A natural question is whether there are fam-
ilies of functions for which there does not exist any watermarking scheme. Barak et
al. [5] observed that general-purpose iO rules out a notion of watermarking that ez-
actly preserves functionality, but not watermarking schemes that change functionality
on even a negligible fraction of the domain (as in section 6). In this section, we demon-
strate that some notion of non-black-box learnability implies that a family of functions
is unwatermarkable. We demonstrate that there exist PRF families that cannot be
watermarked (assuming only the existence of one-way functions), and that any family
that is learnable with membership queries (MQs) [19] is not watermarkable.

8.1. Impossibilities for statistical correctness. In this section, we discuss
a number of conditions sufficient to prove that a family of circuits cannot even be
watermarked—even for a significantly weakened form of unremovability. We modify
the unremovability game (Definition 4.3): the adversary has no marking oracle, has

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2190 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

neither a public extraction key nor an extraction oracle, and is not allowed to choose
the message to be embedded in the challenge.We leave the syntax, statistical correct-
ness, extraction correctness, and meaningfulness requirements of the watermarking
definition (Definitions 4.1 and 4.2) unchanged. In section 8.2, we relax the statistical
correctness condition.

DEFINITION 8.1 (weak e-unremovability game). The game Expy™ (A, €) is de-
fined as follows.
1. The challenger generates (xk, mk) < Gen(1?).
2. The challenger chooses a message msg € My arbitrarily, samples a circuit
C « Cy uniformly at random, and gives to the adversary C < Mark(mk, C', msg).
3. Finally, the adversary outputs a circuit C*. If it holds

C* =, C N Extract(zk, C*) # msg
then the experiment outputs 1, otherwise 0.

DEFINITION 8.2 (e-waterproof). Let F = {Fa}aen be a circuit ensemble. We say
that F is e-waterproof if there does not exist an weak e-unremovable watermarking
scheme for F.

Informally, if a function family is non-black-box learnable given an approximate
circuit implementation (corresponding the the challenge watermarked circuit), then
the family is waterproof. More formally, consider a family of circuits F) and some
parameter p = p(A) € [0,1]. The learning algorithm will be given an (arbitrary)
circuit g that p-approximates F, for a uniformly sampled circuit F' < F) from the
family. The (randomized) learner will then output some “hypothesis” circuit h. If h
is sufficiently close to F', then the learner can be used to reconstruct an unmarked
circuit given a watermarking challenge. We conclude that the family F is waterproof.

We emphasize that we are interested in non-black-box learning in which the learn-
ing algorithm gets an (approximate) implementation of the function being learned.
This is in contrast to the typical computational learning setting.

For the sake of clarity, we now define all the variants of learning we will consider.
It may be best to read the definitions individually when required by the discussion
that follows.

DEFINITION 8.3 (non-black-box learnable families).!? Let F = {Fy}ren be a cir-
cuit ensemble, where each family Fx = {F}. Let p = p(A) € [0,1]. We say a
distribution over circuits Cp p-strongly approximates F' € Fy if for all x,

Pr (C@) # F@)] < p

Let {Cr}rer, be any collection of p-strongly approximating distributions for the cir-
cuits F' € F).
Robustly Learnable:** We say that F is p-robustly learnable if there exists an
efficient algorithm L outputting a circuit h, such that for all large emough
A € N, random F <+ Fy, and random circuit C < Cg (where Cp p-strongly
approximates F):

Pr[h = F | h + L(C,1%)] is nonnegligible.

11

10The strong-approximation assumption on the distribution of the approximate implementation C
arises from the statistical correctness requirement of Definition 4.2. Note that statistical correctness
guarantees that for FF € Fy, the distribution (F < Mark(mk, F) : mk < Setup(1*)) strongly
approximates F' for some negligible function p(X).

1 This is somewhat analogous to the notion of error tolerance in computational learning [19], but
in the non-black-box setting.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2191

We say that F is robustly learnable if it is p-robustly learnable for any neg-
ligible function p(X).

Properly Learnable:'? Additionally, we say that F is properly learnable if for every
function F' € Fx, and random C + Cp,

Pr[L(C,1*) = F)] is nonnegligble.

Implementation Independently Learnable: Let CL and C% be two distributions that
p-strongly approximate F. We say that L is implementation independent if
for all F € Fy and for any two distributions Cy. and C% that p-strongly approz-
imate F, the distributions (L(C1,1*) : Oy + CL) and (L(Cq,1*) : Cy
C%) are computationally indistinguishable.

e-Approximately Learnable: A weaker condition than the above, we say that F is
e-approximately learnable if instead, for all F' and for random C < Cp,

Pr[h =2, F | h + L(C,1%)] is nonnegligible.

As a warm-up, we begin with a very strong notion of learnability, in which the
learning algorithm can not only output a hypothesis h which agrees with F' on all
inputs, but output the circuit F' itself.

ProrosiTION 8.4. If F is robustly, properly learnable, then F is e-waterproof for
every € € [0, 1].

Proof. Given a watermarking scheme for the family F, let Cp = {Mark(mk, F) :
(zk, mk) + Gen(1*)}. There exists some negligible function p()\) such that Cp p-
strongly approximates F' for all circuits F' € F, by the statistical correctness property.
Suppose F is p-robustly, properly learnable with learning algorithm L. Given a chal-
lenge marked program F < Mark(mk, F), evaluate h < L(F,1*). With noticeable
probability, h = F. If Extract(zk, F') = unmarked with any noticeable probability,
unremovability is violated. On the other hand, if Extract(zk, F') # unmarked with any
noticeable probability, then meaningfulness is violated.]

Surprisingly, this proposition is also enough to construct a PRF family that is
waterproof.

PROPOSITION 8.5 (see [6]). Assuming one-way functions exist, there exists a
PRF family F that is robustly, properly (non-black-box) learnable.

Proof. In [6], the authors extend the impossibility of virtual-black-box obfuscation
to a notion of approximate obfuscation, where for every input x, the obfuscated circuit
O(C) is required to agree with C on x with high probability over O. They construct
a “strongly unobfuscatable circuit ensemble” [6, Theorem 4.3], which has precisely
what we need: there exists an algorithm L which given any strongly approximate
implementation of F' € F), efficiently outputs F' with high probability. Additionally,
their techniques can be extended to yield a family of strongly unobfuscatable PRFs [6,
section 4.2]. O

COROLLARY 8.6. Assuming one-way functions, there exists a PRF family F which
for every e € [0,1] is e-waterproof.

12This is stronger than simply requiring that A € Fy. In particular, it implies that for every
F € F,, there are only polynomially many F’ € Fy such that F’ =, F.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2192 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

Improper versus proper learning. What if the family is not properly learnable:
instead of outputting F itself, the learning algorithm L(C) can only output a circuit
h that was functionally equivalent to F'? One might think that this is indeed sufficient
to prove Proposition 8.4, but the proof encounters a difficulty.

In the proper-learning setting, it was possible to sample a circuit for which
Extract(zk,C) # unmarked independently of mk, simply by picking F' < F. In the
improper-learning setting, we only know how to sample from this distribution by
evaluating L(F') on the marked program F. To violate meaningfulness, we need to
construct C' such that Extract(zk,C) # unmarked with noticeable probability over
both Gen and Extract, suggesting that we should find such a C independently of mk.

To get around this issue, we consider families that are learnable with implemen-
tation independence; that is, for any strong approximate implementations C} and C%
of F, the distributions (L(C1,1%) : Cp + Ck) and (L(C2,1?) : Cq < C2) are
computationally indistinguishable.'3

Approzimate versus exact learning. In the preceding, we required that an algo-
rithm learning a family F is able to exactly recover the functionality F'. What can we
prove if h = L(C,1%) is only required to e-approximate the original function F? For
this case, the proof generalizes quite naturally to show that a family is e-waterproof.

PRrOPOSITION 8.7. If F is robustly, e-approximately learnable with implementa-
tion independence, then F is e-waterproof.

Proof. As before, we run the learner on the challenge program to get h = L(ﬁ 1M,
The circuit h is an e-approximation of F with nonnegligible probability. If
Extract(zk, h) = unmarked with noticeable probability, then unremovability is violated.
Therefore, it must be the case that Extract(ak, h) # unmarked with high probability
(even conditioning on the case when h is an e-approximation).

Observe that for any F € F, the singleton distribution {F'} is a strongly approx-
imate implementation of F. To complete the above proof, consider h’ < L(F,1*) for
random (unmarked) F' (rather than on the marked F). Implementation independence
of L guarantees that the distributions of h and A’ are indistinguishable and thus for
general zk, Extract(zk, h’') # unmarked with high probability. d

COROLLARY 8.8. Any family that is (improperly, approximately) learnable with
MQs [19] is e-waterproof for any nonnegligible e.

Proof. An MQ learning algorithm L can be simulated with any approximate im-
plementation C' of F'. Because C < Cr for Cr a strongly approximating implemen-
tation of F, both C' and F' will agree on all the queries made by the MQ learner L
with high probability. The views of L are statistically close for every approximating
distribution C, implying implementation independence. 0

Additionally, this proposition captures the impossibility of exact watermarking
originally presented in [6].

COROLLARY 8.9. Assuming the existence of 10, exact watermarking schemes are
impossible.

Proof. 10 implies a 0-robust, exact, implementation independent learning algo-
rithm for all polynomial-sized circuits, where L simply obfuscates its input.'* 0

13Weaker notions likely suffice because meaningfulness only requires noticeable probability of

falsely extracting, whereas this argument gives us a high probability. We consider this input inde-
pendence notion because it is a simple, natural, and, as we will see, powerful case.
40Observed by Nir Bitansky.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2193

8.2. Impossibilities for weak statistical correctness. It is possible to prove
similar impossibility results even if we weaken the statistical correctness property of
the watermarking scheme to only require that Mark(mk, C, msg) changes functionality
at few points, but make no restrictions as to the distributions of these errors. We
prove that for this weak setting (1) there exist waterproof PRFs and (2) probably
approximately correct (PAC)-learnable families are waterproof. The main difficulty
in this setting is that Mark may now change the functionality on adversarially chosen
points, preventing a straightforward adaptation of Proposition 8.5 and Corollary 8.8.

We now consider watermarking schemes that satisfy only weak statistical correct-
ness.

DEFINITION 8.10 (weak statistical correctness). There is a negligible function
v(\) such that for any circuit C' € Cy, and any message msg € My,

Mark(mk, C, msg) =, C.

We can adapt the learning definitions of the preceding to this weaker notion of
statistical correctness. The main change in the definitions is that we no longer require
strongly approximating distributions of circuits Cp for a function F'; an arbitrary
circuit C =, F' that is close to F' suffices. This is a strictly more general setting.

DEFINITION 8.11 (learning from arbitrary approximate implementation). For
each of the learning definitions in Definition 8.3, we say that the learning algorithm
works with arbitrary approximate implementation if instead of requiring a p-strongly
approximate distribution Cp for F, the learning algorithm will work for arbitrary
C=,F.

Modifying the definition of waterproof to require that the watermarking scheme
only satisfies weak statistical correctness, both Propositions 8.7 and 8.4 still hold in
this setting.

Though MQ-learnability no longer suffices for waterproofness, PAC learnability
does.

COROLLARY 8.12. Any family that is (improperly) PAC learnable [30] is e-water-
proof (with weak statistical correctness) for any nonnegligible .

Proof. A PAC learning algorithm L can be simulated with random queries to
arbitrary approximate implementation C of F'. Because C' =, F, both C and F' will
agree on all the random queries seen by L with high probability. The views of L are
statistically close for every C, implying implementation independence.]

The main technical contribution of this section is the following PRF construction.

THEOREM 8.13. Assuming one-way functions, there exists a PRF family F that is
robustly, e-approximately learnable with implementation independence from arbitrary
approximate implementations.

COROLLARY 8.14. Assuming one-way functions, there exists a PRF family F
which is e-waterproof (with weak statistical correctness) for any nonnegliglbe .

We provide the proof of Theorem 8.13 in the next section.
8.3. Waterproof PRFs. The difficulty in this construction is dealing with ar-
bitrary approzimate implementations. If we try to use the PRF from [6], changing

the functionality on 1 specific point can destroy the learnability. This problem only
arises in the case of weak statistical correctness.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2194 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

We construct a PRF family that has an even stronger form of learnability: from
arbitrary approximate implementation C' of f; € F that may disagree on p(\) =
negl(\) fraction of the domain, we efficiently construct an approximation C’ that
disagrees with fj on €(\) = poly()) fraction of the domain. It seems that we could
have done better by simply outputting C! But C’ (in particular, the erring inputs) are
completely independent of C—guaranteeing implementation independence as required
to prove that F is waterproof.

Our starting point is the constructions of unobfuscatable function families in
[6] and [7], and an understanding of those constructions will prove helpful towards
understanding ours.

The former work was discussed in Proposition 8.5. The latter work handles a
very strong form of approximation: the approximate implementation must only agree
on some constant fraction of the domain. They achieve this, but sacrifice the total
learnability of the earlier construction, instead learning only a single predicate of the
PRF key. We require a notion of approximation stronger than [6] but weaker than [7],
and a notion of learnability weaker than [6] but stronger than [7], and achieve this by
adapting techniques from both works.

8.3.1. Preliminaries. The construction requires an invoker-randomizable PRF
[6] and a decomposable encryption scheme [7]. The following definitions and discussion
are taken almost verbatim from those works.

DEFINITION 8.15 (invoker-eandomizable PRFs [6]). A function ensemble
{fr}reqo1y such that fi, = {0,1}"*™ — {0,1}™, where n and m are polynomially
related to |k|, is called an invoker-randomizable PRF ensemble if the following hold:

L {fx}trefo,1} s a PRF family.
2. For every k and x € {0,1}"™, the mapping r — fx(x,r) is a permutation over
{0,1}™.
Property 2 implies that, for every fized k and x € {0,1}", if r is chosen uniformly in
{0,1}™, then the value fi(x,r) is distributed uniformly (and independently of x) in
{0,1}™.
LEMMA 8.16 (see [6]). If PRFs exist, then there exist invoker-randomizable PRFs.

DEFINITION 8.17 (decomposable encryption [7]). An encryption scheme (Gen, Enc,
Dec) is decomposable if there exists an efficient algorithm pub that operates on ci-
phertexts and satisfies the following conditions:

1. For a ciphertext c, pub(c) is independent of the plaintext and samplable; that
is, there exists an efficient sampler PubSamp such that, for any secret key
sk €{0,1}",

PubSamp(1™) = pub(Enc,1(0))) = pub(Encg(1)).

2. A ciphertext c is deterministeically defined by pub(c) and the plaintext; that
is, for every secret key sk and two distinct ciphertexts ¢ and ¢, if pub(c) =
pub(c’), then Decgk(c) # Decgi ().

We use as our decomposable encryption scheme a specific symmetric-key encryp-
tion scheme which enjoys a number of other necessary properties. Given a PRF
{fx}refo,13+ with one-bit output and for security parameter \, the secret key is a
random sk € {0,1}*, and the encryption of a bit b is computed by sampling a ran-
dom 7 + {0,1}* and outputting (r, Fsx(r) @ b). This function satisfies a number of
necessary properties [7]:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2195

It is CCA-1 secure.

It is decomposable.

The support of (Encs;(0)) and (Encgi(1)) are each a nonnegligible fraction
(in reality, at least % — negl) of the ciphertext space.

e For a fixed secret key sk, random samples from (b, Encex(b))p« 10,1} are indis-
tinguishable from uniformly random strings.

8.3.2. Construction. The key k for the PRF is given by a tuple k = («, 8, sk, s1,
S92, Sey Sh, Sp, 8*). For security parameter A\, a and [are uniformly random A-bit
strings, sk is a secret key for the decomposable encryption scheme described above,
sp, 1s a key for an invoker-randomizable PRF, and s1, s3, se, Sp, and s* are independent
keys for a family of PRFs. We denote by F; a PRF with key s.

The domain of the PRF will be of the form (i,q) for i € {1,...,9}, and ¢ €
{0,1}*() | for some polynomial £. The range is similarly bit strings of length poly-
nomial in . The function will be defined in terms of 9 auxiliary functions, and the
index 4 will select among them. We use a combination of ideas from [6] and [7] to
construct a PRF family for which s* can be recovered from any (negligibly close) ap-
proximation to fj, which will enable us to compute fj restricted to ¢ = 9. This allows
us to recover a 1/9-close approximation of fj that is implementation independent
(simply by returning 0 whenever ¢ # 9). To achieve an e-close approximation for any
e=1- m, we simply augment the index ¢ with an additional log(1/(1 —¢)) bits:
if all these bits are 0, then we index as before; otherwise, use index ¢ = 9. Instead of
recovering 1/9th of the function, we now recover € of the function. This establishes
the theorem.!®

We now define the auxiliary functionalities we will use in the construction.

e R;: The function Ry is parameterized by a PRF key s. It takes as input ¢ and
returns R;(¢q) = Fs(q), the PRF evaluated at q. That is, Ry simply evaluates
a PRF.

e C, 50 The function C, 4 5 is parameterized by two bit strings a and b, and a
PRF key s. It takes as input ¢ and returns C, 4 s(¢) = b ® Fs(¢ ® a), where
F is the PRF given by key s. That is, C evaluates a PRF on a point related
to the queried point, then uses the value to mask the bitstring b.

® E.;os.: The function Eg o s, is parameterized by a secret key sk for the
encryption scheme, a bitstring o, and a PRF key sg. It takes as input ¢ and
returns Egk o5, (¢) = Encgi(a;r) with randomness r = Fy, (¢). That is, E
returns an encryption of « using randomness derived by evaluating the PRF
on the query.

o My s, : The function Hyy, s, is parameterized by a secret key sk for the encryp-
tion scheme, and a invoker-randomizable PRF key sj;. It takes as input two
ciphertexts of bits ¢ and d, the description of a two-bit gate ®, and some ad-
ditional input g, and returns Hgy, 5, (¢, d, ®, §) = Encgi(Decgy(¢) © Decsy (d); 1)
with randomness r = Fj, (¢,d, ®, 7). That is, H implements a homomorphic
evaluation of ® on the ciphertexts ¢ and d by decrypting and reencrypting,
with randomness derived by applying a PRF to the whole input.

® B.; o5, The function B,y o g5, is parameterized by a secret key sk for the
symmetric-key encryption scheme, bitstrings o and 3, and a PRF key s;. It

15Note that the result is a PRF family that depends on the choice of . The argument would

fail if € was a negligible function, because an approximation for could “erase” all the structure of
the PRF family, thwarting learnability. Removing this dependence (i.e., constructing a family that
works for all inverse polynomials € simultaneously) would be interesting.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2196 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

takes as input n ciphertexts cq,...,cy and additional input ¢, and returns

Bsk,a,ﬂ,sb(cla <.y G, Cj) = a@Fsb(ml@ﬁly R m)\@ﬁ)\a pUb(Cl)a) pUb(CX)7Q)a

where m; = Decgi(c;).

Having defined the auxiliary functions, our PRF f for k = (o, 3, sk, s1, S2, Se, Sh,
sp, $*) is a combination of these functions. The argument (i, q) selects which function
is evaluated, and ¢ is parsed appropriately by each of the functionalities. For example,
B parses q as A ciphertexts ci,...,cy, and all remaining bits as §:

Ci(q) :=Cuaps (q) ifi=1,
Ca(q) :=Casrs,(q) ifi=2
E(q) == Esp,as. () ifi=3,
H(q) := Hak,s, (@) ifi=4,
fe(i,q) = { B(q) == Bap,a,p,s,(q) ifi=05,

Ry =Ry, (q) if i =6,
Ry =Ry, (q) ifi=7,
R, := Ry, () iti=8,
R* := R.-(q) iti=9.

While this construction may appear daunting, each subfunction serves a very
concrete purpose in the argument; understanding the proof ideas will help clarify the
construction. We must now argue two properties of this family: learnability as in
Theorem 8.13 and pseudorandomness.

8.3.3. Learnability. We must show that F = {f;} is robustly, $-approximately
learnable by an implementation-independent algorithm, L from arbitrary approximate
implementation.'® It suffices to show that, given any p-implementation g of f; for
random key k, s* can be recovered, because R* = Ry« comprises 1/9th of the func-
tionality.

To begin, consider the case the when the implementation is perfect: g = fi. In
this case, recovery of s* is straightforward. Given «, C;, and R; it is easy to find 3:
for any ¢, 8 = C1(q) ® R1(¢ ® «). That is, it is easy to construct a circuit that, on
input «, outputs 3 (by fixing some uniformly random ¢ in the above).!” But we don’t
know «, only encryptions of o (coming from E), so how might we recover 5?

Using H, it is easy to homomorphically evaluate the circuit on such an encryption,
yielding an encryption ¢ = (c¢1,...,¢,) of 8 = (B1,...,08,). For any g, evaluating
B(c, q) will yield a® Fs, (0, ¢, 7). Evaluating Ry (0, pub(cy), ..., pub(cy,), §) immediately
yields « in the clear. Now we can directly recover s* = C(q) ® Ra(q ® «), for any q.

How does this argument change when g and f; may disagree on an (arbitrary)
p-fraction of the domain for some negligible function p(n)? The first observation is
that in the above algorithm, each of C;, C,, E, Ry, and Ry, can each be evaluated
(homomorphically in the case of C;) at a single point that is distributed uniformly at
random. With high probability, g will agree with fj on these inputs.

16 As discussed earlier, it suffices to prove learnability for ¢ = 1/9. We may then change how the

subfunctions are indexed to achieve any inverse polynomial.
17This ability is what enables the learnability; the black-box learner cannot construct such a
circuit and thus cannot continue with the homomorphic evaluation in the next step.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2197

It remains to consider robustness to error in H, B, and R;. The same idea does
not immediately work, because the queries to these circuits are not uniform.

For H, we leverage the invoker randomizability of the PRF Fj,, using the argu-
ment presented in [6, proof of Theorem 4.3]. In every query to H(e, d, ®,), the input
q only effects the randomness used in the final encrypted output. For each such query,
pick ¢ uniformly and independently at random. Now H returns a uniformly random
encryption of Decgy (¢) ®Decgi (d). This is because the randomness used for the encryp-
tion is now uniformly sampled by F, . The distribution over the output induced by the
random choice of § depends only on (Decgy(c), Decsi(d), ®) € {0,1}2x{0,1}2x {0, 1}*.
As in [6], the probability of returning an incorrect answer on such a query is at most
64p, which is still negligible.

For B and Ry, we leverage the properties of the decomposable symmetric-key
encryption scheme, using the argument presented in [7, proof of Claim 3.8]. We
modify the procedure of using B and R, to recover « given an encryption ¢ of 3.
Instead of querying B on (¢, 7), sample a fresh random m, and using H, compute an
encryption ¢’ of 8@ m. Note that ¢’ is a uniformly random encryption (by invoker
pseudorandomness) of the uniformly random string 8 @ m, and is thus a uniformly
distributed string of the appropriate length. Independently sample a random ¢ and
query o :=B(c/, 7). This query to B is now distributed uniformly, and will therefore
be answered correctly with high probability.

To recover a, we evaluate @ = o @ Ry(m, pub(cy),...,pub(cy),g). This query
to R, is also distributed uniformly at random (for random @), and will therefore be
answered correctly with high probability.

8.3.4. Pseudorandomness. Our proof that the family {fx} is pseudorandom
follows that of [7]; the main technical change comes from the fact that B depends on a.
We consider a polynomial-time adversary A with oracle access to f. For simplicity,
we ignore the indexing of the subfunctions of fi and assume that A has direct oracle
access to each of the constituent functions, showing that they are simultaneously
pseudorandom.

Let E; be the the event that A produces distinct queries ¢ = (¢,q), ¢ = (¢, ')
such that

(m @ B, pub(c1), ..., pub(ca),q) = (m' & B, pub(c}),..., pub(c}), 7),
where m, m’ € {0,1}* are the decryptions under sk of ¢ and ¢, respectively.
CrAM 8.18. Pry 4[E4] = 0.

Proof. Recall that for any ciphertext ¢, pub(c) and the plaintext m uniquely
determine the ciphertext. If m @ 8 = m’ @ § and pub(c;) = pub(c;)’ for all i, then
c¢ = . Therefore ¢ = ¢'. 0

We consider two “bad” events, and argue that if A is to distinguish f from a
random function, (at least) one of the following events must occur.
e Let E, be the event that A produces queries ¢ and ¢’ such that ¢ ® o = ¢'.
e Let Eg be the event that A produces queries ¢ = (¢, §) and ¢’ such that
q¢ = (m @ B,pub(cy),...,pub(cy),q), where m € {0,1}* is the decryption
under sk of c.

CramM 8.19. If Pry a[Es] < negl(\) and Pry 4[Es] < negl(n), then A cannot

distinguish between fr and a random function.

Proof. Because fi depends on the PRF keys s1, s2, S, sp, and s, (but not s*)
only by black-box application of the respective PRFs, we can indistinguishably replace

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2198 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

all applications of these PRFs by (independent) truly random functions. If E, never
occurs, than the responses from C; and R; (respectively, Co and Ry) are uncorrelated;
thus we can indistinguishably replace C; (respectively, Ca) by an independent random
function. At this point, A’s oracle only depends on s* through calls to the PRF F;
we can now replace R* with an independent random function. By similar reasoning,
if Fg never occurs, then the responses from B and R, are uncorrelated; thus we can
indistinguishably replace B with another independent random function. The above
holds with high probability, conditioning on —E, and —Ej3.

Now A is left with oracles of E and H in which the PRFs F, and Fj, have
been replaced by a random function (along with 7 additional independent random
functions). The ciphertexts of the encyption scheme we use are pseudorandom. Thus,
access to these two oracles may be replaced with random without noticeably affecting
the output distribution of A. d

All that remains is to bound the probabilities of F,, and Eg. We consider two cases
separately: when E, occurs before Eg and vice versa, arguing that the probability
of either event occurring first is negligible. Let E, ; (respectively, Eg ;) be the event
that E, (respectively, Eg) occurs in the first ¢ queries.

CrAM 8.20. For all i, Pry a[Ep |~ Eq,i—1] < negl(A).
Proof. 1t suffices to show that for all 7,

Ei[E,B,AﬁEa,iflaﬁEB,ifl] < negl(A).

Furthermore, because the events are efficiently testable given only «, 5, and sk, it is
enough to prove the claim when all the underlying PRFs (corresponding to sy, Sa, Se,
Sh, Sp, and s* are replaced by (independent) truly random functions.

As in Claim 8.19, if E,, doesn’t occur in the first ¢ — 1 queries, than the responses
from C; and R; (respectively, Cy and Ry) are uncorrelated on these queries; thus we
can indistinguishably replace C; (respectively, Co) by an independent random func-
tion. By similar reasoning, if Eg doesn’t occur in the first ¢ — 1 queries, then the
responses from B and R, are uncorrelated on these queries; thus we can indistinguish-
ably replace B with another independent random function. The above holds with high
probability, conditioning on —=F, ;1 and =Ejg;_1.

The view of A after the first i — 1 queries is now independent of 5. Now Ejz
amounts to outputting a ciphertext ¢ and string ¢ such that Decg(c) @ ¢ = f, for
B + {0,1}* drawn independently of the view of the adversary. This occurs with
vanishingly small probability. O

CLAIM 8.21. Prk,.A[Eoc,i|_‘EB,i—1] < negl(/\)
Proof. 1t suffices to show that for all 4,

P |=Esi 1,7 Eai 1] < .
kj:x[Ea’Z‘ Eﬂ’z 1, Ea,z 1] = negl()‘)

Again, because the events are efficiently testable given only «, 3, and sk, it is enough
to prove the claim when all the underlying PRF's (corresponding to s1, S2, Se, Sh, Sb,
and s*) are replaced by (independent) truly random functions. As in the previous
claim, we may indistinguishably replace the first i-responses of C;, Cy, B, Ry, Ry,
and Ry by independent random functions. The above holds with high probability,
conditioning on = F, ;_; and =Eg;_1.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2199

The view of the adversary depends on « only by way of E, the circuit that
outputs random encryptions of a. Furthermore, besides the oracles E and H, all of
the oracle responses A receives are uniformly random (and independent of «). But
just as in [6, Claim 3.6.1] and [7, Claim 3.3], with only these two oracles, any CCA-
1 encryption scheme is semantically secure. Thus we can indistinguishably replace
Esk,a,s, With Egg s, —Teturning only encryptions of 0. Finally, the view of A is
information theoretically independent of o; as before, we conclude that E, ; occurs
with vanishingly small probability.]

9. Conclusions. We showed how to watermark various cryptographic capabil-
ities: PRF evaluation, ciphertext decryption, and message signing. For all of these,
there is a natural and secret “true functionality” fj that we would like to mark. Given
a message msg, we can distribute a marked circuit C' which closely approximates f.
Given C, any efficiently findable circuit C* which even loosely approximates fi must
also contain msg. Furthermore, in our scheme, the procedure for extracting msg is
entirely public key. We show that unmarked circuits cannot approximate the marked
capability to within an approximation factor of € = % + 1/poly for any poly. If we al-
low list decoding, namely, allow the extraction procedure to output a polynomial-sized
list of messages containing msg, then ¢ can be lowered to 1/poly.

There are several directions for further research. First, one could explore the
connection between obfuscation and watermarking to see whether some form of ob-
fuscation is necessary to achieve watermarking or if one can come up with construc-
tions that avoid obfuscation. This was partially answered by Kim and Wu [22] since
they presented a watermarking scheme with secret-key extraction from lattice-based
assumptions. However, a watermarking scheme with public-key extraction without
obfuscation remains open. Second, it would be interesting to achieve a fully public-
key watermarking construction where both the marking and the detection procedure
only use public keys. In the setting where the marking oracle takes keys as input,
this kind of watermarking appears plausible. As usual with obfuscation, there is a
heuristic construction which obfuscates the secret-key marking procedure to generate
a public marking key. Proving such a scheme secure by only relying on iO (as opposed
to virtual black box) appears to require significantly new techniques. Third, it would
be interesting to explore weaker but meanigful models for watermarking such as the
work by Baldimtsi, Kiayias, and Samari [2] since there is a possibility of achieving wa-
termarking based on standard cryptographic tools such as one-way functions. Finally,
watermarking schemes for richer classes of programs seem to be beyond the reach of
our techniques, but would be of obvious interest.

Appendix A. Key-injective pPRF from LWE or DDH. A key-injective
puncturable PRF can be constructed with a modification of the Goldreich—Goldwasser—
Micali (GGM) pPRF by using an ensemble of left and right injective PRGs PRGWY, ...,
PRG™. When we say that PRG® is left and right injective, we mean that if PRGW
is writen as PRG((JZ)HPRGY)7 then both PRG(()Z) and PRGY) are injective.

We also require the PRG"’s to have additive stretch. That is, there exists a
polynomial p such that for each i, PRG") maps {0,1}}+(-D2() 5 {0, 1} +ip(),
This ensures that, in the GGM construction, the size of the PRF output is bounded
by n - poly(A). Such PRGs can be constructed from standard assumptions such as
DDH or LWE.

Key-injective pPRFs from LWE. For example, using the LWE assumption, we
define PRGa : Z — Z;' as PRGa(zx) := |AT - x],, where operator |], returns the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2200 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

nearest integer (for each coordinate) modulo p. We can set ¢ := p? = 2%* for some
k= O(\) and m := 4n + O(\). Let A = Ag|| Ay, where Ay, A; € Z3*™/? then
PRGy(z) = |Af «]. In this case, each PRGy(z) is injective with high probability over
the choice of A and it maps 2nk bits to 2nk + O(k\) bits. See [4] for details about
the LWE assumption and proof of security of the above construction.

Key-injective pPRFs from DDH. Alternatively, it may seem that using DDH,
we can set PRGy, 4,(z) = ¢7,95, where g1, g2 are generators of some group G of
prime order p. Unfortunately, the outputs cannot be directly used as PRG in-
puts in the next level of the tree since they are group elements rather than expo-
nents and we do not know how to extract out two uniform values in Z, from them.
Nevertheless, this approach can be made to work by defining PRGy, ¢, 5,10,k (Z) =
ho(g%, 9%, 9%), h1(g¥, g5, g%), where ho, hy are universal hash functions that map G* —
Z, for some p’ such that log(p’) = log(p) + O(A) and log(p') < (3/2) log(p) — Q(N).
This ensures injectivity (we are hashing p balls into p’ bins and, therefore, for any
fixed ball there is unlikely to be another ball colliding with it). It also ensures pseudo-
randomness security by thinking of hg, hy as extractors via the leftover-hash lemma.
In the context of the GGM construction we need a hierarchy of DDH groups of order
D1, D2, - .- (one for each level), where log(pi+1) = log(p;) + O(A). Therefore the output
does not get “too large.”

REFERENCES

[1] A. ADELSBACH, S. KATZENBEISSER, AND H. VEITH, Watermarking schemes provably secure
against copy and ambiguity attacks, in Proceedings of the 2003 ACM Workshop on Digital
Rights Management 2003, Washington, DC, M. Yung, ed., ACM, New York, 2003, pp. 111-
119, https://doi.org/10.1145/947380.947395.

[2] F.BALDIMTSI, A. KIAYIAS, AND K. SAMARI, Watermarking public-key cryptographic functional-
ities and implementations, in Proceedings of the Information Security - 20th International
Conference, ISC 2017, Ho Chi Minh City, Vietnam, Springer, Cham, Switzerland, 2017,
pp. 173-191.

[3] A.BANERJEE, G. FUCHSBAUER, C. PEIKERT, K. PIETRZAK, AND S. STEVENS, Key-homomorphic
constrained pseudorandom functions, in Theory of Cryptography, Y. Dodis and J. B.
Nielsen, eds., Lecture Notes in Comput. Sci. 9015, Springer, Heidelberg, 2015, https:
//doi.org/10.1007/978-3-662-46497-7_2.

[4] A. BANERJEE, C. PEIKERT, AND A. ROSEN, Pseudorandom functions and lattices, in Pro-
ceedings of the Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK,
Springer, Berlin, 2012, pp. 719-737.

[5] B. BARAK, O. GOLDREICH, R. IMPAGLIAZZO, S. RUDICH, A. SAHAI, S. P. VADHAN, AND
K. YANG, On the (im)possibility of obfuscating programs, in Proceedings of the Advances
in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, CA, Springer, Berlin, 2001, pp. 1-18.

[6] B. BArRAK, O. GOLDREICH, R. IMPAGLIAZZO, S. RUDICH, A. SAHAI, S. P. VADHAN, AND
K. YANG, On the (im)possibility of obfuscating programs, J. ACM, 59 (2012), 6.

[7] N. Brransky AND O. PANETH, On the impossibility of approzimate obfuscation and applica-
tions to resettable cryptography, in Proceedings of Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, ACM, New York, 2013, pp. 241-250.

[8] D. Bonen, K. LEwl, H. W. MONTGOMERY, AND A. RAGHUNATHAN, Key homomorphic PRFs
and their applications, in Proceedings of the Advances in Cryptology - CRYPTO 2013,
33rd Annual Cryptology Conference, Santa Barbara, CA, Part I, R. Canetti and J. A.
Garay, eds., Lecture Notes in Comput. Sci. 8042, Springer, Berlin, 2013, pp. 410-428,
https://doi.org/10.1007/978-3-642-40041-4_23.

[9] D. BoneH, K. LEwI, AND D. J. Wu, Constraining pseudorandom functions privately, in Pro-
ceedings of the Public-Key Cryptography - PKC 2017 - 20th IACR International Conference
on Practice and Theory in Public-Key Cryptography, Amsterdam, The Netherlands, Part
II, Springer, Berlin, 2017, pp. 494-524.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1145/947380.947395
https://doi.org/10.1007/978-3-662-46497-7_2
https://doi.org/10.1007/978-3-662-46497-7_2
https://doi.org/10.1007/978-3-642-40041-4_23

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

(15]

[16]

[19]
[20]

(21]

(22]

WATERMARKING CRYPTOGRAPHIC CAPABILITIES 2201

D. BoNEH AND B. WATERS, Constrained pseudorandom functions and their applications, in
Proceedings of the Advances in Cryptology - ASTACRYPT 2013 - 19th International Con-
ference on the Theory and Application of Cryptology and Information Security, Bengaluru,

India, Part II, Springer, Heidelberg, 2013, pp. 280-300.

E. BOYLE, S. GOLDWASSER, AND L. IVAN, Functional signatures and pseudorandom functions, in
Proceedings of the Public-Key Cryptography - PKC 2014 - 17th International Conference
on Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina, Springer,

Berlin, 2014, pp. 501-519.

Z. BRAKERSKI AND V. VAIKUNTANATHAN, Constrained key-homomorphic PRFs from standard
lattice assumptions or: How to secretly embed a circuit in your PRF, Theory of Cryp-
tography, Y. Dodis and J. B. Nielsen, eds., Lecture Notes in Comput. Sci. 9015, Springer,

Heidelberg, 2015, pp. 1-30, https://doi.org/10.1007/978-3-662-46497-7_1.

A. COHEN, J. HOLMGREN, R. NISHIMAKI, V. VAIKUNTANATHAN, AND D. WicHS, Watermarking
cryptographic capabilities, in Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, ACM, New York, 2016, pp. 1115—

1127, https://doi.org/10.1145/2897518.2897651.

A. COHEN, J. HOLMGREN, AND V. VAIKUNTANATHAN, Publicly Verifiable Software Watermark-
ing, preprint, IACR Cryptology ePrint Archive, 2015/373, 2015, http://eprint.iacr.org/

2015,/373.

R. CRAMER AND V. SHOUP, Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack, SIAM J. Comput., 33 (2003), pp. 167—

226.

S. GARG, C. GENTRY, S. HALEVI, M. RAYKOVA, A. SAHAI, AND B. WATERS, Candidate indis-
tinguishability obfuscation and functional encryption for all circuits, in Proceedings of the
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, Berkeley,

CA, IEEE, Piscataway, NJ, 2013, pp. 40-49.

O. GOLDREICH, S. GOLDWASSER, AND S. MICALI, How to construct random functions, J. ACM,

33 (1986), pp. 792-807.

N. HoppPER, D. MOLNAR, AND D. WAGNER, From weak to strong watermarking, in Theory
of Cryptography, Proceedings of the 4th Theory of Cryptography Conference, TCC 2007,

Amsterdam, The Netherlands, Springer, Berlin, 2007, pp. 362—-382.

M. KEARNS AND M. L1, Learning in the presence of malicious errors, SIAM J. Comput., 22
(1993), pp. 807-837.
T. KEIGHTLEY, The Fairy Mythology: Illustrative of the Romance and Superstition of Various

Countries, http://www.sacred-texts.com/neu/celt/tfm/ (1870).

A. KiAyvias, S. PAPADOPOULOS, N. TRIANDOPOULOS, AND T. ZACHARIAS, Delegatable pseudo-
random functions and applications, in Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany, ACM, New York,

2013, pp. 669—684.

S. Kim AND D. J. Wu, Watermarking cryptographic functionalities from standard lattice as-
sumptions, in Proceedings of the Advances in Cryptology - CRYPTO 2017 - 37th Annual
International Cryptology Conference, Santa Barbara, CA, Part I, Springer, Cham, Switzer-

land, 2017, pp. 503-536.
M.

=

2000, pp. 371-379.

D. NACCACHE, A. SHAMIR, AND J. P. STERN, How to copyright a function?, in Public Key
Cryptography, Proceedings of the Second International Workshop on Practice and Theory
in Public Key Cryptography, PKC 99, Kamakura, Japan, Springer, Berlin, 1999, pp. 188—

196.

R. NisHIMAKI, How to watermark cryptographic functions, in Advances in Cryptology - EU-
ROCRYPT 2013, Proceedings of the 32nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Athens, Greece, Springer, Berlin, 2013,

pp. 111-125.

R. NisHIMAKI AND D. WicHS, Watermarking Cryptographic Programs against Arbitrary Re-
mowval Strategies, preprint, IACR Cryptology ePrint Archive, 2015/344, 2015, http://

eprint.iacr.org/2015/344.

C. PEIKERT AND S. SHIEHIAN, Privately constraining and programming PRFs, the LWE way, in
Public-Key Cryptology—PKC 2018, Lecture Notes in Comput. Sci. 10770, Springer, Cham,

Switzerland, 2018, pp. 675-701.

J. ROMPEL, One-way functions are necessary and sufficient for secure signatures, in STOC,

ACM, New York, 1990, pp. 387-394.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

KUTTER, S. VOLOSHYNOVSKIY, AND A. HERRIGEL, The watermark copy attack, in Security
and Watermarking of Multimedia Contents II, Proc. SPIE 3971, SPIE, Bellingham, WA,

https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1145/2897518.2897651
http://eprint.iacr.org/2015/373
http://eprint.iacr.org/2015/373
http://www.sacred-texts.com/neu/celt/tfm/
http://eprint.iacr.org/2015/344
http://eprint.iacr.org/2015/344

Downloaded 07/09/19 to 18.10.65.207. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2202 COHEN, HOLMGREN, NISHIMAKI, VAIKUNTANATHAN, WICHS

[29] A. SAHAI AND B. WATERS, How to use indistinguishability obfuscation: Deniable encryption,
and more, in Proceedings of the Symposium on Theory of Computing, STOC 2014, New
York, ACM, New York, 2014, pp. 475-484.

[30] L. G. VALIANT, A theory of the learnable, Commun. ACM, 27 (1984), pp. 1134-1142.

[31] B. WATERS, A punctured programming approach to adaptively secure functional encryption, in
Proceedings of the Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, Part II, Springer, Berlin, 2015, pp. 678—697.

[32] M. YosHIDA AND T. FUJIWARA, Toward digital watermarking for cryptographic data, IEICE
Transactions, 94-A (2011), pp. 270-272.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

	Introduction
	Our results

	Overview of our techniques
	Simplification: Token-based watermarking
	A high level approach
	A simple scheme with weak security
	Challenges in allowing mark/extract oracles
	Toward a fully secure token-based scheme
	Using iO
	Related work

	Preliminaries
	Notation
	Definitions

	Definition of watermarking
	Puncturable encryption
	Construction
	Ciphertext pseudorandomness

	Watermarking PRFs
	Scheme outline
	A message-embedding construction
	Security proofs

	Extensions and variants of watermarking
	Stronger unremovability in a different model
	Optimality of (12 + 1poly())-unremovability
	Variants

	The limits of watermarking
	Impossibilities for statistical correctness
	Impossibilities for weak statistical correctness
	Waterproof PRFs
	Preliminaries
	Construction
	Learnability
	Pseudorandomness

	Conclusions
	Appendix A. Key-injective pPRF from LWE or DDH
	References

