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Abstract

Quantum simulation is a very active and growing field. Various quantum systems
can be used to emulate existing materials in an accurate and controllable way, as
well as to generate new states of matter that have not been found in the real world
but the existence of which does not contradict the fundamental laws of physics. Ul-
tracold atoms form a perfect system to realize idealized models and study physical
mechanisms that stand out clearly in them.

Recent efforts have been made to simulate artificial gauge fields with ultracold
atoms, including spin-dependent gauge fields, such as spin-orbit coupling. Motivated
by this goal our lab explored several approaches to generate a one-dimensional spin-
orbit coupling interaction, which has a rich phase diagram and plays an important
role for topological insulators, the quantum spin Hall effect and spintronics. The first
method we developed allowed us to detect a stripe phase by dressing Bose-Einstein
condensates with an optical superlattice and Raman beams. The observed density
modulation in the ground state meets the definition of the long-awaited supersolid
state of matter.

The second approach we took was to generate spin-orbit coupling without use of
lasers. The method is based on the idea of periodic driving of the quantum system
and dressing its evolution with fast micromotion, often refered to as Floquet engi-
neering. Our experiment provided an insightful pedagogical example of what Floquet
engineering is capable of. In the experiment we endowed a low energy radio-frequency
photon with tunable momentum. When dressed with recoil momentum, the interac-
tion of a radio-frequency photon with an atom occurred in a Doppler-sensitive way.
We also demonstrated how to tune the momentum and flip its direction.

In this thesis, I first describe the experiments done in the optical superlattice.
Then I discuss the behavior of periodically driven classical and quantum systems and
provide detailed analysis of how a radio-frequency photon can be magnetically dressed
with tunable momentum.

The experiments we carried out demonstrated novel methods of generation for
spin-dependent gauge fields and showed pedagogical examples and interpretations of
evolution of periodically driven systems. The scheme of periodically driven atoms
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inspired a theoretical study of heating in Floquet systems.

Thesis Supervisor: Wolfgang Ketterle
Title: John D. MacArthur Professor of Physics
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Chapter 1

Introduction

1.1 Quantum simulations

The goal of science and physics, in particular, is to understand nature, its fundamen-

tal laws, and take it under control. Physicists during the last two centuries achieved

tremendous technological progress while looking at complex systems and phenomena

and decomposing them into simple building blocks. It is striking how few exactly

solvable problems there are in physics. The job of a physicist is to take very compli-

cated problems, decompose and simplify them, and eventually reduce them to basic

concepts and models. If we make the complicated problem look trivial, it means we

did our job well and we really understand what is happening. Even though the num-

ber of exactly solvable quantum problems is so small, and the number of methods we

can apply to them is very limited, the beauty of physics is that it can always surprise

us. My journey to atomic physics was like a stroll in a forest: a forest which basi-

cally consists of three trees: a two-level system, a hydrogen-like atom and a harmonic

oscillator. And still one can easily go astray in a forest of three trees. It is really

beautiful how simple complexity can be, and how complex is simplicity.

The study of the universe starts from an attempt to understand of a two-body

problem - how Earth travels around the Sun. The study of matter that surrounds

us led to the discovery of atoms, nuclei and elementary particles. Understanding the

properties of light required us to look at it at a single-photon level. The interest in
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understanding the laws of nature made us look at it on a single-particle level, and

when we got there we started to move in the opposite direction. We now want to

construct matter atom-by-atom, or photon-by-photon. From single-particle physics,

we move to two-body systems, three-body systems, and eventually we want to build

controllable many-body systems.

Understanding physics on the single-particle level mainly confirms the existing

theories. Building new states of matter paves the way to the area of science, where

theoretical and computational methods are limited.

The difficulty of quantum problems is that their complexity grows exponentially

with their size. A proposed solution to such problems was envisioned by Richard

Feynman [1]. We can simulate quantum phenomena with quantum objects: atoms,

ions, artificial atoms and other quantum systems. One has to think up how to refor-

mulate the problem in terms of the chosen quantum system and then ask nature to

provide us with the answer. In other words we want to ask nature to do the hard

part: to simulate, to perform the "calculation", whereas on our side we still need to

initialize the problem and do the measurements. Both things can be difficult enough

by themselves.

The idea of a quantum simulator can be generally formulated as 1) mapping

the initial state of the system 10(0)) to the initial state of the simulator 1#(0));

2) initializing the state 1#(0)); 3) engineering the Hamiltonian ft and evolving the

state of the simulator with the unitary operator U = e-it/h; 4) measuring the state

10(t)) = U 10(0)); 5) mapping the obtained final state of the simulator 1#(0)) on

the state of the system. Thus, the major questions we pose before setting up the

experiment are how to map the Hamiltonian and the state of the system onto the

Hamiltonian and state of the simulator.

In the present work I would like to show two examples how this mapping can be

done in the case of the spin-orbit coupling Hamiltonian, a fundamental interaction

that combines both internal and motional degrees of freedom of a particle. Two

different approaches to simulating spin-orbit coupling were developed in our lab, both

having their own advantages and shortcomings. The scheme I want to focus on in
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I

this thesis is based on utilizing a method of engineering Hamiltonians in periodically

driven quantum systems, known as Floquet engineering. Our experiment provides a

lucid example of how powerful Floquet engineering is and what it is capable of.

1.2 Ultracold atoms as a quantum simulator

The field of quantum simulations has been growing rapidly over the past decade. The

demand in analysis of complicated many-body problems in condensed matter physics

and chemistry stimulates advances in the development of coherent control of vari-

ous platforms for quantum simulations. Different systems, such as ultracold atoms,

trapped ions, quantum dots, superconducting circuits, and nuclear spins providc tools

for the simulation of a broad range of problems. Each of these quantum simulators

has its own strengths and can tackle special problems, which are particularly suitable

for them.

Ultracold atoms have already proved to be a great platform for quantum simula-

tions. Neutral atoms in optical lattices mimic the behavior of electrons in crystals.

However, unlike real crystal structures, optical lattices are easily tunable and different

geometries can be explored (such as triangular [2] and honeycomb [3] lattices). By

controlling the depth of the optical lattice potential it has become possible to observe

the Mott insulator to superfluid quantum phase transition [4]. In general, optical

lattices are natural systems to explore both Bose- and Fermi-Hubbard models [5].

In our experiments atoms are not only cold, but also very dilute. Interactions be-

tween the atoms are determined by a single parameter - the scattering length, which

in turn can be controlled by the magnetic field through Feshbach resonances. By tun-

ing the interaction between two fermionic spin states, one can make a smooth tran-

sition from BEC molecules to BCS pairs and investigate the formation of fermionic

superfluid [6].

Recent addition to the advantagous qualities of ultracold atoms, such controllabil-

ity and accuracy, was the development of single-site resolution microscopes [7, 8]. It

is now possible to study the dynamics of atoms in an optical lattice and perform new
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measurements, which are not accessible in other fields (for example, measurement of

entanglement entropy 19]).
An important direction of research in the field of ultracold atoms is the simula-

tion of artificial gauge fields. Neutral atoms emulate the motion of an electron in a

magnetic field, when its wave function acquires a phase while moving in space. This

approach allowed to simulate incredibly high magnetic fields (equivalent to 10000 T

in real life) [10, 11]. Our recent work in the BEC2 lab belongs to the same theme

of developing new methods for engineering exotic gauge fields. We have realized a

spin-dependent gauge field by two very different methods. One of them led to the

observation of the new state of matter - a supersolid, while the other method created

a new physical concept - a recoil-dressed photon. Both projects explored funda-

mental aspects of quantum mechanics and resulted in the creation of new man-made

systems, which are not forbidden by the laws of nature, but have not been realized

in the real world.

1.3 Thesis Outline

This thesis will present the results of the experimental realization of a spin-orbit

coupling Hamiltonian in an optical superlattice and with periodically driven atoms.

The superlattice model allowed us to explore the spin-orbit coupled Bose-Einstein

Condensate (BEC) in new regimes, and led to the subsequent detection of density

modulation in the ground state, the so-called stripe phase, which serves as an example

of supersolid state matter. The approach of engineering spin-orbit coupling as an

effect of periodic drive realized an alternative laser-free scheme. It allowed us to

demonstrate an exotic phenomenon of recoil-dressed radio-frequency (RF) photon.

The thesis is organized as follows:

• Chapter 1 overviews BEC2 lab experimental apparatus.

* Chapter 2 explains what spin-orbit coupling interaction is. This chapter dis-

cusses spin-orbit coupling in the context of solid state physics and earlier real-

18
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izations with ultracold atoms.

• Chapter 3 discusses physics in an optical superlattice. It starts with the desc-

tiption of the states in the superlattice, followed by the physical implementation

of the optical superlattice and experimental data on the realization of the spin-

orbit coupling Hamiltonian and stripe phase detection.

" Chapter 4 reviews the principles of the description of periodically driven clas-

sical and quantum systems.

• Chapter 5 presents the idea of Floquet-engineered recoil-dressed radio-frequency

photon, its connection to spin-orbit coupling and its experimental realization

with oscillating magnetic force and the synchronized sequence of RF pulses.

* Chapter 6 provides the conclusion and an outlook.

1.4 2 3 Na Bose-Einstein Condensate Production

In 2013 when I walked into the BEC2 lab for the first time, I was absolutely shocked by

the complexity of the apparatus built by the previous generation of graduate students.

Hundreds of cables from the floor to the ceiling, forests of mirrors, lenses and other

elements on the optical tables. It takes a lot of effort and expertise to maintain the

apparatus and run experiments with cold atoms. However, it took even more effort to

build this machine and conduct the first experiments: produce the first BEC, set-up

lattices and carry out the test experiments. These difficult steps were done by the

graduate students before I joined the group. My goal was to keep performance of

the machine on the same level and possibly modify, improve if needed, and adjust it

for the upcoming scientific agenda of our lab. Due to the increase of the laser power

needs in our lab, our laser system experienced significant changes. We have also had

two vacuum failures in the course of the last 6 years. Brining the machine back to

work required us to go through the basic steps of laser cooling in order to produce

BEC again. In this chapter I would like to overview the existing BEC machine. For
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the more detailed description of the apparatus I recommend early theses from our lab

[12, 13, 14].

1.5 Overview of the Experimental Machine

Our BEC2 apparatus is a general-purpose machine for experiments with ultracold
23 Na and 6Li. Fig.1-1 shows a schematic plot of the whole apparatus. On the right

is the two-species oven which is the source of 23 Na and 7Li. The oven is connected

to a small intermediate chamber through the differential pumping tube. The VAT

gate valves before and after the intermediate chamber allow the isolation of different

segments of the apparatus in order to protect the vacuum. The intermediate chamber

is connected to the Zeeman slower another differential pumping tube. Atoms which

travel through the Zeeman slower arrive to the main chamber, where they are trapped

and cooled to quantum degeneracy. Each of the chambers are pumped by their own

ion pump and the pressure is monitored by ion gauges or by the RGA (Residual Gas

Analyzer) in the main chamber.

The magnetic coils are mounted in the top and bottom buckets of the main cham-

ber. A detailed description of the coils and winding procedure can be found in [12].

Here I just want to mention that the coils are water cooled and can carry high current

up to 500A. Being connected in a circuit with mechanical H-bridge, they can work in

both Helmholtz and anti-Helmholtz configurations. When running current through

all the segments of the coils, one can achieve magnetic bias fields up to 1 kGs and

magnetic gradient up to 1 kGs/cm. The ability to handle high currents and produce

high magnetic gradient was a critically important point for the experiment we did on

magnetically generated spin-orbit coupling described in Chapter 6. The strong gra-

dient is also important to do efficient evaporative cooling, since we want to compress

atoms to high densities by loading them into a tight magnetic trap. For the future

experiment with 6 Li, high bias magnetic field is needed to reach s-wave Feshbach

resonance around 830 Gs, which is the way to control the interactions between the

atoms.
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Main Chamber Zeeman Slower Source

Figure 1-1: A schematic plot of the two-species apparatus. The cups on the right
contain sodium and lithium. They are heated to produce atomic flux. The atonns
undergo the first cooling stage while traveling through the Zeeman slower. Once they
arrive to the main chamber, atoms are trapped and cooled further. The custom-made
stainless steel chamber provides optical access through many viewports. High-current
coils are mounted in the top/bottom buckets to provide strong magnetic fields. The
figure is adapted from [12]

1.6 Laser systems

Resonant light for sodium 2 Na is provided by a laser from MPB Photonics. 1178 nm

light from Topitca DL Pro diode laser is seeded to a Raman amplifier, which gives

around 6W of power. Then the light is frequency-doubled to produce 1.4W of 589 nm

yellow light. Over the years, Toptica diode degraded and currently our lab is using a

temporary replacement laser diode and our home-built delivery system which shapes

the beam and provides the minimal required power (18-20mW) to the next stage -

Raman Amplifier. Back-up diode from the company Innolume were ordered to be

shared between BEC2 and BEC3 labs for the future replacement in order to solve

this problem permanently.

Green 532 nm light is needed for several purposes in the lab. First, it is required

to plug the low field region in the magnetic trap [15]. Second, it was needed for the,

experiment with optical superlattice. While the second application required single-
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mode light phase-locked with the 1064 light source, the plug beam application is

rather simple - a multimode laser can be used. However, due to the failure of our old

Millenia from Spectra-Physics lasers, we had to use the same light source (described

in details in the Chapter 4) as we used for the superlattice as a plug laser. Eventually,

a new 10W Sprout was purchased and installed specifically to serve only as a plug

laser.

High power 1064 infra-red (IR) light is needed to trap atoms in optical dipole

traps and to generate optical lattices. Usually, several Watts of IR is needed for each

of the beams used for these application. Our home-made 532nm frequency-doubling

setup required around 30W of IR. Our lab is equipped with two NUFERN amplifiers,

each of them can safely produce 40W of power. In addition to them we have an old

IPG fiber laser giving around 15W. As seed source for NUFRN amplifiers, we used a

2W Mephisto laser from Coherent.

Over the course of several years we have tried different parameters of sample

preparation. The typical path to BEC is the following: we load 10' atoms from

MOT to the magnetic quadrupole trap with a gradient of 50 Gs/cm. Then the trap

is ramped up to 500 Gs/cm for further evaporation either by driving microwave

(IF = 1, mF = -1) -+ F 2,mF = -2) ) or radio-frequency (F =1, mF -- 1) -~

F= 1, mF= 0) ) transitions. After evaporation, about 1 - 10 106 condensed atoms

can be loaded into the optical dipole trap.
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Chapter 2

Introduction to spin-orbit coupling

One of the major motivations for the research in our lab has been the study of

spin-orbit coupling. Why is it important to simulate spin-orbit coupling for neutral

atoms? Implementation of the interaction which includes both internal degree of

freedom (spin) and motional (orbital) degrees of freedom is interesting by itself, and

the f . s term is the simplest combination of the two operators. It naturally appears

from the Hamiltonian of a particle in spin-dependent gauge field (P - As) 2. The goal

of quantum simulations is to implement various hamiltonians and this is one of the

most generic ones.

In addition to being important as a fundamental concept spin-orbit coupling

(SOC) also plays an important in many phenomena. It first appears as an inter-

action between electrons spin and the field of nucleus in an atom, leading to a fine

structure of the energy levels. In the field of utracold atoms we find motivation

for our experiment in phenomena inspired by solid state physics. SOC also plays a

fundamental role there.

A paradigmatic example is the velocity-dependent energy splitting in heterostruc-

tures [16]. An electric field intrinsically appears due to the charge redistribution at

the interface of a bilayer system. In the frame moving with electrons at velocity V

the electric field is transformed n into magnetic field, which depends on 6 through

the Lorentz transform.
Eoh

Bso = 2 (kxey - kyex)
mc
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This magnetic field in the frame of electrons leads to a momentum dependent Zeeman

effect. The interaction of the form key - kye, is known as Rashba SOC. One can say

that the asymmetry of the structure in the growth direction leads to Rashba SOC.

Another type of the spin-orbit interaction, which has a form of k.e, -kyey, is referred

to as Dresselhaus interaction, and it originates from lack of inversion asymmetry in

the bulk of semiconductors.

Solid-state devices which rely on electron charge are ubiquitous parts our everyday

life. Another boost for the modern electronics, memory storage and computations,

could be the use of the spin degree of freedom of electrons. Devices based on spin

transfer are studied in the field of spintronics [17]. One of the advantages of using

spin transistors is that in order to change the spin-state one does not need to provide

electrical current as for the commonly used field transistors. The smaller size, reduced

consumption of power and better sensitivity would enable a significant improvement

of current electronics technology. The spin degree of freedom can also be used as non-

volatile storage of memory. Spin-orbit interaction is essential for spintronics devices.

It allows electrical control of the spin by perturbing the motional degree of freedom.

SOC also plays an important role in physics of topological insulators [18]. The

spin degree of freedom enriches the band structure of electrons in solids. Due to

the coupling between the spin and momentum a spin texture appears in momentum

space. Winding of the spin in momentum space when the quasimomentum is swept

over the Brillouin zone can give nonzero winding numbers and topological bands.

2.1 Synthetic spin-orbit coupling in cold atoms

For neutral atoms coupling between motional degree of freedom and atom's spin does

not happen naturally like for charged particles. However, the effective spin-orbit

coupling can be mimicked with the help of external fields. Simulation of 2D spin-

orbit coupling is particularly interesting [191, since it is equivalent to generation of

non-Abelian gauge fields (proposals [20, 21]) and will give rise to study topologically

nontrivial phenomena. For instance, realization of Rashba-type spin-orbit coupling
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is very exciting because, because it would emulate a solid states system in a control-

lable way. But cold atoms experiments aim not only to serve solid state physics by

untangling its problems and reproducing analogous systems, but can also create the

states of matter which do not naturally occur in life. In this sense, simulating a one-

dimensional spin-orbit coupling, which is equivalent to Abelian gauge, is interesting

by itself and not only as a stepping stone towards 2D spin-orbit coupling. In some

sense engineering the systems which do not have an existing material counterpart

may be even more exciting than trying to mimic nature.

ID spin-orbit coupling was proposed to be seen in A-type schemes [22]. It was

shown that the ground states of the A-scheme coupled via two-photon transition gives

rise to the interaction with equal combination of Rashba and Dresselhaus terms, which

in the convenient basis can be written as kz&z.

Gauge potentials can be simulated by affecting atom's dynamics with external

forces (for instance, by rotating the condensate [23]) or fields through atom-light

interaction [241. The idea of generating Abelian and non-Abelian gauge fields goes

back to the work of Wilczek and Zee [25].

2.2 ID spin-orbit coupling. A-scheme.

Apparently, the simplest for of spin-orbit coupling can be realized and very simple

A-type scheme. It was shown that ID spin-orbit coupling kz&z, which is a sum of

Rashba and Dresselhaus terms, arises as a synthetic gauge field in three-level system

dressed with two Raman laser beams [26]. This gauge field is spin-dependent, but

Abelian, unlike 2D spin-orbit coupling.

The A-type configuration can be realized with the hyperfine states of alkali atoms.

In the work of Ian Spielman's group 8 7Rb atoms were used [27]. The Hamiltonian

corresponding to the dressed level structure on the Fig.2-1 is

H = hA - (h01 sin Igi) (el|+ hQ2|gt ) (e l + h.c.) (2.1)
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Figure 2-1: ID spin-orbit coupling in A-scheme. (a) A three-level system dressed with
two Raman laser beams. (b) Level structure for 8 7Rb used in the of the Spielman
group. (c) Raman beams provide moementum transfer which accompanies spinflip
which shifts the parabolic dispersions and opens the gap at the level crossing. The
image is adopted from [22]

, where the strengths of the coupling between the ground states and the excited state

manifold Q 1 = Q sin Oe' and Q = Q cos e 2are determined by the two-photon Rabi

frequencies of the Raman beams Q, their alignment captured by angle 0 and the

phases of the laser beams.

In the case of large detuning A » Q, the single-photon transition from the

ground states to the excited state le) is suppressed, and the excited state then can be

adiabatically eliminated. So, the A scheme is reduced to effective two-level system,

coupled by a two-photon process. After adiabatic elimination the eigen states of the

2-by-2 Hamiltonian are:

IX1(r)) = cos Oeis2(r) Igf) - sin 0eis1(r) |g ) (2.2)
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|X2(r)) = sin e)isinOeiS(r) ) (2.3)

In the simplest case when the Raman beans are propagating along 2, i.e. the Rabi

frequencies are Q 1  Qeiko and Q2 = Qeikoz, where k = 27/A is the wave-number of

the Raman beams. After adiabatic elimination of e) original Hamiltnonian is reduced

to the effective one

He= 2m 2 2A(2.4)
ShQ-e~-i

2 ko.z _+ hoRF
2A 2m 2

where 6 is a two-photon detuning. The strength of the interaction is characterized

now by 2-photon Rabi frequency . Thus, we obtained a Hamiltonian of a two-level

system driven by an optical field with the wave number 2ko.

After applying a position-dependent transformation N& e-ikoza- the effective

Hamiltonian Heff is transformed into ID spin-orbit coupling Hamiltonian Hsoc

RHeff'I, where

(Pz + ko&z )2 6 QRn
Hsoc= ( 2m + -o-Z + 2-x (2.5)

2m 2 2

The fact that the Hamiltonians 2.4 and 2.5 are equivalent up to the unitary trans-

formation gives us a hint how to interpret spin-orbit coupling. It is intrinsically

related to the recoil momentum. Transition from one state to another is carried out

by absorbing a photon from one of the Raman beams and reemitting a photon into

another Raman beam in a stimulated way. The momentum of atom changes by 2ko.

Depending on the direction of the process the atom gains or looses 2ko. As a result,

the parabolas of the dispersion relation for spin-up and spin-down are shifted by 2ko

(Fig.2-1). The two-photon Rabi frequency characterizing the strength of transition

between |g) and |gT) enters the spin-orbit coupling Hamiltonian in &x term and opens

the gap between the parabolas.

One has to notice that adding another pair of Raman beams in a different direction

does not create the "missing" term to make 2D spin-orbit coupling out of ID. It merely
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changes the direction of recoil momentum. In order to fundamentally change the type

of the gauge field and make it non-Abelian one needs to consider more complicated

systems such as, for instance, tripod level configurations 128].
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Chapter 3

Spin-Orbit Coupling in a Superlattice

As was discussed in the previous chapter, spin-orbit coupling is a profound interaction

mechanism relevant for various phenomena such as topological insulators, Majorana

fermions, and spintronics. Realization of SOC with ultracold atoms enables explo-

ration of new phases of matter and allows control of the motional degree of freedom

by the internal degree of freedom of an atom, or the other way around. For example,

in quantum dots, by talking to the motional degree of freedom, one can control its

spin [29].

Spin-orbit coupling makes the atom's motion spin-dependent. Rather trivial

regimes without spin-flips can be achieved with far detuned light [30, 31]. In principle,

this is, for example, enough to emulate Spin Quantum Hall effect.

However, in order to simulate Rashba or Dresselhaus spin-orbit coupling, we need

to bring in o, and o- terms, and therefore, there must be an implementation of

a spin-flip in some form. In the pioneering work of Ian Spielman's group, spin-

orbit coupling was engineered using hyperfine states of 7 Rb [27]. Coupling of the

two states was achieved by a 2-photon Raman process and the atomic spin-orbit

interaction in the excited state. Without fine-structure splitting, caused by the L - S

interaction, changing the hyperfine state in the ground 1 = 0 manifold would not

be possible. Therefore, the experiments using Raman transitions between different

hyperfine states faces two contradicting requirements: for the strong coupling through

the L -S interaction, one needs to minimize the detuning from the excited states, but
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to reducing the heating, the detuning must be as large as possible. The strength of

the coupling and heating through the spontaneous emission from the excited state

scales the same way with the two-photon detuning, i.e. 1/2 [32].

Our goal is to create a transition between spin-states which is accompanied by

momentum transfer. Two-photon Raman transitions, when the Raman beams have

different orientations, seem to be a perfect choice for the source of the momentum

transfer. A photon ki is absorbed from one beam and reemitted into another beam

with a wave-vector k2 . Then the momentum transfer is k2 - k1 . The order can

be different: a photon is absorbed with wave-vector k2 and reemitted with ki in

a stimulated way. The momentum transfer then has the opposite sign. Since the

two-photon process and different hyperfine states as a choice of pseudo-spin do not

really work well together, there are two passes towards improving already existing

spin-orbit coupling schemes.

First, one could keep two-photon Raman process but choose different pseudo-spin

states which would not require resonant light to be coupled - for instance, left and

right states in a double-well, or different bands in an optical lattice with atoms staying

in the same hyperfine state.

Second, one could continue using hyperfine states as pseudo-spins, but not rely on

Raman process for momentum transfer. The hyperfine states can be easily coupled

with an RF signal, but then one needs to come up with another mechanism to impart

recoil, since an RF photon does not have one (for instance, Floquet engineering).

The problem of coupling different hyperfine states along with providing momentum

transfer can also be eliminated by using species that have nonzero angular momentum

in the ground state, like Dy [33], and do not require near-resonant light.

Our lab has explored both strategies for alkali atoms: a different choice of the

pseudo-spin, and a different source of recoil. In the present chapter, I would like to

overview our experiments based on the first strategy [34, 35]. In order to avoid the

problem of spontaneous emission, we decided to consider the two lowest states in the

asymmetric double-well potential as pseudo-spin states Fig.5-1. In the tight-binding

regime, when the barrier between the wells can be treated perturbatively, the lowest
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Figure 3-1: A schematic plot of the pseudo-spin states in an asymmetric double-well
potential. The overlap between the pseudo-spin-down (the state localized in the left
well) and the pseudo-spin-up (the state localized in the right well) is controlled by
the tunneling through the barrier J and the offset between the wells A.

eigenstates can be written as

ll) = 1l) + (J/A)r) , t) = r) - (J/A)r), (3.1)

where 1) and Ir) are the state, localized in the left and right wells respectively. Since

both states belong to the same hyperfine states, there would be no need for resonant

light to couple them with the Raman process. Another important advantage of such

choice of pseudo-spins is that we can control interactions between them. The collision

rate between atoms in left and right wells of double-well potential is determined by

the overlap of their wave-functions and can be adjusted by the height of the barrier.

In such systems, intra-spin collisions naturally prevail over inter-spin collisions. The

collisions between the atoms in left and right wells are suppressed by a factor - (J/A)2
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with respect to on-site collisions of atoms. Such a relation between the collision rates

makes the system miscible. This property is important, since we want to realize and

probe many-body Hamiltonians and explore new, unconventional phases of matter.

One of the most intriguing predictions for the spin-orbit coupled Bose gas is the

existence of ground state with a density modulation, called stripe phase [36, 37, 38].

In the regime where the intra-spin interactions dominate, gT < 9t4, i.e. when the

system remains miscible, a spontaneous density modulation forms. This phase of

matter meets the definition of a supersolid [39], a long-awaited phenomenon which

was sought in superfluid helium [40, 41] and eventually was realized in our lab with

Bose-Einstein condensates [35] and in the Esslinger group [42].

Our scheme addresses the major challenges of spin-orbit coupling: it does not

require resonant light which solves the problem with the heating due to spontaneous

emission and the interactions can be controlled so that the system favors miscibility.

In the actual experiment, we created a lattice of double-wells - an optical super-

lattice. So, the correct model for our system is a sequence of replicated double-wells

along the z axis, and free space in the transverse direction. This approach creates a

number of technical advantages. First, it is more convenient to work with a stack of

coherently coupled double wells because of the improved signal-to-noise ratio. Second,

the interference between the unit cells of superlattice helps to distinguish pseudo-spin

states - since we work with the same hyperfine state of sodium, a traditional method

of distinguishing spins, such as Stern-Gerlach experiment, does not work.

3.1 States in a superlattice

The Hamiltonian for a one-dimensional superlattice, created by overlapping standing

waves of infrared and green light with relative phase #SL, is

"2 ^2

HamZce = + + VGrsin2 (kGrZ) + VIRsin 2 (kIRZ + SL) (3-2)
2m 2m

Here the first term describes motion along the lattice direction, the second term

describes the motion in orthogonal plane in free space, and the third and fourth terms
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are the potentials created by the green and IR lattice respectively.

We can use a basis of l(r))states, localized in the left(right) double well of

the unit cell with the number n, so that in the tight-binding approximation the

Hamiltonian can be rewritten as

Hiattice .I 2A Z(Irn)(rnj - 1ln)Kln)- JZ(11n) (r.1 +h.c.)
n n

71 t=l,r
t'=l1,r

where |1(rn)) is a wavefunction localized in the left(right) well of the nth unit cell,

Ao is the energy separation between the right and the left wells. h is taken to be 1.

Tunneling between neighboring unit cells is important for maintaining coherence

in the superlattice: eventually what we observe experimentally is the interference

patterns of matter waves coming from different nodes of the lattice, but not relevant

for describing spin-orbit coupling with double-well states. Thus, all the tunneling

terms beyond one unit cell with Jt1 , in the Hamiltonian can be neglected for the

purpose of describing the pseudo-spin flip and momentum transfer.

When instead of considering an isolated double well we look at the stack of coher-

ently coupled double wells in a superlattice. We have to take lattice band structure

into account (Fig.3-2). The lowest state of the double potential will turn into the

lowest band of the superlattice. The minimum energy state of the lowest band occurs

at zero quasimomentum q = 0. The first excited state state of the doublewell will now

become the first excited band. But in contrast to the ground band, the first excited

band has an inverted structure in qasimomentum space, i.e. its energy minimum is

located at the edge of the Brillouin zone at q = ir/d, where d is the period of the

lattice.

It is going to be more convenient to use eigenstates of a double-well instead of

localized states for further description. To first order in the small parameter < 1,
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Figure 3-2: Two lowest bands of the superlattice. A Raman process couples the q = 0
state of the ground band with edge of the Brillouin zone of the first excited band.

they can be written as

Itn) = 1rn) - Il ). (3.4)

If the system in our experiment is initially prepared in the lower wells of double-

wells, which corresponds to the q = 0 of the lowest band of the superlattice,

N ) (3.5)

where N is the number of unit cells in the lattice. When all the atoms are confined

in the upper wells, the lowest state is the q = state of the first excited band due,

to the inverted dispersion relation:

N

r/d)= e(zn+ )

n=1
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moo"

i
4n) = 11n) + Y Irn) i

0

N

*4)q=O
n=1



With z,= nd, the state becomes: .

N

I'I ) n1 \= (-1)NITn) (3.7)

Now, we want to establish coupling between these to states J 0 ) and | ).

For that we turn on the Raman potentialVRaman and treat it as perturbation. The

complete Hamiltonian of the system is

H = Hattice +Vnaman, (3.8)

where VRaman = Qcos(kz + kxx - t) is a moving lattice potential. One of the

Raman beams is aligned along the lattice direction 2, and is responsible for the

quasimomentum transfer from q = 0 to the edge of the Brillouin zone q = ir/d. The

quasimomentum transfer from this IR beam kIRmatches half of the reciprocal vector

of the periodic structure, which is 7r/d = lr/(ArR/2). The second Raman beam is

aligned in the orthogonal direction to the lattice x (Fig.3-3). After absorbing its

photon, the x-component of the wave function of the atom becomes a plane wave

with wave number k = kIR. For the purpose of our experiment, the initial phase of

the Raman potential is not relevant, and is taken to be zero.

k202

tA

d

Figure3-3: A schematic plot of the superlattice and Raman beams. The periodicity of
the superlattice is d = 523 nm. One of the Raman beams (ki, wi) is along the super-
latice, while another Raman beam (k2 , W2 ) is in the transverse direction. Atoms that
have experienced a 2-photon transition acquire a momentum in transverse direction
equal to k2 and quasimomentum transfer along x equal to k1 .

We expand the Hamiltonian 3.8 in the new basis 3.4 with A= A 0 + 2 ~ AO:
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P 2 1H_ +zA y:"CTn)K Tnj- I-n)K1-njD±
2m 2 Zw

n

Pj_'P'1n i=4,t

In our experiment kz ~r ~kr = _, where d is a period of the superlattice. In

order to consider the effect of the Raman potential with arbitrary phase using first

order perturbation theory, one needs to calculate overlap integrals for cos(kIR-(z-zn))

and sin(kIR - (z - zn)) to first order in j:

J J
(4,| cos(kIR - (Z - Zn)) It) e(l 11) = -

(4n|cos(kIR - (z - z,)) |4- ) 1, (TI cos(kIR - (z - z.) IT-) ~-0,

J J
( n Isin(klR - (Z -- zn))|It) ed (rnl I rn) =,

(Kn Isin(kIR - (z - z,)) ~,W 4)0, (t l sin(kIR - (z - zn It) 1,

(3.10)

(3.11)

(3.12)

(3.13)

where z. = nd is a coordinate of the left well in the n'h unit cell.

Thus, the Raman potential can be expanded in the basis of double-well eigenstates:

in) (in IQcos(kz(z - zn) + kzzn+ kxx - 6 -t)|i') (i'| I=
i~a,b

i'=a,b

=Qcos #n{- ( 2) (tnl + tn) (4|) + |4n) (4|}+

- Qsin#n{t n) (tnl + K(M) (tnI + tf) (Knl)}, (3.14)
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where #n = rn + kxx - 6t. Later, we will calculate how x as an operator acts on the

momentum states P).

VRaman ZQ(_ 1)cos(kxx- t) I~)K4r Q(_-1)nsin(kx-6t)It,)(TnI+ (3.15)
n

-- vQ (-1)"-cos(k -t- i){4 )(tl+ i±t)( m } (3.16)

The factor (I)n represents the phase of the Raman beams. This factor is present

because the wavelength of the Raman beams A = 1064 nm, is two times the length of

the unit cell. In our experiment, the atomic sample is prepared in the zero-momentum

state. When the Raman perturbation is applied, the atoms experience a kick in the

x-direction. In the y-direction atoms remain unperturbed, i.e. py = 0. Since the

confinement along x is weak, we can use the basis It (i), k) = It (1)) 09 ekx. Here

the states It (4), k) correspond not to the individual double wells, but to the lowest

and first exctied band of the lattice. They include all the factors needed for a Bloch

wave to reflect the symmetry of the Hamiltonian. The Raman interaction gives rise

to intra-band coupling terms (3.14), and to the spin-orbit coupling term (3.16).

In addition to coupling the ground band to the first excited band with Raman

potential, we also inevitably create some intra-band excitations, which we refer to as

"onsite coupling". Atom only keep the same Bloch function, but acquire quasimo-

mentum along the lattice direction and momentum in the orthogonal plane in order

to fulfil the conservation laws.

The intra-band coupling terms are

4)S Qco sk1) + Qcosk- 6t) t) (.7
n,n'

ICOS (On) (-1) = Q cos(kxx - 6t) (3.17)
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K'(t'Io¶Raman in'|ir/d) = E I'IQcos(k z + k.x- Jt)i(-1 )" |n)

= Q 1i(-1)n(- sin(#4n)) = -iQ sin(kxx - Jt)
n

(3.18)

While the spin-orbit coupling matrix elements are

K0q7$1~dQ Raman q/)O) E H) (i)-1) n' I Qcos (kz z + kx - 6t)||)
n,n'

-iQ (1) (nlcos(kz(z- zn)) cos(#,,)- sin(kz(z- zn)) sin(#n) in),
n

(3.19)

K'q<2,/d 'Raman V)4 = QS()(cos(n)+ sin(n))

= Q(cos(kxx - 6t) + sin(kx - 6t)) (3.20)

The intra-band coupling matrix elements (3.17) and (3.18) provide recoil kick in

x-direction with recoil energy Er = - and along the superlattice, changing the

quasimomentum by half a reciprocal vector. If the system is initially at 0, 0), the

new adiabatically connected eigenstate in first order perturbation theory is:

(I = e) - 0 kx) - EI + kQ )
lf = 1Oq1= 10) - 2Er - 6 ei t4 q=ir/d'k ) 1r + 6 tkb7r/ -kx)

i k ) i ee JQ/A `6 ~()e 4 JQ/Z\ e
z Er + A - 6 e =7/d' ' V/ Er + A + 6
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If the system is prepared in 1(,/ 0), instead we find

|'I2)= eiAt , 0)- E - -46+A)| J(, kx) + E + e1Q kb( 0 , -k)q=r/ 7 2Er -6 q=~ k 2± E, +6 q

.e-4 QJ/A e 4 QJ/A e(
+ i Er- A- ea(6+A)t k- + Er i+e(--k_) (3.22)

v/-2 E, -- A - 6 q-= V/_ E, - A + 6 q

Our goal in the experiment was to map the resonances by sweeping the detuning

of the Raman beams. In the vicinity of the spin-orbit coupling resonances 6 = A +
Er ('4 1, 0) (T , kx)) and 3 = A - Er (10,t)d0)- J0')0, kx))the onsite

(intra-band) coupling is suppressed and spin-orbit coupling terms dominate. For

6 = A, which is slightly away from the actual resonance by recoil energy, the spin-

orbit coupling terms form stationary density modulations: the term |OW, 0) from

equation 3.21 with the term i E A+3e6 -k_) from 3.22, and the term

--- L:1E + -- -iot 0f/d,( ) from equation 3.21 with the term e-At ,OM 0) fromV/2 E,+A-J I*q-7r/d) q=x/d

equation 3.22. The density modulations arising from the interference of these states

manifest the stripe phase in the language of pseudo-spins.

3.2 Spin-orbit-coupling Hamiltonian

Omitting all the off-resonant and counter-rotating terms from (3.21) (or similar with

(3.22)) we can rewrite the Hamiltonian describing the system as

-ie 'J Q-i(k (3.23)
Hsoc = 2m 2 (3.23)Hsoc ~ieiir/4 ei(kxx-6t) +

vf2 A 2m +2

After a position-dependent unitary transformation, - e(-kxx+4 ti~)-2/2,the Hamil-

tonian turns into Hs 0 c= UtHsocU - iUtWL.at

(i3 + aoz)2
Hso = + -2 + OUX+6 0a-, (3.24)HSUG - 2m

wherea= -kx,#= ' and 6o= 1(6 - A). This Hamiltonian corresponds to

equal contributions of Rashba and Dresselhaus interactions. The parameter a defines
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the momentum transfer. It can be tuned by the angle between the Raman beams.

The parameter # is the strength of spin-orbit coupling, which can be tuned by the

two-photon Rabi frequency of the Raman beams.

3.3 Antiferromagnetic spin texture

A spin-1/2 aligned along the cos#+sinq #direction has the wavefunction )+e'|T).

In our experiment, atoms can be prepared in the left and right sites of the double-wells

with equal population. The wave function is then proportional to

JP) = lIn) + (1)eiAt t) ,
n

which corresponds to spin-states aligned in the x-y plane with opposite directions on

neighboring sites, showing x-y antiferromagnetic ordering. The expectation values of

spin evolve as (o) = (-1) ncos(O - At), (o-Y) = (-l1) sin(O - At) and (o2) = 0.

Tunneling between wells within a unit cell causes a density modulation. Local

populations in the nth cell acquire a density imbalance:

J
I(lj1)2 (1-_ (-1)n Jcos(9- At)),

(rn|) 2 (1 + (-1)n cos(O- At))

Translating by one superlattice period flips the sign of the imbalance. This shows

that rn and 1n+1 wells, and rn_1 and in wells have the same change in density, but

oscillate out of phase. Therefore, this density wave has twice the wavelength of the

superlattice and is shifted spatially by half a unit cell.

One can say that the state with both bands in q = 0, En IT)+4 ) demonstrates

a ferromagnetic spin-texture. After the excited bands relaxes to q = 7r/d, the resulted

state |/) = E 4n)+(-1)neile-iA ltn) shows an antiferromagnetic texture. This state
n

has areduced symmetry with respect to the superlattice.
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3.4 Phase of the Superlattice

In the experiment, we observed how the optical superlattice - and spin-orbit coupling

on top of it -affected the momentum structure of a BEC. The set-up we created

had two major ingredients: the optical superlattice and the Raman beams. The

superlattice is produced by an overlap of two standing waves, the infrared and green

ones. Combined 1064 nm and 532 nm light propagate together and reflect from a

retro-mirror, forming standing waves with 532 nm and 266 nm respectively. The

superlattice has to be deep enough, with a barrier sufficient to suppress tunneling

within the unit cell. It has to have fast dynamic control: the asymmetry of the double-

well potential has to be manipulated on a time scale faster than the atomic motion.

Basically, we had to be capable to go from symmetric double well to asymmetric

double well before atoms could see the difference.

The shape of the double well was determined by the relative phase SL between

1064 nm and 532nm light. In our experiment #SL, was controlled by a dispersive

glass plate and by a small shift of the frequency of the IR light. The motion of

the glass plate was relatively slow, and was used to preset the initial phase of the

superlattice. We made it possible to rotate the plate by a galvo on a time scale of

2-3 ms, but eventually it turned out to be too slow for our needs. Fast control of the

phase was achieved by a frequency shift of the IR light, using a double-pass AOM.

The retro-reflecting mirror sets the boundary condition for the superlattice (Fig.3-4).

Both green and IR light must have a node on it. If the frequency of green is not

exactly 2 times the frequency of IR, but shifted a small amount (in our case 70 MHz)

then a phase shift #SL accumulates between the lattices on the way from the common

node at the mirror to the atoms. Using this method, the phase #SL can be changed

very quickly at sub-microsecond times.

If we want to go from the symmetric to the antisymmetric double-well potential,

we have to change the superlattice phase by 7r. We have to generate a relative shift

of 133 nm between the green lattice lattice and the IR lattice, which corresponds to

half the period of green lattice and qartter period of the IR lattice.
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Figure 3-4: The relative phase between green and IR light at the location of the atoms
determines the shape of the double-well cell.

The number of nodes in a standing wave between the retro-mirror and the atoms

is

N = ,
A/2

(3.25)

where L 0.5 m is the distance from retro-mirror to the center of the vacuum

chamber. The change of the number of nodes due to the frequency detuning of the

beam is

AN .f
N f

(3.26)

The required AN for green light is j, and for IR is AN = . Thus, we either have

to shift the frequency of the green light by 140 MHz, or shift the IR by 70 MHz. It

was more convenient for us to shift the IR light frequency, which was easily achieved

by a double-pass AOM.

Another important aspect of the superlattice is to make 1064 nm and 532 nm light

phase-locked. Without this feature the green lattice would jitter with respect to the

IR and the consecutive runs of the experiment would not be reproducible.

3.5 Green light generation

Our experiment with an optical superlattice requires high-power single-mode light

sources for fundamental and doubled frequencies. The BEC2 lab is equipped with

a stable 2 W seed laser of 1064 nm light (Mephisto from Coherenent) and two 50
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W Nufern fiber amplifiers. Thus, there's no lack of IR power in the lab, so instead

of buying another single-mode green laser, we decided to use some of the IR light

and generate 532 nm light using a frequency-doubling crystal. One Nufern is used

to provide light for IR lattice, while the output of another one is used for generating

a green light by passing it through a nonlinear crystal. Both of the Nuferns use

common seed beam. Thus, the current setup has an advantage that the frequency

doubled green and fundamental IR are phase-locked when obtained from common

seed, whereas two independent lasers would require additional electronic phase-locking

for the purpose of our experiment.

Second-harmonic generation (SHG) is a well known and commonly used method

of generating light in the blue-green range of the EM spectrum. The general idea

of SHG is to utilize the nonlinear polarizability of crystals. A beam of frequency

w passes through the crystal and generates a beam of frequency 2w via a nonlinear

interaction. Since the nonlinear response of the system is a process of "second-order",

based on a two-photon interaction, it is supposed to be weak in comparison to linear

effects. This intrinsic weakness has lead to the development of several methods to

boost the efficiency of SHG, such as guided-wave interactions, intra-cavity doubling

and resonant enhancement.

3.5.1 Generation of double-frequency wave

In Gaussian units, Maxwell's equations in non-magnetic medium with no free charge

and currents give
. 1 82

V2E - - -D= 0 (3.27)
c2 t 2

The electric displacement vector is

D = E + 47rP (3.28)
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The wave equation transforms into

(3.29)V2g _ 1 0 2  _ 47r a2 P
c2 (9t2 c 2 0t2

Any component Pk of the polarization induced by the electric field $ can be expanded

in a series

Pk = x(1)Ei + xEE + x jEiEEm + (3.30)

The system is driven by monochromatic field at fundamental frequency w

E = (i + *e--iwt) (3.31)

We are most interested in the second-order contribution to the polarization

p(2) x() (&e+i2wt *2 -i2wt
71=ai ie +9 e -+-29ie*) (3.32)

One can see that the second order polarization also gives rise to a constant term

2il*, which is the reason for the phenomenon of optical rectification.

3.5.2 Plane wave passing through the crystal

The problem of the beam passing through a nonlinear medium is very complicated

and requires tedious derivations. However, some intuitive features and scaling laws

can be obtained from a simple model of a plane wave (find references).

We will search for the solution of the wave equation in the form E (z, t)

2 we-i2wt+ c.c.. Since we decided to neglect the dynamics of the green beam in the

transverse direction, we can employ slowly-varying envelope approximation.

-= A(z)eikzz (3.33)

This approximation is valid as long as VA < kA. Substituting this representation

of green light into the wave equation 3.27 and omitting the quadratic terms, we are
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left with the equation for the envelope

a2 2z ik A A z ek 167rw2 ( 2 ei2koz, (3-k A(z)e'k + ie Az A(z)eiz - -X e(.4

where ko corresponds to the principle wave vector of the IR light. The first and the

third terms cancel out and the resulting equation describes the growth of doubled

frequency amplitude as a function of fundamental field and distance.

a
i-A(z) = 27kX( 2)g*2,i(2ko-k)z (3.35)az

Integrating from z = 0 to z = 1 we come to the result

iA(l) = 27kX .2)2 (2ko-k)l (2k0 - k)l (3.36)i 2

Thus, the intensity of the output green beam is

1(1) = JA(z) 2 1 = 47r2 k 2 X(2> 2 1202sinc2 (2ko 1) (337)
2

In the experiment, the quantity we deal with is power, rather than intensity. So,

putting all the constant factors together and introducing the beam waist wo, which

stays constant for a plane wave, we can rewrite the previous equation in terms of

power:
p2 2 k-- k

P(l) =Cl2- sinc2( 2o 1) (3.38)
w2 2

An important condition to maximize doubled frequency power is phase matching

2ko = k. This equation basically expresses the conservation of momentum. However,

in practice, it is not so easy to meet this condition. In addition to careful alignment,

one needs to keep in mind that the wave vectors for green and IR beams depend on

refractive indexes for frequencies w and 2w

2iW 2w
2ko - k = 2n(x) - n(2w) =0 (3.39)

c c
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One needs to carefully adjust temperatures and employ some tricks based on crystal

birefringence or periodically polling to meet the condition n(w) = n(2w). For optimal

phase-matching,
P2

P(l)= Cf l2 (3.40)
0

This result does not take into account many additional effects. First of all, it contra-

dicts conservation of energy, because the depletion of the fundamental beam is not

included in the model. More accurate analysis including the decrease of the IR power

on the way through the crystal would give [43]

P 2

P(l) = O tanh2(al) (3.41)
0

3.5.3 Phase-matching

In the previous chapter, we saw how important it is to meet the phase-matching

condition to reach a high efficiency of SHG. From formula 3.38, one can see that

maximum power is achieved when k = 2ko, i.e. when n(w) = n(2w). Generated green

light must travel at the same phase velocity as the fundamental IR. This condition

is impossible to meet in materials with normal dispersion, where the refractive index

usually increases with the frequency. One of the possible ways to get around this

problem is to use the birefringence of the crystal. If the polarization of the incident

fundamental beam is along one axis of the crystal, and the polarization of the second-

harmonic beam is aligned in orthogonal direction, then the refractive indices for the

normal and anomalous beam could be matched at some temperature or some angle.

However, sometimes it is hard to find materials with sufficient adjustability for

some wavelengths. Another more universal technique is quasi-phase-matching or pe-

riodic poling. Quasi-phase-matching relies on artificial structure in the crystal [441

and can be implemented in materials even without birefringence.

The physical idea behind phase-matching can be explained in the following way.

While traveling through an elongated crystal, the fundamental wave excites secondary

radiation sources to emit at double frequency. The amplitudes of the secondary
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b

Figure 3-5: a. Phase-vectors add up constructively. b. Periodically-polled crystal;
when phase-vectors add up to the maximum amplitude the structural insertion in the
crystal adds a 7r phase shift and the spiral continues to grow, instead of rolling down.

radiation add up with the phase factors corresponding to the relative wave pass.

In order to have a strong SHG output of the crystal these amplitudes should add in

constructively. When we calculate the total amplitude from all the spatially separated

SHG sources, we need to calculate an integral f eiAkxdx. This type of integral arises in
0

optics very often. We can utilize the diagram technique of Fresnel optics to visualize

the summation over the secondary emitters with different phases.

In the case of Ak = 0 all the sources interfere constructively and all the "phase-

vectors" add in a straight line giving the maximum total amplitude Fig.3-5.a. If we

don't meet phase-matching condition, then there will be an angle AkAz between

"phase-vectors" of two neighboring emitters and the resultant interference amplitude

will not be maximal.

For nonzero Ak, one can find a length realizing the ir phase shift and equal to

7,= Afor which the resultant amplitude vector is the longest. If we can break into

the crystal structure and bring extra 7r shift at the length l, then the spiral will keep

building up (Fig. 3-5.b) instead of falling off to the 27r phase and zero total amplitude.

Thus, if we can can insert this extra 7r phase every ,, the resultant amplitude will

be less than in perfect constructive interference case, but still pretty big and will be

proportional to the number of 1, lengths that we can fit into crystal.
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3.5.4 Gaussian beam analysis

The plane wave model is very attractive in its simplicity. However, in practice we

usually deal not with plane waves, but Gaussian beams. In their 1968 paper, Boyd

and Kleinman {45] studied Gaussian beams passing through nonlinear crystal media.

Their research took into account birefringent "walk-off" of the beam, which occurs

when the direction of propagation of the beam does not coincide with the axis of

the crystal. Our case is much simpler, because in periodically-poled crystals (PPLN,

PPSLT) the phase-matching does not rely on the birefringence phenomenon. It can

be considered as a special case of the Boyd-Kleinman problem when the birefringent

"walk-off" is set to zero.

The plane wave model showed that the second-harmonic intensity scales quadrat-

ically with the intensity of the fundamental beam. Thus, if a beam of fixed power is

focused tighter, the efficiency of SHG is expected to be higher. However, we know

that the tighter we confine the beam, the faster it will diverge. So, even though we are

winning in the minimum waist region, we may be loosing more around the Rayleigh

range of the beam.

Boyd and Kleinman examined loose vs tight focusing and realized that there is

an optimal geometry of them beam which gives maximum efficiency of the SHG.

For the simplest case of a phase-matched Gaussian beam focused at the center of

the crystal and propagating without losses and birefringent "walk-off", the second-

harmonic power is given by a formula:

167r2 d2
P = Peff plh( , B) (3.42)

(CA3 fmn3
Variable~ defineda

Variable , defined as -, characterizes the extent of the focusing. Fig.3-6 adopted

from the paper [45] shows the family of curves for different values of the "walk-off"

parameter B. The upper curve corresponds to the case of no "walk-off" (B = 0), in

which we are particularly interested in. One can see that the curve h((, 0) has a zero

maximum at the value (m = 2.84. Thus the optimal efficiency of SHG is achieved

when the Rayleigh range is 5.68 times shorter than the length of the crystal. For a
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given power of the IR beam P1, the maximum of green light power is

167r 2 d2

PoP = 1.068 3 e f p2l
ccA nani1

10

0.1
E0-

0.01

I I: I'

10.-I

139

.- , I, Al a aaI "
10 102 0I

(3.43)

C

Figure 3-6: A family of SHG power dependences of parameter ( for different values of
the walk-off parameter B. The case we are interested is depicted by the upper curve
(B = 0). The figure is adopted from [45].

One needs to point out that the maximum green power for a given input IR power

scales linearly with the length of the crystal, unlike the result obtained for the plane

wave. To confirm the correctness of these results we can consider the limit < 1

of the formula (15). This limit will gives us output green power for the case of very

loose focusing, i.e. a plane wave. From reference [45] h((,0) a ( which leads to the

output power
= e _87rd2

ccA2nieW2
(3.44)

which agrees with the plane wave model.

3.5.5 Operation of SHG

In the previous section, we concluded that neither a plane wave nor very tight focusing

give us maximum SHG efficiency, and there is an optimal focusing ( = 2.84 which
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maximizes the power output. At the same time we should keep in mind that we want

to keep the intensity of light below the damage threshold of the crystal. The typical

value of the damage threshold for SLT crystals 13 (ref. HC-photonics). Therefore,

the minimum spot size one could afford, using 50 W beam, is w = 40pm. This

beam waist corresponds to the Rayleigh range ZR = 4.7mm. If the crystal length is

1 = 30mm then the focusing parameter ( 3.2 > opt = 2.84. Therefore, it appears

that we can focus the beam even a little tighter than the optimal focusing and we

still would not reach the damage threshold of SLT crystal. This estimation is very

promising and means that we should not we be excessively careful with operating

crystal at high power. The optimal Rayleigh range and beam waist for a 30 mm long

crystal are z* 5.3mm and w* - 42pm

The parameters of the optical setup were chosen to match the optimal minimum

waist and divergence of the beam for SHG. The use of the variable beam expander

allowed us to to carefully tune the beam waist and optimize the power of SHG. The

optimal beam parameter appeared to be in a very good match with the theoretical

prediction.

532 nm Output Power, W

8

6i1

4

. ... 1064 nm Input Power, W

5 10 15 20 25 30 35

Figure 3-7: Green power generated as a function of the input IR power. As a two-
photon process, second-harmonic generation scales quadratically at low powers. At
high powers the output was not stable and the points characterize momentary maxi-
mum values.
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3.5.6 Buyer's catalog

During the upgrade of our SHG setup I had to reach many sellers and collect infor-

mation from companies which manufacture or sell nonlinear optics. Our old green

light setup had been using a 30 mm long PPMgSLT crystal (MgO: Stoichometric

LiTaO3) along with an oven and temperature controller from Taiwanese company

HC-photonics. Unfortunately, this company no longer sells this kind of crystals.

When I contacted them regarding backup crystals, they offered PPLN crystals, which

have higher efficiency than PPSLT, but lower photorefractive damage threshold. We

would not be able to obtain more than 3 W of green out of 20 mm crystal on a single

pass (according to HC-photonics). Another acknowledged company in our community

is Covesion (from the UK). However, their crystals have a low damage threshold as

well. Covesion offered 40 mm long PPLN crystals which are supposed to provide 2

W of green with 10 W of IR input. Their customers claimed they could obtain up

to 5 W of green light without observable signs of photorefractive damage, but that

power would still not be sufficient for our applications. Even though Covesion crys-

tals would not work well for our experiment, I decided to buy an oven (PV40) and

temperature controller (COV461) from this company. The temperature resolution of

the oven+controller was 0.01, which was a step forward from the old BEC2 oven

(0.10 resolution). One cannot overstate the importance of stabilizing the tempera-

ture along the crystal. This is highly important for maintaining the phase-matching

condition and keeping the efficiency of SHG high. After a search, we realized the

company Oxide from Japan sells exactly what our lab needed: PPMgSLT crystals

(part Q-STD-1064C-SO1) with high damage threshold. The unit price for them is

around $2000, which is a lot cheaper than typical purchases from HC-photonics and

Covesion. We successfully operated their crystals in BEC2 for several years and were

quite satisfied with their performance. Other companies which were explored and

may be found useful in the future include Raicol crystals from Israel, Deltronic

from California, Alphalas from Germany.

At the end of the day, after having a lot of experience with operating nonlinear
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crystals, I must say that the choice of the oven I made was not optimal. The Covesion's

oven would do the job well for the normal operating regime of their crystals (2 W of

green out of 10 W of IR). We worked in the different range of parameters ( lw of

green out of 30 W of IR). At such high input power of IR, a phenomenon known as

Green Induced Infrared Absorption (GRIIRA) [46] becomes important. Basically, a

lot of heat is deposited from the strong IR beam and the crystal's temperature grows

without assistance from the oven. The temperature of the crystal and the output

green power never stabilizes. It can grow as high as 12 W but then after several

seconds it can drop down to 2-3 W. The temperature of the crystal was determined

by the thermal equilibrium of the deposited heat from the IR beam and through the

oven cover and input/output holes. The active stabilization practically did not work,

since the oven could only heat and could not cool the crystal. Thus, it was more

convenient to operate the crystal in the more stable medium power range of (8-10 W

of green output). Ideally, I should have considered buying an oven which would also

have a cooling option through Peltier thermoelectric effect, such ovens are available

on the market.

3.6 Experimental Results

The spin-orbit coupling experiment was done with a sodium BEC in IF = 1, mF = -1)

state. The BEC was adiabatically loaded within 250 ms from an optical dipole

trap to the lowest band of the superlattice, which is pseudo-spin down of our ef-

fective two-level system |04) = |es
,=O2) E -I--) -The pseudo-spin-up state4'q=7r/d)-

N

Z=(-1)1 tn), at the edge of the Brillouin zone, has an alternating sign pattern. In

time-of-flight (TOF), where we look at the state in momentum space, the interference

patternsfor | )andq | r/d)will be different Fig.(3-8).

After atoms are loaded in the lowest band, we can quickly change the phase of the

superlattice, creating an offset A and lifting the atoms from the ground band to the

first excited band. The quasimomentum of the atoms will remain the same (q = 0),

so theywill be at highest point of the the first excited band and then will relax to the
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Figure 3-8: patterns for)(top)and /d) (bottom). The state at the edge of

the Brillouin zone q = ir/d is characterized by alternating sign pattern.

edge of the Brillouin zone. The process of relaxation will be reflected in TOF images

3-9.

I I

Figure 3-9: The top pattern shows a TOF image for equal populations of atoms
prepared in the ground and first excited state with the same quasimomentum q = 0.

4) and It) are deliberately vertically displaced by an analog of the Stern-Gerlach
effect. After the It) state relaxes to q = 7r/d, the periodicity of the wavefunction
doubles, and therefore the momentum peaks in the inverse space two times as frequent.
The relaxation time is about 2 ms.

When atoms are prepared in both ground and excited band at the same quasi-

momentum q = 0 the periodicity of the wave function is going to be 532nm, i.e. the

length of the unit cell of the superlattice. After atoms in the excited band relax to

q= r/d the periodicity of the wavefunction changes to 1064nm. In the TOF image,

the number of momentum peaks will double.

The adiabatically ramped Raman coupling VRaman = Q cos(kox+kzz - 6t) makes
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Figure 3-10: TOF interference for atoms loaded in (a) lower wells and (b) upper
wells. Schematic plots for the expected SOC signal for atoms prepared in (c) pseudo-
spin-down state and in (g) pseudo-spin-up state. Observed signal for both initially
prepared states resonant (c, g) and off-resonant (d, h) Raman two-photon detuning.
Interference pattern for atoms equally loaded in both pseudo-spin states with Raman
interaction tuned between two resonances.

the wavefunction acquire satellites according to equations 3.21 and 3.22. Because

of the momentum kick in the direction orthogonal to the superlattice, in TOF the

momentum satellites will be displaced along x.

We can describe the wave function as |4, q, kx) = | ))®eikxx- atensorproduct

of a Bloch wave (characterized by the quasimomentum q and quasi-spin) and the

plane wave in the transverse direction X. In the experiment we studied three regimes:

(1) atoms loaded in the lower well |{, 0, 0), where the Raman potential creates spin-

orbit side peak It,7r/d, kx) along with other off-resonant terms; (2) atoms prepared

in It, wr/d, 0) with the corresponding spin-orbit coupling satellite is 41, 0, -kx); (3)

equal population of atoms loaded in the lower and upper wells, wher both types of
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spin-orbit peaks are observed simultaneously. All three scenarios are depicted in the

Fig.3-10.

The momentum components created by 2-photon Raman processes are displaced

along , by an amount of the IR photon recoil hkIR. The off-resonant peaks are

symmetric for +x and -x. The resonant spin-orbit coupling peaks are one sided: we

are either tuned to the resonance in forward direction from the lower to the upper

well, 6 = A + E, or to the backward direction from upper to lower well 6 = A - E,.

The two resonances are supposed to separated by 2 E, = 15.3 kHz. One can see that

the forward and backward resonances are indeed displaced with respect to each other:

Fig.3-11 shows a plot of the normalized population imbalance, where the fractions

of atoms with k, = +kIR and k, = -kIR are mapped as a function of the Raman

detuning 6. The discrepancy from the 2E, values can be epxlained by the mean field

shift 2p - 5 kHz.
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Figure 3-11: Mapped out spin-orbit coupling resonances as a function of Raman
detuning. The population inbalance is plotted for forward (blue) and backward (red)
spin flips. The inset is the resonance the center frequency of the resonances as a
function of the IR lattice depth VIR

The offset A can be measured by observing a beat note between the atoms in

T)and ). The condensate was loaded with equal populations into the symmetric

double well and then the potential was rapidly changed to the asymmetric one. De-
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pending on the hold time in that potential, atoms in the first excited band acquired a

time-dependent phase which can be observed through oscillations of the interference

pattern in TOF. This beat note measurement must be completed before atoms in the

excited band relax in quasimomentum to the edge of Brilluan zone. The offset used

for the final data taking was 23 kHz, so the period of oscillation was 44 ps. The

relaxation from q= 0 toq= r/d happens within 2 ms.

0 pis 6 ps

10ps 20ps

26 ps 32 ps

38ps 44 ps

00.8 Oth Order

g1st Order

0

0.4

0 0 20 40 60 80 100
Hold Time (ps)

Figure 3-12: Calibration of the offset A between lower and upper wells. On a short
time scale (relative to 2ms of relaxation in the excited band) the atoms in the upper
well have a phase accumulated linearly with time, e-A. From the period of the
oscillation of the interference pattern A ~ 23 kHz was deduced.

The presence of satellites for the wavefunctions localized in the left or right wells

not only provides possibility for interference between them and future Raman cou-

pling, but also gives a source of heating through collisions. The lifetime observed for

the It) state and-for the state with 50/50 population in It) and 4) was about 200ms

for both cases. However, the collision rate for the 50/50 state should have been sup-

pressed by a factor of 4(J/A)2 . The similarity in the lifetimes indicates that the main

heating mechanism comes not from the collisions between spin-up and spin-down, but

from rather some technical noise.
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3.7 Stripe phase detection

As explained in the previous paragraph, the adiabatically ramped Raman potential

dresses the atoms in the left and right wells with with momentum satellites according

to (3.21) and (3.22).

The states jP 1 ) and I| 2 ) produce interference and

density modulations. The state 4,0, 0) in |I) inter-

feres with ~ ei(-A)t4,0,-kx), resulting in a station-

ary density modulation at 6 = A along ^ (orthogonal

to the superlattice direction), and this density modula-

tion is the sought-for stripe phase (Fig.3-13). 4,0, 0)

also iterferes with the on-site terms Mie- 6t4,7r/d,kx)

and M(emt|4,-7r/d,-kr) giving rise to moving den-

sity modulations. In the geometry of our experiment

kx = r/d, so these stripes are formed at 45 degrees

to the lattice and move with a phase velocity of v =

v'2i/d. Similarly, the term e-it T, r/d, 0) from I 2 ) in-

terferes with Kie- It, 7r/d.k), M2e8 A)t T,0, -k, and

Me-i(+)t It, 0, k). As a result of this interference, there

is one stationary density modulation (stripe phase) at

6= A and two moving modulations.

Thus, the stationary stripe phase occurs at the same

detuning 5 = A for both spin-up and spin-down in direc-

tion perpendicular to the superlattice with the periodicity

dU0

2d

Figure 3-13: A stationary

density modulation and

the probe meeting the

Bragg condition.

inverse to the momentum transfer 27/kr,and can be detected by Bragg spectroscopy.

The experimental conditions for stripe phase detection followed the parameters

mentioned in the previous chapter. A Bragg probe beam to detect the stripes was

added to the existing setup. The Braggdetection had to be done with sodium resonant

light ABragg = 589nm. at an incident angle of 0 = 160 in order to meet the Bragg

condition ABragg= 4d sin9.
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0 10 mrad

Bragg + Rayleigh Rayleigh

Figure 3-14: Anige-resolved Bragg signal. The density modulation gives a sharp
feature in the center on the top of diffuse Rayleigh scattering. Without spin-orbit
coupling there is no density modulation and only the Rayleigh scattering is observed.

The Fig.3-14 shows the angular distribution of Rayleigh-scattered resonant light.

Due to the stripe phase formation, the scattering is enhanced in the direction of

the Bragg condition. A sharp feature in the angular distribution of the scattered

light with zero detuning is a direct proof of the existence of the stationary density

modulation.

The FWHM of the observed peak is 9 i 1 mrad, which is consistent with the

diffraction limit ABaggD, where D is the size of the cloud. For the same experimental

parameters we observed superfluid peaks of the BEC in TOF images, which suggests

that the state of matter we have been working with is superfluid. Thus, we can

conclude the that the observed phase is a superfluid with a long-range order. This

state of matter is referred to as a supersolid.

Since the stripe phase is not the only density modulation formed in our system,

we have to make sure that other periodic structures do not contribute to the detected

Bragg signal. The other density modulations emerging from the onsite coupling are

oriented at 45 to the superlattice, parallel to X + ^ direction, whereas the stationary

stripes form with the wave vector along x. The Bragg condition cannot be fulfilled

for them simultaneously, and therefore the detected signal is background-free.

The detected Bragg signal can be quantified. The contrast of the stripes is esti-

mated to be r7 = 2/Er, which is about 8% for # = 300 Hz. Denoting the Raleigh-

scattering isotropic rate per atom per solid angle as -y, the enhanced Bragg signal is
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going to be 7(7,NBEC/4), where 1/4 comes from Debye-Waller factor for a sinusoidal

modulation. The detected signal confirmed the anticipated scaling with the BEC

number ~ N E

One can also look at the Bragg signal as "gain" of the Raleigh intensity. We varied

the BEC fraction f = NBEC/Ntt and confirmed that the Bragg intensity scales as

Ntota(f/#/E) 2 , which also proves that the Bragg enhancement comes only from the

superfluid component.

We also mapped the detuning dependence of Bragg and Raleigh signals. By

sweeping the detuning of the Raman beams we saw the effect of resonant coupling

between spin-up and spin down - the broad resonance separated by 2 E, and the

sharp Bragg resonance from the stationary stripes at J0 = 0.

The periodicity of the stripes depends not only on external parameters such as

the momentum transfer from Raman beams but also on the interactions between the

atoms. The length of the period is modified to be 2d//1 - (#/F)2, where # is the

spin gap and F = (2E, + n(g + gT))/4 reflects the effect of interactions. However, in

our schemes this correction is only 0.4% and can be neglected.
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Chapter 4

Introduction to periodically driven

systems

In this chapter I'll review the basic theory describing the behavior of periodically

driven systems, both classical and quantum. Dynamics of classical systems, moving

in rapidly oscillating fields, splits into slow and fast motion. Fast motion (or micro-

motion) averages into effective potential which in turn affects the slow variables of the

system. These effects do not have a profound connection with discrete time transla-

tional symmetry, so Floquet treatment, applicable to quantum systems, is not neces-

sary for them. However, they provide a lucid example of separation of time scales, of

what micromotion is, and how important its impact can be. In quantum mechanics,

the time-periodicity of Hamiltonian imposes constraints on the wave function. The

knolwedge about the symmetry of Hamiltonian allows to reduce the time-dependent

problem of evolution of quantum system to a time independent one. The quantum

picture is more complicated than the classical, however, the main idea is very similar.

The system's evolution splits into two types of dynamics: fast micromotion and slow

time-averaged evolution. The method of controlling the slow dynamics of the system

by time-dependent fields is called Floquet engineering. The variety of the phenomena

which can be realized by this technique is really impressive ref.. The goal of this

chapter is to show a powerful application of the Floquet engineering and endow a

low energy radio-frequency photon with peculiar paradoxical properties: enhance its
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momentum by orders of magnitude.

4.1 Classical systems

There are two paradigmatic examples of classical systems where micromotion con-

tributes to the slow dynamics of the systems in a nontrivial way: Kapitsa pendulum

and Paul trap. The former is well described in [47] along with the classical theory of

motion in rapidly oscillating fields.

Let's consider a particle moving in an external potential U and driven by a rapidly

oscillating force

f (t) = fi cos wt + f 2 sin wt (4.1)

The force has to be much faster than particle's motion in the potential U, i.e.

27r/w « m/2 f dx We will imply that the displacement X caused by the forceE-U(x) y

f is only a small perturbation to the particle's trajectory X in the time-independent

potential U. The equation of motion of the particle is

d
M -- U + f (t) (4.2)

dx

We will seek the solution in the form

x(t) = X(t) + X(t) (4.3)

assuming that the fast periodic force causes some jittering X(t) on the top of slow mo-

tion X(t) given by the potential U. The average of X(t) over drive period 27r/w is zero

and X(t) during the same time barely changes, so t(t) = X(t), and X(t) describes

slow smooth motion averaged over fast oscillations. After substituting equation 4.3

into 4.2 and grouping separately fast oscillating terms and smooth terms we arrive to

mi = f(X, t) (4.4)
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Since f is a harmonic function the equation is easily integrated, and the instan-

taneous value of the fast oscillatory variable is determined by the value of the force

X(t)= M 2f(t).

The equation of motion for the smooth variable X averaged over drive period is

d
mX = Uefff, (4.5)

where Uff = U + f2 = U + 2. One can see that when averaged over the

fast oscillations the particle moves in a potential which is a sum of the initial time-

independent potential and the kinetic energy associated with rapid oscillations - the

micromotion energy.

4.1.1 Kapitsa pendulum

One of the mechanical systems every physicist has known since the school is a simple

pendulum: a body suspended from a support, moving under the force of gravity. If

the pendulum is reclined from its equilibrium position at 4 = 0 to some small angle 4
and then released, it starts doing small harmonic oscillations around the equilibrium

position. If some friction is added to the system, then eventually the pendulum will

stop at its equilibrium point 4 = 0 - this is why we say that this equilibrium is

stable. Another equilibrium position o = ir is unstable. When deflected from it, the

pendulum first shows large-amplitude unharmonic oscillations, which then die out,

and the pendulum eventually finds its stable equilibrium at so= 0. All of that is

trivial and very intuitive. What is not trivial is that the unstable equilibrium W 7r

can change its character and become stable - after we make the support jitter! By

driving the system fast enough we can actually make it more stable. Isn't it amazing?

Following one of the examples in [47] the Lagrangian of the pendulum with vertically

oscillating support point with position acosyt can be written as

ml22
L = 2 + mgl cos o + mlay2 cos yt cos 0 (4.6)

2

The generalized oscillating force is f = -mla7 2 cos -yt sin W. Then the the effective
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potential that includes micromotion energy is going to be

Ueff = mgl(- cos O + a cos2 (4.7)

Under the condition that a 272 > 2gl the upper unstable equilibrium point o= wr

changes its character and becomes stable. Physically, when the body is deflected from

the W= r the reduction in potential energy in the gravity field is smaller than the

acquired kinetic energy due to micromotion. It is interesting to point out that if the

support point jitters horizontally the character of the equilibrium does not change-

it remains unstable. This happens because the upper point s = 7r is also the point of

maximum micromotion and deviation from it reduces both potential energy of gravity

and the kinetic energy of micromotion.

Kapitsa pendulum is a good transparent example of how counterintuitive the

behavior of periodically driven system could be. By employing the micromotion and

taking it under control we can engineer the systems which do not naturally happen

in the real life.

4.1.2 Paul trap

Another paradigmatic example of the importance of micromotion is Paul trap [48],
a powerful technique of traping charged particles. From Maxwell's equations in the

absence of charge we know that the divergence of the field must be zero divE = 0,

which implies that the static electric field cannot confine ions in all the directions.

If the created potential is trapping along x and y, then it must be untrapping in

the remaining direction z. It seems that trapping of charged particles is facing a

very fundamental obstacle. However, if the electric field oscillates fast enough the

emerging micromotion will help to trap ions and produce confining potential in all

the directions.

It is enough to see the role of micromotion in one dimension. The Hamiltonian of

a particle in a quadratic potential which oscillates at the frequency y is
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H = + WX2 sin -yt (4.8)
2m 2 0

Using the same approach as for the Kapitsa pendulum we decompose particle's

motion into a sum of smooth motion X(t) and fast oscillations around it X(t). The

average of x over the drive period is zero: (X(t))2,/, = 0

x(t) = X(t) + x(t) (4.9)

The equation of motion splits into two for the fast and the slow variables:

d - 2~Xsin -y (4.10)
dt

2

d2X 2

dt2 = -w (x sin yt)2,/-   
(4.11)

After integrating of the first equation and plugging the result for X into the second

one we arrive at

d2X 2_
= -X - ° (4.12)

dt2  02-

From this equation one can conclude that the slow dynamics of the particle follows

the motion in a harmonic potential Ueff =jm(jL) 2X2

The idea of oscillating ion trap also found an application in transverse strong

focusing (also called alternating-gradient focusing) of the beams of charged particles

in accelerator physics. To prevent transverse divergence of the beam in an accelerator

engineers use, so called, FODO systems. They alternate the focusing and defocusing

lenses (quadrupoles) on the beam path. From the particles' point of view, they

see how the attractive potential flips its sign and becomes repulsive: changes from

focusing to defocusing, then to focusing again and so on. Eventually, it results in

effective overall confining transverse potential for the moving particles [49]
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4.2 Quantum systems

In this chapter we investigate quantum systems that have time-periodic Hamiltonians

H(t) = H(t + T) (4.13)

The discrete time translational symmetry allows us to apply Floquet formalism

to the problem of finding the evolution of the system. The Floquet theory was first

developed in as a mathematical theory. In the second half of the 20th century it was

revisited in the context of solving time-dependent Schrodinger equation [50].

In the literature there are two ways how the main statement of the Floquet the-

ory is formulated. First, since the Hamiltonian posseses discrete time translational

symmetry its eigen states can be written as

I Onu(t)) = e"u(t)), (4.14)

where un(t) is called Floquet mode, and it's periodic in time un(t) = un(t + T), and

c is called quasienergy. After the period time T passes the wave-function acquires a

phase factor e-""T, just like for a Bloch state in spatially periodic potential: the wave

function acquires a phase factor, when the particle travels a period of distance. This

formulation of the Floquet theory is almost trivial, it simply reflects the symmetry of

the Hamiltonian and it is a direct analog of the Bloch theorem in solids.

Another formulation of the Floquet theorem is that the evolution of the system

under time-periodic Hamiltonian can be decomposed into initial kick, evolution under

some effective time-independent Hamiltonian and final kick

U(tfti) = eik(tf)eiftff(tf-ti)eik(ti) (4.15)

The kick (micromotion) operator k is periodic in time k(t) = K(t+T) and

describes the initial kick and the subsequent micromotion.

This formulation of the Floquet theorem is less trivial than the first one. Here

it is guaranteed the existence of such time-independent Hamiltonian ef and the
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kick operator K(t). The proof of this theory along with the perturbative methods of

determining ftf andf(and comprehensive review of the Floquet formalism can be

found in the references [51, 52].

In this chapter I'm going to show how these two formulations are interconnected.

While the Floquet state (the quasienergy and the Floquet mode) is defined as a

solution of time-dependent Schrodinger equation, it may be more convenient to refer

to an eigen value problem in order to have another view on the definition of Floquet

states. One can easily see that the Floquet state is the eigen state of the evolution

operator over a period of the drive T:

#(to + T, to)|@0(to)) = e-inT |@n(to)) (4.16)

The starting time to is a parameter which defines the gauge: the evolution operator

for one period and the Floquet state are interconnected. However, the eigenvalue

e-inT does not depend on choice of the starting time to. So, the quasienergy spectrum

can be determined from diagonalizing the evolution operator U(to+T, to) for arbitrary

to. Also one can see that even though the eigenvalue e-ET itself is well-defined, the

quasienergy En is only known by modulo w = 27r/T. Quasienergies separated by a

driving frequency correspond to the same eigenvalue of the evolution operator.

In the basis of Floquet states 4.15 the evolution operator can be written as

U(t2 ,ti)= e-E(toti)/hun(t2 )) (un(ti)| (4.17)
n

The Floquet states form a complete basis states, and generally the time evolution

of a state is given by

=(t)) = e-iU(1-to) lUn(t)). (4.18)
n

The time-independent coefficients c can be deduced fromcn = (un(to)|@/(to)).

To add a little more intuition into this description, one can say that if the system

is prepared in a single Floquet mode, i.e. 10(t)) = e-:nt |un(t)), it's time evolution

is going to be periodic disregarding the obvious phase factor e-knt Evolution of the
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system prepared in a superposition of several Floquet states is no longer periodic,

but it can be formulated in terms of two constituents. First is the periodic time-

dependence of the Floquet mode un(t) is associated with micromotion. On top of

that the dynamics of the system is governed by quasienergies, as though we would

have an evolution of an eigenstate of a time-independent Hamiltonian. So, the second

constituent is the deviation from periodic evolution described by dephasing factors

ei~t

4.3 Effective Hamiltonian

Now let's approach this problem from a little different direction. In the reference

[53] it is proved that U(t) = #(t)eiG/h,where O is self-adjoint operator and 0 is

unitary operator periodic in time with the same periodicity as the Hamiltonian.

Let's find a unitary gauge transformation ei(t) where F(t) is a Hermitian oper-

ator periodic in time, such that in the new gauge the Hamiltonian becomes time-

independant. Applying the gauge transformation to the time-dependent Schrodinger

equation:

iht a(ei) = e2fH(t)+ih( eiF)4 (4.19)

In the new gauge the wave function isq#= eF@.With the new Hamiltonian

Heff= e e~F + ih(-e iF)-iF (4.20)
at

Let's assume that such transformation , that makes eff time-independent,

exists, then the eigenstates of eff are also time-independent. We will call them

vn(x)) and the corresponding eigenvalues En. They evolve according to 1#(t, ))=

e-ientv(x). In the original gauge the corresponding states are going to be

I4Vn(X, t))= ei I On(X, t)) = eilnt/h e iF IVn (X)) (4.21)

Iu(xt))

Here's the state ei vn(x)) is the Floquet mode jun(x, t)) introduced earlier in
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the text. The evolution operator after transformed from the new gauge to the original

is

U(t2 ,ti) e -t2e- ie//eit. (4.22)

The review paper [51] along with the references [54, 53, 55] discuss how to find

the gauge transformation ei and corresponding effective Hamiltonian and its unique-

ness. The reference [52] derives it from the stroboscopic evolution and strobosocopic

Hamiltonian. It is important to emphasize that approach of effective Hamiltonian is

more generic since it does not depend on the phase of the drive or initial time. There

exist a class of stroboscopic Hamiltonians connected through the transformation??,

but there is only one effective Hamiltonian related to this class.

4.4 Extended Hilbert space

Another prospective on Floquet formalism which may provide more intuition on pe-

riodically driven system is based on idea that we can treat time just like other inde-

pendent variables of the Hamiltonian. The time-dependent Schrodinger equation

(H(t) - ihOt) |u.(t)) = 6 un(t)) (4.23)

can be viewd as an eigenvalue problem in extended Hilbert space F ='W 7 0T

The hermitian operator = HI(t) - ih&t is called quasienergy operator. Its

eigenstate are the Floquet modes and eigenvalues are the quasienergies

Qlun) = 'Enm IUnm) (4.24)

Diagonaliazation of the quasienergy operator is another way of approaching the

problem of finding the evolution of periodically driven system.

The description in terms of quasienergies and Floquet modes is crucial for studing

the excitation of the systems or collisional properties. However, the direct meth-

ods of deducing the effective Hamiltonian and the micromotion operators can be

more helpful for the purpose of Floquet engineering: the simulation of some effective
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Hamiltonian with system's slow evolution. In the case of our scheme the effective

Hamiltonian and the micromotion operators can be obtained by employing several

methods. These methods, both perturbative and exact are discussed in the next

chapter.
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Chapter 5

Floquet Engineering of Recoil-dressed

Photons

5.1 Magnetic shaking experiment

Our initial motivation was to demonstrate a laser-free spin-orbit coupling scheme.

The scheme which would inherently avoid the problem of heating due to sponta-

neous emission. However, while working on this project we realized that the ideas

we were developing are more general than just the context of spin-orbit coupling.

The scheme we experimentally realized provides a transparent and insightful view on

rapidly developing field of Floquet engineering and its application of creating artificial

gauge-fields [24] for quantum gases.

A photon is an object which carries energy (frequency) and momentum. How do

we know that? An atom, playing a role of a frequency filter, can absorb a photon at

certain frequency and experience a recoil kick to conserve momentum brought with

the photon. The frequency of the absorbed photon must be detuned from the level

spacing frequency of the atom by the amount of Doppler shift and recoil shift.

hk 2

w = w o + ko + (5.1)
2m

This condition is a direct consequence of the energy conservation during atom-
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photon interaction. For a given photon the Doppler shift and the recoil energy are

strictly determined by the conservation laws. For example, if we take RF (MHz)

photon, it's intrinsic momentum is tiny and the associated Doppler and recoil shifts

are negligible. Is there a loophole which we can use to tune the recoil and enforce

Doppler shift even on RF photon? It turns out, yes. We should sacrifice with the

conservation of energy. But how can we get rid of one of the most universal ubiquitous

conventions which follows us through out our entire journey in physics? In fact, in a

fairly easy way. One can say that conservation of energy comes from the invariance

of time translation [47], from uniformity of time. If the invariance of translation of

time is broken, the energy is no longer conserved, it is not an integral of the system

anymore. It may sound trivial: if the Hamiltonian explicitly depends on time, then the

energy is changing. But even for a Hamiltonian which periodically depends on time

(when the energy averaged over period does not change, but the time translational

symmetry is still reduced) the energy is not an integral of motion.

5.2 Our scheme

Our scheme has two ingredients: an oscillating magnetic force and the sequence of the

RF pulses. The time sequence is shown on Fig.5-1. Atoms are driven by a sinusoidal

spin-dependent force f(t) = 9FLBB' sin(27r/T - t + <RF)&z. The RF pulses are fired

at times 0, T, 2T.... The relative phase between the oscillating force and the RF is

defined by <RF. Each of the RF pulses couples spin-up and spin-down with the same

instantaneous velocity. Both of the ingredients do not provide a momentum kick:

the integral of the magnetic force of the period is zero, so there is no net momentum

transfer, and momentum associated with the RF photon is negligible in comparison

to any relevant atomic scale. However, the beauty of the Floquet engineering is that

when these two ingredients are put together and properly synchronized, the result

is going to be a an RF photon endowed with tunable momentum. Our experiment

demonstrates not only the power of Floquet engineering, but also a lucid semiclassical

interpretation of the physics of a periodically driven atom.
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Figure 5-1: Illustration of our scheme for creating a tunable atomic recoil momen-
tum with RF transitions using magnetic forces. (a) & (b) shows the experimental
conditions for #RF = 0 and RF = 7r/2, respectively. The spin-dependent forces
and velocities are shown (as thick solid lines) for the amplitude of the wavefunction
which is transferred from spin down (red) to up (blue) by the RF pulse marked by
the gray dashed line. For #RF = 0, the average velocities (v) and (vt) are different,
which implies a finite recoil associated with the spin-flip. In contrast, (v) = (Vt) for
#RF = 7r/2 and there is no recoil.

Each of the RF pulses couples spin-up and spin-down with the same instantaneous

velocity, so atoms while being spin-flipped do not change their velocity. However, they

make a "jump" from one velocity trajectory to another, and the average velocity for

these trajectory can be different. It is like passengers in metro: on the station, when

they change the trains their velocities along the track are not changeing. The spin flip

happens when a passengerwalks out of the doors of one train, goes across the platform

and sits into the train which will move in the opposite direction. The instantaneous

velocities of the trains were the same, otherwise the passenger would not be able

get from one train to another. But after this connection the second train will have

different average velocity than the first one.

The velocity trajectories for two cases (#RF = 0 and #RF = 7r/2) are shown on the

Fig. 5-1. The moment t = 0 happens at the first RF pulse, and the synchronization

phase #RF determines how we are going to drive atoms with the oscillating force.
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One can easily see that #RF determines the difference between the average velocities

for spin-up and spin-down. For #RF the difference (Vt) - (vt) is maximal, whereas

for #RF = 7r/2 it is zero. So, if we imagine a spin-flip, for the case on the Fig.5-

1.(a) from the atoms point of view they have experienced two positive half-periods

of a spin-dependent force back to back. For the case depcited on the Fig.5-1.(b) the

spin-dependent force is discontinuous, but still does not provide extra kick. So, we

can conclude that depending on the phase of the drive the spin-dependent force may

provide a momentum transfer in terms of the average values.

So, even if we have a single wr-pulse, the atoms will experience a recoil and will

be transferred in a state with different average velocity. However, our goal is not

only to simulate recoil, but also a Doppler shift to exactly replicate the properties

of atom-photon interaction in time-independent systems. With a single RF pulse

the frequency of RF is not any different from the case when the shaking is off. To

observe the effects we intend to simulate having only one RF pulse is not enough. The

"magic" of Floquet engineering will work only if the Hamiltonian is truly periodic in

time, and a single-pulse example would break the discrete time translation symmetry.

Only when the RF-pulses happen every period one can apply the Floquet formalism

and describe the dynamics of the system with the effective Hamiltonian.

IT) A-------------(Vj.) - f

Figure 5-2: Phase accumulation between the spins due to magnetic shaking. On the
figure the average velocity for spin up is larger than the average velocity for spin-
down. Difference in average kinetic energies during a period of shaking results in
phase accumulation between the spins.

A period of magnetic shaking results in relative phase accumulation between spin-

up and spin-down. The spin-up and spin down atoms which start from the same

velocity after a period of shaking return back to the same velocity since the in-

tegral of the force is zero over the period. However, the spin-up and spin-down
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had different histories of their motion during that period of time. If the spin-up

was first accelerated and then decelerated back to its original velocity, the spin-

down was first decelerated and then accelerated. Therefore, the average kinetic en-

ergy for spin-up was higher than for spin-down. Quantum mechanically it means

that a relative phase being accumulated during a period of motion. This phase

can be calculated semiclassically as the integral of the difference of kinetic energies

=1/hf(Ei"(t) - E2(t))dt. Here we choose integration limits as 0 and T, as-

suming that the timing of the RF pulses sets the zero of time, and the synchronization

of the shaking force with respect to the RF is defined through the phase #RF. The ac-

cumulated relative phase between spin-up and down depends on the synchronization

phaseas =) - (v ))vRF)T k0 COs #RFVRFT, where ko  (9F1B/1rh)BoT

andVRF is the common velocity for spin-up and spin-down at t = 0, T, 2T.... It's

already here in the semiclassical treatment one can see that if we enforce RF detun-

ing to be equal to the rate of phase accumulation 6 = 6a/T then the expression for

it will look like Doppler shift 6 = kVRF. If the common velocityVRF is rewritten as

VRF =(vi)+hk/2m then we recover the Doppler relation we have seen in atom-photon

interaction

6 = k(v) + hk2 / 2m (5.2)

The RF detuning compensates the Doppler shift and recoil shifts in the time-averaged

picture. It is important to emphasize the role of the synchronization between the shak-

ing and the RF pulses parametrized as#RF. The momentum transfer k = kocos #RF
is determined by the strength of the drive and by timing of the RF pulses. For a given

magnitude of the drive, the momentum transfer is maximized when the RF pulses

are fired at the zeros of the force (#RF= 0) and it is equal to zero when RF is fired

at the points of maximum force (#RF= 7 -/2)-

5.2.1 Bloch sphere representaion

The semiclassical approach can be visualized on the Bloch sphere. A period of mag-

netic shaking does not change the spin populations and results only in the relative
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phase accumulation 2(I) + If)) -+ (|) + e6t)), i.e. -- rotation in the frame

rotating at the frequency of the spin-splitting wo (RF-resonant frequency). The RF

pulses coupling the spins rotate the Bloch vector with &Y around the instantaneous

Q(t) axis. In the current frame the §-axis rotates with the rate of RF detuning 6

around i-axis. If the rate of precession of y-axis delta compensate the phase accu-

(a) R(b) RFfl/2

Off-resonant

IT) IT)
On-resonant

Figure 5-3: Bloch sphere representation of magnetic shaking and RF pulses. (a)&
(b) Trajectories on the Bloch sphere for several periods of magnetic shaking (green
solid lines representing a) and RF pulses for #RF = 0 and #RF = 7/2, respectively.
Fig. (a) shows the trajectories for atoms with a finite initial velocity when the RF
frequency is at wo, the atomic resonance, and when it is detuned by the Doppler and
recoil shift. In (b), the RF frequency is at wo, the trajectory is independent of the
atomic velocity, and there is no net rotation around the z-axis during a magnetic
shaking cycle. The red (blue) dot represents the initial (final) spin state.

mulation during the magnetic shaking, then the subsequent RF pulses will move the

Bloch vector along the meridians, transferring population to the south pole in the

most "efficient' way. Since the phase accumulation due during shaking depends on

the velocity of the atoms, the spin flip is going to be efficient.for some velocity group

of atoms (when RF pulses add up constructively), and for some velocities the Bloch

vector will come back to the north pole. This is the way we-impose Doppler selectivity

on RF photons. For a given RF detuning, the RF signal will match Doppler condition

for some velocity group and these atoms will experience resonant Rabi oscillations.

When we fire RF pulses at the maxima of the periodic force, then the momentum

transfer is 0. It means that in the frame rotating with wo the shaking does not move
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the Bloch vector. Then the RF pulses will add up constructively when the RF is

resonant with the spin-splitting for all the velocity groups. The Doppler selectivity

is completely lost in this case.

5.2.2 Floquet treatment

According to Floquet theory, the evolution of a system with time-periodic Hamilto-

nian can be factorized as

U(tfIti)= eik(tf), if=f f(tf-ti) eik(ti), (5.3)

where K(t) is a micromotion operator, which describes the initial and final kick due

to turn on and turn off, and feff is time-independent effective Hamiltonian, which

governs slow time evolution of the system averaged over fast micromotion with period

T. A powerful formalism of Floquet theory provides us with methods to determine

the Heff and the micromotion operator K, and solve the evolution of the system.

The time-dependent Hamiltonian for our scheme in the frame rotating with the

RF drive after the rotating-wave approximation is

__2 1r IhQ(TZ4-

- + hkos- sin(2st|T + <pRF)Uz - ~h6 RF&z + h 0xT 1 6(t - nT), (5.4)
2m T 2

n

where 6 RF is theRF detuning with respect to the atomic resonant frequency. The

short RF pulses are represented as a series of delta-functions with effective Rabi

frequency Q.

The choice of RF pulses to be short and approximated with the delta-functions

is consistent with our experimental settings (a typical RF pulse duration is 4 ps,

whereas the period T is usually set to be 100 or 200 ps) and the reason of this choice

will be discussed later.

We now rederive the same effective Hamiltonian and micromotion operator using

a rigorous high-frequency 1/w expansion. Appendix K of the reference [51] discusses
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Hamiltonians of a general form

H(t)=$ fHo+Af(t)+wBg(t) (5.5)

and derives expansions for an effective Hamiltonian eff and the kick operator K.

Heff = H
Se =efr,
n=0

(5.6)K(t) =)
n=0

The Hamiltonian k in equation 5.5 is of this form with

$0o = _2 I RF + Q&x7
2m 2

g(t)= sin(wt +#RF), f(

2

t)=TZ:6(t-nT) - 1
n

Functions f(t) and g(t) meet the requirement of having zero mean value over a

period T.

The kick operator is in 0-th order:

k(o) = BG(t),
t

G(t)= w Jg~r)dT = -cos(wt +q5 RF) (5.9)

The effective Hamiltonian to the lowest order in 1/w can be expanded as

Hef = Ho -Z , Gf [B...[B, A]]
n=1

+S Gn [B...[B, Ho]] + O(1w)
n!,I

After calculating all commutators and time-averaged coefficients before them, and

grouping the terms proportional to &, and &Y, the expansion reduces to

t 2 1 1 k2
Seff  2 _ -RF 6cz + c cos zcORFs x + sink cos RF &y + +0

2m 2 16 m
(5.11)

It can be rewritten in the matrix form as
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(5.8)

(5.10)
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H _L 1o _ h6RF 0hQeikoCOs ORF -z

Ref f = m 16 m 2 P h22(5.12)

heik°°OSRF-Z Z+ 2 
6 RF

2m 16 m 2

The corresponding micromotion operator is

27r
K(t) = -ikoz&z cos(-t +#RF)- (5.13)

T

This effective Hamiltonian describes a two-level atom with energy spacing wo

driven by a photon field at frequencyWRFwith a wave-vector kcos #RF. The common

term h2k2/2m is associated with the kinetic energy of micromotion. The form of the

effective Hamiltonian is a solid proof that our scheme simulates an RF photon with

tunable recoil.

The effective Hamiltonian is one step away from the Spin-orbit Coupling Hamil-

tonian. If we apply an spatially-dependent unitary transformation

Nzi = exp (-izko cos#RFJz/2) (5.14)

The transformed Hamiltonian becomes translationally invariant and acquires the

standard form of Hsoc for one-dimensional spin-orbit coupling:

1 1 2+ ^ 6 RF.
Hsoc = 2 (Pz - 2 kocos #RF&z O2  _ O z (5.15)

2m 2 2

where the spin-orbit coupling strength is described by the momentum shift ko cosS RF/2.

With the new kick operator

27r
Ksoc (t) = -koz&z cos T-t + RF - Cos 5RF (5.16)

the time evolution can be written as

U (t2 t tc) t oiksocpao $soc (t)eson(t2et1) iksoc(tl). (5.17)

In that case the operatork 0 0 (t) has anon-zero temporal average, so itcannot

79



be treated as a pure micromotion operator. Similarly Hsoc can not be considered

as an effective Hamiltonian for the time-periodic Hamiltonian (5.4). It is rather a

Hamiltonian related to the true effective Hamiltonian by the unitary transformation:

Hsoc= jiHeffRzi. Note that reference [56] has obtained Hsoc as a stroboscopic

Floquet Hamiltonian.

5.2.3 Evolution of the system

In the previous section we solved the evolution of the system by summing infinite

number of terms in the expansion given us by Floquet theory. The reference [51]

proves that the result of this summation is the effective Hamiltonian which is unique

with respect to time transformations. The perturbative methods are typical for the

treatment of periodically driven systems. However, our example is very special be-

cause it is exactly solvable. We can find the evolution of the system and deduce

the effective Hamiltonian from it by regrouping time-depend terms in the evolution

operator.

We start with the same Hamiltonian describing our system 5.5. The reason why

we can't integrate it to find the evolution operator is that it has both momentum

and position-dependent terms, so the Hamiltonian does not commute with itself at

different times [(t), H(t')] # 0. However, it is not hard to find a position-dependent

spin rotation N2(t) such that in the new frame 10(t)) = R (t)4'(t)) the transformed

Hamiltonian H(t) will still be time-dependent, but without non-commuting terms:

[H(t), H(t')] = 0.

Let's applying a position-dependent spin rotation

Rz (t) = exp [-ikozy (t) &z/2] (5.18)

where the rotation angle - is

t

7(t) = W sin ( it + RF dt' - C = - cos(2it + RF (5.19)

0
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The integration constant C entering - (t) has been taken to beC= cos RF, SO

that y (t) averages to zero over a period. The reason for this choice will be discussed

later on.

At the RF pulses where t = nT the transformation N, (nT) = exp [ikoz cos #RF&z/ 2]

describes a spin rotation by an angle k0 zcos #RFaround the z axis. As a result, the

transformed Hamiltonian (t)= R(t) HRz (t) - iRI (t) atN2 (t) takes the form

$(t) = 1 §2 - ko-y (t) &z OFz
(t (t - J5 RF~z±

2m 2 2

Q [cos (koz cos$RF)x &, sin (koz cosRF)&S] T 0 (t - nT) (5.20)
n

Note that unlike the spin-dependent potential gradient featured in the original

Hamiltonian (5.5), the oscillating momentum shift term koy (t) 6$/2 is no longer pro-

portional to the driving frequency and hence can be considered as a small perturbation

in the limit of high frequency driving where koy (t) « w and also Q « w. In that case

it is appropriate to describe the evolution of the system in terms of the zero-order

effective Hamiltonian obtained by time averaging of H (t) over a single driving period,

i.e. by the zero frequency component of the Hamiltonian H(t), giving

1 P2 1 1k2
Heff= z ERF&z+QCOS (kozCOS RF)&+ si nkozCosORF) y + , (5.21)

2m 2 16 m

where the momentum shift has averaged to zero. The obtained effective Hamiltonian

Heff is in exact agreement with 5.12.

The full dynamics includes also the micromotion. In the present situation there

are two origins of the micromotion. The first kind comes from the time-dependence

of the transformed Hamiltonian H(t). However, in the limit of the large driving

frequency this kind of micromotion is negligibly small compared to the second type

of micromotion emerging due to the time-dependence of the unitary transformation

Rz (t). In fact, returning to the original representation |(t))= Nz(t)|10(t)), one

arrives at the following time-evolution of the state-vector from the initial to the final
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time

10(t2)) (t 2 , 1) |$(t1 )), where U(t2,ti)= N (t2)eiden(t-t)NI(ti), (5.22)

where the unitary transformation R (t) represents a micro-motion operator.

The time evolution operator can be rewritten as

U(t2 , t 1) = eiK(t2)e-iHef(t2-)eiK(tl), (5.23)

where
27r (.4K (t)- cos pt + RF) (5.24)

(T

is a Hermitian micromotion (kick) operator. The choice of the integration constant

C = cos #RFin the unitary transformation (5.19) ensures that the micromotion oper-

atorK(t) averages to zero over the driving period. Thus, the effective Hamiltonian

and the micromotion operators are defined in a unique way through the condition

C = cos#RF-

5.2.4 Canonical vs mechanical momenta

In the presence of the vector potential two important variables a distinguished: canon-

ical momentum and mechanical momentum. Canonical momentum is conjugate to

the coordinate, mechanical momentum is quantity needed to evaluate kinetic energy

in the system. Our scheme provides a lucid interpretation of what the difference

between canonical and mechanical momenta is. The spin-orbit coupling Hamiltonian

Hsoc = ;-(PZ - 1A&z) 2 +hQ 8 - RF Uz. is an example of spin-dependent gauge field.

Spin-dependent vector potential 'A&Z shifts the mechanical momentum for spin-up

and spin-down from the canonical momentum.

In our scheme the canonical momentum is the instantaneous momentum at the

moment of RF pulse pz = mvRF, which is the same for spin-up and spin-down.

The mechanical momenta for spin-up and spin-down is the average momenta p =

m(vt(4)). The mechanical momenta for spin-up and spin-down Pz i !A are shifted by
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the vector potential A = ko cos ORF, i.e. momentum transfer which depends on the

relative phase between the RF pulses and the magnitude of shaking force.

The difference between canonical and mechanical momenta can be seen on the

dispersion relation (Fig.5-4). Using canonical momentum as the coordinate of hor-

izontal axis, all couplings and transitions between the two spin states are vertical.

The dashed lines illustrate the transitions observed in our experiment. Away from

the spin gap the energy separation is dominated by Doppler and recoil shifts.

Energy E

AE

I T)

Ih I

hk 0 Canonical
momentum p,

Figure 5-4: Energy-momentum dispersion relations for spin-orbit coupled spin 1/2
states. The two minima are separated by the recoil momentum hk. The vertical
dashed arrows show spinflip transitions. Their lengths are given by the Doppler and
recoil shifts.

5.3 Experimental realization

Experimentally what we wanted to do is to demonstrate that the RF transition can be

made velocity-selective. In a thermal cloud different velocity groups of atoms acquire

velocity-dependent phase due to magnetic shaking. This accumulated phase can be

addressed by the RF detuning 6 = kv. One can also view this effect in the following

way. The sequence of the RF pulses results in a Ramsey fringe in Fourier space. The

thermal cloud velocity distribution can be mapped out through the 6 = kv relation.

We convolute the Ramsey fringe with the velocity distribution, the major peaks of
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the fringe cut a slice out of the thermal cloud (Fig.5-5). By changing the detuning of

the RF signal we move the Ramsey fringe across the velocity distribution, resonantly

exciting different velocity groups of atoms. In TOF, after the cloud is released from

the trap, we should see how the slice of the atoms in the excited states moves as

a function of the RF detuning. The stronger we can shake the atoms, the higher

momentum transfer k is, which means the wider thermal cloud distribution looks

in the frequency space. Thus, we can cut more slices with a given Ramsey fringe

from the thermal cloud velocity distribution, if we shake stronger. Alternative way of

improving resolution is to shake slower (since ko - B'/w), but then we soon hit the

constraint of limited coherence time. We do not want to have the sequence of the RF

pulses to be much longer than 1I ms, and if the shaking frequency w is too small we

would not be able to fit many periods of shaking into this time duration.

1/T

Figure 5-5: Ramsey fringe of the sequence of the RF pulses - blue, thermal cloud
distribution mapped through the enforced Doppler relation 6 = kv - yellow. By
changing the detuning of the RF we make the Ramsey fringe move through the
velocity distribution.

We prepared a thermal cloud of approximately 10 23Na atoms at the temperature

380 nK - close to the onset of condensation. If the atoms were prepared at higher

temperature it would, of course, allow us to cut more of the velocity slices out of

the cloud, but at the same time it would reduce the signal-to-noise ratio. So, for
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the purpose of cleaner detection we preferred to prepare atoms right above the Bose-

condensation.

Atoms were loaded into a shallow optical dipole trap with trapping frequencies

(Wyw,, ,z) = 27r(98, 94, 25) Hz, corresponding to Gaussian radii of 19.5, 20 and 68

pm, respectively. The trap was made shallow in the shaking direction because it was

important to separate the time scales of the dynamics in the trap and the experimental

sequence. In the trap the momentum distribution is converted to spatial distribution

every quarter period. For us it was important to address only momentum information

and prevent any coordinate-dependent phase accumulation. So, the duration of the

sequence of the Floquet engineering (1-2 ms) was deliberately made much shorter

than the trap period 40 ms.

As pseudospin-1/2 system we used ImF= -- 1) and |mF = 0) of the F= 1 hyper-

fine manifold of the atoms. The state |4) = ImF = 0) is magnetically insensitive, it

does not see any oscillating force. So, when atoms were prepared in 4 ) they were

not affected by any transient magnetic effect such as "pre-shaking", when it takes a

few periods for the ac-current generating circuit to stabilize. In the experiment we

did not have two states moving out of phase with respect to each other as it was

described in the theory part. Instead we had a |4) state standing still, and IT) state

shaken around it. So, the maximum momentum transfer hko was reduced by a factor

of 2 compared to example discussed above. The third hyperfine state of the F = 1

manifoldImF = +1) was decoupled from the two-level system via quadratic Zeeman

effect.

The oscillating magnetic force was created by a time-dependent 3D quadrupole

field B'(t)(z2 + yQ - 2xs). The direction of the effective ID force was determined

by the bias field B0 along 2. Orthogonal to the bias field, the periodic potential is

quadratic, which only creates a small modulation to the confinement:

U= PB (Bo + B'(t)z)2  (B'(ty)2 + (4B'(tx)2

I ~~~B'2 (t) 2(.5

pB(Bo + B'(t)z + 2B 2 + 4y 2 )) (5.25)
2Bo
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In the presented results the amplitude of the magnetic field was 48 G/cm at a

frequency of 5 kHz, which led to the momentum transfer ko = 0.07kL, where hkL is

the recoil of the A = 589 nm Na transition with the recoil velocity hkLm= 2.9 cm/s.

We pulsed a sequence of 9 RF pulses at 8 MHz. The duration of the single pulse

was 4 ps. The Rabi frequency of the RF signal is CW regime was 10 kHz. The

effective Rabi frequency with the duty cycle (4 [ out of 200 ts) was Q = 200 Hz.

Each single 4ps pulse resulted in approximatelyr/12 rotation on a Bloch sphere.

(a) Without shaking With shaking (6RF=0)

Shaking direction

Integrated column density (arb. units)

8

6

A

2

-0.2

- (5RF=-300 Hz
= 0Hz

+300 Hz
Without shaking

0 0.2

Position (mm)

Figure 5-6: (a) images of the atoms in the excited state after being spin-flipped by
the sequence of the RF pulses. Without shaking the cloud is isotropic (a feature of
thermal cloud expansion). With shaking the cloud is narrowed, because the atoms
were chosen to be exited based on their velocities. The yellow line dashed ellipses
have their major and minor axes according to FWHM of a Gaussian fit. The dashed-
dotted line corresponds to a Gaussian fit with the effect of the induced currents taken
into account. (b). Integrated column densities for different detunings of RF pulses
fired at the positive slope of the magnetic force (RF= 0). The assymetry between
the +300 Hz profiles most likely comes from the field drifts estimated to be 70 Hz
or small residual magnetic field gradients.

The Doppler width of the thermal cloud due to the momentum transfer k= 0.07kL

was 3 kHz (FWHM), whereas the Fourier width of the central feature in the Ramsey
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fringe was 625 Hz (given the total duration of the pulse sequence 1.6 ms). Thus,

according to our estimation we could resolve 5 velocity slices out of the thermal cloud

velocity distribution.

In the cold atoms experiments the standard way to probe momentum distribution

of the atomic sample is long TOF expansion. In the limit of long expansion time

the spatial information is lost and only momentum distribution is revealed. However,

since we worked with the thermal cloud we could not really afford using long TOF,

because of the quality of the images being deteriorated. The presented data were

taken at T= 12 ms TOF (only twice the inverse of w,).

For such relatively short TOF the size of the cloud is mainly determined by the

original spatial size. So, instead of seeing a sharp slice we could only see the partial

narrowing of the width of the spin-flipped atoms Fig.5-6.(a).

However, even for short TOF the displacement of the center of the spin-flipped

atoms is still exactly Vr. So as long as we could do a reliable fit into the image of spin

flipped atoms and resolve V displacement for different velocity groups Fig.5-6.(b) we

could still claim that we enforced Doppler sensitivity of RF.

The dependence of the RF detuning on the center-velocity of the slice is shown on

the Fig.5-7. The slope of the line gave the momentum transfer which was in a good

agreement with the predicted k = 0.07k. The dependence of the momentum on the

synchronization of the RF pulses with the oscillating force was checked for #RF, i.e.

when the RF pulses were fired at the negative slope of the magnetic force. Effectively

it flipped the sign of the momentum transfer k = -0.07kL and.the corresponding

dependance of the RF detuning on the velocity of the atoms is on the Fig.5-7(b).

It was impossible to explore phases #RF besides 0 and 7r due to technical reasons

discussed further in the section.

5.3.1 High current

In order to dress RF photon with momentum comparable to the recoil from optical

photon we had to generate relatively high currents at audio frequencies (5-10 kHz).

The benchmark was 100A at the frequency of 10 kHz. It was clear that if we can reach
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(a) ORF 0 Doppler shift (Hz)
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Figure 5-7: Doppler shift mapped for different velocity groups. (a) RF detuning as a
function of the target resonant center-velocity of the atoms for the case of RF fired
at positive slope #RF = 0. (b) The same for negative slope #RF = 7r. The solid lines
represent the predicted Doppler shifts based on the calibration of recoil momentum.
The dashed line takes into account the model of induced currents. The error bars a
purely statistical and correspond to 10. The inferred field fluctuation from 1o- is 70
Hz

it, then we can simulate recoil on the order of 0.1kL. The main challenge we faced

was that at audio frequencies the impedance of the coils turned out to be much higher

than for dc current, 1 Ohm in contrast to 0.06 Ohm. Such dramatic increase of the

impedance came from eddy currents induced in the stainless still vacuum chamber.

It turned out that we had to work in the regime which was quite different from the

typical settings of atomic physics experiment. We usually use high current low voltage

power supplies in the lab to create strong gradients and bias fields. To generate high

current at audio frequency we had use high-current high voltage source. We had to

efficiently use output power, i.e. ideally to make power supply to be both current and

voltage limited. Also in order to produce ac current from dc power supply we had to
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build our own H-bridge, which can tolerate high power and work as a fast switch.

IGBT IGBT

+100V

IGBT 0 V IGBT

... oils\\

Figure 5-8: Scheme of the coils circuit. Two DC power supplies connected in series
and placed in the "bar" of the H-bridge. IGBTs are triggered in pairs: 1 and 3, 2
and 4. Triggering of the pairs is out of phase. When pair 1-3 is on, pair 2 an 4 is off.
The resonant frequency of the cicruit is controlled by the capacitor C. The IGBTs
are triggered at twice the frequency of the cicruit thus realizing parametric pumping.

As power supplies we used model RST-5000-48 from Mean Well. Two power

supplies were connected in series to produce the voltage of 100A. For the H-bridge

we used four IGBT switches, which met both requirements: they switched fast and

they stand high currents. IGBTs and power supplies were protected by varistors. To

tune the resonance of the circuit we had to add the AF capacitors compatible with

ac current (model ..). It is a pleasure to acknowledge that during extensive use of

our homemade ac-current generator at the limit of its capacity it worked reliably and

never failed.

5.3.2 Stability of magnetic field and gradient

Coherent manipulation of hyperfine-states requires substantial stability of magnetic

field. Our first attempts to do the experiment convinced us that the control of mag-

netic fields in our apparatus was not sufficient. Initially we used audio amplifiers
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Figure 5-9: An example of atypical trace of Hall probe measuring the current gen-
erated by the H-bridge parametric triggering. Our benchamrk is 120 Aat 5kHz (on
theplot),90Aat10 kHz

model Behringer EP4000, which seemed to work in desirable for us regime. However,

they appeared tobe the major sources of the 60Hz noise, which for the time scale of

our experiment cannot be viewed only as adecshift of magnetic field (the duration of

the quantum simulation was 1-2 ms incomparison to 13ms ofthe 60Hz noise period).

The instabilities in operation of the audio amplifiers were hard to fix due to the ab-

sence of documentation and control of the non-scientific equipment. Even though the

audio amplifiers proved tobe not suitable for for generation of the accurate symmetric

oscillating gradient, they still potentially can be used for implementing our scherne

in the TOP-trap configuration. Instead of sending oscillating current through the

anti-Helmholtz coil and creatingdecbias field which polarizes the spin and defines the

direction of the force one can, in principle, rundecurrent through the anti-Helmholtz

pair and rotate the bias field bydriving oscillating currents through two other per-

pendicular Helmholtz pairs with awi/2 phase shift. In this scheme there are less

requirements on the symmetry of the ac-current since it only sets the instantaneous

direction of the polarizing bias. The symmetry of the magnetic force will depend on

the stability of thedecurrent through the anti-Helmholtz pair, which is much easier

to accomplish than for the ac-current. For this application the audio-amplifiers may
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be a good choice.

The observation of Doppler shifts at the 200 Hz level required careful control of

Zeeman shifts. Three critical adjustments were done.

We had to protect our system from the potential causes of the false signal. Inho-

mogeneous Zeeman shift was one of our most dangerous enemies. We had to make

sure the signal we observe comes from Doppler shift. In principle the phase acquired

by atoms may be not only velocity dependent, but also position dependent. Unless we

would go to infinite TOF these two mechanisms cannot be fully separated. Thus, we

put a lot of effort in minimizing all the position-dependent effects in order to observe

a pure Doppler signal.

Here're the precautions we took to eliminate the false Zeeman effect. The RF

pulses can be safely fired only in the vicinity of the zero crossing of the time-dependent

gradient, i.e. for the phases #RF= 0 and#RF = 7r. Since the clouds' size is finite

a non-zero gradient across the cloud leads to inhomogeneous Zeeman effect, which

is very undesirable for us. It may sound like this circumstance limits the tunability

of scheme, that the momentum transfer in SOC cannot be changed continuously by

changing the timing of the Rf pulses. However, this constraint is only technical. The

shorter RF pulses, the broader their Fourier width, and if the Fourier broadening

prevails over the inhomogeneous Zeeman shift the RF pulses can be fired not only at

the zero crossings, but also at finite gradients. The duration of the RF pulse itself

is limited only by the RF power (in the case of our experiment) and the switching

electronics. We found that the optimal pulse duration in the experiment was 4ps. It

was short enough for the Fourier width to be broader than than the inhomogeneous

Zeeman effect, and long enough to transfer substantial population of atoms in 9-10

pulses.

An important requirement on the field control is the symmetry of the gradient.

The absence of it would hurt the velocity-dependent Doppler effect. If the magnetic

gradient is asymmetric in time it averages over the period T as the dc-gradient (B')T

which again leads to inhomogenous Zeeman effect.

Another side effect comes from the imperfection of the anti-Helmholtz coils. In
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addition to the oscillating gradient, we at the same time excite small oscillating bias

magnetic field. The bias field quickly sweeps through the resonance during the RF

pulse and effectively shortens its duration. Also when the induced bias is not perfectly

symmetric in time, it again results in unwanted phases accumulation due to Zeeman

effect.

The most peculiar and unexpected side effect came from the current induced in

the surrounding stainless steal vacuum chamber. The eddy currents caused shaking of

atoms at doubled frequency in the perpendicular direction with respect to the chosen

axis, which tilted the velocity slice in TO. This effect is going to be discussed further.

B

ZA

Z

Figure 5-10: Atomic cloud is center with respect to the zero of the quadrupole. Due
to the finite size of the cloud atoms displaced from the origin of the quadrupole
experience oscillating bias magnetic field.

5.3.3 Symmetry of the modulated magnetic field gradient

If inhomogeneous Zeeman shifts across the cloud (Fig.5-10) are comparable or larger

than Doppler shifts, the spinflips are no longer velocity selective since there is always a

local Zeeman shift to compensate for the Doppler shift. Therefore, the magnetic field

gradient averaged over one modulation cycle (B'), had to be zeroed: gF/LB(B')D <
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kv, where D is the length of the cloud. To avoid transient asymmetries from the

turn-on process of the periodic magnetic gradient, we added a pre-shaking period of

3 ms before the spectroscopic sequence. This didn't affect the trapped atom cloud,

since the atoms were initially in the non-magnetic ImF = 0) state. After the pre-

shaking, we achieve (B') % 20 mG/cm, implying a time-averaged differential Zeeman

shift across the cloud of less than 100 Hz. (B') was determined from converting

the measurement of time-averaged current asymmetry to the time-averaged magnetic

gradient asymmetry using the Stern-Gerlach calibration. As a final check, we added

asymmetries (Fig.5-11) on either the positive or negative side of the sinusoidal current

to create (B') ~ i 100 mG/cm, and for both cases observed a slight increase in the

width of the velocity-selected atom slice confirming that the residual asymmetry of

the magnetic gradient modulation was negligibly small.

IGBT IGBT

+100 V

IGBT 0 V IGBT

LCOils

Figure 5-11: An H-bridge with built-in asymmetry. A resistor in one of the legs
controlled the asymmetry of current at the per cent level.

The following two adjustments addressed the issue that the RF pulses were not

delta functions, but had a duration of 4 ps. The presence of Zeeman shifts comparable
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Figure 5-12: Atomic cloud displaced from the origin of the quadrupole. Magnetic
fields experienced by the atoms sweeps through larger range of values and effectively
shortens the duration of the RF pulses.

or larger than the Fourier width of a single pulse would reduce the RF pulse area.

For our parameters, a 45 kHz detuning will reduce the pulse area by 5 percent (and

therefore the single pulse excitation probability by 10 percent).

5.3.4 Minimize modulation of magnetic bias field

The time-dependent gradient creates also a time-dependent bias field given by the gra-

dient times the displacement of the atoms from the origin of the magnetic quadrupole

field. 60 pm away from the origin, the bias field changes by 30 mG during the 4 ps

RF pulse. To minimize the reduction of the RF pulse area, the optical trap was

aligned with the center of the quadrupole field to within 1 pm like on Fig.5-10 (a

situation which we wanted to avoid is depicted on the Fig. 5-12). This was done by

minimizing the shift in the RF resonant frequency when a stationary gradient field

was added to the constant magnetic bias field. In addition, the eddy currents created

a time-dependent bias field, which was compensated by RF detuning. The detuning

and the timing of the RF pulses (described below) were adjusted together in order to
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maximize the fraction of spin-flipped atoms.

5.3.5 Timing of the RF pulses with respect to the magnetic

modulation

The goal was to pulse on the RF while the magnetic field gradient crosses zero. A 5 Ps

offset would imply a gradient of 7.5 G/cm and a differential magnetic field along the

cloud of 50 mG. In the presence of strong gradients, the short RF pulse is resonant

only for a small part of the cloud. Therefore, we could find the optimum condition

by scanning both the timing and the detuning of the RF pulses until the measured

total fraction of the spin-flipped atoms is maximized. The optimum time was offset

by 2 ps from the zero-crossing of the current through the gradient coils, possibly due

to eddy currents.

To summarize, we optimized three parameters, which are trap position, timing of

the RF pulse, and RF detuning. The optimal position minimizes temporal variation

of the bias field, optimal timing of RF minimizes B' during the pulse, and optimal

detuning compensates for any bias field at the time of the pulse.

5.3.6 Induced shaking

One of the striking features of our experiment was that the narrowing of the atoms

in the excited state of the TOF happened not in the direction we expected to see it.

The slicing of the cloud happened not in the shaking direction which was defined

by the bias field, but at the some angle to it (Fig.5-13).

It looked like the Doppler effect we simulated was

The tilt angle we first observed was 0 arctan(ky/k,) ~_600 (Fig. 5-14). So, we had

to find out what may cause Doppler selectivity in the i direction with the magnitude

of the effective momentum transfer comparable to one along 2.

95



k
YA Sy

L
Z

k\\\ k

Figure 5-13: Slicing of the momentum distribution at an angle.

The first check we did was changing the RF phase to#RF= ir, i.e. fire the RF

pulses at zero crossing on the negative slope of the magnetic drive. The change of

the phase to ir flips the sign of the momentum transfer. So, we had an expectation

to simulate Doppler shift 6w = -kyvy - k;v2. It would keep the orientation of the

slice the same. However, to our surprise, in the experiment the orientation of the slice

changed. After fitting the data we realized that k2 has changed to -k, as we expected,

but ky stayed the same, so the new tilt was 0 = -60°. This peculiar observation led

us to a possible model which provided qualitatively accurate explanation to the effect.

We inferred that in addition to the bias field BO we created along 2, the eddy

currents in the stainless steel vacuum chamber induce oscillating bias field along y.
This magnetic field from the eddy currents should oscillate at the same frequency w

as magnetic gradient we create (and as the current we drive through the coils), and

may have some phase shift # with respect to it ec(t) = Bec sin(wt +#).

This assumption has the following intuition behind it. In order to produce shaking

in the Q-direction there must a component of oscillating force in the same direction.

While the magnitude of the force is determined by the amplitude of the oscillating

gradient, the direction of the force comes from the polarization of the spin, i.e. from

the instantaneous direction of bias magnetic field (Fig.5-15).'If the bias field has only

dc component along y it causes some polarization of the spin along § and therefore

a component of the force oscillating at the same frequency w as the gradient. That

96



Figure 5-14: Effect of eddy currents on observed velocity-selected atom slices. The
induced bias field along ey led to a y-component of the oscillating force, resulting in
velocity selectivity in ey and therefore tilting of the resonant velocity slice in the y - z
plane. The tilt angle depends on the static bias field B and the RF phase #RF. The
dashed lines are guides to the eye.

would explain a tilt of the slice we cut in TOF, but would not agree with the obser-

vation that for the pulses at the negative slope the tilt changes from 0 to -0. If we

imagine that there is an oscillating bias field at frequency w along §, the polarization

of the spin, its projection on §, will also oscillate at w. The force along , which is

proportional to the product of the spin-projection (oscillating at w) and the gradient

(oscillating at w) will rectify and have a component oscillating at 2w. Well, so now we

have atoms being shaken at w along 2 and 2w along Y. The RF pulses are fired every

T = 27r/w, i.e. every period for the i force and every other period for y-force. When

we change the phase of the the RF to ir and fire it on the negative slope for z-force,

with respect to the y-force the phase does not change. In turns out that ky does not

change whereas k, changed to -k,. Thus, shaking at double frequency caused by the

bias oscillating at the single frequency may explain the observed reflection of the slice

with respect to Q.

Here's a more quantitative analysis of the model. The total magnetic field expe-
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Figure 5-15: Due to the induced bias field along § oscillating at the drive frequency
w the polarized spin is steered along the instantenous direction of the total bias field,
i.e. BO+ Be5(t)§

rienced by the atoms comes from the two bias components and the gradient:

= [Bo + B sin (wt)z] -+[Bec sin (wt + #) + B sin (wt)y] -2B sin (wt)x2, (5.26)

with a magnetic field strength

= [Bo + B6 sin (wt)z] 2 + [Bec sin (wt + #) + B6 sin (wty]2 + [2B sin (wt)x]2

B['z+7sin(wt+#)B6ysi t
~Bo 10 2sn (f+# sin (wt) V( 1+y2 sin2 (wt +)

(5.27)

here'7= Bec/Bo. The first term corresponds to a time varying homogeneous bias

field resulting in a velocity-independent effective detuning of the RF transition. The

oscillating magnetic field gradients along the z and y directions are

'I ' sin (wt),az 1 + 72sin2 (wt +)

A 1RI
(5.28)

_ _ = sin (wt) sin (wt +).
ay V1+ 7y2sin2 (wt +)

The gradient in § oscillates at 2w, twice the frequency of the driving. The phase delay

# is determined by the magnetic properties of the vacuum chamber. We modeled the

chamber as an LC circuit with a self inductance LCh and a resistance RCh, and obtain
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#= arctan (wLCh/RCh)+7r/2. Our observations imply RCh» wL, 7/2, resulting

in an effective recoil component in the y direction with

kS1,, f - B sin (wt') cos (wt') dt' dt
TJo 0  1 + 72 cos2 (wt')/(5.29)

7B' ) (5.29)= - ft sin (2wt') dt' dt.
T o o J2 1+y2 cos2 (wt')

Consequentially, the Doppler shift is modified as

6 = kyvy + kzoz, (5.30)

directly observed as a rotation of the velocity slice with an angle 0 = arctan (ky/kz)

in the time-of-flight images, as shown in Fig. .

A natural way to verify these assumption is to reduce the effect of the transverse

shaking by stronger polarizing the spin along _. We increased the bias filed B0 from 6

Gs to 11.4 Gs and saw how the angle 0 of the rotation decreased with stronger static

bias tp 0 - 40°. Due to the 2w oscillating frequency of the y force, ky did not change

sign when the RF phaseq4RFwas shifted from 0 to7r in contrast to k2, and therefore

the rotation angle flipped from 0 to -0, as suggested by and shown in Fig.5-14 .

The effects of the induced currents can be completely eliminated if the experiment

is conducted in a glass cell. In our apparatus, which was design for optical lattices

experiments, and has a stainless steel chamber we could only suppress the effects

by ramping the bias field B0 further up. However, using higher bias fields has its

own incidental problems. First of all, using higher bias fields means that we need

to change the frequency of the radio signal resonant with the level splitting of the

hyperfine states. Higher frequency would lead to the loss of the efficiency of the

antenna and therefore a decrease in Rabi frequency of the RF transition. Also, our

bias coils were not water-cooled, so eventually we would also be limit by the power

we dissipate in them at high currents.

What we have described so far applies to free space or to an isotropic trap.
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However, the optical trap in the experiment is anisotropic. For zero time-of-flight,

in the y - z plane, the minor axis of the ellipsoidal cloud is oriented along y,

O = 7r/2. For long time-of-flight, the angle is solely determined by the velocity selec-

tion 0 = arctan (ky/k,). For intermediate time-of-flight, as used in the experiment,

the observed angle interpolates between these values. We calculate that the observed

tilt angles of 600 and 40° correspond to tilt angles of the bias field arctan (ky/k2) of

530 and 32°, respectively.

5.4 Heating due to collisions between the spin states

One of the advantages of magnetically generated spin-orbit coupling is that it inher-

ently does not suffer from spontaneous emission, since no lasers are used to produce

it. Since the scheme we realized is laser-free, it is promising as an experimental tool

and may potentially make the experiments realizing spin-dependent gauges easier to

build and maintain.

However, instead of heating via spontaneous emission like in two-photon schemes,

the use of periodic drive brings another heating mechanism: heating due to collisions.

Micromotion of the different spin states can be transferred into secular motion and

heat the sample. Our experiment was done with rather humble momentum transfer

k - 0.7kL., characterizing the strength of the drive. The lifetime of the two colliding

condensates in IF = 1, m = 0) and F = 1,m= -1) states was very long - about 8

S.

The follow-up theoretical study [57] describes heating due to collisions in the pres-

ence of periodic drive for various system. In this work it was shown that energy pump-

ing into the system of two colliding species can be expressed as E - pvc 01Eo, where oVco

reflects an effective density of states, p is the density and o- is two-body s-scattering

cross section. For instance, in the case of colliding condensates vco = v/hW/m for

large modulation frequencies w. It was estimated that if the momentum transfer is

scaled to the optical recoil ko, the collisional heating will increase significantly unless

the density of atoms is reduced to ~ 1012 cm-3. Otherwise it will not be possible to
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reach long lifetime of the order of 100 ms. For degenerate Fermi gas the expectations

are more optimistic. Due to Pauli blocking in s-wave collisions for driving frequency

below the Fermi energy ho < EFthe heating is suppressed by a factor of (hw/EF)2 .
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Chapter 6

Conclusions and Outlook

Two methods of generating one-dimensional spin-orbit coupling were presented in

this thesis. In the first approach, we used a two-photon Raman process as a source of

momentum transfer and applied it to couple pseudo-spin states, defined as the ground

and first excited state of a double-well potential. In the second approach we picked

conventional hyperfine states of sodium as pseudo-spin states, but developed a com-

pletely new mechanism of momentum transfer: we took a low-energy RF transition,

which inherently does not carry any recoil momentum, and endowed it with tunable

momentum in the time-averaged picture.

Both schemes shared as a motivation the goal of simulating spin-orbit coupling

with minimal heating. In addition, the first approach was targeted to explore a new

point on the phase diagram - the stripe phase, a long-awaited supersolid state of

matter.

The method based on dressing RF photons with recoil was conceived in the con-

text of spin-orbit coupling, but in fact, goes beyond it. It also provided a lucid

pedagogical interpretation of what Floquet engineering is. This technique can also

be used for velocimetry and accelerometry. The new fundamental concept of recoil-

dressed photons can become a new building block for future quantum simulations.

Our experiment was carried out in an apparatus which was not perfectly suitable for

the use of high oscillating fields. The humble value of momentum transfer that we

generated ~ 0.1kL was only technically limited by the induced eddy currents in the
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stainless steel chamber. If the same scheme would be realized in a glass cell, this

limitation would be lifted. Also, much higher magnetic gradients than ours could be

realized in atom-chip experiments, which would also allow one to boost the momen-

tum transfer. Thus, seeing our work as the first step and proof-of-principle result,

I hope it has provided a new look at the quantum mechanics of periodically driven

systems. This work can inspire future development in the next-generation of quantum

simulation experiments. Application of the scheme to fermionic gases was found to

be particularly promising in the follow-up theoretical study [57].
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We propose and demonstrate a new approach for realizing spin-orbit coupling with ultracold atoms.
We use orbital levels in a double-well potential as pseudospin states. Two-photon Raman transitions
between left and right wells induce spin-orbit coupling. This scheme does not require near resonant light,
features adjustable interactions by shaping the double-well potential, and does not depend on special
properties of the atoms. A pseudospinor Bose-Einstein condensate spontaneously acquires an antiferro-
magnetic pseudospin texture, which breaks the lattice symmetry similar to a supersolid.
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Spin-orbit coupling is the mechanism for many in-
triguing phenomena, including Z2 topological insulators,
the spin quantum Hall effect [1,2], Majorana fermions [3],
and spintronics devices [4]. Realizing controllable spin-
orbit coupling with ultracold atoms should make it feasible
to explore fundamental aspects of topology in physics and
applications in quantum computing [5].

Spin-orbit coupling requires the atom's motion to be
dependent on its spin state. Spin-orbit coupling without
spin flips is possible for schemes that are diagonal in the
spin component a. Such spin-dependent vector potentials,
which are sufficient for realizing quantum spin Hall physics
and topological insulators, can be engineered using far-
detuned laser beams to completely suppress spontaneous
emission [6,7].

However, spin flips (i.e., spin-orbit coupling terms
involving a, or ay operators) are necessary for Rashba
[8] and Dresselhaus [9] spin-orbit coupling [10].
Experiments with ultracold atoms couple pseudospin states
using optical dipole transitions, which couple only to the
orbital angular momentum of the atom. Most realizations,
including the first demonstration [11], use hyperfine states
of an alkali atom as pseudospins. In this case, the coupling
of the two states occurs due to internal spin-orbit coupling
in the excited state of the atom, which causes the fine-
structure splitting between the Di and D2 lines. The
optimum detuning of the lasers is comparable to this
splitting, leading to heating. Special atomic species with
orbital angular momentum in the ground state can avoid
this problem, as recently realized with dysprosium [12].
Here, we present a new method that can be applied to any
atomic species, using an external orbital degree of freedom
as the pseudospin to avoid the need for near-resonant light.

An external degree of freedom as the pseudospin could
be realized for a two-dimensional system by using the
ground and first excited states of the confinement along
the third dimension as pseudospin states. However, the

excited state would rapidly relax due to elastic collisions,
typically on a millisecond time scale [13]. This is also the
case for the recent implementation of spin-orbit coupling
(SOC) with hybrid s-p Floquet bands in a one-dimensional
optical lattice [14]. To solve this issue, we choose an
asymmetric double-well potential (Fig. 1). Pseudospins up
and down are realized as the two lowest eigenstates of the
double-well potential. For J/A « 1, they can be expressed
by the tight-binding states 1l) and |r) localized in the left
and right wells, respectively: |4) = 1) + (J/A)|r) and
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FIG. 1. Realization of orbital pseudospins in a superlattice.
(a) The unit cell of the superlattice is a double well with offset A
and tunneling J. The two lowest eigenstates (pseudospin up and
down) are coupled via a two-photon Raman process. (b) Raman
process in the band structure of the superlattice. The ground state
with quasimomentum q = 0 is coupled to the edge of the
Brillouin zone q = (r/d) of the first excited band. (c) Top view
of the superlattice with period d = Am/2 = 532 nm. Raman
coupling is implemented by two AI beams: one along the
superlattice (z direction), the other along the x direction. SOC
(curved arrows) transfers transverse recoil in the x direction to the
atoms (dashed arrows).
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It) = Ir) - (J/A)Il). The tunneling J and offset A
between the two wells are used to adjust the overlap-
and therefore the interactions and the collisional relaxation
rate-between the two pseudospin states. We couple the
two states via a two-photon Raman transition with large
detunings to achieve SOC with spin flips. (For conven-
ience, we will refer to pseudospin as spin in this Letter.)
Recent work on two-leg ladders can be mapped to SOC
between the two legs of the ladder [15,16]. Our scheme is
qualitatively different from other realizations of orbital
pseudospin since it realizes spin-orbit coupling in free
space as compared to lattice models.

An intriguing prediction for spin-orbit coupled Bose-
Einstein condensates (BECs) is the existence of a stripe
phase [17-19], a spontaneous density modulation that
realizes a supersolid [20]. However, when the interspin

(gtd) and intraspin (gtt, g4) interaction strengths are the
same, the increased interaction energy of the density
modulation drives spatial phase separation, eliminating
the stripes. The system can be kept in the miscible phase
when interspin interactions are weaker than intraspin
interactions, g < gtfgg [19]. In our realization, gt4 is

proportional to the overlap squared of the wave functions
on the two sides of the double well. An analogous scheme
can be realized with hyperfie pseudospins and spin-
dependent lattices [21], but requires near-resonant light.
Our scheme does not depend on specific atomic properties
and addresses three challenges to realizing the stripe phase:
(1) spin-orbit coupling without near resonant light, (2) a
miscible system with adjustable interspin interactions, (3) a
long lifetime against collisional relaxation.

Instead of one double-well system, we create a lattice of
double wells using an optical superlattice [Fig. 1(c)]. The
advantages of working with a stack of coherently coupled
double wells are twofold: the increased signal to noise ratio
and the use of interference between the double wells to
separately observe the two spin states. In the present work,
the degree of freedom along the superlattice direction is
purely an aid to observation [22].

Our main result is the observation of the momentum
structure of a BEC modified by a superlattice and spin-orbit
coupling. We first describe the effects of the superlattice
without adding SOC. A one-dimensional superlattice of
double wells was realized by combining lattices of AR=
1064 nm light and AGr = 532 nm light obtained by fre-
quency doubling the Am = 1064 nm light. The shape of the
double-well unit cell is determined by the relative strength
and spatial phase #SL between the two lattices. The phase is
controlled by a rotatable dispersive glass plate and an
acousto-optical modulator for rapidly switching the IR
lattice frequency.

The experiment starts with a BEC of ~3 x 10 2 Na
atoms in the IF = 1, mF = -1) state in a crossed optical
dipole trap. The superlattice is adiabatically ramped up
within 250 ms. For an offset A» J, all the atoms
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FIG. 2. Spontaneous formation of an antiferromagnetic spin
texture. (a),(b) Time-of-flight (TOF) pattern of atoms in the
ground (first excited) band of the superlattice. After preparation
of the It) state with quasimomentum q = 0, it relaxes to the
bottom of the band at q = r/d. (c) An equal mixture of spin
states is prepared by rapidly switching the superlattice param-
eters. The two spin states can be separated in the TOF by a
pseudospin Stern-Gerlach effect [23]. The figure shows that both
spin states are in q = 0 before the relaxation. (d) After relaxation,
spinor BECs with states |4), q=0 and It), q= i/d are
observed. The momentum pattern implies a periodic structure
at 2d, twice the lattice constant, indicating that an antiferromag-
netic spin structure with a doubled unit cell has formed. The plus
and minus signs indicate (one possible choice for) the phase of
the BEC wave function. n is the site index.

equilibrate at the band minimum q = 0 of the lowest
superlattice band, putting 100% of the population in the

I4) state. The relative population of the two spin states can
be controlled by first adjusting A for the loading stage to
achieve a desired state population and then rapidly lifting
one well up to the final offset [23]. The upper well
corresponds to the first excited band, which has its
minimum energy at quasimomentum q = r/d with d =
Am/ 2 [Figs. 2(a) and 2(b)]. Since the lowest energy It) and
|4) states have different quasimomenta and experience
different transverse confinement, they can be separately
observed in ballistic expansion images without the band-
mapping techniques [23].

The a/d quasimomentum difference also leads to an
interesting spin texture for an equal population of the It)
and 4) states. For this, atoms are prepared in both bands
with q = 0 [Fig. 2(c)], corresponding to a wave function
periodicity of 532 nm, i.e., the lattice constant. However,
after relaxation, the periodicity has doubled to 1064 nm, as
indicated by the doubled number of momentum compo-
nents in ballistic expansion images [Fig. 2(d)]. Specifically,
the system was prepared in the symmetric state

En|(I4 +|ft)), where n denotes the lattice site, which
is a ferromagnetic spin state in the x-y plane. After
relaxation into the state En[4W) + (-1)neie|iAtIn)] an
antiferromagnetic spin texture has developed, which
reduces the translational symmetry of the lattice. This
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TABLE I. The amplitudes of the wave functions in Eqs. (1) and (2) obtained from first order perturbation theory (i = 1, 2).

States M M K

DP1) -(j(A/E -3) - j(Q/Er + 6) -i[e- ("/41//Z] (J/ A))(/E + A - 6)

I2) + (/Er +) -j(/Er-) A)(/Er - A + 3)

system breaks both U(1) symmetry (the phase of the BEC)
and the translational symmetry of the superlattice. In
addition to the spin-density wave, it also has a density
wave with the same period due to the interference of the It)
and |I) satellites. The position of the spin and density
modulations is determined by the spontaneous phase 0 and
oscillates at frequency A [23]. It is a simple system
fulfilling one definition of supersolidity [25-27].

The small satellites allow spin-orbit coupling, but also
lead to the collisional decay of the |t > state. We observed
lifetimes on the order of 200 ms for both the I t) and equally
mixed states at a density of n - 2.5 x 1014 m 3 . The
similar lifetimes for both states and the sensitivity to daily
alignment indicate the lifetime being limited by technical
noise and the misalignment of the lattice rather than by
collisions. Collisions would lead to a shorter lifetime for the
mixed state by a factor of 4(J/A) 2 . Adding Raman beams
(with the parameters presented in Fig. 4) increases the loss
rate by ~10/s, probably caused by technical issues. While
previous work with 87 Rb reports a lifetime of seconds [11],
the Raman hyperfine spin flip scheme is not promising for
lighter atoms because of the substantially higher heating
rates compared with 87Rb, which are 103 (105) times higher
for 23Na (6Li) [28]. Even without major improvements, the
lifetimes achieved in our work are longer than any relevant
dynamic time scale and should be sufficient for further
studies, including the observation of the stripe phase [291.

Coupling between the two spin states is provided by two
A beams: one along the superlattice direction z, the other
orthogonal to it (along x). The frequency difference of the
two beams is close to the offset in the double well, allowing
near-resonant population transfer. The recoil kz along the
lattice is necessary to couple the two orthogonal spin states
in the double well, and was chosen to be kZ = r/d. The
recoil kick k in the transverse plane provides the coupling
between the free-space motion in the transverse plane and
the spin. It has opposite signs for the transition 1)to It)
and the reverse transition.

The Raman coupling can be described as a moving
potential VRaman = Q cos(kxx + kzz - 6t), characterized by
a two-photon Rabi frequency , a detuning of Raman
beams 6, and a wave vector (k, 0, k,). We characterize the
states by their spin, quasimomentum q, and x momentum
k, (the y momentum is always zero).

If the system is initially prepared in the state

|, q = 0, k = 0), the adiabatically ramped Raman beams
will transfer it to a new eigenstate:

+Mi'etI4 ,-i/d,-ks).

If prepared in t, z/d, 0), the new state will be

IT2) = e-A' It, /d, 0) + K2ei(A)t4, 0, -ks)

+ M2ei(-A)It,0, -ks)

+ M2'ei(+A)tIt, 0, kx).

(1)

(2)

The amplitudes obtained from first order perturbation
theory appear in Table I. The spin-orbit coupling is
described by the second term in Eqs. (1) and (2). In
addition, the Raman beams act as a comoving lattice and (in
the limit 3 » Er) create a moving density modulation in the
two spin states, described by the third and fourth terms.
The spin-orbit coupling shows a resonant behavior for
3 ~ A-the range of interest for SOC-where the moving
density modulation is nonresonant. Both contributions are
proportional to 9/A. The off-resonant counterrotating spin
flip term is proportional to A- 2 and has been neglected. For
3 » E, all off-resonant amplitudes Mi, M become ~/3.
For 6 = A and both spin states populated, the spin-orbit
admixture of I1) is expected to form a stationary inter-
ference pattern with I2) along x with wave vector k, and
vice versa, which constitutes the stripe phase of spin-orbit
coupled BECs in the perturbative limit. (In general, the
periodicity of the stripes depends on # and the atoms'
interactions [191.)

The resonant Raman coupling leads to the standard spin-
orbit Hamiltonian [23]:

=(p + aba) 2  +Sooz,2m + (3)

which can be considered as equal contributions of Rashba
and Dresselhaus interactions. The parameters a = -k,/2,

p6 = (l/v/)J/A, and 60 = ( - A)/2 are independently
tunable in our experiment.

To characterize all the components of the wave functions
above, the Raman coupling was adiabatically switched on
by ramping up the intensity of the two Raman beams. The
momentum space wave function was observed by suddenly
switching off the lattice and trapping beams and measuring
the resulting density distribution with absorption imaging
after 10 ms of ballistic expansion (Fig. 3).
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FIG. 3. Characterization of spinor BECs through their momen-
tum distributions. (a),(e) TOF images of the 4)and It) states,
respectively. (b),(f) Schematics of the momentum peaks for4)
and It) with Raman coupling. Both the SOC (solid arrows) and
the density modulation (dashed arrows) are shown. The main
peak (filled circle) is equal to the quasimomentum of the state.
Extra peaks (open circles) appear due to the periodic potential.
(c),(d),(g),(h) Same as in (a) and (e), but now with Raman
coupling at different detunings S. The momentum components
created by the Raman process are vertically shifted compared to
(a) and (e) due to the transverse momentum kick. The momentum
shift along the superlattice (z direction) reflects the r/d quasi-
momentum of the Raman lattice. The off-resonant density
modulation creates momentum peaks that are symmetric along
+x and -x [(c) and (g)], whereas resonant spin-orbit coupling
creates unidirectional momentum transfer resulting in asymmetry
[(d) and (h)]. (i) Spin-orbit coupled BEC with equal population in
the spin up and spin down states.

The momentum components created by the Raman
beams are displaced in the x direction by the recoil shift
hkm. For off-resonant Raman beams, the pattern is sym-
metric for the +x and -x directions-signifying the
moving density modulation [see Eqs. (1) and (2)]. The
resonant spin-orbit coupling is one sided, with opposite
transfer of x momentum for the two spin states-as
observed in Fig. 3. We separate the momentum peaks
due to the moving density modulation from SOC by
evaluating the difference between the momentum peaks
along the +x and -x directions. Figure 4 shows the
resonance feature of the SOC when the Raman detuning
was varied. The resonances for the two processes 4) -+ It)
and It) -+ 14) should be separated by 2E, r 15.3 kHz. The
observed discrepancy is consistent with mean field inter-
actions, which reduce the separation by - 2 p ~ 5 kHz,
where p is the single site chemical potential. The observed
widths of the resonances are probably dominated by the
inhomogeneity of A due to the Gaussian beam profile of the
IR lattice laser [23].
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FIG. 4. Spin-orbit coupling resonances. Shown is the popula-
tion imbalance between the "+x" and "-x" momentum peaks
versus Raman detuning for the 4) -+ It) (blue) and It) -+I4)
(red) processes. The two sets of data were measured for the same
superlattice parameters VIR = 7.5(2)E,., VGr = 20(2)Er, and

#SL 0.22(l)x, which gives A - 37(1) kHz. The spin-orbit
coupling strength P was calculated to be 0.40(5) kHz. The solid
lines are Gaussian fits to the resonances centered at 32.2(3) and
43.2(3) kHz. The Gaussian profile of the IR lattice inhomoge-
neously broadens the resonances. The error bars represent la
statistical uncertainty. Inset: resonance center. frequencies versus
the IR lattice depth Vm for fixed #SL. The resonances are linear in
Vm with a constant split equal to twice the recoil energy.
The slope of the linear fit reveals #SL. The error bars are the
uncertainties of the fit.

Having established spin-orbit coupling at the single-
particle level, the next step is to explore the phase diagram
of spin-orbit coupled Bose-Einstein condensates with
interactions [17,19,21], particularly the stripe phase. The
clear signature of the stripe phase is the stationary, periodic
density modulation on the BEC mentioned above. The
periodicity is tunable through the spin-orbit coupling
strength and can be directly observed via Bragg scattering
[30]. In contrast to experiments carried out with 87 Rb,
which has similar inter- and intraspin scattering lengths,
our system has an adjustable interspin interaction
gt ~ (A) 2 g - (J/A)2 g. Small values of ggt/ggt
lead to a large window of p for observing the stripe phase
and enable higher contrast stripes [19]. Figure 3(i) shows
the momentum distribution of an equal spin mixture with
SOC. We observed an -40 ms lifetime for-the parameters
presented in Fig. 4. After adding Bragg. detection, the
observation of the stripe phase is in reach.

In conclusion, we proposed and demonstrated a new
scheme for realizing spin-orbit coupling using superlatti-
ces. An asymmetric double-well potential provides attrac-
tive features for pseudospins, including long lifetimes,
adjustable interactions, and easy detection.- This scheme
can be applied to a wide range of atoms including lithium
and potassium, which suffer from strong heating when
hyperfine pseudospins are coupled. On the other hand, by
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combining multiple hyperfine states with the orbital
degree of the double well, our scheme can realize two-
dimensional Rashba spin-orbit coupling [31] and sugges-
tions made for alkaline-earth atoms, for example, synthetic
non-Abelian gauge potentials [32,331, and Kondo lattice
models [34-361.
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SUPERLATTICE HAMILTONIAN WITH RAMAN COUPLING

The Hamiltonian for a one-dimensional superlattice, created by standing waves of infrared and green light with
relative phase #SL is

Hiattice = _2m 2m VGrs2 (kGr Z) + VIR sin2 (kIRz + SL)

In the tight-binding limit, it can be rewritten as

Hiattice ::-:L + 1 0Z1(Irn) (rnl- In) (1nD)- JZ(ln) (rnjI+h.c.) - S V3( It) (t'+1 +,h.c.),
2m2

n n n t=l,r
t'=l,r

where l(rn)) is a wavefunction localized in the left(right) well of the n 1hunit cell, Ao is the energy separation
between the right and the left wells. h is taken to be 1. Tunneling between neighboring unit cells is important for
maintaining of coherence in the superlattice, but not relevant for the physics of spin-orbit coupling. Thus, tunneling
terms with J't, in the Hamiltonian can be neglected.

The complete Hamiltonian of the system is

H = Hiattice +VRaman,

where VRaman = Q cos(kzz + kxx - 6t) is a moving lattice potential. For the purpose of our experiment, the initial
phase of the Raman potential is not relevant and taken to be zero.

We prefer to use eigenstates of a double well for the description. To first order in small parameter < 1 they
can be written as

J J
4n-r) 11n)+ Irn), IN = 1r,) I A 1n)

Ao Ao

We expand the Hamiltonian in the new basis with A= A 0 + 2A - Ao:

H=f2 + 1AZ(Nt) (Tn- 4nr) ( )±S:IPA (E55i, ) (ini (pjQ cos(k~z kxx- 6t) p)Ii) (i)( I

In our experiment kz = , where d is a period of the superlattice. In order to estimate the effect of the
Raman potential with arbitrary phase we need to know the overlap integrals for cos(kIR.(z-z,)) andsin(kIR.(z-zn)).
To first order in y:

n IJ
(In|cos(kRa. (z - zn))4Rn) (le|- |l,)= ,

4n| Icos (kjR - (z - z,,))|4 4) - 1, (t I Cos (kIR - (Z - zn)) ITO) - 0,
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(I sin(kIR - (z - z)) It,) (rn Tn) =

(Infsin(kIR ' (z - zn))) - 0, (tn sin(kIR - (z - zn))tn) 1,

where zn = nd is a coordinate of the left well in the nth unit cell.
Thus, the Raman potential can be expanded in the basis of double-well eigenstates:

lin) (in| Q cos(kz(z - zn) + kzz + kox - 6 -t) li' ) (i'/l
i=a,b
i'=a,b

= Qcos #{-(|n) (t + tn) (n|) + 44) (nj}+

- Q sin #n{t ) (t l + (1M) (tl+ It) (n|)},

whereq$, # rn + kxz - t. Later, we will calculate how x as an operator acts on the momentum states Ipi).

VRaman = Q(-1)' cos(kx -- t)lJt) ({4|- Q(-1)n sin(kxz - t)|t,) (tt| (1)
n

- 20 cos(kxz - 6t - i){|t) (tl + tn) (In} -(2)A 4

The factor (-I)n represents the phase of the Raman beams, which have a wavelength two times the length of
the unit cell. In our experiment the atomic sample is prepared in the zero-momentum state. When the Raman
perturbation is applied the atoms experience a kick in the x-direction. In the y-direction atoms remain unperturbed,
i.e. fy = 0. Since the confinement along x is weak, we can use the basis It (), k) = It (4)) D eikx. The Raman
interaction gives rise to intra-band coupling terms (1), and to the spin-orbit coupling term (2).

The system in our experiment initially prepared in the lower wells, which corresponds to the q = 0 of the lowest
band of the superlattice:

n=1

N is the number of unit cells in the lattice. When all the atoms are confined in the upper wells, the lowest state is
the q= Z state of the first excited band, due to the inverted dispersion relation:

N

q=rd) n= VLk)

With z= nd, the state becomes:

N

n=1

For the calculation of matrix elements we assume that overlap is nonzero only for n =n'.
Intra-band coupling terms:

V~q-- j csRama(# )(-1)"= cos(ksz +-kx- Ut (3)
n,n,

=QZ COS(n) (_1)n Qcos (kx6t) (3)
n
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Raman q=r/d) N(n| I Qcos(k z + kxx - 6t)i(-1)t )

= QS i(-1)"(- sin(#n))= -iQ sin(kx - t) (4)
n

Spin-orbit coupling matrix element:

K~ dnRaman ( -i)(-1) ( cos(kzz + k.x - Rt)|I|4)

-i 5 (-1)n (t Icos(kz(z - zr)) cos(#,) - sin(kz(z- zn))sin(#n) 4n),

K =)r/dV Raman '~q=o)N -1(cOS(#n) + sin(n)) = i Q(cos(kox - ) + sin(krx- 6t))
n

Intra-band coupling matrix elements (3) and (4) provide recoil kick in x-direction with recoil energy Er = k and

along the superlattice, changing the quasimomentum by half a reciprocal vector. If the system is initially at qqo, 0),
the new adiabatically connected eigenstate in first order perturbation theory is:

Q?{J,) ei6 bt10(L kk - 1 i~ 104 kb ,kx)±+|) = E, 0 Er - q=7r/dkx) 2 Er + 6 ko)+

.e- J//A At(-/ t? ( k)
- , E+A-6 ,k)-/dkx Er+A+6 q=r/d k

If the system is prepared in ,0):

l'2=C~ v(T) 1 Q ______~ -0M It
|) = eAt'q=l , 0) E - )kei(+A)t + -o, k)± E + 6 

~ - -kx) +

+*ie 4 QJ/A _e-(5At 0)k e 4 QJ/A _e(A)t -k)

v Er - A - 6 4 I E, - A + 6 4

For 6 close to A intra-band coupling is off-resonant and both co- and counter-rotating terms contribute at comparable
strengths, whereas for spin-orbit coupling the co-rotating term is resonant and, therefore, much stronger than the
counter-rotating term.

SPIN-ORBIT-COUPLING HAMILTONIAN

Keeping only the near-resonant spin-orbit coupling term, the Hamiltonian describing the system is

±- _A _ -ie-/ J Qe-i(kx-st)

Hsoc _ p22

m 2m 2 =ie(-iJxeiiktxxMt) __1A

After a unitary transformation with a position-dependent rotation,U e(-ikxx4ist-i)z/2, the Hamiltonian turns
into Hsoc = U t HsocU - iUt a.

S(PX + ao-z )2
HSOC 2m + #2 + 60o-z ,

wherea= -kx, 6 = J and 6o = (6 - A). For the total Hamiltonian we have to add the intra-band coupling,
which causes a density modulation.
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PSEUDOSPIN STERN-GERLACH EFFECT
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FIG. 1: (color)Stern-Gerlach separation of the spin states. Atoms are loaded into the green lattice, then the IR lattice is
suddenly ramped up. After different hold times, the vertical displacements of atoms in different spin states is measured with
10ms ballistic expansion. y = 0 corresponds to the position of atoms without the sudden ramp. The spin states are displaced
due to of transverse oscillations in the superlattice. The oscillating frequencies are equal to the transverse trapping frequencies
which the spins experience in the superlattice. In the data shown, atoms in t)and oscillates with frequencies of 356 Hz
and 417 Hz correspondingly.

Atoms in different pseudospin states can be spatially separated by a pseudospin Stern-Gerlach effect. The two spin
states experience different transverse confinement from the 1064 nm lattice. When this lattice beam is displaced from
the green lattice, the atoms in the two spin states experience different momentum kicks in the x -y plane when the IR
lattice is suddenly increased. This leads to transverse oscillations of the two spin states relative to each other and can
be used to separate them in ballistic expansion(Fig.1). The frequency of the oscillation is equal to the corresponding
transverse trapping frequency of each spin state.

SUPERLATTICE CALIBRATION

The superlattice potential V(x) = VIRsin 2 (kIaz + SL) +VGr sin2(kGrz) was produced by overlapping two one-
dimensional lattices with spacing AIR/2 = 532 nm(long) and AGr/2 = 266 nm(short). The 532 nm light was generated
by frequency doubling a high power A = 1064 nm laser seeded by the same seed laser as the laser for the long lattice.
This eliminated the need for any phase or frequency locking of two independent lasers. The long and short lattice
also shared the same retroreflective mirror to minimize noise and drifts in the relative phase 4SL.

0 pS 6jps
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10 ps 20 ps

26 ps 32 As

38 ps 44ps

00.8 Oth Order
1t Order

0
00.4

0
0 20 40 60 80 io

Hold Time (ps)

FIG. 2: (color)Calibration of the superlattice offset A. The relative phase between atoms in the lower and upper wells
accumulated linearly with time and results in periodic changes in the time-of-flight interference pattern. The period of the
oscillation is equal to A which is - 23 kHz for the data shown.

The relative phase #SL was controlled by introducing different phase shifts for the A = 1064 nm and 532 nm lattice
lights from a rotatable dispersive glass plate and by switching the frequency of the 1064 nm light with an acousto-
optical modulator. The glass plate allowed a wide tuning range for #SL. This design minimizes the optical path
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length, reducing the sensitivity to atmospheric pressure changes. The frequency switching allowed rapid but small
phase shifts. For our geometry, a 70 MHz shift for the 1064 nm light corresponded to a 7r/4 change in #SL

The offset A was directly calibrated by observing a beat note within a single double-well. Condensates with equal
population of atoms in the left and right well were prepared by pre-setting the glass plate to the desired value and
then rapidly ramping up the IR lattice to the final offset. Interference patterns for atom sitting in the lower and
upper well overlap and therefore interfere with each other before they relax to orthogonal quasi-momentum states.
The interference pattern evolves periodically with frequency w = A(Fig.2).

The relaxation to the band minimum occurs in less than 2 ms as shown in Figure 3. The observation of the
relaxation also indicates the population to be transferred to the first excited band.

- z

150 ps

250 ps

1600 ps

-4 -2 0 2 4
tk,'

FIG. 3: Relaxation process for atoms in the first excited band of the superlattice. After preparation of the t)state with
quasimomentum q = 0, it relaxes to the bottom of the band at q = 7r/d within a time scale of 2 ms.

ANTIFERROMAGNETIC SPIN TEXTURE

A spin-1/2 aligned along the cos #£ + sin 49 direction has the wavefunction4) + e' It). In our experiment atoms
can be prepared in left and right sites of the double wells with equal population. The wave function is proportional
to

|)) 4 n) + (-l)neie-iAt Itn)

which corresponds to spin-states aligned in the x-y plane with opposite direction on neighboring sites, showing x-y
antiferromagnetic ordering. The expectation values of spin evolve as (o) = (-1)" cos(9-At), (oy) = (-1)" sin(6-At)
and (oz) = 0.

Tunneling between wells within a unit cell causes a density modulation. Local populations in the nth cell acquire
a density imbalance:

(lj?)2 (1 - (-1)- cos(O - At)),

2(r|$)2 (1 + (-1)" cos(O - At))

Translating by one superlattice period flips the sign of the imbalance. This shows that r, and l+1 wells, and r,_1
and 1n wells have the same change in density, but oscillate out of phase. Therefore, this density wave has twice the
wavelength of the superlattice and is shifted spatially by half a unit cell.

RESONANCE LINE BROADENING

The spin-orbit coupling shows resonant behavior as a function of the frequency difference between the Raman
beams. We attribute the broadening of the resonant line shape to 1) Doppler broadening due to the finite size of the
trapped condensate 2) inhomogeneous mean-field shift due to inhomogeneous condensate density 3) inhomogeneous
shift of the superlattice offset A due to the Gaussian beam profile.
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First, the finite size of the condensate implies a distribution of momenta along the transverse direction which
Doppler broadens the resonance. A momentum p along x direction will shift the resonance by kiR - p/m considering
the geometry of our setup. Therefore a condensate size xO results in a broadening of - kIRh/mxo. Assuming a
Thomas-Fermi distribution in the transverse direction, we obtain an rms width of [1]

6 VD 21kJR h
87 2mxo

where xo = f2p/m(27ru) 2 . This gives a broadening of ~ 400 Hz.
The resonance is also broadened by the inhomogeneous density distribution of the condensate as

"v = i7 h

with p being the chemical potential. This effect broadens the resonance by ~ 600 Hz.
The Gaussian beam profile of the long lattice implies an inhomogeneous offset A within the sample, therefore

broadening the transition. The resulted shift is estimated to be

6 v~ 2A( )2

where o- is the Gaussian beam waist parameter. This effect broadens the resonance line by - 1.10 kHz. However, the
broadening can be much larger for small displacement between the green and IR lattice.

The three widths add up quadratically to a value of 1.30 kHz.
The linewidth of the frequency difference of the Raman beams was negligible - it was monitored through a beat

note and was ~ 50 Hz without actively phase-locking the two. We conclude that observed resonance width of 2 kHz
is most likely dominated by the spread in A due to slight misalignment of lattice beams.

* These two authors contributed equally.
[1] J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 82, 4569

(1999).
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A stripe phase with supersolid properties in
spin- orbit-coupled Bose-Einstein condensates
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Supersolidity combines superfluid flow with long-range spa
periodicity of solids', two properties that are often mutua
exclusive. The original discussion of quantum crystals 2 a
supersolidity focused on solid 4He and triggered extens
experimental efforts 3 'that, instead of supersolidity, revealed exo
phenomena including quantum plasticity and mass supertranspo
The concept of supersolidity was then generalized from quant
crystals to other superfluid systems that break continuo
translational symmetry. Bose-Einstein condensates with spin-or
coupling are predicted to possess a stripe phase5 -7 with supersc
properties 8 9. Despite several recent studies of the miscibil
of the spin components of such a condensate'0' 2 , the prese
of stripes has not been detected. Here we observe the predic
density modulation of this stripe phase using Bragg reflect
(which provides evidence for spontaneous long-range order in
direction) while maintaining a sharp momentum distribution(
hallmark of superfluid Bose-Einstein condensates). Our work t
establishes a system with continuous symmetry-breaking propert
associated collective excitations and superfluid behaviour.

Supersolids are defined as systems that spontaneously break t
continuous U(1) symmetries: the global phase of the superfl
breaks the internal gauge symmetry, and a density modulat
breaks the translational symmetry of space. Starting from superfl
Bose-Einstein condensates (BECs), several forms of supersolid
have been predicted to occur when the condensates feature dip
interactions, Rydberg interactions", superradiant Rayle
scattering 15, nearest-neighbour interaction in lattices' 6 or spin-o
interactions 5-7.Work simultaneous with ours used light scattering i
two cavities to realize a BEC with supersolid properties' 7 . For
mions, the predicted Fulde-Ferrell-Larkin-Ovchinnikov states h
supersolid properties',19. Several of these proposals lead to soli
along a single spatial direction maintaining gaseous or liquid-
properties along the other directions. These systems are differ
from quantum crystals, but share the symmetry-breaking propert

Spin-orbit coupling occurs in solid-state materials when an elect
moving at velocity v through an electric field E experiences a Zeen
energy term -pB--(v x E) owing to the relativistic transformatio
electromagnetic fields. Here o-is the spin vector and pB is the Bohr m
neton. The Zeeman term can be written as aijvg/4 , where the stren
of the coupling a has the units of momentum. The -z term, toget
with the transverse magnetic Zeeman term3o, leads to the Hamiltor
H =((Px+ ao-z)2 +P Y2+Pz 2)/2m+#ox, where m is the atomic m
A unitary transformation can shift the momenta by aoz, resulting i

H= + 0 e2iaxJ

2m #e-2x 0

The second term represents a spin-flip process with a moment
transfer of 2a, which is therefore equivalent to a form of spin-o

tial coupling. Such a spin-flip process can be directly implemented for
lly ultracold atoms using a two-photon Raman transition between the
nd two spin states' 20

ive Without spin-orbit coupling, a BEC populating two spin states shows
tic no spatial interference, owing to the orthogonality of the states. With

rt4 . spin-orbit coupling, each spin component has now two momentum
um components (0 and either +2a or -2a, where the sign depends on the
us initial spin state), which form a stationary spatial interference pattern

,bit with a wavevector of 2a (Fig. la). Such spatial periodicity of the atomic
lid density can be directly probed with Bragg scattering21, as shown in
ity Fig. 1b. The position of the stripes is determined by the relative phase

rice of the two condensates. This spontaneous phase breaks continuous
ted translational symmetry. The two broken U(1) symmetries are reflected
ion in two long-wavelength collective excitations (the Goldstone modes),
me one for density (or charge), the other one for spin transport'. Adding
the a longitudinal Zeeman term booz to equation (1) leads to a rich phase
ius diagram 6,22 as a function of 60 and 3. For sufficiently large 16 oI, the
ies, ground state is in a plane-wave phase. This phase has a roton gap9"',

which decreases when16o is reduced, causing a roton instability and
wo leading to a phase transition into the stripe phase.
uid Most experimental studies of spin-orbit coupling with ultracold
ion atoms used two hyperfine ground states coupled by a two-photon
uid Raman spin-flip process 2,23 26.So far direct evidence of the spatial
ity modulation pattern has been missing, possibly suppressed by stray
lar magnetic fields detuning the Raman transitions and low miscibility
igh between the hyperfine states used (see Methods). Both limitations
rbit were recently addressed by a new spin-orbit coupling scheme in which
nto orbital states (the lowest two eigenstates in an asymmetric double-well
fer- potential) are used as the pseudospins27 . Since the eigenstates mainly
ave populate different wells, their interaction strength gT is small and can
lity be adjusted by adjusting their spatial overlap, improving the miscibility
ike (see Methods). Furthermore, since both pseudospin states have the
ent same hyperfine state, there is no sensitivity to magnetic fields. The
ies. scheme is realized with a coherently coupled array of double wells using
ron an optical superlattice, a periodic structure with two lattice sites per
an unit cell with intersite tunnelling J(Fig. 2a). The superlattice has two

n of low-lying bands, split by the energy difference A between the double
ag- wells, each hosting a BEC in the respective band minima. The BECs
gth in the lower and upper band minima are the pseudospin states in our
her system. Spin-orbit coupling and the supersolid stripes are created for
ian the free-space motion in the two-dimensional plane orthogonal to
ass. the superlattice. The physics in a single two-dimensional plane is not
n modified in a stack of coherently coupled double wells. However, this

increases the signal-to-noise ratio and suppresses the background to
the Bragg signal (see below).

Experiments started with approximately 1x1s23 Na atoms forming
a BEC loaded into the optical superlattice along the z direction,

um equally split between the two pseudospin states with a density
rbit n - 1.5 x 104 cm- 3 . The superlattice consists of laser beams at
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Figure 1I Origin of supersolid stripes and detection via Bragg
scattering. a, Supersolid stripes from spin-orbit coupling. Spin-o
coupling adds momentum components +hkIR or -hkIR of the opp
spin state to the spin-up and spin-down BECs (at the top are spin
in momentum space). Matter wave interference leads to a spatial
modulation of period 21/kIR (at the bottom are spin states in real
The spatial periodicity can be directly probed by Bragg scattering.
b, Angle-resolved Bragg signal. The supersolid stripe phase is det
angle-resolved light scattering. A sharp specular feature in the left
the Bragg signal due to the periodic density modulation. The diffi
is Rayleigh scattering filling the round aperture of the imaging sys
Without spin-orbit coupling, only Rayleigh scattering is observed
panel). The figure is the average over seven shots.

wavelengths of 1,064nm and 532nm, resulting in a lattice co
d=532nm. Spin-orbit coupling was induced by two infra
Raman laser beams AIR=1,064nm along the x and z axes, pr
momentum transfer hkRamn=h(kIR, 0, kIR) and spin flip from
to the other with two-photon Rabi frequency Q. Here hkm =2
the recoil momentum from a single infrared photon (see re
Methods). The scheme realizes the spin-orbit Hamiltonian ineq
with a = kIR/2, 3 = (1/VF)j£/A, and an extra Zeem
60,=(6- A)/2ozdepending on the Raman-beam detuning
superlattice offset A. The parameters 1, S and A are determi
calibration experiments". A separate laser beam was added i
plane to enable detection of the stripes, which form perpendic
the superlattice with a periodicity of approximately 2d=1
Their detection requires near-resonant yellow light (Bragg pr
wavelength ABragg=589nm) at an incident angle 0=160, fulf
Bragg condition ABragg=4dsinO.

a
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Figure lb shows the angular distribution of the Rayleigh-scattered

k = kj~t light induced by the 589-nm laser at 60=0 in the Bragg direction
IR(see Methods). The spin-orbit coupling leads to supersolid stripes and

causes a specular reflection of the Bragg beam, observed as a sharp
feature in the angular distribution of the Rayleigh-scattered light
(Fig. 1b). The angular width (full-width at half-maximum, FWHM)
of the observed peak of 9 ± 1 mrad is consistent with the diffraction

k=0 limit of ABragg/D, where D is the FWHM size of the cloud, demon-
strating phase coherence of the stripes throughout the whole cloud.
This observation of the Bragg-reflected beam is our main result, and
constitutes a direct observation of the stripe phase with long-range
order. For the same parameters, we observe sharp momentum peaks in
time of ffight"-the signature of BECs-which implies superfluidity.

Our detection ofthe stripe phase is almost background-free, since all
other density modulations have different directions, as depicted in
Fig.2a. The superlattice is orthogonal to the stripes, along the i axis. The
Raman beams form a moving lattice and create a propagating density
modulation at an angle of 450 to the superlattice, parallel to s^+ . The
pseudospin state in the upper band ofthe superlattice forms at the min-
imum of the band at a quasimomentum of q=/d. The wavevector of
the stripes is the sum of this quasimomentum and the momentum trans-

- fer that accompanies the spin-flip ofthe spin-orbit coupling interaction27 ,
- resulting in a stripe wavevector in the x direction. Since the difference

in the wavevectors between the off-resonant density modulation and
the stripes is not a reciprocal lattice vector, the Bragg condition cannot
be simultaneously fulfilled for both density modulations. This
background-free Bragg detection ofthe stripes uniquely depends on the
realization of a coherent array of planar spin-orbit-coupled systems.

For a pure condensate, the contrast of the density modulation is
predicted 5' 6 to be r=23/E, which is about 8% for/ # 300 Hz. Here
Er =7.6kHz is the 2 3 Na recoil energy for a single 1,064-nm photon.

a A sinusoidal density modulation of r7NBEC (where NBEC is the number
of atoms in the BE) atoms gives rise to a Bragg signal equivalent
to -y(INBEC) 2/4, where 7 is the independently measured Rayleigh
scattering signal per atom per solid angle, and the factor % is the
Debye-Waller factor for a sinusoidal modulation. In Fig. 2b, we
observed the expected behaviour of the Bragg signal to be proportional
to NBEC 2 with the appropriate pre-factors. The prediction for the signal

rbit assumes that the stripes are long-range-ordered throughout the whole
osite cloud. If there were m domains, the signal would be m times smaller.
states Therefore, the observed strength of the Bragg signals confirms the
lensity long-range coherence already implied by the sharpness of the angular
space). Bragg peak. Another way to quantify the Bragg signal is to define the

ratio of the peak Bragg intensity to the Rayleigh intensity as 'gain',ected by which is calculated to be Ntota(f3/Er)2 , wheref=NBEC/Ntoal is the con-panel is
use signal densate fraction. The inset of Fig. 2b shows the normalized gain as
tem. a function of condensate fraction squared. The linear fit to the data
(right points is consistent with a y-axis intercept of zero. This shows that the

observed gain comes only from the superfluid component of the atomic
sample. Figure 2c shows that the Bragg signal increases with larger

nstant of spin-orbit-coupling strength up to3 300 Hz, and starts to decrease
red (IR) owing to heating from the Raman driving (see Methods).
oviding a Figure 3a shows the phase diagram for spin-orbit-coupled BECs for the
one well parameters implemented in this work. The stripe phase is wide, owing to

1th/AIR is the high miscibility of the two orbital pseudospin states.Our spin-orbit
f. 27 and coupling scheme and the one previouslyused 0 -" with87Rb are comple-
uation (1) mentary. In 87Rb, the phase-separated and the single-minimum states
an term were easily observed1 0 "', whereas our scheme favours the stripe phase.
6 and the Exploring the phase diagram in the vertical direction requires
ned from varying 6o with the two Raman beams detuned. For 60=0, spin-orbit
n the x-y coupling leads to two degenerate spin states. For sufficiently large values
ularly to of160, the ground state is the lower spin state. The vertical width of the
,064nm. stripe phase in Fig. 3a depends on the miscibility of the two spin
obe light components6 '. However, population relaxation between the two spin
illing the states is very slow'. For our parameters, the equal population of the

two pseudospin states is constant during the lifetime of the system for

r, -) n1 -7 h A - - -: i I - - n. .L, 1: - L, - -- I : -: - .4 - - A. - 4 C' - : - -- 1, 1 - 4.. .- All
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Figure 2 Density modulations from Raman beams, and quantitative
studies of the supersolid stripes. a, Effect of Raman beams. The two
lowest bands of the superlattice are mapped into orbital pseudospins,
where the pseudospin down state (localized in the left wells of the
superlattice) is shown in blue and the pseudospin up state (localized in the
right wells of the superlattice) is shown in red. Coupling the pseudospins;
with Raman laser beams causes two different types of density modulations;
one is a moving density modulation caused by the moving lattice potential,
and the other is the stationary stripes from Raman-induced spin-orbit
coupling between the pseudospins. The stationary stripes along the free-
space x direction break the continuous translational symmetry. b, BEC
number dependence. Bragg signal is plotted versus the BEC number,
showing the count rate integrated over the Bragg peak. The grey wedge
is the theoretical prediction without any adjustable parameters, using
independently measured values of # andy (and the corresponding 10-
errors) along with the theoretical Debye-Waller factor, assuming full
phase coherence of the stripes. The simple theory (see main text) predicts
the peak angular amplitude of the Bragg signal. To compare it to the total
count rate, we assumed a Gaussian lineshape with a constant linewidth.
The linewidth was obtained by averaging the widths obtained from two-
dimensional Gaussian fits to the data for each condensate number. The
inset shows the normalized gain as the BEC fraction is varied. The grey
solid line is a linear fit, where the y-axis intercept is consistent with zero,
within 2o- fitting error. c, Spin-orbit-coupling dependence. Bragg signal
versus Raman coupling strength atzero Raman detuning is shown. Error
bars represent lostandard error of the mean with asample size of 3to 4.

all detunings 16o 1studied (up to 10 kHz). Therefore, detection of the
stripes is possible even for large detuning.

We observed peaked Bragg reflection at 6 o ±0.7E, which was
characterized previously as spin-flip resonances couplingIT, P=0) to
I,.P= - hkIR) and11, P= 0) to I T,. P= - hkIR) (Fig. 3b). These peaks
show that density modulations are resonantly created in either theIT)
or 11) states. In addition, we observed a third peak around 6o=0, where
the stripe pattern is stationary. For finite 60, it moves at a velocity of
60/kIR. Our observation shows that the stationary stripe pattern is either
more stable or has higher contrast compared to a moving stripe. Since
the tunnel coupling along the superlattice direction is weak (about
1kHz) it seems possible that the alignment of moving stripe patterns

b
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Figure 3j Phase diagram for spin-orbit-coupled BECs, and effect of
Raman detuning on the supersolid stripes. a, Mean-field phase diagram of
spin-orbit-coupled BECs as a function of detuning and spin-orbit-coupling
strength with n ,:1.5 x 10

4 cm- 3. The parameter space explored in this
work is crosshatched in grey. However, owing to metastability, our effective
detuning is always zero (see text). b, Detuning dependence. Black filled circles
show the total light scattering signal (Bragg and Rayleigh) as a function of the
frequency detuning. The light was detected within a solid angle of 10 mrad.
The grey dashed line and shaded area show the mean and standard deviation
of the Rayleigh scattered light for the same conditions. The light-grey solid
line is a triple Gaussian fit to the totallight scattering where the widths and
centre positions of the two outer peaks are constrained to be identical to the
spin-flip resonances studied in our previous work27 . Error bars represent 1-
standard error of the mean with a sample size of 3 to 6.

is more sensitive to perturbations than for stationary stripes and leads
to a reduced Debye-Waller factor for moving stripes.

The periodicity of the supersolid density modulation can depend on
external, single-atom, and two-atom parameters. In the present case,
the periodicity is given by the wavelength and geometry of the Raman
beams. It is then further modified by the spin gap parameter #and the
interatomic interactionss,6 to become 2d/ 1 - (/F)2 , where
F=(2Er+n(g+g4 ))/4. For # 300Hz, the correction due to the inter-
actions is only 0.4% and was not detected in our work. In contrast, for
the dipolar supersolid" and a quantum crystal with vacancies", the
periodicity dominantly depends on atomic interactions.

So far; we have presented a supersolid that breaks the continuous
translational symmetry in the free-space x direction (Fig. 2a). Unrelated
to the presence of spin-orbit coupling, our superlattice system also
breaks a discrete translational symmetry along the lattice direction i
by forming a spatial period that is twice that of the external lattice
owing to the interference between atoms in the two pseudospin states
with quasimomentum difference Aq= n/d (Fig. 4a) (see ref. 27). This
fulfils the definition of a lattice supersolid19,28. This 1,064-nm-period
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Figure 4j Bragg detection of alattice supersolid caused by an
antiferromagnetic spin texture. a, Phase-sensitive density modulation of
the lattice supersolid. The interference between the pseudospin down and up
states alternates between constructive and destructive for adjacent unit cells
in the lattice. This generates an oscillating density modulation, which has a
spatial periodicity of 2d along the superlattice direction 1 and depends on
the relative phases between the orbital pseudospins as = o+ At, with Wo
as the spontaneous phase. The density modulations at different phase
conditions are shown below (in the dashed box). This breaks the discrete
symmetry of the lattice potential. b, The Bragg signal for independent
measurements with n 1.5 x 1014cm

3 . The Bragg signal, which is set up for
detection of a spatial periodicity of 2d along the superlattice, depends on the
relative phase p when the Bragg pulse width is shorter than 1/(2A). Black
crosses show the Rayleigh-scattered background integrated over 40 mrad
before the antiferromagnetic spin texture develops. Grey filled circles show
Bragg-enhanced scattering. The Bragg enhancement fluctuated between
zero and a factor of two, which indicates variations of the spontaneous phase
po between independent measurements.

density modulation has amaximum amplitude of U/A) and oscillates
at frequency 2A temporally with spontaneous initial phase and can be
detected with the same geometry of the Bragg beam and camera, but
rotated to the y-z plane. Figure 4b shows the observed enhanced light
scattering due to Bragg reflection. The enhancement was absent imme-
diately after preparing an equal mixture of the two pseudospin states,
both in q=0, and appeared spontaneously after the upper pseudospin
state relaxed to the band minimum atq =/d. With the Bragg pulse
duration shorter than 1/(2Al), the Bragg signal varied between 0% and
100%, depending on the phase of the oscillation of the density
modulation when probed. The increased fluctuation in Fig. 4b shows
the random nature of the initial phase, which is consistent with
spontaneous symmetry breaking.

In conclusion, we have observed thelong-predicted supersolid stripe
phase of spin-orbit-coupled BECGs. This realizes a system that simulta-
neously has off-diagonal and diagonallong-range order. In the future,
it will be interesting to characterize this system's collective excitations 9

and to find ways to extend it to two-dimensional spin-orbit coupling,
whichleads to a different and rich phase diagram2 9. Another direction
for future research is the study of vortices and the effects of impurities
and disorder in different phases of spin-orbit-coupled condensates3 0 .

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.
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METHODS
Experimental setup and sample preparation. The superlattice (SL) potential
V(z)= VIRSin

2(kIRZ + OSL) + GreenSin
2(Greenz) was generated by overlapping two

one-dimensionallattices with spacing AIR/2=532nm (long) and AGreen/2=266nm
(short). The relative phase #SL is controlled by the frequency of the 1,064-nm lattice
light for rapid switching and a rotatable dispersive glass plate in the lattice beam
path. The offset A is determined by VIR and #SL and is calibrated by observing
the oscillation of the interference pattern between atoms released from the two
wells2 7. We estimate the fluctuations of the offset parameterA to be within 1kkHz,
caused by drifts in the air pressure that affect the relative phase #SL between the
two lattices.

The two Raman beams were generated from the same laser and then split into
two parts. The relative frequency was tuned by two independent acousto-optic
modulators in each path. We prepared N~ 4 x 105 23Na atoms in a crossed optical
dipole trap. An equal mixture of spin-up and spin-down states was created by first
adiabatically ramping up the superlattice with an offset A =0 and then rapidly
setting A to the final value by a fast frequency change of the infrared lattice.
Subsequently, the Raman lasers inducing the spin-orbit coupling are adiabatically
ramped up within about 10 ms followed by a variable hold time, after which the
Bragg probe beam is applied.
Miscibility and the stripe phase. Achieving stable and high-contrast stripes
requires miscibility of the two spin components. The difference in energy density
between a BEC in the stripe phase and a phase-separated phase isg8n2 -(g-gTI)n 2

whereg=4xh2a/m and gn= 47h2aTi/m parameterize the interaction energy
strengths between atoms in the same and in different spin states, respectively. Here
a (a%) is the interspin (intraspin) s-wave scattering length. The extra mean-field
energy due to a modulation of the density n with amplitude bn leads to phase
separation when the contrast of the stripes r7=6n/n exceeds (g - gT)/g. All

previous studies with bosons used 8 7 Rb atomsI1 -12. For 87Rb atoms in the
jF=1, mF=O)andlF =1, mF = - 1) states, (-g 1g)/g== 10 is extremely small.
In addition, the full width in 8o for stable stripes is W=2n(g-gJ), which is about
10Hzfor 87Rb and requires extreme control of ambient magnetic field fluctuations.
For these reasons the stripe phase has not yet been observed in previous studies of
spin-orbit-coupled rubidium atoms10 12.

Using the orbital degree of freedom as pseudospin, Raman lights can be far-
detuned from atomic transitions, suppressing spontaneous emission heating. In addi-
tion, the orbital overlap controls the intra-spin interaction g1 (J/A)g, where Jis the

interwell tunnelling and A is the well offset27. For typical experimental parameters
with (J/A) 1/20, (g-gj)/g~~1. The highly imbalanced interaction enhances the
miscibility and therefore allows higher contrast and more stable stripes.
Bragg beam parameters and detection. The Bragg beam was chosen to be
blue-detuned about 1,030 MHz from the sodium13S 1/2 , F = 1) to l3P3/ 2, F = 2)
transition with a linear polarization along the superlattice direction. The detuning
was chosen such that the Bragg beam can propagate through the entire condensate
without much absorption or wave-front distortion.

The alignment of -the Bragg beam required accurate prealignment by
triangulation. A major challenge was the alignment of this beam to an accuracy of
better than about 0.50, the angular width of the Bragg signal, without any auxiliary
density modulation at the same periodicity, given that creating such a density
modulation would have required a standing wave of laser light at 2,128 nm.
Experimentally, the lattice supersolid is more robust than the stripe phase while
having the same periodicity of the density modulation. Therefore, the alignment
procedure was first developed for the lattice supersolid. The same setting was
rotated around the axis f by 900 to probe for the stripe phase.

The Bragg reflected beam and the Rayleigh fluorescence were recorded with
an electron multiplying charge-coupled device (CCD) camera. The angular
distribution was recorded by first focusing an imaging system onto the camera and
then moving the camera out of focus. The signal was normalized for fluctuating
atomnumbers using the fluorescence intensity monitored by a photomultiplier
using a separate viewport. The Bragg signal was obtained by integrating the counts
of the CCD pixels around the Bragg-matched angle. The Rayleigh signal was
obtained from fitting the diffuse background with a two-dimensional Gaussian
fit. The detected Bragg signal was of the order of only ten photons.

We observed a lifetime of about 20 ms for the Bragg signal after ramping up the
spin-orbit coupling, accompanied by a clearly visible reduction in the number of
atoms in the BEC. We believe that it is limited by the heating due to the Raman
driving27. At values of #~~300 Hz, the moving Raman lattice has a depth of about
3E, which is comparable to the stationary lattice at around 10Er. When the spin-
orbit coupling was increased further, the Bragg signal decreased, as shown in
Fig. 2c, with noticeable atom loss. In addition, the observed heating may still have
a contribution from technical sources, since the observed lifetime is sensitive to
alignment.
Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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We demonstrate how the combination of oscillating magnetic forces and radio-frequency (rf) pulses
endows rf photons with tunable momentum. We observe velocity-selective spin-flip transitions and the
associated Doppler shift. Recoil-dressed photons are a promising tool for measurements and quantum
simulations, including the realization of gauge potentials and spin-orbit coupling schemes which do not
involve optical transitions.
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The field of cooling and trapping atoms depends on
mechanical forces exerted by light through photon recoil
[1]. Since photons can be scattered only by admixing
electronically excited states, the mechanical forces due to
light always involve dissipation by spontaneous emission.
This is desirable in laser cooling but causes heating and
atom loss in other situations where it is often suppressed by
using far off resonant light (e.g., in optical lattices).

In this work we show how to dress radio-frequency (rf)
photons with tunable recoil momentum by combining rf
pulses with an oscillating magnetic force. This is a new
application of Floquet engineering: periodically driven
systems can have time-averaged properties which cannot
be achieved with constant fields. Well-known examples are
the Kapitza pendulum, Paul traps for ions, and the realization
of Hamiltonians with complex tunneling matrix elements for
ultracold atoms in optical lattices [2-4].

The question of how to replace photon recoil by other
forces was raised in the context of spin-orbit coupling for
ultracold atoms [5]. The well-established two-photon
scheme is limited by heating due to spontaneous emission
of photons. This limitation has motivated the development
of alternative schemes which use time-dependent magnetic
fields [6-9] to realize spin-dependent synthetic gauge
fields. Some of those schemes are fairly complex, and
have motivated the following question: Is it possible to
Floquet engineer a rf or microwave transition between two
spin states in such a way that it shows all aspects of recoil
momentum?

With this motivation, we propose and demonstrate the new
concept of recoil-dressed rf photons. This scheme allows us.
to conduct Doppler-sensitive spectroscopy and velocimetry
of molecules when suitable -optical transitions are not
available. It is a building block for quantum simulations
and offers a new approach for spin-orbit coupling using
time-dependent magnetic forces. In our scheme, we drive rf

transitions between two different hyperfine states in the
presence of an alternating magnetic field gradient. The time-
averaged evolution is a rf transition where recoil momentum
is transferred. The sign and magnitude of the momentumkick
is adjustable via the magnetic fields, and we observe a recoil
momentum for the dressed photon which is 6 x 106 higher
than the (usually negligible) momentum of a bare rf photon
around 8 MHz frequency.

Our scheme shows the power of Floquet engineering: we
combine a rf transition, which has negligible momentum
transfer, with a sinusoidally oscillating magnetic field
gradient, which has no time-averaged momentum transfer,
and the result is a rf photon with recoil, depending on how rf
pulses are synchronized with the time-dependent magnetic
field gradient.

Figure 1 shows the time sequence of our scheme, which
consists of a sinusoidal spin-dependent force f(t) =

g9FBB' sin[(2/T)t + q5 f]a, where gF is the Lande factor,

yB is the Bohr magneton, and B' is the magnitude of the.0
magnetic gradient, and a synchronized sequence of short rf
pulses at times t = 0, T, 2T, .... The timing of the pulses
with respect to the periodic force is described by the phase
#r which determines the magnitude of the photon recoil.
Each of the rf pulses couples spin-up and spin-down states
with the same momentary (i.e., at the time of the rf pulse)
velocity vf. For #rf= 0, the velocities averaged over a full
cycle of the oscillating force, (vt) and (v), are different.
By flipping the spin, atoms experience an "extra" half-cycle
of the magnetic acceleration [hatched area in Fig. 1(a)],
which transfers them to the state with a different averaged
velocity, and, therefore, provides recoil. For the case
# = ;r/2, the time-averaged velocities for spin-up and
spin-down are identical to vf. Therefore, a rf transition will
not change the time-averaged velocities, and there is no
recoil.

0 ©2019 American Physical Society0031-9007/19/123(3))/0332-'--03(5) 0332 031 
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FIG. 1. Illustration of our scheme for creating a tunable atomic
recoil momentum with rf transitions using magnetic forces.
Panels (a) and (b) show the experimental conditions for #t = 0
and # =;/2, respectively. The spin-dependent forces and
velocities are shown (as thick solid lines) for the amplitude of
the wave function which is transferred from spin-down (red) to -up
(blue) by the rf pulse marked by the gray dashed line. Foro# = 0,
the average velocities (v,) and (Vt) are different, which implies a
finite recoil associated with the spin flip. In contrast, (v) = (vt)
for #r = r/2, and there is no recoil.

Using this semiclassical picture, we obtain for the amount
of momentum transfer hk = m((v) - (v)) = hko cos #,f,
where ko = (gFYB/;rh)BT. Next we discuss where the
change in kinetic energy comes from. For an optical
transition with recoil hk and an atom moving at initial
velocity vi, the resonance frequency is shifted by the
Doppler shift kvin and recoil shift (hk)2/2m, which ensures
energy conservation. However, in the current situation,
energy can also come from the time-dependent magnetic
force. Indeed, if we would apply a single rf ; pulse at phase
#rf= 0, the time-averaged velocity would change by hko/m,
but the rf resonance frequency would be independent of
velocity and ko. However, if a series of rf pulses is used, as in
(Fig. 1), the resonance is Doppler shifted and becomes
velocity selective. This can be seen by regarding the pulses as
Ramsey pulses and considering the phase evolution of the
wave function between two pulses. The rf pulses create a
superposition of spin-up and spin-down. Between pulses, the
phase evolution for spin-up or -down is solely determined by
the kinetic energy at; = (1/h) f(mvo/2)dt, leading to a

phasedifference a= (1/h)(m((vt)- (v;))vtr)T = kvrfT
after one period of shaking, where vrf = (vt + v)/2 is the
common velocity at the moment of the rf pulse. With
(v) = vrf - hk/2m, we find that for resonant excitation,
the rf has to compensate for this phase shift by the Doppler
detuning k(v;) and the recoil shift (hk)2 /2m (see
Supplemental Material for more details [13]).

Periodic Hamiltonians are formally treated by Floquet
theory [2,3,15-17], which provides an expression for an
effective Hamiltonian eff describing the slow time evolu-
tion of the system averaged over the fast micromotion with
period T. However, in the standard treatment the effective

Hamiltonian is not unique and may depend on the initial time
when the periodic drive is switched on. We adopt the
approach of Ref. [2], where the evolution of the quantum
system with periodic drive is expressed by an effective
Hamiltonian independent of initial and final times ti, tf and a

kick (micromotion) operator K, which describes the initial
kick due to a sudden switch on and the subsequent micro-

motion, shown as &(tf, ti) eik(trf)eeff(t-t -eik(ti).
For our scheme, the time-dependent Hamiltonian of the

system in the frame rotating with the rf drive after the
rotating-wave approximation is

H = -Pz + hko 'sin(2zt/T +,0)&- h g
2m T z 2 z

(1)±hf2xTZ6(t- nT),
n

where o, is the rf detuning with respect to the atomic
resonant frequency and m is the atomic mass. The short rf
pulses are represented as a series of delta functions with
effective Rabi frequency i.

Through the derivation shown in the Supplemental
Material [13], we obtain an explicit expression for the
effective Hamiltonian and the kick operator defined above:

- + 1 h~2- -h-d le iko cos 0,f
Heff1 2 p,2

hQe iko±cos4f z+I +hh~eiO2m 16 m 2

K(t) = -ikozUz cos t + # . (2)

The effective Hamiltonian is identical to the one for a
two-level atom driven by a photon field at frequency wof
and with wave vector k, which confirms our discussion
above about recoil momentum and Doppler shift. The term
h2k0/16m is the kinetic energy due to micromotion.

We implemented this scheme using a thermal cloud of
approximately 1 X 10s 23Na atoms at 380 nK in a crossed
optical dipole trap with trapping frequencies (wo, wy, ov) =

2x(98, 94, 25) Hz corresponding to Gaussian radii of 19.5,
20, and 68 pm, respectively. The ImF = -1) and mF = 0)
states of the F = 1 hyperfine manifold of the atoms were
used to form a pseudospin-1/2 system, which will be
referred to as It) and 4) states, respectively. The ImF1)
state was decoupled from this two-level system through the
quadratic Zeeman effect at a bias field of 11.4 G. Since
there is no micromotion in the "nonmagnetic" ImF 0)
state, the maximum momentum transfer hko is reduced by a
factor of 2 compared to the discussion above.

The oscillating magnetic force was created by a time-
dependent 3D quadrupole field. Along the bias field direction
z, this provides a ID periodic force. Orthogonal to the bias
field, the periodic potential is quadratic-there is no net
force, only a (negligible) modulation of the confinement.

033203-2



PHYSICAL REVIEW LETTERS 123, 033203 (2019)

The amplitude of the magnetic field gradient was 48 G/cm at
a frequency of 5 kHz, implying a recoil k 0 = 0.07 kL, where
hkL is the recoil of the resonant transition at 589 nm, with a
recoil velocity (hk/m) = 2.9 cm/s.

To resolve Doppler shifts of 200 Hz, sub-mG stability
was needed. Any asymmetry of the periodic magnetic field
gradient leads to a time-averaged dc field gradient resulting
in an inhomogeneous Zeeman shift which had to be
suppressed at the 100 Hz level. Finally, the applied
magnetic fields were modified by eddy currents in the
stainless steel chamber, which had to be accounted for (see
Supplemental Material [13]).

The goal of the experimental demonstration was to show
that the rf transition is now Doppler sensitive due to the
recoil transfer. The spin-flip transitions were driven by 4 us
long rf pulses at 8 MHz with a Rabi frequency of 10 kHz
resulting in approximately r/12 pulses and an average Rabi
frequency of Q = 200 Hz, which is defined as the Rabi
frequency of the pulse times the duty cycle. Since it was not
possible to switch off the shaking coils on microsecond
timescales, the rf pulses had to be applied with the magnetic
shaking present, which required several steps of spatial and
temporal alignments (see Supplemental Material [13]).

The rf pulses and the shaking were applied while the
atoms were trapped to ensure that the velocity distribution
is independent of position. In time of flight (TOF), this is no
longer the case, and any residual Zeeman shift gradients
could lead to velocity selection. To avoid broadening of the
Doppler selected velocity groups by the trapping potential,
the total interrogation was chosen to be 1.6 ms, much
shorter than the trap period along the z direction. This time
is also comparable to the coherence time due to the ambient
magnetic field stability. Based on these considerations, we
applied a pulse sequence of 2 ms consisting of 10 magnetic
shaking cycles with 9 rf pulses across them.

The temperature of the cloud was chosen to be high
enough that the Doppler width of 3 kHz (FWHM) was larger
than our spectral resolution, mainly Fourier limited to 625 Hz
by the 1.6 ms pulse sequence. Because of the Doppler
shift, different detunings of the rf selected different velocity
groups which were observed in ballistic expansion (Fig. 2).
The width of the observed spin-flipped slices is almost
completely determined by the original spatial size of the
cloud since the expansion time of r = 12 ms was only twice
the inverse of cz. The TOF was limited by the signal-to-noise
ratio, given the constraints discussed above. Fortunately,
even for small TOF, the displacement of the center of the
spin-flipped atoms is exactly vr, which could be accurately
measured as a function of rf detuning, as shown in Fig. 3.
The observed Doppler shift is in agreement with the
theoretical treatment above and confirms that rf photons
have been Floquet engineered to have recoil of k = 0.07 kL.

The dependence of the recoil on the rf phase was
demonstrated by shifting the rf phase from 0 to z
[Fig. 3(b)]. The Doppler shift and therefore the direction

(a) Without shaking

(b)
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Shaking direction
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FIG. 2. Observation of velocity-selective rf transitions. (a)
Absorption images of the spin-flipped atoms (i.e., in the ImF
-1) state) after 12 ms of TOF with and without magnetic shaking.
The yellow dashed ellipses have major and minor axes obtained
as FWHM of Gaussian fits. After TOF, the thermal could expand
by a factor of 2.13; thus, a single-velocity class is narrower than
the thermal cloud by 1/2.13 ~ 0.47. The Fourier limit of our
velocity selection increases this to 0.50, and inclusion of eddy
currents further modifies it to 0.45 (dash-dotted line). The field of
view is 1 x 1 mm2 . (b) Integrated column density distribution
obtained from absorption images like those in (a), for different rf
detunings. The solid lines are Gaussian fits to the data points. The
rf phase was at 0 = 0 to maximize Doppler sensitivity. The
asymmetry between the i300 Hz is most likely caused by bias
field drifts (estimated in Fig. 3 to be 70 Hz) or small residual
magnetic field gradients.

of the recoil changed sign. This observation confirmed that
the selection of slices in Fig. 2 is not due to time-averaged
magnetic field gradients, which do not depend on the rf
phase. Wecould not experimentally explore #f = z/2,
since this would have required to pulse on the rf at the
maximum field gradient, which would have caused large
spatially dependent detunings.

Our scheme can be used to implement one-dimensional
spin-orbit coupling of ultracold atoms with magnetic forces
and without lasers. The Hamiltonian [Eq. (3)] which we have
implemented is, by a unitary transformation, equivalent to a
Hamiltonian with spin-dependent gauge fields [4]:

1 i g2 ho5Hsoc = 2 p - A z 2 + hQ 2 (3)

We note that Ref. [14] obtains the same Hamiltonian as
the stroboscopic Floquet Hamiltonian. The gauge field
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FIG. 3. Observation ofrf transitions with Doppler shifts. (a),
(b) Central velocities of the spin-flipped atomic distribution [as in
Fig. 2(b)] are shown as a function of rf detuning for #, = 0 and
#r = gr, respectively. Shifting the rf phase changes the sign of the
Doppler shift and therefore the direction of the recoil momentum.
The solid line represents the predicted Doppler shifts based on the
calibration of recoil momentum. The dashed line takes into
account the effects of eddy currents (see Supplemental Material
[13]). The error bars are purely statistical based on five data
points and correspond to 1 standard deviation. The inferred la
fluctuations for the frequency are 70 Hz.

A = hko cos #f is equal to the recoil momentum transfer hk,
which depends on the rf phase #i. Previous experimental
studies claimed the realization of spin-orbit coupling and
gauge fields purely by magnetic shaking, without rf tran-
sitions [8,18]. These claims are ambiguous based on our
discussion here: without rf coupling, the momentum transfer
and the gauge field are not defined and can be transformed
away with a gauge transformation. According to Eqs. (1)
and (3), pure magnetic shaking leads only to a kick operator
for the micromotion, and the effective Hamiltonian is the
free-particle Hamiltonian. Therefore, all observations in
Refs. [8,18] are related to an initial kick and micromotion
and not to a modified effective Hamiltonian.

In the presence of gauge fields, there are two momenta:
the mechanical or kinetic momentum (pz i+A) and the
canonical momentum Pz = mvf. In our scheme, they can
both be directly observed and have a very transparent
meaning: the kinetic momenta are the time-averaged
momenta m(vt), m(v). The canonical momentum is
the instantaneous momentum during the rf pulse (see
Supplemental Material [13]).

Our demonstration of rf dressed photons was done with
a modest recoil ko of 0.07 kL due t0 technical limitations

(a) rf = 0
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(see Supplemental Material [13]). The recoil could have
been increased by using a glass cell, miniature coils, or
atomic chips for which 12 times larger magnetic field
gradients have been assumed [6]. Given the small value
of ko, we did not look for recoil effects in Bose-Einstein
condensates, as in Ref. [19], and rather focused on Doppler
shifts in thermal clouds.

Dressed-photon recoil has several features different from
optical photon recoil: The maximum recoil of a dressed
photon is only technically limited, and can be tuned via the
strength of the magnetic gradient and in principle also via
the rf phase, whereas the recoil in a two-photon transition
can be tuned via the angle between the two laser beams.
Heating for optical recoil transfer is independent of
momentum transfer and depends on the Rabi frequency,
whereas the reverse applies to the magnetic scheme.

As in any Floquet schemes, micromotion can lead to
heating when the associated kinetic energy is transferred to
the secular motion by elastic collisions between the two
spin states (which is equivalent to transitions between
Floquet states of different quasienergies). In Ref. [20],
we describe various cases (high and low temperature limit,
bosons, and fermions),and conclude that the energy transfer
can be expressed by E c< pavciEo, where vc.i reflects an
effective density of states. For Bose-Einstein condensates,

vCi = ho/m for large modulation frequencies o, imple-
mented in our experiments, and veoi = hko/m in the semi-
classical regime. Here, p is the density and a is the two-body
s-wave scattering cross section. For a sodium condensate
with two spin components and density p~1014 cm-3, we
observed a condensate lifetime of ~8 s at ko = 0.05 kL,
consistent with weak Floquet heating [20]. If the momentum
transfer ko is scaled up to kL, losses increase proportional
to the second or third power of ko, depending on the regime
[20]. For momentum transfers of kL, lifetimes larger than
100 ms will require low density clouds on the order of
~1012 cm3 or small scattering lengths. For degenerate
Fermi gases with EF» ho, heating is Pauli suppressed
by a factor of (h/EF)2.

There are possible extensions of generating magnetic
recoil. One is to use the time-averaged, orbiting potential
(TOP) trap configuration [21], where a constant gradient is
combined with a rotating bias field in the x-y plane, which
creates a rotating force. A sequence of rf pulses generates
"dressed photons" with recoil k along the cos #fe +
sin direction. The rf phase now controls the direction
of the recoil. The concept of dressed rf photons should be
useful for a more general class of quantum simulations. For
instance, it applies to spin-dependent forces created by the
vector ac Stark shift. Using focused laser beams or lattices to
create spin-dependent potentials, the effective recoil is
spatially localized, and can easily be time modulated. In
comparison to magnetic field gradients, the forces due to the
vector ac Stark shift can be larger, and much faster modu-
lation frequencies are possible. Using optical spin-dependent
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forces instead of magnetic forces may eliminate several
limitations of our scheme, especially for atoms like cesium
and rubidium, where large spin-dependent optical forces can
be realized without major heating by spontaneous scattering.

In conclusion, we demonstrated how magnetic shaking
can be used to endow a rf photon with large and tunable
recoil. This scheme illustrates many aspects of Floquet
engineering, including heating in both the quantum and
classical limit. This technique is a building block for
quantum simulations including spin-dependent gauge
fields and measurements such as Doppler velocimetry.
It can be applied to any atom or molecule with nonzero
spin in the ground state, and is independent of the structure
of electronically excited states.
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EXPERIMENTAL IMPLEMENTATION OF MAGNETIC SHAKING

To realize magnetic shaking, we drove a sinusoidal current through a pair of anti-Helmholtz coils along the x-axis
while there was a fixed bias field of 11.4 G aligned to the z-axis. The sinusoidal current was provided by a DC power
supply and four insulated gate bipolar transistors connected in an H-bridge configuration. The transistors created a
square wave voltage modulation, which resulted in a sinusoidal current due to the frequency response of the coils. A
capacitor was connected in series to eliminate the imaginary component of the impedance coming from the inductance
of the coils. The amplitudes of the current and the voltage were 70 A and 70 V. The real impedance of 1 Q is mainly
due to eddy currents in the stainless steel vacuum chamber and is much larger than the resistance of the coils (0.1 Q).
The combined fields result in a periodic 1D magnetic force along the z-axis B'(t) = B6sin(wt +#RF), where B6 = 48
G/cm, w = 27r x 5 kHz, and #RF is determined from the relative phase between the magnetic gradient modulation and
the radio frequency (RF) pulses. Larger recoil momenta can be realized by either increasing B6 or decreasing w. The
field gradient was calibrated using Stern-Gerlach deflection during ballistic expansion of a Bose-Einstein condensate.
We also calibrated the recoil ko directly by measuring the momentum transfer to a cloud in the IMF = -1) state
during a half-cycle of the magnetic shaking. The two calibrations agreed to within the accuracy of measurement.

ADJUSTMENTS TO THE MAGNETIC FIELD PROFILE

The observation of Doppler shifts at the 200 Hz level required careful control of Zeeman shifts. Three critical
adjustments were done.

(1)Symmetry of the modulated magnetic field gradient: If inhomogeneous Zeeman shifts across the cloud are com-
parable or larger than Doppler shifts, the spinflips are no longer velocity selective since there is always a local Zeeman
shift to compensate for the Doppler shift. Therefore, the magnetic field gradient averaged over one modulation cycle
(B'), had to be zeroed: gFyB(B')D « k, where D is the length of the cloud. To avoid transient asymmetries from
the turn-on process of the periodic magnetic gradient, we added a pre-shaking period of 3 ms before the spectroscopic
sequence. This didn't affect the trapped atom cloud, since the atoms were initially in the non-magnetic ImF = 0)
state. After the pre-shaking, we achieve (B') ~ 20 mG/cm, implying a time-averaged differential Zeeman shift across
the cloud of less than 100 Hz. (B') was determined from converting the measurement of time-averaged current asym-
metry to the time-averaged magnetic gradient asymmetry using the Stern-Gerlach calibration. As a final check, we
added asymmetries on either the positive or negative side of the sinusoidal current to create (B') ~ 100 mG/cm,
and for both cases observed a slight increase in the width of the velocity-selected atom slice confirming that the
residual asymmetry of the magnetic gradient modulation was negligibly small.

The following two adjustments addressed the issue that the RF pulses were not delta functions, but had a duration
of 4 ps. The presence of Zeeman shifts comparable or larger than the Fourier width of a single pulse would reduce
the RF pulse area. For our parameters, a 45 kHz detuning will reduce the pulse area by 5 percent (and therefore the
single pulse excitation probability by 10 percent).

(2)Minimize modulation of magnetic bias field: The time-dependent gradient creates also a time-dependent bias
field given by the gradient times the displacement of the atoms from the origin of the magnetic quadrupole field. 60
pm away from the origin, the bias field changes by 30 mG during the 4 is RF pulse. To minimize the reduction of
the RF pulse area, the optical trap was aligned with the center of the quadrupole field to within 1 tm. This was
done by minimizing the shift in the RF resonant frequency when a stationary gradient field was added to the constant
magnetic bias field. In addition, the eddy currents created a time-dependent bias field, which was compensated by
RF detuning. The detuning and the timing of the RF pulses (described below) were adjusted together in order to
maximize the fraction of spin-flipped atoms.

(3) Timing of the RF pulses with respect to the magnetic modulation: The goal was to pulse on the RF while the
magnetic field gradient crosses zero. A 5 ps offset would imply a gradient of 7.5 G/cm and a differential magnetic
field along the cloud of 50 mG. In the presence of strong gradients, the short RF pulse is resonant only for a small
part of the cloud. Therefore, we could find the optimum condition by scanning both the timing and the detuning of
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the RF pulses until the measured total fraction of the spin-flipped atoms is maximized. The optimum time was offset
by 2 ps from the zero-crossing of the current through the gradient coils, possibly due to eddy currents.

To summarize, we optimized three parameters, which are trap position, timing of the RF pulse, and RF detuning.
The optimal position minimizes temporal variation of the bias field, optimal timing of RF minimizes B' during the
pulse, and optimal detuning compensates for any bias field at the time of the pulse.

EFFECTS OF INDUCED EDDY CURRENTS

The modulated magnetic field gradient B'(t) = B' sinwt induced eddy currents in the stainless steel vacuum
chamber. From our observations, we inferredthat the main effect was caused by an induced oscillating bias field
Bec(t) = Bec sin (wt + #)ey along y with the same modulation frequency w and a relative phase delay 4. This
oscillating bias field led to a y-component of the oscillating force. As a result, the effective recoil and velocity selection
are tilted away from the z direction, and the selected velocity slices are rotated in the y - z plane.

FIG. S1: Effect of eddy currents on observed velocity-selected atom slices. The induced bias field along ey led to a y-component
of the oscillating force, resulting in velocity selectivity in ey and therefore tilting of the resonant velocity slice in the y - z
plane. The tilt angle depends on the static bias field B and the RF phase #RF. The dashed lines are guides to the eye.

In a simplified model, the total magnetic field experienced by the atoms is

B= [Bo+B0sin(wt)z]e,+[Bec sin(wt+#5)+ B'sin(wt)y]ey - 2B'sin(wt)xex, (Si)

with a magnetic field strength

|$l = [Bo + B6 sin (t)z] 2 +[Becsin(wt+o) +B sin (t)y] 2 [2B sin(t)x]2

(S2)
- ~B'z + -y sin (wt + #) B'yTBo 1+2sin2 (wt + #) +B yn0 sin (wt)

1+72 sin2 (wt+#)

here -y = Bc/Bo. The first term corresponds to a time varying homogeneous bias field resulting in a velocity-
independent effective detuning of the RF transition. The oscillating magnetic field gradients along the z and y

#RF k> 0RF I < 0' Total bias field

(a) +60° tilt (b) -60° tilt Oscillating B,eI
B0= 6 G

(Small y) B z

(c) +40° tilt (d) -40° tilt Oscillating B,

B0=11.4 G

(Large y)
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directions are

alBI ____ B____0sin (wt),
Bz 1+72sin2 ((ot+#)

(S3)
BI _ -yB6 sin (wt) sin (wt +).

1 l 2 sin2 (wt +)

It should be noted that the gradient in ey oscillates at 2w, twice the frequency of the driving.
The phase delay # is determined by the magnetic properties of the vacuum chamber. We modeled the chamber

as an LC circuit with a self inductance LCh and a resistance RCh, and obtain # = arctan (wLch/RCh) + 7r/2. Our
observations imply RCh » wL, # r/2, resulting in an effective recoil component in the y direction with

k ( fT 7(2B sin (wt') cos (wt') dt' dt
, TJo Jo 1 + 72 cos2  

(S4)

/ T Bt sin (2wt') dt' dt.
T o o 2,1 + -y2 cos2 (wt')

Consequentially, the Doppler shift is modified as

6w = kYVy + kzvz, (S5)

directly observed as a rotation of the velocity slice with an angle 0 = arctan (ky/kz) in the time-of-flight images, as
shown in Fig. S1.

We verified two predictions of this model: the angle 0 of the rotation decreased with stronger static bias field Bo
which lowered -y (Fig.Sla. and Fig.S1 c). Due to the 2w oscillating frequency of the y force, ky did not change sign
when the RF phase #RF was shifted from 0 to 7r in contrast to k,, and therefore the rotation angle flipped from 0 to
-0, as suggested by Eq. S5 and shown in Fig. S1.

In the future, the effects of the induced eddy current can be suppressed by using an even stronger static bias field
Bo or by conducting the experiment in a glass cell.

What we have described so far applies to free space or to an isotropic trap. However, the optical trap in the
experiment is anisotropic. For zero time-of-flight, in the y - z plane, the minor axis of the ellipsoidal cloud is oriented
along y, 0 = 7r/2. For long time-of-flight, the angle is solely determined by the velocity selection 0 = arctan (ky/kz).
For intermediate time-of-flight, as used in the experiment, the observed angle interpolates between these values. We
calculate that the observed tilt angles of 600 and 40° (Fig.S1) correspond to tilt angles of the bias field arctan (ky/kz)
of 530 and 320, respectively.

The observed tilt angles were used to infer the induced eddy currents. Equation S4 provided the dashed line for
the predicted recoil k in Figure 3 of the main text.

BLOCH SPHERE REPRESENTATION OF MAGNETIC SHAKING AND RF PULSES

The evolution of the quantum system under magnetic shaking and RF pulses can be visualized using the Bloch
sphere (Fig. S2). In the frame rotating at the atomic RF resonance frequency wo, each RF pulse of area # rotates the
Bloch vector around the y-axis by an angle #. In the absence of magnetic shaking, subsequent pulses would continue
the rotation all the way down to the south pole of the Bloch sphere and up again, resulting in Rabi oscillations at a
rate 3/(27rT). However, due to the phase evolution discussed in the main text, the Bloch vector rotates around the
z axis by an angle Ja, and therefore, the following RF pulse increases the polar angle by less than p. After several
cycles, the Bloch vector returns to the north pole without having ever reached the south pole, realizing off-resonant
Rabi oscillations (Fig.S2(a)). However, if the RF frequency is shifted by the Doppler and recoil shift, the Bloch vector
reaches the south pole again. In contrast, for the phase 4RF = 7r/2, kinetic energies of the coupled spin up and down
states are the same, irrespective of velocity, and therefore all atoms perform resonant Rabi oscillations (Fig. S2(b)).
It should be noted that the evolution of the atomic wavefunction is the same if the RF frequency isdetuned by an
integer multiple of 2, similar to the situation in Ramsey spectroscopy.
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(a) (b) ORF=/
2

$RF 0

Off-resonant

I OT)
On-resonant

FIG. S2: Bloch sphere representation of magnetic shaking and RF pulses. (a) & (b) Trajectories on the Bloch sphere for several
periods of magnetic shaking (green solid lines representing a from the main text) and RF pulses (yellow solid lines representing
#) for #RF = 0 and kRF = 7r/2, respectively. Fig. (a) shows the trajectories for atoms with a finite initial velocity when the
RF frequency is at wo, the atomic resonance, and when it is detuned by the Doppler and recoil shift. In (b), the RF frequency
is at wo, the trajectory is independent of the atomic velocity, and there is no net rotation around the z-axis during a magnetic
shaking cycle. The red (blue) dot represents the initial (final) spin state.

DERIVATION OF EFFECTIVE HAMILTONIAN

In our scheme, the Hamiltonian in the frame rotating with the RF drive is

f2 1 1 n(?#;sn27r )&z+Q&xT 5 (t-nT)
2m 2 2 ( R

(S6)

where we have applied the rotating-wave approximation and set h = 1. To deal with the dynamics of such a periodically
driven system we shall apply two alternative approaches described below.

To eliminate the spin-dependent potential slope featured in the Hamiltonian (S6), we-go to the spin-dependent
co-moving frame via a time-dependent unitary transformation to the new state-vector 10(t)) = R (t) 10(t)), similar
to the one used in refs. [1, 2]:

Rz (t) = exp [-ikozy (t)&z/2] (S)

t

- =(t) w sin 1t' +RF dt'- C= -cos (it + RF)

0

where the integration constant C entering y (t) has been taken to be C = cos @RF, so that Y(t) averages to zero over
a period. The reason for this choice will be discussed later on.

Atthe RF pulses where t = nT the transformation Rz (nT) = exp [ikoz cos RF&z/2] describes a spin rotation by an

angle koz cos RF around the z axis. As a result, the transformed Hamiltonian H (t) = RI (t) HRz (t) -iI (t) tR (t)

takes the form

~Z 2 1
H (t)= p z- koy (t) 6 RFOz + Q [Cos (koz Cos qRF). + sin (kz cos RF) &y] T 6(t- nT)

n1

(S8)

Note that unlike the spin-dependent potential gradient featured in the original Hamiltonian (S6), the oscillating
momentum shift term k0 - (t) &,/2 is no longer proportional to the driving frequency and hence can be considered as

I)

I T)
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a small perturbation in the limit of high frequency driving where koy (t) « w and also Q «w . In that case it is
appropriate to describe the evolution of the system in terms of the zero-order effective Hamiltonian obtained by time

averaging of H(t) over a single driving period, i.e. by the zero frequency component of the Hamiltonian H(t), giving

p2 11 k2
Sef f   2 z RFz + Q Cos (koz Cos RF) 6x + Q sin (kozCOs RF) +y + 0(S9)

2m 2 16 m

where the momentum shift has averaged to zero. The effective Hamiltonian can be represented in a matrix form as:

+ _L k5 Qe-ikoz cos 4RF
Heff = 2m 16 m 2 )2 (S1O)

eikoz COS#RF-ERQe ~~ 2m +--k 1R

The full dynamics includes also the micromotion. In the present situation there are two origins of the micromotion.

The first kind comes from the time-dependence of the transformed Hamiltonian H (t). However, in the limit of the large
driving frequency this kind of micromotion is negligibly small compared to the second type of micromotion emerging
due to the time-dependence of the unitary transformation Rz (t). In fact, returning to the original representation

|0(t)) = N(t)|10(t)), one arrives at the following time-evolution of the state-vector from the initial to the final time

( = (t2 , t1 )j|@(t1)), where U(t 2 , ti) = Rz (t2)ge eff t2tNi (t1 ), (S11)

where the unitary transformation Rz (t) represents a micro-motion operator.
The time evolution operator can be rewritten as

U (t2 ),ti) e-iK(t2) e-ifff(t2-tl)e iK(tl), (S12)

where

K (t)= -koZ&z cos ( t + #RF (S13)

is a Hermitian micromotion (kick) operator. The choice of the integration constant C= cosRF in the unitary
transformation (S7) ensures that the micromotion operatorK (t) averages to zero over the driving period. Thus, the
effective Hamiltonian and the micromotion operators are defined in a unique way through the condition C = cos #RF.

We now rederive the same effective Hamiltonian and micromotion operator using a rigorous high-frequency 1/W
expansion. Appendix K of ref. [3] discusses Hamiltonians of a general form

H(t) = Ho + Af (t) + wg(t) (S14)

and derives expansions for an effective Hamiltonian fef fand the kick operatork.

00 00

Hefgf = Hf f, K(t)= 'k()(t) (S15)
n=O nn=0

The Hamiltonian fin equation (S6) is of this form with

fto =  RF (S16)
2m 2
1

B = 1 kos&2, g(t) = sin(wt + #RF), (S17)
2

A o-u, f (t) = T 6(t - nT) - 1 (S18)
n

Functions f(t) and g(t) meet the requirement of having zero mean value over a period T.
The kick operator is in 0-th order:

t

A() G(t), G(t) = w Jg7-)dT= -cos(Wt+$RF) (Sig)
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The effective Hamiltonian to the lowest order in 1/w can be expanded as

Heff = So +  ! -Gnf [B...[B, A]]± + E Gn [B...[B, Ho]] + O(1/w) (S20)
n=1 n=1

n n

After calculating all commutators and time-averaged coefficients before them, and grouping the terms proportional
to &, and &Y, the expansion reduces to

Heff z JRF&z + Q cos(koz Cos RF)&x + sin(koz cos RF)Oy+Ik+O(1/w) (21)
2m 2 16 m

The resulting effective Hamiltonian and micromotion operator are in exact agreement with the above equations

(S9), (S10) and (S13).
If we apply an additional spatially-dependent unitary transformation Rzi = exp [-izk cos #RFz 2] corresponding

to the choice C = 0 of the constant in Eq.(S7), the transformed Hamiltonian becomes translationally invariant and

acquires the standard form of Hsoc for one-dimensional spin-orbit coupling:

1 - kocos pRFz)2 +Q& RFz, (S22)
2m 2 2

where the spin-orbit coupling strength is described by the momentum shift ko cos RF/2. With the new kick operator

Ksoc (t) -koz&z cos( -t + RF - cos RF (S23)

the time evolution can be written as

U (t 2 , ti)= e-iksoc(t2)e-iIsoc(t2-t1)eiksoc(t1). (S24)

In that case the operatorksoc (t) has a non-zero temporal average, so it cannot be treated as a pure micromotion
operator. Similarly Hsoc can not be considered as an effective Hamiltonian for the time-periodic Hamiltonian (S6). It

is rather a Hamiltonian related to the true effective Hamiltonian by the unitary transformation: Hso = R1Heff Rzi.

Note that ref. [2] has obtained Hsoc as a stroboscopic Floquet Hamiltonian after applying a unitary transformation

of the form (S7) with C = 0.

MECHANICAL AND CANONICAL MOMENTA

The difference between canonical and mechanical momenta can be seen on the dispersion relation (Fig.S3). Using
canonical momentum all couplings and transitions between the two spin states are vertical. The dashed lines illustrate

Energy E

I) It)

hk Canonical
momentum p,

FIG. S3: Energy-momentum dispersion relations for spin-orbit coupled spin 1/2 states. The two minima are separated by the

recoil momentum hk. The vertical dashed arrows show spinflip transitions. Their lengths are given by the Doppler and recoil

shifts.



7

the transitions observed in our experiment. Away from the spin gap the energy separation is dominated by Doppler
and recoil shifts. Energy-momentum dispersion relations for spin-orbit coupled spin 1/2 states. The two minima are
separated by the recoil momentum hk. The vertical dashed arrows show spinflip transitions. Their lengths are given
by the Doppler and recoil shifts.
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We theoretically investigate the collisional heating of a cold atom system subjected to time-
periodic forces. We show within the Floquet framework that this heating rate due to two-body
collisions has a general semiclassical expression P oc po-vcoiEo, depending on the kinetic energy
Eo associated with the shaking, particle number density p, elastic collision cross section o-, and an
effective collisional velocity vci determined by the dominant energy scale in the system. We further
show that the collisional heating is suppressed by Pauli blocking in cold fermionic systems, and
by the modified density of states in systems in lower dimensions. Our results provide an exactly
solvable example and reveal some general features of Floquet heating in interacting systems.

Cl

I. INTRODUCTION

Engineering novel Hamiltonians is central to quan-
tum simulations. In general, Hamiltonians can be im-
plemented directly and statically, or in a time-averaged
way. The latter implies periodic driving of the system. If
the fast modulation can be neglected, an effective time-
averaged static Hamiltonian is realized as formally cap-
tured by Floquet theory [1, 2]. With proper driving,
dynamically generated Floquet Hamiltonians can be de-
signed. Such Floquet systems potentially exhibit novel
properties which are difficult or impossible to be real-
ized in static settings. Examples include synthetic gauge
fields [3-6], spin-orbit coupling [7-9], and topological
bands and materials [10-13]. Experimental progress in-
cludes creation of the Hofstadter-Hamiltonian in optical
lattices for neutral atoms [14-17], realization of the topo-
logical Haldane model with shaken optical lattice [18],
and the demonstration of dressed recoil momentum for
radio-frequency photons in ultracold gases with modu-
lated magnetic fields [19].

However, higher order terms beyond the time aver-
age, related to fast micromotion, can cause heating via
interactions, limiting experimental studies of many-body
physics. In general, a driven system constantly exchanges
energy with the driving field. Interactions redistribute
this energy into other degrees of freedom, leading to an
increase of the total entropy and energy. Although this
heating can be suppressed in specific scenarios, e.g. via
many-body localization [20-22], a generic closed quan-
tum system will eventually thermalize at infinite temper-
ature when driven [23], limiting the experimental studies
of many-body Floquet systems. Therefore, understand-
ing and potentially controlling the heating in Floquet
systems has triggered both theoretical [22-28] and ex-
perimental efforts [29, 30].

The dynamics of a Floquet system are studied with
Floquet theory. Systems heat by absorbing energy from

* Present address: JILA, Department of Physics, University
of Colorado, 440 UCB, Boulder, Colorado 80309, USA.;
junru.licolorado.edu

the driving field in multiples of the energy quanta related
to the modulation frequency w, caused by the scattering
of the driven particles [26]. The heating rate reads

(1)-P = E nhw,
n

which is determined by the transition rates Fn for the
processes of absorption/emission of n energy quanta. In
this description, the energy exchange is quantized.

On the other hand, in the limit of low modulation fre-
quency where the system's intrinsic energy scales domi-
nate, the quantization of the driving field should not have
a prominent effect. The system's behavior can be de-
scribed semiclassically. As a result, it is anticipated that
the heating dynamics of a Floquet system have a corre-
sponding semiclassical counterpart in this low-frequency
regime. Moreover, the quantized and the semiclassical
description should exhibit a continuous crossover as a
function of the modulation frequency w and amplitude.

In this work, we investigate the Floquet heating and
the crossover between the quantum and semiclassical
regimes for systems subjected to periodic forcing in free
space, motivated by the recent experimental demonstra-
tion of Floquet-dressed recoil momentum for photons in
a two-spin mixture of cold gases [19] where the two spins
are shaken relative to each other. Such a setting is the key
ingredient of many Floquet schemes proposed for gener-
ating synthetic gauge fields and topological matter [2, 7-
10]. The corresponding semiclassical description of the
heating in such a system is the following: the force mod-
ulates the particles' velocities and consequently generates
extra kinetic energy E0 . This micromotion energy E can
be transferred into the secular motion of the particles
via inter-particle collisions when the micromotion is out-
of-phase for the colliding particles, causing an increase
of the system's total energy, and consequently heating.
The resulting heating rate can be estimated with the two-
body elastic collision rate po- and the associated energy
Eo as

P oc povEo (2)

with the atomic density p, elastic collisional cross section
0., and the relative speed of the two particles v. This

41
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heating rate is continuously variable depending on the
strength of the driving, characterized by E, and is in-
dependent of the driving frequency w, which seems to
contradict the Floquet description of quantized energy
transfer.

In this paper, we calculate the collisional heating rates
in periodically shaken atomic gases with a full Floquet
treatment. We identify several distinct regimes deter-
mined by the energy hierarchies in the system and show
that the semiclassical and the Floquet picture are two
limiting cases of a unified general description of the heat-
ing rate as P ~ pov-ocoEo. The key parameter vci is an
effective collisional velocity parametrizing the final den-
sity of states. This can be, for example, the averaged
thermal velocity /kbT/m with kb being the Boltzmann
constant, hu/m,or VEo/m, depending on the domi-
nant energy scales. In addition, we show that collisional
heating is suppressed in a cold fermionic system by Pauli
blocking, and due to the modified density of states in
systems in lower dimensions.

The paper is organized as follows: Sec. II is a concise
review on the Floquet theory and scattering of Floquet-
Bloch states, which serves as the theoretical basis for the
main results presented in Sec. III. We first analyze the
Floquet heating for two atoms in Sec. IIIA. We then
analyze different regimes of the collisional heating in
Sec. III B and subsequently extend the analysis to atomic
ensembles in Sec. III C, including a specific discussion
on fermionic systems in Sec. IIID. A discussion of heat-
ing rates in lower-dimensional systems is presented in
Sec. III E, followed by a summary and outlook in Sec. IV.

II. FLOQUET THEORY AND FLOQUET
HEATING

Our work is based on Floquet theory, which describes
the evolution of a periodically driven system. Evolution
of a Floquet system has been studied in different scenar-
ios with different approaches, for example through high-
frequency expansion [1, 2, 31], Floquet-Magnus expan-
sion [32], and extended Hilbert space [33]. We summarize
here the basic concepts and formalism in Floquet theory
and the scattering of the Floquet-Bloch states. This sec-
tion mainly follows the description in Ref. [26]; Compre-
hensive discussions can be found in Refs. [2, 26, 32, 33].

A. General Aspects of Floquet Theory

Floquet theory describes the behavior of a system gov-
erned by a time-periodic Hamiltonian H(t + To) = H(t).
This temporal translational symmetry allows simple de-
scriptions of the time evolution. Solutions of the time-
dependent Schr6dinger equation

known as Floquet-Bloch states, can be decomposed into
Fourier modes as

I|<D(0)) = e1wtC 0 1 ). (4)

Here, w = 27r/To is the modulation frequency and E is
the eigenenergy of the corresponding non-driven system.
The amplitude of each of the'Fourier modes C, gener-
ally depends on parameters such as the strength and the
frequency of the driving.

The system does not conserve energy, due to the ex-
ternal drive. In the literature, two different conven-
tions are adopted to describe the energy structure of
such a system [26]. Some authors define quasienergies
Eq = E mod hw lying between (-hw/2,hw/2). Oth-
ers distinguish between the carrier energy E, describing
the secular motion, and the energy sidebands E ± lhw,
describing the micromotion. This distinction can be un-
derstood by considering an adiabatic ramp of the ampli-
tude of the driving. In this work, we adopt the second
convention.

B. Scattering of Floquet-Bloch States

The dressed energy sidebands of the Floquet-Bloch
states modify the scattering between two states caused
by interactions. Scattering can occur not only between
the carriers but also from the carrier of the initial state
to the sidebands of the final state. In the latter case, the
final and the initial carrier energy are different by mul-
tiples of the energy quanta hw, representing the energy
exchange between the driving field and the system via
scattering. This process is formulated with the so-called
Floquet Fermi's golden rule [26]. The transition ampli-
tude between two Floquet-Bloch states is calculated us-
ing time-dependent purterbation theory [26]:

A(i- f,t)= -I dt'(f(t')Z'|i(t))
. 0

i t'ei[Ef -Ei+h(p-q)w]t/hyp,q

h E f
piq

(5)

where VP4= (q I1) is the coupling between two
Fourier modes p, q belonging to the final and the initial
state respectively via, for example, collisions. The corre-
sponding transition rate is readily obtained as

F (i - f im J(i _4 f, t) 12
F(izf)= lim

-+o t

y(V+nV*mm+n) S(Ef - Ei - nhw).

(6)

The sum over the index n explicitly reveals an impor-
(3) tant feature of the scattering between two Floquet-Bloch
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states. In the n = 0 scattering channel, the initial and fi-
nal states have the same carrier energy, and therefore no
net energy is exchanged between the colliding particles
and the driving field (Floquet elastic processes), which
resembles the conventional elastic scattering. Scattering
channels with n 0 characterize the processes where the
energy of the atomic system is changed by exchanging
n quanta with the driving field (Floquet inelastic pro-
cesses), leading to Floquet heating.

C. Heating Rates

We define the heating rate P of the system as the rate
of the average increase in the system's total energy Etot,
which can be expressed with the scattering rate I, and
the related energy transfer nhw as

(7)= I'nho.
n

As shown above, heating of a periodically driven sys-
tem originates from the absorption of energy from the
driving field through inter-particle interactions. The
heating rate of a Floquet system can be calculated by
first finding the exact Floquet-Bloch state wave func-
tion. Then the energy exchange rate can be obtained
by calculating the transition rates for all quantized ab-
sorption/emission processes and their associated energy
change. Generally, the explicit form of the wave function
of the Floquet-Bloch state 1<b(t)) is obtained by inserting
Eq. (4) into Eq. (3) and solving the infinite number of
coupled equations for amplitudes C1. However, for some
special cases, the exact solutions have a simple form, such
as the system presented in Sec. III.

III. COLLISIONAL HEATING FOR PERIODIC
FORCES

We apply the method described in Sec. II to the sys-
tem of interest: a spin mixture of atoms with different
magnetic moments for a periodically modulated magnetic
field gradient, as implemented in Ref. [19] (Fig. 1). For
simplicity, we assume the two spins to have equal but
opposite magnetic moments, such that they experience
opposite forces. We first derive the exact analytic form
of the corresponding Floquet-Bloch state wave function,
then calculate the collisional heating for a single pair of
atoms with opposite spins, before generalizing the results
to atomic ensembles. In this section, we focus on three-
dimensional systems. The results are extended to lower
dimensions in Sec. IIIE.

A. Collisional Heating for Two Atoms

1. Single-particle Floquet-Bloch states

The Hamiltonian we consider is

h2k2

H(t) = + hkoz& sin (wt +),
2m (8)

where the time dependent term arises from a spin-
dependent periodic force F = hkoo-2 sin (wt +). The
corresponding Floquet-Bloch states defined in Eq. (3)
have the compact and intuitive form

where

1
'Q'k(r, t) exp [ik(t) . r -

hk(t) = hk + hkoe jsin wt' dt',

(9)

(10)

and

D(t) =/ h2 k(t') -k(t')dt'
<bt 0 2m d'

(11)

are the instantaneous momentum and the cumulative dy-
namic phase at time t. The physical interpretation of
the wave function Eq. (9) is made transparent by con-
sidering a stationary Gaussian wave packet |) 0  =
fdk exp (-k - k/of)) at the origin. The expectation
values of the position r and the momentum hk of the
wave packet at time t under the periodic driving

r)t = - fk(t')dt', (hk)t = hk(t) (12)

are identical to those of a driven classical particle. We
further identify the secular motion of the particle with
the time average of (r)t, (hk)t over a period- To.

The periodic modulation at the driving frequency
w appears in both the dynamic phase <b(t) and the
wave vector k(t). The amplitude Ci of each Fourier
mode defined in Eq. (4) can be readily obtained via
the expansion eiasinwt = °__   Jn(a)einut as Ci

Zj+j+2k-lJi (koz)Jj (a)Jk(#)with the First-order Bessel
functions J, and two parameters defined as

hkzko hko
mU ' -8mo

(13)

These motional sidebands dressed by the periodic driv-
ing have been directly observed via resonant fluorescence
spectroscopy in trapped-ion systems [34]. The result is
also conceptually similar to an optical modulator where
the carrier frequency is dressed with frequency sidebands
due to the periodic modulation of the medium's optical
properties.
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(a)

EE,+ hw
E,+hbw o E,+ hw Ei+ hw M E,

E, - - E, E, E,- ho

EF ho Ej-ho E1_ho

(b)

E,-hwtIE+how
EE

Ef-hwJJJEf2

(d)
E= E+ ho

Mn (k - k') =g dr (r)C(k)*C+n(k')
(15)

Floquet inelastic process

FIG. 1. Scattering between two particles subjected to a pe-
riodic force. Atoms with different spins are represented by
red and blue. a) The oscillating force dresses each particle
with energy sidebands spaced by hw. The scheme has been
implemented in Ref. [19] where atoms with different magnetic
moments are driven by a periodic magnetic field gradient. b)
Elastic collisions couple two Floquet-Bloch states. Gray and
black arrows represent the incoming and the outgoing states
respectively and 0 is the scattering angle. c - d) Illustration
of the Floquet elastic (c) and Floquet inelastic (d) process.
Besides the regular elastic collisions where the final and the
initial state have the same carrier energy (Floquet elastic pro-
cess), the existence of the energy sidebands allows transitions
between states whose carrier energies are different by a multi-
ple of hw (Floquet inelastic process), leading to the exchange
of energy between the system and the driving field.

2. Two-particle collisions and the heating rates

The two-body problem is reduced to a single particle
problem by decomposing the dynamics into relative and
center-of-mass parts. The center-of-mass motion is un-
affected by collisions and is therefore omitted in further
calculations. The two-body Hamiltonian reads

h2K 2k2 h
H(R, r, t) = 2M +hko&z sin (wt + #)

+ gJ(r),

(14)

with p = m/2 being the reduced mass. r = (ri - r2)/2,
k = (ki - k2 )/2 are the relative coordinate and momen-
tum.

The wave functions for the relative motion have the
same structure as Eq. (9), except that the mass is re-
placed by the reduced mass y and the momentum by the
relative momentum hk.

Collisions are captured by the s-wave pseudopotential
V = g(r) described by Eq. (14). Here g = 47rh2a/m is
the strength of the interaction and a is the s-wave scatter-
ing length between the two spin states. The interaction

=gJn(ak - aki),

which gives the total transition rate from I) to I|WL)
F(k - k')

= ZFn(k - k')
(16)

S 27r|IMn(k -+ k')| 26(Ek' - Ek - nhw)

explicitly showing the scattering rate of channels with dif-
ferent numbers of energy quanta hw exchanged. The scat-
tering matrix element Mn reveals the microscopic process
of the energy exchange with the driving field (n = 0 pro-
cesses): it occurs only when ak # ak, i.e. when the
projection of the relative momentum k to the shaking
axis changes.

(a) 120- 6o- (b) 120- 6o

n=O
n=n

n==

n=On1

FIG. 2. Differential scattering cross sections for Floquet
scattering processes with n = 0(black), n = 1(gray), and
n = -1(light gray). The angular coordinate corresponds
to 0 as depicted in Fig. 1.- (a) For Ek > hw, both absorp-
tion (n > 0) and emission (n < 0) processes are allowed.
Scattering between the Floquet-Bloch states is anisotropic
in angle due to the sidebands. The figure is plotted for
a = 0.4, # = 0.003. (b) For strong driving the micromotion
dominates, and the forward and backward scattering are sym-
metric as expected. The maximum scattering cross sections
are normalized to unity, except for the process with n = -1
in (a) whichis normalized with the maximal cross section of
the n = 1 process in (a).

A feature of the scattering between two dressed parti-
cles is the anisotropy in the scattering cross section, as

9 couples two Floquet-Bloch states in Eq. (9). Without
the periodic driving, elastic collisions couple only states
with the same kinetic energy Ek = Ek, = h2|kI2/2p.
However, the energy sidebands introduced by the peri-
odic driving, formulated in Eq. (9), allow the scattering
between states whose carrier energies differ by a multi-
ple of hw, giving Ek, - Ek = nhw (Fig. 1(b)-(d)). The
associated quantized energy change nhw is transferred to
the secular motion, leading to heating (or cooling). The
transition rate from the ingoing state IT') to the out-
going state j44,) can be readily calculated from Eq. (6).
By combining Eqs. (6) and (9), we derive the coupling
matrix element

B(t)

E,-hw E, Ei+hw

(c)

Floquet elastic process
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shown in the differential scattering cross section (Fig. 2)

d2o- 2o- |k'|M26(E- l-,)
dQ dE \fm Ik M

The heating rate can be obtained analytically by consid-
ering only the n = +1 process and reads

(17)

Though the potential Z is isotropic, the scattering cross
sections are anisotropic for each channel. This anisotropy
in the scattering could be potentially observed in the
time-of-flight pattern of a spin-mixed driven condensate.

We calculated the heating rate P = F, Unho for a
single pair of colliding particles with a relative momen-
tum hk by summing over the allowed final states k' and
scattering channels n, leading to

-Pk -n(k -+ k')nhow
n k'

n /2 (18)
2r g D3D(E+ i nhw)Y 2 (k, n)nw,

n

where

y2 (k, n)=

22 d sin |Mn(|k| -+ /k| 2
-+ 2pnw/h cos 6)|2

(19)

characterizes the transition amplitude, and D3D(E) =
(2p/h2 )3/ 2 ,I//(27r)2 is the three-dimensional density of
states of a free particle with energy E. Here we have
assumed for simplicity that the initial relative momentum
k is along the direction of modulation.

B. Regimes and Crossovers

One of the major results of this paper is to show the
connection between the Floquet picture, where energy
transfer is quantized, and the semiclassical picture, where
the energy transfer is continuous. The consolidation of
the two pictures can be demonstrated already by exam-
ining the two-particle calculation presented above.

We recognize three fundamental energy scales in the
system: 1) Eo = h2 k 2 /(4m) characterizing the micromo-
tion, and the strength of the modulation. 2) hw charac-
terizing the modulation quanta, and 3) Ek characterizing
the relative motion between the two colliding particles,
e.g. kbT for a thermal system or EF for a cold Fermi gas.
The heating behavior of the system is qualitatively dif-
ferent depending on the relationship between these quan-
tities.

We identify the following regimes from Eq. (18)
a. Rapid-modulation Regime hw » Ek, Eo: A sys-

tem with this condition has three features. First, only
energy absorption is allowed. Second, the energy of the
final states, Ek + hw, is now dominated by the modu-
lation energy and D3D(Ek + hw) - v. Finally, since
M" ~ 1/,n/2 , the transition rate for the multi-quanta
processes scales with 1/wa and is therefore negligible.

V a Eo.
3 V y~_

(20)

This is the regime where the quantum and the semiclas-
sical picture diverge. Though the amplitudes of the side-
bands drop with increasing modulation frequency, the
system's heating rate increases due to the larger final
density of states and the energy transfer hw.

b. Semiclassical Regime Ek » hw, Eo: In this
regime, as realized in Ref. [19], the final density of
states is approximated to be D3D(Ek +nw) r[I +
nho/(2Ek)]. Both the energy absorption (heating) and
emission (cooling) processes are allowed. The heating of
the system comes from the imbalance between absorp-
tion and emission of energy quanta hw, due to the higher
density of states and the larger value of the scattering
matrix element for the energy absorption process. If a
stronger criterion Ek » hw» vEOEk is fulfilled such
that ak < 1, only sidebands with 1 = il are relevant.
In this case, we obtain from Eq. (18)

P - 2E8
V Eo, (21)

showing the same dependence on parameters as the semi-
classical picture. The heating of the system can be un-
derstood in the semiclassical picture where the collision
rate is proportional to the initial relative velocity and the
modulation energy gets transferred as heat to the secular
motion.

Contributions from multi-quanta transfer processes
Inl > 1 can be important. Indeed, as shown in Fig. 3, re-
sults obtained with the single-quantum transfer assump-
tion deviate at small w from the results where higher
energy transfer processes are considered. However, the
heating rate at lower w with all the higher energy trans-
fer processes included still converges to the semiclassical
limit Eq. (21) obtained from the single-sideband approx-
imation.

c. Strong-drive Regime E » hw, Ek: In this limit,
the strongly driven oscillation dominates over the par-
ticle's initial motion. The scattered particles, there-
fore, behave as if each particle were moving at velocity
/Eo/m. Multi-quanta processes contribute significantly

to the heating rate due to the large modulation index
# ~ VEo/(hw) of the final state. The heating rate reads

Pk=0 W9 2 [D3D(nhw)nhw

f sO (4 ) j" I12 ~m ~ cos 22~OL~. hw)
(22)

=3.36 - B, Eo,m

where the coefficient 3.36 is found numerically.
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C. Ensemble Heating Rates

We now apply the two-particle results above to thermal
ensembles with total atom number N by averaging over
the ensemble as

f d3ki d 3k2 d3 k' d3k'2Pens J kI2,'k
e (27r) 3 (27r) 3 (27r) 3 (2-7r)3 1+2

xf(ki)f(k2)P(ki,k2 - k',k'),

(23)

where f(k) is the particles' velocity distribution and
P(ki, k2 -- k', k') = P(k - k') with k = (ki -k 2 ), k'
(k' - k'). We calculate the heating rates at different
regimes for 1) thermal clouds at temperature T, 2) a
Bose-Einstein Condensate, and 3) a degenerate Fermi
gas.

The analytic results presented in this section are ob-
tained by assuming the single-sideband approximation
unless otherwise stated, as justified in the previous Sec-
tion. Multi-quanta results are presented as numerical
results in Fig. 3.

a. Thermal Ensemble For a classical ensemble at a
temperature T, the distribution f(k) is the Boltzmann
distribution. The resultant ensemble heating rate is

2 how
PThermal = Nn3D- Eo (24)Pens 3 mr

for the rapid-modulation regime, and

16 kT
,pThermal- -N6 D F 0

ens = Nn3Do- Eo (25)

for the semiclassical regime. Along with the general ex-
pression P - po-vciEo, we identify vci oc -kbT/m to
be the ensemble averaged thermal velocity, which repro-
duces the semiclassical picture where the micromotion
energy is transferred to the secular motion via elastic col-
lisions at a rate proportional to the thermally averaged
relative speed between the two colliding particles.

b. Bose-Einstein Condensates A Bose-Einstein con-
densate at T = 0 is treated as an ensemble with f(k) =
6(0). Following Eqs. (20) and (22), the heating rate reads

20(a)20
(16/3)n3 Dao kbT/(Tnm)Eo

(2/3)n 3 Dalh4/mEo

T =800nK
-

5. T =380nK

i00

I
10

0.1

0.1

0.01 0.1

100

10 100

FIG. 3. Numerical calculations of the heating rate involving
multi-quanta process nl > 1 for a thermal cloud at temper-
ature T = 380 nK (experimental condition in [19]), 800 nK
and for T = 0 (i.e. an ideal Bose-Einstein condensate) at
w = 27r x 5 kHz. a) For the thermal cloud, the heating rates
scale with Vf at high frequencies and become independent of
w around hw ~ 4kbT which is the ensemble averaged Ek. The
heating rates, then plateau at the semiclassical value given by
Eq. (25), illustrated by the orange lines. The solid gray and
the dashed gray lines represent the results obtained from the
single-sideband approximation Eq. (24) for T = 380 nK. The
blue dot indicates the parameter implemented in [19]. b) For
a condensate, the heating rate scales quadratically with the
modulation strength characterized by Eo when hw » Eo and
shows semiclassical behavior at hw« E0 . The black line
is the numerical result, the dashed gray line is the heating
rate calculated with the single-sideband approximation which
matches the numerical result in the regime hw» E0. In this
calculation we use 1 3D 1012 cni 3 and scattering length
a = 53.8ao.

PeBn = 3.36Nn3Do-B0Eo

at Eo » hw and

pBEC 2 -n
ens = 3Do-m

at E0 « hw, as shown in Fig. 3(b). The result sugg
a collisional velocity veci oc /Eo/m and vci oc Vh
respectively.

To compare with the experimental results in Ref.
we numerically calculate the heating rates for var
cases by directly calculating the sum Eq. (18) for th
perimental parameters (Fig. 3). Our result is consis
with the weak Floquet heating observed.

(26)
D. Fermionic Systems

The heating effect studied in this work relies on atomic
(27) collisions which can be affected by particle statistics.

For deeply degenerated Fermi gases, Pauli blocking ef-
ests fectively reduces the elastic collisional cross section o-, as

o/m experimentally demonstrated in [35-37]. As a result, col-
lisional heating from periodic driving is suppressed in a

[19], fermionic system.
ious
ex- Fermi statistics dominates when EF is the largest en-

tent ergy scale. At this condition, collisions occur on the
Fermi surface. More formally, the heating rate for a

1 10
hw(kbx380nK)

(b)

-(2/3)n 3Da/Eh/mEo

3.36n3aTadEo/m E0
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fermionic system is expressed as

F f 3 k 1 d3 k 2 d3 k/ d 3 k/2
ens = (27r) 3 (27r) 3 (27r)3 (27r) 3 k1+k

2 ,k+k2

xf (ki)ft(k 2 )[1- f (k')][1- ft(k')] (28)
xP(ki,k2 - k',k').

Here, f = 1/(gi + 1) is the occupation number with
g = exp[(h2 k -k/(2m) - y)/kT], and t is the chemical
potential. Pauli blocking is captured by the extra factor
(1- - ft(k')), accounting for the occupation
of the final states. Here we consider an equal mixture of
spin-up and spin-down atoms.

When hw is the largest energy scale in the system,
the entire Fermi sea is involved in the collisional heating
process since all possible final states are unoccupied. The
heating rate scales with w in a similar way as in the case
where Fermi statistics is absent as in Eq. (24).

When hw < EF, Pauli blocking occurs. At T = 0, f
approaches a step function with p = EF. Collisions occur
in a shell with a thickness of ~ (hw/EF)kF around the
sharp Fermi surface. We show in Appendix B that the
heating rate of the 3D system becomes

gr ~ h 2  F
ens ~ :Nn3Do- E 0V2 EF M

(29)

when hw < EF, where the factor (hw/EF)2 character-
izes the effect of Pauli blocking. The power law of hw
originates from three effects: 1) scatterings occurs in a
shell at the surface of the Fermi sphere, accounting for
a factor of (hw/EF)3 , 2) the scattering matrix elements
contribute 1/(h) 2 , 3) the energy transfer per Floquet
inelastic scattering process gives hw.

For T / 0, thermal excitations smear the Fermi sur-
face, affecting the number of states involved in the col-
lisional processes. When kbT < hw, the modulation en-
ergy still dominate the scattering. The result is similar
to the T = 0 cases, as shown in Fig. 4. When kbT > hw,
the thickness of the collisional shell in momentum space
is on the order of (kbT/EF)kF. We show in Appendix B
and also numerically that the heating rate scales as

T 2 E
eoc Nn3DT

ensTF / M

at low temperature and is independent of the modulation
frequency.

When the micromotion energy Eo is large compared
with both the thermal energy kbT and the modulation
energy hw, the heating rate of the system becomes

pFcx (E 0 \ EF
ens oc Nn3Do -E 0 , (31)EF m

which can be explained by considering the collision be-
tween two Fermi spheres displaced by ko from each other.
Collisions are only allowed within a Fermi shell with a
thickness of ko. The number of available states is there-
fore oc (ko/kF) 2 N2 which implies the Pauli blocking fac-
tor (E/EF)2 .

1-

U

0.

101

101
10-1 IO0 101 102

hw/EF

FIG. 4. Collisional heating rates in a periodically
driven spin mixture of degenerated Fermi gases at T =
0.1TF, 0.05TF, 0.02TF. The heating effects are Pauli sup-
pressed for a cold Fermi gas when the energy quantum hw is
smaller than the Fermi energy EF. The discrepancies at high
modulation frequencies are numerical artifact. Inset: heating
rates at hw = 0.016 EFand fixed EFfor various temperatures
where hw < kbT < EF. The heating rate is proportional to
(T/TF)2 .

E. Lower-Dimension Systems

Though our calculations are done for a specific sys-
tem, several conclusions are generally valid. The result
thatP -~/ at high frequencies is valid for any three-
dimensional systems in free space with quadratic particle
dispersion due to the density of states. Since the Floquet
elastic collisional rate is bounded, such Floquet systems
cannot be studied in thermal equilibrium in the limit of
fast modulation frequencies. However, it is often desir-
able to have the modulation energy scale hw greater than
all the other dynamic energy scales.

One possible solution is to go to lower dimensions, sug-
gested by the observation that heating at high frequency
originates from the increased density of states with higher
energy D3D ~ . In a 2D system, the density of states
is independent of the energy, so that excessive collisional
heating can be suppressed.

We consider here quasi-2D scenarios where the atomic
motion is constrained in a two-dimensional pancake but
scattering is still described by the 3D s-wave pseudopo-
tential. This can be achieved in the case where the scat-
tering length a is much larger than the interaction range
but smaller than the oscillator length 10 = Vh/(mv±) in
the strongly confined direction, with trapping frequency
v I. The modulation is in-plane.

In these cases, the Floquet-Bloch wave function is writ-
ten as

1
T (x, p,t)= q-L(X) /Aexp [ik(t) -p - t (32)

where p = {y,z} and k = {ky,kz} are the 2D ra-
dial vector and wave vectors. A is the system area.

103,

0.10TF 5

0.05T10 _(/TF)2

0.02TF

0.1
T/TF=0 0.03 F. .
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The component along the strongly confined direction x
has been explicitly separated as 41. We assume that

#1i(x) = 7r1/4l/
2 exp (-X2/2l) and particles stay in the

ground state wave function.
With these parameters, results obtained for the 3D

case can be readily extended to quasi-2D by replacing
the scattering strength g with the effective 2D scattering
strength [38]

2/6 a-D0. (33)
m 1o0

Together with the 2D density of states D2D = (27rh2)
and o = 47ra2 , the heating rate can be expressed as (see
Appendix A 2 for details)

P2D = 16Nn2D 8kbT + 1 E0  (34)

in the rapid-modulation regime and

h a
P2D = 32Nn2D 2 EO (35)

in the semiclassical regime. This can be interpreted as
a 3D density n3D = n2D/lo = N/(Alo), and a velocity
ocoi = h/(mlo). The heating rates are bounded in both
regimes.

1(a) 1 (b)

800nK 38OnK

380nK z0.1 3800nK

1 0 102 10' io 101 102
hw/(kbx380nK) hw/(kbx380nK)

FIG. 5. Numerical calculations for the collisional heating
rates in a quasi-2D (a) and quasi-1D system (b). The heating
rate is independent of w at high modulation frequencies in
quasi-2D regime, and is suppressed with the increasing mod-
ulation frequency hw in quasi-1D. The oscillations in (b) are
numerical artifacts.

Similarly, for a quasi-1D system with length L, 1D=
h2a/(ml) is the interaction strength. We obtained

h mEo
PlD oC NnlD E0 (hw » kbT),\m, howli

h M o- EPlD oc Nn1D kbT lEo (hw « kbT),)2F1

regime, systems are expected to reduce to the 3D case.
These effects are addressed in the studies of collisional
heating in modulated optical lattices [25, 27, 30], which
is beyond the scope of this work.

IV. DISCUSSIONS AND SUMMARY

In this work we have shown how a Floquet system ac-
quires energy from the external drive and heats up via
inter-particle interactions. Using the scattering theory
of Floquet-Bloch states, we have calculated the colli-
sional heating rates for a cold atomic gas driven by time-
periodic oscillating forces. We have shown that the heat-
ing of such systems can be described by a general expres-
sion by introducing the effective collisional velocity vcol
parametrizing the density of states :

P oc po-colEo. (37)

The velocity vc 0 i is determined by the dominant energy
in the system and is summarized in Table I. For fernionic
systems, the collisional heating is further suppressed by
Pauli blocking. In systems with lower dimensions, colli-
sional heating is also reduced due to the modified density
of states.

Our calculation can also help to understand the colli-
sional heating in other similar Floquet systems by using
appropriate interparticle potentials and Floquet-Bloch
states wave functions. One such system is a combined
trap for ions and neutral atoms, where ions are sympa-
thetically cooled by atoms, limited by heating effects due
to the micromotion of the ions [39-42]

In this work, we considered collisions between particles
which are periodically driven by opposite forces. This
is different from radio-frequency ion traps or the Time-
Orbital Potential (TOP) trap [43], where all particles ex-
perience the same periodic force. In those cases, heating
occurs due to non-adiabatic motion and the inhomoge-
neous strength of the drive or long-range Coulomb inter-
actions [44].

A major motivation for studying Floquet heating is
to assess the feasibility of preparing interesting Floquet
many-body states. An essential question is whether a
quantum state can be prepared before excessive heating
occurs. This is often captured by a dimensionless param-
eter q defined as:

T
S~r -,

re,(36)

with n1D = NIL. The heating is now suppressed at high
frequencies.

However, we note that the modulation frequency w is
assumed to be smaller than the trapping frequency along
the direction of the strong confinement w « vL to avoid
excitations to higher oscillation states. In the opposite

(38)

which characterizes the number of cycles of evolution the
system can experience before the system's total energy
increases by its characteristic energy E due to the heat-
ing. Here rev is the timescale for the system's evolution
andT - (E/P) is the system's lifetime. Floquet en-
gineering of quantum states requires 77» 1. We can
use the results of this paper to estimate the parame-
ter 7 for various systems. For a thermal ensemble with
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TABLE I. Effective collisional velocities vcoi for various systems. The heating rates follow an unified description P c po-ocoIEo
where Eo is the strength of the drive and p is the corresponding particle density.

occi Condition Dominating Energy Scale

Vhw/m hw » Eo, kT Rapid-modulation regime, where hw dominates

VkbT/m kbT » hw, E Semiclassical regime, where the thermal motion dominates

'Eo/m Eo » h, kT Strong-drive regime where micromotion dominates as in, for example, condensates and
cold atomic samples.

Fermi energy dominant as in a degenerate Fermi gas. The heating rate is further sup-
QEF/m EF hwkbT, Eo   pressed by Pauli blocking with a suppression factor, (hw/EF)2

, (Eo/EF), or (kbT/EF) 2

depending on the relation between hw, kbT, Eo.

h/mlo hvL hw,kbT, E0 Confinement energy dominant as in systems of lower dimension.

Tev ~ n3DCth and E = kbT, we obtain q - kbT/Eo
in the semiclassical regime and R ~ kbT/Eo kbT/hw
for rapid modulation. For condensates, evolution of
the system is characterized by the mean-field interac-
tion strength h/ev ~ U gn3D in 3D, which leads to
7 ~ U2 /p ~ n3D/ko or ~ h2 /ma 2 / hw(U/Eo). For
Fermi gases, h/rev ~ EF, giving q - E /2 /(h2 2Eo).
This illustrates the benefit of using systems with large
Fermi energy.

The purpose of this paper was a transparent treat-
ment of heating in different regimes for a particularly
simple Floquet system. Our discussion provides a start-
ing point for more complex systems where we expect sim-
ilar regimes depending on the hierarchy of the relevant
energy scales.
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Appendix A: Ensemble Averaged Heating Rates

1. 3D Systems

We present the detailed calculation for Eq. (25).
Rewriting Eq. (23) with the center-of-mass and rela-
tive coordinates K = (ki + k2 )/2 = (k' + k')/2, and
F(k1 , k2 -+ kk2) = (k -+ k') with k = (k 1 -k 2 ), k'
(k' - k') one obtains:

p _ f d3 K d 3k d 3k' k+K)f(- +K)P(k -k k')
(27r) 3 (21r) 3 (27r)3 2 2

(Al)
with the Boltzmann distribution function.

(h2\3/2 h2 k -k
f (k) = N h 32exp -

f 2,rmkbT e 2mkbT}

As discussed in Sec. III B, we consider only the pro-
cesses where n = t1. The coupling matrix elements M,
to the lowest orders in ak, are shown in Table II.

TABLE II. Approximate coupling matrix elements Mn for
various Floquet collision processes.

Mo/g M1/g M- 1 /g M2/g M-2/g

1hko(k,-k' hko (k- k 1 [hko(k-k' )2 2 hko(kzk,)1
2

2mw 2mw 2 2mw j 2 2mwj

With the single-sideband assumption, we obtain the
analytic expression of Eq. (18) by explicitly calculating

fy2 (k,t1)

o-E 4 v + E+nw (h2 k 2 h2|k 2n
Pk = 4- k A + + ) nEo.

(A2)
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with n = ±1 for the semiclassical regime, and n = 1 for
the rapid-modulation regime. The total heating rate P
can be readily obtained as

(_4h2 _3/2 d3k _-__p
P-N 2 mkbT) (27r) 3 ,4

mkb
T

k, (A3)

which gives Eq. (20) and Eq. (25) at the corresponding
limits.

2. Quasi-2D Systems

We start with the Floquet-Bloch states wave function
for quasi-2D system written as Eq. (32). The scattering
strength, defined as

g = dr #(r)V(r)#f (r),

has the form [38]:

2V 27h 2 a
92D -

3. Quasi-1D Systems

For a quasi-ID system, we use the 1D wave function,
a scattering strength 91D, and M,

'IF(x,y,z,t) = 1 (x, y) exp [ik(t)z - ib(t)],

h2 a
91D m12 '

0

Mn(k-+ k') = gD n k - ak'),

1 yi
D1D(E)= 2rh 2E

to obtain

l D (k, n)

2~[IMn(k -- k 2 inw/h)12
7 D

+|IM, (k -+ /k2 + 2pno/h)| ,2

(A8)

(A9)

yielding

in quasi-2D. The results obtained for 3D cases can be
readily extended to quasi-2D by replacing g with 92D
and using the corresponding 2D density. We therefore
obtain the coupling matrix element between two quasi-
2D Floquet-Bloch states

M,(k -+ k') = g2D J(ak - ak'), (A4)

and obtain

72D½YD (k, n)

2 72rd |Mn(k --+ k2 + k 2ptnw/hcos 6)12 .92Do

i- 8g2D k 2 + n 2thw/h2

pkD -
2  L k2 + 2pnhw/h2  (A10)

With the 1D Boltzmann distribution f(k)

N ( 2rh p _ 2k2 ), we calculate the heat-
\mkbT )mkbT

ing rate of the ensemble

D =dKdk' f( +K)f ( 2 + K)P(k -+ k')27-J 2727r 22

(A5)
=N2 ( h2T 1 /2 ke- r PD= mkbT) / 27r 'P

Following similar procedures as in the 3D calculation,
and using the 2D density of states lead to

r2D g2 22

P( 4 + + 2n) nEo. (A6)

Together with the 2D Boltzmann distribution f(k) =

N exp (-2 , we obtain the heating rate of

the ensemble

/fd2 K d2 k d2 k' kk
P2D = f(- + K)f (-- + K)P(k -+ k')

(27r) 2 (27r) 2 (27r) 2  2 2

=2N 2( d e2k 4mkp 2D
mkbTJ (2wx) 2

e(

(A7)

which gives Eqs. (34) and (35).

(All)

which results in Eq. (36).
We add the note that the scaling ~ 1/lisT in the

regime hw < kbT cannot be directly obtained in the
same way as for other dimensions. In 1D, terms in ze-
roth, first, and second order in hlo/Ek cancel between the
n = ±1 processes if both processes are allowed for two
particles with k 2 > 2pnhw/h2

I:z k2 + nhw/h2 n

n± i\/k 2 + 2pnhw/h2

3 - (2 ( + [( 04 A12)

Therefore, even for kbT » hw, the leading contribution
comes from the regime k 2 < 2pnhw/h2 , where only the

I __M"_



n = +1 process is allowed. We obtain k2 - k'12. The heating rate Eq. (B1) now has the form

n2
mkbr plDPk'PlD =N 2 7h212de- 4

(mkbT) 27r
3

2 a Eo m7r

~N mJ l7r2 wL kbT
/2phw/h _ k2

x/ dke 4mrkbT

J- 2pasw /h

7r 2L m f kbT lE

k 2 + phw/h2

Vk 2 + 2phw/h2

(hw « kbT).

(A13)

The obtained scaling is consistent with the numerical re-
sults.

Appendix B: Derivation of the Pauli Blocking Factor

p F [ d 3 k1 d 3 k2 d3 k'
PF~~ 1 (C1 -| C2 -+ hW - E' - E2ens (27r) 3 (27r) 3 (27r) 3

x f (ki)ft(k2)(1 - f (k'))(1 - ft(kI + k 2 - k'))

[ k1 cos 01 - k cos 6' 2

1 2

=Cr [(2m) 3 /2 
1 J 61 dC 2de' d 1 d2 dQ'

2h3 J (27r)9

xf;(Ei)ft(62)(1 - f;(Ei))(1 - ft(Ei + Q + hw - E/))

~ki cos 01 - k' cos 0' 2

2 J

x6cihw~ h 2 q2  ht2
x ~i+ hw - E' + -q -k2),

2m m
(B3)

where q = ki -kI and q = q. Integrating over the solid
angle dQ 2 = sinO 2dO2 d#2 gives

1. Zero-Temperature Fermi Gases

In this part we present the calculation for Eq. (29).
The interspin collision rate of a two-component Fermi
mixture is written as

F- 3 k1 d
3k2 d

3k' d3k'
Pens = (27r) 3 (27r) 3 (27r) 3 (2 )3 6

k+k2,k'+k'

xf4 (ki)ft(k2 )(1 - ft(k'))(l - ft(k'))
xP(ki,.k2 k, k')-

We denote ei h2 |kil2 /2m, E' h2 lk1 2/2m,
and rewrite the integral in spherical coordinates
with k = ki(sin O6 cos #i, sin O sin #i, cos O), k'
k'(sin 0cos#',sin 0sin#', cos 0).

Momentum conservation ki + k2 = k + k'gives

P(ki, k2 -' kki + k 2 - k')

pF =2C (2m)3 / 2 3 f E24dE2di d i
ens 2h3 J (27r) 9

X ft(61)ft(62)(1- ft(6'))(1 - ft(i + E2 + hW- ))

[ k cos 01 ki cos 01
2

m 1-ei - hw + El +
x h2q d 6(x - 2-1-

(B4)

with x = cos62. We subsequently integrate over Q1 and
Q'. When ki, k' vary over their respective solid angles

Q1, Q' with fixed lengths ki = V/1, k' = N, the differ-
ential vector q also varies over the entire solid angle Qq

with the length varying from 6 - -/I to V7 +/
Therefore, we have the equivalence

(k1 - k2)z - (k - k2)z,- 2= Cr 4 (C1 + E2 + ho - ei - 'E2)

= Cr k1 cos 01 - k' cos 0' 2 (

(B32)

27r sk 2 where Cr = k is a constant, and 2w s an6 - 12 k

dQ1 dQ 2 = Cqq2dqsinOqdOqdpqdi ,

where Cq = 6/( + '6i1) 3 is the normalization fac-
tor, and #1 is the angle between the planes expanded by

11
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{ki, k'} and {q, ez}. The heating rate follows as With the definition of the Fermi energy (2mEF)3/2
3n3D h3 r 2 , we eventually obtain

pF ~ohW 2 EF
en (ENn3D Eo,esV2 EF /yM

pF (2 M)~~ [(m3/2i3666Pe'ns = 2r3C 3/- CqV/ele2E/ delde2de'
e 2h3  1 (27r)9

x q2dq sin9Oqd6q

X f (c1)(e2)(1 - f(6) (e))(1- ft (Ci + E2 + hW - E'))

4q62 -6h-h ±1 2)
Xm(q cos O9) 2 dx J(x - h/4 h qE2 fh2 q fe-2/ m

(2m)3 / 2 3  
q C 16261

Cr 2h3  fI(27r) 6 dEide 2del

X fh(e (2)(l- f ( ) ( - tei + 62 + h ~ E/))

1 92
mqad -4 - + Ef + Yt

J 6h2VFJ2 h2qes/m
-- 1

(2m)3/2  Cq ei E jE dCr 2h 3 ]J 2dE1 di2 de

x E1ft(2)(1 - fs(el))(1 - ft(Ei + E2 + hW -ED)

x f +V mq 3 dq

g 6h2 VggE

O(V/2e'2 - E2 + - 2 - q)O(q - (V/2e'2 - 2 - -i))]-

(B5)

Note that so far the only approximation adopted is the
single-sideband approximation, and that the first side-
band is weak, implying Ji(x) x /2.

When hw < EF, we have /2E-62 + f62 ~ VE +
s/s ~ 29/h2/(2m)kF, and V/2e'2 - 62 - Ei ~ -
V/s ~hw/(2 /EF). The integral over q in Eq. B5 now
gives

P Cr[(2m)3/2 3 fq 6 1i2E dPe1ns [2h3  J (27r) 6

x f4(ei)ff(62)(1 - f4(E6))(1 - ft(Ei + E2+h- 4))
8mkF

3h2}ei

(B8)

which shows explicitly the Fermi suppression factor
(hW/EF)2 .

The calculations above can be extended to the regime
of small hw where multi-quanta transfer processes are
relevant.

2. Finite Temperature Fermi Gases

In this section we present the calculation for the Pauli
blocking factor (T/TF)2 when T/TF < 1. We further
assume that hw < kbT. The non-zero temperature case
is different from the zero temperature Fermi gas mainly
in two aspects: first, as discussed briefly in the main text,
the active Fermi shell formed by the accessible states has
a thickness of kbT instead of hw. Second, energy quanta
emission processes are now allowed. In the lowest order
approximation, the heating rate can be calculated with
only n i 1 processes and leads to

JCq v/ei 2e'deide 2de'i1

X - f4(el))(1- ft(Ei + 62 + ho - CID)

- (1)f(62)(1- '1)(- f(ei+ 2 - hw - E'))

Cq qelc 2eldeide 2de' 1

x f4(61)f(62)(1- f('1)) ( E2-C

~l'EF-1/2 (kbT)2 W
(B9)

Together with Eq. (B6), the Fermi suppression factor is
readily recognized to be (kbT/EF) 2.

h2 2

r2m)

C (2m) 3/ 2 3 E3/2 (hw) 3 8m
r 2h3 I F 8(27r) 6 3 2

(B6)

Here we adopt the approximation

Cq /eiE2ejdEid1E2dE/

x f(ei)ft(62)(1- fs(4))(1- ft(Ei + 2 + hw- ))

~EF1/2 ()3
8F

(B7)

..... .........
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