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Abstract

A dynamical system, an ensemble of particles, states of which evolve over time, can
be described using a system of ordinary/partial differential equations (ODEs/PDEs).
This dissertation presents fundamental investigations of the analysis and algorithms
for the study of dynamical systems, by parametrizing, optimizing and customizing.
We develop and/or implement numerical algorithms, for solving ODEs/PDEs, and
statistical/machine-learning algorithms based on data, for physical inference and pre-
diction. We further apply the methodologies on sled hockey, an adaptation of stand-
up hockey, allows people with physical disabilities to participate in the game of ice
hockey.

First, we develop and implement numerical algorithms to study the nonlinear dy-
namics described by 4th-order nonlinear PDEs. The non-linear solvers apply multi-
dimensional Newton's method with a Jacobian-free approach and a generalized con-
jugate residual (GCR) approach. Applying the algorithms on the study of elastic
systems, we investigate dynamics of hockey sticks as in a striking implement. We
develop a mathematical model using an Euler-Lagrange equation to characterize the
behavior of a hockey stick in the linear regime, and then apply this model to in-
vestigate the dynamic response of the stick throughout slap shots and wrist shots.
We apply a modal decomposition method and decouple the resultant dynamics into
kinetic and potential components. We further optimize the structures based on the
dynamical analysis. Throughout testing with both elite and amateur sled hockey
players, we find that final puck velocities with our prototype stick are on average over
10% higher compared to those achieved with commercially available sticks.

Second, we investigate the dynamics of rigid system as in an over-constrained
implement. We propose two sets of dynamical modelling for the hockey sled using a
trajectory-based modelling method and a state-space-based modelling method, which
are used to study the dynamics of the propulsion for linear motion and of the tip-over
and reset. We further propose a constrained optimization problem to optimize the
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parameters of sled design and driving strategy to maximize the performance of sled
hockey players based on the dynamics.

Third, we develop and implement statistical and machine learning algorithms
based on data, including algorithms of clustering for physical inference, algorithms
of regression for Stribeck curve and algorithms of forecasting for wear rate. In the
context of tribology of ice-metal contact, we design an experimental system to mimic
the ice rink environment and to expand the experimental study of the friction co-
efficient in an extensive range of Hersey number from 101 to 10'. To build the
understanding of the physics of friction, we perform a dimensional analysis and an
asymptotic analysis for three regimes of friction - boundary friction regime, mixed
friction regime, and hydrodynamic lubrication regime. We further develop a pipeline
for creating the modified Stribeck curve based on data, after feature extraction, the
regime of each experimental result is identified via clustering, followed by the regres-
sion constrained by the asymptotic analysis. Finally, we propose a methodology and
algorithm to predict the wear rate subject to geometric constraints.

Thesis Supervisor: A.E. Hosoi
Title: Professor/Associate Dean of Engineering
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Chapter 1

Introduction

In complex physical systems, the governing physics and its parameters may encounter

difficulties to identify and investigate. In this dissertation, we parametrize and opti-

mize the physical systems, applying the methodologies in the field of structural/fluid

dynamics, robotics, statistics and data science. We further develop and implement

algorithms, for optimizing the governing parameters of the systems, for solving non-

linear partial differential equations (PDEs), for modelling the governing physics and

for forecasting and predicting the dynamics in complex dynamical systems.

1.1 What is Parametrization, Optimization and

Customization

Parametrization, in this dissertation, is adapted from the terminology used in the

field of mathematics, where used as the process of finding the parametric equations of

curves, surfaces, manifolds or varieties [4). Hereby, parametrization is defined as the

process of identifying the governing equations and its parameters, used to characterize

the dynamical systems. More broadly, parametrization also includes the process of

physical inference, in particular for the study of tribology in this dissertation. We

develop the methodologies and algorithms of parametrization for dynamical systems

and physical inferences.
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Optimization is widely used in many engineering fields, serving as a process to

determine the optimal selection from a set of available space [5]. Hereby, optimization,

in particular, is applied in finding the optimal parameters and hyper-parameters, in

ODEs/PDEs and in statistical/machine-learning algorithms, respectively.

Customization, also known as personalization, is described as the process of tai-

loring services and/or products to accommodate individuals and/or groups [6]. Cus-

tomization, hereby, is limited to the scope of the methodology used to tailor the

parameters of the structural optimization, tied to groups of individuals.

1.2 What is Dynamical System

A dynamical system, in mathematics, is a manifold endowed with a family of smooth

evolution functions, which map a point of the phase space back into the phase space [7,

8]; A dynamical system, in physics, refers particle(s) whose state evolves over time

and thus obeys differential equations involving time derivatives [9].

In complex physical systems, the parameters and governing physics are difficult

to identify and investigate. In this thesis, we analyze and parametrize the physical

systems, applying the methodologies in the field of structural/fluid dynamics and

robotics. We further design and implement algorithms for optimizing the governing

parameters of the systems, for solving non-linear partial differential equations (PDEs),

for modelling the governing physics and for forecasting and predicting the dynamics

in complex systems. Further, we apply the methodology of analysis and algorithms on

ice hockey equipment. Ice hockey, referred to as stand-up hockey in this dissertation,

is a contact sport invented in 1800s, in which two teams play against each other using

hockey sticks to manoeuvre a puck into the opponent's net to score points [10, 11).

Characterized by the high intensity intermittent skating and frequent body contact,

stand-up hockey sustains its popularity in many countries and was adopted in the

Olympic games in 1920 [12, 13, 14].

Sled hockey, an adaptation of stand-up hockey, allows people with physical dis-

abilities to participate in the game of ice hockey [15, 16]. Sled hockey, also known
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as sledge hockey outside the US, is a much newer sport than stand-up hockey. It

was invented in 1960s in Sweden and adopted as a sport in Paralympic games in

1994 [17, 18]. Sled hockey allows participants with mobility limitations, such as leg

or hip injuries, amputees and able-bodied people with knee to play, requiring greater

upper-body strength and capability of balance [19, 20.

In terms of the concept and rules, sled hockey is very similar to stand-up hockey.

The primary difference is that sled hockey deploys an adaptive equipment, known

as hockey sled, for sled hockey players to sit in and drive themselves with a pair of

hockey sticks, instead of skating as in stand-up hockey.

The equipment in sled hockey primarily consists of a hockey sled and a pair of

hockey sticks. The hockey sled includes a sled bucket, two skate blades affixed to

the sled bucket, a leg support, a foot support and a suspension system to secure all

the components. Hockey sticks are utilized for two primary functions: one for sled

hockey players to drive the hockey sled in the ice rink, the other for sled hockey

players to maneuver and shoot a puck to score points, referred to as driving mode

and shooting mode, respectively. Therefore, sled hockey sticks are designed with a

ratchet anchored on one end for driving and with a tapered curvature on the other

end for maneuvering and shooting.

1.3 Scope of Study

In this project, we collaborated with the Wheelchair Sports Federation New York Sled

Rangers. The Wheelchair Sports Federation is a national non-profit organization that

provides opportunities for disabled adults and youths to play sports recreationally and

competitively [1]. The WSF is one of the earliest organizations to provide adaptive

athletes with opportunities to participate in a multitude of adaptive sports [1]. The

WSF can trace its birth to the adaptive sports program created at the Eastern Par-

alyzed Veterans Association in NYC. The WSF sponsors adaptive sports such as:

Archery, Billiards, Bowling, Boxing, Fencing, Fishing, Flying, Handcycling, Hunting,

Mountain Biking, Powerlifting, Rugby, Swimming, Team Handball, Track & Field,
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Water Skiing, Wheelchair Basketball, Wheelchair Football, Wheelchair Tennis, Win-

ter Skiing [1].

This project lies at the intersection of multiple interdisciplinary fields, including

the techniques in structural dynamics, fluid dynamics, algorithms, data science, heat

transfer, product design and machine design with optimization methods. This dis-

sertation presents fundamental investigations of the dynamics and mechanics in the

game of sled hockey, by parametrizing, optimizing and customizing the sled hockey

equipment, primarily consisting of hockey sticks and hockey sleds.

Research on the study of sled hockey in prior arts is very rare [21]. We hope our

study can serve as a fundamental work for this field, in particular for the community

of designers of sled hockey and junior sled hockey players with ages from five through

twenty-one. To determine the scope of our study, we perform systematic procedures

of customer needs identification through interviews and surveys. Based on the re-

sults, we further apply a quality function deployment (QFD) analysis to prioritize

the customer needs. (Approvals for all the interviews, surveys and experiments were

obtained from the MIT Committee on the Use of Humans as Experimental Sub-

jects (COUHES) prior to any human experimentation. Please see Appendix for the

approvals.)

1.3.1 Scope Identification

We conducted an online survey based on the responses we received from sled hockey

players in 2016 summer. We also used information from interviews in 2016 October

discussing a series of more open-ended questions. The answers from players, their

parents and coaches were extremely valuable to us and we attempted to categorize

them into a few reoccurring themes. The questions in the survey were based on

those themes. There were ten players, ten parents, four coaches and three others who

participated this online survey during one month. Fig. 1-1 summarizes the priority of

customer needs for different features of sled hockey. The top one indicates the highest

priority. The survey results suggest that "Customization of hockey sled based on the

physical condition" plays the most important role. In the survey, we summarize 10
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customer needs based on our interview results:

1. The sled is more customizable based on player's physical condition and playing

ability.

2. The sled allows players to maneuver better.

3. The bucket is more comfortable to sit in.

4. The hockey stick allows players to make a more powerful shot.

5. The sled allows players to drive faster.

6. The foot support restrains feet better and allows more control.

7. The sled is easier to carry and takes less space to store.

8. The leg support is more comfortable.

9. The sled can be driven by someone with use of one hand.

10. Other suggestion(s).

In addition, Fig. 1-1 (Inset) shows the survey results from the coaches. From the

perspective of coaches, the feature for the comfort of the bucket is less important

than the feature for the hockey stick and the speed of the sled.

We applied a Quality Function Deployment (QFD) analysis to define customer

requirements, translate the requirements into specific plans, and prioritize the re-

quirements to facilitate decision-making and design.

QFD was developed by Oshiumi of the Kurume Mant plant of Bridgestone Tire

in Japan in the late 1960s and spread to the US in the 1980s [22]. QFD was initially

introduced to design and manufacturing, providing these fields with the planned qual-

ity control chart [22]. Fifteen years after it was developed, QFD was integrated with

other improvement tools and introduced to other fields, including product develop-

ment, course/curriculums development, model-change products and reliability test

methods [23, 24, 25, 26, 27].
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Figure 1-1: Survey results with 27 subjects, among which ten subjects are players,
ten are parents, four are coaches and three are others. This survey is conducted to
identify the stakeholder's needs and their priorities. (Inset) Results only for coaches.

Fig. 1-2 shows our QFD analysis and its evaluation results for the customers'

priorities. The attributes and design parameters are set by the results of the survey

and interview. The customers' requirements, serving as attributes in QFD, can be

divided into two categories: usability and performance. In the category of usability

we have five requirements: customization of hockey sleds and hockey sticks, comfort

of the bucket, restraint on the foot support, feasibility of carrying and storing and the

comfort of leg support; in the category of performance, we have three requirement:

maneuverability of the hockey sled, capability of a powerful shot for hockey sticks

and capability of a faster drive for hockey sled. In the other dimension, we have ten

technical requirements (design parameters): meeting the US standards, the weight

of sleds, the stiffness of hockey sticks, the customization of the sled bucket form, the

sled bucket material, the customization of the sled structure, the type and form of

the skate blades, the restraints of the design, the suspension system and the sled

dynamic reconfiguration. In the roof of the QFD house, we analyze the correlation

of each pair of technical requirements and in the body of the QFD house, we analyze
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the correlation between each pair of customer requirement and technical requirement.

For each customer requirement, we can determine its priority based on the relative

score.

As shown in Fig. 1-2, the priority of customer needs can be identified. The top

four customer needs are: (1) To improve the customization of hockey sleds and hockey

sticks. (2) To increase the maneuverability of the hockey sled. (3) To improve the

comfort of the sled bucket. (4) To design hockey sticks with a more powerful shot.

The scope of the study is primarily determined by the survey results and the QFD

results. We value the feedback and the survey results from coaches in particular. This

dissertation covers the study of No.1, No.2, No.4, and No.5 of the ten summarized

features aforementioned. To fulfill the study of the four features, we can perform

investigation from three aspects: the dynamics of sled hockey sticks, the dynamics of

sled hockey sleds and the physics of friction between ice and skate blades.

1.3.2 Outline of the Dissertation

This dissertation presents fundamental investigations of the analysis and algorithms

for the study of dynamical systems, by parametrizing, optimizing and customizing.

We develop and/or implement numerical algorithms, for solving ODEs/PDEs, and

statistical/machine-learning algorithms based on data, for physical inference and pre-

diction. We further apply the methodologies on sled hockey, an adaptation of stand-

up hockey, allows people with physical disabilities to participate in the game of ice

hockey.

In Chapter 2, we develop and implement numerical algorithms for solving non-

linear PDEs; in particular, we apply the algorithms on the study of the nonlin-

ear dynamics described by 4th-order nonlinear PDEs. The non-linear solvers apply

multi-dimensional Newton's method with a Jacobian-free approach and a generalized

conjugate residual (GCR) approach. Applying the algorithms on the study of elastic

systems, we investigate dynamics of hockey sticks as in a striking implement. We

develop a mathematical model using an Euler-Lagrange equation to characterize the

behavior of a hockey stick in the linear regime, and then apply this model to inves-
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Figure 1-2: Quality Function Deployment (QFD) analysis for the sled hockey project.
The customer requirements and technical requirements serve as the attributes and
design parameters in QFD analysis, respectively. According to the results from the
interview and survey, we consider eight attributes and ten design parameters. The
attributes are prioritized from 1 (top priority) to 8 (bottom priority), based on the
evaluation results for the relationships between the customer requirements and tech-
nical requirements.
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tigate the dynamic response of the stick throughout slap shots and wrist shots. We

numerically investigates the dynamic response of a hockey stick in the process of a

'slap shot', whereby a hockey stick traveling with a high velocity makes contact with

a static puck on a low friction surface. The results of this study will be used to opti-

mize the structure of the hockey beam with the goal to maximize the energy-transfer

efficiency between the hockey stick and hockey puck.

In Chapter 3, to investigate the dynamics of a sled hockey stick as it impacts the

puck, we use an Euler-Bernoulli beam to model the elastic response of the striking

implement. We develop a mathematical model using an Euler-Lagrange equation

to characterize the behavior of a hockey stick in the linear regime, and then apply

this model to investigate the dynamic response of the stick throughout slap shots.

We apply a modal decomposition method and decouple the resultant dynamics into

kinetic and potential components. In addition, we implement numerical solvers to

expand the study into the nonlinear regime described by a 4th-order nonlinear PDE.

The non-linear solver applies multi-dimensional Newton's method with a Jacobian-

free approach and a generalized conjugate residual (GCR) approach. Throughout

testing with both elite and amateur sled hockey players, we found that final puck

velocities with our prototype stick were on average over 10% higher compared to

those achieved with commercially available sticks.

In Chapter 4, we investigate a dynamical model to simulate the dynamics of a wrist

shot and explore the optimal flexural rigidity of a sled hockey stick. In our simulation,

we model the dynamics of a wrist shot by utilizing an Euler-Bernoulli cantilevered

beam model with a cylindrical rigid body attached to its distal end. This dynamic

system is governed by a 4th-order PDE. We solve for the transverse deflection of the

beam and the puck motion applying a modal decomposition method. Based on the

simulation results and the constraint in shooting mode and driving mode, a more

flexible sled hockey stick is proposed and verified. In particular, the optimal flexural

rigidity can be determined by the compromise of maximizing the magnitude of the

puck velocity in the shooting mode and maximizing the feasibility of propulsion in

the driving mode.
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In Chapter 5, to investigate the dynamics of the hockey sled, we propose two sets

of dynamical modelling for the hockey sled using a trajectory-based modelling method

and a state-space-based modelling method. Conservation laws of linear momentum

and angular momentum are applied to obtain the governing equations, which are

used to study the dynamics of the propulsion for linear motion and of the tip-over

and reset. We further propose a constrained optimization problem to optimize the

parameters of sled design and driving strategy to maximize the performance of sled

hockey players based on the dynamics.

In Chapter 6, we investigate the tribology in the game of sled ice hockey. Sled

hockey is a competitive sport taking place on ice. The friction between ice surface and

skate blades affects the performance of the hockey stop, the hockey turn, the propul-

sion for linear motion and the process of reset after tip-over, which are discussed

in previous chapters. The physic of ice friction is still under debate in previous re-

search [28]. We first attempt to design an experimental system to mimic the realistic

ice rink environment. We also expand the experimental study of the friction coeffi-

cient in an extensive range of Hersey number from 10- to 10- with the reference

to the Stribeck curve. To build the understanding of the physics of the ice friction,

we perform a dimensional analysis and an asymptotic analysis for different regimes of

friction - boundary friction regime, mixed friction regime and hydrodynamic lubrica-

tion regime. In addition, we provide a parametric model - multi-linear regression and

a non-parametric model - random forest regression to study relationship between the

friction coefficient and the Hersey number varying eight orders of magnitude .

In Chapter 7, to infer the physical regime with respect to the modified Stribeck

curve, we developed a pipeline using clustering methodologies adapted from the field

of data science. This chapter starts with the restate of the results from dimensional

analysis and asymptotic analysis. We present the algorithms for clustering models

using K-means clustering and Gaussian mixture clustering, followed by the clustering

results based on our experimental data.

In Chapter 8, we develop and/or implement statistical algorithms and machine

learning algorithms for the friction coefficient between ice and skate blades. Our
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experiments measuring the friction coefficient using rheometers are designed to mimic

the real environment of ice rink, where the ice is made by a Peltier plate exposed to

an ambient room temperature. Based on our experimental data, we propose a set

of parametric and non-parametric models for the friction coefficient using machine

learning techniques in an extensive range of Hersey number from 10-12 to 10--5. For

each regression technique, we propose two models for the friction coefficient C (= Hi).

The first one uses the original set of parameters, i.e. the blade length L, the blade

thickness W, the water viscosity p, the Young's modulus of ice E, the relative velocity

of blade with respect to ice v, and the normal force exerted on ice by the blade F,;

the second one uses the dimensionless groups, i.e. the aspect ratio of skate blades

11 2 = L/W, the Hersey number H 3 = pvL/F., and the ratio of pressure on ice

to the Young's modulus of ice H 4 = F/ELW. The first model applies all of the

four experimental variables as features; the second model applies three dimensionless

groups as features in the reduced form.

In terms of the future work, there are a number of avenues which could be ex-

plored. Our investigation serves as a fundamental study in the filed of sled hockey,

in particular for the community of young sled hockey players with ages from five to

twenty-one. We focus on the dynamical modelling of hockey sleds and hockey sticks

and the physics of the friction between ice and skate blades. We believe a fruitful of

further investigations can be performed based on our study.
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Chapter 2

Algorithms of Numerical Methods

for Non-Linear PDEs

2.1 Background and Introduction

In this chapter, we develop and implement numerical algorithms for solving non-

linear PDEs; in particular, we apply the algorithms on the study of the nonlin-

ear dynamics described by 4th-order nonlinear PDEs. The non-linear solvers apply

multi-dimensional Newton's method with a Jacobian-free approach and a generalized

conjugate residual (GCR) approach.

Applying the algorithms on the study of elastic systems, we investigate dynamics

of hockey sticks as in a striking implement. We develop a mathematical model using

an Euler-Lagrange equation to characterize the behavior of a hockey stick in the linear

regime, and then apply this model to investigate the dynamic response of the stick

throughout slap shots and wrist shots. We numerically investigates the dynamic

response of a hockey stick in the process of a 'slap shot', whereby a hockey stick

traveling with a high velocity makes contact with a static puck on a low friction

surface. The results of this study will be used to optimize the structure of the hockey

beam with the goal to maximize the energy-transfer efficiency between the hockey

stick and hockey puck.
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f(x,t)= G1(x)G2(1)

(0,0)(0,0)

x x

\output 'OX,

Figure 2-1: (a) Cantilevered Euler-Bernoulli beam fixed at (0,0) with a Gaussian
distributive load as function of space and time, f(x, t) = G1(x)G2 (t). We select the
diamond point as the output point for the deflection of the beam. (b) Deflection of
the loaded beam under external load as a function of space and time.

2.2 Algorithms of Numerical Methods

To emphasize the development of numerical solver, the process of a 'slap shot' is

simplified. The hockey stick is modelled as a cantilevered Euler-Bernoulli beam.

Impact between the puck and hockey stick is modelled as a Gaussian force distribution

applied to the hockey stick in space G1(x) and in time G2 (t) (see Fig. 2-1 (a)). We

simulate the dynamics of the beam characterized by the transverse deflection w(x, t),

as shown in Fig. 2-1 (b). The governing equation for the transient dynamics of an

Euler-Bernoulli beam is the 4th-order non-linear and non-homogeneous PDE shown

in Eqn. 2.1,

2 w(x,t ) l 4w(x,t) bw(x, t)
At2  + El +b

Inertia Bending Stiffness Internal

(linear) Friction

3 +( oE9W (x, t) )2 (2w(xt)) f+ E2 =9 f9X2

Bending Stiffness Ext

(nonlinear) Fo

(2.1)

,t)

rnal

rce

where w(x, t) is the transverse deflection of the beam, El is the rigidity of the beam,

pAo represents the mass distribution of the beam, b represent the internal friction

42



(a) (b)
yi F(i)

(0,0

F(i) yAi)
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Figure 2-2: Transverse deflection of the beam in the form of discrete representation.
(a) Free body diagram of each discrete element; (b) Discrete representation of a beam
with N nodes.

coefficient (damping coefficient) and f(x, t) represents the spatial and temporal dis-

tribution of the force applied [3, 29].

2.2.1 Algorithms of Numerical Solvers for Linear PDEs

For simplicity and illustration on the numerical methods, we linearize the governing

equation Eqn. 2.1 by neglecting the non-linear term. In addition, we also ignore the

internal friction term to further simply the equation. The numerical methods for

non-linear bending stiffness and the internal friction will be discussed in the following

sections. The simplified PDE has the form:

pA 2 + El b(x,t), (2.2)
Ot2 EIDY

where y(x, t) is the transverse deflection of the beam, El is the rigidity of the beam,

pA represents the mass distribution of the beam, and b(x, t) represents the spatial

and temporal distribution of the force applied [29].

In the spatial domain, we apply a central finite difference method to numerically

approximate the partial derivative with respect to x:

~4Yi Yi-2 - 4 Yi-1 + 6yj - 4 yi+1 + Yi+2 (2.3)
PX4  AX 4

Physically,yj represents the transverse deflection of the'i11-th node as shown in Fig. 2-2
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Figure 2-3: Deflection y (m) as a function of position x (m) for time t= 0.1 ms, t=
5 ms, t = 250 ms. The external load is a Gaussian distributive force in space, of
which the center is located at x = 0.4 m. Trapezoidal integration method with a
dynamically adjusted time step is applied.

(b). To convert the discrete representation equivalent to the continuous system, shear

force and bending torque on the cross-sections are required. (see Fig. 2-2 (a))

In the temporal domain, we apply a forward Euler method and a trapezoidal

integration method. Using the forward Euler method, the partial derivative with

respect to time t can be approximated:

ayk yk+1 _ Yk
a- ~ A . (2.4)

ot At

Applying the trapezoidal rule to the temporal integration, the approximation of the

derivative can be implicitly approximated as:

1 By k+1 ay k yk+1 _ yk

- + -- ~ (2.5)

By define yo = y, yi = Byo/t, we decompose Eqn. 2.2 into two PDEs with only first

order temporal derivatives. We then apply the discretization methods mentioned

above on the system of PDEs. For clarity, we put the discretized PDE in matrix
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form. Using the forward Euler method, we have

yk+1 I AtE y 0

ykj+1 j A [y [AtAbk
Ly1 JLI L 2

where0y, [yy, 2, - - -,N] T 1,Y1, 21 - - 1,N I is a identity matrix,

A and A 2 are constants with lumped parameters of the beam:

El 1
pA pA

(2.7)

and matrix D is the matrix of coefficients using a central

approximate a 4-th order derivative:

6

-4

1

0

-4

6

-4

0

1

-4

6

0

finite difference method to

(2.8)

Similarly, using the trapezoidal integration method, the PDE can be discretized as:

ff

!-AiAtD
L[ 2

-jAtn Y k+1 E[ jAt[ yk 0
S +1 k 1 [At ( k+1)

(2.9)

We implement the forward Euler and the trapezoidal integration methods to sim-

ulate the transient response of a Euler-Bernoulli beam with both ends clamped. Two

different loads are applied to the beam: one is a Gaussian distributive load b(x) with

respect to space centered at x = 0.4 m; the other is an impulse force, which has the

Gaussian distribution with respect to time. Fig. 2-3 shows the temporal evolution

of the beam deflection at three time snapshots with the Gaussian distributive load

and Fig. 2-4 shows the temporal evolution of the center point of the beam with the

impulse force. In these two examples, it is preferable to apply the trapezoidal method
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Figure 2-4: Deflection at the center of the beam as a function of position x (m) subject
to an impulse input force. The impulse force is modelled as a Gaussian distributive
force with respect to time. The internal friction term in Eqn. 2.1 is taken into account
in this simulation.
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Figure 2-5: Deflection of a sled hockey stick under external load. (a) FEA simula-

tion results using Solidworks with 289,959 DOF; (b) Simulation results using our 1D
model.

other than forward Euler method considering the computational efficiency. For the

implementation using forward Euler method, the maximal time step is At = 0.1 Ps in

order to guarantee the sufficient accuracy, while the largest time step for Trapezoidal

integration method is At = 1 ps. It indicates that an total computation time re-

quired in the trapezoidal method is one-order smaller than that in the forward Euler

method.

In order to verify our ID finite difference model, we applied an finite element

simulation using SolidWorks with 289,959 degrees of freedom. The result is presented

and compared with our finite difference simulation result in Fig. 2-5. We observe
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that these two methods generate similar results. A third eigenmode of A= 20 Hz

is observed in the finite element simulation, and a third eigenmode of A= 18 Hz is

obtained in our finite difference simulation. This agreement validates the correctness

of our ID finite difference model. Moreover, the computation time is 48s in the

finite element simulation, while it only takes 0.017s using our 1D finite difference

mode. Therefore, the computational efficiency of our ID model is 2000 times better

compared with that in the finite element simulation by SolidWorks.

2.2.2 Algorithms for Numerical Solvers for Non-Linear PDEs

In this chapter, we use numerical simulation to investigate the non-linear dynamics

of the sled hockey stick. We simplify the governing equation in Eqn. 2.1 for the sled

hockey stick by neglecting the inertia and internal friction terms but keeping the

non-linear bending stiffness term. The simplified non-linear governing equation is:

Ely -- A3 dy 2 d2y ,
E y EA d = b (x) (2.10)

Ox4 2 )dx dx2

where y(x) is the transverse deflection of the beam. In this section, we apply a finite

difference method for discretization with three different techniques to handle the non-

linear term, including Newton's method [30, 31], Jacobian-free Newton's method and

Newton's method with generalized conjugate residual (GCR) method.

Using the finite difference method to solve for the nonlinear Eqn. 2.10 on an

N-node grid, we have the discretized equation F(y) = 0:

F(y) El Yi-2 - 4Yi-1 + 6 yi - 4yi+1 + Yi+2

EA +1- Y1" (Yi-1 - 2yi + yi+) b(x) )2 (2.11)

2 Ax Ax 2

for the i-th node, where i # 1, 2, N - 1, N. For the Newton's method, the Jacobian

matrix can be obtained by taking the partial derivative with respect to each discretized

yi. Taylor expansion to the first order is used as an approximation for the non-

linear function F(y) to construct the rooting finding formula. Newton's method using
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Figure 2-6: Transverse deflection y (m) of the beam as a function of the position x
(m) for the beam equation with/without the non-linear term. (a) Beam subject to a
uniform distributed load. The external force b() is a constant. (b) Beam subject to
a Gaussian distributed load. The external force b(x) is centered at x = 0.1.

Jacobian matrix can be described as in Algorithm 1. For the Jacobian-free Newton's

method, the product of Jacobian matrix and the residual vector can be approximated

by a small perturbation on y with cr [32, 33, 341:

1
JF(yk)r~ - [F(yk + erj) - F(yk)] . (2.12)

We also apply a generalized conjugate residual (GCR) method to solve the linearized

equation in each iteration. GCR method is an iterative numerical method based on

Krylov subspace, which is commonly used for solving systems of linear equations (see

Algorithm. 2) [35, 36, 37].

Algorithm 1 Pseudocode for Multi-Dimensional Newton's Method

1: k <- 0, y <- yo
2: procedure ITERATION

3: Compute F(yk, JF(Yk)
4: Solve JF(yk)Ayk+ = -F(yk) for Ayk+l

5: Yk+1 i.. yk+Ayk+l

6: k+-k+1

We implement two examples to test the numerical methods. In the first example,

we apply a uniform load on the beam; in the second example, we apply a Gaussian
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Algorithm 2 Pseudocode for GCR
1: k+-0,y+-0,rk= b
2: procedure ITERATION

3: pk - rk, Ap +-Apk
4: 1k,k-1 -(APApk-1)
5: Apk - Ap - 3 k,k-1APk-1, Pk Pk -- k,k-1Pk-1

6: ApN +-A1 , Pk _ 1k1
7: ak -- Ap P )
8: Yk+1 Y k - CkPk), rk+1- rk - CfkAPk
9: k +- k + 1

distributed load centered at x =_1 on the beam. In both examples, the beam is subject

to a clamped boundary condition for both ends. As shown in Fig. 2-6, we compare

the results accounting for the non-linear term with those neglecting the non-linear

term. In Fig. 2-6 (a), the non-linear deflection is small, resulting in a fast convergence

rate. In Fig. 2-6 (b), the non-linear deflection is much larger. The convergence rate

is significantly slower, which takes 25 iterations to converge.

2.2.3 Algorithms for Reduced-Order Methods

In this section, we use reduced-order modelling to further reduce the number of de-

grees of freedom in the dynamic system of the beam. We apply a eigenmode trun-

cation method and a moment matching method, respectively, to select a suitable

reduced-order basis to represent the original system. We consider the dynamics of

the beam governed by the following liner PDE:

pA 2 Y+ El = b(x, t), (2.13)

where y is the transverse deflection of the beam, El is the rigidity of the beam, pA

represents the mass distribution of the beam, and b(x, t) represents the spatial and

temporal distribution of the force applied [29).

In the spatial domain, we apply a central finite difference method to numerically

approximate the partial derivative with respect to x. In the temporal domain, we

apply a trapezoidal rule to integrate the equation in time. The discretized PDE can
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be written in the following matrix form:

ID -jAtE yk+1 I[ AtE] y 0

k+1 k tD I y + bk+1)
(2.14)

where y = [yk, y,2, .. -,T and y [, , k. ,N ,l is a identity matrix,

A and A 2 are constants with lumped parameters of the beam.

We apply the eigenmode truncation method for the system [38, 39, 40]. We

truncate the subdominant eigenvalues/poles by three metrics: (1) Certain modes are

not affected by the input, indicating bq+1,..., bN are all small; (2) Certain modes

do not affect the output, indicating cq+1,..., CNare all small; (3) Keep least negative

eigenvalues (slowest modes) when we look at the response to a constant unit input [41,

42, 43].

To compare the frequency-domain response of the reduced models to the original

non-reduced models, we produced the Bode plots as shown in Fig. 2-7. It shows

that the reduced-order models agree with the original model with N = 500 very

well for low frequency (< 500 Hz). It suggests that as more states are kept in the

reduced model, it achieves better agreement with the original model as shown by the

magnitude and phase in Bode plots.

In order to compare the time-domain step response of the reduced models to the

original non-reduced models, we plotted the output deflection at x 1 as a function

of time, using original system N = 500 and using reduced system with q = 2 and

q = 10 respectively as shown in Fig. 2-8. It shows that using a reduced model with

q = 2, the error will be about 10%; using reduced models with q - 10, the errors will

be smaller than 1%.

Table 2.1 compares the CPU time and memory required to execute the simulation

using different models. We observe that even in the most time-consuming reduced

model with q = 10, the CPU time is reduced to 2% of that for the original model.

Meanwhile, all reduced models require significantly less memory than the original

model.
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Figure 2-7: Comparison of Bode plots of the transfer functions, using original system
N = 500 and using reduced system with q = 2 and 10 respectively (from left to right).
The phase diagram appears to be shifted by 360 at some frequencies due to the plot
setting using MATLAB by default.
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Figure 2-8: Comparison of deflections of a sinusoidal response of the Euler-Bernoulli
beam as a function of time, using original system N = 500 and using reduced system
with q = 2and 10 respectively (from left to right).
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Table 2.1: CPU Time and Memory using Reduced-Order Modelling
System Executing Time (s) Memory (M)

Original System N = 100 10.02 998
Reduced System q = 2 0.109 856
Reduced System q 5 0.111 809
Reduced System q= 10 0.191 819

1 10
Frequency (Hz)

100

(b) 0.08

0.06

E0.04

c0.02
00
0- 0

"-0.02

E -0 04

-0.06

-0.08
0 0.2 0.4 0.6 0.8 1

Time (t)

Figure 2-9: (a) Bode plot for the original system and reduced system using moment
matching method. (b) Impulse response for original system and reduced system.

We also apply a moment matching approach to construct the reduced model by

using Krylov subspace method specifically [44, 45, 46]. The first column of the projec-

tion matrix Vq is constructed using the normalized version of vector A-1b; the second

column is constructed by A- multiplied by the first column above as right-hand-side,

and then orthogonalized and normalized [47, 48, 49]. Since the solution span the space

A1b, we construct vector Vby selecting the first q vectors in the Krylov subspace.

Fig. 2-9 shows that a third-order reduced system can capture the dominant dynamics

of the original system from both the frequency domain and temporal domain.

2.3 Experiments, Results and Discussion

Based on the simulation results presented in Fig. 3-6, the optimal stiffness for sled

hockey sticks lies between E = 2.1 GPa and E = 2.7 GPa. To test this result, we
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constructed a prototype sled hockey stick using ABS plastic (acrylonitrile butadiene

styrene), which has a Young's modulus between 2.0 GPa to 2.6 GPa. As shown

in Fig. 3-2, our prototype stick is made from five laminated layers of plastic. To

manufacture the stick, each layer is cut from a large plastic sheet using a waterjet,

and the layers are then bonded together using a flexible adhesive (Loctite 4851).

Since players only use the shaft of the sled hockey sticks to drive the sled on ice,

we tapered the blade part of the sticks to further reduce its flexural rigidity while

shooting. In order to characterize the stiffness of the two types of sled hockey sticks,

they were subjected to a three-point bend test. Since the shaft stiffness is much larger

than that of the blade, we performed two types of loading, as shown in Table. 4.1,

to measure the stiffness of the shaft and stiffness of the overall sled hockey stick.

Testing was performed using an Instron Universal Testing Instrument (Model 1125).

Each stick was loosely strapped at the middle and upper end of the shaft to two

cylindrical supports [2, 50]. The maximum force was set to be 50 N, to simulate the

load encountered on the stick during use [2, 50]. The load was applied by the platform

using a cylindrical head. Stiffness was calculated as the slope of the linear regression

of the force deformation curve during the entire loading cycle.

To test the sticks, eighteen subjects were recruited to perform slap shots with each

of the two sticks. Among the subjects, five subjects were female and thirteen subjects

were male. Fourteen of the subjects (age - 26.3 + 2.3) were recreational players with

relatively little sled hockey experience; the other four subjects were elite players from

the WSF New York Sled Rangers. For the recreational group, tests were performed

in a laboratory setting where the subjects performed a slapshot and shot the puck off

of a high density polymer ethylene shooting pad. The subjects were required to sit

in a hockey sled while taking the shot, in order to simulate on-ice conditions. Each

subject performed three slapshots with each of the two sticks. The subjects were

required to wait a minimum of 30 s between each shot and a shot was only considered

valid if the subject was satisfied that they had produced a maximal effort. Testing

53



Table 2.2: Diagram of stiffness value for the flexible and rigid sled hockey sticks
Material Loading Stiffness (kN/m)

load

Wood 1s mm (1.85 0.09)X 102
350 mm

load

Wood 3 (1.79 0.09) x 10
700 mm

load

ABS us mm (1.61 0.08) x 10
350 m

oad

ABS 350 mm n(1.2 t0.1)
700 m

I .1 ! --' I I --I I t I I

Musing rigid hockey sticks
Musing flexible hockey sticks

average
.?20

a)
C1
Q 10
C.)
C

0
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Magnitude of the puck velocity (m/s)
8

Figure 2-10: Histograms of the puck velocity for the rigid and flexible sled hockey
sticks. Each histogram bar is normalized by the total number data points. (Inset)
Percentage increase in puck velocity for each subject when using the flexible sled
hockey stick. The dashed line indicates the average increase, 13.07 %. Subjects are
shown in order of ascending percentage increase.
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for the elite subjects were identical, however the tests were performed on a synthetic

ice rink, with the subjects sitting in their personal hockey sleds, which they use for

competitive events.

Prior to testing, each subject was given time (9.4 ± 1.2) min to get used to the

experimental setting and the two types of sled hockey sticks. Especially for the flexible

stick, players needed time to get used to and to take full advantage of its flexibility.

The shooting pace was self-monitored by the subjects to minimize any fatigue effects.

Seated rest periods and water breaks were provided whenever necessary. We used a

camera (Canon EOS Rebel T6 Digital SLR) to videotape the shots, and the motion

of the puck was then extracted using a custom MatLab script.

In Fig. 2-10, the puck velocities produced during the tests are plotted as a his-

togram. From the resulting distributions we see that the flexible stick provides a

significant speed advantage. The average puck speed increase across all subjects is

13.07 %. For a very small number of subjects, the increase in puck speed is trivial or

negative. One possible reason for this is that the increased flexibility sticks require

players to modify their shooting strategy and some of the more experienced subjects

may have had difficulty adapting to this.

Our model predicts that the puck speed V, is linearly proportional to the peak

force F0 that a player can produce. To test this, we used a force plate to roughly

measure the force that each subject could produce after the subject finished the slap

shots. Subjects were required to hold the sled hockey sticks at the same position as

when they performed a slap shot to exert force on the plate using each type of sled

hockey stick. This process was repeated five times for each subject.

In Fig. 2-11, we plot the shot speed of each subject against the average value of

their measured force output. The resulting points are consistent with the predicted

positive linear relationship. Using linear regression to fit lines to the data, we find

correlation coefficients of 0.641 and 0.706 for the rigid and flexible sticks respectively.
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Chapter 3

Dynamics of Elastic Systems- Slap

Shots

Hockey players decide how to shoot based on the circumstances surrounding the shot.

If time is of the essence, a player may go for a quick wrist shot; however, if more power

is required, a slapshot - wherein the player swings the stick down to strike the puck

with as much force as possible - may be more ideal. In such a shot, the elasticity of

the stick plays a crucial role in determining the final velocity of the puck. The physics

of this process as it occurs in Olympic ice hockey has been studied experimentally,

but no similar corpus of work exists for its adaptive, Paralympic counterpart, sled

hockey. Furthermore, there has been no analytic work to describe the dynamics of

the bending hockey stick in either context. The change in position, from stand-up on

skates to sitting on a sled, drastically alters the shooting process. Shots in sled hockey

are performed one-handed and consequently involve significantly lower swing forces.

Despite this, current sled hockey sticks are designed with flexural stiffness values in

the same range as standard hockey sticks. This makes it impossible to perform a

proper slapshot, as the stick does not deflect sufficiently during the shooting motion.

In the following study, we address this problem by developing a dynamic model to

predict the optimal rigidity for performing a slapshot in both stand-up and sled

hockey. Through experimental trials with amateur and elite sled hockey players, we

find that our stick design provides an average shot speed increase of 10 % as compared
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to commercially available options.

In Section 3.1, we introduce the concept of a slap shot in sled hockey and the

relevant research in prior arts. In Section 3.2, we build two sets of dynamical models:

one is based on the Euler-Bernoulli beam model in the continuous domain; the other

is based on a 1-DOF mass-spring-damper system in the discrete domain. We find the

optimal Young's modulus of the stick material and conduct experiments elaborated

in Section 2.3. In Section 2.2, we propose numerical solvers for the continuous model

accounting for the non-linear dynamics.

3.1 What is Slap Shot

Hockey players choose their techniques based on the timing, intent, and position of

the shot in question [51, 52]. Generally speaking, players tend to opt for the 'slapshot'

if they seek to impart the most velocity onto the puck. The slapshot motion typically

involves raising the stick up behind the head and then swinging it down to strike the

puck with as much force as possible [3, 53]. Using this technique, elite athletes can

produce puck velocities in excess of 80 mph (35 m/s) [3, 53]. The highest recorded

slapshot speed is that of Zdeno Chara, who achieved a puck velocity of 108.8 mph

(48.9 m/s) during the 2012 NHL All-Star Skills Competition [54].

In general, a stand-up slap shot can be broken down into five distinct stages:

backswing, downswing, stick preload, puck impact and puck release [51, 52] (see

Fig. 3-1). During the backswing and downswing stages, the player raises the stick

backwards to wind up for the shot and then rapidly swings it forwards towards the

puck. The preload stage begins when the stick impacts the ice; during this stage,

the player flexes the stick into the ice, imbuing it with the elastic energy. During the

puck impact stage, the blade of the stick contacts the puck and transfers its stored

energy to the puck. Finally, during the puck release stage, the puck leaves the stick's

blade and travels away at a near-constant velocity [51, 52].

In the following study, we develop a dynamical model of the slap shot process.

Through comparison with experimental data, we show that our model is capable of
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Figure 3-1: (a) Schematic of a stand-up hockey slap shot. (b) Schematic of a sled
hockey slap shot using our prototype sled hockey stick. The flexibility is increased
by using ABS plastic in place of wood. (c) Photograph of a sled hockey player using
the conventional wooden sled hockey stick [1]. (Photograph credit John Freidah) The
puck is highlighted in green. i: Backswing/Downswing; ii: Stick preload; iii: Puck
impact; iv: Puck release.

predicting puck velocity from swing speed and stick rigidity. We then apply our

model to design improved hockey sticks for a popular ice hockey variant, known as

sled hockey. Sled hockey is a hockey alternative for people with limited leg mobility.

In sled hockey, players sit on a sled outfitted with narrow blades underneath and

propel themselves along the ice using a pair of half-length sticks [55, 20], as shown

in Fig. 3-1 (c). Each stick has a metal cleat on one end, to grab the ice while

pushing the sled, and a wooden blade on the other end, for handling the puck. This

difference in form dramatically changes the physics involved in making a shot, as they

are performed with only one arm and therefore tend to be significantly less powerful.

Despite this, sled hockey sticks are currently designed with flexural stiffness values in

the same range as those of standard hockey sticks. This makes it near-impossible to

perform a proper slapshot, as the stick does not deflect to a sufficient degree during

the shooting process. We address this problem by applying our model to design an

improved sled hockey stick with optimal stiffness properties. Through experimental

trials with amateur and elite sled hockey players, we find that our stick design provides

an average shot speed increase of 10 % relative to the designs currently in use.
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Figure 3-2: Schematic of our Euler-Bernoulli beam model of asled hockey slap shot.
(a)Stickpreload;(b) Puck impact;(c)Puckrelease.

In terms of previous work, there are relatively few studies specific to sled hockey.

However, there are a great number of experimental studies on the role of stick stiff-

ness in stand-up hockey shots [51, 52, 3, 53, 2, 50, 56, 57, 58, 59, 60, 61, 62, 63].

Interestingly, there's relatively little consensus in this literature on the exact relation-

ship between stick stiffness and shooting performance. For instance, Pearsall et. al

reported that low stiffness sticks produce the fastest slapshot puck speeds for elite

players [3], whereas Wu et. al found that puck speed and stick stiffness exhibit no

clear relationship [51], and Worobets et. al found that stick stiffness can influence

puck speed for wrist shots, but not for slap shots [2].

To the best of our knowledge, there is no previous work analytically modelling

slapshot mechanics from a theoretical perspective [64, 65]. In view of this, the model

developed here represents a first attempt to tackle the problem from a more fun-

damental perspective. We apply the insights afforded by our analytic approach to

potentially offer greater insight as to the contradictory conclusions of previous works.

3.2 Dynamical Modelling and Parametric Optimiza-

tion

3.2.1 Continuous Euler-Bernoulli Beam Model

In previous work on sports such as badminton [66, 67], baseball [68, 69, 70], and

tennis [71, 72, 73, 74, 75], an Euler-Bernoulli beam model is widely used to model the
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elastic response of the striking implement [76]. We adopt a similar approach here,

developing a mathematical model to characterize the behavior of a hockey stick as it

impacts the puck, and then applying this model to investigate the dynamic response

of the stick throughout a slapshot.

As shown in Fig. 3-2, we approximated the hockey stick as a cantilevered EB

beam. The shape of the beam is described by the function w(x, t), defined within a

non-inertial coordinate system XYZ, which is fixed at the beam's supported end. We

used this dynamical model for the last three distinct stages of the shooting process

(stick preload, puck impact, and puck release). As shown in Fig. 3-2, the stick begins

the preload stage in a deflected position, where the deflection of the beam is induced

by a point load at its free end. This load represents the force of the ice on the

stick prior to the puck impact. The shape of the preloaded beam is determined as

follows [77]:
82W(X)

- EI(x) =2 -FoL + Fo, (3.1)

where E is the Young's modulus of stick, Izz(x) is the second moment of inertia of

the stick cross-section, Fo is the point load, and L is the stick's length. To model the

movement of the stick during this stage, we considered the problem in a reference

frame XYZ such that the beam is static and the puck moves towards the beam with

a velocityx =Lx0, defined as the cross product of the angular velocity at which

the player swings the stick, L, and the location of the puck impact, o.

The impact phase is initiated by removing the preloading force FO, causing the

beam to snap forwards and strike the puck. During the stick-puck collision, the puck

is modelled as a cylindrical rigid body, and the impulse force between the puck and

the beam is modelled as a Gaussian pulse in space, x, and time, t. Based on this, the

dynamic response of the beam is modelled as follows [78, 77, 79, 80, 81, 82, 83]:

(x )2 ( t) 2

2W(X, t) a2  2 w(X, t) e 2Q e 2,2
pA(x) + (Ezz(x) ) = Q , (3.2)

&X22 ax2  2 2

where p is the density of the material of the beam, A(x) is the cross-sectional area
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of the beam as a function of x, Q is the magnitude of the Gaussian force, xO and to

are the position and time of the collision respectively, and o and at are the standard

deviations of the Gaussian force in the spatial domain and in the temporal domain

respectively.

During the collision, the change in the momentum of the puck is given by the

double integral of the Gaussian force over x and t. Based on the conservation of

momentum, this gives us the following equation:

(x-xo)2 (t -_N )2FF e 2cr e 2 4

MPvi- MPvo Q dxdt, (3.3)
227rcr Vf27o

where Mp is the mass of the puck, and vo and vi are the velocity of the puck before

and after the collision respectively. The double integral can be shown to be equal to

Q, the magnitude of the Gaussian distributive force.

To complete our system of equations, we consider the conservation of energy before

and after the puck impacts the stick. Before the impact, the total energy in the system

is given by the potential energy associated with the preloaded deflection of the stick

and the kinetic energy of the puck travelling at velocity vo. In the moment after the

collision, we assume that the transverse deflection of the beam is approximately zero

such that total energy of the system is given by the sum of the kinetic energies of the

beam and of the puck, now travelling at velocity vi, as shown in Fig. 3-2 (b). This

yields the following energy conservation equation [84, 85, 86, 86]:

-MV 2 + [-EIzz(x)( 2 W(Xt)2]| dx2 2 ax2

1 0 +(3.4)
IMv 2+ [-pA(x)( x, t))2]\t dx2 JP 1 o 1 t l=,t
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where the beam's boundary conditions are given as:

w(, t)= 0,

w'(0, t) = 0,

-Elzzw"(L, t) = 0

-E Izzw"'1(L7t 0 0.

To solve this system of four differential equations presented above, we performed

a modal decomposition. Since the distributed-parameter system has infinitely many

vibrational modes, the general response is a superposition of the response from all

modes [86, 86]. Thus, the response of the beam during the collision stage can be

expressed as:

w(x, t) = 5() Uj(t), (3.6)
j= 1

with #$ and uj being given respectively as:

#j (x) = (sin(Ajx) - sinh(Ajx)) - si((AjL) + sirih(AjL)(cos(Ajx)- cosh(Aj)), (3.7)
cosh(AjL)

(x-x_ 2

u (t) aj(i) dxz'j(t), (3.8)
ogpA fL#(x) dz 0 V27roX

where w is the natural frequency of the j-th mode, a(x) is the mode shape of the

j-th mode, and V/j(t) is denoted as the following for brevity:

4'(t) = sin(w t))]cos(o t) dt + cos(Wot) sin(wjt) dt. (3.9)
0)foV27o o / 27ot

The puck velocity after the collision, vi, is solved for by combining the momentum

and energy conservation equations. The resulting puck velocity in the inertial frame

V, is equal to the sum of vi and vo. V, can be decomposed into two parts: the

component Vki,, resulting from the kinetic energy of the swinging beam, and an elastic

component, V,t,resulting from the potential energy stored in the beam during the
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Figure 3-3: (a) # plotted as a function of the Young's modulus of the beam material,
E. (Inset) The contribution of the first five mode shapes to the net value of #. (b)
Puck velocity V plotted as a function of the Young's modulus of the beam material.
Solid and dash-dot lines correspond to the continuous and discrete models respec-
tively. The colored dashed and dotted lines plot the contributions of the elastic and
kinetic energy to the overall puck velocity (VMot and Vi respectively). The shaded
area highlights conditions where the stick deflection is large and our linear model may
not be valid.

preload stage:
2 2 OW(xt)

V = 1+0 LXO + 1+0 a t=to'x=xo.1 +2# 1+3 2# t
Vkin Vpot

(3.10)

Vpot is calculated by using the modal decomposition method to determine the nat-

ural response of the beam given its initial deflection at x = xo and t = to. The

dimensionless coefficient / is given by:

((F -ro)2 1.2

M °° 1jL -~ 2o

O= #P L$,(x) 2cdx I(t)t=3ot2p A ,_ f4(~z o x2so

Physically, # may be interpreted as the ratio of the total energy stored in the beam to

the total energy transferred to the puck. In the case of an-infinitely large, completely

rigid beam, the velocity of the puck is twice that of the beam, given that the puck is

initially stationary.

In Fig. 3-3, we simulate slap-shots with sticks of varying stiffness. The dimensions
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Figure 3-4: (a) We compare the predicted puck speed, V (m/s) of our model with
experimental data on stand-up slapshots over a range of stick stiffness values. Data
is sourced from [2]. Within the the experimental data, the loading force varies sig-
nificantly between shots. The shaded region corresponds to predicted puck speeds V,
for the range of forces observed in [2]. (Inset) Vin (m/s) plotted as a function of the
stiffness (N/m). Vki, is calculated by removing V4t from both the model and experi-
mental puck velocities. (b) Time t (s) to perform a slap shot as a function of the puck
speed V (m/s). Arrows indicate directions of decreasing Young's modulus E. The
diamond markers delineate the optimal conditions labelled with the corresponding
optimal Young's modulus E.

of the stick are assumed to be constant and the stiffness is controlled by varying the

Young's modulus of the stick material. We include the first forty eigenmodes in our

simulation of the stick's response. As shown in Fig. 3-3, as the Young's modulus of

the material decreases, # generally increases, indicating that more vibrational energy

is stored in the beam instead of transferring to the puck during the collision stage.

# does not increase monotonically; this is because certain eigenmodes are depressed

or excited during the collision, depending on the stiffness of the beam relative to the

timescale and spatial distribution of the impact force.

As shown in Fig. 3-3 (b), as the Young's modulus decreases, the magnitude of

the velocity of the puck increases, with a local maximum around E = 2.3 GPa. The

two components of the puck velocity,Vki, and Vt, explain this tendency. Given that

QL x L is constant, Vkin is inversely proportional to3, so as E decreases, Vi, decreases

with a maximum around 2.3 GPa where # has a local minimum. Vto is also inversely
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proportional to , but as E decreases there will be more energy stored in the beam

during the preload stage. The increased potential energy exceeds the influence of 3,
so as E decreases, Vp, increases. As E further decreases below around 0.5 GPa, the

deflection of the beam becomes large and our Euler-Bernoulli beam may no longer be

valid. This region is highlighted by the shaded area in Fig. 3-3.

To test our model, we compared it with experimental data on stand-up hockey

slapshots. In stand-up hockey, players use two hands to perform a slapshot, a de-

tail not represented within our model. However, data on single-handed sled hockey

slapshots is not available, meaning we must use stand-up data to provide a rough

comparison. In Fig. 3-4 (a), we plot the puck speeds predicted by our model along-

side experimentally observed puck speeds from a previous study [2]. Despite the

model's significant simplifications, we find that the predicted puck velocities show

good agreement with experimental results. For each data point, the stick stiffness

and loading force reported in [2] are used as inputs to our model. The angular speed

of the stick, WL, is required as a third input to our model, but is not reported in [2].

Based on this, we applied constant nominal values across all data points. We find

that the predicted and observed velocities are closest for WL = 14.14 rad/s, which is

consistent within swing speeds observed in the previous work [3].

Within the experimental data, the loading force on the stick varies substantially

between shots, ranging from 284 N to 390 N [2]. As shown by the shaded region

in Fig. 3-4, this variation in force can strongly influence the final speed of the puck

and must be accounted for to accurately predict shot speed. Variations in loading

force may contribute to the conflicting results of previous studies on the relationship

between stick stiffness and shot speed [3, 2]. If the stick force is not accounted for,

variations in its value can significantly impact the observed stiffness-speed relation-

ship.

To further investigate the relationship between the stick stiffness and the slap-shot

performance, we consider a second metric: the time used to perform the shot, t. In

Fig. 3-4 (b), we evaluate t and V over a range of stick stiffness for three combinations

of force FO and stick speed WL. As shown by the resulting curves, as E decreases, V,
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Figure 3-5: The ratio of the optimal Young's modulus of the stick material to the
available Young's modulus, Ept/Evai for sled hockey sticks (a) and for stand-up
hockey sticks (b). The color map is in logarithmic scale. The ranges of the peak
force F0 for sled hockey and stand-up hockey are 15 N to 60 N and 230 N to 400 N
respectively [2]; the ranges of the angular speed L are 4.5 rad/s to 9 rad/s and 8.5
rad/s to 13 rad/s respectively [3].

reaches a local maximum at time t ~ 0.02 s and a local minimum at t ~ 0.03 s; as E

decreases further, V slowly increases but t increases dramatically. Based on this, for

each combination of the force and the stick speed, optimal values of the stick stiffness,

E, are delineated by diamond markers within the figure.

Optimal stick stiffness varies based on the peak force F and the swing speed WL.

These variables are both a function of a given player's physical condition, and con-

sequently players will perform best with a stick stiffness tuned to their own personal

capabilities. In Fig. 3-6, we plot the optimal Young's modulus of the stick material,

E for F and WL ranges relevant to both sled hockey and stand-up hockey. As shown

in Fig. 3-6, the optimal stick stiffness decreases as the peak force increases. Physi-

cally, this means that if a player can exert a higher force, they can impart a greater

velocity to the puck through the elastic velocity component Vpt. In addition to this,

the results presented within the plots highlight the need to reconsider the design of

conventional sled hockey sticks. In practice, the range of stiffness for commercially

available hockey sticks is roughly the same for the stand-up and sled versions of the

sport. In contrast to this, the plots show that the optimal stick stiffness for sled
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Figure 3-6: The ratio of the optimal Young's modulus of the stick material to the
available Young's modulus, Eopt/Eaa for sled hockey sticks (a) and for stand-up
hockey sticks (b). The color map is in logarithmic scale. The ranges of peak force
F0 for the sled hockey and stand-up hockey are 15 N to 60 N and 230 N to 400 N
respectively [2]; the ranges of the angular speed WL are 4.5 rad/s to 9 rad/s and 8.5
rad/s to 13 rad/s respectively [3].

hockey is roughly an order of magnitude lower than that of stand-up hockey.

3.2.2 Discrete Mass-Spring-Damper Model

In the following section, we develop a discrete representation of the beam-puck system.

This simplified approach reduces the continuous beam system to a more tractable

model with one degree of freedom [76]. As shown in Fig. 3-7, the puck and the hockey

stick are modelled as rigid bodies with a linear spring attached to the 'stick' body.

The potential energy stored in the continuous Euler-Bernoulli model is represented

by the elastic energy stored in this spring.

We utilize the same three stages to describe a slap shot in the discrete model.

During the preload stage, a force F0 is applied to the stick and compresses the linear

spring. The stored potential energy is given as F02/(2k). After the preload stage,

the governing equation for the motion of the stick mass can be expressed by a non-

homogeneous second-order ODE:

M d2 Y+ Cdy + ky = sgn(- )pMsg, (3.12)8dt2 dt dt
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Figure 3-7: (a) Discrete model. (b) Experimental setup. (c) Discrete model for three
stages of a slap shot. dy,/dt at t = t; and t = t+ are denoted as vo and vi respectively;
dy,/dt at t = t; and t = t+ as uO and ui respectively.

where y, is the displacement of the stick, M, is the effective mass of the stick, c is

the damping ratio, k is the stiffness of the spring, and p, is the coefficient of friction,

which characterizes frictional energy loss between the stick and the slider.

During the collision stage, the energy conservation is described by the following

equation [87, 88]:

1 f(dy
(1 - e)( Ms dt )2

2 Sdt/

(dyp
kdtJ)

1
I MS

(dy, 
2

di )

1
2M

(dy, <
d ) -.13

(3.13)

where e represents the coefficient of energy loss during the collision, and t; and t+

represent instants in time immediately before and after the collision occurs respec-

tively.

During the release stage, the dynamics of the puck can be simply described by

the conservation of linear momentum:

M d 2 y = sgn(- dy),Mg,dt2 sg(dtftMg (3.14)

where yp is the displacement of the puck, M, is the mass of the puck, and p, is the

Coulomb friction coefficient between the puck and the slider.

To test our discrete model, we built an experimental setup, as shown in Fig. 3-7.

The setup consists of two steel spheres which serve as a 'puck' body (Mp = 0.71kg),
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and a 'stick' body (M, = 0.29 kg). The movement of the spheres is constrained by a

low-friction linear rail and a linear spring is used to connect the stick mass to a fixed

end of the rail. We used a high-speed camera (Phantom Miro M320S; resolution:

768 x 576; sample rate: 1000 pps; exposure time: 990 ps) and a custom MatLab

script to record the motion of the masses throughout a collision event.

To simulate a slapshot, the linear spring is compressed with a constant load Fo

and the 'puck' and 'stick' masses are then launched towards one another. The initial

conditions of the launch are chosen such that puck-stick collision coincides with the

instant when the stick spring reaches its unloaded length. In Fig. 3-8 we compare the

output of our discrete model with an example collision, recorded using our experi-

mental setup. From the resulting curves we see that the experiment and theoretical

model agree closely with one another.

To explore the optimal stiffness of the linear spring, we assume the 'puck' mass

and the 'stick' mass to be constant, and then calculate the resulting puck velocity for

a range of different spring stiffness values. These stiffness values can be converted to

an effective Young's modulus for the continuous model E = kx8/(3Iz). In Fig. 3-3,

we compare the stiffness-speed relationship of our discrete model with that of the full

continuous model.

3.3 Conclusion and Future Work

Through our analysis, we have shown that it is possible to capture the basic dynamics

of a sled hockey slapshot using a reduced dynamic model of the stick-puck collision

process. We applied this model to study the relationships between the swing speed,

stick loading force, stick elasticity, and the resultant puck speed. Based on our in-

vestigation, we found that the stiffness of commercially-available sticks for stand-up

hockey sticks is consistent with the optimal range predicted by our model, while that

of commercially-available sled hockey sticks is roughly one-order of magnitude above

its optimal value. Based on this, we designed and tested a prototype of sled hockey

stick with optimal stiffness properties. Throughout testing with both elite and ama-
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Figure 3-8: Comparison of theoretical and experimental mass displacements for our
discrete collision model. (Inset) Theoretical results for the case of zero energy loss.

teur sled hockey players, we found that final puck velocities with our prototype stick

were on average 13.07% higher as compared to those achieved with commercially

available sticks. In terms of the future work, there are a number of avenues which

could be explored. It may be possible to further improve the performance by varying

the stick's cross-sectional shape and material properties along its length. In addition,

it could also prove fruitful to consider blade and stick curvature effects, which are not

accounted for in the present model.
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Chapter 4

Dynamics of Elastic Systems-

Wrist Shots

The increasing popularity of sled hockey in the community of people with physical

disabilities requires an improvement in the safety and performance of sled hockey. In

particular, wrist shots serve as one of the most widely performed shots. Understand-

ing the mechanism of sled hockey sticks in wrist shot is significant for the design

and manufacturing of more reliable sled hockey sticks, and thereby improving the

performance and experience of sled hockey for people with physical disabilities.

In this chapter, we investigate a dynamical model to simulate the dynamics of

a wrist shot and explore the optimal flexural rigidity of a sled hockey stick. In our

simulation, we model the dynamics of a wrist shot by utilizing an Euler-Bernoulli

cantilevered beam model with a cylindrical rigid body attached to its distal end.

This dynamic system is governed by a 4th-order PDE. We solve for the transverse

deflection of the beam and the puck motion applying a modal decomposition method.

Based on the simulation results and the constraint in shooting mode and driving mode

respectively, a more flexible sled hockey stick is proposed and verified. In particular,

the optimal flexural rigidity can be determined by the compromise of maximizing the

magnitude of the puck velocity in the shooting mode and maximizing the feasibility

of propulsion in the driving mode.

Remarkably, a significant improvement is achieved in terms of the magnitude of
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the puck velocity with the improved hockey stick; our experiments show an average of

11.48% increase in the puck speed. we also find a moderate positive linear relationship

between the peak force that players can exert and the magnitude of the puck velocity.

4.1 What is Wrist Shot

Sled hockey, also known as para ice hockey, is a newer sport than standing hockey.

Sled hockey was invented in the 1960s in Sweden, which is designed for people with

physical disabilities, and it became an official event in Paralympic games in 1994 [89,

17]. Athletes sit in a sled and use a pair of sled hockey sticks to drive themselves in

the ice rink. The sticks are applied for two essential functions. First, athletes drive

the sled by pushing off the ice with the sticks. Second, athletes use the sticks to make

contact with the puck, maneuvering it and shooting it. These two uses of sled hockey

sticks will be referred to as the shooting mode and the driving mode respectively.

The most common shot in sled hockey is the wrist shot, where the stick is preloaded

(forced to bend by the ice) and unloaded in constant contact with the puck. Given

the important role of sticks, a careful design and selection on the stiffness of sled

hockey sticks is required. Indeed, the stiffness of standing hockey sticks has been

studied in a wide range of research [56, 3]. However, to the best of our knowledge,

rare study has been done on the stiffness of sled hockey sticks [2]. For standing

hockey, the literature suggests that more flexible hockey sticks produce higher puck

speeds in wrist shots. An optimal stiffness for standing hockey sticks based on athlete

weight has been proposed and is quite commonly used in stick selection [2, 60].

Nonetheless, the stiffness designed for standing hockey sticks is not feasible in

sled hockey stick selection. At first, the wrist shot is less powerful than shots seen in

standing hockey [2]. Two primary reasons may account for this: (i) in sled hockey,

only one hand is used to apply a force and a torque to the stick, transmitting less

power to the shot; (ii) the overall flexural rigidity of sled hockey sticks are much

higher than that of standing hockey sticks. Less flexible sticks are unable to store

and transmit as much elastic potential energy as more flexible sticks, making sled
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Figure 4-1: Schematic of the Euler-Bernoulli beam model for a sled hockey stick and
a rigid body model for a puck.(a) Preload stage; (b) Release; (c) Post-Release stage.

hockey sticks less powerful. In addition, because sled hockey sticks are also used for

driving the sled in the ice rink, the stiffness of the stick should not solely be based

on its performance in shooting. Finally, the materials and methods used to make

standing hockey sticks are easily adapted to the design and manufacturing of sled

hockey sticks, though these processes are not optimal for sled hockey. Given these

conditions, manufacturers make very rigid sled hockey sticks, with a typical stiffness

around 150 kN/m. In order to provide guidance to the design and manufacture of

sled hockey sticks, and also to help players in stick selection, we employ a dynamical

model to simulate the wrist shot and probe the optimal flexual rigidity of the sled

hockey stick.

4.2 Dynamical Modelling and Parametric Optimiza-

tion

Slender rigid body and Euler-Bernoulli beam model are extensively used to study

the dynamics of racket sports, like badminton [66], baseball [68, 76] and tennis [71].

This model describes the potential energy stored in the sled hockey stick, we propose

an Euler-Bernoulli beam model to investigate the dynamic behavior of a sled hockey

stick in the wrist shot. The hockey stick is modelled as a cantilevered Euler-Bernoulli

beam with travelling speed vo at its cantilevered end. After the sled hockey stick

contacting with the puck, the system is modelled as a cantilevered Euler-Bernoulli

beam with a cylindrical rigid body attached to its distal end as shown in Fig. 4-1.
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The current commercially-available sled hockey stick is about 800 mm in length

with a rectangular cross-section (30 mm by 18 mm) and we also can observe a curved,

thin region at the end. In the simplified model, we neglect the detailed variation and

assume the stick is rectangular beam with a uniform cross-section of these dimensions.

Since both a force and a torque are exerted on the sled hockey sticks at the same

time, the beam is modelled to be cantilevered. As shown in Fig. 4-1 (a), the wrist

shot requires the sled hockey stick to be preloaded by a force, while the sled hockey

stick and the puck remain static and contact. Potential energy is stored in the sled

hockey stick during this stage. When the sled hockey player releases the hockey

stick, the stick accelerates and the puck remains contact with the stick and accelerate

at the same velocity as that of the distal end of the sled hockey stick. Once the

stick starts to decelerate due to its bending, the puck will detach the stick (Fig. 4-1

(b)) and remain the velocity until the friction between the puck and ice decelerate it

during stage (Fig. 4-1 (c)). The governing equation for the transient dynamics of an

Euler-Bernoulli beam is the 4th-order non-homogeneous PDE [71, 77]:

A 2W(X, t)) 82 02w(x, t)) 85w(X, t)
pA 0t2 + X2 EIzz(x) ) +b X48t .= q(x,t), (4.1)

where w(x, t) is the transverse deflection of the beam, E is the Young's modulus of the

material, Izz(x) is the second moment of inertia of the cross-section of the beam with

respect to Z-axis, the cross-section of which is constant in this model, p represents

the density of the material, A is the cross-sectional area of the beam, b represents the

damping ratio and the q(x, t) represents the spatial and temporal distribution of the

force applied, which will be zero in our model. The four boundary conditions for this

beam are:

w(0, t) = 0,

w'(0, t) 0,

83, (4.2)
-EIzzw"(L, t) =I, ,(

(8t2 0X

82W
- EIzzw'" L, t =Mp -t2)
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where I, = pz + ML 2 represents the moment of inertia of the puck with respect to

Z-axis, Mp is the mass of the puck and L is the length of the beam.

A modal decomposition method is applied to solve the PDE in Equation 4.1. Aj

for each eigenmode can be obtained by solving by the following equation according

to the boundary conditions:

1 + cos Aj cosh A + -pA L(cos Aj sinh A 3 - sin Aj cosh Aj)

L A3  MIA   (4.3)

- A. 3 (cosh Aj sin A + sinh Aj cos A) + p2 A2 Li (1 -cos Ai cosh A) 0

Since the distributed-parameter system has infinite vibrational modes, the general

response is the superposition of the responses from all of the vibrational modes:

00

w (X, t) = O #(z) Uj (t), (4.4)
j=1

where

#5(X) = cos ( x)- cosh( x)

sin Aj - sinh Aj + A§ (cos Aj - cosh Aj)
+sm L - sinh x

cos A + cosh Aj- A(sin Aj - sinh A) (L (L
(4.5)

and

uj (t) =(CI cos(wt) + C2j sin(ogjt))e-bTf, (4.6)

where C1j and C2j are constants depending on the mode.

In the simulation, despite only the first twenty eigenmodes included, the error is

merely 1% more than that including the first two hundred eigenmodes.Therefore, we

only adopt the first twenty eigenmodes in our simulation. Then, the initial shape of

static beam is projected to the twenty mode shapes, as shown in Fig. 4-2. While the

stick unloads, it carries the puck with it until it begins to decelerate, at which point
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Figure 4-2: Modal decomposition of initial deflection of the beam under static load.
The first five eigenmodes are included in the figure. (Inset) Mode shapes of the first
five eigen modes.

the puck will continue moving at its exit velocity which is equal to the maximum

velocity of the distal end of the stick. This process is shown in Fig. 4-1 (c). We

obtain the velocity of the puck by calculating the maximum velocity of the stick's

end over the first period of oscillation according to the first eigenmode.

vp = max |W (t)Ix=L,tET1 , (4.7)

where T1 is the first period of oscillation for the first eigenmode.

The magnitude of the puck velocity monotonically increases as the Young's modu-

lus of the beam decreases, as shown in Fig. 4-3. Despite having lower flexural rigidity,

the beam can deflect more under the same initial load, allowing more potential en-

ergy to be stored in the beam and eventually transmitted to the puck. As the force

that the player can exert on the sled hockey stick increases from 20 N to 60 N, the

magnitude of the puck speed also increases for thesame reason. The model suggests

the flexural rigidity should be as low as possible to produce the highest puck speed.

However, there must be a lower bound on the flexural rigidity for two reasons. At

first, the rigidity should be enough to allow player move the sled across the ice rink in
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Figure 4-3: The magnitude of the puck velocity and the flexual rigidity as a function
of Young's modulus of the material of the beam respectively.

the driving mode. Secondly, the Euler-Bernoulli beam model breaks down for large

deformations, as would be observed in the infinitely flexible case.

In addition, we find that the flexual rigidity with respect to Z-axis in shooting

mode is about 0.2 times of that with respect to Y-axis in driving mode. This opens

up the design space to explore the Young's modulus of the material. In particular,

we can maximize the puck speed by decreasing the flexual rigidity with respect to

Y-axis in driving mode, and at the same time, satisfy the constraint limited by the

minimum flexual rigidity in shooting mode at Z-axis.

4.3 Experiments, Results and Discussion

We built a prototype for a more flexible sled hockey stick made of acrylonitrile buta-

diene styrene (ABS). The design of the stick and the Young's modulus of the material

are determined and selected according to the simulation results discussed above. As

shown in Fig. 4-4, our prototype of the more flexible stick is stacked by five laminated

layers. Each layer was manufactured by waterjet machine and bonded together using

adhesives (Loctite 4851) which can accommodate joint movement. Since players only

use the shaft of the sled hockey sticks to drive the sled on ice, we tapered the blade
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Figure 4-4: (a) Prototype of a more flexible sled hoceky stick; (b) A commercially-
available sled hockey stick.

part of the sticks to further reduce its flexual rigidity considered in the shooting mode.

In order to characterize the stiffness of the two types of sled hockey sticks, we con-

ducted the three-point bend test. Considering that the shaft stiffness is much larger

than that of the blade, we performed two types of loading, as shown in Table. 4.1, to

measure the stiffness of the shaft and stiffness of the entire sled hockey stick. Testing

was performed using an Instron Universal Testing Instrument (Model 1125). Each

stick was loosely strapped at the middle and upper end of the shaft to two cylindrical

supports. The maximum force was set to be 50 N, which was selected to simulate

the load encountered on the stick during use. The load was applied by the platform

using a cylindrical head. Stiffness was calculated as the slope of the linear regression

of the force deformation curve during the entire loading cycle.

Eighteen subjects who provided the informed written consent were recruited to

perform wrist shots with different sticks. Five subjects are female and thirteen sub-

jects are male. Fourteen of the subjects (age = 26.3 t 2.3) are recreational players

with minor experience on sled hockey; the other four subjects are elite players from

WSF New York Sled Rangers with more experience.

Experiments for recreational sled hockey players were conducted in a laboratory

setting where the subjects performed a wrist shot and shot the puck off of a high
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Table 4.1: Stiffness of the flexible and rigid sled hockey sticks
Material Loading Stiffness (kN/m)

load

Wood 175 mm (1.85 0.09) X 102
350 mm

load

Wood 350 mm (1.79 0.09) x 10
700 MM

.......... load AO

ABS s7 MM (1.61 0.08) x 10
350 mm

ABS 350mm (1.2 0.1)
70ooM
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n)0.3

0.2
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Musing rigid hockey sticks
Musing flexible hockey sticks

average
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8

Figure 4-5: Histograms for the magnitude of the velocity of the puck using two
types of sled hockey sticks. The histogram is normalized by the discrete probability
density function (PDF). (Inset) The increase in percentage of the magnitude of the
puck velocity in ascendant order for each individual subject using flexible sled hockey
sticks compared to that using rigid sticks. The dashed line indicates the average
increase which is 11.48%.
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density polymer ethylene 'synthetic ice' shooting pad. Experiments for elite sled

hockey players were conducted in an ice rink with "synthetic ice'. In both settings,

subjects are required to sit on the hockey sled in order to simulate the environment

in a real sled hockey game. Each subject performed three wrist shots with the two

types of sled hockey sticks - rigid hockey sticks and flexible hockey sticks.

Each subject was assigned sufficient time (9.4 min±1.2 min) to get used to the

experimental setting and the two types of sled hockey sticks. Especially for the

flexible stick, players need more time to practice and to take the full advantage of

its flexibility. The shooting pace was self-monitored by the subjects to minimize any

fatigue effects by inserting seated rest periods and water breaks whenever necessary.

We ensured a minimum of 30 s' gap between different trials on the same stick in order

to eliminate any residual stress from previous trails. A shot was considered a valid

trial based on two criteria: 1) the subject was satisfied that the trial was a maximal

effort; 2) the sled hockey stick remains on the ice and in contact with the puck during

the wrist shot. We used a camera (Canon EOS Rebel T6 Digital SLR) to videotape

the wrist shots. We used ImageJ to enhance the contrast and Matlab software to

extract the data of the motion of the puck and calculate the velocity of the puck.

In Fig. 4-5, we compared the magnitudes of the puck velocity for two types of

sled hockey sticks using histogram. It suggests a significant improvement for players

using flexible hockey sticks in terms of the puck speed. The average increase for

all subject is 11.48 %. For a very small amount of subjects, the increase in puck

speed is trivial and there is even one outlier with negative increase. We think it was

caused by the fact that the flexible sled hockey sticks require more adjustment in the

shooting strategy from players' habit. Therefore, some subjects are not able to take

the advantage of its flexibility due to unsuccessful adjustment.

In addition, we investigated the relationship between the peak force that players

can exert and the magnitude of the puck velocity for rigid hockey sticks and flexible

hockey sticks respectively. We first need to evaluate the force that players can exert

with sled hockey sticks approximately. Subjects were required to hold the sled hockey

sticks at the same position as that when they perform a wrist shot. They repeated the
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Figure 4-6: The magnitude of the puck velocity versus the peak force that players
can exert with two lines indicating the linear regressions using the two types of sled
hockey sticks respectively.

action five times for each type of sled hockey sticks, which gives us five measurements.

In Fig. 4-6, the magnitude of the puck velocity is plotted versus the peak force that

players can exert. The puck velocity shown in the figure represent the mean puck

velocity from three tests and the mean peak force from five measurements respectively.

The correlation coefficients between the magnitude of the puck velocity and the peak

force that players can exert are 0.643 and 0.685 for rigid sled hockey sticks and flexible

sled hockey sticks respectively. We also applied a linear regression method to fit the

experimental data. The results clearly indicate that the flexible hockey sticks can

generate larger puck velocities. Fig. 4-6 also graphically suggests a moderate positive

linear association between peak force that players can exert and puck velocity for

both types of sled hockey sticks.

4.4 Conclusion and Future Work

Cantilevered Euler-Bernoulli beam model with a cylindrical rigid body attached to

its distal end captures the fundamental dynamic response of a wrist shot with flexible

sled hockey sticks. We observe a significant increase on the magnitude of the puck
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velocity by using our flexible prototype of sled hockey stick. The optimal flexural

rigidity can be determined by maximizing the magnitude of the puck velocity in

shooting mode with the constraint of minimum rigidity required in driving mode. We

also discovered a moderate positive linear relationship between the peak force that

players can exert and the magnitude of the puck velocity.

For the future work, we would further optimize the overall curvature of the sled

hockey stick and the varied cross-sectional dimension of the sled hockey stick. In

particular, the curvature within the blade of the stick and the smooth change of

rigidity along the prototype should be considered which has not been introduced in

our current fast prototype. In addition, a varied flexural rigidity may be worthwhile

to be explored which can open a wider designing space to optimize the performance

in both the shooting mode and the driving mode.
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Chapter 5

Dynamics of Rigid Systems

Rigid system dynamics studies the dynamical behavior of a system, the elements of

which, under the assumption, are treated as rigid bodies. In this Chapter, we propose

two sets of dynamical modelling methods and apply the methodology on sled hockey

equipment, further advancing the optimization and customization of the structures

of the system.

Sled hockey, acting as the counterpart of standing ice hockey in Paralympic games,

provides people with physical disabilities with the opportunity of participating in the

game of ice hockey. Sled hockey players seating in hockey buckets propel the hockey

sleds using one pair of hockey sticks. The investigation for the dynamics of the sled

hockey advances the structural design for designers and strategic plan for players,

aiming at the ultimate goal of optimizing the performance of sled hockey players.

In this chapter, we propose two sets of dynamical modelling for the hockey sled us-

ing a trajectory-based modelling method and a state-space-based modelling method.

Conservation laws of linear momentum and angular momentum are applied to obtain

the governing equations, which are used to study the dynamics of the propulsion for

linear motion and of the tip-over and reset. We further propose a constrained opti-

mization problem to optimize the parameters of sled design and driving strategy to

maximize the performance of sled hockey players based on the dynamics.
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5.1 Dynamical Modelling of Hockey Sled

We propose two sets of dynamical modelling for the hockey sled. The first set of

model is obtained by considering the trajectory of the contact point between the

hockey sled and the ice surface through three frames - an inertial frame, a local frame

and an intermediate frame. The inertial frame is fixed on the ice ground, i.e., the

reference frame of the observer at rest. The local frame is fixed on the hockey sled

with the coordinates along with principal axis of the sled. The intermediate frame

is build upon a virtual trajectory for the center of curvature of the local frame. The

second set of model is obtained by considering the dynamics of the motion of vehicle

with multiple constraints, which can be generalized for flights and other vehicles.

The first model benefits in the interpretation of the coordinates for physical insights;

the second model benefits in the generalization for other vehicles such as autos and

flights.

5.1.1 Method 1: Trajectory-Based Modelling

The dynamics of hockey sled is significantly distinguished from that of autos and

flights. The primary difference lies at the constraints of hockey sled, which, on one

hand, allows for tip-over, compared with autos and, on the other hand, restrains one

of the skate blades and foot support contacting the ice surface, compared with flights.

In the first dynamical model, we decompose the motions using three frames: an

inertial frame fixed on the ice ground, an intermediate frame fixed on a virtual tra-

jectory and a local frame fixed at the center of mass on the sled. Fig. 5-1 shows the

schematic of the frames and the trajectories in our study of the hockey sled motion.

Curve SA is the trajectory of point A, which is the contact point between the skate

blade and the ice surface. Curve Scoc is the trajectory of the center of curvature of

curve SA. Frame XIYZI is the inertial frame. Frame xyz is fixed on the sled along

with the coordinates along with the principal axis of the sled, of which the coordi-

nates y and z locate in plane P2 and coordinate x in P1 . P1 and P2 are virtual planes

which are along the tangential and normal direction of the curve SA respectively.
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Frame XYZ is an intermediate frame with coordinate Y directing towards point A

and coordinate Z consistent with Z, in the inertial frame XYZ. R(t) denotes the

radius of the instantaneous curvature of curve SA. rAc is the vector from point A to

the center of mass as denoted in Fig. 5-2 and Fig. 5-3.

rAC = bxer + by e; + bzz, (5.1)

where bx, by, bz are distances from point A to the center of mass along the three

principal axes of the hockey sled. Fig. 5-2 indicates bx < 0 to be consistent with the

definition of the local frame xyz.

The intermediate frame XYZ is utilized to bridge the inertial frame X1 YZI and

the local frame xyz. The motion of the hockey sled is decomposed into the motion

described by the lean angle (t) and the planer motion of point A using the local

frame xyz. The motion of point A is further decomposed into the planner motion of

the origin of frame XYZ and the radius R(t) of the instantaneous curvature of curve

SA using the intermediate frame XYZ. The relationship between the local frame xyz

and the intermediate frame XYZ can be expressed as:

ex = e,

ey = ey cos 0 + ez(- sin 0), (5.2)

ez = ey sin 0 + ez cos 0,

where ex, ey and ez represent the unit vectors along with x-, y- and z-directions of the

local frame xyz respectively, ex, ey and ez represent the unit vectors along with X-,

Y- and Z-directions of the local frame XYZ respectively. The relationship between

the inertial frame XY 1ZI and the intermediate frame XYZ can be expressed as:

ex, ex cos + ey(- sin#),

ey, ex sin + ey cos p, (5.3)

ez, =ez,
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Figure 5-1: Schematic of the frames and the trajectories for the motion of hockey
sled. Point A is the contact point between the skate blade and ice surface. SA is the
trajectory of A. Scoc is the trajectory of the center of curvature of SA. X1 YZI is
the inertial frame. Frame xyz is fixed on the sled along the principal axis of the sled,
of which the coordinates y and z locate in plane P2 and coordinate x in P1. Frame
XYZ is an intermediate frame, of which the coordinate y directs towards point A.
P1 and P2 are virtual planes which are parallel and perpendicular to the curve SA

respectively.

where ex,, ey, and ez, represent the unit vectors along with X, Yr and Zr

directions of the local frame XYZI respectively.

The angular velocity of the sled can be decomposed into the angular speeds in e,

and ez. Thus, Wsled is given by:

Wsled= xe0 + ezq = exe + e 1 sin 0 + e±, 0+cos 0. (5.4)

The unit vectors &x, e, and ez are fixed on a rotating frame xyz with the angular

velocity Osled. The partial derivatives of each unit vector with respect to time are:

= Wsled xex= yS cos 0 + a(-5 sin0),at

- Osled x e,= ex(-qXcos0)+& ,
at

= Osled x az &=-xo sin 0 + &z (-),at

(5.5)
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Figure 5-2: Schematic of the back view of hockey sled and free body diagram. N1

is the normal reaction force for the foot support of the hockey sled. Point A is the
contact point between one hockey blade and the ice surface. N2 is the normal reaction
force for skate blades at point A. b2/ and b, are distances between the center of mass
and the foot support of the sled and point A respectively. F is the frictional force
acted on the skate blade. P2 is the virtual plane as shown in Fig. 5-1, which is parallel
to the trajectory of A.

P2

A \F- \
N2

Figure 5-3: Schematic of the back view of hockey sled and free body diagram. Point
A is the contact point between one hockey skate blade and the ice surface. 9(t) is
the lean angle of the sled, N2 is the normal reaction force for the foot support and
skate blade respectively. F1 is the frictional reaction force between ice and the skate
blade at point A. Hc, H and by are dimensions of the hockey sled with respect to the
center of mass.
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The velocity of the origin of intermediate frame XYZ on curve Scoc is:

ococ - xS(t) + eyY(t)

- x [X cos +Y sinq@] + y[-X sin + Ycos (5.6)

= ex([X cos# + Ysin#] + ey [-X sin # cos 0 + Y cos #cos0]

+ e [X sin # sin 0 - Ycos #sin0]

The hockey sled is symmetric with respect to the plane P1. Thus, the second moment

of inertiaI Y I , Izy = 0. Empirically, we take Iz = Iz~ 0 for

simplicity. The angular momentum of the sled with respect to the center of mass He

is given by:

He =ix [I + IXZ qos0] + ey-Yy sin0 + ez[Izzy Cos 0 + Iz(57)

~ eIXX + e IqY lysin0 + ezjzzo cos 0.

Using the approximated expression of H, its first derivative with respect to time:

dtH
dt" ex([Izb0 + (Izz - IvYY )S sin 0 cos 0]

+ -Y [ )(I + IY c - Izz) Cos 0 + Iyy sin 0] (5.8)

+ z [Izz($ cos0 - $sin 0) + (Ivy - I1 X)$ sin 0].

The velocity of the center of mass is v, given by:

c = VA +Wsled X rAC

= VICR + WXYZ x rOA + (ex6 + ey sin 0 + z$ cos 0) x (bxx + byey + bz+z)

= ex[kcos#+Y sin@+(-1)R$+bqz$sin0 - byOcos0]

+ey[-ksin$cos0+Ycosq0cos0+bx cos0- bzb]

+z(- sin0)[-$sin@+ cos#]+(-bx) sin0+bYe.

(5.9)
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Thus,

dvc2
-t ex = $ coso#+ Y sin # + - R+ b, sin 0 - by cos 0| +0 2(-bx)

+ 205(bz cos 0 + by sin 0),

de,
d -ey = X(- sin # cos ) + Ycos 0 cos # + 0(-bz) + 02 (-by)dt

+ q2(-R cos 0 + b, sin 0 cos 0 - by cos2 0),

dv
dt X (sin 0 sin #) + Y (- sin 0 cos #) + 0(by) + 02 (-bz)

(5.10)

(5.11)

(5.12)
+ 0 2 (-b, sin2 0 + by sin 0 cos 0 + R sin 0).

Applying the conservation law of linear momentum, we obtain the equation of motion.

In ex:

q(mb, sin0 - mby cos 0 - mR) + X(m cos ) + Y(m sin #) + qR(-m)

+ $$(2mbz cos 0 + 2mb sin 0) + q2(-mbx) = fi + fx;

in ey:

0(-mbz) + q(mbx cos 0) + $X(-m cos 0 sin ) + Y(m cos 0 cos #) + $2 (-mby)

+ ± 2 (mb, sin 0 cos 0 - mby cos2 0 - mR cos 0)

- (N 1 + N2) sin0 - mg sin 0 - f- cos 0 + fy;

and inez:

N(mby) + ±(-mbx sin 0) + X(m sin 0 sin #) +Y (-m sin 0 cos 0) + $ 2 (-mb,)

+ h 2 (-mb, sin2 0 + mby sin 0 cos 0 + mR sin 0)

(5.13)

(5.14)

(5.15)

- (N1 + N2 ) cos 0 - mg cos 0 + fi cos 0 + f,

where fi and f are the frictional forces, the directions of which are perpendicular

and parallel to the direction of the skate blades, fx, fy and f, are external forces

exerted on the sled in x-, y- and z-directions. We apply the conservation of angular
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momentum with respect to point A. Since point A has a moving velocity of VA, the

conservation law can be expressed as:

dHe dP
A- rdt ACx dt (5.16)

where rA is the external torque exerted on the hockey sled with respect to point A,

Hc is the angular momentum of the sled, rAc is the vector from the contact point A

to the center of mass C and P is the linear momentum of the rigid body, we obtain

the equations of motion. Ine

S[Iz+m(b2+-b2)]+ [-mbxb sin0- mbxbzcos0]+X[mbysin0sin#+mbcos0sin#]

+ -2 [mbybzcos(20) + m(b - b ) sin0 cos0 + mRbzcos0 + (Izz - Iyy) sin0 cos0 + mRby sin0]

+ Y[-mby sin 0cos#- mbzcos0 cos] mg(bz sin0 - by cos 0) + TX,

(5.17)

in eY:

[-mbxby] + ±[-mbzR +m(b +b ) sin0 - mb bzcos0 + Iy sin0]

+ X [mbz cos # - mbx sin 0 sin #] + [mbx sin 0 cos # + mbz sin #] + $2 [mbxbz]

+ 2 [mbxbz (sin2 0 - 1) - mbxby sin(0) cos(0) + mRb, sin 0] + 0$(-mbz)

+ 0$[(Izz + Iy - Izz) cos 0 + 2mb cos 0 + 2mbbz sin 0]

- (N1bX, + N2b) cos 0 +Ty,

and in ez:

[-mbjbz ] + [mbyR + m(b + b ) cos 0 - mbybz sin 0 + Izz cos 0]

+ [-mbx cos 0 sin # - mby cos #] + [mbx cos 0 cos # - mby sin #]

± $2 [-mbxb ] + 2 [-mbxR cos 0 + mbxbz sin 0 cos 0 - mbxby (cos 2 0 + 1)]

(5.18)

(5.19)

+ $[-2mbybz cos 0 - 2mb bsinN0 + (Iy - Ixsi- Iz) sin0]

= -( Nlbx, + N2bx) sin 0 +Tz,,
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whereT, T, andT rare the componentsof rA in x-, y-, and z-directions.

5.1.2 Method 2: State-Space-Based Modelling

In this section, we develop a state-space-based dynamic model for the hockey sled,

as a counterpart for autos and flights, in the field of ice hockey. We borrow the

terminology state space, typically utilized in control and estimation theory [90, 91, 92].

The state space is the Euclidean space, in which the variables of the axis represent

the state variables. The values of state variables evolve through time, depending on

the initial conditions and the external inputs [93, 941. Correspondingly, a state-space

representation describes the dynamics of a physical system, usually in the form of a

sytem of differential equations [90, 95]. This method supplements the trajectory-based

dynamical modelling method, to which the research findings can be easily transferred

from the field of autos and flights [96, 97].

We incorporate two reference frames - a local frame and an inertial frame to obtain

the governing equations of the dynamics. In the local frame fixed on the sled, the

variables x, y and z represent local coordinates. The origin of the frame xyz locates at

the center of mass of the sled, the directions of which are aligned with the directions

of the principal axis of hockey sled. The x-axis lies in the symmetry plane of the

sled and points toward the forward-direction of the sled. The z-axis also lies in the

plane of symmetry, perpendicular to the x-axis, and pointing down to the ground.

The y-axis completes a right-handed orthogonal system. F, Fy and F, are equivalent

net forces exerted on the sled in x, y and z directions, respectively; T, Ty and Tz

are equivalent net torques exerted on the sled with respect to the center of the mass

of the sled in x, y and z directions, respectively. The Euler angles , 0 and # are

correspondingly defined as the yaw angle, pitch angle and roll angle, rotated about

z-axis, y-axis and x-axis, respectively.

To obtain the equations of motion of the hockey sled, the final orientation of the

sled can be achieved by a virtual procedure of rotating through the heading angle V,

the pitching angle 0 and the rolling angle # in sequence. Since there are commonly at

least two contact points between the hockey sled and the ice ground, the motion of
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the pitch angle 0 is constrained. We consider 0 = 0 for a regular motion of the hockey

sled; thus, the angular velocity0 0 and the acceleration0 0. The transformation

of the state space variables around the heading angle 0, the pitching angle 0 and the

rolling angle # can be expressed in the matrix from as R(), R() and R(#). The

rotation matrix R from the inertial frame to the body frame through # is given by:

1

0

0

cosq#

sinq$

0

-sin

Cos#0

(5.20)

through the rolling angle 0:

cos0 0 sin l
R() 0 1 0

-sin0 0 cos 0

(5.21)

through the heading angle 0:

cos V)

R(V)) =sin Ve

0

- sin V)

cos

0

0

0 .

1J
(5.22)

Thus, the rotation matrix achieved by the sequence of rotations aforementioned
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can be expressed by a matrix transformation R:

R - (RRoRo)-

= R1 R 1-R 1
0 0 0

cos 0 cos @ sin # sin 0 cos #- cos # sin @

cos 0 sin V sin # sin 0 sin # + cos # cos @

- sin 0 sin @ cos 0

cos @
sin4'

0

- cos # sin @)

cos cos V

sin #

cos #sin 0 cos 4 + sin sin4'

cos sin 0 sin V - sin # cos ,

cos # cos 0

sin # sin

-sin0cos ,

cos #

We can obtain the system of equations of motion by applying the conservation

law of linear momentum:

ZF-dP
dt,

(5.24)

where F is the external force exerted on the hockey sled and P is the linear momentum

of the hockey sled.

The force vector F includes the gravitational force and the reaction force from

the ice ground on the hockey blades and the hockey sticks. The reaction force in the

local frame is [Fx, Fy, F2]T = FxyzR and the gravitational force in the local frame is

mgR. Applying the conservation law of linear momentum to the rigid body, we have:

0

+ mg sin#

cos #

z+ (-b)

+ (±-z .

+(9)

We further obtain the system of equations of motion applying the conservation law

of angular momentum:

(5.26)ZTdHc
dt

where T is the external torque exerted on the hockey sled and H is the angular

95

0=0

(5.23)

Fxl

FJ

Fz

(5.25)



momentum of the hockey sled with respect to the center of mass C. Applying the

conservation law of angular momentum to the rigid body, we have:

TX Izz$ + (-IXZz)[ =(] - I( _2)] , (5.27)

-TZ I J - IJz

where the second moment of inertia is given by:

Izz = (y2 + Z2 ) dm,

IY = (X2 + Z2) dm, (5.28)

Izz = (X2 + y 2) dm,

and the product of inertia is given by:

IXY = IYX 0,

IY = Izy =0, (5.29)

Ixz = Izx 0.

The product of inertia IXY and Iyz are zero due to the symmetry of the hockey sled,

and Ixz is approximately zero given our empirical assumption of the hockey sled with

one sled hockey player.

The regular motion of the hockey sled requires that the contact point A on one

of the two blades always keep contact with ice. Thus, the velocity at point A on the

sled in ez remains zero, i.e. v/ez 0. This equation acts as a constraint to the

dynamics of the rigid body:

VAez (c+ Lxy - Lze) sin$ + ( + Ly - Lxe) cos$= 0 (5.30)
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5.2 Propulsion for Linear Motion

5.2.1 Kinematics and Dynamics of Propulsion

Propulsion applied by sled hockey sticks is prevalent in the game of sled hockey,

acting as the exclusive driving approach. Unlike the stand-up ice hockey, the driving

mechanism in sled hockey is governed and constrained by the sled and sled hockey

sticks. In competitive games, propulsion is of crucial importance for sled hockey

players to navigate in the ice rink, to reach out for a puck, to maneuver a puck and

to shoot a puck. In this section, we propose dynamical models to investigate the

motion of sled driven by propulsion using sled hockey sticks. We further present an

optimization problem to explore the strategy of propulsion and to probe the design

space of structural parameters of the hockey sled and stick.

A sled hockey player drives the sled via the linkages of the upper arm, forearm,

and hockey stick (see Fig. 5-4). The hockey stick end is anchored with a ratchet,

used for exerting a force on the ice surface without any slip. The kinematics of the

sled motion can be described by the angular velocity of the linkages, denoted by1,

02 and03; the dynamics of the sled motion can be derived from the conservation of

the linear momentum, where the input force is constrained by the muscle force that

a player can produce on the hockey stick.

To generalize the study, we apply a dimensional analysis on the objective func-

tions and constraints for the following three reasons: (a) Human body comes at a

ratio for each age group; (b) For designers, the dimensionless form can be applied

to generalize the structural design; (c) For players, the dimensionless form provides

clearer guidance when they select the sled to optimize the performance of propul-

sion. To non-dimensionlize the equation of motion, we select the characteristic length

Lo(= L,) and the characteristic time 1/1m. Thus, we have dimensionless length scales

and time scales:

L1 L2 L3 LI
Lo Lo Lo Lo
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191 Upper arm
(length L1)

_ 1)2 Forearm

Lp ~ (length L2 )

a 9

L s Hockey stick
Ice p (length L3 )

Figure 5-4: Schematic of the back view of hockey sled and free body diagram. Li is
the length of the player's upper arm, L2 is the length of the player's forearm, L3 is
the effective length of the hockey stick, i.e. the distance from the position where a
player holds the stick to the end of the stick, L, is the distance from the ground to
the bottom of the sled bucket, and L, is the distance from the bottom of the bucket
to the player's shoulder. Point P is the contact point between a hockey stick and the
ice surface.

#1 and #2 are constants determined by the body ratio of the sled hockey player, while

6, and #3 are variables based on the design of the hockey sled and hockey stick,

respectively. The ratchet anchored at the end of sled hockey sticks imposes a non-slip

condition at the contact point P between the stick end and the ice surface, as shown

in Fig. 5-4. The non-slip condition can be described asvi,- =0andvo,.8,= 0,

providing us with the velocity v of the sled and a motion constraint, respectively.

The dimensionless velocity magnitude of the hockey sled is:

V = L = Z#aie sin ei, (i = 1, 2, 3). (5.32)

The other two constrains are: (1) 6 2 - 63 + 7r = a, where a is the acute angle

between the forearm and the hockey stick at the hockey player's wrist; (2) the equation

of motion applying the linear momentum conservation in x-direction. Thus, the

magnitude of the sled velocity V subjects to:
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Time t (S)

Figure 5-5: Experimental results for a(t) - ao as a function of time t. ao is the
initial angle at time to between the hockey stick and the forearm. A parabolic model,
indicated in the dashed line, was fit for the experimental results compared with our
hypothesis model.
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Figure 5-6: Simulation results for the ratio of F/F as a function of (T)/e0 .
The coefficient of shortening heat ami = 0.2Fo, amax O.3Fo and a = 0.48FO are
illustrated in the figure.
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02 - 03 = a,

#+sin n= #A+ 13, (i = 1, 2, 3(5.33

2F g g
2sin(8)3 - -) = C + #5 sin 8, I(' = 1, 2, 3),

(M + m)LoOM 2 f Lo M

where M and m are the masses of the hockey sled and the hockey player respectively.

Cj1 is the frictional coefficient, the direction of which is parallel to the longitudinal

direction of the skate blades. We select 6, which is a function of dimensionless time,

to optimize the performance. In addition, we have the biological constraints:

02 1,

01 < /2, (5.34)

a <r/2.

The force F exerted on the sled hockey stick is governed by the power from the hockey

player. We apply the Hill's muscle model to approximate the force exerted on the

hockey sticks, F (bFM - a62)/(b +02), in which Fm is the largest force that a

player can perform, a is the coefficient of shortening heat and b = aOM/Fo [98, 99].

The range of a is found to be from 0.2FO to 0.48Fo [98]. Fig. 5-6 shows the ratio

of FM/FO as a function of (T)/4o using different a values. The upper bound of

error when using a = 0.3FO is less than 5% compared with those using a = 0.2Fo and

a = 0.48FO. The Hill's muscle model can be reformulated in a dimensionless form:

Fm _ a/Fo(1 - O/o)
F 0  a/F+O/e0 (5.35)

Fo a/Fo +8O/O

F <Fm. (5.36)

In this model, our assumption is that a(t) takes a parabolic form, which charac-

terizes the constraint between <b2 and <D3. To verify our assumption, we conducted a

simple experiment to record a hockey player's propulsion and extracted the motion

of his arms and the hockey stick. Fig. 5-5 shows that the our assumption of using a

parabolic model for a(t) agrees very well with our experimental results.
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Figure 5-7: Simulation results of the angular velocity i, 4D2, 3 and V for a non-
optimal condition and an optimal condition. The T1 and T2 cycle indicate the non-
optimal and optimal condition, respectively.
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Figure 5-8: Simulation results for the upper arm (blue), the forearm (blue) and hockey
stick (brown) during the first cycle of propulsion. At to, the hockey player places arms
and the hockey stick at the optimal position. At tend, the first propulsion ends due
to the violation of at least one of the constraints. During this first cycle, the player
attempts his/her best effort which is governed by the muscle's Hill model.
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5.2.2 Parametric Optimization

In one scenario, the objective function is proposed as the average speed of the sled V()

for the ith-cycle propulsion to be maximized. The motion of the upper arm, forearm

and wrist are given by the column vector 8) [01, 02, 0 3 ]T. The start position and

the end position of 8, = [01, 023,3] T ande = [01c, (2e, 0 3 e ]Talso remains to be

optimized. Thus,

(E*, *, *) = arg max V() (5.37)
(O,es,ee)

One of the constraints comes from the power limit governed by the muscle Hill model,

which tells us the maximum force FM. Given the decoupled independence of this

power constraint, we suggest the parameters remain to be optimized at the base con-

dition of (a, F) = arg max f(. In our hypothesis, to achieve the optimal performance

by maximizing the average speed as defined in each cycle, the local acceleration should

be optimized:

(0*,, 0*) arg max(N
(e,e,,ee) 

(5.38)
arg max (a,F)=arg max M
(0,0s,Ee)

In the course of a linear motion, a sled hockey player performs multiple propulsion

using the hockey sticks. One stroke of a propulsion process includes two stages: a

propelling stage and a sliding stage. During the propelling stage, the player uses

hockey sticks to propel, and the sled accelerates; during the sliding stage, the player

retracts the hockey sticks to the start position for the next propelling stage, and the

sled decelerates due to the friction between the skate blades and the ice surface. For

the first stroke, there is no sliding stage from the previous stroke. Staring from the

second stroke, we need to consider both stages because the sliding stage significant

affects the optimization results of the start position; we also take into account the

deceleration due to the sliding friction. Thus,
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Figure 5-9: Simulation results for the dimensionless average velocity V during the first
cycle of propulsion for 4) ranging from 0 rad to 1.5 rad and 2, ranging from -0.5 rad
to 1.5 rad. The upper-left white triangle area indicates no results from simulation
due to the constraint (1D > (2,.

fT V dt

Vdt + f VIrhz-1(T. +Tidt - fT, Cjgt/(Lov )dt (539)

Tp + TIS1 2

where Ti and Ti are the duration during the propulsion and sliding of the sled

respectively, C is the friction coefficient when the direction of the frictional reaction

force is parallel to the longitudinal direction of the skate blade.

The overall average velocity V, intuitively, is roughly set by the integration of the

local acceleration over the duration of propulsion. As shown in Fig. 5-7, with the

optimal parameters, the duration of propulsion is longer than that under the non-

optimal condition and the local acceleration is slightly larger than the counterpart.

The overall average velocity under the optimal condition is approximately as twice as

large of that under non-optimal condition. Fig. 5-8 shows the simulation results for

the motion of upper arm, lower arm and hockey stick with the optimal conditions for

the first stroke of propulsion. In the simulation, the sled hockey players starts and
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ends at the optimized position E* and E*, respectively, and the propulsion process

follows the corresponding optimal dynamics during the first cyple of propulsion.

Furthermore, /3 is set by the design of the sled, which can be utilized to opti-

mize the performance of propulsion. In addition, sled hockey players have much more

freedom to determine #, by varying the holding position of the hockey stick. There-

fore, we propose another optimization problem to customize the sled design with the

optimal propelling strategy:

(#*, #3*) = arg max /03
(#8.,3) (5.40)

= arg max (e=E).Y,E;,e;
(e,e,,e)

5.3 Tip-Over and Reset

Tip-Overs occur very often in the game of sled hockey. The lose of control of sled

stability may result in a tip-over, especially during the process of reaching out for a

puck or making a sharp turn in the ice rink. In addition, a tip-over can be utilized as

a strategy to manipulate the puck control. In any circumstances, the process of reset,

after a tip-over occurs, is of importance. A slow or struggling process of reset will

undermine the performance of the sled hockey player. Understanding the dynamics

in the process of tip-over and reset may shed light on the optimization of sled designs

and sled driving strategy.

5.3.1 Dynamical Modelling of Tip-Over and Reset

We consider the sled together with the sled hockey player approximately as one rigid

body. To obtain the'equation of motion to describe the process of reset after a tip-over

of the hockey sled occurs, we first apply the conservation law of linear momentum:

dP
dt F, (5.41)
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where P is the linear momentum of the rigid body and F is the force exerted on the

rigid body. Then, we apply the conservation law of angular momentum:

dHe dP
dt +'rACX d --t ( TA, (5.42)

where Hc is the angular momentum of the rigid body with respect to the center of

mass C and TA is the torque exerted on the rigid body with respect to point A. The

explicitly full form of the above system of equations is given in Section 5.1.1. To

obtain the dynamics of the hockey sled during the process of reset, we may apply

the constraints to the derived system of equations. For a successful reset, the motion

should be constrained in the xz-plane and the contact point A between ice and skate

blade should be fixed. Thus, the constrains are:

X== 0,

X YR = 0, (5.43)

V,X =V,Y =V,R =V.

The reduced system of equations of motion applying the linear momentum conserva-

tion is given by:

0 fi +fX,

(-mbz) + 02 (-mb,) = (N1 + N2) sin 0 - mg sin 0 - fi cos 0 + fy, (5.44)

(mby) + b2(-mbz) = (N1 + N2) cos 0 - mg cos 0 + fi cos 0 + f,

where fil and fi are frictional forces, the directions of which are parallel and per-

pendicular to the longitudinal direction of the skate blade, respectively. The reduced

system of equations of motion applying the angular momentum conservation is given
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Figure 5-10: Minimum required force Fm " to reset after a tip-over occurs and stable
range 0* as a function of 7,w and yh- Yywand Yh both range from 0.01 to 0.5.

by:

S[Ixx + m(b + b )] = mg(b, sin0 - by cos 0) + r,,

0(-mbxby ) + $2 (mbxbz) = (Nib, + N2bx) cos 0 + Ty, (5.45)

0(-mbxbz)+02 (-mbxby)= -(N 1bx' + N2 bx) sin0 +Tz.

5.3.2 Parametric Optimization

The force required during the process of reset, exerted by the sled hockey player,

manifests the efficiency and effectiveness of the reset. The design of sled, in return,

affects the range of required forces, determining the performance of a hockey player

given a tip-over occurs. In this section, we derive the range of the required force and

optimize the parameters of sled design based on the dynamics during reset.

If the lower bound of the range for the required force, Fm, ,exceeds the maximum

force that the hockey player could produce, in particular for junior players, a reset
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will be unfeasible. A successful reset requires both of the acceleration and the angular

velocity of the sled smaller than zero, in terms of the coordinate 0 as shown in Fig. 5-

3, and both of the normal forces larger than zero. To obtain F" we have the

conditions:

d<o0

(5.46)
N1 > 0,

N2 > 0.

Plugging the above conditions into the system of equations - Eqn. 5.44 and Eqn. 5.45,

we solve for Fr when the critical condition holds:

F mg(b, sin0 - by cos 0)
zreq Ltot sin 0o ' (5.47)

req zreq /cosa.

where F,," is the minimum force requried in z-direction, a = tan'(sin o-sin 0)/ cos 0;

00 = 7r/2 - tan-1 (w, - by)/(h - hb),which is the value of 0 at the position of tip-over.

w, is the width of the sled bucket and h is the height of the skate blades.

We further explore the design space to investigate the minimum required force,

Fq)n, from the perspective of structural parameters. We first define the ratio =

Yb/WS, where Yb is the distance between the skate blade to the center of mass as shown

in Fig. 5-3, and w, is the sled bucket width. We also define the ratio yhw = hb/wS,

where hb is the skate blade height. In addition, during the process of reset from a

tip-over position, the sled hockey player needs to exert a reset force by pushing the

ice surface until the center of mass of the sled passes over the pivot point A (see

Fig. 5-3), the angle of which is defined as the stable angle 0*. Fig. 5-10 shows the

minimum required force force F to reset afteratip-over occurs and stable range

0* as a function of y,, and -yw. As yy, increases, Fm increases drastically due to

a higher potential energy required for reset. The regime where F n < 0 indicates

107



that no external force is required to reset, because the center of mass of the sled lies

within the stable range 0* when tip-over occurs.

If the upper bound of the range for the required force, F mx, exceeds the max-

imum frictional reaction force between the skate blade and ice, the sled will slide

on ice in place of reset, remaining the state of tip-over. The required force Freq

is upper-bounded by the maximum static frictional force, the direction of which is

perpendicular to the longitudinal direction of the skate blade:

FY F, tan a < CfN 2  C (mgFZ), (5.48)

where a = tan-1 (sin0o - sin0)/cos, and Cy is the frictional coefficient when the

direction of the frictional force is perpendicular to the longitudinal direction of the

skate blades. Thus,

max C mgF =.zreq Cf7 - + tan a (.9Ckf tn (5.49)

ax axcosa.

where Fzmr" is the maximum required force in z-direction.

The process of an effective reset requires the force exerted by the sled hockey player

in the range from Fm" and F ma. If the force, provided by the sled hockey player, is

smaller than F e", the magnitude of the force is too small to reset the hockey player

back to his/her initial upright position; if the force is larger than Frma, the required

perpendicular frictional reaction force is larger than the maximum static frictional

force, resulting in the sled sliding on ice. This range depends on the design parameters

of hockey sled. We take two examples, -ym = Th, = 0.5 and -ys = -yh = 1, to analyze

the effective range of required force. As shown in Fig. 5-11, for yw, = 7Y = 0.5, the

effective range is from 120 N to 260 N; for y,, = Yh = 1, there is no valid effective

force, i.e. F " > Fa, meaning that if the design of parameters is Yyw =Yhw - 1,

it is impossible for the sled hockey player to reset.

We further explore the entire space of design parameters to investigate the effective
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Figure 5-11: Maximum and minimum of the required force for reset as a function
of the lean angle 0 for yy, = yhw = 0.5 and Yy, = yhw = 1. Imin represents the
minimum range of the requred force during the process of reset.
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Figure 5-12: Effective ranges of required force for parameters of hockey sled, for Y,
and 7h, both ranging from 0.05 to 0.5. The stable range 0* is overlaid. The grey area
indicates the stable range where no force is required to reset.
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range of force (see Fig. 5-12). The smaller the effective range gets, the harder it is for

the sled hockey player to reset. To maximize the feasibility of reset, 7Yh ~ 0.2 and

7,, < 0.2 are preferable. We conclude that Fig. 5-10 and Fig. 5-12 can provide the

guidance for designers to customize the hockey sleds for sled hockey players to help

them achieve better performance.
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Chapter 6

Tribology in Ice-Metal Contact

Tribology, studying friction, wear and lubrication of interacting surfaces in relative

motion, sheds light on the field of bearings, metal-forming and transportation [100,

101]. Its history can be dated back to the record of documentation hundreds of years

ago [102, 103. Tribology is a highly interdisciplinary subject, including physics,

chemistry, material science and mathematics [100, 101, 104].

Sled hockey is a competitive sport taking place in the ice rink. The friction

between ice surface and skate blades varies the performance of the hockey stop, the

hockey turn, the propulsion for linear motion and the process of reset after tip-over,

which are discussed in previous chapters.

In this chapter, we investigate the tribology in the game of sled ice hockey. The

conclusions of the study drawn on the physics of ice friction is still under debate

in previous research [28. We design an experimental system to mimic the ice rink

environment and to expand the experimental study of the friction coefficient in an

extensive range of Hersey number from 10-13 to 104. To build the understanding of

the physics of friction, we perform a dimensional analysis and an asymptotic analysis

for three regimes of friction - boundary friction regime, mixed friction regime, and

hydrodynamic lubrication regime. In addition, we provide a parametric model -

multi-linear regression and a non-parametric model - random forest regression for the

friction coefficient, to present a modified Stribeck curve.

111



6.1 Background and Introduction

In this section, we start by introducing tribology and its application in ice hockey,

followed by a brief description of three hypothesis to explain the physics of ice friction.

We further discuss Stribeck curve describing the relationship between the friction

coefficient and Hersey number. In the last, we review the current prevailing models

for the friction coefficient.

6.1.1 What is Tribology in Ice Friction

Tribology, studying friction, wear and lubrication of interacting surfaces in relative

motion, sheds light on the field of bearings, metal-forming and transportation [100,

101]. Its history can be dated back to the record of documentation hundreds of years

ago [102, 103]. Tribology is a highly interdisciplinary subject, including physics,

chemistry, material science and mathematics [100, 101, 104].

The study of ice friction, as a sub-field of tribology, dates back only to the 19th

century [105]. Studies find a liquid-like layer on the surface of ice [105]. Utilizing

different measuring techniques at temperatures ranging from -25 Celsus Degree to 0

Celsus Degree, the thickness of the liquid-like layer varies from 1 nm to 100 nm [105,

106], with the measurement of ice at reset. At high relative velocity of two contact

surfaces, the thickness of the liquid-like layer is measured up to 50,000 nm [105]. The

dependence on the measurement technique for the thickness of the liquid-like layer

brings different conclusions for researchers, unsurprisingly. In particular, the origin of

the liquid-like layer is still under controversy. Currently, there are three dominating

hypothesis - surface melting, pressure melting and frictional heating.

In 1859, Faraday suggests that the existence of a liquid-like layer is an inherent

property of ice [107]. Followed by further investigations, theoretical investigations

using electrostatic interaction, subsurface pressure melting, free surface energy min-

imization, highly-disordered surface and experimental studies using low-energy elec-

tron diffraction (LEED) are applied to explain the presence of the liquid-like layer on

the surface of ice [108, 109, 110, 111, 112, 113].
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Early studies suggest that, in ice skating, the pressure is large enough to reduce

the melting point of the ice, primarily contributing to the thickness of the liquid-like

layer [114, 115, 116, 117]. Colbeck shows that only 0.005% of an ice skate blade

is in contact with the ice surface, resulting in a very high pressure on the local

surface of ice [114]. The pressure melting molecular dynamics simulations show that

the melting point was found to drop significantly at high pressures [115, 117, 116].

For example, the dropped pressure is about 23 Celsus Degree at 2k bars compared

with that at standard ambient pressure [116]. However, there are some facts which

cannot be explained by the theory of pressure melting. For example, the friction

coefficient between ice and slider on its surface remains small at low temperature

(< -30 Celsus Degree). Studies illustrate that the pressure required to reach the

melting temperature is usually larger than the compressive failure stress in these

small friction situations, which is not physically realizable [114].

Frictional heating is currently predominant in explaining the physics of ice fric-

tion [118, 119]. The friction between the ice surface and slider generates heat, which

in return increases the temperature of local asperities. If up to the melting point,

the local surface of ice melts to form the liquid-like layer. Studies on the mod-

elling of friction coefficient using frictional heating as the dominating mechanism

achieve very consistent agreement between the theoretical model and experimental

results [118, 119]. We make a simple estimation of the heat generated by friction.

The heat generating power is given by:

Ff u CfFnu (6.1)
A A

where 4A is the heat generating power per area, Ff is the frictional force, u is the

velocity of the slider and A is the contact area between the slider and the ice surface.

Assuming in the regime of hydrodynamic lubrication regime when the speed of the

skate is high enough (> 3 m/s), the heat generated can be shown as:

du 2
qv=y - , (6.2)

1dh
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where q, is the heat generating power per volume, p is the viscosity of water, u is

the velocity of the slider, h is the local thickness of the lubrication liquid-like layer.

Under an over-simplified assumption that all of the heat is used to melt the ice surface

into water, a 500 pm liquid-like layer could be formed due to the frictional heating,

indicating a sufficient heating power for the agreement of the results as observed in

experiments.

6.1.2 Stribeck Curve

Stribeck curve is a fundamental concept in the field of tribology, to characterize the

friction coefficient as a function of Hersey number [120, 121]. Hersey number is a

dimensionless lubrication parameter, defined as [1221:

Hr = IV (6.3)
Fn/L'

where p is the dynamic viscosity of the fluid as the lubricant, v is the speed of the

fluid, F. is the normal load and L is the length of the slider in the longitudinal

direction.

Based on the physics of the friction mechanisms, the Stribeck curve can be decom-

posed into several regimes, which are still controversial. In one proposal, three regimes

can be identified: boundary friction regime, mixed friction regime and hydrodynamic

regime [120, 123. In the regime of boundary friction, the two solid surfaces come

into full asperity contact in absence of any liquid lubricating layer [120, 123]. The

friction coefficient is very large due to the fact that the load is supported mainly by

surface asperities [120, 123]. In the regime of hydrodynamic lubrication, the thickness

of the lubricating layer between the two contact surfaces are larger than the height

of asperities [120, 123]. The asperity contact is negligible, with the normal load fully

supported by the hydrodynamic pressure. In the regime of mixed lubrication, the

friction mechanism incorporates both mechanisms in the regimes of boundary fric-

tion and hydrodynamic friction [120, 123]. The normal load is supported by both

asperities and the liquid lubricant with partial contact between two solid surfaces.
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In the other proposal, the boundary friction regime is further decomposed into

two regimes: a dry-friction regime and a boundary-friction regime [124]. Dry friction

is defined to be the friction when the sliding contact of two surfaces is in the absence

of any kind of lubricating layer and boundary is redefined as when the lubrication

layer in few molecular layers [124].

Study shows that no dry friction exists for the contact between ice and other

metal surfaces for a wide range of Hersey number [28]. In our study on the friction

between skate blades and ice, we adopt the first proposal, where three regimes are

identified in the Stribeck curve - boundary friction regime, mixed friction regime, and

hydrodynamic lubrication regime.

6.1.3 Kinetic Friction of Ice

The friction coefficient depends mildly on the temperature within a range of ±20% [125,

126, 127, 128]. Over the temperature ranging from -25 Celsus Degree to 0 Cel-

sus Degree, the friction coefficient obtains its minimum between -7 and -2 Cel-

sius Degree depending on the normal load, the relative speed and the slider ma-

terial [125, 126, 127, 128]. As the temperature increases, the friction coefficient is

experimentally measured to decrease gradually before it reaches the minimum and

then to arise abruptly from the minimum point [125, 126, 127, 128].

The relationship between friction coefficient Cf and the relative velocity v varies

in different regimes defined by the Stribeck curve. In the mixed friction regime, the

friction coefficient Cf scales roughly as Cf - v- 1 / 2 [129, 127, 130]; in the hydrody-

namic regime, the friction coefficient Cf scales roughly as Cf - v 1/2, based on the

regression results from all the experiments in prior arts [130, 131, 132]. The mag-

nitude of friction coefficient may vary one order away from each other based on the

experimental setup.

Experimental results show no clear tendency for the friction coefficient on the

apparent area of contact. Experimental results from Bowden shows little dependency

on the contact area [133], while experimental results from B6urle suggest that the

friction coefficient increases exponentially as the apparent contact area increases [130,
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134]. The difference in their conclusions may result from their difference in samples

and the experimental setups.

We find two predominant models for the friction coefficient. The first theoretical

model was developed by Evans considering the ice friction governed by the frictional

heating [135]. The total frictional heat Qtot can be described as three components:

Qtot QS + Q + QM, (6.4)

where Q, is the heat conducted away from the slider, Q, is the heat diffusing into

ice and QM is the heat used for melting the ice surface. Evans further derives the

friction coefficient Cf based on Eqn. 6.4:

CAAs(Tm - T0) C'4As(Tm - T0 )
Cf Fv + Fvl/2  + Cfm, (6.5)

where Tm and To are the melting and ambient temperature respectively, A, is the

thermal conductivity of the slider, CA is a constant based on the apparent contact

area between the slider and the ice surface, C' is an another constant based on

the actual contact area between the slider and the ice surface, F , is the normal

force exerted on the slider, v is the relative velocity of the slider, Cfm is the friction

coefficient resulting from melting [135].

The second theoretical model was developed by Oksanen accounting for the hy-

drodynamic friction based on Evans's model [136]. In the regime of hydrodynamic

friction [136]:

Cf = C (2v) 1 / 2 [T1 (Arcjpj) 1 /2 + A Ts(Ascsps)1/2 (6.6)

n1/4C3/4 11/
+ (n -[ATI(Acp1)1/2 + ATs(Ascsps) 1 / 2] 2 + r 12vhpo) ,

where n is the number of discrete contacting points, CA is a constant based on the

actual contact area between the slider and the ice surface, A, and As are thermal

conductivity, c, and cs are the specific heat capacity and p, and ps are density, for
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ice and the material of the skate blade, respectively [136.

6.2 Dimensional Analysis

We perform a dimensional analysis to further investigate the relationship between

the friction coefficient, skate geometries, ice properties and motion parameters. The

solution variable is selected to be the frictional force Ff. Our ultimate goal is to

study the dimensionless friction coefficient C F /F. Additional parameters are:

the length of the blade L, the thickness of the blade W, the viscosity of water P, the

Young's modulus of ice E, the relative velocity of blade with respect to ice v, and

the normal force exerted on ice by the blade F,. The resulting functional dependence

between these seven parameters can be stated as:

f(Ff, L, W, y, E, v, F.) = 0. (6.7)

There are three independent dimensions in the selected variables. Based on the Buck-

ingham's theorem, these seven variables can always be combined to form exactly four

independent dimensionless parameter groups. Each dimensionless parameter group

is commonly called a H-group or a dimensionless group. Following a routine pro-

cedure of creating the dimensional matrix, determining the rank of the dimensional

matrix, determining the number of dimensionless groups, we construct the dimen-

sionless groups:

H1 - Cf= Ff/Fn,

H2 = L/W,

pV (6.8)
Fn/ L'

F/LW
H4 = EF'

where 1 = Cf is the friction coefficient, H2 is the aspect ratio of skate blades, H3

is the Hersey number, and H4 quantifies the ratio of pressure on ice to the Young's
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modulus of ice. The dimensionless relationship can be expressed as:

F5 L ptv F|LW
F W' Fn/L' E (6.9)

where q is an undertermined function. Seven variables are reduced to four dimen-

sionless groups, which significantly reduces the experimental effort.

6.3 Experimental System

Based on the dimensional analysis, we designed an experimental system to measure

the friction coefficient Cf to quantify the relationship between the friction coefficient,

skate geometries, ice properties and motion parameters.

We are particularly interested in the friction coefficient during the hockey slide and

the hockey stop. Hockey slides and hockey stops are characterized by the direction

of the skate blades and the direction of their motion. We, therefore, designed two

geometries for the skate blades. As shown in Fig. 6-1, one geometry is a rectangular

plate used to measure the friction coefficient C, where the frictional force Ff is

perpendicular to the moving direction of the geometry; the other geometry is a thin-

walled circular cylinder used to measure the friction coefficient C where the frictional

force Ff is parallel to the moving direction of the geometry.

Our experimental system is designed to mimic the environment of an ice rink. As

shown in Fig. 6-1, a sheet of ice is made by a Peltier plate, exposed to the ambient

room temperature. We used a commercial stress-controlled shear rheometer (AR-

G2, TA Instruments) to precisely control the angular speed of the geometry and to

measure the required torque. Rheometer is typically used for the measurement of

fluid rheological property. We used rheometer in our experiments for the aim of

high precision of angular speed control and of high precision of torque measurement

instead. This experimental system is a scaled prototype for the scenario where the

hockey skate blades are used in an ice rink by hockey players or sled hockey players.

We vary the dimensions of each type of geometries: for the rectangular plate, we
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(a) (b)

Geometry

|ce

Peltier
plate

Heat sinik

Figure 6-1: Experimental setup used to measure the friction coefficient Cf. (a) The
geometry is a rectangular plate used to measure the friction coefficient C-, where the
frictional force Ff is perpendicular to the moving direction of the geometry. (b) The
geometry is a thin-walled circular cylinder used to measure the friction coefficient C,)
where the frictional force Ff is parallel to the moving direction of the geometry.

varied two thicknesses (0.2032 mm and 0.4064 mm) and three lengths (5 mm, 10 mm

and 20 mm); for the thin-walled circular cylinder, we varied three diameters (05 mm,

010 mm and 020 mm). In addition, we vary the angular velocities of the geometries:

for the rectangular plate, we varied the angular velocity ranging from 0.5 rad/s to

5 rad/s; for the thin-walled circular cylinder, we varied the angular velocity ranging

from 0.1 rad/s to 300 rad/s.

For a regular hockey stop, the Hersey number is around pL/FN 10 ; for

a regular hockey slide, the Hersey number is around vL/FN 1 10-. Thus, our

experiments should be designed to cover the range of Hersey number from 10-12

to 10-6. The pressure on ice exerted by the skate of a hockey player is around

FN/LW 106 Pa. The parameters in our experiments are selected to cover the

range around 106 Pa.

In the experiment, the angular velocity is controlled by the shear rheometer (AR-

G2), in the range of 0 to 300 rad/s. The normal force is passively measured, in the

range from 0 N to 50 N; the torque is measured, in the range from 0 to 200 mN . m

with a resolution of 1 nN -m.
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6.4 Asymptotic Analysis

We perform an asymptotic analysis to investigate the frictional coefficient in a large

range of Hersey number ranging from 10-12 to 104 and compare the theoretical

results with the experimental results.

In section 6.4.1, we discuss the asymptotic analysis for elastohydrodynamic (EHD)

contacts, where Hersey number ranges from 10-7 to 10-4. In this regime, the direction

of the motion of skate blades is parallel to the longitudinal direction of the blades.

The friction coefficient C" is governed by the Reynolds equation. In section 6.4.2, we

discuss two limit conditions of the asymptotic analysis for boundary contacts, where

Hersey number ranges from 10-9 to 10-'. In this regime, the direction of the motion

of skate blades is parallel to the longitudinal direction of the blades. The friction

coefficient C is governed by the energy dissipation. In section 6.4.3, we discuss the

dependency of the friction coefficient Cy on the contact area, the normal force and

the relative velocity, where Hersey number ranges from 10-13 to 10-9. In this regime,

the direction of the motion of skate blades is the perpendicular to the longitudinal

direction of the blades.

6.4.1 Asymptotic Analysis for Elastohydrodynamic Contacts

Elastohydrodynamic (EHD) lubrication develops the hydrodynamic lubrication for a

pair of elastic contacts, which are prevalent in the field of tribology engineering, such

as bearings and gears [137, 138, 139]. In our study, the regime of EHD contacts is

bounded by Hersey number ranging from 10-7 to 10-4. In this regime, the direction

of the motion of skate blades is parallel to the longitudinal direction of the blades.

In 1886, Reynolds proposed a PDE as the first governing equation for the lubri-

cation of EHD contacts, well-known as the Reynolds equation [140, 141]. Reynolds

equation for an isothermal, incompressible lubricant in elastohydrodynamic (EHD)

contacts can be expressed as [140, 141]:

( h3_aP + a h W P U~h A h
+ - - - =- -+- (6.10)

ax 12p Ox ay 12p at 2 x 8t'
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where h is the local lubrication film thickness, P is the local pressure, U is the velocity

of the upper boundary and y is the viscosity of Newtonian lubricant.

We adopt the Reynolds equation Eqn. 6.10 as the governing equation to study

the friction coefficient between the ice surface and the skate blade. As a first-order

approximation, we scale the terms in the equation, yielding the local thickness h:

h ~ (pL U/P) . (6.11)

The friction coefficient Cf is the defined as the ratio of the friction force Ff to the

normal force F,. In the limit of EHD, the friction force arises from the viscous force

given by the product of shear stress and contact area pUWL/h. Thus,

Ff_ pUW L/h puU
Cf = - = - (612)

Fn PWL Ph

By plugging in h into Cf, in the limit of elastohydrodynamic (EHD) contacts, the

friction coefficient Cf follows:

Cf ~ p2L-2U2P- . (6.13)

Fig. ?? relates the friction coefficient Cf with the pressure P. The slope of the linear

regression for our experimental results in log-log scale lies between -0.57 and -0.35,

which reasonably agrees with the theoretical result -0.50. As the velocity of the slider

in our experiments increases, the contact approaches the limit of EHD contacts; as a

result, the experimental results increasingly agree with the theory.

6.4.2 Asymptotic Analysis for Mixed Contacts

In the regime of mixed friction, we consider the heat dissipation as the governing

physics. The energy dissipation rate per unit volume with the friction as the heat

source is given by:
OT Oh

E±ssp - 'V T + PC + PC, (6.14)
at at
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where h is the local lubrication film thickness, c is the specific heat, cl is the specific

latent heat, - is the thermal conductivity and T is the temperature.

The friction coefficient Cf can be derived as [127]:

C - 188 "a pc r i n i (6.15)P- 75  U \LWP/

where Tf is the characteristic frictional temperature, T are temperature of approach-

ing track, P is the local pressure, U is the velocity of the upper boundary, L is the

length of the slider, W is the width of the slider, n is the number of discrete asperi-

ties. Therefore, in the regime of mixed friction, Cf ~ P-- in the situation of partial

contact, and Cf ~ P-- in the situation of full contact. As shown in Fig. ??, the

slope of the linear regression for our experimental results in log-log scale lies between

-0.55 and -0.35, which are reasonably bounded by the theoretical results -1 and -0.25

respectively.

6.4.3 Asymptotic Analysis for Boundary Contacts

In the boundary friction regime, the friction coefficient is a constant, which is inde-

pendent of the normal force, the contact area and the relative velocity of the two

surfaces.

To measure the friction coefficient in lab environment, we scale down the size of

the skate blade. The thickness of the blade is less than 2 mm; the length is larger

than 200 mm. Thus, the aspect ratio of the skate blade W/L ~ 2mm/200mm < 1.

The blades scratches the ice surface during a turn. The amount of ice it scratches

may depend on the penetration depth. We, therefore, propose a hypothesis:

Ff = (C-/f (P)Pf,(.6

where Ff is the friction force, Cf(P) is the friction coefficient when the moving

direction is perpendicular to the longitudinal direction of the blade, P is the average

pressure exerted on ice and - is the power. In our hypothesis, Cy(P) depends on the
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Figure 6-2: r/L2 versus FN/WL for thickness W = 0.2032mm. (Inset) Torque (N m)
as a function of normal force (N) for three lengths, L (mm) and for three angular
velocities, Q (rad/s). Dashed lines are linear regression lines. The slope of the linear
regression line is 0.96.

123



average pressure P and the unit of C' should be adapted based on the value of Y. In

the scenario of our experimental system, under the condition of our hypothesis, the

torque T need to satisfy:

rf = 2 Cf (P)) x dx. (6.17)

Alternatively, the above equation 6.17 can be reorganized as:

~( ( f ' (6.18)

Fig. 6-2 (Inset) shows the original experimental results using three lengths of the

scaled blades with angular velocity ranging from 0.5 rad/s to 5 rad/s. To further

examine the power y in our hypothesis, we plottedT/L2 versus FN/WL in log-log

scale in Fig. 6-2. The linear regression in log-log scale informs us that the slope of

the regression line is 0.96, which is very close to 1. Therefore, we propose that T/L2

and FN/WL follows a linear relationship rather than a power-law relationship. Thus,

the friction coefficient Cf can be expressed as:

C 4TW (6.19)
LFN

Furthermore, we plotted 4T/L versus FNwith thickness W = 0.2032mm for three

lengths (L) and for three angular velocities (), and find that data collapse to one

single line for a wide range of angular velocities, length scales and normal forces (see

Fig. 6-3). We conclude that the friction coefficient Cf is independent of angular

velocities, length scale and normal force within the scope of our experiments. Thus,

the friction coefficient C' can be redefined simply as C Ff/FN, where Ff and

FNare the frictional force and normal force respectively. The friction coefficient Cf

using the linear regression is 0.22 ±0.02.

We repeated all the experiments using another scaled skate blade with a thickness

W = 0.4064mm, which is as twice thick as that in the previous experiments. All
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Figure 6-3: 4T/L(N) versus FN(N) for thickness W 0.2032mm for three lengths, L

(mm) and for three angular velocities, Q (rad/s). Dashed lines are linear regression
lines. The slope of the linear regression line is 0.22 ± 0.02.

the conclusions stay true. The friction coefficient Cy using the linear regression is

0.22 ± 0.03, which is also consistent with the results in previous experiments. (see

Appendix for the figures of the experimental results)

6.5 Modified Stribeck Curve for Friction Coeffi-

cient

In the field of tribology, Stribeck curve is widely used to characterize the friction

coefficient as a function of Hersey number Hr = pvL/F,. Based on the results

from the dimensional analysis, asymptotic analysis and the experiments, we find that

in the regime of boundary friction, the friction coefficient C' is a constant about

0.22, independent of the dimensionless groups of Hersey number and pressure ratio.

In the mixed regime, the friction coefficient Cf ~ U-2PH-1]'. In the regime of

Cf ~ U2P~- . Fig. ?? shows the Stribeck curve for pressure ratio yp = P/E ranging

from 10-5 to 10-2, where E is the Young's modulus of ice, with our model using a
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multi-linear regression in the logarithmic scale.

In ice hockey, the schemes of frequent intermittent skating can be categorized as

hockey slide and hockey stop, the directions of which are parallel and perpendicular to

the longitudinal direction of the skate blade, respectively. The corresponding Hersey

number Hr for a hockey slide and a hockey stop are 10-7 and 10-11, which locates at

the transition from the mixed friction regime to the hydrodynamic lubrication regime

and the boundary friction regime, respectively. The resultant friction coefficient in

the different regimes varies one order in magnitude, in return, further verifying the

adaptation of skating schemes to the physics of nature.

In addition, we compare this modified Stribeck curve to the Moody diagram and

find their interesting analogy. Moody diagram relates the Darcy-Weisbach friction

factor Cf to the Reynolds number Re [142, 143]. In the laminar flow regime, the

friction factor Cf = 64/Re; in the turbulent flow regime, friction factor depends

on both Reynolds number Re and the roughness e. Our modified Stribeck curve

relates the friction coefficient Cf to the Hersey number Hr. In the boundary friction

regime, Cf = 0.22; in the mixed friction regime and hydrodynamic regime, the friction

coefficient depends on both Hr and pressure ratio P/E, where E is the Young's

modulus of ice.

126



Chapter 7

Algorithms of Clustering for

Physical Inference in Tribology

The physics of tribology of ice friction depends on the dimensionless groups (Hersey

number Hr, pressure ratio P and aspect ratio V) discovered in Chapter 6. We found

three regimes - elastohydrodynamic (EHD) contacts regime, mixed contacts regime

and boundary contacts regime. To infer the physical regime with respect to the mod-

ified Stribeck curve, we developed a pipeline using clustering methodologies adapted

from the field of data science.

This chapter starts with the restate of the results from dimensional analysis and

asymptotic analysis. We present the algorithms for clustering models using K-means

clustering and Gaussian mixture clustering, followed by the clustering results based

on our experimental data.

7.1 Feature Extraction and Feature Selection

Our dimensional analysis and asymptotic analysis shows that in the regime of elas-

tohydrodynamic (EHD) contacts, the friction coefficient Cf follows:

Cf [t~pL-U P-, (7.1)
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where h is the local lubrication film thickness, P is the local pressure, U is the velocity

of the upper boundary and y is the viscosity of Newtonian lubricant. In the regime

of mixed contacts [127]:

C = 1. 8 8 Tfr-pTa(Pc n (7.2)f pO.75 U LW P '

where Tf is the characteristic frictional temperature, T, are temperature of approach-

ing track, P is the local pressure, U is the velocity of the upper boundary, L is the

length of the slider, W is the width of the slider, n is the number of discrete asperi-

ties. Therefore, in the regime of mixed friction, Cf - P-z in the situation of partial

contact, and Cf - P-1 in the situation of full contact. As shown in Fig. ??, the

slope of the linear regression for our experimental results in log-log scale lies between

-0.55 and -0.35, which are reasonably bounded by the theoretical results -1 and -0.25

respectively. In the regime of boundary contacts,

C _ = ~ 0.22 ±0.02 (7.3)L FN

indicating that Cf is independent of the Hersey number and pressure ratio.

The primary differences in physics that distinguish the three regimes of the mod-

ified Stribeck curve, therefore, is manifested by the power-law dependency of the

friction factor Cf on the dimensionless groups, i.e. Hersey number Hr and pres-

sure ratio P. The experimental results are scattered data with features (Ci, Hr, P).

We aim for the partial derivatives &Cf /Hr and Cf /P as indispensable features.

These partial derivatives are unfeasible to be estimated from the scattered data, be-

cause in the experimental scenario, neither Hr nor P are kept as constants for the

experiments or even the subgroup of the experiments. Empirical trials with sliced

data to estimate the partial derivatives result in substantial noise.

We perform regression on the entire data set, followed by a small neighbourhood

perturbation with respect to Hr and P, to estimate the partial derivatives Cf /Hr
and Cf /8P, respectively, serving as two new features in the following clustering.
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7.2 Algorithms for Clustering Model

Clustering is a process of grouping subsets of elements in the available space, widely

used in many engineering and science context [144, 145, 146]. In prior arts, a large

amount of clustering algorithms have been developed and implemented with their own

pros and cons[147, 148]. In this chapter, we will only cover two clustering algorithms

that outperform the others with our experimental data.

7.2.1 K-Means Clustering

Given a set of observations (input) (X 1 , x2 , ... , x,), where x E R, k-means clustering

method is applied to partition the observations (input) into k (< n) clusters (sets)

C = {C1, C 2 ,..., Ck} with the minimal error WCSS (within-cluster sum of squares),

i.e.
k

C=argminE = arg min 1x -_ i1, (7.4)
C C i=0 xjEcC

where E is the error function and pi is the mean for the points in C, also known as

the prototype in C.

The algorithm of the k-means clustering algorithm is:

Algorithm 3 Pseudocode for k-means clustering algorithm

1: procedure k-MEANS(D, k)
2: Initialize prototypes t {pi, p2,.. ,- yk}.
3: for iteration t = 1 to T do
4: for each observation x, j{,1, ... , n} do
5: Assign xj to cluster Ci with nearest prototype pi

6: for each cluster C do
7: Update prototype pi +-Y.-E 0x j/card(C)

8: Compute error E < -Z E ect ||j - Mill2

This time complexity for the first inner for-loop, in Algorithm. 3, is O(nkd), for

the second inner for-loop is 0(nd), for the error computation is 0(nd). The algorithm

may terminates when the iteration reaches its maximum, or when the elements in each

cluster remains, or when the error E does not change significantly.
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7.2.2 Gaussian Mixture Clustering

A random variable X E Rd following the multivariate Gaussian distribution can be

denoted as:

(7.5)

where p E Rd is a d-dimensional mean vector y = E(X) and E is a d-by-d covariance

matrix E = Cov(Xi, Xj). The probability density function is:

1 1
fx (zi, . ,z) -- exp (X -

(27)k/2j~j' ( _/2
tt) . (7.6)

In the context with clustering, for each input vector, i.e. observation Xi conditioned

on cluster j, follows:

(7.7)

In the Gaussian mixture model, the probability density function

k

p(x|O) = (3p (xlp, EX), j ~ Multinomial(p1, ... ,pk),
j=1

(7.8)

where 0 is the latent variable 0 = (#, pi,... , yk, 1, ... , Ek), # is the mixture

weights for each cluster.

Before taking the assignment of clustering into account, the incomplete-data loss

function is defined as the conditional log-likelihood:

n k

(7.9)L (0; x) = log E4j fxi (xi; p, E2),
i=1 j=1

After taking the assignment of clustering into account, the complete-data loss function

is defined as the conditional log-likelihood:

n k

L(0; x, C) = log ] r [#3 fx2 (xi; p Ej)]E(C=j)
i=1 j=1
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X-A~dN(A , Edx d),

Xjl(Cj = j) ~ NAd(Aj, Ej), j E {1, 2, . Q }



where 0 is the latent variable 0 = (p, pi,... , 1,. , Ek), is an indicator func-

tion.

7.3 Clustering for Physical Inference in Tribology

Based on the results of asymptotic analysis, we propose a piece-wise multi-linear

model to predict the friction coefficient. A more detailed discussion will be presented

in Chapter 8. In order to perform the piece-wise multi-linear model, the regime that

each data belong to needs to be determined ahead. The clustering algorithm is applied

to cluster the data into three regimes based on the three dimensionless groups and

their partial derivatives with respect to Hersey number Hr.

Results in Chapter 8 are duplicatedly shown as the following for readers conve-

nience. We take the logarithmic form of the three dimensionless groups as our features

due to the power-law relationship derived from the asymptotic analysis. For Hersey

number from 10-12 to 10~, the contact between the skate blade and ice lies in the

regime of boundary friction. The friction coefficient Cy is independent of all the

three dimensionless groups H1 , N2 and H 3 . For Hersey number from 10-9 to 10-7,

the contact between the skate blade and ice lies in the regime of mixed lubrication.

The friction coefficient C highly depends on Hersey number U2 and the pressure

ratio H 3 ; For Hersey number from 10-7 to 10-4, the contact between the skate blade

and ice lies in the regime of hydrodynamic lubrication. The friction coefficient C

primarily depends on Hersey number H 2.

The results of the piece-wise multi-linear regression for the test set are shown in

Fig. 8-2. The regression are performed for Hersey number in the ranges from 10-12 to

10-9 and from 10-7 to 10-4. The R2 of both models are 0.97, with standard deviations

less than 0.1. The prediction using this model achieves a very small prediction error

for the test set. We only take the three dimensionless groups in logarithmic scale

based on the conclusions from the asymptotic analysis. It suggests that using the

three dimensionless groups achieves a slightly better (0.5%) test accuracy than using

the original four features.
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Figure 7-1: (a) Predicted friction coefficient In O versus experimental friction coef-

ficient InC using linear regression for Hersey number ranging from 10-1 to 10-1.
Three dimensionless groups are taken into account: X = [In Hi, n 112, in 113]. The
diagonal blue line indicates the perfect prediction of In C . The R2 of this model
is 0.97. (b) Probability density as a function of the residual between the prediction
and experimental results of friction coefficient In C - In 1 using linear regression
for Hersey number ranging from 10-9 to 10-7. The orange line indicates a kernel
density estimation (KDE). The standard deviation o = 0.08. (c) Predicted friction
coefficient In O versus experimental friction coefficient in C using linear regression
for Hersey number ranging from 10-7 to 10'. Three dimensionless groups are taken
into account: X = [In H 1,ln H2,in H3]. The diagonal blue line indicates the perfect
prediction of In C". The R2 of this model is 0.97. (d) Probability density as a function
of the residual between the prediction and experimental results of friction coefficient
In C - In O using linear regression for Hersey number ranging from 10-7 to 10-4.
The orange line indicates a kernel density estimation (KDE). The standard deviation
a = 0.06.
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Chapter 8

Algorithms of Regression for

Stribeck Curve in Tribology

8.1 Background and Introduction

To the best of our knowledge, there does not exist any analytical or numerical models

for the friction coefficient between ice and skate blades. Our experiments measuring

the friction coefficient using rheometers are designed to mimic the real environment

of ice rink, where the ice is made by a Peltier plate exposed to an ambient room

temperature. Based on our experimental data, we propose a set of parametric and

non-parametric models for the friction coefficient using machine learning techniques

in an extensive range of Hersey number from 10-12 to 10-5.

For each regression technique, we propose two models for the friction coefficient

Cf(= H1 ). The first one uses the original set of parameters, i.e. the blade length

L, the blade thickness W, the water viscosity p, the Young's modulus of ice E, the

relative velocity of blade with respect to ice v, and the normal force exerted on ice by

the blade F,; the second one uses the dimensionless groups, i.e. the aspect ratio of

skate blades H2  L/W, the Hersey number s = [vL/F,, and the ratio of pressure

on ice to the Young's modulus of ice H4 = F/ELW. The first model applies all of the

four experimental variables as features; the second model applies three dimensionless

groups as features in the reduced form.
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8.2 Algorithms for Statistical Model

8.2.1 Multi-Linear Regression

In this section 8.2.1, we first introduce the general derivation of multi-linear regression

model based on high-dimensional data to predict a single dependent variable to min-

imize the sum squared error. We then fit and discuss a set of multi-linear regression

models with the experimental results in a wide range of Hersey number from 10-12

to 10-5.

Linear regression is the very simplest regression method. Despite of its limitation,

we perform and compare the results of multi-linear regression using the original four

features and using the reduced three dimensionless features with the physical insight

drawn from dimensional analysis and asymptotic analysis.

To set up the problem of a multi-linear regression in general, we may consider

p independent variables xi,..., x, and one dependent variable y. Suppose we have

n (n > p) observations,

yj =_ #o + #1xj1 + ... + #,zjp + ci = 1, ... , n, (8.1)

where #i are the coefficients of the i-th dependent variable xi. Our goal is to minimize

the sum of squared residuals (errors) c. Thus, the cost function is:

n n P 2

i=1 i=1k j=1

In the vector and matrix representation, the dependent variable can be expressed in

a more compact form:

y = X'3 + E, (8.3)

where

yi 1 1u ... Xp #1 C1

yn 1zi ... zn, #3p en
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Our goal is to find a 3 that minimizes the ||E|| where E = y - X3. Based on the

orthogonality principle, < y - X/, X >= 0. Thus,

XT(y - X)) = 0. (8.5)

Solving the above equation yields = (XTX)-Xy with the corresponding§

X(XTX)-1XTy.

Alternatively, we may solve the over-constrained problem from the probabilis-

tic perspective applying statistical theories. We formulate the problem, with a

vector of output random variables Y: Y = [yi, Y , where random variable

Y1 [y?, . .. , ], with a vector of input random variables X: X = [x1 , . . ,],

where random variable x1  [x... , x]. Our goal is to find a multi-linear estima-

tor :

Y=arg min Y-Y . (8.6)
Y 2

We require the estimator unbiased, E[Y] = E[Y]. Eqn. 8.6 can be achieved by the

orthoganality condition, E[(Y - Y)XT] = 0. Thus, the estimator Y:

~~ryi Cov(X Y)(X[]=E[Y] + 'O(,Y (X - E[X]. (8.7)Var(X)

The two methods are essentially equivalent. In our application, the dependent

variable is the friction coefficient y = Cf, and there are two choices of the independent

variables X. For features using original experimental variables, X = [L, W, U, F];

and for features using dimensionless groups, X= [ln H1, ln12, ln13]. Based on

our asymptotic analysis, the dimensionless groups follow power-law relationships; we,

thus, take the logarithmic of each dimensionless group.

We use Python Scikit-Learn package to apply the multi-linear regression and pro-

pose two sets of models - a multi-liner regression model and a piece-wise multi-linear

regression model. In the first model, we perform a multi-linear regression model for

the friction coefficient between ice and skate blade in a wide range of Hersey num-

ber from 10-9 to 10-. As shown in Fig. 8-1, the error of prediction for the friction
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Figure 8-1: (a) Predicted friction coefficient O versus experimental friction coefficient

C) using linear regression for Hersey number ranging from 10-9 to 10-. All the seven

variables are taken into account: X = [L, W, U, F, Hi, )2, 31. The diagonal blue
line indicates the perfect prediction of Cf. The R2 of the model is 0.57. (b) Probability
density as a function of the residual between the prediction and experimental results

of friction coefficient C - O using linear regression for Hersey number ranging from
10- t 1 -5f f

10-to104. The orange line indicates a kernel density estimation (KDE). The
standard deviation of the residual is 0.015.

coefficient Cf is very large. The R 2 of the model is 0.57 and the standard deviation

of the residual is 0.015. The error of the model is unacceptably large. In this model,

we take into account all the seven variables: X = [L, W, U, F, H1, H2, H3. We also

perform multi-linear regressions considering other sets of features:

X1 = [L, W, U, F],

X 2 = [Hi,H2,131,

X3= [ln L, ln W, ln U, ln F], (8.8)

X4= [ln I, ln 112, In H3],

X = [ln L, ln W, ln U, ln F, ln H1, ln H2 , ln H 3].

The errors of multi-linear regression using any of the feature sets can not achieve

acceptable predictions. (see Appendix to see the results using the rest of the feature

sets) The errors primarily result from the nonlinear relationship between the friction

coefficient and the accounted features. The Stribeck curve for the friction coefficient
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in general can be referred to for understanding the nonlinearity.

Based on the results of asymptotic analysis, we propose a piece-wise multi-linear

model to predict the friction coefficient. We take the logarithmic form of the three

dimensionless groups as our features due to the power-law relationship derived from

the asymptotic analysis. For Hersey number from 10 2 to 10-9, the contact between

the skate blade and ice lies in the regime of boundary friction. The friction coefficient

Cf is independent of all the three dimensionless groups I1, l2 and H3 . For Hersey

number from 10-9 to 10-7, the contact between the skate blade and ice lies in the

regime of mixed lubrication. The friction coefficient C highly depends on Hersey

number U2 and the pressure ratio 3 ; For Hersey number from 10-7 to 10~4, the

contact between the skate blade and ice lies in the regime of hydrodynamic lubrication.

The friction coefficient C primarily depends on Hersey number l 2 .

The results of the piece-wise multi-linear regression for the test set are shown in

Fig. 8-2. The regression are performed for Hersey number in the ranges from 10-12 to

10-9 and from 10-1 to 10-4. The R2 of both models are 0.97, with standard deviations

less than 0.1. The prediction using this model achieves a very small prediction error

for the test set. We only take the three dimensionless groups in logarithmic scale

based on the conclusions from the asymptotic analysis. It suggests that using the

three dimensionless groups achieves a slightly better (0.5%) test accuracy than using

the original four features.

8.3 Algorithms for Machine Learning Model

8.3.1 Random Forest Regression

We apply another non-parametric model for the regression of the friction coefficient,

where the complexity of our hypothesis ' depends on our experimental data. In

this section, we introduce the methodology of tree modelling and ensemble methods

followed by an application of Random Forest to our experimental results for regression.

The scenario of tree method is to recursively partition the input space X and fit
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Figure 8-2: (a) Predicted friction coefficient In versus experimental friction coef-

ficient In C using linear regression for Hersey number ranging from 10-' to 10'.
Three dimensionless groups are taken into account: X = [in H1, in 2 , in 113]. The

diagonal blue line indicates the perfect prediction of In C". The R2 of this modelf.
is 0.97. (b) Probability density as a function of the residual between the prediction

and experimental results of friction coefficient In C - In 1 using linear regression
for Hersey number ranging from 10-9 to 10-. The orange line indicates a kernel
density estimation (KDE). The standard deviation o = 0.08. (c) Predicted friction

coefficient in O versus experimental friction coefficient in C using linear regression
for Hersey number ranging from 10-7 to 10-. Three dimensionless groups are taken
into account: X = [In Hi, In 112, In 3]. The diagonal blue line indicates the perfect

prediction of In C. The R2 of this model is 0.97. (d) Probability density as a function
of the residual between the prediction and experimental results of friction coefficient
In C - In O using linear regression for Hersey number ranging from 10-7 to 10-4.
The orange line indicates a kernel density estimation (KDE). The standard deviation
o- = 0.06.
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simple hypothesis h in each region. The problem for regression tree method can be

formulated: Given M regions R 1 ,..., Rm and the output values 01,.. , Om. We

may assume for each partition we fit a piecewise constant. Thus, our hypothesis 7

is: (x) = Om when x C Rm. The squared error in each partition Em:

Em (y(i) - Om)2, (8.9)
{ilx()ERm}

The cost function we minimize is the sum squared error with regularization:

M

Et5t = Em + AM. (8.10)
m=1

This optimization problem brings challenge for the differentiation of the cost function.

Alternatively, a greedy algorithm is applied by starting with M 1, then recursively

and greedily dividing the input space X. We define:

Rt (D) = {z E Djz ;> s},R~~() {C~f~s},(8.11)

RI,(D) = {x c Dx < s},

where D is the data set, and

Q ̂+(D) = yW0

Ols(JD) = N.W
{ijx(')ER7.(D)}

The algorithm of the regression tree is:

Algorithm 4 Pseudocode for Regression Trees

1: procedure BUILDTREE(D)

2: if |D < k then
3: return Leaf(D)
4: else
5: find (j, s) = arg min(j,,) ER±,(D) + ER-,(D)

6: return Node(j, s, BuildTree(R_,(D), BuildTree(Ri' (D))
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Figure 8-3: Predicted friction coefficient O1 versus experimental friction coefficient

C using Random Forest regression. (a) Regression results using original experimen-

tal variables, where X = [L, W, U, F]. The diagonal blue line indicates the perfect
prediction of Cf. The R2 of the model is 0.972. (b) Regression results using dimen-
sionless groups, where X = [In H, In 112, ln H3]. The diagonal blue line indicates the

perfect prediction of Cf. The R2 of the model is 0.976.

Regression tree method can achieve high prediction accuracy on training data,

while is difficult to generalize to other data sets due to the high variance [149, 150].

To compensate for this drawback, ensemble methods for regression tree are utilized

to reduce the high variance [150, 151.

Random forests apply the bootstrapping aggregation ensemble (also known as

bagging ensemble) on the regression trees. In the algorithm of random forests, we

construct a subset B of size n by sampling with replacement from dataset D, and

train a regression tree with each of the subset B to obtain fb. The estimator of the

random forest is the average response from all regression trees:

fbag (X) b(), (.13)
NBb

where NB is the number of the subsets or regression trees, and jb(x) is the regression

trees estimator for each subset of the data.

We apply a random forests regression to predict the friction coefficient Cf between

ice and skate blades. The results of the random forest regression are shown in Fig. 8-3
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Figure 8-4: Probability density as a function of Cf - C using Random For-
est regression. (a) Regression results using original experimental variables, where

X = [L, W, U, F]; (b) Probability density as a function of the residual between the

prediction and experimental results of friction coefficient C - O" using dimensionless

groups, where X = [In H1, In 2 , ln 31.

and Fig. 8-4. Using features X1 = [L, W, U, F] and X 2 = [In H1, In 1 2 , In 3] both

achieve a high accuracy of prediction with R 2 around 0.97. The features X 2 are

obtained based on the results from dimensional analysis, which are essentially the

dimensionless groups. The asymptotic analysis unveils the power-law relationship

between the friction coefficient Cf and the Hersey number, suggesting to construct

features X 2 in logarithmic scale. The results using three features in logarithmic scale

X 2 shows a slightly higher accuracy than that using four features X 1, which further

verifies the conclusions from the dimensional analysis and the asymptotic analysis.

In addition, we apply a random forests regression using alternative features:

X1 = [L, W, U, F],

X2 = [H1, H r2, H 3],7

X3 = [In L, In W, In U, In F], (8.14)

X4 = [in I,, In 2, ln 113],

X5 = [ln L, ln W, ln U, In F, In I 1 ,, n H 2 , ln H3].
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Using the metric of R2 of the models, in general, the accuracy of the prediction

using dimensionless groups in logarithmic scale is higher than that using the original

variables. (see Appendix for the regression results for Of versus Cf and their residual)

8.3.2 Neural Network Regression

The fundamental idea of neural network can be dated back to 1943, proposed by

McCulloch and Pitts [152].

A neuron, also known as node or unit, is the basic element of a neural network,

usually representing a non-linear function a f (z) f (El xjw3 + wo) f (wT +

wo), where a E R is a single output scalar, f is an activation function, z is the pre-

activation output, x c R'mis an input vector, w =[w,... , Wm is a weight vector

and wo is an offset (threshold).

A layer consists of a set of neurons, also usually representing a non-linear function

A = f(z) = f(WTX + WO), where A E R" is an output vector, f is an activation

function applied element-wise, x E R mis an input vector, W [W 1 ,..., Wm] is a

weight matrix and Wo is an offset (threshold) vector.

A feed-forward neural network consists of a set of layers. A(' f(Z- ) =-

f (1)(W(TA('-) + W )), where the superscript I indicates that the corresponding

variable is in l-th layer. The element-wise activation function f is usually a non-

linear function (otherwise the neural network will be simplified as one single linear

function of X), which can take many representations including the step function,

rectified linear unit (known as ReLU), sigmoid function, hyperbolic tangent function

and softmax function.

This parametric model for regression using feed-forward neural network with an

associated loss function fro,, defines an optimization problem to explore the optimal

weight matrix W for each neuron. We opt to use gradient descent methods - batch

gradient descent or stochastic gradient descent (SGD), train the neural network. We

take SGD for instance to calculate VwLoss(NN(x(), W), y() by considering one

single data point (O, y()), where NN represents the overall function applying the

neural network and Loss(-, -) is a scalar calculated by fr,,,(-, .). This gradient can be
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obtained simply through a general process error back-propagation:

8Loss OA(' &Loss L OA(
L A- ( W(i) (8.15)

O =l+1

The algorithm of a fully-connected feed-forward neural network for regression is:

Algorithm 5 Pseudocode for Feed-Forward Neural Network with SGD
1: procedure NN-SGD(D, T, L, m, f)
2: for layer l1 = to L do
3: W -~ NA(O, 1/ml)
4: W( ~ A((O, 1)
5: fort= 1 toTdo
6: Z = rand{1,.. .,n}
7: for layer l = 1 to L do
8: Z -1= WT A('-' + W1

9: A(= f((Z (1)

10: Loss = f,0 s(A(L),Y(2))

11: for layer 1 = L to 1: do
12 Loss - (- 1)OAM' OLoss L W(i) OA(M

w( -. Z(O A(L) i-1+1 aZ(C
13: WO +-l WM - r(t) aL)s

We apply the fully-connected feed-forward neural network for regression for the

Stribeck curve. The regression results and the residue distribution are shown in

Fig. 8-5. They suggest a comparable performance as achieved by piece-wise multi-

linear regression and random forest regression.

8.4 Regression for Stribeck Curve

In the field of tribology, Stribeck curve is widely used to characterize the friction

coefficient as a function of Hersey number Hr = pvL/Fa. Based on the results

from the dimensional analysis, asymptotic analysis and the experiments, we find that

in the regime of boundary friction, the friction coefficient Cj is a constant about

0.22, independent of the dimensionless groups of Hersey number and pressure ratio.

In the mixed regime, the friction coefficient C ~% U_2P-,1]-. In the regime of

Cf ~ U-i. Fig. ?? shows the Stribeck curve for pressure ratio -, = P/E ranging
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Figure 8-5: (a) Predicted friction coefficient In O versus experimental friction coeffi-

cient in C using neural network regression for Hersey number ranging from 10-9 to
10-. Three dimensionless groups are taken into account: X = [in 1 1, In12, in13].

The diagonal blue line indicates the perfect prediction of In CJ. The R2 of this model
is 0.97. (b) Probability density as a function of the residual between the prediction
and experimental results of friction coefficient In C11 -In using linear regression for

109 o107f f
Hersey number ranging from 1-to10-.The orange line indicates a kernel density
estimation (KDE).

from 10-5 to 10-2, where E is the Young's modulus of ice, with our model using a

multi-linear regression in the logarithmic scale.

In ice hockey, the schemes of frequent intermittent skating can be categorized as

hockey slide and hockey stop, the directions of which are parallel and perpendicular to

the longitudinal direction of the skate blade, respectively. The corresponding Hersey

number Hr for a hockey slide and a hockey stop are 10-7 and 10-11, which locates at

the transition from the mixed friction regime to the hydrodynamic lubrication regime

and the boundary friction regime, respectively. The resultant friction coefficient in

the different regimes varies one order in magnitude, in return, further verifying the

adaptation of skating schemes to the physics of nature.

In addition, we compare this modified Stribeck curve to the Moody diagram and

find their interesting analogy. Moody diagram relates the Darcy-Weisbach friction

factor Cf to the Reynolds number Re [142, 143]. In the laminar flow regime, the

friction factor Cf = 64/Re; in the turbulent flow regime, friction factor depends

on both Reynolds number Re and the roughness e. Our modified Stribeck curve
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relates the friction coefficient Cf to the Hersey number Hr. In the boundary friction

regime, Cf = 0.22; in the mixed friction regime and hydrodynamic regime, the friction

coefficient depends on both Hr and pressure ratio P/E, where E is the Young's

modulus of ice.
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Appendix A

Approval Letters from the MIT

Committee on the Use of Humans

as Experimental Subjects

(COUHES)
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MT COMMite On to Use Ot Hwmang as KAOsAMM7TS Ts ~ aiS WIuoE0OMMIT fEpemnt Subjects 77JashmA"

To: Youzhi Liang

ro:Leigh Frn)Chirk 1

Date: 08/30017

Committee Action: Exemption Granted

Committee Action Date: 0/3020017

COU ES Protocol#: 170708658

Study Tite: Customer Needs Identifcation ofSled Hockey Players

The aboverefnc protocol is 'onsidered exempt after review by the Comttee on the Use of f rumansas Exper' :,"I

Subjects pwsuan toFederalregulations, 45 CFR Pan 46101(bX2).

This part of the federal regulations requires thattheinformation be recorded by investigators in such a manner that subjects ni
be ienified, directly or through identifiers linked to the sujects. It is necessary that the infonation obtained notbe such that
if disclosed outside the research, itcould reasonably place the subjects at risk of criminal or civil liability, or be damaging to the
subjects financial standing employability, or reputation,

If the research involves collaboration with another in 'taudon, th c h research cannn commene unt' I CoUiS 4ecive writ'e
notification ofapproval from the oh1aboraing institwionsR

Unless infomed consent is waived by the IRB, use only the most recent, IRS approved and stamped copies of theconsent fowrms)

Adverse Eventst Any serious or unexpected adverse event must be reported to COUIES within 48 hous. All other adverse
events should be reported in writing within 10 working days.

Amendments: Any changes to the protocol, including changes in xperiental design, equipmot, pernnel o finiding, must be
approved by COUHES before they can be iaidate, except when necessary to eliminate apparent immediate hamrds to the subject

Human subjec training is required fo all study persoel and must be updated every 3 years.

You must maintain a research f rleralst 3 years after completon of the study, This file should incude all corepodnce
with COUIIES, original signed consent forms, and study data

Figure A-1: Approval letter for the study titled Customer Needs Identification of Sled
Hockey Players. Exemption granted on 30-August-2017.
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Comife On fe Use of Humans as MASSACHUSETTS ISTITUTE OF TEHNOLOGY

cmnbiMnechwt0213
OtukgE 25-1438
617123-7

February 20, 2018

Youzhi Liang
PhD Candidate
Mechanical Engineering

Dear Youzhi,

We received your inquiry regarding your project titled Test of a More Flexible Sled
Hockey Stick. Since this research does not involve human subjects as defined in the
Federal Regulations 45CFR46, COUHES review is not required.

Please contact us if you have any questions.

Sincerely urs,

Leigh Fim, MD
Chair, Committee on the Use of Humans as Experimental Subjects (COUHES)

LF/mk

Figure A-2: Non HSR letter for the study titled Test of a More Flexible Sled Hockey

Stick. Exemption granted on 20-Feb-2017.
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March 22, 2018

Youzhi Liang
PhD Candidate
Mechanical Engineering

Dear Youzhi,

We received your inquiry regarding your project titled Test of a more Flexible Sled
Hockey Stick. Since this research does not involve human subjects as defined in the
Federal Regulations 45CFR46, COUHES review is not required.,

Please contact us if you have any questions.

Sincerely yours,

Ju01f ei hs
H pr Research Compliance Administrator, Committee on the Use of Humans as
Experimental Subjects (COUHES)

JM/mk

Figure A-3: Non HSR letter for the study titled Test of a More Flexible Sled Hockey
Stick. Exemption granted on 22-March-2017.
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Appendix B

Figures for Experimental Results

in the Regime of Boundary Friction
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Figure B-1: r/L2 versus FN/WL for thickness W = 0.4064mm. (Inset) Torque (N-m)

as a function of normal force (N) for three lengths, L (mm) and for three angular

velocities, Q (rad/s). Dashed lines are linear regression lines.
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Figure B-2: 4T/L(N) versus FN(N) for thickness W = 0.4064mm for three lengths,
L (mm) and for three angular velocities, Q (rad/s). Dashed lines are linear regression

lines. The slope of the linear regression line is 0.22 ± 0.03.
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Appendix C

Figures for Experimental Results

and Models in the Regime of

Mixed Friction and Hydrodynamic

Lubrication
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Figure C-1: (a) Predicted friction coefficient O versus experimental friction coeffi-f
cient C" using multi-linear regression for Hersey number ranging from 10-9 to 10~7.

X = [L, W, U, F, H, 112, 1131. The diagonal blue line indicates the perfect predic-
tion of Cf. The R2 of the model is 0.68. (b) Probability density as a function of
the residual between the prediction and experimental results of friction coefficient

C1 - O using linear regression for Hersey number ranging from 10-9 to 10-7. The

orange line indicates a kernel density estimation (KDE). The standard deviation of
the residual is 0.015.
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Figure C-2: (a) Predicted friction coefficient Cversusexperimentalfrictioncoeffi-
ffcient Cusing multi-linear regression for Hersey number ranging fromi10-9toi10--.

X = [ln L, ln W, ln U, ln F, ln HI, n 112, n 113]. The diagonal blue line indicates the
perfect prediction of Cf. The R2 of the model is 0.97. (b) Probability density as a
function of the residual between the prediction and experimental results of friction

coefficient C - O using linear regression for Hersey number ranging from 10-9 to
107 f f

10-. The orange line indicates a kernel density estimation (KDE). The standard
deviation of the residual is 0.08.

154

-0.05
0



0.20

0.15

<ci0.10

0.05

0.00
0.00 0.05 0.10 0.15

CQ
0.20

400

300

200\

100 ;

-0.0 -0.005 0.000

Cf - Cf

Figure C-3: (a) Predicted friction coefficient C versus experimental friction coef-
ffficient C}using random forest regression for Hersey number ranging from10~9 to

10- . X = [L, W, U, F, H1, 112, H3]. The diagonal blue line indicates the perfect
prediction of Cf. The R2 of the model is 0.975. (b) Probability density as a function
of the residual between the prediction and experimental results of friction coefficient

C" - O1 using linear regression for Hersey number ranging from 10-9 to 10~7. The

orange line indicates a kernel density estimation (KDE).
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cient C using random forest regression for Hersey number ranging from 10~9 to 10-7.

X = [ln L, ln W, ln U, ln F, n H1, ln 2, n 1131. The diagonal blue line indicates the
perfect prediction of Cf. The R2 of the model is 0.987. (b) Probability density as a

function of the residual between the prediction and experimental results of friction
coefficient C - O using linear regression for Hersey number ranging from 10-9 to
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0. The orange line indicatesa kernel density estimation (KDE).
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