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Abstract 

This dissertation aims to improve form-finding workflows by giving more control on the obtained shapes 

to the designer. Traditional direct form-finding allows the designer to generate shapes for structures that 

need to verify a mechanical equilibrium when built; however, it produces shapes that are difficult to control. 

This dissertation shows how the design of constrained structural systems is better solved by an inverse form-

finding process, where the parameters and initial conditions of the direct form-finding process are automat-

ically adjusted to match the design intent. By defining a general framework for the implementation of such 

workflows in a nested optimizer loop, the requirements on each component are articulated. The inner opti-

mizer is a specially selected direct form-finding solver, the outer optimizer is a general-purpose optimiza-

tion routine. This is demonstrated with case studies of two structural systems: bending-active structures and 

funicular structures. These two systems that can lead to efficient covering structures of long spans. 

For bending-active structures, the performance (speed, accuracy, reliability) of direct form-finding solvers 

is measured. Because the outer optimization loop in an inverse form-finding setup needs to rely on a robust 

forward simulation with minimal configuration, we find that general-purpose optimizers like SLSQP and 

L-BFGS perform better than domain-specific algorithms like dynamic relaxation. Using this insight, an 

inverse form-finding workflow is built and applied with a closest-fit optimization objective. 

In funicular structures, this dissertation first focuses on a closest-fit to target surface optimization, giving 

closed-form formulations of gradients and hessian of the problem. Finding closed-form expressions of these 

derivatives is a major blocking point in creating more versatile inverse form-finding workflows. This pro-

cess optimizer is then reimplemented in an Automatic Differentiation framework, to produce an inverse 

form-finding tool for funicular surfaces with modular design objectives. This is a novel way of implement-

ing such tools, exposing how the design intent can be represented by more complex objects than a target 

surface. Reproducing existing structures, and generating more efficient funicular shapes for them, the pos-

sibilities of the tool are demonstrated in exploring the design space and fine-tuned modifications, thanks to 

the fine control over the objectives representing the design intent. 
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1 Introduction 

1.1 Problem statement 

Building for freeform architecture, to create structures that physically realize the shape of a complex sur-

face, introduces challenges never encountered when building orthogonal structures. The choices made on 

the construction process and structural quality of the building will dictate constraints for the surface. Addi-

tionally, while matching these constraints, the designer usually follows an architectural intent: for example 

a target shape to fit as well as possible. Small examples of this process are represented in Figure 1.1, where 

different construction systems are matched with three target surfaces. Each construction system leads to 

different constraints on the constructible surface, generating different final shapes, and it is impossible ini-

tially to predict how these shapes will differ nor how to layout a specific construction system to get as close 

as possible to the target. 
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Figure 1.1: Three architectural shell shapes (grey, top left) are approximated using different construction systems 

(green). Each construction system leads to different constraints on the constructible surface, generating different 

final shapes. The score values given are calculated as the RMS of the distances 𝑑𝑡 from each vertex 𝑡 to the closest 

point on the target surface, normalized by the nominal length of the mesh edges: √∑ 𝑑𝑡
2

𝑡 𝑛 × 𝑠𝑖𝑧𝑒𝑐𝑒𝑙𝑙⁄  

1.1.1 Structural systems 

This dissertation uses the term construction system as a way to distinguish between structural systems that 

can be used to build free-form surfaces. It focuses specifically on two structural systems, for which it will 

present methods to generate viable shapes. First, bending-active structures (see Chapter 3 for images), are 

made of long rods of timber or fiberglass, that are bent into shape and undergo large deformations in this 

process. This dissertation focuses in particular on elastic gridshell, bending-active structures that start from 

a flat regular grid of such rods, pinned at all intersecting nodes, that is then bent and to the ground attached 

on its edge. They make efficient, lightweight covers that are quick to build. Simulating the deformation 

process of the grid is the only way to know what the final shape will be. This means that to find a viable 

shape for elastic gridshells, that can be built with such a structural system, simulating this deformation 

process on one specific instance of elastic gridshell is necessary. 

The second system is funicular structures, such as thin concrete shells that behave in compression-only (see 

Chapter 5 for images). They are another efficient way of covering large spaces with minimal material and 

many were built in the mid-twentieth century. To remain thin as they are built, these structures need to have 

minimal bending stresses in them. This means viable shapes for thin shell will be funicular against their 

main load (most often their self-weight), which means that this loading condition will only generate mem-

brane compression forces in the shape. 

1.1.2 Designer control 

This dissertation then attempts to give designers as much control as possible when they are generating 

shapes for these structural systems. This control can often be expressed through an objective to achieve, 

Target

Funicular

Active-bending

Planar facets
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such as a target shape that the generated viable shape should approximate. The target can also be the result 

of another process that generates structurally efficient shapes. For example, in Figure 1.2, a concrete shell 

is cast on top of an elastic gridshell. The concrete shell shape is the result of a form-finding process that 

guarantees compression-only forces, and the elastic gridshell has to be designed to get as close as possible 

to this target shape while matching its own set of constraints. 

In both cases, this intent needs to be realized with a structural system, that introduces geometrical con-

straints. Designers need the tools that will find one such realization and let them explore new shapes around 

this solution. Two paths have traditionally been taken to design freeform surfaces with a physical reality. 

The first one is to only draw surfaces that match some global constraints, like drawing developable surfaces 

to design a roof built with continuous metal sheets. This is possible with good accuracy and speed in CAD 

software, but this process only works up to the extent of one continuous developable patch. The second path 

taken is the post-rationalization of the freeform design. There, the designer draws with the software’s capa-

bilities as the only constraint, and then uses a black-box to find a similar surface that can be built using the 

selected technology. This process is often frustrating for the designer, who does not have control over what 

the result of their drawing will be and gets limited feedback on which inputs should be modified to change 

this result. 

More generally, none of these paths let the designer explore and optimize in the design space that the con-

struction system defines, because they do not have a concept to represent this design space. Yet this inverse 

form-finding problem, where the goal is to get an instance of a construction system as close as possible to 

a target shape, is ubiquitous in architecture. The designer has a shape in mind, knows what system to use to 

build it, but cannot predict how and what to lay out to achieve it. This proposal defines a category of com-

putational tools needed to solve these problems, and offers to create them. 

  

Figure 1.2: Concrete shell on elastic gridshell. In this system, the shape of the elastic gridshell must match the 

geometric constraints of elastic gridshells and be as close as possible to a funicular shape for the concrete shell. 

(Cuvilliers et al., 2017) 
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1.2 Research motivation and purpose 

In building inverse form-finding tools, we hope to give the designer more control on the shapes of complex 

structural systems, that are governed by specific rules limiting their design spaces. Because these shapes 

adapt to bespoke construction systems, they can be chosen to use material very efficiently. Funicular shapes 

for example, will very efficiently span large spaces. Bending-active structures are very adaptable and have 

a large potential for reuse. Additionally, thanks to this added control, designers can explore larger regions 

of the design space of their chosen construction system, leading to more variety in structures without any 

penalty on efficiency. While the shapes of many shells were initially chosen as pre-defined mathematical 

functions like revolution surfaces of lines or simple curves, so that their analysis would be simpler, we now 

have tools to create and analyze free-form funicular shells. 

This new control on the form-finding process will also give designers more freedom in how they use these 

tools. While existing direct form-finding tools tend to give results of a similar architectural style, designers 

can now guide the exploration towards target shapes and author their own style on them. 

A motivating example can be made for this research based on the design process of the Viadotto dell’In-

dustria, or bridge on the Basento river, designed by architect and engineer Sergio Musmeci and built in 

1976 in Potenza, Italy. The bridge is a road bridge where the deck is supported at regular intervals by a 

concrete shell spanning over the river and other pathways in the valley below it, see Figure 1.3. In the 

design of the bridge, Musmeci used physical and analytical models to form-find the shape of a membrane 

that would be tied to the ground anchors, and the deck support positions (Marmo et al., 2019). This generates 

a shape that spans from the ground anchors to the deck supports, but is not funicular under its own weight 

and the dead loads of the bridge. That leads to an inefficient structure as the shell will have to support 

bending forces in this principal loading state. Multiple optimizations were made on the position of the 

supports, and the shape of the form-found membrane-like shell, but still, in the final result the shell is much 

thicker than can be achieved with a true funicular shape. 

A better way to find a shape for the shell is to use a form-finding process that generates only funicular 

shapes, like the force density method (see Chapter 5). However, this process does not guarantee the position 

of the deck supports in the form-found shape (Figure 1.4, top left): these cannot be described as fixed anchor 

points otherwise additional forces would be introduced in the shell, moving it away from funicularity. In-

stead, parameters of the form-finding process can be adjusted so that the support points get closer to the 

deck. Doing this manually is very tedious, and almost impossible (Figure 1.4, top right and bottom left): in 

the force density method, there is one independent parameter that can be chosen for each edge of the sim-

ulation mesh, and changing each one of them can affect the whole form-found shape. Instead, an automatic 
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way of changing these parameters is needed, so that a funicular shape with the support points touching the 

deck can be generated. Implementing such a method will be the object of Chapter 6; Figure 1.4, bottom 

right shows the results that can be obtained with it. 

 

Figure 1.3: Viadotto dell’Industria, 1976, Potenza, Italy. Arch./Eng. Sergio Musmeci. © Alba Fermoso Tango. 

 

  

  

Figure 1.4: Finding a funicular shape for the Musmeci bridge, where the support points for the deck reach their 

desired positions. All shapes are generated using the force density method, which guarantees funicularity against the 

self-weight of the shell and the dead loads of the bridge at the support points. The first three images are generated 

using manual modifications of the force density method parameters, one for each edge in the simulation mesh; it is 

almost impossible to reach the deck this way. The last image (bottom right) is generated using the methods of 

Chapter 6, and finds a funicular shape with the prescribed positions for the deck supports. 
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Note that solving this exact problem, of moving points in a force density method form-finding process 

towards target locations, is solved by the existing extended force density method (Miki & Kawaguchi, 

2010). However, there are other design constraints that the designers will want to accommodate with the 

results of form-finding processes, and these processes will not always be the force density method. This 

dissertation will attempt to solve such broad problems. 

1.3 Research objective 

Many of the terms used in computational design for architecture are not consistently defined, especially 

when looking at systems that have a structural objective. This section first lays out the definitions used in 

this proposal, then defines the research objective.  

Form-finding is the name given to processes to generate shapes that realize some structural objective or 

equilibrium constraint– examples include networks of hanging chains, the fins and tensioned fabric of an 

umbrella, or sheet metal elastically deformed. This is a non-trivial process when the structural system con-

sidered undergoes large displacements, leading to a (geometrically) non-linear problem, usually requiring 

an iterative procedure to solve computationally. 

It is useful to distinguish three classes of form-finding problems. First, direct problems: finding one physical 

shape under a given set of mechanical properties and boundary conditions. Often, this goes against the 

intuitive design process where the designer has a shape in mind and wants to minimize the difference to 

that target. That describes an inverse problem where the closest possible physical system to a target shape 

is found. A third, intermediate, category can be defined: pseudo-inverse form-finding. In this case like in 

inverse form-finding, the objective is to match a construction system to a target shape, but in this case the 

constraints are not matched exactly. These definitions are summed up in Figure 2.3. 

There exist tools for solving direct form-finding problems, generating admissible instances of the construc-

tion system, but the inverse form-finding tools needed to get close to the design intent are less common. 

Additionally, creating tools to explore the design space around an optimal solution would offer a way to 

guide the designer’s hand to new shapes, yet without limiting it more than the construction system would. 

This research aims at creating better tools for the design of freeform surfaces with buildability constraints, 

effectively letting the designer formulate an inverse form-finding problem and interact with it. Two concur-

rent approaches are taken. One iteratively simulates physically-based direct form-finding problems and 

optimizes the initial conditions of this problem until the form-found shape is close to the target shape from 

the designer. As no closed-form solution usually exists even for the direct problem, this results in nested 
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optimization problems. The other approach rewrites the inverse problem using special properties of a given 

construction system to solve it using only one level of optimization. 

Generally, a mathematical optimization approach is taken. Equation (1.1) gives the general expression of 

an inverse form-finding problem: minimize an objective function 𝑓 of the equilibrium position 𝒙, where the 

equilibrium position is defined as the mechanical equilibrium minimizing an energy 𝐸𝒑, over the variables 

𝒑 that are the variable parameters to the direct form-finding problem:  

(𝑃1.1): min𝒑
𝑓(𝒙) , subject to 𝒙 = argmin𝐲𝐸𝒑(𝒚) . (1.1) 

The constraints part of this optimization problem is what represents the construction system; the objective 

represents how well the intent is matched. Often, the objective will be to find the closest fit to a continuous 

target surface. Equation (1.1), mostly through the expression of the constraints, assumes that the construc-

tion system and its instances can be represented as a discrete mesh: a collection of vertices linked by edges, 

forming faces. For more complex construction systems that do not have well-defined nodes, like mem-

branes, a finite element representation allows one to fall back to the mesh-like formulation, and at the same 

time is often necessary to simulate the behavior of the construction system. 

To solve this optimization problem, this dissertation defines a nested optimization framework represented 

in Figure 1.5 and Figure 1.6. On the outer level, a general-purpose optimizer will explore the design space 

of solutions to a direct form-finding problem, until a minimum of the objective function is found. On the 

inner level, a specialized solver for direct form-finding problems is used to generate equilibrium positions 

for the given structural system. The two levels are linked through the parameters 𝒑 that define a specific 

instance of the direct form-finding problem. 

The objective of this dissertation is then to define a general framework for inverse form-finding, considering 

the problem set forward by Equation (1.1), and create computational tools to solve it in specific instances. 

This means realizing a good modularity of the building constraints and the designer’s intent expressions 

while being fast enough to allow iterative design exploration. Good reliability also needs to be achieved in 

simulating construction systems. This will be done by implementing a design tool around carefully selected 

solvers for the optimization problem of Equation (1.1), iteratively calling on efficient direct form-finding 

solvers. 
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Figure 1.5: Nested optimization loops for solving inverse form-finding problems, graphical view. 

 

 

 

Figure 1.6: Nested optimization loops for solving inverse form-finding problems, mathematical view. 
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1.4 Organization of the dissertation 

This dissertation aims at implementing inverse form-finding workflows for two structural systems, bending-

active structures and funicular structures. Additionally, we want to gain a better understanding of how the 

systems can be made fast and robust. Finally, in implementing our solutions, we are looking for insights on 

how general frameworks for inverse form-finding could be realized. There are two main parts to this dis-

sertation, one for each mechanics-based constrained system of bending-active structures in Chapters 3 and 

4, and funicular structures in Chapters 5 and 6. 

Generally, we are not concerned with the implementation of direct form-finding solvers as they are now 

readily available for many systems; however, for bending-active structures we will see that the very specific 

requirements of our system lead to re-evaluating existing direct form-finding methods. This will be done 

early in the dissertation (Chapter 3) and will build on the challenges of speed, reliability and accuracy for 

the direct form-finding solvers in the later chapters. 

Chapter 2 looks at existing literature on computational design tools for construction systems with complex 

geometrical constraints, that let the designer express an intent to match. 

Chapter 3 looks at the selection and possible improvements of direct form-finding tools for bending-active 

structures. Fast and reliable form-finding tools will be of great importance for Chapter 4, where they will 

be used repeatedly in an optimization loop – without any real-time control possible by the designer on the 

form-finding process – to find bending-active structures that are closest to an objective shape. We will be 

able to improve their implementation and gain a better understanding of how they work and perform. 

In Chapter 4, we look at the inverse form-finding problem of finding a bending-active structure that is as 

close as possible to a target shape, for simple elastica-like shapes and elastic gridshells. This is done using 

the nested optimization process described earlier. In the outer optimizer, we iterate on some initial condi-

tions of the bending-active structure, until the distance from the equilibrium shape given the current initial 

conditions is as small as possible. Finding the equilibrium position is the result of the inner optimizer, we 

build on the results of Chapter 3 for this. This inner optimizer needs to be stable, reliable and fast, given the 

wide variety of input conditions that the outer optimizer will attempt. We also look at finding good repre-

sentations of the variable initial conditions and parameters sent by the outer optimizer to the inner one on 

different case studies. 

Chapter 5 changes construction systems to look at funicular structures. Although they have seen more in-

terest in terms of the inverse form-finding tools developed for them, they will prove to be a good model 

system for experimentations on the implementation of novel inverse form-finding systems. Chapter 5 is an 

early experimentation in this direction for inverse form-finding of funicular structures towards a target 
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shape. It demonstrates how an efficient and robust inner optimizer leads to more flexibility in the outer 

optimization loop. We also look at the importance of deriving derivatives of the objective function to obtain 

a good inverse form-finding framework. 

Chapter 6 builds on and improves the simple inverse form-finding system for funicular surfaces of Chapter 

5 to produce a feature-based representation of the design objective. Thanks to a functional representation 

of this objective, combined with automatic differentiation and a “perfect” forward simulation process – that 

is fast and always producing a result, we construct a workflow that not only does inverse form-finding 

towards a target shape, but to any objective that the designer can represent as a function of the properties 

of the current iteration. This is a novel way of looking at inverse form-finding design, that we find very 

promising in its potential uses. 

Chapter 7 summarizes this dissertation, concludes on the main contributions and their potential impact, and 

outlines possible avenues for future work. 

 

 

 

 

  



 

 

2 Background 

This chapter critically reviews existing literature on computational design tools for construction systems 

with complex geometrical constraints, that let the designer express an intent to match. 

2.1 Form-finding 

The concept of direct form-finding has been used since the advent of the construction of freeform shell and 

membrane structures in the 1970s and before, along with the development of computational structural anal-

ysis. One of the earliest references to the term is found in (Bubner, 1972) for the form-finding of pre-

tensioned cable-nets. Before that, the term shape optimization was also used for structures like arch-dams 

(Deprez, 1968), and more generally for mechanical pieces. Adriaenssens et al. (2014) give a concise de-

scription: 

Form-finding is a forward process in which parameters are explicitly/directly 

controlled to find an “optimal” geometry of a structure which is in static equilibrium 

with a design loading. 
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Typically, for shells made of heavy materials (concrete, masonry) or where creep is an issue (timber), this 

design load will typically be the dead weight; the parameters to be varied include the shape of the shell and 

its topology, and its boundary conditions. In this formulation, it is strictly a forward problem: there is no 

direct control possible on the resulting shape, only on the parameters generating it. Direct form-finding is 

the generation of a shape that efficiently solves a structural optimization problem. 

2.1.1 Physical models 

The earliest form-finding methods were probably physical ones. This is famously seen in the works and 

experiments of builders such as Eladio Dieste (1917-2000), Heinz Isler (1926-2009), or Frei Otto (1925-

2015), and before them Antoni Gaudí (1852-1926), see Figure 2.1. They used scaled models to find funic-

ular shapes for masonry structures, then membranes and concrete shells. The process is generally to hang a 

weighing chain or mesh and invert its shape to obtain a funicular shape under dead weight. Soap film models 

were also used for membranes. By adding weights, changing the boundary conditions and the topology, the 

resulting shape can be modified, However, this is a tedious process, as the model might lose tension in some 

parts for example, and many modifications will be time-consuming. 

   

© chrispythoughts.wordpress.com (Chilton et al., 2000, p. 37) © FAR frohn&rojas 

   

© Janna Goldsmith © jyhem @ www.flickr.com © Atelier Frei Otto Warmbronn 

Church of Colònia Güell, 

Barcelona, Spain, 1914. 

Arch. Antoni Gaudí 

Sicli building, Geneva, 

Switzerland, 1969. 

Arch. Heinz Isler. 

German Pavilion, Expo ’67 

Montreal, Canada. 

Arch. Frei Otto 

Figure 2.1: Physical form-finding models by Gaudí, Isler, and Otto (left to right), and the structures for which they 

generated viable shapes. 
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2.1.2 Computational form-finding 

Form-finding solutions can also be found computationally, and a large literature of direct form-finding 

solvers exist. For shells, early methods were based on a simplification to a discrete mesh (Schek, 1974). 

For funicular shells, many of them reproduce the physical experiment of finding the equilibrium position 

of a hanging mesh. This is clearest for methods like the Particle Spring method (A. Kilian & Ochsendorf, 

2005), that simulate a network of flexible springs attached to weighing nodes, and relax it until it stops 

moving. Although solving it in one direct matrix solve, methods like the force density method (Schek, 

1974) solve for the same mechanical equilibrium of loaded nodes in a network of bars with axial forces. In 

fact, if the stiffnesses of the springs in this method are set to the force densities of the force density method, 

the form-found shape will be identical. Dynamic relaxation can also be used in this way, although in this 

case without the bar-and-node approximation and form-finding a free-hanging membrane (Brew & Lewis, 

2007). Veenendaal and Block (2012) provide more details on the relationships between these methods for 

funicular and tension networks. 

Computational form-finding is available for other construction systems – some are presented in Section 2.2. 

In many cases, dynamic relaxation is a possible choice, especially for the simulation of flexible materials, 

as its implementation tends to be more straightforward than other methods when starting from internal 

forces in the model. For example, it has been applied to tensile structures (Barnes, 1999), compression-only 

funicular structures (Bagrianski & Halpern, 2014), bending-active structures (Adriaenssens & Barnes, 

2001), etc. Another method with a wide range of applications is the projective dynamics method (Bouaziz 

et al., 2014), which bridges finite element methods and position-based dynamics to create a form-finding 

tool that is simple to implement, yet robust and efficient. Applications include bending-active structures as 

well as pneumatics, cloths simulation, etc. Chapter 3 provides more details on these two methods and their 

inner workings. 

For the designer, the interest resides in the fact that initial conditions and parameters of the simulation are 

much easier to change than in a physical model, allowing for a simpler exploration of form-found shapes. 

Structural typologies can also be combined and changed throughout the course of a design exploration, 

something that would have required tremendous effort with physical models. For example, dynamic relax-

ation and projective dynamics were both included in the very popular form-finding tool Kangaroo (Piker, 

2016b, 2017a), directly integrated into the NURBS-based CAD system Rhino3d. Giving the designer a 

catalog of so-called “goals” to choose from to represent the internal forces in their constructive system, it 

opened up the methods of form-finding to a wider audience than before, and led to many complex applica-

tions combining multiple systems that traditionally would have each required a dedicated form-finding so-

lution. However, the simulations can remain slow to run, and merely predict the shape of one instance of a 



 

36 

structure. They do not guide the designer towards better structures that can be achieved with the chosen 

construction system, or provide intuition for finding structures that are closer to the design intent. 

One method in particular here stands apart in this regard. Thrust network analysis (Block, 2009), which 

combines visualization from graphic statics and the force density method to create a form-finding tool that 

provides designers with both a form-found shape and an editable force diagram to act on the shape, gives 

them a little more control on the results. By redirecting the flow of forces to certain parts of the shape, the 

designer can create features like creases and ridges, see Figure 2.2. However, this requires a good under-

standing of the relationship between form and forces and is limited to funicular shape problems. Thrust 

network analysis is the basis of the successful masonry vaults design tool RhinoVAULT (Rippmann et al., 

2012), and used for the best-fit optimization of funicular structures (Van Mele et al., 2014). 

Systems with similar characteristics representing some information from the designer on the design intent 

include Combinatorial Equilibrium Modeling (Ohlbrock & Schwartz, 2015), where graph theory is used to 

control the qualitative behavior of funicular structures, and Algebraic 3D graphic statics (Hablicsek et al., 

2019). 

 

 

Figure 2.2: Various examples starting from a rectangular grid forming a funicular network, demonstrating how 

changing the force diagram can influence the resulting shape. From Block and Ochsendorf (2007). 
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2.1.3 Inverse form-finding 

To overcome these issues, form-finding tools started incorporating other objectives in addition to solving 

for the mechanical equilibrium shape. Typically, this will require a more involved solving process, often 

based on mathematical optimization. That concept can be grouped under the loosely defined term “inverse 

form-finding”, in reference to the term “inverse problem”, which refers to the act of finding the causal 

factors that produced a set of given observations. (This is different from the concept of “inverse hanging 

models”, where inverse refers to the inversion of gravity forces to generate compression-only shapes from 

tension-only models.) Here, we want to find the set of parameters and initial conditions to feed to the form-

finding solver that will lead to the equilibrium shape that most closely matches the additional objectives. 

Before looking at the different systems, it is important to notice that the vocabulary of inverse form-finding 

is not fixed in the literature. The term was introduced in 2010 in materials simulation, for example refereeing 

to finding the required initial shape of a steel blank to press-form it in a defined shape (Germain et al., 

2010). This references a similar term, inverse deformations (Govindjee & Mihalic, 1998). On the other 

hand, papers especially coming from the Computer Graphics community tend to name form-finding pro-

cesses a lot less, but use the same framework of iteratively modifying the inputs to an equilibrium shape 

predictor to get as close as possible to a target surface. Examples include (Panozzo et al., 2013; Skouras et 

al., 2014), they usually name the resulting tool a designing tool. 

Form-finding systems with additional design goals can be subdivided into two categories: those that will 

solve the mechanical equilibrium exactly, that we call exact inverse form-finding methods or simply inverse 

form-finding methods, and those that do not that we call pseudo-inverse form-finding tools. True inverse 

form-finding tools solve the optimization problem (𝑃1.1): 

(𝑃1.1): min𝒑
𝑓(𝒙) , subject to 𝒙 = argmin𝐲𝐸𝒑(𝒚) . (1.1) 

Pseudo-inverse form-finding tools do not find a true mechanical equilibrium because they solve a relaxed 

version of (𝑃1.1), where both mechanical equilibrium and additional objectives are combined in a single 

objective function: 

(𝑃1.1𝑏): min𝒑,𝒚
𝑓(𝒙)+𝐸𝑝(𝑦) . (2.1) 
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Figure 2.3: Classification of form-finding methods for design. 

This simplifies the optimization process: while (𝑃1.1) will require two nested optimizers to solve, (𝑃1.1𝑏) is 

usually solvable with existing non-linear optimization techniques. Pseudo-inverse form-finding typically 

discretizes the mechanical equilibrium problem to reduce it to an energy minimization problem on meshes. 

It then usually adds a term representing the distance from the form-found mesh to a target shape as an 

additional objective. By carefully selecting how these energies are weighed relative to each other, a shape 

can be found that is close to minimizing the mechanical energy and close to the target shape – if the me-

chanical system can realize such a shape. This is normally easier to solve computationally than the inverse 

form-finding problem, but cannot provide a guarantee on the quality of the mechanical equilibrium, unlike 

true inverse form-finding. Figure 2.3 summarizes their differences and relates them to direct form-finding. 

These concepts have been applied to a wide range of construction systems that are presented next, in Section 

2.2. 

In the form of Equation (2.1), pseudo-inverse form-finding can also be thought of as a multi-objective 

optimization problem, combining mechanical energy and the additional objectives representing the de-

signer’s intent in a single function. Multi-objective optimization for the early design of buildings has been 

studied for example by Brown (2019). When solving exactly the mechanical equilibrium problem of direct 

form-finding is not crucial, the techniques developed there are a very good alternative to true inverse form-

finding and provide ways to efficiently explore the available design space. 
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2.2 Different construction systems and their constraints 

This section of the literature review focuses on two types of geometrical constraints: constructive constraints 

that stem from the desired properties of mesh-like structures (rigid gridshells), and mechanics-based con-

straints that come from the equilibrium of a construction system. General approaches for arbitrary con-

straints are then reviewed, and some theoretical foundations are given. All the constraints considered are 

summed up in Table 2.1. 

As discussed in Section 1.1.1, this dissertation focuses on creating tools for the inverse form-finding of two 

specific construction systems: bending-active structures and funicular shells. This section broadens the 

scope of possible construction systems, to study the literature on inverse form-finding methods for these 

systems. 

It is important to note that form-finding might also be used more as a shape generator than for finding shapes 

that are constructible with a structural system, so that sometimes these possible constraints are mostly used 

as an inspiration. 

2.2.1 Constructive constraints 

Mesh-like construction systems, such as the rigid gridshells of Figure 2.4 often need to accommodate geo-

metrical constraints due to the relationships between nodes or edges introduced by the specific construction 

system. For example, in the Hippo house (Figure 2.4, left), the structure is covered by flat panels of glass, 

so the mesh has to be a mesh with planar quad faces. The covering of the Cour Visconti (Figure 2.4, center) 

similarly has flat quad panels, but for its substructure only, that describes a larger mesh supporting many 

faces. The Yas Viceroy hotel (Figure 2.4, right) has a façade made of continuous beams connected at pin-

like nodes that align with the axis of the beams. This means the mesh needs to have a defined edge offset. 

Two other typical examples of constructability constraints are developable surfaces and piecewise devel-

opable surfaces. These occur for example when cladding a shape with metal sheets: each piece will be a 

developable surface. This is not a comprehensive list, each specific construction system giving rise to 

slightly different constraints, but it finds the most studied categories. 

Table 2.1 (lines 1 to 3) sums up recent findings on the design of such surfaces. The direct form-finding 

column is not applicable here since form-finding needs a mechanics-based equilibrium principle to solve. 

Pseudo inverse form-finding problems have been solved in all areas, and inverse form-finding problems in 

all areas except offsetable meshes. Many of the papers in this area come from Professor Pottmann’s research 

group at TU Wien, and even look at the interaction between these constraints. 
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© Karl Brösecke © Musée du Louvre / A. Mongodin © Viceroy Hotels 

Figure 2.4: (left) Hippo House, Berlin Zoo, 1996. J. Gribl arch., SBP eng. (center) Cour Visconti at the Louvre, 

Paris, 2012. Bellini & Ricciotti arch., HDA eng. (right) Yas Viceroy Hotel, Abu Dhabi, 2009. Asymptote 

Architecture, Front Inc. & Taw façade eng. 

Table 2.1: Summary of recent developments in inverse form-finding, for various constraints. 

System 
Direct  

form-finding 

Pseudo inverse 

form-finding 

Inverse 

form-finding 

Planar quads  (Eigensatz et al., 2010) (Wallner & Pottmann, 2011) 

Offsetable meshes  (Pottmann et al., 2007)  

Developable surfaces  (M. Kilian et al., 2008) (Liu et al., 2006) 

Funicular (Schek, 1974) (Vouga et al., 2012) (Panozzo et al., 2013) 

Bending 
(Adriaenssens & 

Barnes, 2001) 
(Quinn et al., 2016) (Panetta et al., 2019) 

Pneumatic (Barnes, 1975) (Sánchez et al., 2007) (Skouras et al., 2014) 

General frameworks 
(Bouaziz et al., 

2012) 
(Tang et al., 2014)  

2.2.2 Mechanics-based constraints 

Another large category of constraints is those for which a mechanical equilibrium has to be verified. These 

constraints led to the development of direct form-finding methods. Typical examples include funicular 

shells, where the shape of a shell is found such that the self-weight of the shell introduces only membrane 

forces, without bending, in itself. By eliminating the bending stresses of self-load, this leads to very thin 

shells, like on the Sicli building shell in Figure 2.5 (left). These shapes can be found, for example, by letting 
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a weighted fabric hang from support points, then inverting the orientation. Active bending structures, like 

the Mannheim Multihalle elastic gridshell in Figure 2.5 (left) are made of a number of thin rods bent into 

shape. They produce easy-to-build shells, lightweight and resilient. Their shape is the result of the bending 

equilibrium of the rods. Lastly, pneumatic structures are membranes inflated to gain rigidity. They provide 

an extremely lightweight solution to large roofs, like on the Tokyo Dome stadium (Figure 2.5, right). Find-

ing their equilibrium shape is especially difficult because of the potential for wrinkles in the membrane. 

Historically, the structural design community produced several methods for the simulation of the large 

displacement processes involved in the construction of these structures, grouped under the direct form-

finding term. The earliest applications date back to 1974, see Table 2.1. More recently, the computer 

graphics community has proposed design-oriented, inverse form-finding tools for these structures. They 

solve a large part of the grid in Table 2.1. Until recently, the inverse form-finding of active bending struc-

tures had received little attention from the computer graphics community, but a publication from July 2019 

changed that by providing a fully integrated inverse form-finding design pipeline for a class of elastic grid-

shells that do not start from a perfectly flat regular grid (Panetta et al., 2019). 

   

© jyhem @ www.flickr.com © Hubert Berberich © Yoshito Isono 

Figure 2.5: (left) Sicli building, Geneva, Switzerland, 1969. Heinz Isler arch. (center) Mannheim Multihalle, 1975. 

F. Otto arch., Arup eng. (right) Tokyo Dome, 1988. Nikken Sekkei & Takenaka Corp., arch. & eng. 

2.3 Design intent representation and formulation 

The various form-finding tools also differ in how they represent the design intent. This intent can encompass 

many things; generally, in form-finding three categories exist for what might be controlled: 

• The mechanical properties of the resulting shape, i.e. which kind of mechanical equilibrium does it 

describe. 

• The materialization of the shape, including its possible discretization: topology, orientation of the 

mesh when it is discretized, sizing of the constitutive elements, etc. 

• The visual and architectural properties of the shape. 



 

42 

In direct form-finding tools where the control on the final shape is necessarily limited, representing the 

design intent is usually limited to the first two categories. The designer can choose a solver like the force 

density method to generate shapes that will be funicular to a prescribed set of loads, for example. The 

materialization part is normally equally descriptive in direct form-finding, and the precise material proper-

ties of all the elements need to be prescribed in order to build the problem that the form-finder will solve. 

Two systems stand out in this regard, that we have already mentioned. Thrust network analysis lets the 

designer generate axial stiffnesses for the elements of the funicular network by describing and modifying 

the flow of forces on the force diagram; this method was integrated into a design tool for funicular surfaces 

(Rippmann et al., 2012). Software like Kangaroo (Piker, 2016b) and ShapeUp (Bouaziz et al., 2012), be-

cause they can combine multiple mechanics-based properties to solve for, allow for finer control on this 

parameter. The reader is referred to Section 2.1.2 for a longer description of thrust network analysis and 

Kangaroo. 

ShapeUp comes from Mark Pauly’s group at the EPFL and is a general framework for the creation and 

deformation of constrained meshes. (Bouaziz et al., 2012) presents this framework and the solving algo-

rithm. From an initial mesh, it iteratively finds small deformations that get the mesh closer to verifying a 

set of constraints while locally minimizing the deformation. The constraints are often a mechanical equilib-

rium but can also represent the distance to a target surface. This makes the algorithm a hybrid between 

direct and pseudo-inverse form-finding. Further developments give better guarantees on the minimizing 

properties, and introduce hard constraints that truly make the method a pseudo-inverse form-finding one 

(Tang et al., 2014). This flexibility is very desirable for more freedom in early design stages, when the final 

construction system might not be decided upon. 

To control the visual and architectural properties of the form-found shape, the simplest and most common 

representation of the intent is by defining a target shape. In an inverse form-finding setup, approximating 

this shape will hopefully result in a reproduction of the features that the designer would like to obtain. This 

will potentially fail if one of the features cannot be built with the chosen mechanical system. Often, this lets 

the designer without a clue as to which part of the target or combination of features is impossible, so mod-

ifying the target will be difficult. One potential mitigation is to add weights describing which regions are 

more important to the designer, who will often “paint” these weights on an interactive design tool (Garg et 

al., 2014). 

Another possible modification is to compare the form-found surface to the target shape using a more ad-

vanced metric than a simple point-to-point distance. For example, the designer could specify that only the 

curvature values of the target shape need to be matched, instead of the whole shape. The solver will then 

have more freedom to find a solution shape, but will still represent the important features of the target shape 
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like creases, ridges or flat regions as these will have a characteristic curvature signature. Prescribing curva-

tures as a way of designing and editing surfaces has been proposed for example in Eigensatz et al. (2008), 

and direct form-finding tools exist to create surfaces of minimal curvature variation (a desirable property in 

industrial design) that match prescribed guide curves (Joshi, 2008). Design tools for optimal origami tes-

sellations of shapes also include curvature as their main design objective (Dudte et al., 2016). Taking this 

idea further, it might be possible to represent intent and compute a difference to it using shape difference 

operators (Rustamov et al., 2013), as they represent how one mesh might be most efficiently and truthfully 

transformed into another, and define operators to transpose that deformation to a third mesh. 

Finally, it is probable that to better represent the many subtleties of a design intent, it would be necessary 

to move from an inverse form-finding that is focused on matching one target shape, to one where a collec-

tion of small bits of information are combined and all optimized for. This is the same conceptual shift as 

what Kangaroo introduced for direct form-finding: instead of using separate direct form-finding systems 

for each mechanical constraint, combine them into a unified solution where the designer can pick and 

choose which constraints apply to which part of their system. This is the approach taken in Chapter 6. 

2.4 Form-finding for fabrication 

When generating shapes that will be directly fabricated using a specific construction method, design meth-

ods in the literature tend to take a point of view close to inverse form-finding. This can be because of a need 

to generate shapes that are results of direct form-finding processes, and respect an additional constraint that 

is simple to represent in the form-finding process. For example, John Orr (2012) designs fabric formworks 

for concrete beams and shows how each cross-section is found using a direct form-finding process for the 

shape of an elastica curve (a bending-active structure made of a single rod). This is adapted to accommodate 

the fact that successive sections need to have a progressively varying shape. Similarly, Dessi-Olive (2017) 

uses form-found elastica curves as guides for a masonry construction system. By manually selecting elastica 

shapes that are close to the shape decided upon for the masonry system, more efficient structures are built. 

This method was also used for the construction of a tile-vaulted shell (Block et al., 2016). 

A more complete inverse form-finding method is described by Veenendaal (2017) as “constrained form-

finding”, where viable shapes are found for flexible formworks for concrete shells. For example, the form-

found shape of a pre-tensioned cable network, loaded with the weight of fresh concrete, is optimized so that 

it is close to describing a funicular shape under the concrete weight. Designing fabric formwork for concrete 

objects and structures was also studied by Zhang et al. (2019), who built an inverse design tool that solves 
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for many of the constraints imposed on such formworks, like fabric paneling, wrinkling and casting defor-

mations. One drawback of that method is its speed, generating a design in several hours. 

2.5 Implementations of designer-guided form-finding systems 

For these systems where the designer has control over the form-found shape, three broad categories of 

implementations can be defined. The first one concerns systems where the result of the direct form-finding 

can be found constructively from the initial conditions, without needing to resort to an optimization loop. 

This is found for example in Marionette meshes (Mesnil et al., 2016), which defines a class of meshes that 

define only planar facets. The full design space of meshes with planar facets is not generated by this method, 

but instead it finds a unique solution from two boundary curves in elevation and a projection of the mesh 

on the horizontal plane. It does so by systematically applying a simple linear equation to each facet of the 

mesh, which is both fast and robust. By simplifying the design space in this way, the designer is provided 

with a form-finding tool that has perfect control over the final geometry. This type of tool is regularly applied 

for a “geometrically-constrained design strategy” (Bagneris et al., 2008), and has been extensively used in 

architectural shape generation, for example on ruled surfaces for easy framework construction of concrete 

shells by Candela (del Blanco García & García Ríos, 2019). Implementation for these systems tends to be 

very focused on geometry, and thus dependent on the CAD framework used, and is generally similar to an 

implementation of a script for parametric design. 

The second category of implementations deals with the pseudo inverse form-finding systems. There, the 

focus is normally on the optimizer used, and the computation of gradients of the energy being minimized. 

The solvers can be general-purpose ones from commercial packages (Jacobson et al., 2011; Jiang et al., 

2017), or open-source implementations (Skouras et al., 2014). Some systems define custom-made optimi-

zation routines (Vouga et al., 2012). Computation of the gradients involves careful mathematical definitions 

of the energy being minimized, generally on a mesh so that techniques from discrete differential geometry 

(see Section 2.6) can be utilized, and great care is taken on developing expressions that lead to efficient 

numerical computations. Most of these systems then use a geometry representation based on meshes, with 

arrays storing the positions of the vertices and their connectivity. This leads to very optimized and efficient 

implementation of the optimization problem, albeit being hard to extend once finished. 

Lastly, systems like Kangaroo (Piker, 2016b) and ShapeUp (Bouaziz et al., 2012) where many constraints 

can be combined usually implement one simple solving method, and apply it to an energy that is only 

defined at runtime, once the designer has built their objectives. The energy computation is typically a loop 

over the collection of objects sent to the optimizer, each object defining the method to use to compute its 
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contribution to the energy. This is much less efficient to compute than the vectorized operations of the 

previous category, but has the advantage of greater design flexibility. 

2.6 Different academic communities 

Beyond the structural design community, two other academic communities are also interested in the opti-

mization of geometrical objects, and generating shapes that match prescribed constraints. We have already 

mentioned the computer graphics viewpoint, which typically produces pseudo-inverse form-finding tools 

focusing on the design of one system. A second group is (discrete) differential geometry, and its application 

in architectural geometry. 

There is a limited precedent of literature on rigorous modern geometry for architecture. One well-known 

book filling that void is the result of the research group led by Helmut Pottman at the University of Wien 

(Pottmann et al., 2015). A large part of the book is dedicated to presenting classical shapes of descriptive 

geometry, their properties, and interactions. It then details the mathematical background for NURBS curves 

and surfaces used in modern freeform CAD software. These two sections suffer from the limitations men-

tioned in the introduction: they can only represent the constructability constraints in very specific cases, or 

even not at all until they are rationalized. The last section is dedicated to recent research by the authors in 

constrained discrete surface generation and rationalization. It presents several typical requirements of ar-

chitectural shapes and proposes concepts that solve those requirements. It demonstrates the large improve-

ments that discrete differential geometry can bring to architectural shape representation, and emphasizes 

the need for constructive and iterative algorithms – this is not always considered by differential geometry 

theorists. However, the authors focus mainly on planar quadrilateral meshes as a construction method, and 

never consider the structural performance of the designs. Lastly, this book is destined to architects and 

designers and lacks most of the mathematical derivations. 

For continuous differential geometry, most of the introductory literature comes from physics – many of the 

concepts of differential geometry were developed for solving the equations of general relativity. A reference 

textbook in the domain is (Frankel, 2011). It presents all the mathematical theory needed for the study of 

manifolds, with a focus on 2, 3, and 4-dimensional objects. However, discrete objects are not studied. Cur-

rent research in discrete differential geometry in low-dimensional spaces is led by computer graphics 

groups. Crane (2014) gives a course in this domain with a focus on efficient iterative algorithms for smooth-

ing and optimization of meshes. 

Discrete differential geometry approximates continuous differential geometry on meshes and other simpli-

cial surfaces. Because architectural surfaces are often realized with discrete elements, meshes seem like a 
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good representation of the built reality. But their constitutive laws do not reproduce continuous reality, they 

truly describe a discrete object, and to approximate the behavior of a curved surface new mathematical 

properties can be attached to the elements of meshes. This can lead to robust and efficient formulations of 

energies defining mechanical equilibriums, for example for bending-active structures the model of Bergou 

et al. (2008) was shown to be very powerful, see Chapter 3. 

2.7 Summary 

Direct form-finding tools allow designers to generate shapes matching prescribed constraints like a me-

chanical equilibrium. Because the results of these methods tend to be very hard to control, inverse form-

finding was developed to allow the steering of form-found shapes towards additional objectives like a target 

surface. Such tools were initially taking on a relaxed version of the optimization problem defined by inverse 

form-finding, leading to pseudo-inverse form-finding where the designer has control over the form-found 

shape, but it will not match exactly the mechanical equilibrium constraints. True inverse form-finding on 

the contrary requires nested optimization loops, a setup that is very demanding on computational power 

and where the inner optimizer – a direct form-finding solver, or forward simulation – is put under repeated 

and automated use on a wide variety of inputs. This means that this solver needs special attention in terms 

of its speed, reliability and accuracy. 

True and pseudo-inverse form-finding are generally focused on one single shape target objective, and sim-

ilarly direct form-finding solver used to be limited to one single mechanical equilibrium constraint. Newer 

systems let the designer specify varied constraints in one unique framework for direct form-finding, and 

combine them to produce new shape generators that were not considered before. 

Two mechanical equilibriums of interest in this dissertation are bending-active structures and funicular 

structures. Until very recently, true inverse form-finding had not been applied to any bending-active struc-

tures; current solutions apply to a subset of them. Additionally, implementing one such system puts very 

specific requirements on the forward simulation. By carefully studying these requirements on various meth-

ods for the direct form-finding of bending-active structures (Chapter 3), we will be able to improve their 

implementation and gain a better understanding of how they work and perform (Chapter 4). We also look 

at finding good representations of the variables (initial conditions and parameters) sent by the outer opti-

mizer to the inner one on different case studies. 

Funicular structures have seen more interest in terms of the inverse form-finding tools developed for them, 

but will prove to be a good model system for experimentations on the implementation of novel inverse 
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form-finding systems (Chapter 5). Specifically, by implementing an inverse form-finding tool in an auto-

matic differentiation framework, we can imagine a system that is not focused on a single target shape ob-

jective (Chapter 6). 

  





 

 

3 Improving the speed, accuracy and reliability of form-finding processes 

for bending-active structures 

According to shell expert Chris Williams, form-active structures are a broad category of structures that 

react to external loads and constraints with large deformations, in contrast with more common form-passive 

structures such as frames or rigid shells (Williams, 2014). (This classification is different from Engel’s 

(1967) classification where form-active structures are contrasted with section-, surface- and vector-active 

structures.) These structures are lightweight, since they do not resist forces by direct material rigidity but 

by geometric deformations, and resilient because they can flex instead of breaking. 

However, predicting the rest shape of these structures and their behavior under different loading conditions, 

is challenging because of this deformability, involving non-linear processes. This rest shape needs to be 

found using direct form-finding tools. In this chapter, we aim at improving the quality of such form-finding 

tools for one common subset of form-active structures: bending-active structures. Fast and reliable form-

finding tools will be of great importance for Chapter 4, where they will be used repeatedly in an optimization 

loop – without any real-time control possible by the designer on the form-finding process – to find bending-

active structures that are closest to an objective shape. 
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3.1 Introduction 

3.1.1 Problem statement 

Bending-active structures are structures where structural elements are linear rod elements or elongated 

plates that deform in bending, often combined with fabric membranes to create lightweight structures. The 

construction process of these structures is fast and accommodating to large tolerances, making them a great 

solution to temporary covering problems, and to problems where adaptivity and reconfigurability are re-

quired (Coar, 2010). They need not be temporary structures, some examples are shown in Figure 3.1, like 

non-regular rod assemblies (Coar, 2012), regular grids of rods (Ban, 2003), and hybrid structures (Cuvilliers 

et al., 2017). 

The computational design process of a bending-active structure always involves finding the equilibrium 

shape of the structure. It is crucial that this final shape is predicted accurately, which remains a challenge 

with available software tools. For example, the final shape could be the support of another element, so that 

errors in the shape would result in incompatibilities with the secondary elements (Olcayto, 2007). Addi-

tionally, small errors in shape can lead to larger errors in the internal stresses predicted for the structure 

(Douthe et al., 2010), and even larger errors in the prediction of non-linear processes such as buckling 

(Mesnil et al., 2015). 

In the simulation process, the topology and connection types of the structure are first defined, along with 

the length of the bars and the boundary conditions such as anchors in the ground. An iterative algorithm 

(the specific types available are described in Section 3.2.5) then relaxes the rods’ positions until they are at 

equilibrium. 

 

 

Figure 3.1: Three examples of bending active structures. From left to right: bending-active frame, bending-active 

gridshell with a flexible membrane, and hybrid bending-active gridshell integrating a rigid shell. Central picture © 

Hubert Berberich (CC-BY 3.0). 
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Figure 3.2: Example of a computational reproduction of the construction process for a bending-active structure 

(Coar et al., 2017). The runtimes are extracted from one run of the Kangaroo 2 solver, a commonly used 

architectural design tool, on the structure. 

 

However, this iterative algorithm is at risk of being too slow for interactive explorative design, unreliable 

(giving unexpected results) and inaccurate (giving out-of-equilibrium results). It has no guarantee of con-

vergence, and can often produce a false sense of accuracy and definiteness. An example of a typical failed 

design process is represented in Figure 3.2. An attempt is made to reproduce the shape of a complex bend-

ing-active structure made of a two-layer grid. When a solver is run on this problem, it initially seems like 

it finds an equilibrium. However, running the solver for more iterations–and a longer time–shows that this 

is not the case. It could be that the solver parameters were not appropriate, or that the simulation did not 

accurately represent the construction process. In any case, the first shapes obtained after smaller run times 

are not to be trusted, as the nodal positions and forces they give are more representative of the initial con-

figuration of the simulation than reality. This raises awareness to the fact that convergence settings need to 

be carefully selected to produce reliable results. This problem is detailed in Section 3.5.4. 

Several algorithms and frameworks have tackled this problem, discussed in Section 3.2. However, these 

algorithms have not yet been comparatively evaluated specifically for the modeling of bending-active struc-

tures. As a result, building a design tool for one structure requires a lot of trial and error across the different 

possibilities. In addition, the stopping criterion – determining for how long the solver will try to improve 
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its solution – is critical to the quality of the results, yet its setting is often overlooked. In this chapter, 

different algorithms are compared, both from existing available tools using: 

• dynamic relaxation (Brew & Brotton, 1971) in Kangaroo 1 (Piker, 2016b), and 

• a variant of the projective dynamics method (Bouaziz et al., 2012) in Kangaroo 2 (Piker, 2016b), 

and from general-purpose optimizers: 

• a custom implementation of the dynamic relaxation method, 

• augmented Lagrangian (Birgin & Martínez, 2008) with L-BFGS (Byrd et al., 1995), and 

• SLSQP (Kraft, 1988). 

The quality and choices of stopping criteria are compared on three benchmark metrics: speed, reliability 

and accuracy. Guidelines for the parameters to use are given. 

3.1.2 Comparing form-finding processes to general-purpose optimizers 

It might seem unusual at first to compare dynamic relaxation and projective dynamics against general-

purpose optimizers. The former two represent the problem to solve as evolving a (pseudo-)physical system, 

made of nodes and elements on which internal and external forces are applied and moving the nodes in the 

direction of forces until an equilibrium is reached thanks to a damping mechanism; while the latter generally 

minimize the global energy of the system. 

However, both dynamic relaxation and projective dynamics are equivalent to an energy minimization pro-

cess. For projective dynamics, this is shown in Narain et al. (2016), showing equivalency to the minimiza-

tion of the sum of the potential energies associated with the forces defined on the system, using the alterna-

tive direction of multipliers method. Similarly, dynamic relaxation can be seen as a type of accelerated 

gradient descent method (Nesterov, 1983) on the elastic energy of the system. Minimizing the elastic energy 

of a physical system using that method implies moving the nodes (the variables in the optimization process) 

in the direction of the gradient of the energy (the “gradient descent”), that is in the direction of the forces 

applied at each node. This direction is “accelerated” by adding to it a function of the movement at the 

previous iteration; this is exactly like tracking the velocity of each node and carrying it forward in time 

through some inertia as is done in dynamic relaxation. The damping part of dynamic relaxation is repro-

duced in the function giving how much previous displacements influence the current iteration. 

Then, the structures created in the bending-active process are in fact minimizing the bending energy of the 

rods, under the constraint of inextensibility of the rods—the bending stiffness is typically orders of magni-

tude lower than the axial stiffness for an elongated rod. Alternatively, the inextensibility constraint can be 
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relaxed by calculating the energy of the compression of the rod, the energy to be minimized is then the sum 

of the bending and stretching energies: 

(𝑃3.1): min
𝑥
∑

𝐸𝐼(𝜅𝒃𝑖)
2

𝑙�̅�

𝑛

𝑖=0
, s.t. ∀𝑖, 𝑙𝑖 = 𝑙�̅�, or : (3. 1) 

(𝑃3.2): min
𝑥
∑

𝐸𝐼(𝜅𝒃𝑖)
2

𝑙�̅�
+ 𝐸𝑆(𝑙𝑖 − 𝑙�̅�)

2𝑛

𝑖=0
. (3. 2) 

where 𝜅𝒃𝒊 is the curvature binormal vector at node 𝑖, that rotates the edge before node 𝑖 into the edge after 

it, and 𝑙�̅� the length of the edges coming to node 𝑖. The bar designates initial values, that are kept constant 

for edge lengths. How different implementations and discretizations compute these values from the nodal 

positions 𝑥 is explained later in the chapter. 

3.1.3 Organization of the chapter 

Dynamic relaxation has been used very often for bending-active simulations since its creation; in this chap-

ter we investigate whether other methods might be useful. This method gives intermediate steps that are 

physically meaningful. However, in a design problem we only care about the end result – the static equi-

librium position – so that there might be more efficient methods available where the intermediate steps 

taken are not meaningful. This is why we chose to compare against general-purpose optimizers that do not 

give physically meaningful intermediate steps. 

In each case, the overarching goal is to find a solver for the direct form-finding problem of bending-active 

structures, that can be run inside an outer optimization for inverse form-finding problems. This leads to the 

three criteria for comparing the solvers, speed, accuracy and reliability. Additionally, because of the limited 

control exits on the inner solver in an inverse form-finding process, the various parameters used in each 

solver need to be simple to decide and fix throughout the simulation. The objective is to find one algorithm 

that will be fast, accurate and reliable on a wide range of inputs, for a given and fixed set of configuration 

parameters. 

The software tools selected are widely used in the architectural design community and implement methods 

that have become standards for form-finding simulations (Section 3.2). By comparing their predictions 

against the analytical result for the planar elastica (Section 3.3), we find guidelines for the simulation setup 

that produce accurate results without compromising too much on execution time (Sections 3.5.1 and 3.5.2). 

Finally, we use these guidelines for the simulation of a larger structure and show that they lead to reliable 

results (Section 3.5.4). 
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3.2 Literature review: precedents in simulation of bending-active structures 

3.2.1 Simulation of elasticas 

At the heart of every bending-active structure is the elastica, the mechanical equilibrium problem describing 

the shape of one elastic rod spanning between two supports (Levien, 2008). Simulating one elastica is a 

complex problem, for three reasons: 

• It is a highly geometrically nonlinear problem; small changes in the boundary conditions leading 

to large changes in the shape and different stability regimes can coexist (Goyal et al., 2008); 

• The interactions between bending and torsion are complex, and simulating them involves keeping 

track of more than three degrees of freedom at each discretization point (du Peloux et al., 2015); 

• Bending and axial compression in the rod operate at very different stiffnesses, leading to ill-condi-

tioned numerical problems when they are modeled simultaneously. Considering non-extensible 

rods requires more advanced constrained optimization algorithms (Bergou et al., 2008). 

3.2.2 Simulation of complex structures 

For active-bending structures, elasticas and other elements are then assembled to form a complete structure. 

The loads are usually light live loads of wind and impact. This results in very flexible structures. The assem-

bly and erection processes in particular always incorporate large displacements that conventional finite 

element method packages for structural engineering such as Robot or RISA-3D cannot easily represent 

(although more powerful generalist packages can be used, as described below). As such, these new struc-

tural typologies and systems require new approaches for engineering. 

The approach we consider here has the formulation of a form-finding problem: given the definition of a 

bending-active structure, with its rods, connections, boundary conditions and loads, what is its equilibrium 

shape? Two solving methods are typically used in this approach: 

• Generalist finite element method packages such as Abaqus are available for bending-active struc-

tures (Nabaei et al., 2013). The resulting models are often accurate and easily calibrated with phys-

ical quantities; however, they tend to be slow by default, and do not reliably find the main equilib-

rium. They are also poorly integrated with the usual architectural design tools.  

• Discretized elements in bending have recently attracted considerable attention from the computer 

graphics community, mainly for the simulation of dynamic systems such as hair (Nealen et al., 

2006). These methods tend to be faster and give predictable results for dynamic problems, but are 
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sometimes not accurate enough for the simulation of a static problem, and require great care in 

tuning (Bergou et al., 2010). Derivatives of these tools have been integrated in architectural design 

tools, most notably the Shape-Up library (Bouaziz et al., 2012). It is not always clear how each 

algorithm can be calibrated to give results in meaningful physical units (Anders et al., 2016). 

Specifically for elastic gridshells, Sakai et al. (2020) provide a new beam bending energy discretization, 

using the intersecting rods to keep track of surface normal and beam torsion. The authors implement this 

method in two direct form-finding algorithms, dynamic relaxation and one general-purpose non-linear op-

timizer (SNOPT), comparing results and number of iterations for each. This is close to the objectives of this 

chapter; however, limited in applicability to elastic gridshells rather than all bending-active structures, and 

does not provide information on the relative speeds of each method, only the number of iterations they need 

to reach convergence. 

3.2.3 Computational design of bending-active structures 

Examples abound for bending-active structures where a digital prototyping tool was critical to the design 

process. The CITA group and the Complex Modeling project produced several towers made from fiberglass 

rods in a water-drop shape, stacked and tensed by a tailored-designed membrane (Tamke et al., 2016), and 

elastic gridshells (Nicholas, 2013). They used specialist tools built on top of Kangaroo (described below) 

for the design. The ITKE created several examples such as Flectofin®, a large-size flapping mechanism 

(Lienhard et al., 2011), and umbrella-shaped bending-active structures (Lienhard & Knippers, 2015), using 

custom-made non-linear finite element method procedures. Several recent elastic gridshells also provide 

interesting examples using design tools based on the dynamic relaxation method (described below) (Douthe 

et al., 2010; Mork et al., 2016). Each time, the authors show how only a specialist use of form-finding tools 

made a more comprehensive design process possible. Additionally, all of the examples cited in this section 

had to incorporate tolerance-correction systems to overcome the accuracy shortcomings of the software. 

This shows a strong need by designers for accessible tools that can simulate bending-active structures. 

3.2.4 Design tool reviews 

Reviews of custom-made tools and frameworks for bending-active structures exist. For structures made of 

membranes and elasticas, Van Mele et.al. (2013) and Ahlquist and Menges (2013) look at the influence of 

the quality of the simulation tool on the design process, and improve on its speed or ease of use. However, 

they do not closely consider reliability or accuracy. More comprehensive reviews of modeling and design 
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techniques are also available (Lienhard, 2014; Lienhard et al., 2013), detailing how design methods stem-

ming from different generations of design tools created new categories of bending-active structures. These 

present very detailed analysis of construction systems, but do not focus on verifying the accuracy of simu-

lation tools for a range of conditions. A comparison of simulation results to analytical results, is found in 

(Adriaenssens & Barnes, 2001); however, the simulations are based on the dynamic relaxation method only 

and no additional methods are considered. 

Although these cited studies manage to simulate simple bending-active behavior, they do not address a 

comparison between simulated and built models. This makes the accurate fabrication of physical elements 

from simulated forms an unreliable proposition, showing a need for adequately verified and accessible soft-

ware for the direct form-finding of bending-active structures. 

3.2.5 Bending-active algorithms 

There are two commonly used form-finding tools for simulating bending-active structures considered in this 

chapter: dynamic relaxation and projective constraint-based solving, respectively implemented in the Kan-

garoo 1 and Kangaroo 2 software packages (for Rhinoceros3D / Grasshopper). These tools are tested in 

Section 3.3. They are widely used in the architectural design community, with a combined number of down-

loads of close to 250,000 at present (Piker, 2016b), and free. Additionally, they both share the same author-

developer and programing language (C#), allowing for a comparison of the algorithms, not only their soft-

ware implementation. 

Additionally, this dissertation presents a custom implementation of the dynamic relaxation method (Brew 

& Brotton, 1971), with kinetic damping (Barnes, 1988) and fast manifold projection (Bergou et al., 2008) 

for constraints enforcement, and compares it to two generalist optimization methods: SLSQP (Kraft, 1988) 

available from the scientific computation library Scipy; and L-BFGS (Byrd et al., 1995) in an augmented 

Lagrangian (Birgin & Martínez, 2008) scheme for constraints enforcement, from the optimization package 

NLOpt (Johnson, n.d.). 

3.2.5.1 Kangaroo 1 

Kangaroo 1 (Piker, 2016b) (this work uses version 0.099) implements a dynamic relaxation solver. Dy-

namic relaxation is a time discretization of the dynamical behavior of physical systems (Brew & Brotton, 

1971), introduced in the 1960s. The general idea is to simulate the dynamic behavior of the structure with 

carefully chosen damping parameters to reach an equilibrium state as quickly as possible. As such, it is 

easily related to the physical parameters of the rods, but introduces new parameters that have no influence 
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on the final result but can lead to instabilities: mass and damping. At each time step of length ℎ, the algo-

rithm integrates the second law of dynamics using a sympleptic Euler scheme: 

{𝑴�̈�
(𝑛+1) = 𝑴�̇�(𝑛) − ℎ

d𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔[𝒙]

d𝒙
𝒙(𝑛+1) = 𝒙(𝑛) + ℎ�̇�(𝑛+1)

, (3. 3) 

where 𝑴 is the mass matrix and ℎ the time step. 

Specifically, Kangaroo 1 implements a time integration of Newton’s second law using a semi-implicit Euler 

method (Senatore & Piker, 2014). At every iteration with time step Δ𝑡 after time 𝑡, the solver computes the 

nodal velocities 𝑣𝑖
𝑡+Δ𝑡 using nodal forces 𝐹𝑖

𝑡 from the previous update and masses 𝑀𝑖, then gets positions 

𝑥𝑖
𝑡+Δ𝑡 using the new velocities: 

{
𝑣𝑖
𝑡+Δ𝑡 = 𝑣𝑖

𝑡 + Δ𝑡
𝐹𝑖
𝑡

𝑀𝑖
𝑥𝑖
𝑡+Δ𝑡 = 𝑥𝑖

𝑡 + Δ𝑡𝑣𝑖
𝑡+Δ𝑡

 . (3. 4) 

This is a conditionally stable integration scheme with a wide stability region, and that is sympleptic meaning 

it has very good energy conservation (Hairer et al., 2006). Dynamic relaxation has to add virtual unit masses 

on the points that do not have one defined so that their dynamic behavior is defined. The time step is chosen 

to fall in the stability region of the method, given the nodal masses (Senatore & Piker, 2014). The damping 

of the system is done here with the kinetic damping scheme, resetting the system’s velocities every time 

the kinetic energy reaches a peak (Barnes, 1988). Dynamic relaxation has been used for a wide range of 

form-active structures (Bagrianski & Halpern, 2014; Barnes, 1999), including active bending structures 

(Barnes et al., 2013; Liew et al., 2016). These papers also use kinetic damping, and use a central-difference 

time integration scheme that leads to the same update—and properties—as the semi-implicit Euler method 

albeit considering speeds at a different time: 

{
𝑣𝑖
𝑡+Δ𝑡 2⁄ = 𝑣𝑖

𝑡−Δ𝑡 2⁄ + Δ𝑡
𝐹𝑖
𝑡

𝑀𝑖

𝑥𝑖
𝑡+Δ𝑡 = 𝑥𝑖

𝑡 + Δ𝑡𝑣𝑖
𝑡+Δ𝑡 2⁄

 . (3. 5) 

This makes Kangaroo 1 a representative tool for contemporary implementations of the dynamic relaxation 

method in bending-active simulations. 

In order to converge to a stable position, a damping mechanism is introduced, we selected the kinetic damp-

ing available in Kangaroo 1. The kinetic damping scheme is one of the most stable available for dynamic 

relaxation. It simply resets the velocities �̇�𝑖 to 0 every time the kinetic energy reaches a peak. Generally, 
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this algorithm can be thought of as an equivalent of accelerated gradient descent (Nesterov, 1983), with less 

carefully crafted acceleration but easy physical interpretation. 

3.2.5.2 Kangaroo 2 

Kangaroo 2 (Piker, 2016b) (this work uses version 2.1.2), uses projective constraint-based solving, a 

method developed in the computer graphics community and made available to wider audiences through the 

general-purpose simulation tool Shape-Up (Bouaziz et al., 2012). At each iteration, the solver moves closer 

to the equilibrium position by projecting the positions on the sets of constraints representing the relation-

ships between them. The solution is a physical equilibrium with correct derived forces if the constraints are 

physically accurate. The solving process used by Kangaroo 2 is a specialized version of the Shape-Up al-

gorithm: it uses the same projective based constraints and accelerates movements using a virtual velocity 

attached to each vertex. This code is not entirely available to the public, slightly obscuring this process. 

However, simple experiments – observing the movement of a single particle in a singular force field – and 

explanations by the developer (Piker, 2017b) give some insight. They show that the algorithm resembles 

the kinetic damping of dynamic relaxation (Barnes, 1988), resetting the vertices’ velocities when the forces 

change direction, but using forces derived from the projective dynamics method (Piker, 2016a). 

3.2.5.3 Custom dynamic relaxation 

In our custom implementation of dynamic relaxation, we reproduce the same time integration and damping 

mechanisms as in Kangaroo 1, but added a mechanism for solving the lengths constraints, instead of adding 

them a stiff energy term. 

At each time step, it is possible to strictly enforce non-linear constraints such as the lengths constraints by 

projecting the positions onto the closest point on the constraint manifold, correcting the velocities by the 

appropriate amount. This is in accordance with constrained dynamics, so it does not change the physical 

properties of the algorithm. However, finding the closest point on the constraint manifold can be time-

consuming; an approximation used in Bergou et al. (2008) and Goldenthal et al. (2007) is the fast manifold 

projection method. Effectively, it finds a close-by point exactly on the constraint manifold by taking a suc-

cession of as small as possible steps, changing the bending energy to the second order in the time step. The 

method repeats the following iteration until convergence is achieved: 

{
Solve ℎ2(∇𝑪[𝒙∗]𝑴−1∇𝑪[𝒙∗]𝑇)𝛿𝝀 = 𝑪

𝛿𝒙∗ = −ℎ2𝑴−1∇𝑪[𝒙∗]𝑇𝛿𝜆
𝒙∗ ← 𝒙∗ + 𝛿𝒙∗

, (3. 6) 

where 𝑪[𝒙∗] is the constraints vector and ∇𝑪[𝒙∗] its gradient. This is the method implemented in this chap-

ter. 
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3.2.5.4 General-purpose optimizers 

L-BFGS and SLSQP are two other methods of interest as they are very established generalist optimization 

methods, despite seldom being used in bending-active research. L-BFGS (Byrd et al., 1995) is a quasi-

Newton solver. It cannot accommodate strict non-linear constraints directly; instead, it has to be embedded 

in an augmented Lagrangian method (Birgin & Martínez, 2008), this is provided automatically in NLOpt 

(Johnson, n.d.). SLSQP (Kraft, 1988) uses sequential quadratic approximations of the problem to obtain an 

optimum. It can solve subject to arbitrary non-linear constraints, as these are directly passed to the quadratic 

problem solve. Each solution of quadratic approximations gives a direction for a Newton-like line-search 

in the complete problem. SLSQP has been used for the optimal design of flexible actuated structures, alt-

hough not for the form-finding of the beam (Maraniello & Palacios, 2016). 

3.3 Methodology: Single elastica comparison 

Before studying the simulation of complex bending-active structures containing many members, we first 

focus on simulations of simple, single-curve elastica problems, as they represent the elementary problem 

of all bending-active structures and can be solved exactly for forces and geometry using analytical equa-

tions. This allows for a direct comparison between the algorithms’ and analytical results. All algorithms for 

active bending can represent the elastica, and the quality of their results on multiple-rods structures depends 

directly on their results for one elastica. 

For each solver, we look for parameter settings that will give a predictable accuracy in the shortest possible 

time. For this, we run the solver with varying parameters on a range of boundary conditions for the elastica. 

For each set of parameters, the goal is to have consistent accuracy and speed across the range of boundary 

conditions: this represents the different shapes that the designer will encounter when modeling a set of 

elasticas. 

3.3.1 Elastica problem 

We consider a beam of length 𝐿, with Young modulus 𝐸, section 𝐴 and moment of inertia 𝐼, as described 

in Figure 3.3, top. Analytically, the elastica is the solution of the moment equilibrium in the beam (Audoly 

& Pomeau, 2010): 

𝐸𝐼
𝑑2𝜃

𝑑𝑠2
= −𝐹 sin 𝜃 , (3. 7) 
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where 𝑠 is the curvilinear position along the beam and 𝜃 is the angle that the beam makes with the horizon-

tal at that point. Integrating this equation gives 𝑎, 𝑓 and 𝐹 in terms of 𝛼. Solutions usually focus on the 

non-dimensional parameters 𝑎 𝐿⁄ , 𝑓 𝐿⁄  and 𝐹 𝐹𝑐⁄ , where 𝐹𝑐 = 𝜋
2𝐸𝐼 𝐿2⁄  is the Euler buckling force, to re-

move scaling and unit issues. For example for 𝑓 𝐿⁄  (Douthe, 2007): 

𝑓

𝐿
=

sin
𝛼
2

𝐾 (sin
𝛼
2)
, where 𝐾(𝑥) = ∫

1

√1 − sin2 𝑥 sin2 𝜑
𝑑𝜑

𝜋
2

0

.  (3. 8) 

Extracting 𝑎 𝐿⁄  from physical observations or numerical simulations, and inverting the relationship on 𝑎 𝐿⁄ , 

it is then possible to get the angle 𝛼 corresponding to that beam, and the rest of the parameters. This means 

that for one simulation, there are three possible comparisons to the analytical values (𝑎 𝐿⁄ , 𝑓 𝐿⁄  and 𝐹 𝐹𝑐⁄ ) 

from one measurement (on 𝛼). 

3.3.2 Numerical simulations 

The simulation model adopted for the beam is the same in each of the two solvers. The connectivity model 

stems from two straight lines of length 𝐿 2⁄  forming an isosceles triangle with the horizontal axis as the 

base of the triangle. The lines are connected at the apex of the triangle and form an angle 𝛼 = 1° with the 

horizontal. The lines are discretized in 𝑛 2⁄  segments each, such that we always have an even total number 

of segments and a vertex in the middle of the discretized beam. 

Internal forces are represented by elastic forces, as available in Kangaroo 1 and 2, see Figure 3.3, bottom. 

Position constraints are defined by an elastic linear spring of rest length 0 and given stiffness, attached on 

one side to a virtual fixed point and on the other to a defined vertex of the model. Distance constraints are 

represented by a linear spring of given rest length and stiffness, attached to two given vertices of the model. 

Angle constraints, representing bending forces, are represented by the discrete three points model from 

Adriaenssens and Barnes (2001), describing the shear force acting on the vertices when the interpolating 

arc going through them is bent. 

In Figure 3.3, this action of the bending moment is represented by a pseudo-rotational spring, that will be 

integrated by the model into a relationship between bending angle and shear forces applied on the three 

nodes around it. 𝑘∗ is the strength of this relationship as defined in Kangaroo, with units of rotational stiff-

ness times length (force * length²). This value has the advantage of being independent of the discretization 

length. For angles close to 180°, this is equivalent to a rotational spring of stiffness 𝑘∗𝑛 𝐿⁄ . Although this 
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model does not directly track torsional effects, results remain valid for initially straight and untwisted uni-

form isotropic sections where torsion occurs as a result of out-of-plane loads (Adriaenssens & Barnes, 

2001). 

The left endpoint is connected to an elastic anchor of stiffness 1014 N/m. A distance constraint is added 

between the endpoints, with stiffness 108 N/m and rest length corresponding to the target 𝑎 𝐿⁄ . Each seg-

ment is characterized by a distance constraint of stiffness (called “strength” in Kangaroo) 𝐸𝐴𝑛 𝐿⁄  and rest 

length 𝐿 𝑛⁄ . Each angle between two consecutive segments is characterized by an angle constraint with rest 

angle 0 and stiffness (or strength in Kangaroo) 𝐸𝐼. The last two properties represent a physically correct 

discretized beam with the given 𝐸, 𝐴 and 𝐼 properties. 

We used fixed values for 𝐿, 𝐸, 𝐴 and 𝐼. We chose the tie stiffness so that it would be around one order of 

magnitude higher than 𝐸𝐴. This way, the target length of the tie would be closely matched without intro-

ducing unnecessarily disparate stiffnesses in the model, which tend to make it less likely to converge. The 

stiffness of the anchor is high but is only used as a safeguard against the rigid-body movement of the model. 

 

 

Figure 3.3: Definition of the planar elastica problem, continuous (top) and after discretization (bottom). The beam is 

pinned at both ends. The solution is a relationship between 𝑎, the distance between the supports, 𝐹, the reaction 

force at the supports, 𝑓, the maximum height of the beam over the support line, and 𝛼, the angle of the beam at the 

supports. See text for a description of the pseudo-rotational spring and definition of 𝑘∗. 

3.3.3 Variables and observations definitions 

From the nodal positions at the end of the simulation, we extract several observations: 
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• 𝛼 , the angle of the first segment with the horizontal – this slightly underestimates the real initial 

angle of the beam interpolating through the vertices but is coherent with the discretized beam 

model; 

• 𝑓, the distance from the middle vertex to the horizontal tie; 

• 𝑎, the distance between the two endpoints; 

• 𝐹, the support reaction, is computed by multiplying the tie stiffness by the difference between 𝑎 

and the tie’s rest length. 

These are the observations we compare against analytical results. Note that because the tie has a finite 

stiffness, its final length 𝑎 is not exactly its rest length. Then we must make our analytical predictions based 

on the observed 𝑎, not on the tie’s rest length. 

In the analysis, we always present a comparison of observed simulations versus analytical results as an error 

on non-dimensional parameters. For example, for an observation 𝑓𝑜𝑏𝑠 associated with an analytical result 

𝑓𝑎𝑛𝑎, the “error on 𝑓 𝐿⁄ ” is: 

error (
𝑓

𝐿
) =

|𝑓𝑜𝑏𝑠 − 𝑓𝑎𝑛𝑎|

|𝑓𝑎𝑛𝑎|
. (3. 9) 

This helps in comparing errors across different boundary conditions, solvers, and observation types. 

The stopping criterion terminates the simulation when the particles’ total kinetic energy 𝑇 falls below a 

fixed threshold, the final position is the equilibrium configuration. We checked that this happened before 

the solver reached its maximum number of iterations, in our experiments on the elastica. Kangaroo 2 does 

not use an explicit time step as Kangaroo 1 does, this changes how velocities are computed so the kinetic 

energy cannot be compared between the two. The number of iterations corresponds to the number of times 

the points were moved on the process of finding the equilibrium. The damping parameter used by Kangaroo 

1’s length constraints is chosen to be as close as possible to critical damping such that all results converge 

on a test case with 𝑎 𝐿⁄ = 0.74. The time step used in Kangaroo 1 is the length of the time discretization 

interval, or time represented by an iteration. 

The wall time is the time that the elastica problem took to run, as reported by the program launching the 

simulations. While wall time can be influenced by other routines running on the computer, efforts were 

made to minimize these effects during the simulations so that the results can be reasonably compared. 
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Table 3.1: Parameters used in the studies and presented in Section 3.5. [start:step:end] is used to represent the set of 

numbers from start (inclusive) to end (exclusive), stepping by increments of step. [start:end] = [start:1:end]. 

Solver Discretization 

Compression 

ratio 

Stopping 

criterion Timestep 

Damping 

parameter 

Kangaroo 1 

𝑛 ∈ [2: 2: 36] 
𝑎

𝐿
∈ [0: 0.02: 1] 

log10 𝑇

∈ [−12:−10] 
0.05 10 

Kangaroo 2 
log10 𝑇

∈ [−14:−11] 
N/A N/A 

Custom 

dynamic 

relaxation 

log10 𝑇

∈ [−12:−10] 
0.05 10 

L-BFGS Energy: 10−7 

Constraints: 

10−4 

N/A N/A 
SLSQP 

Constants 
𝐸 = 10 GPa, 𝑅 = 5 cm, 𝐿 = 20 m, 𝐴 = 𝜋𝑅2, 𝐼 =

𝜋𝑅4

4
,  

𝑘𝑇𝑖𝑒 = 10
8, 𝑘𝐴𝑛𝑐ℎ𝑜𝑟 = 10

14 

 

Finally, the combination of parameters that were tested is represented in Table 3.1, totaling close to 40000 

experiments. Scripts were created to automatically run the simulation in each case, time it, and collect the 

results. 

3.3.4 Speed, accuracy, and reliability 

Throughout this work, we use three concepts to evaluate the quality of the tools: speed, accuracy, and reli-

ability. Speed is simply evaluated by the wall time (described above) taken by the algorithm. Speed is 

nothing if the result is not correct; thus we also look at accuracy, evaluated with the error measure defined 

in the previous subsection. This gives an upper bound achievable by the tool. A reasonable goal that is close 

to typical construction tolerances could be set at a 1% error. Finally, reliability is evaluated by the likeliness 

of the algorithm to output an incorrect solution. All the elastica results presented converged to the correct 

solution, but for example the introductory example of Section 3.1 shows that this is not always the case for 

more complicated structures. 
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3.4 Implementation details 

In this chapter, we compare the pre-existing solutions used in the architectural form-finding community, to 

others borrowed from general non-linear optimization and computer graphics. Formally, form-finding 

methods are differentiated on two points: the bending energy discretization they use, and the optimization 

algorithm they follow. A possible implementation of these methods is described in this section. 

3.4.1 Bending energy discretizations 

3.4.1.1 Discretization based on a circular interpolant spline 

Two discretization methods are generally used in similar problems. The first (Barnes et al., 2013) comes 

from the form-finding community and focuses on producing a simple expression for the forces acting on 

the vertices. It obtains these forces by considering an arc going through three consecutive points. For a 

series of three vertices (𝒙1, 𝒙2, 𝒙3) forming an angle 𝛼, the resulting forces are (Adriaenssens & Barnes, 

2001): 

(𝑺1, −(𝑺1 + 𝑺3),  𝑺3), where 

{
 

 𝑺1 =
2𝐸𝐼 sin 𝛼

‖𝒙2 − 𝒙1‖‖𝒙3 − 𝒙1‖
𝒏12

𝑺3 =
2𝐸𝐼 sin 𝛼

‖𝒙3 − 𝒙2‖‖𝒙3 − 𝒙1‖
𝒏23

, (3. 10) 

and 𝒏𝑖𝑗 is the normal to the edge 𝑖𝑗, in the plane defined by (𝒙1, 𝒙2, 𝒙3), pointing away from the center of 

curvature.  

3.4.1.2 Discretization based on a discrete definition of curvature 

Another method often referenced is the Discrete Elastic Rods (Bergou et al., 2008), see Figure 6 for nota-

tions. In this setup, the bending energy comes from a discretization of the curvature on a discretized rod: 

𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =∑
𝐸𝐼(𝜅𝒃𝑖)

2

𝑙�̅�

𝑛

𝑖=0
, 𝜅𝒃𝑖 =

2𝒆𝑖−1 × 𝒆𝑖

‖�̅�𝑖−1‖‖�̅�𝑖‖ + 𝒆𝑖−1 ⋅ 𝒆𝑖
, (3. 11)  

where 𝜅𝒃𝒊 is the curvature binormal vector at node 𝑖, that rotates the edge before node 𝑖 into the edge after 

it, and 𝑙�̅� the length of the edges coming to node 𝑖. The bar designates initial values, that are kept constant 

for edge lengths. 

This leads to the following forces (opposite of the bending energy gradient) acting on node 𝑖: 
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𝑭𝑖 = 𝑭𝑖
𝑃 + 𝑭𝑖

𝐴 + 𝑭𝑖
𝑁 (3. 12)

𝑭𝑖
𝑃 =

2𝛼

𝑙�̅�−1
[
2𝒆𝑖−2 × (𝜅𝒃)𝑖−1 + ‖𝜅𝒃‖𝑖−1

2 𝒆𝑖−2
‖�̅�𝑖−2‖‖�̅�𝑖−1‖ + 𝒆𝑖−2 ⋅ 𝒆𝑖−1

] (3. 13)

𝑭𝑖
𝐴 = −

2𝛼

𝑙�̅�
[
2(𝒆𝑖−1 + 𝒆𝑖+1) × (𝜅𝒃)𝑖 − ‖𝜅𝒃‖𝑖−1

2 (𝒆𝑖−1 − 𝒆𝑖+1)

‖�̅�𝑖−1‖‖�̅�𝑖‖ + 𝒆𝑖−1 ⋅ 𝒆𝑖
] (3. 14)

𝑭𝑖
𝑁 =

2𝛼

𝑙�̅�+1
[
2𝒆𝑖+2 × (𝜅𝒃)𝑖+1 − ‖𝜅𝒃‖𝑖+1

2 𝒆𝑖+2
‖�̅�𝑖+1‖‖�̅�𝑖+2‖ + 𝒆𝑖+1 ⋅ 𝒆𝑖+2

] (3. 15)

 

In this chapter, when relying on custom implementations, we use the second definition of forces, 

as it tends to give better results when coarser discretizations are used. 

3.4.2 Software implementation 

While the general framework built for comparing these methods is written in Python, a language that gen-

erally does not have the speed of compiled languages such as C++, we took great care to use efficient 

routines for all time-critical code. All data structures are represented using Numpy arrays, that use compiled 

linear algebra routines for all mathematical operations. Wherever possible, we used a sparse representation 

of the data structures, especially for the edges connectivity matrix and the constraints enforcement schemes 

that require sparse least-squares solves; we found a typical speedup of 3-5x using that. For the computation 

of constraints residuals, energies, and forces, we used code compiled using the Numba compiler for Python, 

and leveraged sparsity information when possible; this leads to 10-100x speedups in the implementation. 

Finally, all algorithms call compiled routines for their main work: the SLSQP, L-BFGS, and augmented 

Lagrangian implementations used are shipped with Fortran routines, and the dynamic relaxation code was 

compiled using Numba; this last operation gave 10x speedups. 

3.5 Results of numerical experiments 

In this section, we present the results of our solvers, on the set of numerical experiments described above, 

focusing on speed and accuracy. Then, we consider a larger example solved using Kangaroo 2 only. There 

is no analytical solution in that case to evaluate the accuracy of the solvers, but it displays reliability behav-

ior that is of interest in selecting the stopping criterion. 
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3.5.1 Kangaroo 1: dynamic relaxation 

The first set of results we present in Figure 3.4 are from Kangaroo 1. They show the error on three different 

measures, in log scale, as we vary the number of segments 𝑛 and the compression ratio 𝑎 𝐿⁄ . The errors 

represented are on 𝛼, 𝐹 𝐹𝑐⁄  and 𝑓 𝐿⁄ . The stopping criterion used was 10-10, this value displays similar be-

havior to smaller thresholds as shown in Figure 3.5. 

The three graphs show similar patterns: for small 𝑛, the error is close to 100%, meaning that the model 

failed to predict reality; then the error decreases asymptotically towards 0.1% as 𝑛 is increased. This is only 

true in a limited range of 𝑎 𝐿⁄  : for 𝑎 𝐿⁄   smaller than 0.2 the model rarely represents reality, even as 𝑛 

reaches 36. This shows that Kangaroo 1 can only represent limited amounts of bending (when 𝑎 𝐿⁄  is high, 

the beam is close to a flat line), and should only be used when the elasticas are compressed by less than 

50%. 

 

Figure 3.4: Surface plots of errors in Kangaroo 1 simulations of elastica for different numbers of discretized 

segments and compression ratio. Kinetic energy threshold used: 10-10. 
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Figure 3.5: Time vs. error in Kangaroo 1 for elastica simulations. Each color represents one threshold for the 

stopping criterion, each point represents one number of discretized segments (labeled). The point is at the median 

time and median error for all simulations that have the same number of segments and the same threshold. The extent 

of the bars represents the spread from 1st to 9th decile in time and error for these same simulations. 

In the error on 𝐹 𝐹𝑐⁄ , the points that have 𝑎 𝐿⁄ = 1 have a high error. This is because, at these points, the 

solution beam is a nearly flat yet buckled beam, while in reality it should be exactly flat at the onset of 

buckling. Then the force derived from Kangaroo 1 is largely underestimated. 

In general, Kangaroo 1 is complex to run reliably, often reaching divergent conditions. Figure 3.5 shows 

that the only way to achieve a precision of 1% or better in 𝐹 𝐹𝑐⁄  is with 𝑛 ≈ 20, which takes 10 to 20 

seconds to run for one single elastica. Even with small timesteps, the simulation is not reliable as a large 
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proportion of the simulations have errors close to 1. This is true for several values of the stopping criterion, 

it even seems that increasing it shows, in general, a degradation of accuracy. 

3.5.2 Kangaroo 2: projective dynamics 

Next, we present similar studies for Kangaroo 2. The stopping criterion used was 10-12, Figure 3.6. Figure 

3.7 shows how it compares to other possible choices. The plots show the same global trend on 𝑛, with the 

error going from 1 to 0.1% on average when 𝑛 is increased, in the errors on 𝛼 and 𝑓 𝐿⁄ . The error on 𝐹 𝐹𝑐⁄  

initially starts at much higher levels, but then quickly returns to usual when 𝑛 > 6. Here, we find no evi-

dence of particularly unstable regions in 𝑎 𝐿⁄ , except on 𝐹 𝐹𝑐⁄  when 𝑎 𝐿⁄ = 1, as seen before. This shows 

that the solver is more reliable, as the error is almost constant across a wide range of boundary conditions. 

The error tends to be less constant when 𝑛 > 24, especially in 𝛼 and 𝑓 𝐿⁄ , but in general remains bounded 

under the general trend going towards 0.1% error.  

In general, it seems that around 20 elements are needed to reliably get an error below 1% in 𝐹 𝐹𝑐⁄ . In the 

other two errors this is achieved even for 𝑛 = 10. Figure 3.7 confirms this behavior, showing that it is 

possible to achieve a 1% accuracy in 0.5 seconds. This is using 14 to 18 elements per elastica, with a 

threshold of 10-12 to 10-14. However, it seems for thresholds of 10-12 or higher, increasing the number of 

elements risks reducing the accuracy. Additionally, accuracies better than 0.1% are almost impossible to 

obtain reliably for a range of boundary conditions. 

In general, these studies show that Kangaroo 1 is not appropriate as a reliable design tool for bending-active 

structures, as no combination of parameters allows it to reach a predictable level of accuracy or speed. 

Kangaroo 2, on the contrary, is a good candidate for rapid design iterations in bending-active structures. 

For a typical rod it converges in less than a second to accuracies of 1% or better in position and forces. We 

recommend using a threshold of 10-12 or smaller, and 15 to 20 segments per discretized beam. Table 3.2 

summarizes these results. 

Table 3.2: Summary of results for the elastica experiments. 

Software Threshold for a 1% accuracy Typical run time for a 16 nodes problem 

Kangaroo 1 10-10 10 seconds 

Kangaroo 2 10-12 0.5 seconds 
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Figure 3.6: Surface plots of errors in Kangaroo 2 simulations of elastica for different numbers of discretized 

segments and compression ratio. Kinetic energy threshold used: 10-12. 
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Figure 3.7: Time vs. error in Kangaroo 2 for elastica simulations. See Figure 5 for labels. 

3.5.3 Comparison with general-purpose optimizers 

In this section, we present the comparison of observed simulations results versus analytical results as an 

error on non-dimensional parameters. For example, for an observation of the height at the midpoint of the 

elastica 𝑓𝑜  associated with an analytical result 𝑓𝑎 , the relative error on 𝑓 𝐿⁄   is: e(𝑓 𝐿⁄ ) = |𝑓𝑜 − 𝑓𝑎| |𝑓𝑎|⁄  . 

This helps in comparing errors across different boundary conditions, solvers, and observation types. For all 

three solvers (SLSQP, L-BFGS in augmented Lagrangian, dynamic relaxation), we varied the solver pa-

rameters, aiming to find a combination that would reliably give a 1% accuracy on the relative error on 𝑓 𝐿⁄  

in the shortest runtime, for a collection of test cases presented in Table 3.1. 
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The stopping criterion terminates the simulation when the relative change in the elastica’s energy is less 

than an “energy tolerance” between two iterations of the optimization procedure, and when the maximum 

of the constraints’ residuals is less than a “constraints tolerance”. We checked that this happened before the 

solver reached its maximum number of iterations, in our experiments on the elastica. The wall time is the 

time that the elastica problem took to run, as reported by the program launching the simulations. While wall 

time can be influenced by other routines running on the computer, we averaged each runtime over three 

runs, so that results are more reliable. For dynamic relaxation, we used a time step that was close to one-

tenth of the fundamental vibration period between two successive edges. 

The results are presented in Figure 3.8 and Figure 3.9. For SLSQP and L-BFGS, we only present the com-

binations that gave the best results. For dynamic relaxation, the results were less clear so we present them 

for three values of the energy tolerance. SLSQP and L-BFGS fare very well on these elastica experiments, 

with the 1% accuracy threshold reliably obtained with as little as 9 points on the elastica. This is a lot less 

than with Kangaroo 1 or 2, where around 20 points were needed; this confirms the better convergence 

properties of the energy model in 3.4.1.2 versus 3.4.1.1. Increasing the number of vertices to larger values 

tends to give less reliable results, usually because the solver found a local minimum of energy and stopped 

too early. Lowering the energy threshold tended to improve on this point. L-BFGS is slower than SLSQP 

for small numbers of vertices, this is mostly due to a longer startup time, and L-BFGS catches up quickly 

as this number is increased. 

Dynamic relaxation is harder to get to converge reliably, and we found the best results for an energy thresh-

old of 10−10 to 10−11, with 9 to 11 vertices. This is coherent with the analysis using Kangaroo 1 and 2. 

Our implementation of dynamic relaxation is around 10 times slower than SLSQP and L-BFGS, although 

it is still 100 times faster than the implementation in Kangaroo 1. This shows the dramatic influence that 

the enforcement scheme on the axial constraints can have. 

Both dynamic relaxation and L-BFGS exhibit unstable behaviors when the number of elements grows too 

high. This is because this generates a stiffer system that needs stricter parameters in the solver to be solved 

reliably (for example for dynamic relaxation, a smaller time step). Because we aim to find just one set of 

solver parameters and the number of discretization elements that will find an accurate solution (less than 

1% error) in the shortest amount of time, these results show that this combination of parameters should not 

be used in our case. 
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Figure 3.8: Time vs. error in height with SLSQP and augmented Lagrangian L-BFGS elastica simulations, for an 

energy tolerance of 10−7 and a constraints tolerance of 10−4. Each point represents one number of discretized 

segments. The point is at the median time and median error for all simulations that have the same number of 

segments and the same tolerances. The extent of the bars represents the spread from 2nd to 8th decile in time and 

error for these same simulations. 

 

Figure 3.9: Time vs. error in dynamic relaxation with three values of energy tolerance (labeled), constraints 

tolerance of 10−4, for elastica simulations. See Figure 3.8 for labels. 
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3.5.4 Larger examples 

3.5.4.1 Cocoon 

We applied our recommendations to the a posteriori simulation of a bending-active structure. The Cocoon 

project, built in Winnipeg, Manitoba, is a 12-meter-long pavilion made for the “Warming Huts” competi-

tion of 2012 (Coar, 2012). It is made of fiberglass rebars tied into “double-A-frame” modules and anchored 

into a frozen river. Dimensions and material properties are given in Figure 3.10. 

A comparison of the numerical model to actual photos in Figure 3.11 shows good agreement in shape. We 

obtained this result by discretizing the beams in 15 elements each, using ties of stiffness 107 N/m and rest 

length 0 m, and anchoring with stiffness 109 N/m. Figure 3.13 (left) shows this assembly for one module of 

the structure. We ran the simulation in Kangaroo 2 for 104, 105 and106 iterations, with 105 iterations the 

closest to our recommended threshold of 10-12, as demonstrated in Table 3.3. We found that 105 gave the 

best ratio of accuracy to time of computation. Comparing nodal positions to the reference run of 106 itera-

tions, 105 iterations is a significant improvement over a threshold of 10-11 (104 iterations), without being far 

from the result found with 106 iterations, as shown in Figure 3.13. We chose to use the number of iterations 

as a stopping criterion instead because sometimes a threshold is never reached, see Table 3.3. 

 

Figure 3.10: Cocoon project (Coar, 2012): dimensions and material properties. Labeled length dimensions are in 

mm. Photo © Matthieu Léger. 
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Figure 3.11: Comparison of actual footage of the construction to numerical simulations. Photos in top row © 

Matthieu Léger. 

To check the quality of our model, we compared the simulated distance from the top points of the modules 

to their four anchors, to the same data extracted from photographs with different viewpoints. The results are 

presented in Figure 3.12, grouped by anchor position in the module and the number of iterations used. 

Across all measurements but one, the absolute value of the relative error is below 2.5 %. There is a clear 

improvement in errors from 104 iterations to 105 iterations, with the error getting below 1 % on almost all 

measurements, then very little change as the number of iterations is changed to 106. 

  

Figure 3.12: Boxplot of the relative errors in the simulated distance from the top points of vertical bars to their 

anchors, compared to the physical structure, grouped by position of the anchor and number of iterations. Anchors 

positions are the four corners of each module, as seen in Figure 8. The central bar in the box shows the median of the 

group of measures, the extent of the box shows the first and third quartile, the whiskers show the minimum and 

maximum data values, and the points are outliers. 
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Figure 3.13: Comparison of results in positions for different numbers of iterations. Displacement shows the 

positional difference with the reference obtained after 106 iterations. In the initial configuration, point-like ties are 

connected to neighboring modules. 

 

This is an encouraging result showing that our recommendations from the previous subsection work for 

larger scales of projects. We also find that this is true for reaction forces prediction; see Figure 3.14. How-

ever, Figure 3.15 shows that caution is still needed when external forces are applied. In this case, we applied 

a uniform moderate wind pressure of 0.2 kN/m2 on the structure, in the pushing direction on the longer side, 

and pulling on the shorter side. As the simulation with 106 iterations shows, the structure is failing by 

buckling on the three external modules on each side (the inner modules are stiffer because they are con-

nected to more neighbors). This does not happen in the shorter simulation runs, with the 105 iterations run 

only hinting at the phenomenon. This buckling behavior was also observed in other experimental prototypes 

of the structure. 

 

 

 

Figure 3.14: Comparison of results in anchor forces for different numbers of iterations (top view). Maximum force 

vector error from 104 to 106: 76%, from 105 to 106: 1.5%. 
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Figure 3.15: Comparison of results in positions for different numbers of iterations, when a uniform wind pressure is 

applied to the structure. The displacements are shown from the unloaded configuration with 106 iterations. 

Table 3.3: Iterations needed for different energy thresholds in the Cocoon model. The 10-13 simulation did not 

converge after 12 hours of runtime. 

Threshold 10-10 10-11 10-12 10-13 

Number of iterations needed 6580 10320 25810 >30M 

 

3.5.4.2 Elastic gridshell 

Next, using an energy tolerance of 10−7, and a constraints tolerance of 10−4, we used the same algorithms 

to find the equilibrium position of an elastic gridshell, as represented in Figure 3.16, and varied the number 

of points between two connections of the gridshell from 0 to 4. This varied the number of points in the study 

from 94 to 654. Although all algorithms found a reasonable solution for the model with 94 points, the initial 

position in the model with more points proved too stable for dynamic relaxation and SLSQP, and only L-

BFGS found good equilibrium positions in this case. Table 3.4 summarizes these results. It shows good 

convergence of the positional accuracy, and a roughly linear increase in runtime with the number of points, 

making the algorithm usable for larger models. 

Since the equilibrium positions found by SLSQP and dynamic relaxation with 94 points have a positional 

accuracy of better than 1%, it is arguable that this model already has a sufficient number of points and both 

methods could then be used for a rough form-finding. In this case, SLSQP converged in 0.69 s and dynamic 

relaxation in 2.2 s, significantly slower than L-BFGS. Additionally for SLSQP and dynamic relaxation, the 

runtime per iteration is roughly quadratic in the number of points, indicating that these algorithms will 

become unusable for models with more than a few hundred points. This suggests that L-BFGS is the better 

choice for larger models. 
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Figure 3.16: Gridshell example used. Initial positions in black, best equilibrium found in blue. 

 

Table 3.4: Runtimes for L-BFGS with varying number of points in the beams. Accuracy refers to the mean distance 

between nodes and the closest point in the equilibrium position found with the highest number of nodes, divided by 

the size of the model. 

Number of points 94 174 334 654 

Runtime [s] 0.165 4.33 38.0 105 

Accuracy 0.7% 0.08% 0.03% - 

3.6 Conclusion 

This chapter has presented new results and guidance for modeling bending-active structures, focusing on 

key performance metrics: accuracy and speed. Our results show that designers cannot reliably use Kangaroo 

1 for simulating such structures, but that Kangaroo 2 can produce good results when tuned properly. In 

general, there is a tradeoff between accuracy and speed, on a single elastica with Kangaroo 2 the error is at 

best 0.1% for a 1-second runtime. Some combinations of simulation parameters lead to long simulation 

times and high errors in geometry and forces, especially when thresholds are set too low. This can impede 

the creative design process both by interrupting a designer’s flow and by misrepresenting physical reality. 

We recommend using in Kangaroo 2 a threshold of 10-12 or smaller, and 15-20 nodes per element in bend-

ing, to achieve a spatial accuracy of 1% or better. This is when using the physical values EA for the axial 

stiffness and EI for the bending stiffness, which ensures that positions and forces extracted from the model 

can be directly linked to the physical structure. 

Using the guidelines proposed here, the Cocoon case study illustrates that high-quality simulation of bend-

ing-active structures is possible, but not guaranteed with contemporary, widely available tools. Because the 

simulation is so sensitive to modeling parameters, critical behavior such as buckling under wind loading 

can be missed. Furthermore, the physical structure will be impacted by construction tolerances and site 
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variables. As a result, the usefulness of a precise digital model will depend greatly on an equally precise 

and constrained construction method that can reflect these accuracies. 

The results give a better understanding of how computational design tools for bending-active simulations 

work and perform for physically realistic modeling. They show the relevance of generalist optimization 

methods such as SLSQP and L-BFGS for these simulations, even compared to methods well-established in 

the field like dynamic relaxation. Finally, they offer guidance on possible future developments for efficient 

design tools and the accurate use of existing tools. 

In particular, using L-BFGS with a stopping criterion on the relative change in energy of 10−7, a constraints 

tolerance of 10−4, and at least 9 points per beam seems to be both stable and time-efficient for small and 

larger models. On small models (less than a hundred points), SLSQP with the same parameters is compet-

itive in time, and sometimes more stable. In terms of discretization techniques, it seems that an approach 

such as Bergou et al. (2008) that represents both length constraints and bending energy in a unified frame-

work is beneficial to the accuracy of the complete software. 

In future work, it would be interesting to see how these results evolve when more complex beam models 

are considered, for example including torsion effects. It seems it would also be beneficial to use optimization 

algorithms derived from SLSQP such as (Kovalsky et al., 2016), which can use sparsity information in the 

problem, mitigating the quadratic increase in runtime with the number of nodes. 

Future research is needed to understand different bending-active typologies, such as those that use hollow 

tubes instead of rods as elasticas. In this case, different ratios of bending to stretching stiffness are present, 

so this work’s results may not be directly applicable. In general, simulating tube-based bending-active 

structures should be faster because of a smaller range of stiffnesses, but not necessarily more accurate. 

In closing, the exciting possibilities of bending-active structures are expanded by the proliferation of de-

signer-accessible simulation tools such as Kangaroo 1 and 2. However, as shown in this work, a better 

understanding of how these tools work and perform is needed for physically realistic modeling, and trust 

in seemingly precise digital results can be easily misplaced. The results presented in this chapter contribute 

clarity in this direction and offer steps for improved workflows for designing bending-active structures. This 

also paves the way for better inverse form-finding procedures, where the speed and robustness of the inner 

loop do not hinder the optimization process of the outer loop. 

 

  



 

 

 

 

4 Inverse form-finding for bending-active structures 

Finding a bending-active structure that is as close as possible to a target shape is an inverse form-finding 

problem, that can be solved using a nested optimization process. In the outer optimizer, we iterate on some 

initial condition of the bending-active structure, until the distance from the equilibrium shape given the 

current initial conditions is as small as possible. Finding the equilibrium position is the result of the inner 

optimizer. This inner optimizer needs to be stable, reliable and fast, given the wide variety of input condi-

tions that the outer optimizer will attempt. This chapter uses the results from Chapter 3 to build such a 

solver, and apply it to two design problems: a simple arc-lamp first, and a larger elastic gridshell second. 

Because this chapter reuses the solvers and methods studied in Chapter 3 in the inner loop of the inverse 

form-finding process, the results of that chapter on the quality of the results produced still apply here: gen-

erally as accurate as other direct form-finding methods, and selected to be as fast as possible in these con-

ditions. 
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4.1 Background 

4.1.1 Bending-active structures 

Shell structures derive their structural efficiency from their geometry. While their form minimizes bending 

moments, they are complex to build. Bending-active is a construction method to create curved shell geom-

etry by elastically bending initially straight rods. It allows the creation of shell-like shapes with a simpler 

construction process, leading to lightweight structures with possibly long spans and quickly erected. Ex-

amples of such constructions include the well-known elastic gridshell of the Mannheim Multihalle by Frei 

Otto (1974, (Happold & Lidell, 1975)), and many others since then with regular (Merrick, 2006) and irreg-

ular arrangements of the rods (Coar, 2010), different materials like GFRP for the rods (Baverel et al., 2012) 

and concrete for the cover (Cuvilliers et al., 2017), or plate-like base elements (Nabaei et al., 2013). 

Automatically predicting the equilibrium shape of the bending-active structure at the end of this process is 

critical to enabling their design, as it is very difficult to intuit the shapes they can take. In addition, no good 

criterion exists for predicting if a surface can be approximated by a given arrangement of rods, or which 

arrangement would give the best result. As a result, all design workflows start by simulating the equilibrium 

shape of the structure considered, a process that can be time-consuming and error-prone, before analyzing 

the qualities of the resulting design. 

By automating this process, carefully tuning it for speed and reliability (Chapter 3), and integrating it in an 

optimization loop, the designer gains access to a design workflow where objectives can be specified for the 

design. The rod arrangement, lengths, and properties needed to reach these objectives is the result of this 

workflow. Most importantly, this lets designers come as close as possible to a target shape that they define. 

4.1.2 Target shape 

Computational form-finding methods usually output forms that minimize some part of the stresses in a 

given structure, for example shell bending stresses in the design of compression-only shells. In bending-

active structures, the normal form-finding process finds the equilibrium shape by minimizing the bending 

energy in the structure. It is also possible to further optimize the resulting structure to reduce stresses under 

live loads or buckling sensitivity (D’Amico et al., 2015). 

While this helps reduce the material quantities and increase the performance of the shell structure, the de-

signer has limited control over the resulting shape. By defining a desired target shell shape, structural opti-

mization tools can be successfully applied to find forms that both minimize structural material volumes and 
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resemble the target shape. Modifying the equilibrium shape is most easily achieved by varying the cross-

section of the rods. While this does not apply to all materials, timber lends itself quite well to varying cross-

sections (Mayencourt et al., 2017). 

Optimizing for a target shape is one of the most evident inverse form-finding problems, especially for bend-

ing-active structures where the equilibrium shape can exhibit dramatic variations when the initial conditions 

are changed. The target shape is a simple expression of the designer's intent and makes for a simple objective 

formulation. Garg et al. (2014) use a similar approach to build a design tool for sculptures made of wire 

meshing, a closely related problem but where the elastic bending forces can be neglected as the material is 

plastically deformed to conform to the target surface. This simplifies finding the equilibrium shape of the 

structure, and most of the attention is given to the outer optimizer. The authors use a two-part objective 

function, summing a “fairness” and a “closeness” term. The closeness is simply a Euclidian distance from 

the nodes of the mesh to their closest projection on the target; the fairness represents the amount of curvature 

in the form-found surface, minimizing it helps to avoid sharp features that are difficult to build. The varia-

bles in this setup represent the shape of the boundary of the initial mesh piece, the optimizer in effect is 

adding and removing material to use in the construction. 

Similar design problems include the design of 3D-printed network of elastic rods that approximate a surface 

(Pérez et al., 2015; Zehnder et al., 2016). By deferring finding the elastic equilibrium until later in the design 

process, the inverse form-finding problem of finding the realizable structure closest to the target surface is 

more tractable. The objective again includes a Euclidian distance from the nodes of the simulation to the 

target surface, and additional terms representing relevant design objectives. Rao et al. (2019) for example 

add a term to represent a consistent pressure applied by a cast on a broken and swollen limb. 

More recently, a complete design system was proposed, solving an inverse form-finding problem towards 

a target shape while simulating elastic bending equilibriums (Panetta et al., 2019). The structures built there 

are close to elastic gridshells, except that they do not start from a regular grid, and are actuated into their 

final shape by force actions on a small set of nodes, rather than by fixing the boundary. Their methodology 

validates many of the choices proposed in Chapter 3: the beam model is taken from Bergou et al. (2008), 

the inner optimizer is a Newton-based with Hessian information, similar to BFGS. The outer optimizer is 

the Newton-CG trust region method. 

4.1.3 Design variables 

In this chapter, we present two ways of modifying a bending-active structure so that it matches a design 

target: changing the cross-section of the bending elements and changing their total length. The change of 
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cross-section of a rod changes the radius to which it will bend according to the 𝐸𝐼 value of the section. Rods 

of variable cross-section in bending-active shell structures could open up the variety of shapes that can be 

achieved, for example leading to elastic gridshells with increased usable space thanks to more vertical 

shapes near the ground. The ICD/ITKE bending-active structure is such an example (Fleischmann & 

Menges, 2012). We apply this strategy to design the arc lamps of Section 4.2. 

Changing the length of the bending elements is more appropriate for structures like elastic gridshells: in 

this case, the local “pulling and pushing” of the rods can change the global geometry, similar to what 

changing the boundary geometry would do. As mentioned earlier, Garg et al. (2014) implement a similar 

boundary modification strategy, albeit for plastically formed gridshells rather than elastic ones. Examples 

of this strategy for elastic gridshells have been published by Bouhaya et al. (2014), and Soriano et al. (2019). 

4.2 Varying cross-section elastica: the arc lamp 

4.2.1 Methodology 

First, we implement a design workflow, in Rhino/Grasshopper, where a target curve is drawn by the de-

signer, and a closely approximating elastica of varying cross-section is found. The elastica is clamped at the 

base, with a weight suspended at its other end, so that it realizes an arc suitable for a lamp such as the ones 

depicted in Figure 4.1. This shape was selected so that it could be built by participants in a 2-day workshop. 

A simple example of the possible variations in this setup is presented in Figure 4.2, at a height of around 

50 cm. The final designs were 1 to 1.5 m high. 

  

Figure 4.1: An arc lamp made of pre-bent metallic channels (left). A possible realization of an arc lamp made from 

initially straight timber slats (right). By carefully varying the width of the slats, the geometry can be controlled to 

create perfect circles. 
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The design workflow is based on the direct form-finding solver of Chapter 3, and a simple COBYLA opti-

mizer for the outer loop. The elastica is discretized into 15 bending elements, and its equilibrium position 

is found using L-BFGS with a stopping criterion on the relative change in energy of 10−7, a constraints 

tolerance of 10−4. For the outer optimization loop, the objective is to minimize the distance from the nodes 

of the simulation in their equilibrium position 𝑥𝑖 to their closest projection 𝑃𝒞(𝑥𝑖) on the target curve, using 

the bending stiffness 𝐼𝑖 of the elements of the simulation as variables: 

(𝑃4.1): min
𝐼𝑖
∑‖𝑥𝑖 − 𝑃𝒞(𝑥𝑖)‖

2

𝑖

s.t.  {
𝑥𝑖 = argmin

𝑥𝑖

𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝑥𝑖)

∀𝑖, 𝐼𝑚𝑖𝑛 < 𝐼𝑖 < 𝐼𝑚𝑎𝑥 

. (4. 1) 

We restrict the bending stiffness to values that are reasonably achieved in our construction method. 

 

Figure 4.2: Actively bent wood strips with variable cross-section. The optimization was set up to satisfy the same 

boundary conditions at the base and at the location of the weight. By changing the section of the strips, the 

elastically bent pieces take different deformed shapes. 
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An initial guess on the bending stiffnesses is made using the target curve: if the solution follows it perfectly, 

then the bending forces at a point of the arc will equilibrate the moment generated by the point load at the 

end of the beam: 

𝜅𝐸𝐼 = 𝐹𝐿 (4. 2) 

Where 𝜅 is the curvature of the target curve at that point, 𝐸 the Young’s modulus of the material, 𝐼 the 

bending stiffness at that point, 𝐹 the load and 𝐿 the moment arm of that load to the point where the equilib-

rium is considered. This is not sufficient to find the solution to our inverse form-finding problem however, 

as this is only a local condition that gives no guarantees on the global shape. If any part of the beam cannot 

satisfy this condition, for example because of restrictions on the cross-section size, the rest of the elastica 

will quickly deviate from the target curve. In this case, a better solution will be found using our design 

workflow. 

The interface of this design tool is shown in Figure 4.3. 

 

Figure 4.3: Visualization of the interface of the arc lamp form-finding tool. 

4.2.2 Results 

The workflow was used by 7 participants of a design workshop for the Advances in Architectural Geometry 

conference 2018, at Chalmers University, Gothenburg, Sweden (Cuvilliers et al., 2018). Each participant 



 

85 

designed and built an arc lamp made from 2-to-4-meter strips of furniture-grade birch plywood, from 4-

mm- and 6-mm-thick sheets. The lamps were up to 2 meters tall, and 40 cm wide. The plywood was laser-

cut to the shape output from the design tool, to vary the cross-sectional inertia. Additionally, multiple layers 

of plywood could be glued together to create stiffer sections. Figure 4.4 shows some examples of the lamps 

that were built and their construction details. The lamps were then put on display in the conference space, 

see Figure 4.5. 

The workshop demonstrated that our design tool was sufficiently robust and quick to be used in an interac-

tive design fashion. One forward simulation normally takes less than 1 second to run, with the complete 

result of the inverse design problem obtained in 10 to 20 seconds. This allows for quick modifications of 

the input target shape as a response to the previous result. See Figure 4.6 for all the lamps that were built. 

Figure 4.4: Arc lamps and their construction details. 

 

  

Figure 4.5: Some of the arc lamps on display in the conference space. The pre-stressed geodesic gridshell in the 

background was designed by Sehlström et al. (Sehlström et al., 2018). 
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Figure 4.6: The arc lamps built for the workshop. 

In pathological cases, when the target curve was far from being realizable as a bending-active equilibrium, 

the forward simulation often took longer to run, and we had to resort to an early stopping criterion in these 

cases. This was particularly the case when the target curve was slightly too straight around its base, and the 

initial guess slightly too stiff for the allowable width and height of the arc. Then, the forward simulation 

would initially be close to an equilibrium, but slowly deflect slightly more than planned around the base, 

which would lead to an added moment arm as the load would be further away in horizontal distance, leading 

to a larger deflection in the base until the structure collapsed. 

Additionally, the tool lets the designer choose how the bending stiffness should be created in the construc-

tion: by increasing the width or the height of the beam. This leads to interesting shape designs of the arc 

front elevation, without changing its profile (as guided by the target curve). Given the limits that we had 

put on the width and height of the arcs, and their rate of variation, manual modifications of this would also 

sometimes allow for a better fit of the target curve. The interactive nature of our design tool lets the designers 

find these better fits easily. 

Although our tool was initially made for the design of a single elastica, some workshop participants were 

able to modify it to model a small number of loosely coupled curves. For example, one could design two 
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target curves with the same end points, and a shared load, so that the final construction would seem to be 

made of two diverging then converging arcs supporting only one lamp. Or by designing two target curves 

with only the same base, and playing with the maximum width of the result, two arc lamps can merge at 

their base. 

4.3 Inverse form-finding of an elastic gridshell 

4.3.1 Methodology 

Next, we look at solving an inverse form-finding problem for elastic gridshells. We consider only regular 

grid gridshells, that have their shape formed by their boundary conditions: most laths of the gridshell will 

be pinned to a ground connection. We keep the same inner optimizer as previously, given the good results 

we obtained for a single elastica: each lath of the gridshell is discretized into at least 15 bending elements, 

and its equilibrium position is found using L-BFGS with a stopping criterion on the relative change in 

energy of 10−7, a constraints tolerance of 10−4. There is always at least one simulation node between two 

intersections on a lath, and when there are more than 7 intersections on one lath, we discretize it with 2 

elements between each intersection. 

For the outer optimization loop, the objective is to minimize the distance from the nodes of the simulation 

in their equilibrium position 𝑥𝑖 to their closest projection 𝑃𝒮(𝑥𝑖) on the target surface. The variables are the 

displacements 𝑎𝑗 of the pin anchors to the ground, from their initial positions. A similar choice of variables 

would be to change the lengths of the end segments on each lath that is pinned, in effect pushing and pulling 

the gridshell up or down from its boundary. The mathematical formulation of our optimization problem is: 

(𝑃4.2): min
𝑙𝑖
∑‖𝑥𝑖 − 𝑃𝒮(𝑥𝑖)‖

2

𝑖

s.t.  

{
 

 
𝑥𝑖 = argmin

𝑥𝑖

𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝑥𝑖)

∀𝑗, 0.1 <
|𝑎𝑗|

𝑙𝑔𝑟𝑖𝑑
< 3

. (4. 3) 

The initial guess is found by draping a regular grid over the target surface. We restrict the displacement 

vectors lengths |𝑎𝑖| between 0.1 and 3 times the grid spacing. We found bounding the variables in this way 

helped the optimization by preventing large variations between outer loop iterations, in turn providing faster 

inner solves. For the optimization, the gridshell is drawn with extra cells on its pinned boundary, so that all 

anchors in effect sit below the ground. This allows the anchors to be moved freely without lifting parts of 
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the boundary above the ground. The final resulted is presented with these extra elements cut at ground level, 

and anchored at that intersection. 

Lastly, we found that changing the variables independently could lead to ill-conditioned iterations. As we 

are not providing gradient information to the outer optimizer, it will approximate it with finite differencing, 

initially changing each variable by a fixed amount while keeping the others constant. This forces very small 

iterations in the beginning, as larger ones would create low-quality gridshells with very different laths 

lengths between consecutive laths, a situation that is either slowly solved by the inner optimizer or even 

completely physically unstable. 

As a result, we chose instead to replace the independent variables by a crude Fourier series-like 

representation of them, based on the grid spacing 𝑙𝑔𝑟𝑖𝑑 of the gridshell and their initial position 𝑠𝑗 

on the boundary curve: 

𝑎𝑗 = 𝑢0 +∑(𝑢𝑘 cos (2𝜋
𝑠𝑗

𝜔𝑘𝑙𝑔𝑟𝑖𝑑
) + 𝑣𝑘 sin (2𝜋

𝑠𝑗

𝜔𝑘𝑙𝑔𝑟𝑖𝑑
))

𝑘

. (4. 4) 

When the boundary is made up of multiple disconnected segments, we repeat this process as many times 

as needed. See Figure 4.7 for an example of the movement of the anchors with 3 frequencies. 

Figure 4.7: Movement of the anchors when varying coefficients for 3 frequencies. From left to right: initial 

positions, maximum movement with a constant offset, then with the first and second frequencies. 

The new variables in the optimization problem are then the 𝑎𝑗 and 𝑏𝑗 amplitudes; the wavelengths 𝜔𝑗 are 

fixed at the beginning of the optimization. By changing the wavelengths 𝜔𝑗  between 1 and 

𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑙𝑔𝑟𝑖𝑑⁄ , we can generate different spatial frequencies for the features of the gridshell. Higher and 

lower frequencies cannot be reproduced by the grid or boundary so they can be ignored. When there are as 

many wavelengths as independent variables 𝑎𝑗, we can reproduce any combinations of 𝑎𝑗 by changing the 

amplitudes 𝑢𝑘 and 𝑣𝑘. However, we found that we obtained a good solution to the inverse form-finding 

problem (as is, close to the solution we would obtain with the original formulation with the 𝑎𝑗 variables) 

by selecting only 3 to 5 frequencies that would match the main spatial frequencies of the target surface. 

This effectively reduces the dimensionality of the outer optimization problem without significantly reducing 
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its design space. Lastly, by limiting the wavelengths to larger than 4, we effectively suppress the issues we 

described above due to the quick variations of lengths between successive laths.  

Note that in this new parametrization, only the anchors are moved. The nodes of the grid keep the rules of 

an elastic gridshell: pinned connections at regular distances, thus preventing sliding of the bars over each 

other and only allowing a hinging motion at the node. The bars are initially straight, which together with 

the constant spacing of the nodes ensures that the gridshell can be built from an initially planar grid. 

4.3.2 Results 

We implemented and tested this workflow in the Rhino/Grasshopper platform, using our own implementa-

tion from Chapter 3 for the inner loop and the Goat Grasshopper plugin interface to the NLOpt optimization 

package for the outer optimizer, selecting the L-BFGS method. We then tested it on several structures 

representative of real elastic gridshells. The results are compiled in Table 4.1, where the adimensional score 

is calculated as: 

√∑ ‖𝑥𝑖 − 𝑃𝒮(𝑥𝑖)‖2𝑖

𝑛𝑙𝑔𝑟𝑖𝑑
, (4. 5) 

that is the square root of the objective value divided by the number of intersections in the grid and the grid 

size. This gives us a metric that can be compared across experiments. 

We focus on two main design examples: a reproduction of the Japanese Pavilion at Expo 2000 gridshell 

(Ban, 2003), and a parabolic dome shape that is indented at the top, summarized in Table 4.1. On these 

examples with up to 500 bending elements, a forward simulation can take up to .5 seconds, and the inverse 

form-finding solution takes 3 to 5 minutes. This allows for incremental design changes, but not true inter-

activity, at this scale. These structures represent two typical behaviors observed for inverse form-finding of 

elastic gridshells. 

Table 4.1: Summary of results for our inverse form-finding framework for elastic gridshells. 

 Laths [#] Simulation 

nodes [#] 

Simulation 

elements [#] 

Runtime [min] Adimensional 

score 

Japan Pavilion 34 159 276 4.3 0.52 % 

Dented dome 38 261 522 5.2 1.1 % 

Valleyed dome 38 261 522 3.7 0.58 % 
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While the Japanese Pavilion shape lends itself very well to being built with an elastic gridshell (see Figure 

4.9), the dented dome simply does not have a faithful representation with an elastic gridshell. In this case, 

the designer would have to edit the target shape to obtain a good solution. Figure 4.8 shows one possible 

modification that could be made to the dented dome target shape to find a shape that can be built with an 

elastic gridshell. The better agreement between the inverse form-finding result and the target shape is re-

flected by the improved adimensional score, see Table 4.1. 

 

 

Figure 4.8: Possible modification to the dented dome target shape that can be represented by an elastic gridshell. 

Top: Initial shape and inverse form-finding result, with a poor agreement at the top; bottom: by continuing the dent 

down the sides of the target surface in a valley shape, a better fitting gridshell is found. 
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Figure 4.9: Results found by the inverse form-finding tool for elastic gridshells. (Top) Initial grid position from the 

draping step, not in bending equilibrium; (middle) equilibrium position of the initial grid position; (bottom) 

equilibrium position with optimized anchor positions resulting from the inverse form-finding tool. 
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4.4 Conclusion 

This chapter presents a framework for the inverse form-finding of two subsets of bending-active structures: 

a simple elastica and regular grid elastic gridshells. The workflow has a broad range of applicability and 

speeds that allow for incremental modifications to the design. This lets the designer tap into a wide design 

space that is not typically explored for “manual” elastic gridshell designs, i.e. without inverse form-finding 

tools. This is in large part possible thanks to the careful selection of the inner optimizer loop presented in 

Chapter 3. Specifically, the speed of the inner loop directly improves the speed of the whole workflow, and 

its reliability lets the outer optimizer explore large design variations without fear of producing an inaccurate 

result that would seriously slow down the optimization process, or lead it into false minima. The Fourier-

like representation of the design variables also proved very useful in speeding up and stabilizing the work-

flow, without reducing the quality of the results. 

Several improvements could be made to this workflow to make it more useful for designers. Most im-

portantly, the outer loop could probably be significantly sped up (thanks to many fewer inner loop calls 

needed) by providing gradient information to replace the finite differencing done in this work. This is for 

example done in (Panetta et al., 2019) for the related case of X-shells, using an adjoint method formulation. 

They report around one order of magnitude of speed improvement on the outer loop, with similar inner loop 

speeds. Additionally, the inner loop makes some simplifications on the physical construction details of 

elastic gridshells that could influence the results. For example, the fact that laths are not coplanar at inter-

sections, but stacked on top one another; accounting for this leads to additional moments in the laths due to 

the offset forces applied through the joints. We also do not consider torsion forces in the rods. 

Future work on the workflow itself could include generating better initial guesses. While the draping 

method has proved to work well in our case, there are other heuristics used for elastic gridshell, like the 

compass method (Grafe et al., 1974) to generate shear-only deformations of a regular square grid on a given 

surface. Additionally, there might be better ways of approximating the inverse form-finding result by in-

corporating some bending equilibrium information in the initial guess generation. 

The initial topology of the grid largely affects the resulting forms that can be obtained, and it would be 

interesting to find ways to automatically explore that influence. For example in the Japan pavilion example 

of Figure 4.9, if the grid is oriented in a way that continuous rods cross over two ridges or two valleys, it 

will be very difficult to find a position of the anchors producing an equilibrium shape close to the target. 

One good solution might be to systematically explore how the results of the inverse form-finding change 

when the general orientation of the grid and the average hinge angle between the two grid directions are 

varied. 
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Similarly, our workflow does not tell the designer what could be changed in the target shape so the results 

would match it better. While manually generating variations of the target shape is possible as we have 

shown, there is no guarantee that these modifications will lead to a better result. The problem for the de-

signer is that a trivial modification of the target shape, making it match the current inverse form-finding 

result, would lead to finding a perfect result but usually lose the features that they were hoping to reproduce. 

One way around this limitation would be to encode these target features in the objective function, and use 

convergence information to decide which ones are impossible to match by the optimization. This is an 

approach we are investigating in Chapter 6. 

Elastic gridshells are a powerful example of quickly-deployable bending-active structures, that can span 

large spaces while remaining lightweight. By implementing inverse form-finding workflows for these, we 

allow designers to realize a larger panel of shapes with them, and have better control on modifying these 

shapes. There are still large classes of similar problems where similar workflows could be beneficial, both 

for deployable structures and bending-active structures. The methods developed in this work, and the inte-

gration of inverse form-finding techniques, could similarly expand the available design spaces of hard-to-

design structural systems where only forward simulations are currently available. 

 

 

  





 

 

 

5 Inverse form-finding of funicular structures: target shape 

5.1 Introduction 

Compression-only structures are much more efficient than structures where bending occurs. For example, 

in a linear structural element, slender by definition, axial loads are straight forces resisted uniformly by the 

whole section, while bending is a force with a large moment arm resisted by the section where only small 

moment arms exist. Thus, by focusing on funicular structures for a given load, we guarantee that all the 

material will be used with the most efficiency. This explains the significant interest in such structures his-

torically and today.  

The compression-only state in a structure is similar to a perfectly flexible chain with no self-weight, fixed 

at both ends with some slack, hanging under the action of weights attached to it. The chain undergoes 

tension only, and if its shape were inverted, it would resist the same loads in a compression-only state. This 

principle is at the root of many physical experiments for the form-finding of funicular structures, such as 

Antoni Gaudí’s (1852-1926) hanging models of the Colonia Guell church (Huerta, 2006). 
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In general, designing compression-only structures is challenging. Physical experiments of hanging chains 

provide a good way to interact and quickly iterate on design options but lack the precision of a CAD model. 

Computationally, finding the shape of a set of hanging chains requires accounting for nonlinear behavior 

due to large displacements; this problem can be alleviated using the force density method (Schek, 1974). 

However, this only solves a direct problem: finding one discrete funicular shape under given loads and grid 

properties. Often, this goes against the intuitive design process where the designer has a shape in mind and 

wants to minimize bending. That describes an inverse problem where the closest possible funicular structure 

to a target surface is found. 

This study aims to solve one such inverse problem: construct funicular structures as close as possible to a 

target surface. The scope is limited to grid-like, node-and-branch only networks, for which an efficient 

calculation procedure exists in large displacements. In the particular case of grid-like funicular structures, 

this inverse problem can be solved using a genetic algorithm (Block & Lachauer, 2011). This has the ad-

vantage of accepting even badly formatted problems, but remains slow and lacks a guarantee of finding a 

global optimum. Van Mele and Block (2011) present a more formal treatment of the problem, but the scope 

is limited to pre-tensioned cable nets, for which a good initial estimate of the solution is known. This can 

be overcome using thrust network analysis (Panozzo et al., 2013), but leads to a slower multi-step optimi-

zation process. This chapter expands on this previous work by using gradient-based optimization methods 

to gain more insight into the solutions for such closest-fit inverse problems. 

5.2 Background 

5.2.1 Funicular bar networks 

We consider networks of nodes connected by bars, with free rotations at the nodes. This guarantees that 

there are only constant axial forces in the bars. The equilibrium at each node is then only a consequence of 

the position of the nodes. Then for a network of bars intersecting at the nodal positions 𝒙, under the loads 

𝒑 at the nodes and with the objective surface 𝒮, the problem has the form: 

(𝑃5.1): min
x
𝑑(𝒙, 𝑆)2 , such that at all nodes:∑𝑭 = 𝒑, (5. 1) 

where 𝑑 is a distance measuring the fitness of the points on the surface. This is a convex objective function 

with nonlinear constraints. This is the general closest-fit problem formulation for funicular bar networks; 

the specifics of the distance function 𝑑 used in this research are given in Section 5.3. 
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5.2.2 Force density method 

The force density method (Schek, 1974), is a method well-suited to explore a large number of funicular 

structures resulting from the same initial bar network. Three assumptions are made: (i) every bar is elas-

tically stretched proportionally to the force it carries following Hooke’s law (constitutive equation), (ii) the 

length of a bar is equal to the distance between the nodes that it connects (compatibility equation) and (iii) 

each node is in equilibrium (equilibrium equation). Mathematically, this becomes: 

{

𝑪𝑁
𝑇𝑸𝑪𝑁𝒙𝑁 + 𝑪𝑁

𝑇𝑸𝑪𝐹𝒙𝐹 − 𝒑𝑥 = 0

𝑪𝑁
𝑇𝑸𝑪𝑁𝒚𝑁 + 𝑪𝑁

𝑇𝑸𝑪𝐹𝒚𝐹 − 𝒑𝑦 = 0

𝑪𝑁
𝑇𝑸𝑪𝑁𝒛𝑁 + 𝑪𝑁

𝑇𝑸𝑪𝐹𝒛𝐹 − 𝒑𝑧 = 0

. (5. 2) 

Here, 𝑪𝑁 is the edge matrix for the free nodes, taking value -1 for the start node of a bar and +1 at its end 

node; 𝑪𝐹 is the edge matrix for the fixed nodes; 𝒙, 𝒚, and 𝒛 are the positions of the nodes; 𝑸 is the diagonal 

matrix of the force densities; and 𝒑 is the vector of all external loads. Recall that the force density 𝑞 is the 

ratio of the force in a bar, 𝑠, to its length, 𝑙: 

𝑞 = 𝑠 𝑙⁄ . (5.3) 

We set for clarity 𝑫𝑁 = 𝑪𝑁
𝑇𝑸𝑪𝑁 and 𝑫𝐹 = 𝑪𝑁

𝑇𝑸𝑪𝐹. The nodal positions solving a direct problem can 

then be found using only linear algebra:  

{

𝒙𝑁 = 𝑫𝑁
−1(𝒑𝑥 − 𝑫𝐹𝒙𝐹)

𝒚𝑁 = 𝑫𝑁
−1(𝒑𝑦 − 𝑫𝐹𝒚𝐹)

𝒛𝑁 = 𝑫𝑁
−1(𝒑𝑧 − 𝑫𝐹𝒛𝐹)

. (5.4) 

However, finding the solution to an inverse problem, where the target shape is known and the force densities 

are the unknown, is not evident, as there is no clear link between the two. 

5.2.3 Rationalization of freeform surfaces with funicularity constraints 

As shown above, different choices of force densities naturally lead to different funicular solutions. This is a 

consequence of the linearization of the system of equilibrium equations where, physically, different stiffness 

is assigned to each bar of the network. If we recall that the initial problem is to solve the equilibrium of a 

bar network, it is cogent that different distributions of stiffness yield different equilibrium shapes. We can 

use these force densities to obtain a funicular network that fits a target surface as close as possible. The 

strategy is illustrated in Figure 1.1 and formalized in Section 5.3. 
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Figure 5.1: Rationalizing a freeform surface (a): (b) choose numbers of branches 𝑛𝑥 and 𝑛𝑦 in the x and y directions, 

(c) approximate the target surface by projecting the grid vertically and (d) compare to the funicular network found 

using the force density method. Then, optimize the force densities to reduce the distance. 

5.3 Problem Formulation 

To keep the problem tractable, we constrain it from the outset by imposing that the nodes will only move 

vertically from their initial positions. This can be achieved by reducing the number of free parameters, i.e. 

by imposing that each bar of a branch has the same force density. This constraint is derived by analyzing 

the horizontal equilibrium of a single node in a quadrilateral grid. In particular, this means that two bars 

initially aligned must carry the same horizontal force, related to their force density and length by Equation 

(5.3). Given that we restrict our problem to a regular rectangular grid, the lengths of two bars belonging to 

the same branch must thus be equal and so must be their force densities. The matrix 𝑲, whose entries are 

all 0 or 1, is introduced to link the bar force densities 𝑞𝑖’s to the 𝑛𝑥 + 𝑛𝑦 independent branch force densities: 

𝒒 = 𝑲𝒃. (5. 5) 

Since we have restricted our problem to vertical displacements only, we are able to devise a simple metric 

for the distance between a bar network and our target surface. This metric is defined as follows: 

𝑑(𝒛𝑁) = ‖𝒛𝑁 − 𝒛𝑇‖
2 , (5. 6) 

where 𝒛𝑁 is the vector of the z-coordinates of the free nodes of the funicular bar network and 𝒛𝑇 is the 

vector of the target z-coordinates, i.e. the z-coordinates of the grid nodes projected on the target surface. 

5.3.1 Unconstrained Problem 

The inverse form-finding problem is the nonlinear, unconstrained optimization problem formulated as fol-

lows: 
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(𝑃5.2): min
𝒃
 𝐹(𝒃) = ‖(𝑫𝑁

−1(𝒑𝑧 −𝑫𝐹𝒛𝐹)) − 𝒛𝑇‖
2

, (5. 7) 

where 𝑫𝑁 = 𝑪𝑁
𝑇𝑑𝑖𝑎𝑔(𝒒)𝑪𝑁, 𝑫𝐹 = 𝑪𝑁

𝑇𝑑𝑖𝑎𝑔(𝒒)𝑪𝐹, and 𝒒 = 𝑲𝒃. Even though (𝑃5.2) is not convex for 

all values of 𝒃, convexity can be found and gradient-based methods for solving it are still available if the 

problem is constrained to a smaller domain. 

5.3.1.1 Gradient 

To find the gradient of the objective function, we first look for the Jacobian 𝑱(𝒃)  of the function  

𝒇(𝒃) =  𝒛𝑁(𝒃) − 𝒛𝑇. Using the chain rule, we get: 

𝑱(𝒃) =
 𝜕𝒇

 𝜕𝒛𝑁
 
 𝜕𝒛𝑁(𝒒)

 𝜕𝒒
 
 𝜕𝒒(𝒃)

 𝜕𝒃
. (5. 8) 

With 
 𝜕𝒇

 𝜕𝒛𝑁
= 1 , 

 𝜕𝒛𝑁(𝒒)

 𝜕𝒒
= −𝑫𝑁

−1𝑪𝑁
𝑇𝑾  (from (Schek, 1974)), and 

 𝜕𝒒(𝒃)

 𝜕𝒃
 = 𝑲 , we get: 

𝑱(𝒃) = −𝑫𝑁
−1𝑪𝑁

𝑇𝑾 . 𝑾  is the diagonal matrix of the lengths of the bars projected on the 𝑧  axis:  

𝑾 = 𝑑𝑖𝑎𝑔(𝑪𝑁𝒛𝑁 + 𝑪𝐹𝒛𝐹). Finally, the gradient of the objective function is: 

∇𝒃‖𝒛𝑁 − 𝒛𝑇‖
2 = −2 𝑲𝑇 .𝑾. 𝑪𝑁 . 𝑫𝑁

−T. (𝒛𝑁 − 𝒛𝑇). (5.9) 

5.3.1.2 Hessian 

It is also possible to obtain the Hessian of 𝐹(𝒃) in a similar fashion. This derivation, or a similar one for 

equivalent problems, was not found in the literature by the author. 

𝑯(𝒃) =
𝜕2‖𝒛 − 𝒛𝑇‖

𝜕𝒃2
= 2 ∗

𝜕

𝜕𝒃
((𝒛 − 𝒛𝑇)

𝑇 .
𝜕(𝒛 − 𝒛𝑇)

𝜕𝒃
)

= 2 ∗ (𝑱(𝒃)𝑇. 𝑱(𝒃) +∑ (𝒛 − 𝒛𝑇)𝑖.
𝜕2𝑧𝑖(𝒃)

𝜕𝒃2𝑖
)

(5. 10) 

We used an explicit summation to lift any ambiguity on the third-order tensor contraction. To get 
𝜕2𝒛𝑖(𝒃)

𝜕𝒃2
, 

we apply the chain rule twice on 𝒃 = 𝒃(𝒒) and note that 𝑲 is constant in 𝒃, to reuse the expression of 𝑱(𝒃): 

𝜕2𝑧𝑖(𝒃)

𝜕𝒃2
=
𝜕

𝜕𝒃
(
𝜕𝑧𝑖(𝒃)

𝜕𝒒
.
𝜕𝒒

𝜕𝒃
) =

𝜕

𝜕𝒃
(
𝜕𝑧𝑖(𝒃)

𝜕𝒒
.𝑲) =

𝜕2𝑧𝑖(𝒃)

𝜕𝒃𝜕𝒒
. 𝑲 = 𝑲𝑇 .

𝜕2𝑧𝑖(𝒃)

𝜕𝒒2
. 𝑲

= 𝑲𝑇 .
𝜕

𝜕𝒒
(−𝑫−1𝑪𝑇𝑾)𝑖,.. 𝑲 ,

(5. 11) 
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where (−𝑫−1𝑪𝑇𝑾)𝑖,. is the ith row of 𝑱(𝒃). Then, for each component, using equation (59) from Petersen 

and Pedersen (2012) for the one variable derivative of the inverse of a matrix: 

{
𝜕2𝑧𝛼(𝒃)

𝜕𝒒2
}
𝑖,𝑗

= {
𝜕

𝜕𝑞𝑖
(−𝑫−1𝑪𝑇𝑾)𝛼,𝑗}

𝑖,𝑗

= {[𝑫−1𝑪𝑇
𝜕𝑸

𝜕𝑞𝑖
𝑪𝑫−1𝑪𝑇𝑾]

𝛼,𝑗

}

𝑖,𝑗

. (5. 12) 

Since 𝑸 = diag(𝒒) , 
𝜕𝑸

𝜕𝑞𝑖
  is a matrix of zeros with only one 1  on the diagonal in row 𝑖 . Then, we have 

𝑪𝑇
𝜕𝑸

𝜕𝑞𝑖
𝑪 = 𝐶𝑖,𝑖

2 = 1 since 𝑪 is made entirely of 1 and −1. We get: 

{
𝜕2𝑧𝛼(𝒃)

𝜕𝒒2
}
𝑖,𝑗

= {[𝑫−2𝑪𝑇𝑾]𝛼,𝑗}𝑖,𝑗 = (

[𝑫−2𝑪𝑇𝑾]𝛼,1
⋮

[𝑫−2𝑪𝑇𝑾]𝛼,𝑛𝑞

)

𝑖,𝑗

. (5. 13) 

Finally by replacing 
𝜕2𝑧𝑖(𝒃)

𝜕𝒃2
 with its value, reorganizing the sum and compacting it to a matrix product: 

𝑯(𝒃) = 2 ∗ (𝑱(𝒃)𝑇𝑱(𝒃) + 𝑲(
(𝒛 − 𝒛𝑇) . [𝑫

−2𝑪𝑇𝑾]
⋮

(𝒛 − 𝒛𝑇) . [𝑫
−2𝑪𝑇𝑾]

)𝑲𝑇) . (5. 14) 

This matrix has a rank deficiency of 1, the consequences of which are discussed in the example problem of 

Section 5.4.1.1 and in general in Section 5.3.3. 

 

5.3.2 Structure of the unconstrained problem 

To gain insight into the problem, the simplest example comprised of four bars and one node is analyzed. 

Although the bar network has four bars, it only has two branches, hence two independent force parameters, 

which will allow us to visualize the objective function. The physical problem is presented visually in Figure 

5.2. The goal of the optimization is to have 𝒛𝑁 reach 𝒛𝑇 by modifying the independent force densities of 

the network, namely 𝑏1 and 𝑏2. In this particular problem, it is obvious that it is possible to fit a funicular 

solution to the target since the target is itself funicular. This simple problem is thus well-suited not only for 

understanding the problem but also to test out algorithms. In the numerical applications, 𝐿, 𝑊, 𝒛𝑇, and 𝒑𝑧 

are respectively equal to 10, 10, 4, and 10. 
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Figure 5.2: The four-bar problem. 

As seen in Figure 5.3 (left), the problem is nonconvex and has a line of global minima. The level sets of the 

objective function are lines with the following form: 

𝐹𝛼(𝑏1, 𝑏2) = {
𝑏1 + 𝑏2 = 𝐶𝛼

𝑧 =  𝛼
, (5. 15) 

where 𝐶𝛼 is a constant depending on 𝛼. From the form of the level sets, we see that the gradient always has 

the same direction (1,1); only its scale and sign will change. However, depending on the starting point, a 

computational optimization scheme based on the gradient will not necessarily converge. This is particularly 

clear when looking at the section of the objective surface by the plane b1 = b2. For a starting point (𝑏0
1, 𝑏0

2), 

a gradient-based algorithm will converge only if at all steps: 

(𝑏𝑘
1, 𝑏𝑘

2) ∈ {(𝑏1, 𝑏2) ∈ ℝ
2 | 𝑏1 + 𝑏2 > 0}. (5. 16) 

A partial solution to the non-convexity issue is to reformulate our problem and constrain it to the positive 

orthant. This will solve the problem of the choice of the starting point. Moreover, in the four-bar example, 

the plane b1+b2 = 0 is particular because it corresponds to a state of physical instability: with these force 

densities, the bars cannot equilibrate the vertical force. In general, this is a problem that can arise if we 

allow for force densities of different signs. By restricting the problem to non-negative densities, the issue 

is simply avoided. 

5.3.3 Structure of the constrained problem 

We constrain the base set of problem (𝑃5.2) to the non-negative orthant, to obtain (𝑃5.3): 

(𝑃5.3):min
𝑏
 𝐹(𝒃) = ‖(𝑫𝑁

−1(𝒑𝑧 −𝑫𝐹𝒛𝐹)) − 𝒛𝑇‖
2

s.t. 𝒃 ≥ 𝟎

(5. 17) 

Two details are of importance in the structure of (𝑃5.3). First, the objective shape is in general not a funic-

ular shape so the optimum value will be an unknown positive number. This means that solvers cannot be 
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stopped based on the current function value being closed to zero, but only based on the improvement in the 

objective function or the size step. 

Second, as mentioned in Section 5.3.1.2, the Hessian matrix of (𝑃5.2) has a rank deficiency of 1. The same 

goes for the matrices 𝑪 and 𝑨 = abs(𝑪) of the absolute values of the components of 𝑪. 𝑨 represents the 

indices of the bars connected to each node, or equivalently the indices of the forces acting on each node, 

and so is locally representative of the structure of the possible equilibrium positions. Reordering the rows 

of 𝑪, the structure of 𝑨 can be written: 

𝑨 =

(

 
 
 
 
 
 
 
 Iny

1 0 0 … 0
⋮ ⋮ ⋮ … ⋮
1 0 0 … 0

⏞          
nx

Iny

0 1 0 … 0
⋮ ⋮ ⋮ … ⋮
0 1 0 … 0

⋮ ⋮

Iny

0 0 … 0 1
⋮ ⋮ … ⋮ ⋮
0 0 … 0 1)

 
 
 
 
 
 
 
 

, (5. 18) 

with 𝑛𝑥 and 𝑛𝑦 the number of independent force density values in the 𝑥 and 𝑦 directions, respectively, and 

supposing 𝑛𝑥 < 𝑛𝑦. This matrix has a rank deficiency of 1, giving an indeterminacy in the force density 

method problem: a linear combination of the independent force densities will give the same result in the 

final shape. Given the structure of 𝐴, one could believe that those equivalent values are in a vector space of 

dimension 1; however, the positions of the nodes at equilibrium are related to 𝑨 and 𝒃 only after multipli-

cations by the lengths of the bars to get to forces acting on the nodes. There is no clear structure to the set 

of equivalent independent force densities values. 

This indeterminacy is detrimental to the quality of the optimization processes. At every point one direction 

of the problem will always be flat, so the solver will never search in that direction even though it might be 

on a shorter path to the optimum. Also, it means that solutions exist with unbalanced values of the inde-

pendent force densities. This is also generally unwanted physically – it leads to a high concentration of 

forces in certain bars. 

One possible remedy is to remove the indeterminacy by adding the constraint ∑ 𝑏𝑖
𝑛𝑥
𝑖=1 = ∑ 𝑏𝑖

𝑛𝑥
𝑖=1 , following 

the structure of the 4-bar problem. While this works well in the unconstrained problem, it stops the algo-

rithm too soon in the constrained problem. In fact, when the algorithm finds an optimum on the frontier of 

one of the inequality constraints and the equality constraint proposed above, it will not be able to get away 
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from the barrier in the flat direction at that point to then follow a descent direction again. This constraint 

was not used in the rest of this chapter except for part of Section 5.4.2. 

5.4 Results 

5.4.1 Steepest Descent Algorithm (SDA) 

In this section, we apply the steepest descent Algorithm 5.1 to the unconstrained problem. The gradient of 

the objective function with respect to the independent force densities was given by Equation (5.9). The 

gradient can be used to provide a descent direction; as a matter of fact, it provides the steepest descent 

direction. The step-size is determined by computing 𝛼𝑘 ≔ argmin
𝛼

𝐹(𝑏𝑘 + 𝛼𝑑𝑘). Hence, in order to find 

𝛼𝑘, one has to solve: 

2 ((𝐷𝑁
−1𝐶𝑁

𝑇𝑊)|
𝑏=𝑏𝑘+𝛼𝑑𝑘

∗ 𝐾 ∗ 𝐽(𝑏𝑘)𝑇 ∗ (𝑧𝑁 − 𝑧𝑇)|𝑏=𝑏𝑘)
𝑇

∗ (𝑧𝑁 − 𝑧𝑇)|𝑏=𝑏𝑘+𝛼𝑑𝑘 = 0. (5. 19) 

No closed-form solution exists in general and we must resort to an approximate line-search by bisection. 

 

Algorithm 5.1: Steepest Descent Algorithm (SDA) 

Initialize at 𝑏0, and set 𝑘 ← 0 

At iteration 𝑘: 

1. 𝑑𝑘 ≔ −∇𝐹(𝑏𝑘) = −2 𝐽(𝑏𝑘)
𝑇
(𝑧𝑁
𝑘 − 𝑧𝑇). If  ||𝑑

𝑘|| ≤ ε, then stop (휀 is specified tolerance) 

2. Choose step-size 𝛼𝑘 (by performing a line-search) 

3. Set 𝑥𝑘+1 ← 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 ← 𝑘 + 1 

 

5.4.1.1 Example 1: 4-bar problem 

We use Algorithm 5.1 on the four-bar problem introduced in Section 5.3.2. We apply the steepest descent 

algorithm with and without line-search. Our starting point is 𝒃0 = (10,10). 

With the line-search, the algorithm converges in one step, which was expected given the structure of the 

problem. We note however that we had to modify the bisection algorithm as to avoid overshooting past the 

plane 𝑏1 + 𝑏2 = 0, i.e. we had to set an upper bound for the choice of the step-size. Because we knew the 

objective surface beforehand and knowingly chose an easy starting point, this constraint was easy to imple-

ment as follows: 
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𝛼𝑘 ≤ min(|
𝑏𝑘

𝑑𝑘
|) , (5. 20) 

where 𝑏𝑘 𝑑𝑘⁄  indicates a component-wise division. Generally, this constraint is not necessarily as easy to 

formulate. This problem is a motivation for constraining the problem to non-negative force densities. With-

out the line-search (arbitrary step-size of 0.001), the algorithm expectedly converges very slowly as seen in 

Figure 5.3 (right). 

 

 
 

Figure 5.3: (left) The objective surface with the optimization path (black curve) for the steepest descent algorithm 

with a fixed step-size of 0.001. At every iteration, the direction of the gradient remains unchanged because the level 

sets of the function are parallel lines. (right) Convergence profile of the steepest descent algorithm with a step-size 

of 0.001, for the 4-bar problem. 

 

Figure 5.4: Target surface (left) vs. optimum surface found (right). 
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5.4.1.2 Example 2: 10x10-bar problem 

In this example, we deal with a larger dimension problem, i.e. a grid network of size 10 by 10 nodes. The 

target surface and optimum found are presented in Figure 5.4. Applying the steepest descent algorithm with 

the starting point 𝒃0 = [10…10]𝑇, where 𝒃0 has 20 components, the problem converges to the optimum 

solution (𝐹∗ = 38.1539) in 4213 iterations. Convergence is defined by a relative change in the objective 

value of less than 10−6. Figure 5.5 (a) shows that the algorithm converges quickly in the first 20 iterations 

but considerably slows downs afterward. If instead, we use a starting point 𝒃0 = [1…1]𝑇, the algorithm 

does not converge. A solution is to set up an arbitrarily low step-size, as in the previous example but it 

results in an exceptionally slow algorithm. Again, these observations motivate us to switch to a constrained 

problem. 

5.4.2 Quasi-Newton Methods 

In this section, we focus on finding a performant algorithm for solving (𝑷𝟓.𝟑) in the 100 nodes examples 

of section 5.4.1.2. Looking at the poor performance of the SDA in a realistic problem, we implemented a 

Newton Method (NM) with line-search, Algorithm 5.2. Because the method relies on inverting the Hessian, 

non-invertible as per Section 5.3.3, it was necessary to enforce the additional constraint ∑ 𝒃𝒊
𝒏𝒙
𝒊=𝟏 = ∑ 𝒃𝒊

𝒏𝒙
𝒊=𝟏 . 

The constraint is written as an additional line in the Hessian and the gradient is augmented by one compo-

nent equal to 𝟎 to get a well-formed system of equations in the first step of Algorithm 5.2. 

 

Algorithm 5.2: Newton’s method (NM) 

Initialize at 𝑏0, and set 𝑘 ← 0. Let 휀 > 0 be a given error tolerance. 

At iteration 𝑘: 

1. Set 𝐻𝑐𝑜𝑛𝑠𝑡(𝑏
𝑘) = (

𝐻(𝑏𝑘)

1 ⋯ 1⏟      
𝑛𝑥

−1 ⋯ −1⏟        
𝑛𝑦

), ∇𝐹𝑐𝑜𝑛𝑠𝑡(𝑏
𝑘) = (

∇𝐹(𝑏𝑘)

0
). 

2. 𝑑𝑘 ≔ −𝐻𝑐𝑜𝑛𝑠𝑡(𝑏
𝑘)
−1
∇𝐹𝑐𝑜𝑛𝑠𝑡(𝑏

𝑘). If  ‖𝑑𝑘‖ ≤ ε, then stop. 

3. Choose step-size 𝛼𝑘 = argminα≥0 𝐹(𝑏
𝑘 + 𝛼𝑑𝑘). 

4. Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 = 𝑘 + 1 

 

However, given the narrow zone in which the objective function of (𝑃5.3) is convex, this method only con-

verges with a starting point very close to the optimum. In practice, we were only able to obtain convergence 

by using a starting point found as a result of the SDA, stopped when the relative change in the objective 

value was 10−3. 
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(a) 
(b) 

Figure 5.5: Convergence profile of (a) the steepest descent algorithm with an inexact line-search, and (b) of the 

interior-point method for the 10x10 bar problem. 

5.4.2.1 Levenberg-Marquardt algorithm 

To have a better convergence rate for the final iterations along with a large convergence domain, we used 

the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) implementation in MATLAB 

(The Mathworks Inc., 2015) for non-linear least-square problems. This is the method used by Van Mele et 

al. (2011). 

The Levenberg-Marquardt algorithm uses a search direction that is intermediate between the one found in 

the SDA and the one found in NM. A parameter is used to orient the amount by which the problem is similar 

to the SDA or the NM. At the beginning, this parameter is chosen so that the problem is very close to the 

SDA (to get a large convergence region) and is progressively updated to match more closely the NM (to 

get a faster convergence rate). Because the problem is never exactly the NM, the non-invertible Hessian is 

not a problem anymore and we can eliminate the additional constraint used above. 

Using this method, we were able to find a solution with the same optimum value as in Section 5.4.1.2, in 

1585 iterations using the same stopping criterion. However with several values of the force densities found 

are negative, which is unacceptable if we were to build the solution. In consequence, we look at constrained 

solvers to find solutions to (𝑃5.3) in both reasonable time and large convergence. 

5.4.3 Solvers for the constrained problem 

Using the solvers implemented in MATLAB’s fmincon package, we looked at their relative performance 

for solving (𝑃5.3) in the 100 nodes example presented in Section 5.4.1.2. The results are compiled in Table 

5.1. The solvers are always stopped when the relative improvement in objective value is less than 10−6.  
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Table 5.1: Performance comparison of constrained nonlinear solvers in the 100 nodes example. 

(*An additional constraint was added to the interior point method.) 

Algorithm Iterations Function calls Objective value 

Interior point* 887 1070 38.2510 

Sequential Quadrating Programming 923 1431 38.2356 

Trust region reflective 28 29 38.2356 

 

The gradient is given explicitly to the solvers. The Hessian is computed numerically by the solvers, as some 

of them do not accept a user-defined analytical expression for the Hessian. 

Convergence was always obtained when the initial point was a vector of identical independent force densi-

ties within one order of magnitude (above or below) of the uniform load at the nodes. It should be noted 

that the excellent convergence rate of the Trust region reflective algorithm fades when the stopping criterion 

is made smaller.  

For the interior point method, the solver quickly gets stuck against a bound and, because it relies heavily 

on the Hessian, does not explore in the flat direction of the problem. When the additional constraint 

∑ 𝑏𝑖
𝑛𝑥
𝑖=1 = ∑ 𝑏𝑖

𝑛𝑥
𝑖=1  is added, we get the convergence as for the other algorithms, this is the result presented 

in Table 5.1. This explains the different objective values found at the optimum. See Figure 5.5 (b) for a 

typical evolution of the objective values using the interior-point method from a poor starting point. 

5.5 Conclusions 

In this chapter, we analyzed the structure of a closest-fit inverse form-finding problem for funicular struc-

ture. Using the force density method framework, we optimized the force densities of a bar network to reach 

a target surface. We formulated the problem first as an unconstrained optimization problem and calculated 

the analytic expressions of the gradient and Hessian of the problem. Based on this, we applied the steepest 

descent algorithm on a 4-bar problem. The insight gained from this analysis motivated the introduction of 

a non-negative force densities constraint. The constraint was dealt with computationally by using nonlinear 

constrained optimization methods that proved effective, especially the interior point and trust-region reflec-

tive methods. We note that, for particular surfaces, the constraint will yield solutions that are sub-optimal 

compared to solutions of the unconstrained problem. Yet, both for physical and for computational stability 

motives, the constraint introduced is useful. 
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Future work should be focused on handling realistic construction constraints, for example limits on the 

forces in the bars or smaller deviations of those forces. Looking at self-weight funicular structures, where 

the applied load is a function of the geometry of the shell, is also promising. Finally, the optimization 

strategy presented in this work could be integrated into a user-guided design tool used by designers to 

directly create and interact with funicular structures. 

 

 

  



 

 

6 Inverse form-finding of funicular structures: Functional design 

objectives 

This chapter builds on and improves the simple inverse form-finding system for funicular surfaces of Chap-

ter 5 to produce a feature-based representation of the design objective. Thanks to a functional representation 

of this objective, combined with automatic differentiation and a “perfect” forward simulation process – that 

is fast and always produces a result, we construct a workflow that not only does inverse form-finding to-

wards a target shape, but to any objective that the designer can represent as a function of the properties of 

the current iteration. This is a novel way of looking at inverse form-finding design, that we find very prom-

ising in its potential uses. 

6.1 Introduction 

In our exploration of inverse form-finding, we have so far focused on a single type of objective: a target 

shape. However, not all design intents can be efficiently encoded as a target shape. For example, they cannot 

represent design objectives such as “aim at having all members of the structure be the same length”. We 

hinted at this issue in Chapter 5, and before that in Chapter 2 when we looked at structures built of several 
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construction systems that each need to be form-found. While many of these issues have been tackled sepa-

rately, as part of a forward form-finding system usually, we propose in this chapter a different approach and 

instead aim at extending the outer optimizer of an inverse form-finding system so that it can optimize for 

multiple and diverse objective types (combining several objectives in a composite objective function if 

needed). 

While many general-purpose optimizers can accommodate this, we have found that to obtain meaningful 

results in a limited time, they work best when combined with a technique called Automatic Differentiation 

that could provide exact and fast gradient values to the optimizer at each iteration. To be able to optimize 

for general user-coded objectives, and because most general-purpose optimizers require some gradient in-

formation to converge, we need to have a way to derive that information automatically. Otherwise, we 

would have to resort to a catalog of pre-coded objectives that the designer could select, and manually com-

pute and code their gradients. The traditional way of solving this issue is to use finite differencing, a tech-

nique we used in Chapter 4. However, this is a slow process, especially when the number of variables is 

large as it requires on the order of one forward simulation per variable to compute the gradient. Thus, we 

constructed our inverse form-finding framework for funicular structures so that it could use automatic dif-

ferentiation. 

Automatic differentiation, a computational tool that automatically finds an exact yet efficient gradient of 

general procedures, has recently seen renewed interest due to its usefulness in machine learning algorithms 

(Baydin et al., 2018). The tools developed there are useful for many other optimization problems, such as 

those encountered in form-finding problems with constraints or objectives of best-fit to target. In this work, 

we will demonstrate this by building a differentiable framework for the form-finding of funicular surfaces, 

with additional constraints. The word differentiability here is taken to mean that the system will be able to 

output gradients for all its numerical procedures, without the programmer explicitly encoding them. Adding 

an objective will only require a function giving its value, the gradient is automatically computed from this 

function. 

Because we set up our problem as an inverse form-finding problem with nested solvers as we have done 

several times now in this dissertation, we have the guarantee that all results generated will solve the forward 

form-finding simulation. Specifically, here we use the force density method to form-find funicular shapes, 

this means that all the results we will extract from our complete workflow will be funicular, and optimize 

as best we can the objectives given by the designer. This will let us explore the design space of funicular 

structures in a very directed and efficient way. This has the potential to significantly change the way we 

usually look at inverse form-finding, as the designer will now be able to encode much more complex fea-

tures than approaching a target shape. It also paves the way for multi-criteria design, where for example a 
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funicular structure is optimized to be close to a shape buildable by an elastic gridshell, or optimized to 

reduce the energy consumption of the space it encloses, for example. 

Generally, the optimization problems we solve here are very close to what we did in Chapter 5, but with a 

general objective function. Also, we directly use the force densities as variables rather than the independent 

ones on square grids, to be able to use any kind of meshing: 

(𝑃6.1):  min
𝑞
𝑓(𝐱) ,  where 𝐱 = 𝐃𝐍

−1(𝐩 − 𝐃𝐟𝐱𝐟). (6. 1) 

For example, we could find a funicular surface that is close to a target surface and minimizes the length 

differences in its members by choosing the objective function as: 

𝑓(𝐱) =∑‖𝑥𝑖 − 𝑥𝑖
𝑡𝑎𝑟𝑔𝑒𝑡

‖
2

𝑖

+∑(𝑙𝑗 − 𝑙
𝑡𝑎𝑟𝑔𝑒𝑡)

2

𝑗

. (6. 2) 

6.2 Background 

6.2.1 Related work 

Our approach is based on the force density method as expressed for the first time by Schek (1974). This lets 

us generate equilibrium shapes for meshes, given their constitutive properties of connectivity (connectivity 

matrix 𝐂) and stiffness (force densities 𝐐), and external loads 𝐩, that is funicular shapes (see Chapter 5 for 

more details): 

{

𝒙𝑁 = 𝑫𝑁
−1(𝒑𝑥 −𝑫𝐹𝒙𝐹)

𝒚𝑁 = 𝑫𝑁
−1(𝒑𝑦 −𝑫𝐹𝒚𝐹)

𝒛𝑁 = 𝑫𝑁
−1(𝒑𝑧 −𝑫𝐹𝒛𝐹)

, where 𝑫𝑁 = 𝑪𝑁
𝑇𝑸𝑪𝑁 and 𝑫𝐹 = 𝑪𝑁

𝑇𝑸𝑪𝐹. (5.4) 

We use these shapes as the basis of a design space and then optimize for various objectives inside this 

design space. 

This is related to other design systems for funicular structures that use thrust network analysis, a method 

related to the force density method, to generate funicular forms, and optimize these to match a best-fit-to-

target objective (Block & Lachauer, 2011; Van Mele et al., 2014). Here, we use the force density method 

as a generator, tack on additional objectives on our designs, and integrate this in an optimization program, 

with the force densities as variables. Similarly, several non-linear force density methods formulations have 

been proposed to introduce additional constraints to the force density method, such as to account for time-
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dependent behavior (Kmet & Mojdis, 2015), material non-linearities in membranes (Koohestani, 2014), or 

to fix some nodal positions or reaction forces and solve for compressive elements (Malerba et al., 2012; 

Miki & Kawaguchi, 2010). These cited works also use an optimization loop to solve their respective specific 

non-linear problems. Even in the original force density paper (Schek, 1974), a workflow around the opti-

mization of the force density method’s results is already described, see Figure 6.1. In these and previous 

systems however, there is a high cost associated with adding a new objective, because an explicit procedure 

computing its gradient is required to get an efficient optimization program. 

 

 

Figure 6.1: The optimization system for design objectives described by Schek (1974), and some of the gradients 

calculations needed. 

Additionally, there are existing systems that have been presented for the design of funicular surfaces, that 

do not use the linearization opportunities of the force density method. For example, Vouga et al. (2012) use 

a formulation of the equilibrium of funicular surfaces discretized with discrete differential geometry tools 

on meshes, and solve the resulting non-linear problems using a conjugate gradient solver to find a funicular 

surface close to a target surface. De Goes et al. (2013) improve on this framework both in terms of solving 

speed and details encoded in the material behavior’s discretization. Finally, Tang et al. (2014) discretize 

the same constitutive equations in a subdivision surfaces framework to allow for true 3-dimensional target 

shapes, rather than the 2.5-dimensional heightmaps from the previous works. While all these workflows 

encode more details and precision in their formulation of the constitutive equations of funicular surfaces 

than a simple force density method formulation, this is only true for meshes that represent continuous sur-

faces. For rigid gridshells made of discrete linear elements, the force density method formulation that lumps 

the membrane behavior in the edges of the mesh is sufficient. More importantly, they are all restricted in 

the objectives that they can solve for, usually a target surface. The reason is that gradients of the objective 
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function are always needed to produce a form-finding workflow with sufficient speed and stability. Because 

these need to be coded manually, the designer is not able to add different objectives or even combine exist-

ing ones in different ways. Using only a target surface as the objective seriously the level of abstraction that 

can be encoded in this objective, and prevents us from exploring the design space of funicular surfaces in 

more complex directions than finding the closest one to a target surface. 

6.2.2 Automatic differentiation 

To overcome these limitations, we propose to use automatic differentiation. Automatic differentiation is a 

computational process in which a software function is automatically transformed to produce derivative 

values as well as the regular function value. It differs from usual ways of software differentiation in im-

portant ways, see Figure 6.2: 

- It does not require manually deriving an expression for the gradient of the function, as would a 

code not using any kind of software differentiation 

- It produces code that is often faster than what symbolic differentiation produces. Symbolic differ-

entiation recognizes known mathematical expressions in the function taken as one operation, de-

rives them, and combines and simplifies them using classical mathematical rules. Compared to 

automatic differentiation, it is a slow process that does not deal well with software constructs such 

as branches and loops. 

- It produces exact values for the gradients, and does not suffer from numerical instabilities like nu-

merical differentiation (or finite differencing) does. Finite differencing finds derivatives by approx-

imating with the limit definition of derivatives: 𝑓′(𝑥) ≈ (𝑓(𝑥 + ℎ) − 𝑓(𝑥)) ℎ⁄ , for ℎ small. 

Instead, automatic differentiation attaches to each basic mathematical operation information about how to 

compute its derivatives, formally replacing code that computes 𝑓: 𝑣 ⟼ 𝑓(𝑣)  by 𝑓: (𝑣,  d𝑣) ⟼

(𝑓(𝑣),  𝑓′(𝑣)d𝑣). It then computes and combines them as the code is executed. This is a mathematically 

exact operation, that also works through branches and loops. This means the calculation of derivatives will 

follow a very similar code path than the simple function, and so be on the same order of execution time. 

There are two main modes to automatic differentiation: forward mode and reverse mode. The forward mode 

is the simplest in its implementation, it combines derivatives using a chain rule. Imagining that our function 

𝑓 can be decomposed into a series of basic mathematical operations 𝑓 = 𝑓1 ∘ 𝑓2 ∘ … ∘ 𝑓𝑛, we have: 

𝜕𝑓(𝑣) = 𝜕𝑓1(𝑓2 ∘ … ∘ 𝑓𝑛(𝑣)) × 𝜕𝑓2(𝑓3 ∘ … ∘ 𝑓𝑛(𝑣)) × …× 𝜕𝑓𝑛(𝑣). (6. 3) 
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Figure 6.2: Different ways of obtaining derivatives for a computational function: manual differentiation, symbolic, 

numerical, and automatic. After Baydin et al. (2018). 

So if, when computing 𝑓𝑖(𝑥), where 𝑥 = 𝑓𝑖+1 ∘ … ∘ 𝑓𝑛(𝑣), we also compute and save 𝜕𝑓𝑖(𝑥) thanks to the 

derivative function attached to each basic operation, we will be able to compute 𝜕𝑓 by propagating these 

derivatives forward through the function code. The reverse mode is similar but uses the adjoint method to 

propagate derivatives backward, in effect finding which variation of the input gives a given variation of the 

output. 

These two modes mainly differ in practice when applied to multiple-valued functions of multiple variables. 

When applied to 𝑓:ℝ𝑛 → ℝ𝑚, forward takes on the order of 𝑛 times the number of operations needed to 

compute 𝑓; reverse mode takes on the order of 𝑚 times the number of operations needed to compute 𝑓. So 

𝑙1 = 𝑥
𝑙𝑛+1 = 4𝑙𝑛 1 − 𝑙𝑛
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in our case, where we mostly have scalar objective functions of many design variables, the reverse mode 

will be much more adequate. 

Automatic differentiation is a relatively old technique but has remained sparsely used until recently, when 

the increased interest for machine learning and specifically deep learning made its characteristic extremely 

desirable. The first ideas were outlined by Beda et al. (1959), with the first generalist implementations ap-

pearing in the 1980s (B. Speelpenning, 1980). Barthelemy and Hall (1995) were first to use it for engineer-

ing design and optimization of complex systems integrating structures, among other things. Big develop-

ments were made with the release of modern deep learning frameworks, which all integrated some form of 

automatic differentiation that could be repurposed for general use: Theano (Bergstra et al., 2010), Tensor-

Flow (Abadi et al., 2016), Autograd (Maclaurin et al., 2014/2015), PyTorch (Paszke et al., 2019). It is now 

being applied to a wider variety of problems in engineering where the objective function is either not pos-

sible to differentiate mathematically, or user-supplied and so unknown at coding time. For example, we can 

cite applications in topology optimization (Nørgaard et al., 2017), robot physical simulation for gait learn-

ing (Degrave et al., 2017), rendering and material properties learning (Wu et al., 2017), or protein structure 

prediction (Ingraham et al., 2019). 

6.3 Methodology 

We solve (𝑃6.1) by implementing the force density method in a package for automatic differentiation of 

vector and matrix computations (specifically, we use Autograd (Maclaurin et al., 2014/2015)), and attach it 

to a numerical solver for non-linear problems (we used SciPy, generally with L-BFGS). The resulting frame-

work can generate funicular shapes with arbitrary objectives as defined by the designer. Because no gradi-

ents are required from the designer, it is easy to modify the output by changing the constraints or objectives. 

For example, we have experimented with objectives that make all elements lengths similar, or chosen from 

a list of possible lengths, as well as flat panels, similar angles, and best-fit-to-target. The optimization pro-

grams are efficiently solved, returning in a runtime reasonable for iterative design even for problems with 

as many as 10,000 elements. 

We note that the force density method is a good example of a form-finding process for experimenting with 

an automatic differentiation workflow, in that it is a direct problem that is well-behaved, where the results 

of automatic differentiation can be compared to manual differentiation. It is also typical in its mathematical 

structure, with its sparse connectivity and many variables attached to the edges and vertices, and in its 

intent, as it gives one solution among many. Our workflow is then an exploration tool in the design space 
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generated by the force density method for a fixed mesh connectivity, as the force densities are varied – they 

are our design variables. 

The objectives can be specified as small Python functions, that depend on the equilibrium position of any 

intermediary result. 

6.4 Case studies 

This section presents some of the results achieved using the framework presented earlier. It can be used to 

reproduce the design briefs for some famous funicular shapes, as well as more artificial examples. The case 

studies presented are summarized in Table 6.1, with the runtime of the optimizations needed for one solu-

tion of each structure.  

The structures include approximations of the Mannheim Multihalle (referenced as “Mannheim” later on), a 

dome shape formed of two arches meeting in the dome center at a 90° angle (“oculus”), the Teshima Art 

Museum (“Teshima”), the California Academy of Sciences (“California”), and the Montevideo port ware-

house (“Gaussian vaults”). 

The Mannheim Multihalle, built in Mannheim Germany in 1974 and designed by Frei Otto, Carlfried 

Mutschler, and Winfried Langner, is an exhibition space initially built temporarily to house the 1975 Bun-

desgartenshau and kept later on (Happold & Lidell, 1975). It is an elastic gridshell made of hemlock wood, 

spanning around 60 by 60 meters. The shape was selected to be close to funicular – initial physical form-

finding experiments were done with a network of hanging chains, as it was imagined the wood would creep 

too much under the permanent bending moments of a non-funicular shape. See Figure 6.3. 

 

Table 6.1: Timings to generate one optimization result in each of the presented examples. Measured on a 2.8 GHz 

i7-7700HQ CPU. 

 Nodes count Edges count Runtime [s] 

Mannheim 705 1080 9.7 

Oculus 4681 9060 5.9 

Teshima 3313 1260 7.3 

California 1684 3120 1.2 

Gaussian vaults 880 1620 0.8 
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© Atelier Frei Otto Warmbronn From Wikimedia, public domain. (Burkhardt & Otto, 1978) 

Figure 6.3: The Mannheim Multihalle, Germany, 1974, Frei Otto arch. From left to right, the complete structure, 

covered with its PVC envelope, the gridshell as seen on the inside, and form-finding models. 

   

© Thomas Seear-Budd © Iwan Baan © Office of Ryue Nishizawa 

Figure 6.4: The Teshima Art Museum, Kagawa, Japan, 2010. Nishizawa arch. 

 

The quad-arched dome shape is an invention for this work, representing a simple dome where the designer 

wishes to have an opening on the top. It is modeled on a 20 meters wide base, with the arches each forming 

a 10 meters boundary on the ground. See Section 6.4.2 images. 

The Teshima Art Museum, built in 2010 on the island of Teshima, Kagawa Prefecture, Japan, and designed 

by Ryue Nishizawa, hosts a single piece of artwork – Matrix, created by sculptor Rei Nato. It is a thin 

concrete shell spanning about 40 by 60 meters, with a maximum height of 4.5 meters, see Figure 6.4. The 

shape was optimized (using the control points of a NURBS surface as the variables) to reduce strain energy 

while reproducing the architect’s target shape (Sasaki, 2014); however, it is not clear how much more effi-

cient the structure could be made (by being funicular), nor by how much it differs from the original design. 

The California Academy of Sciences, for which a new building was erected in 2008 in San Francisco, 

California, is a research institute and one of the world’s largest natural history museum (Wels, 2008). The 

building was designed by architect Renzo Piano, in collaboration with SWA Group. It is about 160 meters 

long by 90 meters wide and is covered by a hill-landscaped green roof of 2.5 acres. The tallest “hills” on 

this roof are about 20 by 20 meters domes with a squared base, and perforated with circular skylights to a 

varying degree. See Figure 6.5. 
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© Tim Griffith © WolfmanSF @ Wikimedia 

Figure 6.5: The California Academy of Sciences, San Francisco, CA, USA. Renzo Piano & SWA Group arch. 

   

© Cámara Uruguya de Logística © Leonardo Finotti © Jesse Eliot 

Figure 6.6: The Montevideo port warehouse, Uruguay, 1979. Dieste arch 

 

The Montevideo port warehouse is one of several similarly shaped roofs – so-called non-continuous gauss-

ian roofs – designed by Eladio Dieste from 1970 (Anderson et al., 2004). The warehouse was built in 1979, 

is made of 14 double-curvature shells, each 7 meters wide and spanning close to 50 meters, with a maximum 

rise of 8 meters. Each shell has an S-shaped cross-section, so that successive shells will slightly overlap 

with a vertical gap. Through that gap, light can pass through and illuminate the space below. See Figure 

6.6. 

6.4.1 Mannheim Multihalle 

First, we reproduced the design brief for the elastic gridshell of the Mannheim Multihalle: a shape that is 

funicular under its own weight, covered by a grid of regular spacing. We reproduced the dimensions of the 

structure faithfully, loaded it by a constant weight, and optimized for a target member length of 4 m initially, 

which is reproducing 1/8th of the original grid density. To find this optimum, the objective function we used 

in (𝑃6.1) is simple: 

𝑓(𝐱) =∑(𝒍𝒊 − 𝒍𝒊
𝒕𝒂𝒓𝒈𝒆𝒕

)
𝟐

𝒊

. (6. 4) 
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The results of the simulations are shown in Figure 6.7, and the code this corresponds to in our system is 

shown in Figure 6.8. While a simple force density method simulation with uniform force densities shows a 

smooth shape, we can see that the member lengths this leads to a very spread out around 4 m; this would 

prevent the structure to be built with an elastic gridshell from a flat regular grid, as was done in reality. 

Hence to find a shape that could be built in this way, we initially optimize for all the members to be the 

same 4 m length. While we can achieve a very tight grouping of the lengths around this value, this damages 

the shape significantly, with many regions becoming too sharp. A possible solution is to allow the lengths 

to take one of two values – as was done in reality with some irregular rows in the grid, and optimize for 

minimum variations around these lengths. This is what we did in the bottom row of Figure 6.7, and we 

effectively get back to a smoother shape while still seeing minimal length variations. 

Moving from the first optimization to the second is only a small modification in the objective function code, 

and results will be seen only a few seconds later as the simulation is run again. These small changes of 

optimization functions demonstrate the flexibility of our system, something that is not usually possible in 

typical inverse form-finding systems. 

 

Figure 6.7: Equilibrium positions (left) and member length distribution (right) for a funicular surface reproducing 

the Mannheim Multihalle shape. The first row is a simple force density method result with uniform force densities, 

the second optimizes for a single 4 m grid size, the third allows members of length 3.5 m or 5.2 m. 

𝑞 = 1

𝑙𝑡𝑎𝑟𝑔𝑒𝑡 = 4

𝑙𝑡𝑎𝑟𝑔𝑒𝑡 = {3.5, 5.2}
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Figure 6.8: Objective function code for a uniform member length optimization. 

 

6.4.2 Quad-arch with an oculus 

Next, we imagined variations around finding a four-arched funicular structure with an opening in its center. 

We achieve this by penalizing points that have their equilibrium position in the center of the arch, using the 

following objective function (see code in Figure 6.9): 

𝑓(𝐱) =∑max(𝑒
𝑑2(𝑥𝑖,0)

𝑅2 ,  𝑒−1)

𝑖

. (6. 5) 

The results are presented in Figure 6.10. Again, simple modifications of this objective function, either 

through changing a parameter value or by combining it with additional objectives, lead to a variety of 

shapes. Because allowing for this flexibility does not slow down the optimization, or require the designer 

to carry complicated gradient calculations, this allows for a novel way of exploring the design space of 

funicular structures. 

 

 

Figure 6.9: Objective function code for creating an opening in a structure. 
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Figure 6.10: Equilibrium position results for the four-arched dome. From left to right, results of a simple force 

density method with uniform force densities, opening with a target size of 2 m, a target size of 4 m, and 2 m opening 

with an additional uniform member length objective. 

6.4.3 Teshima Art Museum 

For the Teshima Art Museum’s structure, a more complex objective function was needed. This time, two 

openings (of the same form as in the previous section) are added, in addition to a score giving the vertical 

distance from the equilibrium position to a shape representing the general cross-section of the structure as 

it was built, and a linear slope from the entrance to the larger opening. Figure 6.11 shows an image of the 

result that can be obtained, showing a good reproduction of the shell as it was built. 

In Figure 6.12 are shown some iterations of the optimization process. The openings form early, then the 

optimizer improves mostly on the second part of the objective function, giving its shape to the structure. 

While the openings still have some nodes and mesh edges in them, the force densities values show that they 

are barely loaded, and in fact only remain there as an artifact of the bounds that were given to the optimizer 

on the force densities. 

 

Figure 6.11: Rendering of the funicular shape obtained with this work to reproduce the Teshima museum shape. 

𝑞 = 1 𝑅 = 4𝑅 = 2 𝑅 = 2
+ Target length



 

122 

 

  

  

  

Figure 6.12: Some iterations during the optimization to obtain the Teshima shape. The fit value is the value objective 

function relative to the final value found at the optimum. 

 

6.4.4 California Academy of Sciences 

Extending on the idea of openings in a funicular roof, we reproduce the large “hills” on the green roof of 

the California Academy of Sciences. Each of them is roughly a 20-by-20-meter square dome, with many 

openings for skylights. By introducing many objectives for openings like in Section 6.4.2, and moving them 

around the surface, a variety of shapes can be obtained. Figure 6.13 shows one such example, and Figure 

6.14 some variations on the positions. Along with this study, it is possible to get an estimation of the relative 

structural efficiency of the meshes by comparing the elastic energy scores: 

∑|𝐹𝑖𝑙𝑖|

𝑖

=∑𝑞𝑖𝑙𝑖
2

𝑖

. (6. 6) 

These scores could be included in the optimization, to guide it towards more efficient shapes. 
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Figure 6.13: Rendering of a funicular square dome with multiple openings, reproducing the hills of the California 

Academy of Sciences roof. 

 

 

   

   

Figure 6.14: Some variations on the openings of the square dome. The scores on the bottom left represent a quick 

estimate of the relative structural efficiency of each dome, and are calculated as the sum of the forces times lengths 

in each member. 
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6.4.5 Gaussian vaults 

Finally, we experiment with shell-beams shapes, like Dieste for his famous brick roofs of non-continuous 

gaussian shapes. The objective here was to give the designer funicular shapes that could be varied easily in 

the shape of the roof they realize, their maximum height, and the size of the vertical gap between two 

successive beams. 

We achieve the roof shaping by simply changing the shape of the boundary that one beam attaches to, which 

is simply two lines of supports opposite each other, spanning the roof in its short dimension. The maximum 

height of the shell and the vertical gap size are the result of the combination of three objectives. The first 

one minimizes the error between the obtained vertical gap and its target value given by the designer, the 

second the elastic energy, and the third the material use or total bar length of the mesh: 

𝑓 = (ℎ̅ − ℎ̅0)
2
+ 𝛼(∑𝑞𝑖𝑙𝑖

2

𝑖

)

𝑛

+ (1 − 𝛼)(∑𝑙𝑖
2

𝑖

)

𝑚

, (6. 7) 

Where 𝛼 are weighting parameters between the last two objectives, ℎ̅ the obtained vertical distance be-

tween the two extreme nodes at the mid-span of the beam, ℎ̅0 the target for ℎ̅, and 𝑛,𝑚 arbitrary scaling 

parameters. 

Generally, the first term makes the gap close to its input target, the second term gives the beam a high rise 

and bulbous dome shape, and the third term makes it taught and flat. By changing the weighing parameter 

𝛼, the shape will change between a shallow shell and a deep one. By changing the target height difference 

ℎ̅0, the front and back nodes at the mid-span of the beam will rise and fall accordingly. Because of the 

additional terms effectively acting as regularization terms, the rest of the mesh will follow and give a smooth 

shape, rather than a pointy one with only two nodes matching the objective. This is the reason for the addi-

tional 𝑛 and 𝑚 scaling parameters, which were varied from 1 to 4 to produce better regularization terms. 

Figure 6.15 gives some examples of possible results. 
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Figure 6.15: Variations on the Dieste beam shapes. Left column varies the height difference target, right column 

changes the weighting between structural efficiency and material use. 

6.5 Conclusion 

In conclusion, this chapter demonstrated a framework for the easy combination of multiple objectives into 

a funicular shapes generation scheme. The funicular shapes are given by a force density method solver, and 

the objectives are optimized using a gradient-based general-purpose optimizer. Because the framework is 

implemented in an Automatic Differentiation package, there is very little cost to adding new objectives or 

recombining them differently, yet the optimization process remains fast and stable. This lets the designer 

easily explore a vast design space of funicular shapes, guiding their exploration by the objectives they 

choose. 

In future work, it would be interesting to extend our design tool and make its use easier by implementing a 

catalog of possible objectives that the designer could pick from, instead of coding. Simple combinators like 

in Section 6.4 can be added to make building a combined objective easy. Additionally, it would be inter-

esting to use multi-objective optimization techniques to explore a larger expanse of the design space. Sim-

ilarly, human-guided optimization could let the designer change the exploration direction during an opti-

mization. 

This also demonstrates how efficient automatic differentiation and general-purpose optimizers can be when 

combined, and applying these techniques to other form-finding problems could lead to the creation of pow-

erful design tools. 

  





 

 

 

 

 

7 Conclusion 

7.1 Summary of contributions 

This dissertation has focused on improving form-finding workflows by giving more control over the ob-

tained shapes to the designer. The main contributions were applied to bending-active structures and funic-

ular structures design, and implemented inverse form-finding workflows using a nested-optimizers strategy. 

The inner optimizer is a specially selected direct form-finding solver, the outer optimizer is a general-pur-

pose optimization routine that attempts to match the results of the forward simulation to the design intent. 

In general, the novelty in this dissertation lies in the focus on inverse form-finding workflows, and how 

they can be made to perform well enough for use in interactive design. By defining a clear general frame-

work on the implementation of such workflows in a nested optimizer loop, the key requirements on each 

were articulated. This was demonstrated with case studies of two mechanical systems. 
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For bending-active structures, the performance (speed, accuracy, reliability) of direct form-finding solvers 

was measured, and recommendations on their use in an inverse form-finding setup given. Because the outer 

optimization loop in this setup needs to rely on a robust forward simulation with minimal configuration 

during the optimization, general-purpose optimizers like SLSQP and L-BFGS perform better than usual 

choices in bending-active simulation like dynamic relaxation. Using this insight, an inverse form-finding 

workflow was built and applied to simple elastica-like arc lamp structures, and the closest-fit optimization 

of an elastic gridshell. Experimenting with different formulations of the problem, especially through the 

definition of its variables, their influence on the final results was demonstrated. 

In funicular structures, because robust and efficient direct form-finding solvers are readily available, the 

focus was directly taken on an inverse workflow. Initially focusing on a closest-fit to target surface situation, 

closed-form formulations of gradients and hessian were derived, which lead to a fast and stable optimiza-

tion. This also demonstrated how finding closed-form expressions of these derivatives is a major blocking 

point in creating more versatile inverse form-finding workflows. 

This same inner optimizer was reimplemented in an Automatic Differentiation framework, to produce an 

inverse form-finding tool for funicular surfaces that was not limited by this issue. Because this is a novel 

way of implementing such workflows, this exposed how the design intent can be represented by more com-

plex objects than a target surface. Reproducing several case studies of existing funicular structures, it is 

shown how this lets the designer explore new portions of their design space, and how a fine control over 

the objectives of the inverse form-finding optimization leads to possible incremental modifications of the 

design. 

For the tools that are necessary to implement these workflows, a key requirement that was found during the 

work presented in this dissertation, is that they should be compatible with tools that are well-known by 

designers. This lets designers use a familiar interface for the initial modeling tasks and the display and post-

processing of the results. To achieve this, a communication layer between Rhino/Grasshopper and Python 

was created, allowing the use of advanced scientific programming tools from Python (scientific computing 

with Numpy, just-in-time compilation with Numba, automatic differentiation with Autograd), in the well-

known Rhino environment. This was achieved with GH Python Remote (Cuvilliers & Mueller, 2017), is 

aimed at being as reusable as possible, and so far has been downloaded around 25,000 times 

(https://pypi.org/project/gh-python-remote/). 

https://pypi.org/project/gh-python-remote/
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7.2 Potential impact 

In building inverse form-finding tools, we hope to give the designer more control on the shapes of complex 

structural systems, that are governed by specific rules limiting their design spaces. Because these shapes 

adapt to bespoke construction systems, they can be chosen to very efficiently use material. Funicular shapes 

for example, will very efficiently span large spaces. Bending-active structures are very adaptable and have 

a large potential for reuse. Additionally, thanks to this added control, designers can explore larger regions 

of the design space of their chosen construction system, leading to more variety in structures without any 

penalty on efficiency. While the shapes of many shells were initially chosen as pre-defined mathematical 

functions like revolution surfaces of lines or simple curves, so that their analysis would be simpler, we now 

have tools to create and analyze free-form funicular shells. 

This new control on the form-finding process will also give designers more freedom in how they use these 

tools. While existing direct form-finding tools tend to give results of a similar architectural style, designers 

can now guide the exploration towards target shapes and author their own style on them. 

7.3 Future work 

7.3.1 Current limitations and next steps 

For each of the contributions of this dissertation to inverse form-finding of bending-active structures and 

funicular structures, there are immediate next steps that could expand the quality of the tools. 

In bending-active structures, the solver presented could benefit a lot from the same Automatic Differentia-

tion treatment as was done for funicular structures. The key challenge here is that the inner optimizer used 

in bending-active structures is more involved, and if applied carelessly the Automatic Differentiation frame-

work has the potential for greatly slowing down the computation. This should still be possible as it is within 

the realm of what Automatic Differentiation can tackle, and similar systems have been implemented in 

Automatic Differentiation frameworks (Degrave et al., 2017). Being able to optimize for different metrics 

than the closest fit to a surface would be hugely beneficial for elastic gridshells. 

In funicular structures, it would be interesting to expand the scope of the inverse form-finding objectives to 

produce a catalog that the designer can pick from. This could be compiled into a graphical user interface so 

that the objectives can be combined easily; an even more powerful interface would allow the designer to 

paint such goals on the regions of the structure where they should apply. Indeed, in the current setup this 
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kind of geographical information needs to be manually coded in the objective function, which is not a very 

reusable design. 

Finally for the presented inverse form-finding tools, it would make sense to compare these implementations 

to existing ones, by reimplementing the specific inverse form-finding that they solve in frameworks pre-

sented in this dissertation. Although the latter are less tailored towards one specific problem than the former, 

they need to be competitive so that they are useful on simpler separate problems just as much as on more 

complex ones. Both of the implementations presented still suffer from challenging computational power 

requirements, and any improvement there will be beneficial. They also tend to require minute manual tuning 

of the parameters of the outer optimizer, something that is not desirable in general for a design tool offered 

for a wider audience. Additional experiments will be required to find robust optimizers for this. 

7.3.2 Open questions 

More open questions remain for future work, especially in the area of expending inverse form-finding solv-

ers to generalist frameworks both in terms of the mechanics-based constraints they can encode, and design 

intent objectives. This is similar to the shift that happened for direct form-finding solvers with the develop-

ment of tools like Kangaroo. 

For inverse form-finding, two important pieces of software engineering would probably be required to make 

such a setup work. First, the direct form-finding solver would need to be implemented in an Automatic 

Differentiation framework, as we have described previously, so that general design objectives could be 

efficiently solved for. Additionally, we expect that the mechanical equilibrium constraints will need to be 

compiled in such a way that computing one value of the energy function does not need to loop through the 

objects of an object-oriented programming system. In fact, this is already a major roadblock in the imple-

mentation of generalist direct form-finding software, and would be potentially slowed down even further if 

implemented in an Automatic Differentiation framework. 

Additionally, it will be interesting to run user studies on the resulting design tools, showing how inverse 

form-finding tools can help create a faster, more directed design process, and in general give back control 

to the designer on form-finding operations. This should also demonstrate how the speed of the design pro-

cess and the ease of options comparison help keep the design process flowing, with more engagement from 

the designer. 

Finally, these systems can be made easier to use by attaching to them a cookbook of usual systems modeled. 

This lets designers pick and match options as they apply to their particular case. A lot of the time, building 

the program that represents the building system constraints is difficult, but repeatable, so this would save 
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time. It would also help in avoiding incorrect formulations, and reduce the complexity of the tuning of the 

outer optimizer that was mentioned in the previous section. 

7.4 Concluding remarks 

In conclusion, this dissertation showed how the ubiquitous problem of inverse form-finding in architecture 

is made apparent, yet unsolved, by the recent proliferation of direct form-finding tools. All design systems 

strive to let the designer stay as true as possible to their original intent, and convey this meaning through 

an instance of a construction system realizing the intent and giving it a shape. Because it removes from the 

hands of the designer almost all control on the resulting shape, direct form-finding alone can be a limited 

design tool. In expert hands, direct form-finding has lead to the design of many great structures; when more 

control is gained over its results through inverse form-finding method it can be used by a wider audience 

and in more constrained contexts. 

By producing designers with well-crafted inverse form-finding solutions, they are empowered again to de-

sign with complex mechanical equilibrium constraints, and can explore a wider range of their design spaces. 

This dissertation realized a comprehensive overview of inverse form-finding systems pointing to a way 

forward in the direction of better design tools for contemporary construction systems. 
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