

The constrained geometry of structures:

Optimization methods for inverse form-finding design

by

Pierre Cuvilliers

Diplôme de l’École polytechnique, 2014

Ingénieur de l’École nationale des ponts et chaussées, 2016

Submitted to the Department of Architecture

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Architecture: Building Technology

at the

Massachusetts Institute of Technology

May 2020

© 2020 Pierre Cuvilliers. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of

this thesis document in whole or in part in any medium now known or hereafter crafted.

Signature of Author:

Department of Architecture

May 1, 2020

Certified by:

Caitlin T. Mueller

Associate Professor of Architecture and Civil and Environmental Engineering

Thesis Supervisor

Accepted by:

Leslie K. Norford

Professor of Building Technology

Chair, Department Committee on Graduate Students

Dissertation committee

Caitlin T. Mueller

Associate Professor of Architecture and Civil and Environmental Engineering

Massachusetts Institute of Technology

Thesis Supervisor

Sigrid Adriaenssens

Associate Professor of Civil and Environmental Engineering

Princeton University

Thesis Reader

John A. Ochsendorf

Professor of Architecture and Civil and Environmental Engineering

Massachusetts Institute of Technology

Thesis Reader

The constrained geometry of structures:

Optimization methods for inverse form-finding design

by

Pierre Cuvilliers

Submitted to the Department of Architecture on May 1, 2020 in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy in Architecture: Building Technology

Abstract

This dissertation aims to improve form-finding workflows by giving more control on the obtained shapes

to the designer. Traditional direct form-finding allows the designer to generate shapes for structures that

need to verify a mechanical equilibrium when built; however, it produces shapes that are difficult to control.

This dissertation shows how the design of constrained structural systems is better solved by an inverse form-

finding process, where the parameters and initial conditions of the direct form-finding process are automat-

ically adjusted to match the design intent. By defining a general framework for the implementation of such

workflows in a nested optimizer loop, the requirements on each component are articulated. The inner opti-

mizer is a specially selected direct form-finding solver, the outer optimizer is a general-purpose optimiza-

tion routine. This is demonstrated with case studies of two structural systems: bending-active structures and

funicular structures. These two systems that can lead to efficient covering structures of long spans.

For bending-active structures, the performance (speed, accuracy, reliability) of direct form-finding solvers

is measured. Because the outer optimization loop in an inverse form-finding setup needs to rely on a robust

forward simulation with minimal configuration, we find that general-purpose optimizers like SLSQP and

L-BFGS perform better than domain-specific algorithms like dynamic relaxation. Using this insight, an

inverse form-finding workflow is built and applied with a closest-fit optimization objective.

In funicular structures, this dissertation first focuses on a closest-fit to target surface optimization, giving

closed-form formulations of gradients and hessian of the problem. Finding closed-form expressions of these

derivatives is a major blocking point in creating more versatile inverse form-finding workflows. This pro-

cess optimizer is then reimplemented in an Automatic Differentiation framework, to produce an inverse

form-finding tool for funicular surfaces with modular design objectives. This is a novel way of implement-

ing such tools, exposing how the design intent can be represented by more complex objects than a target

surface. Reproducing existing structures, and generating more efficient funicular shapes for them, the pos-

sibilities of the tool are demonstrated in exploring the design space and fine-tuned modifications, thanks to

the fine control over the objectives representing the design intent.

Keywords: form-finding, inverse problems, non-linear optimization, computational design

Thesis supervisor: Caitlin T. Mueller

Title: Associate Professor of Architecture and Civil and Environmental Engineering

Acknowledgments

I am very grateful to everyone that helped me on the way to complete this dissertation: advisors, colleagues,

friends, and family who all contributed to make this journey an amazing experience.

First, I would like to thank my advisor, Professor Caitlin Mueller, for her always insightful and patient

guidance and support throughout these five years. Her deep knowledge of the computational design of

structures was always shared with passion, and pushed me to take a new look on my work as an engineer.

She has been an amazing guide in becoming a better teacher and researcher in our field, helping me find

balance between precision, creativity, and impact.

I am also very thankful to Sigrid Adriaenssens and John Ochsendorf, the two other members of my disser-

tation committee. Their comments and guidance have had an enormous impact on this dissertation and

defense. They both shared their long built knowledge of bending-active structures and funicular shells with-

out restrictions and helped me build a strong argument to convince experts such as them. The other faculty

of the Building Technology lab – John Fernández, Leon Glicksman, Les Norford, and Christoph Reinhart,

also deserve many thanks for creating a true multi-disciplinary research environment, where I could learn

so much. I am also grateful for the MIT presidential fellowship for providing me with continued financial

support throughout my dissertation.

I was helped in my work for this dissertation by many colleagues, to whom I owe a great deal. Toby Mitchell

shared his very precise knowledge of the force density method and related tools, and reminded me of how

inverse form-finding design, and all the gradients needed for it, were mentioned in Schek’s work as early

as 1974. Justina Yang worked with me as an undergraduate research assistant during my first year at MIT,

and built very useful tools to run many of the simulations of Chapter 3. Renaud Danhaive was my class-

mate in our early years at MIT and helped me define many of the early ideas for this thesis. I thoroughly

enjoyed working with him on several research projects, such as the initial version of Chapter 5. Paul Ma-

yencourt convinced me to get my tools used by many more than I was initially comfortable with, and was

a great teaching partner for the AAG workshop of Chapter 4. I am also very grateful to all the students of

the Digital Structures research group, and the Building Technology lab, for their friendship, support, and

collaborative spirit.

A special thank you goes to the makers of Rhino3D at McNeel and associates, who were my colleagues for

two summer internships and helped me tremendously in becoming a better programmer. In particular, thank

you to Bob McNeel, who organized excellent conditions each time and also agreed to fund the final year of

8

my Ph.D., and to Greg Arden, Dale Lear and Chuck Welsh who taught me most of what I know about

NURBS.

Finally, a big thank you to all my family and friends, here in the US and back home in France, who gave

their love, support and constant encouragement throughout my Ph.D., despite the distance. Without you, I

could not have done it.

À Alizée, merci.

Table of Contents

1 Introduction 23

1.1 Problem statement 23

1.1.1 Structural systems 24

1.1.2 Designer control 24

1.2 Research motivation and purpose 26

1.3 Research objective 28

1.4 Organization of the dissertation 31

2 Background 33

2.1 Form-finding 33

2.1.1 Physical models 34

2.1.2 Computational form-finding 35

2.1.3 Inverse form-finding 37

2.2 Different construction systems and their constraints 39

2.2.1 Constructive constraints 39

2.2.2 Mechanics-based constraints 40

2.3 Design intent representation and formulation 41

2.4 Form-finding for fabrication 43

2.5 Implementations of designer-guided form-finding systems 44

2.6 Different academic communities 45

2.7 Summary 46

3 Improving the speed, accuracy and reliability of form-finding processes for

bending-active structures 49

3.1 Introduction 50

3.1.1 Problem statement 50

3.1.2 Comparing form-finding processes to general-purpose optimizers 52

3.1.3 Organization of the chapter 53

3.2 Literature review: precedents in simulation of bending-active structures 54

3.2.1 Simulation of elasticas 54

3.2.2 Simulation of complex structures 54

10

3.2.3 Computational design of bending-active structures 55

3.2.4 Design tool reviews 55

3.2.5 Bending-active algorithms 56

3.3 Methodology: Single elastica comparison 59

3.3.1 Elastica problem 59

3.3.2 Numerical simulations 60

3.3.3 Variables and observations definitions 61

3.3.4 Speed, accuracy, and reliability 63

3.4 Implementation details 64

3.4.1 Bending energy discretizations 64

3.4.2 Software implementation 65

3.5 Results of numerical experiments 65

3.5.1 Kangaroo 1: dynamic relaxation 66

3.5.2 Kangaroo 2: projective dynamics 68

3.5.3 Comparison with general-purpose optimizers 70

3.5.4 Larger examples 73

3.6 Conclusion 77

4 Inverse form-finding for bending-active structures 79

4.1 Background 80

4.1.1 Bending-active structures 80

4.1.2 Target shape 80

4.1.3 Design variables 81

4.2 Varying cross-section elastica: the arc lamp 82

4.2.1 Methodology 82

4.2.2 Results 84

4.3 Inverse form-finding of an elastic gridshell 87

4.3.1 Methodology 87

4.3.2 Results 89

4.4 Conclusion 92

5 Inverse form-finding of funicular structures: target shape 95

5.1 Introduction 95

5.2 Background 96

5.2.1 Funicular bar networks 96

11

5.2.2 Force density method 97

5.2.3 Rationalization of freeform surfaces with funicularity constraints 97

5.3 Problem Formulation 98

5.3.1 Unconstrained Problem 98

5.3.2 Structure of the unconstrained problem 100

5.3.3 Structure of the constrained problem 101

5.4 Results 103

5.4.1 Steepest Descent Algorithm (SDA) 103

5.4.2 Quasi-Newton Methods 105

5.4.3 Solvers for the constrained problem 106

5.5 Conclusions 107

6 Inverse form-finding of funicular structures: Functional design objectives 109

6.1 Introduction 109

6.2 Background 111

6.2.1 Related work 111

6.2.2 Automatic differentiation 113

6.3 Methodology 115

6.4 Case studies 116

6.4.1 Mannheim Multihalle 118

6.4.2 Quad-arch with an oculus 120

6.4.3 Teshima Art Museum 121

6.4.4 California Academy of Sciences 122

6.4.5 Gaussian vaults 124

6.5 Conclusion 125

7 Conclusion 127

7.1 Summary of contributions 127

7.2 Potential impact 129

7.3 Future work 129

7.3.1 Current limitations and next steps 129

7.3.2 Open questions 130

7.4 Concluding remarks 131

12

8 References 133

List of Figures

Figure 1.1: Three architectural shell shapes (grey, top left) are approximated using different construction

systems (green). Each construction system leads to different constraints on the constructible

surface, generating different final shapes. The score values given are calculated as the RMS of

the distances 𝑑𝑡 from each vertex 𝑡 to the closest point on the target surface, normalized by the

nominal length of the mesh edges: 𝑡𝑑𝑡2𝑛 × 𝑠𝑖𝑧𝑒𝑐𝑒𝑙𝑙 24

Figure 1.2: Concrete shell on elastic gridshell. In this system, the shape of the elastic gridshell must match

the geometric constraints of elastic gridshells and be as close as possible to a funicular shape

for the concrete shell. (Cuvilliers et al., 2017) 25

Figure 1.3: Viadotto dell’Industria, 1976, Potenza, Italy. Arch./Eng. Sergio Musmeci. © Alba Fermoso

Tango. 27

Figure 1.4: Finding a funicular shape for the Musmeci bridge, where the support points for the deck reach

their desired positions. All shapes are generated using the force density method, which

guarantees funicularity against the self-weight of the shell and the dead loads of the bridge at

the support points. The first three images are generated using manual modifications of the force

density method parameters, one for each edge in the simulation mesh; it is almost impossible to

reach the deck this way. The last image (bottom right) is generated using the methods of Chapter

6, and finds a funicular shape with the prescribed positions for the deck supports. 27

Figure 1.5: Nested optimization loops for solving inverse form-finding problems, graphical view. 30

Figure 1.6: Nested optimization loops for solving inverse form-finding problems, mathematical view. 30

Figure 2.1: Physical form-finding models by Gaudí, Isler, and Otto (left to right), and the structures for

which they generated viable shapes. 34

Figure 2.2: Various examples starting from a rectangular grid forming a funicular network, demonstrating

how changing the force diagram can influence the resulting shape. From Block and Ochsendorf

(2007). 36

Figure 2.3: Classification of form-finding methods for design. 38

Figure 2.4: (left) Hippo House, Berlin Zoo, 1996. J. Gribl arch., SBP eng. (center) Cour Visconti at the

Louvre, Paris, 2012. Bellini & Ricciotti arch., HDA eng. (right) Yas Viceroy Hotel, Abu Dhabi,

2009. Asymptote Architecture, Front Inc. & Taw façade eng. 40

Figure 2.5: (left) Sicli building, Geneva, Switzerland, 1969. Heinz Isler arch. (center) Mannheim

Multihalle, 1975. F. Otto arch., Arup eng. (right) Tokyo Dome, 1988. Nikken Sekkei &

Takenaka Corp., arch. & eng. 41

14

Figure 3.1: Three examples of bending active structures. From left to right: bending-active frame, bending-

active gridshell with a flexible membrane, and hybrid bending-active gridshell integrating a

rigid shell. Central picture © Hubert Berberich (CC-BY 3.0). 50

Figure 3.2: Example of a computational reproduction of the construction process for a bending-active

structure (Coar et al., 2017). The runtimes are extracted from one run of the Kangaroo 2 solver,

a commonly used architectural design tool, on the structure. 51

Figure 3.3: Definition of the planar elastica problem, continuous (top) and after discretization (bottom). The

beam is pinned at both ends. The solution is a relationship between 𝑎, the distance between the

supports, 𝐹, the reaction force at the supports, 𝑓, the maximum height of the beam over the

support line, and 𝛼 , the angle of the beam at the supports. See text for a description of the

pseudo-rotational spring and definition of 𝑘 ∗. 61

Figure 3.4: Surface plots of errors in Kangaroo 1 simulations of elastica for different numbers of discretized

segments and compression ratio. Kinetic energy threshold used: 10-10. 66

Figure 3.5: Time vs. error in Kangaroo 1 for elastica simulations. Each color represents one threshold for

the stopping criterion, each point represents one number of discretized segments (labeled). The

point is at the median time and median error for all simulations that have the same number of

segments and the same threshold. The extent of the bars represents the spread from 1st to 9th

decile in time and error for these same simulations. 67

Figure 3.6: Surface plots of errors in Kangaroo 2 simulations of elastica for different numbers of discretized

segments and compression ratio. Kinetic energy threshold used: 10-12. 69

Figure 3.7: Time vs. error in Kangaroo 2 for elastica simulations. See Figure 5 for labels. 70

Figure 3.8: Time vs. error in height with SLSQP and augmented Lagrangian L-BFGS elastica simulations,

for an energy tolerance of 10 − 7 and a constraints tolerance of 10 − 4. Each point represents

one number of discretized segments. The point is at the median time and median error for all

simulations that have the same number of segments and the same tolerances. The extent of the

bars represents the spread from 2nd to 8th decile in time and error for these same simulations.

 72

Figure 3.9: Time vs. error in dynamic relaxation with three values of energy tolerance (labeled), constraints

tolerance of 10 − 4, for elastica simulations. See Figure 3.8 for labels. 72

Figure 3.10: Cocoon project (Coar, 2012): dimensions and material properties. Labeled length dimensions

are in mm. Photo © Matthieu Léger. 73

Figure 3.11: Comparison of actual footage of the construction to numerical simulations. Photos in top row

© Matthieu Léger. 74

15

Figure 3.12: Boxplot of the relative errors in the simulated distance from the top points of vertical bars to

their anchors, compared to the physical structure, grouped by position of the anchor and number

of iterations. Anchors positions are the four corners of each module, as seen in Figure 8. The

central bar in the box shows the median of the group of measures, the extent of the box shows

the first and third quartile, the whiskers show the minimum and maximum data values, and the

points are outliers. 74

Figure 3.13: Comparison of results in positions for different numbers of iterations. Displacement shows the

positional difference with the reference obtained after 106 iterations. In the initial configuration,

point-like ties are connected to neighboring modules. 75

Figure 3.14: Comparison of results in anchor forces for different numbers of iterations (top view).

Maximum force vector error from 104 to 106: 76%, from 105 to 106: 1.5%. 75

Figure 3.15: Comparison of results in positions for different numbers of iterations, when a uniform wind

pressure is applied to the structure. The displacements are shown from the unloaded

configuration with 106 iterations. 76

Figure 3.16: Gridshell example used. Initial positions in black, best equilibrium found in blue. 77

Figure 4.1: An arc lamp made of pre-bent metallic channels (left). A possible realization of an arc lamp

made from initially straight timber slats (right). By carefully varying the width of the slats, the

geometry can be controlled to create perfect circles. 82

Figure 4.2: Actively bent wood strips with variable cross-section. The optimization was set up to satisfy the

same boundary conditions at the base and at the location of the weight. By changing the section

of the strips, the elastically bent pieces take different deformed shapes. 83

Figure 4.3: Visualization of the interface of the arc lamp form-finding tool. 84

Figure 4.4: Arc lamps and their construction details. 85

Figure 4.5: Some of the arc lamps on display in the conference space. The pre-stressed geodesic gridshell

in the background was designed by Sehlström et al. (Sehlström et al., 2018). 85

Figure 4.6: The arc lamps built for the workshop. 86

Figure 4.7: Movement of the anchors when varying coefficients for 3 frequencies. From left to right: initial

positions, maximum movement with a constant offset, then with the first and second frequencies.

 88

Figure 4.8: Possible modification to the dented dome target shape that can be represented by an elastic

gridshell. Top: Initial shape and inverse form-finding result, with a poor agreement at the top;

bottom: by continuing the dent down the sides of the target surface in a valley shape, a better

fitting gridshell is found. 90

16

Figure 4.9: Results found by the inverse form-finding tool for elastic gridshells. (Top) Initial grid position

from the draping step, not in bending equilibrium; (middle) equilibrium position of the initial

grid position; (bottom) equilibrium position with optimized anchor positions resulting from the

inverse form-finding tool. 91

Figure 5.1: Rationalizing a freeform surface (a): (b) choose numbers of branches 𝑛𝑥 and 𝑛𝑦 in the x and y

directions, (c) approximate the target surface by projecting the grid vertically and (d) compare

to the funicular network found using the force density method. Then, optimize the force densities

to reduce the distance. 98

Figure 5.2: The four-bar problem. 101

Figure 5.3: (left) The objective surface with the optimization path (black curve) for the steepest descent

algorithm with a fixed step-size of 0.001. At every iteration, the direction of the gradient remains

unchanged because the level sets of the function are parallel lines. (right) Convergence profile

of the steepest descent algorithm with a step-size of 0.001, for the 4-bar problem. 104

Figure 5.4: Target surface (left) vs. optimum surface found (right). 104

Figure 5.5: Convergence profile of (a) the steepest descent algorithm with an inexact line-search, and (b)

of the interior-point method for the 10x10 bar problem. 106

Figure 6.1: The optimization system for design objectives described by Schek (1974), and some of the

gradients calculations needed. 112

Figure 6.2: Different ways of obtaining derivatives for a computational function: manual differentiation,

symbolic, numerical, and automatic. After Baydin et al. (2018). 114

Figure 6.3: The Mannheim Multihalle, Germany, 1974, Frei Otto arch. From left to right, the complete

structure, covered with its PVC envelope, the gridshell as seen on the inside, and form-finding

models. 117

Figure 6.4: The Teshima Art Museum, Kagawa, Japan, 2010. Nishizawa arch. 117

Figure 6.5: The California Academy of Sciences, San Francisco, CA, USA. Renzo Piano & SWA Group

arch. 118

Figure 6.6: The Montevideo port warehouse, Uruguay, 1979. Dieste arch 118

Figure 6.7: Equilibrium positions (left) and member length distribution (right) for a funicular surface

reproducing the Mannheim Multihalle shape. The first row is a simple force density method

result with uniform force densities, the second optimizes for a single 4 m grid size, the third

allows members of length 3.5 m or 5.2 m. 119

Figure 6.8: Objective function code for a uniform member length optimization. 120

Figure 6.9: Objective function code for creating an opening in a structure. 120

17

Figure 6.10: Equilibrium position results for the four-arched dome. From left to right, results of a simple

force density method with uniform force densities, opening with a target size of 2 m, a target

size of 4 m, and 2 m opening with an additional uniform member length objective. 121

Figure 6.11: Rendering of the funicular shape obtained with this work to reproduce the Teshima museum

shape. 121

Figure 6.12: Some iterations during the optimization to obtain the Teshima shape. The fit value is the value

objective function relative to the final value found at the optimum. 122

Figure 6.13: Rendering of a funicular square dome with multiple openings, reproducing the hills of the

California Academy of Sciences roof. 123

Figure 6.14: Some variations on the openings of the square dome. The scores on the bottom left represent a

quick estimate of the relative structural efficiency of each dome, and are calculated as the sum

of the forces times lengths in each member. 123

Figure 6.15: Variations on the Dieste beam shapes. Left column varies the height difference target, right

column changes the weighting between structural efficiency and material use. 125

List of Tables

Table 2.1: Summary of recent developments in inverse form-finding, for various constraints. 40

Table 3.1: Parameters used in the studies and presented in Section 3.5. [start:step:end] is used to represent

the set of numbers from start (inclusive) to end (exclusive), stepping by increments of step.

[start:end] = [start:1:end]. 63

Table 3.2: Summary of results for the elastica experiments. 68

Table 3.3: Iterations needed for different energy thresholds in the Cocoon model. The 10-13 simulation did

not converge after 12 hours of runtime. 76

Table 3.4: Runtimes for L-BFGS with varying number of points in the beams. Accuracy refers to the mean

distance between nodes and the closest point in the equilibrium position found with the highest

number of nodes, divided by the size of the model. 77

Table 4.1: Summary of results for our inverse form-finding framework for elastic gridshells. 89

Table 5.1: Performance comparison of constrained nonlinear solvers in the 100 nodes example. (*An

additional constraint was added to the interior point method.) 107

Table 6.1: Timings to generate one optimization result in each of the presented examples. Measured on a

2.8 GHz i7-7700HQ CPU. 116

Publications related to this dissertation

Chapter 3 was adapted from:

Cuvilliers, P., & Mueller, C. (2018, July). A comparison of dynamic relaxation and generalist optimization

methods for the simulation of bending-active structures. Proceedings of the IASS Symposium 2018. IASS

Symposium 2018, Boston, MA, USA,

and:

Cuvilliers, P., Yang, J. R., Coar, L., & Mueller, C. (2018). A comparison of two algorithms for the simula-

tion of bending-active structures. International Journal of Space Structures, 33(2), 73–85.

https://doi.org/10.1177/0266351118779979.

The methods presented in Chapter 4 were also taught as:

P. Cuvilliers, P. Mayencourt, and C. Mueller, “Design and fabrication of bending-active structures with

controlled shapes: the arc lamp,” in Workshops of the Advances in Architectural Geometry Conference,

Gothenburg, Sweden.

Chapter 5 was adapted from:

Cuvilliers, P., Danhaive, R., & Mueller, C. T. (2016). Gradient-based optimization of closest-fit funicular

structures. In K. Kawaguchi, M. Ohsaki, & T. Takeuchi (Eds.), Spatial Structures: Proceedings of the IASS

Symposium 2016.

The contents of Chapter 6 were presented as:

Cuvilliers, P., & Mueller, C. (2019, October). Differentiable force-density method: An easily extensible

framework for the constrained design of funicular shapes. IASS International Symposium 2019, Barcelona,

Spain.

Most of the design tools presented in this dissertation use a specially developed connection between

Rhino3d and Python, released as open-source software:

Cuvilliers, P., & Mueller, C. (2017). GH Python Remote. github.com/Digital-Structures/ghpythonremote.

https://doi.org/10.1177/0266351118779979
https://github.com/Digital-Structures/ghpythonremote

1 Introduction

1.1 Problem statement

Building for freeform architecture, to create structures that physically realize the shape of a complex sur-

face, introduces challenges never encountered when building orthogonal structures. The choices made on

the construction process and structural quality of the building will dictate constraints for the surface. Addi-

tionally, while matching these constraints, the designer usually follows an architectural intent: for example

a target shape to fit as well as possible. Small examples of this process are represented in Figure 1.1, where

different construction systems are matched with three target surfaces. Each construction system leads to

different constraints on the constructible surface, generating different final shapes, and it is impossible ini-

tially to predict how these shapes will differ nor how to layout a specific construction system to get as close

as possible to the target.

24

Figure 1.1: Three architectural shell shapes (grey, top left) are approximated using different construction systems

(green). Each construction system leads to different constraints on the constructible surface, generating different

final shapes. The score values given are calculated as the RMS of the distances 𝑑𝑡 from each vertex 𝑡 to the closest

point on the target surface, normalized by the nominal length of the mesh edges: √∑ 𝑑𝑡
2

𝑡 𝑛 × 𝑠𝑖𝑧𝑒𝑐𝑒𝑙𝑙⁄

1.1.1 Structural systems

This dissertation uses the term construction system as a way to distinguish between structural systems that

can be used to build free-form surfaces. It focuses specifically on two structural systems, for which it will

present methods to generate viable shapes. First, bending-active structures (see Chapter 3 for images), are

made of long rods of timber or fiberglass, that are bent into shape and undergo large deformations in this

process. This dissertation focuses in particular on elastic gridshell, bending-active structures that start from

a flat regular grid of such rods, pinned at all intersecting nodes, that is then bent and to the ground attached

on its edge. They make efficient, lightweight covers that are quick to build. Simulating the deformation

process of the grid is the only way to know what the final shape will be. This means that to find a viable

shape for elastic gridshells, that can be built with such a structural system, simulating this deformation

process on one specific instance of elastic gridshell is necessary.

The second system is funicular structures, such as thin concrete shells that behave in compression-only (see

Chapter 5 for images). They are another efficient way of covering large spaces with minimal material and

many were built in the mid-twentieth century. To remain thin as they are built, these structures need to have

minimal bending stresses in them. This means viable shapes for thin shell will be funicular against their

main load (most often their self-weight), which means that this loading condition will only generate mem-

brane compression forces in the shape.

1.1.2 Designer control

This dissertation then attempts to give designers as much control as possible when they are generating

shapes for these structural systems. This control can often be expressed through an objective to achieve,

Target

Funicular

Active-bending

Planar facets

25

such as a target shape that the generated viable shape should approximate. The target can also be the result

of another process that generates structurally efficient shapes. For example, in Figure 1.2, a concrete shell

is cast on top of an elastic gridshell. The concrete shell shape is the result of a form-finding process that

guarantees compression-only forces, and the elastic gridshell has to be designed to get as close as possible

to this target shape while matching its own set of constraints.

In both cases, this intent needs to be realized with a structural system, that introduces geometrical con-

straints. Designers need the tools that will find one such realization and let them explore new shapes around

this solution. Two paths have traditionally been taken to design freeform surfaces with a physical reality.

The first one is to only draw surfaces that match some global constraints, like drawing developable surfaces

to design a roof built with continuous metal sheets. This is possible with good accuracy and speed in CAD

software, but this process only works up to the extent of one continuous developable patch. The second path

taken is the post-rationalization of the freeform design. There, the designer draws with the software’s capa-

bilities as the only constraint, and then uses a black-box to find a similar surface that can be built using the

selected technology. This process is often frustrating for the designer, who does not have control over what

the result of their drawing will be and gets limited feedback on which inputs should be modified to change

this result.

More generally, none of these paths let the designer explore and optimize in the design space that the con-

struction system defines, because they do not have a concept to represent this design space. Yet this inverse

form-finding problem, where the goal is to get an instance of a construction system as close as possible to

a target shape, is ubiquitous in architecture. The designer has a shape in mind, knows what system to use to

build it, but cannot predict how and what to lay out to achieve it. This proposal defines a category of com-

putational tools needed to solve these problems, and offers to create them.

Figure 1.2: Concrete shell on elastic gridshell. In this system, the shape of the elastic gridshell must match the

geometric constraints of elastic gridshells and be as close as possible to a funicular shape for the concrete shell.

(Cuvilliers et al., 2017)

Concrete envelope,
thickness 15mm.

Fiberglass mesh formwork.

Grishell, unremoved

part.

Gridshell, temporary parts.

Wooden support frame.

10 ft

26

1.2 Research motivation and purpose

In building inverse form-finding tools, we hope to give the designer more control on the shapes of complex

structural systems, that are governed by specific rules limiting their design spaces. Because these shapes

adapt to bespoke construction systems, they can be chosen to use material very efficiently. Funicular shapes

for example, will very efficiently span large spaces. Bending-active structures are very adaptable and have

a large potential for reuse. Additionally, thanks to this added control, designers can explore larger regions

of the design space of their chosen construction system, leading to more variety in structures without any

penalty on efficiency. While the shapes of many shells were initially chosen as pre-defined mathematical

functions like revolution surfaces of lines or simple curves, so that their analysis would be simpler, we now

have tools to create and analyze free-form funicular shells.

This new control on the form-finding process will also give designers more freedom in how they use these

tools. While existing direct form-finding tools tend to give results of a similar architectural style, designers

can now guide the exploration towards target shapes and author their own style on them.

A motivating example can be made for this research based on the design process of the Viadotto dell’In-

dustria, or bridge on the Basento river, designed by architect and engineer Sergio Musmeci and built in

1976 in Potenza, Italy. The bridge is a road bridge where the deck is supported at regular intervals by a

concrete shell spanning over the river and other pathways in the valley below it, see Figure 1.3. In the

design of the bridge, Musmeci used physical and analytical models to form-find the shape of a membrane

that would be tied to the ground anchors, and the deck support positions (Marmo et al., 2019). This generates

a shape that spans from the ground anchors to the deck supports, but is not funicular under its own weight

and the dead loads of the bridge. That leads to an inefficient structure as the shell will have to support

bending forces in this principal loading state. Multiple optimizations were made on the position of the

supports, and the shape of the form-found membrane-like shell, but still, in the final result the shell is much

thicker than can be achieved with a true funicular shape.

A better way to find a shape for the shell is to use a form-finding process that generates only funicular

shapes, like the force density method (see Chapter 5). However, this process does not guarantee the position

of the deck supports in the form-found shape (Figure 1.4, top left): these cannot be described as fixed anchor

points otherwise additional forces would be introduced in the shell, moving it away from funicularity. In-

stead, parameters of the form-finding process can be adjusted so that the support points get closer to the

deck. Doing this manually is very tedious, and almost impossible (Figure 1.4, top right and bottom left): in

the force density method, there is one independent parameter that can be chosen for each edge of the sim-

ulation mesh, and changing each one of them can affect the whole form-found shape. Instead, an automatic

27

way of changing these parameters is needed, so that a funicular shape with the support points touching the

deck can be generated. Implementing such a method will be the object of Chapter 6; Figure 1.4, bottom

right shows the results that can be obtained with it.

Figure 1.3: Viadotto dell’Industria, 1976, Potenza, Italy. Arch./Eng. Sergio Musmeci. © Alba Fermoso Tango.

Figure 1.4: Finding a funicular shape for the Musmeci bridge, where the support points for the deck reach their

desired positions. All shapes are generated using the force density method, which guarantees funicularity against the

self-weight of the shell and the dead loads of the bridge at the support points. The first three images are generated

using manual modifications of the force density method parameters, one for each edge in the simulation mesh; it is

almost impossible to reach the deck this way. The last image (bottom right) is generated using the methods of

Chapter 6, and finds a funicular shape with the prescribed positions for the deck supports.

28

Note that solving this exact problem, of moving points in a force density method form-finding process

towards target locations, is solved by the existing extended force density method (Miki & Kawaguchi,

2010). However, there are other design constraints that the designers will want to accommodate with the

results of form-finding processes, and these processes will not always be the force density method. This

dissertation will attempt to solve such broad problems.

1.3 Research objective

Many of the terms used in computational design for architecture are not consistently defined, especially

when looking at systems that have a structural objective. This section first lays out the definitions used in

this proposal, then defines the research objective.

Form-finding is the name given to processes to generate shapes that realize some structural objective or

equilibrium constraint– examples include networks of hanging chains, the fins and tensioned fabric of an

umbrella, or sheet metal elastically deformed. This is a non-trivial process when the structural system con-

sidered undergoes large displacements, leading to a (geometrically) non-linear problem, usually requiring

an iterative procedure to solve computationally.

It is useful to distinguish three classes of form-finding problems. First, direct problems: finding one physical

shape under a given set of mechanical properties and boundary conditions. Often, this goes against the

intuitive design process where the designer has a shape in mind and wants to minimize the difference to

that target. That describes an inverse problem where the closest possible physical system to a target shape

is found. A third, intermediate, category can be defined: pseudo-inverse form-finding. In this case like in

inverse form-finding, the objective is to match a construction system to a target shape, but in this case the

constraints are not matched exactly. These definitions are summed up in Figure 2.3.

There exist tools for solving direct form-finding problems, generating admissible instances of the construc-

tion system, but the inverse form-finding tools needed to get close to the design intent are less common.

Additionally, creating tools to explore the design space around an optimal solution would offer a way to

guide the designer’s hand to new shapes, yet without limiting it more than the construction system would.

This research aims at creating better tools for the design of freeform surfaces with buildability constraints,

effectively letting the designer formulate an inverse form-finding problem and interact with it. Two concur-

rent approaches are taken. One iteratively simulates physically-based direct form-finding problems and

optimizes the initial conditions of this problem until the form-found shape is close to the target shape from

the designer. As no closed-form solution usually exists even for the direct problem, this results in nested

29

optimization problems. The other approach rewrites the inverse problem using special properties of a given

construction system to solve it using only one level of optimization.

Generally, a mathematical optimization approach is taken. Equation (1.1) gives the general expression of

an inverse form-finding problem: minimize an objective function 𝑓 of the equilibrium position 𝒙, where the

equilibrium position is defined as the mechanical equilibrium minimizing an energy 𝐸𝒑, over the variables

𝒑 that are the variable parameters to the direct form-finding problem:

(𝑃1.1): min𝒑
𝑓(𝒙) , subject to 𝒙 = argmin𝐲𝐸𝒑(𝒚) . (1.1)

The constraints part of this optimization problem is what represents the construction system; the objective

represents how well the intent is matched. Often, the objective will be to find the closest fit to a continuous

target surface. Equation (1.1), mostly through the expression of the constraints, assumes that the construc-

tion system and its instances can be represented as a discrete mesh: a collection of vertices linked by edges,

forming faces. For more complex construction systems that do not have well-defined nodes, like mem-

branes, a finite element representation allows one to fall back to the mesh-like formulation, and at the same

time is often necessary to simulate the behavior of the construction system.

To solve this optimization problem, this dissertation defines a nested optimization framework represented

in Figure 1.5 and Figure 1.6. On the outer level, a general-purpose optimizer will explore the design space

of solutions to a direct form-finding problem, until a minimum of the objective function is found. On the

inner level, a specialized solver for direct form-finding problems is used to generate equilibrium positions

for the given structural system. The two levels are linked through the parameters 𝒑 that define a specific

instance of the direct form-finding problem.

The objective of this dissertation is then to define a general framework for inverse form-finding, considering

the problem set forward by Equation (1.1), and create computational tools to solve it in specific instances.

This means realizing a good modularity of the building constraints and the designer’s intent expressions

while being fast enough to allow iterative design exploration. Good reliability also needs to be achieved in

simulating construction systems. This will be done by implementing a design tool around carefully selected

solvers for the optimization problem of Equation (1.1), iteratively calling on efficient direct form-finding

solvers.

30

Figure 1.5: Nested optimization loops for solving inverse form-finding problems, graphical view.

Figure 1.6: Nested optimization loops for solving inverse form-finding problems, mathematical view.

Design intent

Change parameters until

equilibrium shape matches intent

Inverse form-finding result

Direct form-finding

Inverse form-finding

Change shape to find equilibrium position, given current parameters

…

…

Each equilibrium shape is the

result of a direct form-finding

process

Inverse form-finding

`

Direct form-finding

shape

𝒚
𝐸𝒑 𝒚

equilibrium

position
𝒙 = argmin𝒚𝐸𝒑 𝒚

Objective

𝑓

Parameters

𝒑

Change 𝒚 until convergence to

minimize 𝐸𝒑 𝒚

Change 𝒑 until convergence to

minimize 𝑓 𝒙 = 𝑓 argmin𝐸𝒑 𝒚

Solution

𝒙 = argmin𝑓

31

1.4 Organization of the dissertation

This dissertation aims at implementing inverse form-finding workflows for two structural systems, bending-

active structures and funicular structures. Additionally, we want to gain a better understanding of how the

systems can be made fast and robust. Finally, in implementing our solutions, we are looking for insights on

how general frameworks for inverse form-finding could be realized. There are two main parts to this dis-

sertation, one for each mechanics-based constrained system of bending-active structures in Chapters 3 and

4, and funicular structures in Chapters 5 and 6.

Generally, we are not concerned with the implementation of direct form-finding solvers as they are now

readily available for many systems; however, for bending-active structures we will see that the very specific

requirements of our system lead to re-evaluating existing direct form-finding methods. This will be done

early in the dissertation (Chapter 3) and will build on the challenges of speed, reliability and accuracy for

the direct form-finding solvers in the later chapters.

Chapter 2 looks at existing literature on computational design tools for construction systems with complex

geometrical constraints, that let the designer express an intent to match.

Chapter 3 looks at the selection and possible improvements of direct form-finding tools for bending-active

structures. Fast and reliable form-finding tools will be of great importance for Chapter 4, where they will

be used repeatedly in an optimization loop – without any real-time control possible by the designer on the

form-finding process – to find bending-active structures that are closest to an objective shape. We will be

able to improve their implementation and gain a better understanding of how they work and perform.

In Chapter 4, we look at the inverse form-finding problem of finding a bending-active structure that is as

close as possible to a target shape, for simple elastica-like shapes and elastic gridshells. This is done using

the nested optimization process described earlier. In the outer optimizer, we iterate on some initial condi-

tions of the bending-active structure, until the distance from the equilibrium shape given the current initial

conditions is as small as possible. Finding the equilibrium position is the result of the inner optimizer, we

build on the results of Chapter 3 for this. This inner optimizer needs to be stable, reliable and fast, given the

wide variety of input conditions that the outer optimizer will attempt. We also look at finding good repre-

sentations of the variable initial conditions and parameters sent by the outer optimizer to the inner one on

different case studies.

Chapter 5 changes construction systems to look at funicular structures. Although they have seen more in-

terest in terms of the inverse form-finding tools developed for them, they will prove to be a good model

system for experimentations on the implementation of novel inverse form-finding systems. Chapter 5 is an

early experimentation in this direction for inverse form-finding of funicular structures towards a target

32

shape. It demonstrates how an efficient and robust inner optimizer leads to more flexibility in the outer

optimization loop. We also look at the importance of deriving derivatives of the objective function to obtain

a good inverse form-finding framework.

Chapter 6 builds on and improves the simple inverse form-finding system for funicular surfaces of Chapter

5 to produce a feature-based representation of the design objective. Thanks to a functional representation

of this objective, combined with automatic differentiation and a “perfect” forward simulation process – that

is fast and always producing a result, we construct a workflow that not only does inverse form-finding

towards a target shape, but to any objective that the designer can represent as a function of the properties

of the current iteration. This is a novel way of looking at inverse form-finding design, that we find very

promising in its potential uses.

Chapter 7 summarizes this dissertation, concludes on the main contributions and their potential impact, and

outlines possible avenues for future work.

2 Background

This chapter critically reviews existing literature on computational design tools for construction systems

with complex geometrical constraints, that let the designer express an intent to match.

2.1 Form-finding

The concept of direct form-finding has been used since the advent of the construction of freeform shell and

membrane structures in the 1970s and before, along with the development of computational structural anal-

ysis. One of the earliest references to the term is found in (Bubner, 1972) for the form-finding of pre-

tensioned cable-nets. Before that, the term shape optimization was also used for structures like arch-dams

(Deprez, 1968), and more generally for mechanical pieces. Adriaenssens et al. (2014) give a concise de-

scription:

Form-finding is a forward process in which parameters are explicitly/directly

controlled to find an “optimal” geometry of a structure which is in static equilibrium

with a design loading.

34

Typically, for shells made of heavy materials (concrete, masonry) or where creep is an issue (timber), this

design load will typically be the dead weight; the parameters to be varied include the shape of the shell and

its topology, and its boundary conditions. In this formulation, it is strictly a forward problem: there is no

direct control possible on the resulting shape, only on the parameters generating it. Direct form-finding is

the generation of a shape that efficiently solves a structural optimization problem.

2.1.1 Physical models

The earliest form-finding methods were probably physical ones. This is famously seen in the works and

experiments of builders such as Eladio Dieste (1917-2000), Heinz Isler (1926-2009), or Frei Otto (1925-

2015), and before them Antoni Gaudí (1852-1926), see Figure 2.1. They used scaled models to find funic-

ular shapes for masonry structures, then membranes and concrete shells. The process is generally to hang a

weighing chain or mesh and invert its shape to obtain a funicular shape under dead weight. Soap film models

were also used for membranes. By adding weights, changing the boundary conditions and the topology, the

resulting shape can be modified, However, this is a tedious process, as the model might lose tension in some

parts for example, and many modifications will be time-consuming.

© chrispythoughts.wordpress.com (Chilton et al., 2000, p. 37) © FAR frohn&rojas

© Janna Goldsmith © jyhem @ www.flickr.com © Atelier Frei Otto Warmbronn

Church of Colònia Güell,

Barcelona, Spain, 1914.

Arch. Antoni Gaudí

Sicli building, Geneva,

Switzerland, 1969.

Arch. Heinz Isler.

German Pavilion, Expo ’67

Montreal, Canada.

Arch. Frei Otto

Figure 2.1: Physical form-finding models by Gaudí, Isler, and Otto (left to right), and the structures for which they

generated viable shapes.

35

2.1.2 Computational form-finding

Form-finding solutions can also be found computationally, and a large literature of direct form-finding

solvers exist. For shells, early methods were based on a simplification to a discrete mesh (Schek, 1974).

For funicular shells, many of them reproduce the physical experiment of finding the equilibrium position

of a hanging mesh. This is clearest for methods like the Particle Spring method (A. Kilian & Ochsendorf,

2005), that simulate a network of flexible springs attached to weighing nodes, and relax it until it stops

moving. Although solving it in one direct matrix solve, methods like the force density method (Schek,

1974) solve for the same mechanical equilibrium of loaded nodes in a network of bars with axial forces. In

fact, if the stiffnesses of the springs in this method are set to the force densities of the force density method,

the form-found shape will be identical. Dynamic relaxation can also be used in this way, although in this

case without the bar-and-node approximation and form-finding a free-hanging membrane (Brew & Lewis,

2007). Veenendaal and Block (2012) provide more details on the relationships between these methods for

funicular and tension networks.

Computational form-finding is available for other construction systems – some are presented in Section 2.2.

In many cases, dynamic relaxation is a possible choice, especially for the simulation of flexible materials,

as its implementation tends to be more straightforward than other methods when starting from internal

forces in the model. For example, it has been applied to tensile structures (Barnes, 1999), compression-only

funicular structures (Bagrianski & Halpern, 2014), bending-active structures (Adriaenssens & Barnes,

2001), etc. Another method with a wide range of applications is the projective dynamics method (Bouaziz

et al., 2014), which bridges finite element methods and position-based dynamics to create a form-finding

tool that is simple to implement, yet robust and efficient. Applications include bending-active structures as

well as pneumatics, cloths simulation, etc. Chapter 3 provides more details on these two methods and their

inner workings.

For the designer, the interest resides in the fact that initial conditions and parameters of the simulation are

much easier to change than in a physical model, allowing for a simpler exploration of form-found shapes.

Structural typologies can also be combined and changed throughout the course of a design exploration,

something that would have required tremendous effort with physical models. For example, dynamic relax-

ation and projective dynamics were both included in the very popular form-finding tool Kangaroo (Piker,

2016b, 2017a), directly integrated into the NURBS-based CAD system Rhino3d. Giving the designer a

catalog of so-called “goals” to choose from to represent the internal forces in their constructive system, it

opened up the methods of form-finding to a wider audience than before, and led to many complex applica-

tions combining multiple systems that traditionally would have each required a dedicated form-finding so-

lution. However, the simulations can remain slow to run, and merely predict the shape of one instance of a

36

structure. They do not guide the designer towards better structures that can be achieved with the chosen

construction system, or provide intuition for finding structures that are closer to the design intent.

One method in particular here stands apart in this regard. Thrust network analysis (Block, 2009), which

combines visualization from graphic statics and the force density method to create a form-finding tool that

provides designers with both a form-found shape and an editable force diagram to act on the shape, gives

them a little more control on the results. By redirecting the flow of forces to certain parts of the shape, the

designer can create features like creases and ridges, see Figure 2.2. However, this requires a good under-

standing of the relationship between form and forces and is limited to funicular shape problems. Thrust

network analysis is the basis of the successful masonry vaults design tool RhinoVAULT (Rippmann et al.,

2012), and used for the best-fit optimization of funicular structures (Van Mele et al., 2014).

Systems with similar characteristics representing some information from the designer on the design intent

include Combinatorial Equilibrium Modeling (Ohlbrock & Schwartz, 2015), where graph theory is used to

control the qualitative behavior of funicular structures, and Algebraic 3D graphic statics (Hablicsek et al.,

2019).

Figure 2.2: Various examples starting from a rectangular grid forming a funicular network, demonstrating how

changing the force diagram can influence the resulting shape. From Block and Ochsendorf (2007).

37

2.1.3 Inverse form-finding

To overcome these issues, form-finding tools started incorporating other objectives in addition to solving

for the mechanical equilibrium shape. Typically, this will require a more involved solving process, often

based on mathematical optimization. That concept can be grouped under the loosely defined term “inverse

form-finding”, in reference to the term “inverse problem”, which refers to the act of finding the causal

factors that produced a set of given observations. (This is different from the concept of “inverse hanging

models”, where inverse refers to the inversion of gravity forces to generate compression-only shapes from

tension-only models.) Here, we want to find the set of parameters and initial conditions to feed to the form-

finding solver that will lead to the equilibrium shape that most closely matches the additional objectives.

Before looking at the different systems, it is important to notice that the vocabulary of inverse form-finding

is not fixed in the literature. The term was introduced in 2010 in materials simulation, for example refereeing

to finding the required initial shape of a steel blank to press-form it in a defined shape (Germain et al.,

2010). This references a similar term, inverse deformations (Govindjee & Mihalic, 1998). On the other

hand, papers especially coming from the Computer Graphics community tend to name form-finding pro-

cesses a lot less, but use the same framework of iteratively modifying the inputs to an equilibrium shape

predictor to get as close as possible to a target surface. Examples include (Panozzo et al., 2013; Skouras et

al., 2014), they usually name the resulting tool a designing tool.

Form-finding systems with additional design goals can be subdivided into two categories: those that will

solve the mechanical equilibrium exactly, that we call exact inverse form-finding methods or simply inverse

form-finding methods, and those that do not that we call pseudo-inverse form-finding tools. True inverse

form-finding tools solve the optimization problem (𝑃1.1):

(𝑃1.1): min𝒑
𝑓(𝒙) , subject to 𝒙 = argmin𝐲𝐸𝒑(𝒚) . (1.1)

Pseudo-inverse form-finding tools do not find a true mechanical equilibrium because they solve a relaxed

version of (𝑃1.1), where both mechanical equilibrium and additional objectives are combined in a single

objective function:

(𝑃1.1𝑏): min𝒑,𝒚
𝑓(𝒙)+𝐸𝑝(𝑦) . (2.1)

38

Figure 2.3: Classification of form-finding methods for design.

This simplifies the optimization process: while (𝑃1.1) will require two nested optimizers to solve, (𝑃1.1𝑏) is

usually solvable with existing non-linear optimization techniques. Pseudo-inverse form-finding typically

discretizes the mechanical equilibrium problem to reduce it to an energy minimization problem on meshes.

It then usually adds a term representing the distance from the form-found mesh to a target shape as an

additional objective. By carefully selecting how these energies are weighed relative to each other, a shape

can be found that is close to minimizing the mechanical energy and close to the target shape – if the me-

chanical system can realize such a shape. This is normally easier to solve computationally than the inverse

form-finding problem, but cannot provide a guarantee on the quality of the mechanical equilibrium, unlike

true inverse form-finding. Figure 2.3 summarizes their differences and relates them to direct form-finding.

These concepts have been applied to a wide range of construction systems that are presented next, in Section

2.2.

In the form of Equation (2.1), pseudo-inverse form-finding can also be thought of as a multi-objective

optimization problem, combining mechanical energy and the additional objectives representing the de-

signer’s intent in a single function. Multi-objective optimization for the early design of buildings has been

studied for example by Brown (2019). When solving exactly the mechanical equilibrium problem of direct

form-finding is not crucial, the techniques developed there are a very good alternative to true inverse form-

finding and provide ways to efficiently explore the available design space.

Form-Finding
Mechanical EquilibriumMechanical constraints Equilibrium Shape

Pseudo Inverse

Form-Finding
Optimization on meshes

Target Shape

Mechanical constraints

Approximated

Shape subject to

mechanical

constraints, with

tolerance ε

Inputs OutputApproach Result

Inverse

Form-Finding
Mechanical Equilibrium

Target Shape

Mechanical constraints

Approximated Form

subject to mechanical

constraints, with

tolerance ε = 0

Optimization of Mechanical Equilibrium

+ Form pure result of constraints

- No control on intent

+ Control on intent

- Not always closest to target

- Inexactly matching constraints

+ Control on intent

+ Form closest to target

+ Form matches constraints

- Not always a solution

- Computationally expensive

39

2.2 Different construction systems and their constraints

This section of the literature review focuses on two types of geometrical constraints: constructive constraints

that stem from the desired properties of mesh-like structures (rigid gridshells), and mechanics-based con-

straints that come from the equilibrium of a construction system. General approaches for arbitrary con-

straints are then reviewed, and some theoretical foundations are given. All the constraints considered are

summed up in Table 2.1.

As discussed in Section 1.1.1, this dissertation focuses on creating tools for the inverse form-finding of two

specific construction systems: bending-active structures and funicular shells. This section broadens the

scope of possible construction systems, to study the literature on inverse form-finding methods for these

systems.

It is important to note that form-finding might also be used more as a shape generator than for finding shapes

that are constructible with a structural system, so that sometimes these possible constraints are mostly used

as an inspiration.

2.2.1 Constructive constraints

Mesh-like construction systems, such as the rigid gridshells of Figure 2.4 often need to accommodate geo-

metrical constraints due to the relationships between nodes or edges introduced by the specific construction

system. For example, in the Hippo house (Figure 2.4, left), the structure is covered by flat panels of glass,

so the mesh has to be a mesh with planar quad faces. The covering of the Cour Visconti (Figure 2.4, center)

similarly has flat quad panels, but for its substructure only, that describes a larger mesh supporting many

faces. The Yas Viceroy hotel (Figure 2.4, right) has a façade made of continuous beams connected at pin-

like nodes that align with the axis of the beams. This means the mesh needs to have a defined edge offset.

Two other typical examples of constructability constraints are developable surfaces and piecewise devel-

opable surfaces. These occur for example when cladding a shape with metal sheets: each piece will be a

developable surface. This is not a comprehensive list, each specific construction system giving rise to

slightly different constraints, but it finds the most studied categories.

Table 2.1 (lines 1 to 3) sums up recent findings on the design of such surfaces. The direct form-finding

column is not applicable here since form-finding needs a mechanics-based equilibrium principle to solve.

Pseudo inverse form-finding problems have been solved in all areas, and inverse form-finding problems in

all areas except offsetable meshes. Many of the papers in this area come from Professor Pottmann’s research

group at TU Wien, and even look at the interaction between these constraints.

40

© Karl Brösecke © Musée du Louvre / A. Mongodin © Viceroy Hotels

Figure 2.4: (left) Hippo House, Berlin Zoo, 1996. J. Gribl arch., SBP eng. (center) Cour Visconti at the Louvre,

Paris, 2012. Bellini & Ricciotti arch., HDA eng. (right) Yas Viceroy Hotel, Abu Dhabi, 2009. Asymptote

Architecture, Front Inc. & Taw façade eng.

Table 2.1: Summary of recent developments in inverse form-finding, for various constraints.

System
Direct

form-finding

Pseudo inverse

form-finding

Inverse

form-finding

Planar quads (Eigensatz et al., 2010) (Wallner & Pottmann, 2011)

Offsetable meshes (Pottmann et al., 2007)

Developable surfaces (M. Kilian et al., 2008) (Liu et al., 2006)

Funicular (Schek, 1974) (Vouga et al., 2012) (Panozzo et al., 2013)

Bending
(Adriaenssens &

Barnes, 2001)
(Quinn et al., 2016) (Panetta et al., 2019)

Pneumatic (Barnes, 1975) (Sánchez et al., 2007) (Skouras et al., 2014)

General frameworks
(Bouaziz et al.,

2012)
(Tang et al., 2014)

2.2.2 Mechanics-based constraints

Another large category of constraints is those for which a mechanical equilibrium has to be verified. These

constraints led to the development of direct form-finding methods. Typical examples include funicular

shells, where the shape of a shell is found such that the self-weight of the shell introduces only membrane

forces, without bending, in itself. By eliminating the bending stresses of self-load, this leads to very thin

shells, like on the Sicli building shell in Figure 2.5 (left). These shapes can be found, for example, by letting

41

a weighted fabric hang from support points, then inverting the orientation. Active bending structures, like

the Mannheim Multihalle elastic gridshell in Figure 2.5 (left) are made of a number of thin rods bent into

shape. They produce easy-to-build shells, lightweight and resilient. Their shape is the result of the bending

equilibrium of the rods. Lastly, pneumatic structures are membranes inflated to gain rigidity. They provide

an extremely lightweight solution to large roofs, like on the Tokyo Dome stadium (Figure 2.5, right). Find-

ing their equilibrium shape is especially difficult because of the potential for wrinkles in the membrane.

Historically, the structural design community produced several methods for the simulation of the large

displacement processes involved in the construction of these structures, grouped under the direct form-

finding term. The earliest applications date back to 1974, see Table 2.1. More recently, the computer

graphics community has proposed design-oriented, inverse form-finding tools for these structures. They

solve a large part of the grid in Table 2.1. Until recently, the inverse form-finding of active bending struc-

tures had received little attention from the computer graphics community, but a publication from July 2019

changed that by providing a fully integrated inverse form-finding design pipeline for a class of elastic grid-

shells that do not start from a perfectly flat regular grid (Panetta et al., 2019).

© jyhem @ www.flickr.com © Hubert Berberich © Yoshito Isono

Figure 2.5: (left) Sicli building, Geneva, Switzerland, 1969. Heinz Isler arch. (center) Mannheim Multihalle, 1975.

F. Otto arch., Arup eng. (right) Tokyo Dome, 1988. Nikken Sekkei & Takenaka Corp., arch. & eng.

2.3 Design intent representation and formulation

The various form-finding tools also differ in how they represent the design intent. This intent can encompass

many things; generally, in form-finding three categories exist for what might be controlled:

• The mechanical properties of the resulting shape, i.e. which kind of mechanical equilibrium does it

describe.

• The materialization of the shape, including its possible discretization: topology, orientation of the

mesh when it is discretized, sizing of the constitutive elements, etc.

• The visual and architectural properties of the shape.

42

In direct form-finding tools where the control on the final shape is necessarily limited, representing the

design intent is usually limited to the first two categories. The designer can choose a solver like the force

density method to generate shapes that will be funicular to a prescribed set of loads, for example. The

materialization part is normally equally descriptive in direct form-finding, and the precise material proper-

ties of all the elements need to be prescribed in order to build the problem that the form-finder will solve.

Two systems stand out in this regard, that we have already mentioned. Thrust network analysis lets the

designer generate axial stiffnesses for the elements of the funicular network by describing and modifying

the flow of forces on the force diagram; this method was integrated into a design tool for funicular surfaces

(Rippmann et al., 2012). Software like Kangaroo (Piker, 2016b) and ShapeUp (Bouaziz et al., 2012), be-

cause they can combine multiple mechanics-based properties to solve for, allow for finer control on this

parameter. The reader is referred to Section 2.1.2 for a longer description of thrust network analysis and

Kangaroo.

ShapeUp comes from Mark Pauly’s group at the EPFL and is a general framework for the creation and

deformation of constrained meshes. (Bouaziz et al., 2012) presents this framework and the solving algo-

rithm. From an initial mesh, it iteratively finds small deformations that get the mesh closer to verifying a

set of constraints while locally minimizing the deformation. The constraints are often a mechanical equilib-

rium but can also represent the distance to a target surface. This makes the algorithm a hybrid between

direct and pseudo-inverse form-finding. Further developments give better guarantees on the minimizing

properties, and introduce hard constraints that truly make the method a pseudo-inverse form-finding one

(Tang et al., 2014). This flexibility is very desirable for more freedom in early design stages, when the final

construction system might not be decided upon.

To control the visual and architectural properties of the form-found shape, the simplest and most common

representation of the intent is by defining a target shape. In an inverse form-finding setup, approximating

this shape will hopefully result in a reproduction of the features that the designer would like to obtain. This

will potentially fail if one of the features cannot be built with the chosen mechanical system. Often, this lets

the designer without a clue as to which part of the target or combination of features is impossible, so mod-

ifying the target will be difficult. One potential mitigation is to add weights describing which regions are

more important to the designer, who will often “paint” these weights on an interactive design tool (Garg et

al., 2014).

Another possible modification is to compare the form-found surface to the target shape using a more ad-

vanced metric than a simple point-to-point distance. For example, the designer could specify that only the

curvature values of the target shape need to be matched, instead of the whole shape. The solver will then

have more freedom to find a solution shape, but will still represent the important features of the target shape

43

like creases, ridges or flat regions as these will have a characteristic curvature signature. Prescribing curva-

tures as a way of designing and editing surfaces has been proposed for example in Eigensatz et al. (2008),

and direct form-finding tools exist to create surfaces of minimal curvature variation (a desirable property in

industrial design) that match prescribed guide curves (Joshi, 2008). Design tools for optimal origami tes-

sellations of shapes also include curvature as their main design objective (Dudte et al., 2016). Taking this

idea further, it might be possible to represent intent and compute a difference to it using shape difference

operators (Rustamov et al., 2013), as they represent how one mesh might be most efficiently and truthfully

transformed into another, and define operators to transpose that deformation to a third mesh.

Finally, it is probable that to better represent the many subtleties of a design intent, it would be necessary

to move from an inverse form-finding that is focused on matching one target shape, to one where a collec-

tion of small bits of information are combined and all optimized for. This is the same conceptual shift as

what Kangaroo introduced for direct form-finding: instead of using separate direct form-finding systems

for each mechanical constraint, combine them into a unified solution where the designer can pick and

choose which constraints apply to which part of their system. This is the approach taken in Chapter 6.

2.4 Form-finding for fabrication

When generating shapes that will be directly fabricated using a specific construction method, design meth-

ods in the literature tend to take a point of view close to inverse form-finding. This can be because of a need

to generate shapes that are results of direct form-finding processes, and respect an additional constraint that

is simple to represent in the form-finding process. For example, John Orr (2012) designs fabric formworks

for concrete beams and shows how each cross-section is found using a direct form-finding process for the

shape of an elastica curve (a bending-active structure made of a single rod). This is adapted to accommodate

the fact that successive sections need to have a progressively varying shape. Similarly, Dessi-Olive (2017)

uses form-found elastica curves as guides for a masonry construction system. By manually selecting elastica

shapes that are close to the shape decided upon for the masonry system, more efficient structures are built.

This method was also used for the construction of a tile-vaulted shell (Block et al., 2016).

A more complete inverse form-finding method is described by Veenendaal (2017) as “constrained form-

finding”, where viable shapes are found for flexible formworks for concrete shells. For example, the form-

found shape of a pre-tensioned cable network, loaded with the weight of fresh concrete, is optimized so that

it is close to describing a funicular shape under the concrete weight. Designing fabric formwork for concrete

objects and structures was also studied by Zhang et al. (2019), who built an inverse design tool that solves

44

for many of the constraints imposed on such formworks, like fabric paneling, wrinkling and casting defor-

mations. One drawback of that method is its speed, generating a design in several hours.

2.5 Implementations of designer-guided form-finding systems

For these systems where the designer has control over the form-found shape, three broad categories of

implementations can be defined. The first one concerns systems where the result of the direct form-finding

can be found constructively from the initial conditions, without needing to resort to an optimization loop.

This is found for example in Marionette meshes (Mesnil et al., 2016), which defines a class of meshes that

define only planar facets. The full design space of meshes with planar facets is not generated by this method,

but instead it finds a unique solution from two boundary curves in elevation and a projection of the mesh

on the horizontal plane. It does so by systematically applying a simple linear equation to each facet of the

mesh, which is both fast and robust. By simplifying the design space in this way, the designer is provided

with a form-finding tool that has perfect control over the final geometry. This type of tool is regularly applied

for a “geometrically-constrained design strategy” (Bagneris et al., 2008), and has been extensively used in

architectural shape generation, for example on ruled surfaces for easy framework construction of concrete

shells by Candela (del Blanco García & García Ríos, 2019). Implementation for these systems tends to be

very focused on geometry, and thus dependent on the CAD framework used, and is generally similar to an

implementation of a script for parametric design.

The second category of implementations deals with the pseudo inverse form-finding systems. There, the

focus is normally on the optimizer used, and the computation of gradients of the energy being minimized.

The solvers can be general-purpose ones from commercial packages (Jacobson et al., 2011; Jiang et al.,

2017), or open-source implementations (Skouras et al., 2014). Some systems define custom-made optimi-

zation routines (Vouga et al., 2012). Computation of the gradients involves careful mathematical definitions

of the energy being minimized, generally on a mesh so that techniques from discrete differential geometry

(see Section 2.6) can be utilized, and great care is taken on developing expressions that lead to efficient

numerical computations. Most of these systems then use a geometry representation based on meshes, with

arrays storing the positions of the vertices and their connectivity. This leads to very optimized and efficient

implementation of the optimization problem, albeit being hard to extend once finished.

Lastly, systems like Kangaroo (Piker, 2016b) and ShapeUp (Bouaziz et al., 2012) where many constraints

can be combined usually implement one simple solving method, and apply it to an energy that is only

defined at runtime, once the designer has built their objectives. The energy computation is typically a loop

over the collection of objects sent to the optimizer, each object defining the method to use to compute its

45

contribution to the energy. This is much less efficient to compute than the vectorized operations of the

previous category, but has the advantage of greater design flexibility.

2.6 Different academic communities

Beyond the structural design community, two other academic communities are also interested in the opti-

mization of geometrical objects, and generating shapes that match prescribed constraints. We have already

mentioned the computer graphics viewpoint, which typically produces pseudo-inverse form-finding tools

focusing on the design of one system. A second group is (discrete) differential geometry, and its application

in architectural geometry.

There is a limited precedent of literature on rigorous modern geometry for architecture. One well-known

book filling that void is the result of the research group led by Helmut Pottman at the University of Wien

(Pottmann et al., 2015). A large part of the book is dedicated to presenting classical shapes of descriptive

geometry, their properties, and interactions. It then details the mathematical background for NURBS curves

and surfaces used in modern freeform CAD software. These two sections suffer from the limitations men-

tioned in the introduction: they can only represent the constructability constraints in very specific cases, or

even not at all until they are rationalized. The last section is dedicated to recent research by the authors in

constrained discrete surface generation and rationalization. It presents several typical requirements of ar-

chitectural shapes and proposes concepts that solve those requirements. It demonstrates the large improve-

ments that discrete differential geometry can bring to architectural shape representation, and emphasizes

the need for constructive and iterative algorithms – this is not always considered by differential geometry

theorists. However, the authors focus mainly on planar quadrilateral meshes as a construction method, and

never consider the structural performance of the designs. Lastly, this book is destined to architects and

designers and lacks most of the mathematical derivations.

For continuous differential geometry, most of the introductory literature comes from physics – many of the

concepts of differential geometry were developed for solving the equations of general relativity. A reference

textbook in the domain is (Frankel, 2011). It presents all the mathematical theory needed for the study of

manifolds, with a focus on 2, 3, and 4-dimensional objects. However, discrete objects are not studied. Cur-

rent research in discrete differential geometry in low-dimensional spaces is led by computer graphics

groups. Crane (2014) gives a course in this domain with a focus on efficient iterative algorithms for smooth-

ing and optimization of meshes.

Discrete differential geometry approximates continuous differential geometry on meshes and other simpli-

cial surfaces. Because architectural surfaces are often realized with discrete elements, meshes seem like a

46

good representation of the built reality. But their constitutive laws do not reproduce continuous reality, they

truly describe a discrete object, and to approximate the behavior of a curved surface new mathematical

properties can be attached to the elements of meshes. This can lead to robust and efficient formulations of

energies defining mechanical equilibriums, for example for bending-active structures the model of Bergou

et al. (2008) was shown to be very powerful, see Chapter 3.

2.7 Summary

Direct form-finding tools allow designers to generate shapes matching prescribed constraints like a me-

chanical equilibrium. Because the results of these methods tend to be very hard to control, inverse form-

finding was developed to allow the steering of form-found shapes towards additional objectives like a target

surface. Such tools were initially taking on a relaxed version of the optimization problem defined by inverse

form-finding, leading to pseudo-inverse form-finding where the designer has control over the form-found

shape, but it will not match exactly the mechanical equilibrium constraints. True inverse form-finding on

the contrary requires nested optimization loops, a setup that is very demanding on computational power

and where the inner optimizer – a direct form-finding solver, or forward simulation – is put under repeated

and automated use on a wide variety of inputs. This means that this solver needs special attention in terms

of its speed, reliability and accuracy.

True and pseudo-inverse form-finding are generally focused on one single shape target objective, and sim-

ilarly direct form-finding solver used to be limited to one single mechanical equilibrium constraint. Newer

systems let the designer specify varied constraints in one unique framework for direct form-finding, and

combine them to produce new shape generators that were not considered before.

Two mechanical equilibriums of interest in this dissertation are bending-active structures and funicular

structures. Until very recently, true inverse form-finding had not been applied to any bending-active struc-

tures; current solutions apply to a subset of them. Additionally, implementing one such system puts very

specific requirements on the forward simulation. By carefully studying these requirements on various meth-

ods for the direct form-finding of bending-active structures (Chapter 3), we will be able to improve their

implementation and gain a better understanding of how they work and perform (Chapter 4). We also look

at finding good representations of the variables (initial conditions and parameters) sent by the outer opti-

mizer to the inner one on different case studies.

Funicular structures have seen more interest in terms of the inverse form-finding tools developed for them,

but will prove to be a good model system for experimentations on the implementation of novel inverse

47

form-finding systems (Chapter 5). Specifically, by implementing an inverse form-finding tool in an auto-

matic differentiation framework, we can imagine a system that is not focused on a single target shape ob-

jective (Chapter 6).

3 Improving the speed, accuracy and reliability of form-finding processes

for bending-active structures

According to shell expert Chris Williams, form-active structures are a broad category of structures that

react to external loads and constraints with large deformations, in contrast with more common form-passive

structures such as frames or rigid shells (Williams, 2014). (This classification is different from Engel’s

(1967) classification where form-active structures are contrasted with section-, surface- and vector-active

structures.) These structures are lightweight, since they do not resist forces by direct material rigidity but

by geometric deformations, and resilient because they can flex instead of breaking.

However, predicting the rest shape of these structures and their behavior under different loading conditions,

is challenging because of this deformability, involving non-linear processes. This rest shape needs to be

found using direct form-finding tools. In this chapter, we aim at improving the quality of such form-finding

tools for one common subset of form-active structures: bending-active structures. Fast and reliable form-

finding tools will be of great importance for Chapter 4, where they will be used repeatedly in an optimization

loop – without any real-time control possible by the designer on the form-finding process – to find bending-

active structures that are closest to an objective shape.

50

3.1 Introduction

3.1.1 Problem statement

Bending-active structures are structures where structural elements are linear rod elements or elongated

plates that deform in bending, often combined with fabric membranes to create lightweight structures. The

construction process of these structures is fast and accommodating to large tolerances, making them a great

solution to temporary covering problems, and to problems where adaptivity and reconfigurability are re-

quired (Coar, 2010). They need not be temporary structures, some examples are shown in Figure 3.1, like

non-regular rod assemblies (Coar, 2012), regular grids of rods (Ban, 2003), and hybrid structures (Cuvilliers

et al., 2017).

The computational design process of a bending-active structure always involves finding the equilibrium

shape of the structure. It is crucial that this final shape is predicted accurately, which remains a challenge

with available software tools. For example, the final shape could be the support of another element, so that

errors in the shape would result in incompatibilities with the secondary elements (Olcayto, 2007). Addi-

tionally, small errors in shape can lead to larger errors in the internal stresses predicted for the structure

(Douthe et al., 2010), and even larger errors in the prediction of non-linear processes such as buckling

(Mesnil et al., 2015).

In the simulation process, the topology and connection types of the structure are first defined, along with

the length of the bars and the boundary conditions such as anchors in the ground. An iterative algorithm

(the specific types available are described in Section 3.2.5) then relaxes the rods’ positions until they are at

equilibrium.

Figure 3.1: Three examples of bending active structures. From left to right: bending-active frame, bending-active

gridshell with a flexible membrane, and hybrid bending-active gridshell integrating a rigid shell. Central picture ©

Hubert Berberich (CC-BY 3.0).

51

Figure 3.2: Example of a computational reproduction of the construction process for a bending-active structure

(Coar et al., 2017). The runtimes are extracted from one run of the Kangaroo 2 solver, a commonly used

architectural design tool, on the structure.

However, this iterative algorithm is at risk of being too slow for interactive explorative design, unreliable

(giving unexpected results) and inaccurate (giving out-of-equilibrium results). It has no guarantee of con-

vergence, and can often produce a false sense of accuracy and definiteness. An example of a typical failed

design process is represented in Figure 3.2. An attempt is made to reproduce the shape of a complex bend-

ing-active structure made of a two-layer grid. When a solver is run on this problem, it initially seems like

it finds an equilibrium. However, running the solver for more iterations–and a longer time–shows that this

is not the case. It could be that the solver parameters were not appropriate, or that the simulation did not

accurately represent the construction process. In any case, the first shapes obtained after smaller run times

are not to be trusted, as the nodal positions and forces they give are more representative of the initial con-

figuration of the simulation than reality. This raises awareness to the fact that convergence settings need to

be carefully selected to produce reliable results. This problem is detailed in Section 3.5.4.

Several algorithms and frameworks have tackled this problem, discussed in Section 3.2. However, these

algorithms have not yet been comparatively evaluated specifically for the modeling of bending-active struc-

tures. As a result, building a design tool for one structure requires a lot of trial and error across the different

possibilities. In addition, the stopping criterion – determining for how long the solver will try to improve

52

its solution – is critical to the quality of the results, yet its setting is often overlooked. In this chapter,

different algorithms are compared, both from existing available tools using:

• dynamic relaxation (Brew & Brotton, 1971) in Kangaroo 1 (Piker, 2016b), and

• a variant of the projective dynamics method (Bouaziz et al., 2012) in Kangaroo 2 (Piker, 2016b),

and from general-purpose optimizers:

• a custom implementation of the dynamic relaxation method,

• augmented Lagrangian (Birgin & Martínez, 2008) with L-BFGS (Byrd et al., 1995), and

• SLSQP (Kraft, 1988).

The quality and choices of stopping criteria are compared on three benchmark metrics: speed, reliability

and accuracy. Guidelines for the parameters to use are given.

3.1.2 Comparing form-finding processes to general-purpose optimizers

It might seem unusual at first to compare dynamic relaxation and projective dynamics against general-

purpose optimizers. The former two represent the problem to solve as evolving a (pseudo-)physical system,

made of nodes and elements on which internal and external forces are applied and moving the nodes in the

direction of forces until an equilibrium is reached thanks to a damping mechanism; while the latter generally

minimize the global energy of the system.

However, both dynamic relaxation and projective dynamics are equivalent to an energy minimization pro-

cess. For projective dynamics, this is shown in Narain et al. (2016), showing equivalency to the minimiza-

tion of the sum of the potential energies associated with the forces defined on the system, using the alterna-

tive direction of multipliers method. Similarly, dynamic relaxation can be seen as a type of accelerated

gradient descent method (Nesterov, 1983) on the elastic energy of the system. Minimizing the elastic energy

of a physical system using that method implies moving the nodes (the variables in the optimization process)

in the direction of the gradient of the energy (the “gradient descent”), that is in the direction of the forces

applied at each node. This direction is “accelerated” by adding to it a function of the movement at the

previous iteration; this is exactly like tracking the velocity of each node and carrying it forward in time

through some inertia as is done in dynamic relaxation. The damping part of dynamic relaxation is repro-

duced in the function giving how much previous displacements influence the current iteration.

Then, the structures created in the bending-active process are in fact minimizing the bending energy of the

rods, under the constraint of inextensibility of the rods—the bending stiffness is typically orders of magni-

tude lower than the axial stiffness for an elongated rod. Alternatively, the inextensibility constraint can be

53

relaxed by calculating the energy of the compression of the rod, the energy to be minimized is then the sum

of the bending and stretching energies:

(𝑃3.1): min
𝑥
∑

𝐸𝐼(𝜅𝒃𝑖)
2

𝑙�̅�

𝑛

𝑖=0
, s.t. ∀𝑖, 𝑙𝑖 = 𝑙�̅�, or : (3. 1)

(𝑃3.2): min
𝑥
∑

𝐸𝐼(𝜅𝒃𝑖)
2

𝑙�̅�
+ 𝐸𝑆(𝑙𝑖 − 𝑙�̅�)

2𝑛

𝑖=0
. (3. 2)

where 𝜅𝒃𝒊 is the curvature binormal vector at node 𝑖, that rotates the edge before node 𝑖 into the edge after

it, and 𝑙�̅� the length of the edges coming to node 𝑖. The bar designates initial values, that are kept constant

for edge lengths. How different implementations and discretizations compute these values from the nodal

positions 𝑥 is explained later in the chapter.

3.1.3 Organization of the chapter

Dynamic relaxation has been used very often for bending-active simulations since its creation; in this chap-

ter we investigate whether other methods might be useful. This method gives intermediate steps that are

physically meaningful. However, in a design problem we only care about the end result – the static equi-

librium position – so that there might be more efficient methods available where the intermediate steps

taken are not meaningful. This is why we chose to compare against general-purpose optimizers that do not

give physically meaningful intermediate steps.

In each case, the overarching goal is to find a solver for the direct form-finding problem of bending-active

structures, that can be run inside an outer optimization for inverse form-finding problems. This leads to the

three criteria for comparing the solvers, speed, accuracy and reliability. Additionally, because of the limited

control exits on the inner solver in an inverse form-finding process, the various parameters used in each

solver need to be simple to decide and fix throughout the simulation. The objective is to find one algorithm

that will be fast, accurate and reliable on a wide range of inputs, for a given and fixed set of configuration

parameters.

The software tools selected are widely used in the architectural design community and implement methods

that have become standards for form-finding simulations (Section 3.2). By comparing their predictions

against the analytical result for the planar elastica (Section 3.3), we find guidelines for the simulation setup

that produce accurate results without compromising too much on execution time (Sections 3.5.1 and 3.5.2).

Finally, we use these guidelines for the simulation of a larger structure and show that they lead to reliable

results (Section 3.5.4).

54

3.2 Literature review: precedents in simulation of bending-active structures

3.2.1 Simulation of elasticas

At the heart of every bending-active structure is the elastica, the mechanical equilibrium problem describing

the shape of one elastic rod spanning between two supports (Levien, 2008). Simulating one elastica is a

complex problem, for three reasons:

• It is a highly geometrically nonlinear problem; small changes in the boundary conditions leading

to large changes in the shape and different stability regimes can coexist (Goyal et al., 2008);

• The interactions between bending and torsion are complex, and simulating them involves keeping

track of more than three degrees of freedom at each discretization point (du Peloux et al., 2015);

• Bending and axial compression in the rod operate at very different stiffnesses, leading to ill-condi-

tioned numerical problems when they are modeled simultaneously. Considering non-extensible

rods requires more advanced constrained optimization algorithms (Bergou et al., 2008).

3.2.2 Simulation of complex structures

For active-bending structures, elasticas and other elements are then assembled to form a complete structure.

The loads are usually light live loads of wind and impact. This results in very flexible structures. The assem-

bly and erection processes in particular always incorporate large displacements that conventional finite

element method packages for structural engineering such as Robot or RISA-3D cannot easily represent

(although more powerful generalist packages can be used, as described below). As such, these new struc-

tural typologies and systems require new approaches for engineering.

The approach we consider here has the formulation of a form-finding problem: given the definition of a

bending-active structure, with its rods, connections, boundary conditions and loads, what is its equilibrium

shape? Two solving methods are typically used in this approach:

• Generalist finite element method packages such as Abaqus are available for bending-active struc-

tures (Nabaei et al., 2013). The resulting models are often accurate and easily calibrated with phys-

ical quantities; however, they tend to be slow by default, and do not reliably find the main equilib-

rium. They are also poorly integrated with the usual architectural design tools.

• Discretized elements in bending have recently attracted considerable attention from the computer

graphics community, mainly for the simulation of dynamic systems such as hair (Nealen et al.,

2006). These methods tend to be faster and give predictable results for dynamic problems, but are

55

sometimes not accurate enough for the simulation of a static problem, and require great care in

tuning (Bergou et al., 2010). Derivatives of these tools have been integrated in architectural design

tools, most notably the Shape-Up library (Bouaziz et al., 2012). It is not always clear how each

algorithm can be calibrated to give results in meaningful physical units (Anders et al., 2016).

Specifically for elastic gridshells, Sakai et al. (2020) provide a new beam bending energy discretization,

using the intersecting rods to keep track of surface normal and beam torsion. The authors implement this

method in two direct form-finding algorithms, dynamic relaxation and one general-purpose non-linear op-

timizer (SNOPT), comparing results and number of iterations for each. This is close to the objectives of this

chapter; however, limited in applicability to elastic gridshells rather than all bending-active structures, and

does not provide information on the relative speeds of each method, only the number of iterations they need

to reach convergence.

3.2.3 Computational design of bending-active structures

Examples abound for bending-active structures where a digital prototyping tool was critical to the design

process. The CITA group and the Complex Modeling project produced several towers made from fiberglass

rods in a water-drop shape, stacked and tensed by a tailored-designed membrane (Tamke et al., 2016), and

elastic gridshells (Nicholas, 2013). They used specialist tools built on top of Kangaroo (described below)

for the design. The ITKE created several examples such as Flectofin®, a large-size flapping mechanism

(Lienhard et al., 2011), and umbrella-shaped bending-active structures (Lienhard & Knippers, 2015), using

custom-made non-linear finite element method procedures. Several recent elastic gridshells also provide

interesting examples using design tools based on the dynamic relaxation method (described below) (Douthe

et al., 2010; Mork et al., 2016). Each time, the authors show how only a specialist use of form-finding tools

made a more comprehensive design process possible. Additionally, all of the examples cited in this section

had to incorporate tolerance-correction systems to overcome the accuracy shortcomings of the software.

This shows a strong need by designers for accessible tools that can simulate bending-active structures.

3.2.4 Design tool reviews

Reviews of custom-made tools and frameworks for bending-active structures exist. For structures made of

membranes and elasticas, Van Mele et.al. (2013) and Ahlquist and Menges (2013) look at the influence of

the quality of the simulation tool on the design process, and improve on its speed or ease of use. However,

they do not closely consider reliability or accuracy. More comprehensive reviews of modeling and design

56

techniques are also available (Lienhard, 2014; Lienhard et al., 2013), detailing how design methods stem-

ming from different generations of design tools created new categories of bending-active structures. These

present very detailed analysis of construction systems, but do not focus on verifying the accuracy of simu-

lation tools for a range of conditions. A comparison of simulation results to analytical results, is found in

(Adriaenssens & Barnes, 2001); however, the simulations are based on the dynamic relaxation method only

and no additional methods are considered.

Although these cited studies manage to simulate simple bending-active behavior, they do not address a

comparison between simulated and built models. This makes the accurate fabrication of physical elements

from simulated forms an unreliable proposition, showing a need for adequately verified and accessible soft-

ware for the direct form-finding of bending-active structures.

3.2.5 Bending-active algorithms

There are two commonly used form-finding tools for simulating bending-active structures considered in this

chapter: dynamic relaxation and projective constraint-based solving, respectively implemented in the Kan-

garoo 1 and Kangaroo 2 software packages (for Rhinoceros3D / Grasshopper). These tools are tested in

Section 3.3. They are widely used in the architectural design community, with a combined number of down-

loads of close to 250,000 at present (Piker, 2016b), and free. Additionally, they both share the same author-

developer and programing language (C#), allowing for a comparison of the algorithms, not only their soft-

ware implementation.

Additionally, this dissertation presents a custom implementation of the dynamic relaxation method (Brew

& Brotton, 1971), with kinetic damping (Barnes, 1988) and fast manifold projection (Bergou et al., 2008)

for constraints enforcement, and compares it to two generalist optimization methods: SLSQP (Kraft, 1988)

available from the scientific computation library Scipy; and L-BFGS (Byrd et al., 1995) in an augmented

Lagrangian (Birgin & Martínez, 2008) scheme for constraints enforcement, from the optimization package

NLOpt (Johnson, n.d.).

3.2.5.1 Kangaroo 1

Kangaroo 1 (Piker, 2016b) (this work uses version 0.099) implements a dynamic relaxation solver. Dy-

namic relaxation is a time discretization of the dynamical behavior of physical systems (Brew & Brotton,

1971), introduced in the 1960s. The general idea is to simulate the dynamic behavior of the structure with

carefully chosen damping parameters to reach an equilibrium state as quickly as possible. As such, it is

easily related to the physical parameters of the rods, but introduces new parameters that have no influence

57

on the final result but can lead to instabilities: mass and damping. At each time step of length ℎ, the algo-

rithm integrates the second law of dynamics using a sympleptic Euler scheme:

{𝑴�̈�
(𝑛+1) = 𝑴�̇�(𝑛) − ℎ

d𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔[𝒙]

d𝒙
𝒙(𝑛+1) = 𝒙(𝑛) + ℎ�̇�(𝑛+1)

, (3. 3)

where 𝑴 is the mass matrix and ℎ the time step.

Specifically, Kangaroo 1 implements a time integration of Newton’s second law using a semi-implicit Euler

method (Senatore & Piker, 2014). At every iteration with time step Δ𝑡 after time 𝑡, the solver computes the

nodal velocities 𝑣𝑖
𝑡+Δ𝑡 using nodal forces 𝐹𝑖

𝑡 from the previous update and masses 𝑀𝑖, then gets positions

𝑥𝑖
𝑡+Δ𝑡 using the new velocities:

{
𝑣𝑖
𝑡+Δ𝑡 = 𝑣𝑖

𝑡 + Δ𝑡
𝐹𝑖
𝑡

𝑀𝑖
𝑥𝑖
𝑡+Δ𝑡 = 𝑥𝑖

𝑡 + Δ𝑡𝑣𝑖
𝑡+Δ𝑡

 . (3. 4)

This is a conditionally stable integration scheme with a wide stability region, and that is sympleptic meaning

it has very good energy conservation (Hairer et al., 2006). Dynamic relaxation has to add virtual unit masses

on the points that do not have one defined so that their dynamic behavior is defined. The time step is chosen

to fall in the stability region of the method, given the nodal masses (Senatore & Piker, 2014). The damping

of the system is done here with the kinetic damping scheme, resetting the system’s velocities every time

the kinetic energy reaches a peak (Barnes, 1988). Dynamic relaxation has been used for a wide range of

form-active structures (Bagrianski & Halpern, 2014; Barnes, 1999), including active bending structures

(Barnes et al., 2013; Liew et al., 2016). These papers also use kinetic damping, and use a central-difference

time integration scheme that leads to the same update—and properties—as the semi-implicit Euler method

albeit considering speeds at a different time:

{
𝑣𝑖
𝑡+Δ𝑡 2⁄ = 𝑣𝑖

𝑡−Δ𝑡 2⁄ + Δ𝑡
𝐹𝑖
𝑡

𝑀𝑖

𝑥𝑖
𝑡+Δ𝑡 = 𝑥𝑖

𝑡 + Δ𝑡𝑣𝑖
𝑡+Δ𝑡 2⁄

 . (3. 5)

This makes Kangaroo 1 a representative tool for contemporary implementations of the dynamic relaxation

method in bending-active simulations.

In order to converge to a stable position, a damping mechanism is introduced, we selected the kinetic damp-

ing available in Kangaroo 1. The kinetic damping scheme is one of the most stable available for dynamic

relaxation. It simply resets the velocities �̇�𝑖 to 0 every time the kinetic energy reaches a peak. Generally,

58

this algorithm can be thought of as an equivalent of accelerated gradient descent (Nesterov, 1983), with less

carefully crafted acceleration but easy physical interpretation.

3.2.5.2 Kangaroo 2

Kangaroo 2 (Piker, 2016b) (this work uses version 2.1.2), uses projective constraint-based solving, a

method developed in the computer graphics community and made available to wider audiences through the

general-purpose simulation tool Shape-Up (Bouaziz et al., 2012). At each iteration, the solver moves closer

to the equilibrium position by projecting the positions on the sets of constraints representing the relation-

ships between them. The solution is a physical equilibrium with correct derived forces if the constraints are

physically accurate. The solving process used by Kangaroo 2 is a specialized version of the Shape-Up al-

gorithm: it uses the same projective based constraints and accelerates movements using a virtual velocity

attached to each vertex. This code is not entirely available to the public, slightly obscuring this process.

However, simple experiments – observing the movement of a single particle in a singular force field – and

explanations by the developer (Piker, 2017b) give some insight. They show that the algorithm resembles

the kinetic damping of dynamic relaxation (Barnes, 1988), resetting the vertices’ velocities when the forces

change direction, but using forces derived from the projective dynamics method (Piker, 2016a).

3.2.5.3 Custom dynamic relaxation

In our custom implementation of dynamic relaxation, we reproduce the same time integration and damping

mechanisms as in Kangaroo 1, but added a mechanism for solving the lengths constraints, instead of adding

them a stiff energy term.

At each time step, it is possible to strictly enforce non-linear constraints such as the lengths constraints by

projecting the positions onto the closest point on the constraint manifold, correcting the velocities by the

appropriate amount. This is in accordance with constrained dynamics, so it does not change the physical

properties of the algorithm. However, finding the closest point on the constraint manifold can be time-

consuming; an approximation used in Bergou et al. (2008) and Goldenthal et al. (2007) is the fast manifold

projection method. Effectively, it finds a close-by point exactly on the constraint manifold by taking a suc-

cession of as small as possible steps, changing the bending energy to the second order in the time step. The

method repeats the following iteration until convergence is achieved:

{
Solve ℎ2(∇𝑪[𝒙∗]𝑴−1∇𝑪[𝒙∗]𝑇)𝛿𝝀 = 𝑪

𝛿𝒙∗ = −ℎ2𝑴−1∇𝑪[𝒙∗]𝑇𝛿𝜆
𝒙∗ ← 𝒙∗ + 𝛿𝒙∗

, (3. 6)

where 𝑪[𝒙∗] is the constraints vector and ∇𝑪[𝒙∗] its gradient. This is the method implemented in this chap-

ter.

59

3.2.5.4 General-purpose optimizers

L-BFGS and SLSQP are two other methods of interest as they are very established generalist optimization

methods, despite seldom being used in bending-active research. L-BFGS (Byrd et al., 1995) is a quasi-

Newton solver. It cannot accommodate strict non-linear constraints directly; instead, it has to be embedded

in an augmented Lagrangian method (Birgin & Martínez, 2008), this is provided automatically in NLOpt

(Johnson, n.d.). SLSQP (Kraft, 1988) uses sequential quadratic approximations of the problem to obtain an

optimum. It can solve subject to arbitrary non-linear constraints, as these are directly passed to the quadratic

problem solve. Each solution of quadratic approximations gives a direction for a Newton-like line-search

in the complete problem. SLSQP has been used for the optimal design of flexible actuated structures, alt-

hough not for the form-finding of the beam (Maraniello & Palacios, 2016).

3.3 Methodology: Single elastica comparison

Before studying the simulation of complex bending-active structures containing many members, we first

focus on simulations of simple, single-curve elastica problems, as they represent the elementary problem

of all bending-active structures and can be solved exactly for forces and geometry using analytical equa-

tions. This allows for a direct comparison between the algorithms’ and analytical results. All algorithms for

active bending can represent the elastica, and the quality of their results on multiple-rods structures depends

directly on their results for one elastica.

For each solver, we look for parameter settings that will give a predictable accuracy in the shortest possible

time. For this, we run the solver with varying parameters on a range of boundary conditions for the elastica.

For each set of parameters, the goal is to have consistent accuracy and speed across the range of boundary

conditions: this represents the different shapes that the designer will encounter when modeling a set of

elasticas.

3.3.1 Elastica problem

We consider a beam of length 𝐿, with Young modulus 𝐸, section 𝐴 and moment of inertia 𝐼, as described

in Figure 3.3, top. Analytically, the elastica is the solution of the moment equilibrium in the beam (Audoly

& Pomeau, 2010):

𝐸𝐼
𝑑2𝜃

𝑑𝑠2
= −𝐹 sin 𝜃 , (3. 7)

60

where 𝑠 is the curvilinear position along the beam and 𝜃 is the angle that the beam makes with the horizon-

tal at that point. Integrating this equation gives 𝑎, 𝑓 and 𝐹 in terms of 𝛼. Solutions usually focus on the

non-dimensional parameters 𝑎 𝐿⁄ , 𝑓 𝐿⁄ and 𝐹 𝐹𝑐⁄ , where 𝐹𝑐 = 𝜋
2𝐸𝐼 𝐿2⁄ is the Euler buckling force, to re-

move scaling and unit issues. For example for 𝑓 𝐿⁄ (Douthe, 2007):

𝑓

𝐿
=

sin
𝛼
2

𝐾 (sin
𝛼
2)
, where 𝐾(𝑥) = ∫

1

√1 − sin2 𝑥 sin2 𝜑
𝑑𝜑

𝜋
2

0

. (3. 8)

Extracting 𝑎 𝐿⁄ from physical observations or numerical simulations, and inverting the relationship on 𝑎 𝐿⁄ ,

it is then possible to get the angle 𝛼 corresponding to that beam, and the rest of the parameters. This means

that for one simulation, there are three possible comparisons to the analytical values (𝑎 𝐿⁄ , 𝑓 𝐿⁄ and 𝐹 𝐹𝑐⁄)

from one measurement (on 𝛼).

3.3.2 Numerical simulations

The simulation model adopted for the beam is the same in each of the two solvers. The connectivity model

stems from two straight lines of length 𝐿 2⁄ forming an isosceles triangle with the horizontal axis as the

base of the triangle. The lines are connected at the apex of the triangle and form an angle 𝛼 = 1° with the

horizontal. The lines are discretized in 𝑛 2⁄ segments each, such that we always have an even total number

of segments and a vertex in the middle of the discretized beam.

Internal forces are represented by elastic forces, as available in Kangaroo 1 and 2, see Figure 3.3, bottom.

Position constraints are defined by an elastic linear spring of rest length 0 and given stiffness, attached on

one side to a virtual fixed point and on the other to a defined vertex of the model. Distance constraints are

represented by a linear spring of given rest length and stiffness, attached to two given vertices of the model.

Angle constraints, representing bending forces, are represented by the discrete three points model from

Adriaenssens and Barnes (2001), describing the shear force acting on the vertices when the interpolating

arc going through them is bent.

In Figure 3.3, this action of the bending moment is represented by a pseudo-rotational spring, that will be

integrated by the model into a relationship between bending angle and shear forces applied on the three

nodes around it. 𝑘∗ is the strength of this relationship as defined in Kangaroo, with units of rotational stiff-

ness times length (force * length²). This value has the advantage of being independent of the discretization

length. For angles close to 180°, this is equivalent to a rotational spring of stiffness 𝑘∗𝑛 𝐿⁄ . Although this

61

model does not directly track torsional effects, results remain valid for initially straight and untwisted uni-

form isotropic sections where torsion occurs as a result of out-of-plane loads (Adriaenssens & Barnes,

2001).

The left endpoint is connected to an elastic anchor of stiffness 1014 N/m. A distance constraint is added

between the endpoints, with stiffness 108 N/m and rest length corresponding to the target 𝑎 𝐿⁄ . Each seg-

ment is characterized by a distance constraint of stiffness (called “strength” in Kangaroo) 𝐸𝐴𝑛 𝐿⁄ and rest

length 𝐿 𝑛⁄ . Each angle between two consecutive segments is characterized by an angle constraint with rest

angle 0 and stiffness (or strength in Kangaroo) 𝐸𝐼. The last two properties represent a physically correct

discretized beam with the given 𝐸, 𝐴 and 𝐼 properties.

We used fixed values for 𝐿, 𝐸, 𝐴 and 𝐼. We chose the tie stiffness so that it would be around one order of

magnitude higher than 𝐸𝐴. This way, the target length of the tie would be closely matched without intro-

ducing unnecessarily disparate stiffnesses in the model, which tend to make it less likely to converge. The

stiffness of the anchor is high but is only used as a safeguard against the rigid-body movement of the model.

Figure 3.3: Definition of the planar elastica problem, continuous (top) and after discretization (bottom). The beam is

pinned at both ends. The solution is a relationship between 𝑎, the distance between the supports, 𝐹, the reaction

force at the supports, 𝑓, the maximum height of the beam over the support line, and 𝛼, the angle of the beam at the

supports. See text for a description of the pseudo-rotational spring and definition of 𝑘∗.

3.3.3 Variables and observations definitions

From the nodal positions at the end of the simulation, we extract several observations:

62

• 𝛼 , the angle of the first segment with the horizontal – this slightly underestimates the real initial

angle of the beam interpolating through the vertices but is coherent with the discretized beam

model;

• 𝑓, the distance from the middle vertex to the horizontal tie;

• 𝑎, the distance between the two endpoints;

• 𝐹, the support reaction, is computed by multiplying the tie stiffness by the difference between 𝑎

and the tie’s rest length.

These are the observations we compare against analytical results. Note that because the tie has a finite

stiffness, its final length 𝑎 is not exactly its rest length. Then we must make our analytical predictions based

on the observed 𝑎, not on the tie’s rest length.

In the analysis, we always present a comparison of observed simulations versus analytical results as an error

on non-dimensional parameters. For example, for an observation 𝑓𝑜𝑏𝑠 associated with an analytical result

𝑓𝑎𝑛𝑎, the “error on 𝑓 𝐿⁄ ” is:

error (
𝑓

𝐿
) =

|𝑓𝑜𝑏𝑠 − 𝑓𝑎𝑛𝑎|

|𝑓𝑎𝑛𝑎|
. (3. 9)

This helps in comparing errors across different boundary conditions, solvers, and observation types.

The stopping criterion terminates the simulation when the particles’ total kinetic energy 𝑇 falls below a

fixed threshold, the final position is the equilibrium configuration. We checked that this happened before

the solver reached its maximum number of iterations, in our experiments on the elastica. Kangaroo 2 does

not use an explicit time step as Kangaroo 1 does, this changes how velocities are computed so the kinetic

energy cannot be compared between the two. The number of iterations corresponds to the number of times

the points were moved on the process of finding the equilibrium. The damping parameter used by Kangaroo

1’s length constraints is chosen to be as close as possible to critical damping such that all results converge

on a test case with 𝑎 𝐿⁄ = 0.74. The time step used in Kangaroo 1 is the length of the time discretization

interval, or time represented by an iteration.

The wall time is the time that the elastica problem took to run, as reported by the program launching the

simulations. While wall time can be influenced by other routines running on the computer, efforts were

made to minimize these effects during the simulations so that the results can be reasonably compared.

63

Table 3.1: Parameters used in the studies and presented in Section 3.5. [start:step:end] is used to represent the set of

numbers from start (inclusive) to end (exclusive), stepping by increments of step. [start:end] = [start:1:end].

Solver Discretization

Compression

ratio

Stopping

criterion Timestep

Damping

parameter

Kangaroo 1

𝑛 ∈ [2: 2: 36]
𝑎

𝐿
∈ [0: 0.02: 1]

log10 𝑇

∈ [−12:−10]
0.05 10

Kangaroo 2
log10 𝑇

∈ [−14:−11]
N/A N/A

Custom

dynamic

relaxation

log10 𝑇

∈ [−12:−10]
0.05 10

L-BFGS Energy: 10−7

Constraints:

10−4

N/A N/A
SLSQP

Constants
𝐸 = 10 GPa, 𝑅 = 5 cm, 𝐿 = 20 m, 𝐴 = 𝜋𝑅2, 𝐼 =

𝜋𝑅4

4
,

𝑘𝑇𝑖𝑒 = 10
8, 𝑘𝐴𝑛𝑐ℎ𝑜𝑟 = 10

14

Finally, the combination of parameters that were tested is represented in Table 3.1, totaling close to 40000

experiments. Scripts were created to automatically run the simulation in each case, time it, and collect the

results.

3.3.4 Speed, accuracy, and reliability

Throughout this work, we use three concepts to evaluate the quality of the tools: speed, accuracy, and reli-

ability. Speed is simply evaluated by the wall time (described above) taken by the algorithm. Speed is

nothing if the result is not correct; thus we also look at accuracy, evaluated with the error measure defined

in the previous subsection. This gives an upper bound achievable by the tool. A reasonable goal that is close

to typical construction tolerances could be set at a 1% error. Finally, reliability is evaluated by the likeliness

of the algorithm to output an incorrect solution. All the elastica results presented converged to the correct

solution, but for example the introductory example of Section 3.1 shows that this is not always the case for

more complicated structures.

64

3.4 Implementation details

In this chapter, we compare the pre-existing solutions used in the architectural form-finding community, to

others borrowed from general non-linear optimization and computer graphics. Formally, form-finding

methods are differentiated on two points: the bending energy discretization they use, and the optimization

algorithm they follow. A possible implementation of these methods is described in this section.

3.4.1 Bending energy discretizations

3.4.1.1 Discretization based on a circular interpolant spline

Two discretization methods are generally used in similar problems. The first (Barnes et al., 2013) comes

from the form-finding community and focuses on producing a simple expression for the forces acting on

the vertices. It obtains these forces by considering an arc going through three consecutive points. For a

series of three vertices (𝒙1, 𝒙2, 𝒙3) forming an angle 𝛼, the resulting forces are (Adriaenssens & Barnes,

2001):

(𝑺1, −(𝑺1 + 𝑺3), 𝑺3), where

{

 𝑺1 =
2𝐸𝐼 sin 𝛼

‖𝒙2 − 𝒙1‖‖𝒙3 − 𝒙1‖
𝒏12

𝑺3 =
2𝐸𝐼 sin 𝛼

‖𝒙3 − 𝒙2‖‖𝒙3 − 𝒙1‖
𝒏23

, (3. 10)

and 𝒏𝑖𝑗 is the normal to the edge 𝑖𝑗, in the plane defined by (𝒙1, 𝒙2, 𝒙3), pointing away from the center of

curvature.

3.4.1.2 Discretization based on a discrete definition of curvature

Another method often referenced is the Discrete Elastic Rods (Bergou et al., 2008), see Figure 6 for nota-

tions. In this setup, the bending energy comes from a discretization of the curvature on a discretized rod:

𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =∑
𝐸𝐼(𝜅𝒃𝑖)

2

𝑙�̅�

𝑛

𝑖=0
, 𝜅𝒃𝑖 =

2𝒆𝑖−1 × 𝒆𝑖

‖�̅�𝑖−1‖‖�̅�𝑖‖ + 𝒆𝑖−1 ⋅ 𝒆𝑖
, (3. 11)

where 𝜅𝒃𝒊 is the curvature binormal vector at node 𝑖, that rotates the edge before node 𝑖 into the edge after

it, and 𝑙�̅� the length of the edges coming to node 𝑖. The bar designates initial values, that are kept constant

for edge lengths.

This leads to the following forces (opposite of the bending energy gradient) acting on node 𝑖:

65

𝑭𝑖 = 𝑭𝑖
𝑃 + 𝑭𝑖

𝐴 + 𝑭𝑖
𝑁 (3. 12)

𝑭𝑖
𝑃 =

2𝛼

𝑙�̅�−1
[
2𝒆𝑖−2 × (𝜅𝒃)𝑖−1 + ‖𝜅𝒃‖𝑖−1

2 𝒆𝑖−2
‖�̅�𝑖−2‖‖�̅�𝑖−1‖ + 𝒆𝑖−2 ⋅ 𝒆𝑖−1

] (3. 13)

𝑭𝑖
𝐴 = −

2𝛼

𝑙�̅�
[
2(𝒆𝑖−1 + 𝒆𝑖+1) × (𝜅𝒃)𝑖 − ‖𝜅𝒃‖𝑖−1

2 (𝒆𝑖−1 − 𝒆𝑖+1)

‖�̅�𝑖−1‖‖�̅�𝑖‖ + 𝒆𝑖−1 ⋅ 𝒆𝑖
] (3. 14)

𝑭𝑖
𝑁 =

2𝛼

𝑙�̅�+1
[
2𝒆𝑖+2 × (𝜅𝒃)𝑖+1 − ‖𝜅𝒃‖𝑖+1

2 𝒆𝑖+2
‖�̅�𝑖+1‖‖�̅�𝑖+2‖ + 𝒆𝑖+1 ⋅ 𝒆𝑖+2

] (3. 15)

In this chapter, when relying on custom implementations, we use the second definition of forces,

as it tends to give better results when coarser discretizations are used.

3.4.2 Software implementation

While the general framework built for comparing these methods is written in Python, a language that gen-

erally does not have the speed of compiled languages such as C++, we took great care to use efficient

routines for all time-critical code. All data structures are represented using Numpy arrays, that use compiled

linear algebra routines for all mathematical operations. Wherever possible, we used a sparse representation

of the data structures, especially for the edges connectivity matrix and the constraints enforcement schemes

that require sparse least-squares solves; we found a typical speedup of 3-5x using that. For the computation

of constraints residuals, energies, and forces, we used code compiled using the Numba compiler for Python,

and leveraged sparsity information when possible; this leads to 10-100x speedups in the implementation.

Finally, all algorithms call compiled routines for their main work: the SLSQP, L-BFGS, and augmented

Lagrangian implementations used are shipped with Fortran routines, and the dynamic relaxation code was

compiled using Numba; this last operation gave 10x speedups.

3.5 Results of numerical experiments

In this section, we present the results of our solvers, on the set of numerical experiments described above,

focusing on speed and accuracy. Then, we consider a larger example solved using Kangaroo 2 only. There

is no analytical solution in that case to evaluate the accuracy of the solvers, but it displays reliability behav-

ior that is of interest in selecting the stopping criterion.

66

3.5.1 Kangaroo 1: dynamic relaxation

The first set of results we present in Figure 3.4 are from Kangaroo 1. They show the error on three different

measures, in log scale, as we vary the number of segments 𝑛 and the compression ratio 𝑎 𝐿⁄ . The errors

represented are on 𝛼, 𝐹 𝐹𝑐⁄ and 𝑓 𝐿⁄ . The stopping criterion used was 10-10, this value displays similar be-

havior to smaller thresholds as shown in Figure 3.5.

The three graphs show similar patterns: for small 𝑛, the error is close to 100%, meaning that the model

failed to predict reality; then the error decreases asymptotically towards 0.1% as 𝑛 is increased. This is only

true in a limited range of 𝑎 𝐿⁄ : for 𝑎 𝐿⁄ smaller than 0.2 the model rarely represents reality, even as 𝑛

reaches 36. This shows that Kangaroo 1 can only represent limited amounts of bending (when 𝑎 𝐿⁄ is high,

the beam is close to a flat line), and should only be used when the elasticas are compressed by less than

50%.

Figure 3.4: Surface plots of errors in Kangaroo 1 simulations of elastica for different numbers of discretized

segments and compression ratio. Kinetic energy threshold used: 10-10.

67

Figure 3.5: Time vs. error in Kangaroo 1 for elastica simulations. Each color represents one threshold for the

stopping criterion, each point represents one number of discretized segments (labeled). The point is at the median

time and median error for all simulations that have the same number of segments and the same threshold. The extent

of the bars represents the spread from 1st to 9th decile in time and error for these same simulations.

In the error on 𝐹 𝐹𝑐⁄ , the points that have 𝑎 𝐿⁄ = 1 have a high error. This is because, at these points, the

solution beam is a nearly flat yet buckled beam, while in reality it should be exactly flat at the onset of

buckling. Then the force derived from Kangaroo 1 is largely underestimated.

In general, Kangaroo 1 is complex to run reliably, often reaching divergent conditions. Figure 3.5 shows

that the only way to achieve a precision of 1% or better in 𝐹 𝐹𝑐⁄ is with 𝑛 ≈ 20, which takes 10 to 20

seconds to run for one single elastica. Even with small timesteps, the simulation is not reliable as a large

68

proportion of the simulations have errors close to 1. This is true for several values of the stopping criterion,

it even seems that increasing it shows, in general, a degradation of accuracy.

3.5.2 Kangaroo 2: projective dynamics

Next, we present similar studies for Kangaroo 2. The stopping criterion used was 10-12, Figure 3.6. Figure

3.7 shows how it compares to other possible choices. The plots show the same global trend on 𝑛, with the

error going from 1 to 0.1% on average when 𝑛 is increased, in the errors on 𝛼 and 𝑓 𝐿⁄ . The error on 𝐹 𝐹𝑐⁄

initially starts at much higher levels, but then quickly returns to usual when 𝑛 > 6. Here, we find no evi-

dence of particularly unstable regions in 𝑎 𝐿⁄ , except on 𝐹 𝐹𝑐⁄ when 𝑎 𝐿⁄ = 1, as seen before. This shows

that the solver is more reliable, as the error is almost constant across a wide range of boundary conditions.

The error tends to be less constant when 𝑛 > 24, especially in 𝛼 and 𝑓 𝐿⁄ , but in general remains bounded

under the general trend going towards 0.1% error.

In general, it seems that around 20 elements are needed to reliably get an error below 1% in 𝐹 𝐹𝑐⁄ . In the

other two errors this is achieved even for 𝑛 = 10. Figure 3.7 confirms this behavior, showing that it is

possible to achieve a 1% accuracy in 0.5 seconds. This is using 14 to 18 elements per elastica, with a

threshold of 10-12 to 10-14. However, it seems for thresholds of 10-12 or higher, increasing the number of

elements risks reducing the accuracy. Additionally, accuracies better than 0.1% are almost impossible to

obtain reliably for a range of boundary conditions.

In general, these studies show that Kangaroo 1 is not appropriate as a reliable design tool for bending-active

structures, as no combination of parameters allows it to reach a predictable level of accuracy or speed.

Kangaroo 2, on the contrary, is a good candidate for rapid design iterations in bending-active structures.

For a typical rod it converges in less than a second to accuracies of 1% or better in position and forces. We

recommend using a threshold of 10-12 or smaller, and 15 to 20 segments per discretized beam. Table 3.2

summarizes these results.

Table 3.2: Summary of results for the elastica experiments.

Software Threshold for a 1% accuracy Typical run time for a 16 nodes problem

Kangaroo 1 10-10 10 seconds

Kangaroo 2 10-12 0.5 seconds

69

Figure 3.6: Surface plots of errors in Kangaroo 2 simulations of elastica for different numbers of discretized

segments and compression ratio. Kinetic energy threshold used: 10-12.

70

Figure 3.7: Time vs. error in Kangaroo 2 for elastica simulations. See Figure 5 for labels.

3.5.3 Comparison with general-purpose optimizers

In this section, we present the comparison of observed simulations results versus analytical results as an

error on non-dimensional parameters. For example, for an observation of the height at the midpoint of the

elastica 𝑓𝑜 associated with an analytical result 𝑓𝑎 , the relative error on 𝑓 𝐿⁄ is: e(𝑓 𝐿⁄) = |𝑓𝑜 − 𝑓𝑎| |𝑓𝑎|⁄ .

This helps in comparing errors across different boundary conditions, solvers, and observation types. For all

three solvers (SLSQP, L-BFGS in augmented Lagrangian, dynamic relaxation), we varied the solver pa-

rameters, aiming to find a combination that would reliably give a 1% accuracy on the relative error on 𝑓 𝐿⁄

in the shortest runtime, for a collection of test cases presented in Table 3.1.

71

The stopping criterion terminates the simulation when the relative change in the elastica’s energy is less

than an “energy tolerance” between two iterations of the optimization procedure, and when the maximum

of the constraints’ residuals is less than a “constraints tolerance”. We checked that this happened before the

solver reached its maximum number of iterations, in our experiments on the elastica. The wall time is the

time that the elastica problem took to run, as reported by the program launching the simulations. While wall

time can be influenced by other routines running on the computer, we averaged each runtime over three

runs, so that results are more reliable. For dynamic relaxation, we used a time step that was close to one-

tenth of the fundamental vibration period between two successive edges.

The results are presented in Figure 3.8 and Figure 3.9. For SLSQP and L-BFGS, we only present the com-

binations that gave the best results. For dynamic relaxation, the results were less clear so we present them

for three values of the energy tolerance. SLSQP and L-BFGS fare very well on these elastica experiments,

with the 1% accuracy threshold reliably obtained with as little as 9 points on the elastica. This is a lot less

than with Kangaroo 1 or 2, where around 20 points were needed; this confirms the better convergence

properties of the energy model in 3.4.1.2 versus 3.4.1.1. Increasing the number of vertices to larger values

tends to give less reliable results, usually because the solver found a local minimum of energy and stopped

too early. Lowering the energy threshold tended to improve on this point. L-BFGS is slower than SLSQP

for small numbers of vertices, this is mostly due to a longer startup time, and L-BFGS catches up quickly

as this number is increased.

Dynamic relaxation is harder to get to converge reliably, and we found the best results for an energy thresh-

old of 10−10 to 10−11, with 9 to 11 vertices. This is coherent with the analysis using Kangaroo 1 and 2.

Our implementation of dynamic relaxation is around 10 times slower than SLSQP and L-BFGS, although

it is still 100 times faster than the implementation in Kangaroo 1. This shows the dramatic influence that

the enforcement scheme on the axial constraints can have.

Both dynamic relaxation and L-BFGS exhibit unstable behaviors when the number of elements grows too

high. This is because this generates a stiffer system that needs stricter parameters in the solver to be solved

reliably (for example for dynamic relaxation, a smaller time step). Because we aim to find just one set of

solver parameters and the number of discretization elements that will find an accurate solution (less than

1% error) in the shortest amount of time, these results show that this combination of parameters should not

be used in our case.

72

Figure 3.8: Time vs. error in height with SLSQP and augmented Lagrangian L-BFGS elastica simulations, for an

energy tolerance of 10−7 and a constraints tolerance of 10−4. Each point represents one number of discretized

segments. The point is at the median time and median error for all simulations that have the same number of

segments and the same tolerances. The extent of the bars represents the spread from 2nd to 8th decile in time and

error for these same simulations.

Figure 3.9: Time vs. error in dynamic relaxation with three values of energy tolerance (labeled), constraints

tolerance of 10−4, for elastica simulations. See Figure 3.8 for labels.

0 0.2 0.4 0.6
0.001

2

3

4

5

6

7
8
9

0.01

2

3

4

5

6

7
8
9

0.1

0 0.2 0.4 0.6
0.001

2

3

4

5

6

7
8
9

0.01

2

3

4

5

6

7
8
9

0.1

0 0.2 0.4 0.6
0.001

2

3

4

5

6

7
8
9

0.01

2

3

4

5

6

7
8
9

0.1

Dynamic Relaxation

5

7

9

11

13

15

17

19

21

23

N
u
m

b
e
r

o
f

p
o
in

ts

Time [s] Time [s] Time [s]

R
e
la

ti
v
e
 e

rr
o
r

in
 h

e
ig

h
t

[-
]

10-10 10-11 10-12

73

3.5.4 Larger examples

3.5.4.1 Cocoon

We applied our recommendations to the a posteriori simulation of a bending-active structure. The Cocoon

project, built in Winnipeg, Manitoba, is a 12-meter-long pavilion made for the “Warming Huts” competi-

tion of 2012 (Coar, 2012). It is made of fiberglass rebars tied into “double-A-frame” modules and anchored

into a frozen river. Dimensions and material properties are given in Figure 3.10.

A comparison of the numerical model to actual photos in Figure 3.11 shows good agreement in shape. We

obtained this result by discretizing the beams in 15 elements each, using ties of stiffness 107 N/m and rest

length 0 m, and anchoring with stiffness 109 N/m. Figure 3.13 (left) shows this assembly for one module of

the structure. We ran the simulation in Kangaroo 2 for 104, 105 and106 iterations, with 105 iterations the

closest to our recommended threshold of 10-12, as demonstrated in Table 3.3. We found that 105 gave the

best ratio of accuracy to time of computation. Comparing nodal positions to the reference run of 106 itera-

tions, 105 iterations is a significant improvement over a threshold of 10-11 (104 iterations), without being far

from the result found with 106 iterations, as shown in Figure 3.13. We chose to use the number of iterations

as a stopping criterion instead because sometimes a threshold is never reached, see Table 3.3.

Figure 3.10: Cocoon project (Coar, 2012): dimensions and material properties. Labeled length dimensions are in

mm. Photo © Matthieu Léger.

74

Figure 3.11: Comparison of actual footage of the construction to numerical simulations. Photos in top row ©

Matthieu Léger.

To check the quality of our model, we compared the simulated distance from the top points of the modules

to their four anchors, to the same data extracted from photographs with different viewpoints. The results are

presented in Figure 3.12, grouped by anchor position in the module and the number of iterations used.

Across all measurements but one, the absolute value of the relative error is below 2.5 %. There is a clear

improvement in errors from 104 iterations to 105 iterations, with the error getting below 1 % on almost all

measurements, then very little change as the number of iterations is changed to 106.

Figure 3.12: Boxplot of the relative errors in the simulated distance from the top points of vertical bars to their

anchors, compared to the physical structure, grouped by position of the anchor and number of iterations. Anchors

positions are the four corners of each module, as seen in Figure 8. The central bar in the box shows the median of the

group of measures, the extent of the box shows the first and third quartile, the whiskers show the minimum and

maximum data values, and the points are outliers.

75

Figure 3.13: Comparison of results in positions for different numbers of iterations. Displacement shows the

positional difference with the reference obtained after 106 iterations. In the initial configuration, point-like ties are

connected to neighboring modules.

This is an encouraging result showing that our recommendations from the previous subsection work for

larger scales of projects. We also find that this is true for reaction forces prediction; see Figure 3.14. How-

ever, Figure 3.15 shows that caution is still needed when external forces are applied. In this case, we applied

a uniform moderate wind pressure of 0.2 kN/m2 on the structure, in the pushing direction on the longer side,

and pulling on the shorter side. As the simulation with 106 iterations shows, the structure is failing by

buckling on the three external modules on each side (the inner modules are stiffer because they are con-

nected to more neighbors). This does not happen in the shorter simulation runs, with the 105 iterations run

only hinting at the phenomenon. This buckling behavior was also observed in other experimental prototypes

of the structure.

Figure 3.14: Comparison of results in anchor forces for different numbers of iterations (top view). Maximum force

vector error from 104 to 106: 76%, from 105 to 106: 1.5%.

76

Figure 3.15: Comparison of results in positions for different numbers of iterations, when a uniform wind pressure is

applied to the structure. The displacements are shown from the unloaded configuration with 106 iterations.

Table 3.3: Iterations needed for different energy thresholds in the Cocoon model. The 10-13 simulation did not

converge after 12 hours of runtime.

Threshold 10-10 10-11 10-12 10-13

Number of iterations needed 6580 10320 25810 >30M

3.5.4.2 Elastic gridshell

Next, using an energy tolerance of 10−7, and a constraints tolerance of 10−4, we used the same algorithms

to find the equilibrium position of an elastic gridshell, as represented in Figure 3.16, and varied the number

of points between two connections of the gridshell from 0 to 4. This varied the number of points in the study

from 94 to 654. Although all algorithms found a reasonable solution for the model with 94 points, the initial

position in the model with more points proved too stable for dynamic relaxation and SLSQP, and only L-

BFGS found good equilibrium positions in this case. Table 3.4 summarizes these results. It shows good

convergence of the positional accuracy, and a roughly linear increase in runtime with the number of points,

making the algorithm usable for larger models.

Since the equilibrium positions found by SLSQP and dynamic relaxation with 94 points have a positional

accuracy of better than 1%, it is arguable that this model already has a sufficient number of points and both

methods could then be used for a rough form-finding. In this case, SLSQP converged in 0.69 s and dynamic

relaxation in 2.2 s, significantly slower than L-BFGS. Additionally for SLSQP and dynamic relaxation, the

runtime per iteration is roughly quadratic in the number of points, indicating that these algorithms will

become unusable for models with more than a few hundred points. This suggests that L-BFGS is the better

choice for larger models.

77

Figure 3.16: Gridshell example used. Initial positions in black, best equilibrium found in blue.

Table 3.4: Runtimes for L-BFGS with varying number of points in the beams. Accuracy refers to the mean distance

between nodes and the closest point in the equilibrium position found with the highest number of nodes, divided by

the size of the model.

Number of points 94 174 334 654

Runtime [s] 0.165 4.33 38.0 105

Accuracy 0.7% 0.08% 0.03% -

3.6 Conclusion

This chapter has presented new results and guidance for modeling bending-active structures, focusing on

key performance metrics: accuracy and speed. Our results show that designers cannot reliably use Kangaroo

1 for simulating such structures, but that Kangaroo 2 can produce good results when tuned properly. In

general, there is a tradeoff between accuracy and speed, on a single elastica with Kangaroo 2 the error is at

best 0.1% for a 1-second runtime. Some combinations of simulation parameters lead to long simulation

times and high errors in geometry and forces, especially when thresholds are set too low. This can impede

the creative design process both by interrupting a designer’s flow and by misrepresenting physical reality.

We recommend using in Kangaroo 2 a threshold of 10-12 or smaller, and 15-20 nodes per element in bend-

ing, to achieve a spatial accuracy of 1% or better. This is when using the physical values EA for the axial

stiffness and EI for the bending stiffness, which ensures that positions and forces extracted from the model

can be directly linked to the physical structure.

Using the guidelines proposed here, the Cocoon case study illustrates that high-quality simulation of bend-

ing-active structures is possible, but not guaranteed with contemporary, widely available tools. Because the

simulation is so sensitive to modeling parameters, critical behavior such as buckling under wind loading

can be missed. Furthermore, the physical structure will be impacted by construction tolerances and site

78

variables. As a result, the usefulness of a precise digital model will depend greatly on an equally precise

and constrained construction method that can reflect these accuracies.

The results give a better understanding of how computational design tools for bending-active simulations

work and perform for physically realistic modeling. They show the relevance of generalist optimization

methods such as SLSQP and L-BFGS for these simulations, even compared to methods well-established in

the field like dynamic relaxation. Finally, they offer guidance on possible future developments for efficient

design tools and the accurate use of existing tools.

In particular, using L-BFGS with a stopping criterion on the relative change in energy of 10−7, a constraints

tolerance of 10−4, and at least 9 points per beam seems to be both stable and time-efficient for small and

larger models. On small models (less than a hundred points), SLSQP with the same parameters is compet-

itive in time, and sometimes more stable. In terms of discretization techniques, it seems that an approach

such as Bergou et al. (2008) that represents both length constraints and bending energy in a unified frame-

work is beneficial to the accuracy of the complete software.

In future work, it would be interesting to see how these results evolve when more complex beam models

are considered, for example including torsion effects. It seems it would also be beneficial to use optimization

algorithms derived from SLSQP such as (Kovalsky et al., 2016), which can use sparsity information in the

problem, mitigating the quadratic increase in runtime with the number of nodes.

Future research is needed to understand different bending-active typologies, such as those that use hollow

tubes instead of rods as elasticas. In this case, different ratios of bending to stretching stiffness are present,

so this work’s results may not be directly applicable. In general, simulating tube-based bending-active

structures should be faster because of a smaller range of stiffnesses, but not necessarily more accurate.

In closing, the exciting possibilities of bending-active structures are expanded by the proliferation of de-

signer-accessible simulation tools such as Kangaroo 1 and 2. However, as shown in this work, a better

understanding of how these tools work and perform is needed for physically realistic modeling, and trust

in seemingly precise digital results can be easily misplaced. The results presented in this chapter contribute

clarity in this direction and offer steps for improved workflows for designing bending-active structures. This

also paves the way for better inverse form-finding procedures, where the speed and robustness of the inner

loop do not hinder the optimization process of the outer loop.

4 Inverse form-finding for bending-active structures

Finding a bending-active structure that is as close as possible to a target shape is an inverse form-finding

problem, that can be solved using a nested optimization process. In the outer optimizer, we iterate on some

initial condition of the bending-active structure, until the distance from the equilibrium shape given the

current initial conditions is as small as possible. Finding the equilibrium position is the result of the inner

optimizer. This inner optimizer needs to be stable, reliable and fast, given the wide variety of input condi-

tions that the outer optimizer will attempt. This chapter uses the results from Chapter 3 to build such a

solver, and apply it to two design problems: a simple arc-lamp first, and a larger elastic gridshell second.

Because this chapter reuses the solvers and methods studied in Chapter 3 in the inner loop of the inverse

form-finding process, the results of that chapter on the quality of the results produced still apply here: gen-

erally as accurate as other direct form-finding methods, and selected to be as fast as possible in these con-

ditions.

80

4.1 Background

4.1.1 Bending-active structures

Shell structures derive their structural efficiency from their geometry. While their form minimizes bending

moments, they are complex to build. Bending-active is a construction method to create curved shell geom-

etry by elastically bending initially straight rods. It allows the creation of shell-like shapes with a simpler

construction process, leading to lightweight structures with possibly long spans and quickly erected. Ex-

amples of such constructions include the well-known elastic gridshell of the Mannheim Multihalle by Frei

Otto (1974, (Happold & Lidell, 1975)), and many others since then with regular (Merrick, 2006) and irreg-

ular arrangements of the rods (Coar, 2010), different materials like GFRP for the rods (Baverel et al., 2012)

and concrete for the cover (Cuvilliers et al., 2017), or plate-like base elements (Nabaei et al., 2013).

Automatically predicting the equilibrium shape of the bending-active structure at the end of this process is

critical to enabling their design, as it is very difficult to intuit the shapes they can take. In addition, no good

criterion exists for predicting if a surface can be approximated by a given arrangement of rods, or which

arrangement would give the best result. As a result, all design workflows start by simulating the equilibrium

shape of the structure considered, a process that can be time-consuming and error-prone, before analyzing

the qualities of the resulting design.

By automating this process, carefully tuning it for speed and reliability (Chapter 3), and integrating it in an

optimization loop, the designer gains access to a design workflow where objectives can be specified for the

design. The rod arrangement, lengths, and properties needed to reach these objectives is the result of this

workflow. Most importantly, this lets designers come as close as possible to a target shape that they define.

4.1.2 Target shape

Computational form-finding methods usually output forms that minimize some part of the stresses in a

given structure, for example shell bending stresses in the design of compression-only shells. In bending-

active structures, the normal form-finding process finds the equilibrium shape by minimizing the bending

energy in the structure. It is also possible to further optimize the resulting structure to reduce stresses under

live loads or buckling sensitivity (D’Amico et al., 2015).

While this helps reduce the material quantities and increase the performance of the shell structure, the de-

signer has limited control over the resulting shape. By defining a desired target shell shape, structural opti-

mization tools can be successfully applied to find forms that both minimize structural material volumes and

81

resemble the target shape. Modifying the equilibrium shape is most easily achieved by varying the cross-

section of the rods. While this does not apply to all materials, timber lends itself quite well to varying cross-

sections (Mayencourt et al., 2017).

Optimizing for a target shape is one of the most evident inverse form-finding problems, especially for bend-

ing-active structures where the equilibrium shape can exhibit dramatic variations when the initial conditions

are changed. The target shape is a simple expression of the designer's intent and makes for a simple objective

formulation. Garg et al. (2014) use a similar approach to build a design tool for sculptures made of wire

meshing, a closely related problem but where the elastic bending forces can be neglected as the material is

plastically deformed to conform to the target surface. This simplifies finding the equilibrium shape of the

structure, and most of the attention is given to the outer optimizer. The authors use a two-part objective

function, summing a “fairness” and a “closeness” term. The closeness is simply a Euclidian distance from

the nodes of the mesh to their closest projection on the target; the fairness represents the amount of curvature

in the form-found surface, minimizing it helps to avoid sharp features that are difficult to build. The varia-

bles in this setup represent the shape of the boundary of the initial mesh piece, the optimizer in effect is

adding and removing material to use in the construction.

Similar design problems include the design of 3D-printed network of elastic rods that approximate a surface

(Pérez et al., 2015; Zehnder et al., 2016). By deferring finding the elastic equilibrium until later in the design

process, the inverse form-finding problem of finding the realizable structure closest to the target surface is

more tractable. The objective again includes a Euclidian distance from the nodes of the simulation to the

target surface, and additional terms representing relevant design objectives. Rao et al. (2019) for example

add a term to represent a consistent pressure applied by a cast on a broken and swollen limb.

More recently, a complete design system was proposed, solving an inverse form-finding problem towards

a target shape while simulating elastic bending equilibriums (Panetta et al., 2019). The structures built there

are close to elastic gridshells, except that they do not start from a regular grid, and are actuated into their

final shape by force actions on a small set of nodes, rather than by fixing the boundary. Their methodology

validates many of the choices proposed in Chapter 3: the beam model is taken from Bergou et al. (2008),

the inner optimizer is a Newton-based with Hessian information, similar to BFGS. The outer optimizer is

the Newton-CG trust region method.

4.1.3 Design variables

In this chapter, we present two ways of modifying a bending-active structure so that it matches a design

target: changing the cross-section of the bending elements and changing their total length. The change of

82

cross-section of a rod changes the radius to which it will bend according to the 𝐸𝐼 value of the section. Rods

of variable cross-section in bending-active shell structures could open up the variety of shapes that can be

achieved, for example leading to elastic gridshells with increased usable space thanks to more vertical

shapes near the ground. The ICD/ITKE bending-active structure is such an example (Fleischmann &

Menges, 2012). We apply this strategy to design the arc lamps of Section 4.2.

Changing the length of the bending elements is more appropriate for structures like elastic gridshells: in

this case, the local “pulling and pushing” of the rods can change the global geometry, similar to what

changing the boundary geometry would do. As mentioned earlier, Garg et al. (2014) implement a similar

boundary modification strategy, albeit for plastically formed gridshells rather than elastic ones. Examples

of this strategy for elastic gridshells have been published by Bouhaya et al. (2014), and Soriano et al. (2019).

4.2 Varying cross-section elastica: the arc lamp

4.2.1 Methodology

First, we implement a design workflow, in Rhino/Grasshopper, where a target curve is drawn by the de-

signer, and a closely approximating elastica of varying cross-section is found. The elastica is clamped at the

base, with a weight suspended at its other end, so that it realizes an arc suitable for a lamp such as the ones

depicted in Figure 4.1. This shape was selected so that it could be built by participants in a 2-day workshop.

A simple example of the possible variations in this setup is presented in Figure 4.2, at a height of around

50 cm. The final designs were 1 to 1.5 m high.

Figure 4.1: An arc lamp made of pre-bent metallic channels (left). A possible realization of an arc lamp made from

initially straight timber slats (right). By carefully varying the width of the slats, the geometry can be controlled to

create perfect circles.

83

The design workflow is based on the direct form-finding solver of Chapter 3, and a simple COBYLA opti-

mizer for the outer loop. The elastica is discretized into 15 bending elements, and its equilibrium position

is found using L-BFGS with a stopping criterion on the relative change in energy of 10−7, a constraints

tolerance of 10−4. For the outer optimization loop, the objective is to minimize the distance from the nodes

of the simulation in their equilibrium position 𝑥𝑖 to their closest projection 𝑃𝒞(𝑥𝑖) on the target curve, using

the bending stiffness 𝐼𝑖 of the elements of the simulation as variables:

(𝑃4.1): min
𝐼𝑖
∑‖𝑥𝑖 − 𝑃𝒞(𝑥𝑖)‖

2

𝑖

s.t. {
𝑥𝑖 = argmin

𝑥𝑖

𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝑥𝑖)

∀𝑖, 𝐼𝑚𝑖𝑛 < 𝐼𝑖 < 𝐼𝑚𝑎𝑥

. (4. 1)

We restrict the bending stiffness to values that are reasonably achieved in our construction method.

Figure 4.2: Actively bent wood strips with variable cross-section. The optimization was set up to satisfy the same

boundary conditions at the base and at the location of the weight. By changing the section of the strips, the

elastically bent pieces take different deformed shapes.

84

An initial guess on the bending stiffnesses is made using the target curve: if the solution follows it perfectly,

then the bending forces at a point of the arc will equilibrate the moment generated by the point load at the

end of the beam:

𝜅𝐸𝐼 = 𝐹𝐿 (4. 2)

Where 𝜅 is the curvature of the target curve at that point, 𝐸 the Young’s modulus of the material, 𝐼 the

bending stiffness at that point, 𝐹 the load and 𝐿 the moment arm of that load to the point where the equilib-

rium is considered. This is not sufficient to find the solution to our inverse form-finding problem however,

as this is only a local condition that gives no guarantees on the global shape. If any part of the beam cannot

satisfy this condition, for example because of restrictions on the cross-section size, the rest of the elastica

will quickly deviate from the target curve. In this case, a better solution will be found using our design

workflow.

The interface of this design tool is shown in Figure 4.3.

Figure 4.3: Visualization of the interface of the arc lamp form-finding tool.

4.2.2 Results

The workflow was used by 7 participants of a design workshop for the Advances in Architectural Geometry

conference 2018, at Chalmers University, Gothenburg, Sweden (Cuvilliers et al., 2018). Each participant

85

designed and built an arc lamp made from 2-to-4-meter strips of furniture-grade birch plywood, from 4-

mm- and 6-mm-thick sheets. The lamps were up to 2 meters tall, and 40 cm wide. The plywood was laser-

cut to the shape output from the design tool, to vary the cross-sectional inertia. Additionally, multiple layers

of plywood could be glued together to create stiffer sections. Figure 4.4 shows some examples of the lamps

that were built and their construction details. The lamps were then put on display in the conference space,

see Figure 4.5.

The workshop demonstrated that our design tool was sufficiently robust and quick to be used in an interac-

tive design fashion. One forward simulation normally takes less than 1 second to run, with the complete

result of the inverse design problem obtained in 10 to 20 seconds. This allows for quick modifications of

the input target shape as a response to the previous result. See Figure 4.6 for all the lamps that were built.

Figure 4.4: Arc lamps and their construction details.

Figure 4.5: Some of the arc lamps on display in the conference space. The pre-stressed geodesic gridshell in the

background was designed by Sehlström et al. (Sehlström et al., 2018).

86

Figure 4.6: The arc lamps built for the workshop.

In pathological cases, when the target curve was far from being realizable as a bending-active equilibrium,

the forward simulation often took longer to run, and we had to resort to an early stopping criterion in these

cases. This was particularly the case when the target curve was slightly too straight around its base, and the

initial guess slightly too stiff for the allowable width and height of the arc. Then, the forward simulation

would initially be close to an equilibrium, but slowly deflect slightly more than planned around the base,

which would lead to an added moment arm as the load would be further away in horizontal distance, leading

to a larger deflection in the base until the structure collapsed.

Additionally, the tool lets the designer choose how the bending stiffness should be created in the construc-

tion: by increasing the width or the height of the beam. This leads to interesting shape designs of the arc

front elevation, without changing its profile (as guided by the target curve). Given the limits that we had

put on the width and height of the arcs, and their rate of variation, manual modifications of this would also

sometimes allow for a better fit of the target curve. The interactive nature of our design tool lets the designers

find these better fits easily.

Although our tool was initially made for the design of a single elastica, some workshop participants were

able to modify it to model a small number of loosely coupled curves. For example, one could design two

87

target curves with the same end points, and a shared load, so that the final construction would seem to be

made of two diverging then converging arcs supporting only one lamp. Or by designing two target curves

with only the same base, and playing with the maximum width of the result, two arc lamps can merge at

their base.

4.3 Inverse form-finding of an elastic gridshell

4.3.1 Methodology

Next, we look at solving an inverse form-finding problem for elastic gridshells. We consider only regular

grid gridshells, that have their shape formed by their boundary conditions: most laths of the gridshell will

be pinned to a ground connection. We keep the same inner optimizer as previously, given the good results

we obtained for a single elastica: each lath of the gridshell is discretized into at least 15 bending elements,

and its equilibrium position is found using L-BFGS with a stopping criterion on the relative change in

energy of 10−7, a constraints tolerance of 10−4. There is always at least one simulation node between two

intersections on a lath, and when there are more than 7 intersections on one lath, we discretize it with 2

elements between each intersection.

For the outer optimization loop, the objective is to minimize the distance from the nodes of the simulation

in their equilibrium position 𝑥𝑖 to their closest projection 𝑃𝒮(𝑥𝑖) on the target surface. The variables are the

displacements 𝑎𝑗 of the pin anchors to the ground, from their initial positions. A similar choice of variables

would be to change the lengths of the end segments on each lath that is pinned, in effect pushing and pulling

the gridshell up or down from its boundary. The mathematical formulation of our optimization problem is:

(𝑃4.2): min
𝑙𝑖
∑‖𝑥𝑖 − 𝑃𝒮(𝑥𝑖)‖

2

𝑖

s.t.

{

𝑥𝑖 = argmin

𝑥𝑖

𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝑥𝑖)

∀𝑗, 0.1 <
|𝑎𝑗|

𝑙𝑔𝑟𝑖𝑑
< 3

. (4. 3)

The initial guess is found by draping a regular grid over the target surface. We restrict the displacement

vectors lengths |𝑎𝑖| between 0.1 and 3 times the grid spacing. We found bounding the variables in this way

helped the optimization by preventing large variations between outer loop iterations, in turn providing faster

inner solves. For the optimization, the gridshell is drawn with extra cells on its pinned boundary, so that all

anchors in effect sit below the ground. This allows the anchors to be moved freely without lifting parts of

88

the boundary above the ground. The final resulted is presented with these extra elements cut at ground level,

and anchored at that intersection.

Lastly, we found that changing the variables independently could lead to ill-conditioned iterations. As we

are not providing gradient information to the outer optimizer, it will approximate it with finite differencing,

initially changing each variable by a fixed amount while keeping the others constant. This forces very small

iterations in the beginning, as larger ones would create low-quality gridshells with very different laths

lengths between consecutive laths, a situation that is either slowly solved by the inner optimizer or even

completely physically unstable.

As a result, we chose instead to replace the independent variables by a crude Fourier series-like

representation of them, based on the grid spacing 𝑙𝑔𝑟𝑖𝑑 of the gridshell and their initial position 𝑠𝑗

on the boundary curve:

𝑎𝑗 = 𝑢0 +∑(𝑢𝑘 cos (2𝜋
𝑠𝑗

𝜔𝑘𝑙𝑔𝑟𝑖𝑑
) + 𝑣𝑘 sin (2𝜋

𝑠𝑗

𝜔𝑘𝑙𝑔𝑟𝑖𝑑
))

𝑘

. (4. 4)

When the boundary is made up of multiple disconnected segments, we repeat this process as many times

as needed. See Figure 4.7 for an example of the movement of the anchors with 3 frequencies.

Figure 4.7: Movement of the anchors when varying coefficients for 3 frequencies. From left to right: initial

positions, maximum movement with a constant offset, then with the first and second frequencies.

The new variables in the optimization problem are then the 𝑎𝑗 and 𝑏𝑗 amplitudes; the wavelengths 𝜔𝑗 are

fixed at the beginning of the optimization. By changing the wavelengths 𝜔𝑗 between 1 and

𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑙𝑔𝑟𝑖𝑑⁄ , we can generate different spatial frequencies for the features of the gridshell. Higher and

lower frequencies cannot be reproduced by the grid or boundary so they can be ignored. When there are as

many wavelengths as independent variables 𝑎𝑗, we can reproduce any combinations of 𝑎𝑗 by changing the

amplitudes 𝑢𝑘 and 𝑣𝑘. However, we found that we obtained a good solution to the inverse form-finding

problem (as is, close to the solution we would obtain with the original formulation with the 𝑎𝑗 variables)

by selecting only 3 to 5 frequencies that would match the main spatial frequencies of the target surface.

This effectively reduces the dimensionality of the outer optimization problem without significantly reducing

89

its design space. Lastly, by limiting the wavelengths to larger than 4, we effectively suppress the issues we

described above due to the quick variations of lengths between successive laths.

Note that in this new parametrization, only the anchors are moved. The nodes of the grid keep the rules of

an elastic gridshell: pinned connections at regular distances, thus preventing sliding of the bars over each

other and only allowing a hinging motion at the node. The bars are initially straight, which together with

the constant spacing of the nodes ensures that the gridshell can be built from an initially planar grid.

4.3.2 Results

We implemented and tested this workflow in the Rhino/Grasshopper platform, using our own implementa-

tion from Chapter 3 for the inner loop and the Goat Grasshopper plugin interface to the NLOpt optimization

package for the outer optimizer, selecting the L-BFGS method. We then tested it on several structures

representative of real elastic gridshells. The results are compiled in Table 4.1, where the adimensional score

is calculated as:

√∑ ‖𝑥𝑖 − 𝑃𝒮(𝑥𝑖)‖2𝑖

𝑛𝑙𝑔𝑟𝑖𝑑
, (4. 5)

that is the square root of the objective value divided by the number of intersections in the grid and the grid

size. This gives us a metric that can be compared across experiments.

We focus on two main design examples: a reproduction of the Japanese Pavilion at Expo 2000 gridshell

(Ban, 2003), and a parabolic dome shape that is indented at the top, summarized in Table 4.1. On these

examples with up to 500 bending elements, a forward simulation can take up to .5 seconds, and the inverse

form-finding solution takes 3 to 5 minutes. This allows for incremental design changes, but not true inter-

activity, at this scale. These structures represent two typical behaviors observed for inverse form-finding of

elastic gridshells.

Table 4.1: Summary of results for our inverse form-finding framework for elastic gridshells.

 Laths [#] Simulation

nodes [#]

Simulation

elements [#]

Runtime [min] Adimensional

score

Japan Pavilion 34 159 276 4.3 0.52 %

Dented dome 38 261 522 5.2 1.1 %

Valleyed dome 38 261 522 3.7 0.58 %

90

While the Japanese Pavilion shape lends itself very well to being built with an elastic gridshell (see Figure

4.9), the dented dome simply does not have a faithful representation with an elastic gridshell. In this case,

the designer would have to edit the target shape to obtain a good solution. Figure 4.8 shows one possible

modification that could be made to the dented dome target shape to find a shape that can be built with an

elastic gridshell. The better agreement between the inverse form-finding result and the target shape is re-

flected by the improved adimensional score, see Table 4.1.

Figure 4.8: Possible modification to the dented dome target shape that can be represented by an elastic gridshell.

Top: Initial shape and inverse form-finding result, with a poor agreement at the top; bottom: by continuing the dent

down the sides of the target surface in a valley shape, a better fitting gridshell is found.

91

Figure 4.9: Results found by the inverse form-finding tool for elastic gridshells. (Top) Initial grid position from the

draping step, not in bending equilibrium; (middle) equilibrium position of the initial grid position; (bottom)

equilibrium position with optimized anchor positions resulting from the inverse form-finding tool.

92

4.4 Conclusion

This chapter presents a framework for the inverse form-finding of two subsets of bending-active structures:

a simple elastica and regular grid elastic gridshells. The workflow has a broad range of applicability and

speeds that allow for incremental modifications to the design. This lets the designer tap into a wide design

space that is not typically explored for “manual” elastic gridshell designs, i.e. without inverse form-finding

tools. This is in large part possible thanks to the careful selection of the inner optimizer loop presented in

Chapter 3. Specifically, the speed of the inner loop directly improves the speed of the whole workflow, and

its reliability lets the outer optimizer explore large design variations without fear of producing an inaccurate

result that would seriously slow down the optimization process, or lead it into false minima. The Fourier-

like representation of the design variables also proved very useful in speeding up and stabilizing the work-

flow, without reducing the quality of the results.

Several improvements could be made to this workflow to make it more useful for designers. Most im-

portantly, the outer loop could probably be significantly sped up (thanks to many fewer inner loop calls

needed) by providing gradient information to replace the finite differencing done in this work. This is for

example done in (Panetta et al., 2019) for the related case of X-shells, using an adjoint method formulation.

They report around one order of magnitude of speed improvement on the outer loop, with similar inner loop

speeds. Additionally, the inner loop makes some simplifications on the physical construction details of

elastic gridshells that could influence the results. For example, the fact that laths are not coplanar at inter-

sections, but stacked on top one another; accounting for this leads to additional moments in the laths due to

the offset forces applied through the joints. We also do not consider torsion forces in the rods.

Future work on the workflow itself could include generating better initial guesses. While the draping

method has proved to work well in our case, there are other heuristics used for elastic gridshell, like the

compass method (Grafe et al., 1974) to generate shear-only deformations of a regular square grid on a given

surface. Additionally, there might be better ways of approximating the inverse form-finding result by in-

corporating some bending equilibrium information in the initial guess generation.

The initial topology of the grid largely affects the resulting forms that can be obtained, and it would be

interesting to find ways to automatically explore that influence. For example in the Japan pavilion example

of Figure 4.9, if the grid is oriented in a way that continuous rods cross over two ridges or two valleys, it

will be very difficult to find a position of the anchors producing an equilibrium shape close to the target.

One good solution might be to systematically explore how the results of the inverse form-finding change

when the general orientation of the grid and the average hinge angle between the two grid directions are

varied.

93

Similarly, our workflow does not tell the designer what could be changed in the target shape so the results

would match it better. While manually generating variations of the target shape is possible as we have

shown, there is no guarantee that these modifications will lead to a better result. The problem for the de-

signer is that a trivial modification of the target shape, making it match the current inverse form-finding

result, would lead to finding a perfect result but usually lose the features that they were hoping to reproduce.

One way around this limitation would be to encode these target features in the objective function, and use

convergence information to decide which ones are impossible to match by the optimization. This is an

approach we are investigating in Chapter 6.

Elastic gridshells are a powerful example of quickly-deployable bending-active structures, that can span

large spaces while remaining lightweight. By implementing inverse form-finding workflows for these, we

allow designers to realize a larger panel of shapes with them, and have better control on modifying these

shapes. There are still large classes of similar problems where similar workflows could be beneficial, both

for deployable structures and bending-active structures. The methods developed in this work, and the inte-

gration of inverse form-finding techniques, could similarly expand the available design spaces of hard-to-

design structural systems where only forward simulations are currently available.

5 Inverse form-finding of funicular structures: target shape

5.1 Introduction

Compression-only structures are much more efficient than structures where bending occurs. For example,

in a linear structural element, slender by definition, axial loads are straight forces resisted uniformly by the

whole section, while bending is a force with a large moment arm resisted by the section where only small

moment arms exist. Thus, by focusing on funicular structures for a given load, we guarantee that all the

material will be used with the most efficiency. This explains the significant interest in such structures his-

torically and today.

The compression-only state in a structure is similar to a perfectly flexible chain with no self-weight, fixed

at both ends with some slack, hanging under the action of weights attached to it. The chain undergoes

tension only, and if its shape were inverted, it would resist the same loads in a compression-only state. This

principle is at the root of many physical experiments for the form-finding of funicular structures, such as

Antoni Gaudí’s (1852-1926) hanging models of the Colonia Guell church (Huerta, 2006).

96

In general, designing compression-only structures is challenging. Physical experiments of hanging chains

provide a good way to interact and quickly iterate on design options but lack the precision of a CAD model.

Computationally, finding the shape of a set of hanging chains requires accounting for nonlinear behavior

due to large displacements; this problem can be alleviated using the force density method (Schek, 1974).

However, this only solves a direct problem: finding one discrete funicular shape under given loads and grid

properties. Often, this goes against the intuitive design process where the designer has a shape in mind and

wants to minimize bending. That describes an inverse problem where the closest possible funicular structure

to a target surface is found.

This study aims to solve one such inverse problem: construct funicular structures as close as possible to a

target surface. The scope is limited to grid-like, node-and-branch only networks, for which an efficient

calculation procedure exists in large displacements. In the particular case of grid-like funicular structures,

this inverse problem can be solved using a genetic algorithm (Block & Lachauer, 2011). This has the ad-

vantage of accepting even badly formatted problems, but remains slow and lacks a guarantee of finding a

global optimum. Van Mele and Block (2011) present a more formal treatment of the problem, but the scope

is limited to pre-tensioned cable nets, for which a good initial estimate of the solution is known. This can

be overcome using thrust network analysis (Panozzo et al., 2013), but leads to a slower multi-step optimi-

zation process. This chapter expands on this previous work by using gradient-based optimization methods

to gain more insight into the solutions for such closest-fit inverse problems.

5.2 Background

5.2.1 Funicular bar networks

We consider networks of nodes connected by bars, with free rotations at the nodes. This guarantees that

there are only constant axial forces in the bars. The equilibrium at each node is then only a consequence of

the position of the nodes. Then for a network of bars intersecting at the nodal positions 𝒙, under the loads

𝒑 at the nodes and with the objective surface 𝒮, the problem has the form:

(𝑃5.1): min
x
𝑑(𝒙, 𝑆)2 , such that at all nodes:∑𝑭 = 𝒑, (5. 1)

where 𝑑 is a distance measuring the fitness of the points on the surface. This is a convex objective function

with nonlinear constraints. This is the general closest-fit problem formulation for funicular bar networks;

the specifics of the distance function 𝑑 used in this research are given in Section 5.3.

97

5.2.2 Force density method

The force density method (Schek, 1974), is a method well-suited to explore a large number of funicular

structures resulting from the same initial bar network. Three assumptions are made: (i) every bar is elas-

tically stretched proportionally to the force it carries following Hooke’s law (constitutive equation), (ii) the

length of a bar is equal to the distance between the nodes that it connects (compatibility equation) and (iii)

each node is in equilibrium (equilibrium equation). Mathematically, this becomes:

{

𝑪𝑁
𝑇𝑸𝑪𝑁𝒙𝑁 + 𝑪𝑁

𝑇𝑸𝑪𝐹𝒙𝐹 − 𝒑𝑥 = 0

𝑪𝑁
𝑇𝑸𝑪𝑁𝒚𝑁 + 𝑪𝑁

𝑇𝑸𝑪𝐹𝒚𝐹 − 𝒑𝑦 = 0

𝑪𝑁
𝑇𝑸𝑪𝑁𝒛𝑁 + 𝑪𝑁

𝑇𝑸𝑪𝐹𝒛𝐹 − 𝒑𝑧 = 0

. (5. 2)

Here, 𝑪𝑁 is the edge matrix for the free nodes, taking value -1 for the start node of a bar and +1 at its end

node; 𝑪𝐹 is the edge matrix for the fixed nodes; 𝒙, 𝒚, and 𝒛 are the positions of the nodes; 𝑸 is the diagonal

matrix of the force densities; and 𝒑 is the vector of all external loads. Recall that the force density 𝑞 is the

ratio of the force in a bar, 𝑠, to its length, 𝑙:

𝑞 = 𝑠 𝑙⁄ . (5.3)

We set for clarity 𝑫𝑁 = 𝑪𝑁
𝑇𝑸𝑪𝑁 and 𝑫𝐹 = 𝑪𝑁

𝑇𝑸𝑪𝐹. The nodal positions solving a direct problem can

then be found using only linear algebra:

{

𝒙𝑁 = 𝑫𝑁
−1(𝒑𝑥 − 𝑫𝐹𝒙𝐹)

𝒚𝑁 = 𝑫𝑁
−1(𝒑𝑦 − 𝑫𝐹𝒚𝐹)

𝒛𝑁 = 𝑫𝑁
−1(𝒑𝑧 − 𝑫𝐹𝒛𝐹)

. (5.4)

However, finding the solution to an inverse problem, where the target shape is known and the force densities

are the unknown, is not evident, as there is no clear link between the two.

5.2.3 Rationalization of freeform surfaces with funicularity constraints

As shown above, different choices of force densities naturally lead to different funicular solutions. This is a

consequence of the linearization of the system of equilibrium equations where, physically, different stiffness

is assigned to each bar of the network. If we recall that the initial problem is to solve the equilibrium of a

bar network, it is cogent that different distributions of stiffness yield different equilibrium shapes. We can

use these force densities to obtain a funicular network that fits a target surface as close as possible. The

strategy is illustrated in Figure 1.1 and formalized in Section 5.3.

98

Figure 5.1: Rationalizing a freeform surface (a): (b) choose numbers of branches 𝑛𝑥 and 𝑛𝑦 in the x and y directions,

(c) approximate the target surface by projecting the grid vertically and (d) compare to the funicular network found

using the force density method. Then, optimize the force densities to reduce the distance.

5.3 Problem Formulation

To keep the problem tractable, we constrain it from the outset by imposing that the nodes will only move

vertically from their initial positions. This can be achieved by reducing the number of free parameters, i.e.

by imposing that each bar of a branch has the same force density. This constraint is derived by analyzing

the horizontal equilibrium of a single node in a quadrilateral grid. In particular, this means that two bars

initially aligned must carry the same horizontal force, related to their force density and length by Equation

(5.3). Given that we restrict our problem to a regular rectangular grid, the lengths of two bars belonging to

the same branch must thus be equal and so must be their force densities. The matrix 𝑲, whose entries are

all 0 or 1, is introduced to link the bar force densities 𝑞𝑖’s to the 𝑛𝑥 + 𝑛𝑦 independent branch force densities:

𝒒 = 𝑲𝒃. (5. 5)

Since we have restricted our problem to vertical displacements only, we are able to devise a simple metric

for the distance between a bar network and our target surface. This metric is defined as follows:

𝑑(𝒛𝑁) = ‖𝒛𝑁 − 𝒛𝑇‖
2 , (5. 6)

where 𝒛𝑁 is the vector of the z-coordinates of the free nodes of the funicular bar network and 𝒛𝑇 is the

vector of the target z-coordinates, i.e. the z-coordinates of the grid nodes projected on the target surface.

5.3.1 Unconstrained Problem

The inverse form-finding problem is the nonlinear, unconstrained optimization problem formulated as fol-

lows:

99

(𝑃5.2): min
𝒃
 𝐹(𝒃) = ‖(𝑫𝑁

−1(𝒑𝑧 −𝑫𝐹𝒛𝐹)) − 𝒛𝑇‖
2

, (5. 7)

where 𝑫𝑁 = 𝑪𝑁
𝑇𝑑𝑖𝑎𝑔(𝒒)𝑪𝑁, 𝑫𝐹 = 𝑪𝑁

𝑇𝑑𝑖𝑎𝑔(𝒒)𝑪𝐹, and 𝒒 = 𝑲𝒃. Even though (𝑃5.2) is not convex for

all values of 𝒃, convexity can be found and gradient-based methods for solving it are still available if the

problem is constrained to a smaller domain.

5.3.1.1 Gradient

To find the gradient of the objective function, we first look for the Jacobian 𝑱(𝒃) of the function

𝒇(𝒃) = 𝒛𝑁(𝒃) − 𝒛𝑇. Using the chain rule, we get:

𝑱(𝒃) =
 𝜕𝒇

 𝜕𝒛𝑁

 𝜕𝒛𝑁(𝒒)

 𝜕𝒒

 𝜕𝒒(𝒃)

 𝜕𝒃
. (5. 8)

With
 𝜕𝒇

 𝜕𝒛𝑁
= 1 ,

 𝜕𝒛𝑁(𝒒)

 𝜕𝒒
= −𝑫𝑁

−1𝑪𝑁
𝑇𝑾 (from (Schek, 1974)), and

 𝜕𝒒(𝒃)

 𝜕𝒃
 = 𝑲 , we get:

𝑱(𝒃) = −𝑫𝑁
−1𝑪𝑁

𝑇𝑾 . 𝑾 is the diagonal matrix of the lengths of the bars projected on the 𝑧 axis:

𝑾 = 𝑑𝑖𝑎𝑔(𝑪𝑁𝒛𝑁 + 𝑪𝐹𝒛𝐹). Finally, the gradient of the objective function is:

∇𝒃‖𝒛𝑁 − 𝒛𝑇‖
2 = −2 𝑲𝑇 .𝑾. 𝑪𝑁 . 𝑫𝑁

−T. (𝒛𝑁 − 𝒛𝑇). (5.9)

5.3.1.2 Hessian

It is also possible to obtain the Hessian of 𝐹(𝒃) in a similar fashion. This derivation, or a similar one for

equivalent problems, was not found in the literature by the author.

𝑯(𝒃) =
𝜕2‖𝒛 − 𝒛𝑇‖

𝜕𝒃2
= 2 ∗

𝜕

𝜕𝒃
((𝒛 − 𝒛𝑇)

𝑇 .
𝜕(𝒛 − 𝒛𝑇)

𝜕𝒃
)

= 2 ∗ (𝑱(𝒃)𝑇. 𝑱(𝒃) +∑ (𝒛 − 𝒛𝑇)𝑖.
𝜕2𝑧𝑖(𝒃)

𝜕𝒃2𝑖
)

(5. 10)

We used an explicit summation to lift any ambiguity on the third-order tensor contraction. To get
𝜕2𝒛𝑖(𝒃)

𝜕𝒃2
,

we apply the chain rule twice on 𝒃 = 𝒃(𝒒) and note that 𝑲 is constant in 𝒃, to reuse the expression of 𝑱(𝒃):

𝜕2𝑧𝑖(𝒃)

𝜕𝒃2
=
𝜕

𝜕𝒃
(
𝜕𝑧𝑖(𝒃)

𝜕𝒒
.
𝜕𝒒

𝜕𝒃
) =

𝜕

𝜕𝒃
(
𝜕𝑧𝑖(𝒃)

𝜕𝒒
.𝑲) =

𝜕2𝑧𝑖(𝒃)

𝜕𝒃𝜕𝒒
. 𝑲 = 𝑲𝑇 .

𝜕2𝑧𝑖(𝒃)

𝜕𝒒2
. 𝑲

= 𝑲𝑇 .
𝜕

𝜕𝒒
(−𝑫−1𝑪𝑇𝑾)𝑖,.. 𝑲 ,

(5. 11)

100

where (−𝑫−1𝑪𝑇𝑾)𝑖,. is the ith row of 𝑱(𝒃). Then, for each component, using equation (59) from Petersen

and Pedersen (2012) for the one variable derivative of the inverse of a matrix:

{
𝜕2𝑧𝛼(𝒃)

𝜕𝒒2
}
𝑖,𝑗

= {
𝜕

𝜕𝑞𝑖
(−𝑫−1𝑪𝑇𝑾)𝛼,𝑗}

𝑖,𝑗

= {[𝑫−1𝑪𝑇
𝜕𝑸

𝜕𝑞𝑖
𝑪𝑫−1𝑪𝑇𝑾]

𝛼,𝑗

}

𝑖,𝑗

. (5. 12)

Since 𝑸 = diag(𝒒) ,
𝜕𝑸

𝜕𝑞𝑖
 is a matrix of zeros with only one 1 on the diagonal in row 𝑖 . Then, we have

𝑪𝑇
𝜕𝑸

𝜕𝑞𝑖
𝑪 = 𝐶𝑖,𝑖

2 = 1 since 𝑪 is made entirely of 1 and −1. We get:

{
𝜕2𝑧𝛼(𝒃)

𝜕𝒒2
}
𝑖,𝑗

= {[𝑫−2𝑪𝑇𝑾]𝛼,𝑗}𝑖,𝑗 = (

[𝑫−2𝑪𝑇𝑾]𝛼,1
⋮

[𝑫−2𝑪𝑇𝑾]𝛼,𝑛𝑞

)

𝑖,𝑗

. (5. 13)

Finally by replacing
𝜕2𝑧𝑖(𝒃)

𝜕𝒃2
 with its value, reorganizing the sum and compacting it to a matrix product:

𝑯(𝒃) = 2 ∗ (𝑱(𝒃)𝑇𝑱(𝒃) + 𝑲(
(𝒛 − 𝒛𝑇) . [𝑫

−2𝑪𝑇𝑾]
⋮

(𝒛 − 𝒛𝑇) . [𝑫
−2𝑪𝑇𝑾]

)𝑲𝑇) . (5. 14)

This matrix has a rank deficiency of 1, the consequences of which are discussed in the example problem of

Section 5.4.1.1 and in general in Section 5.3.3.

5.3.2 Structure of the unconstrained problem

To gain insight into the problem, the simplest example comprised of four bars and one node is analyzed.

Although the bar network has four bars, it only has two branches, hence two independent force parameters,

which will allow us to visualize the objective function. The physical problem is presented visually in Figure

5.2. The goal of the optimization is to have 𝒛𝑁 reach 𝒛𝑇 by modifying the independent force densities of

the network, namely 𝑏1 and 𝑏2. In this particular problem, it is obvious that it is possible to fit a funicular

solution to the target since the target is itself funicular. This simple problem is thus well-suited not only for

understanding the problem but also to test out algorithms. In the numerical applications, 𝐿, 𝑊, 𝒛𝑇, and 𝒑𝑧

are respectively equal to 10, 10, 4, and 10.

101

Figure 5.2: The four-bar problem.

As seen in Figure 5.3 (left), the problem is nonconvex and has a line of global minima. The level sets of the

objective function are lines with the following form:

𝐹𝛼(𝑏1, 𝑏2) = {
𝑏1 + 𝑏2 = 𝐶𝛼

𝑧 = 𝛼
, (5. 15)

where 𝐶𝛼 is a constant depending on 𝛼. From the form of the level sets, we see that the gradient always has

the same direction (1,1); only its scale and sign will change. However, depending on the starting point, a

computational optimization scheme based on the gradient will not necessarily converge. This is particularly

clear when looking at the section of the objective surface by the plane b1 = b2. For a starting point (𝑏0
1, 𝑏0

2),

a gradient-based algorithm will converge only if at all steps:

(𝑏𝑘
1, 𝑏𝑘

2) ∈ {(𝑏1, 𝑏2) ∈ ℝ
2 | 𝑏1 + 𝑏2 > 0}. (5. 16)

A partial solution to the non-convexity issue is to reformulate our problem and constrain it to the positive

orthant. This will solve the problem of the choice of the starting point. Moreover, in the four-bar example,

the plane b1+b2 = 0 is particular because it corresponds to a state of physical instability: with these force

densities, the bars cannot equilibrate the vertical force. In general, this is a problem that can arise if we

allow for force densities of different signs. By restricting the problem to non-negative densities, the issue

is simply avoided.

5.3.3 Structure of the constrained problem

We constrain the base set of problem (𝑃5.2) to the non-negative orthant, to obtain (𝑃5.3):

(𝑃5.3):min
𝑏
 𝐹(𝒃) = ‖(𝑫𝑁

−1(𝒑𝑧 −𝑫𝐹𝒛𝐹)) − 𝒛𝑇‖
2

s.t. 𝒃 ≥ 𝟎

(5. 17)

Two details are of importance in the structure of (𝑃5.3). First, the objective shape is in general not a funic-

ular shape so the optimum value will be an unknown positive number. This means that solvers cannot be

102

stopped based on the current function value being closed to zero, but only based on the improvement in the

objective function or the size step.

Second, as mentioned in Section 5.3.1.2, the Hessian matrix of (𝑃5.2) has a rank deficiency of 1. The same

goes for the matrices 𝑪 and 𝑨 = abs(𝑪) of the absolute values of the components of 𝑪. 𝑨 represents the

indices of the bars connected to each node, or equivalently the indices of the forces acting on each node,

and so is locally representative of the structure of the possible equilibrium positions. Reordering the rows

of 𝑪, the structure of 𝑨 can be written:

𝑨 =

(

 Iny

1 0 0 … 0
⋮ ⋮ ⋮ … ⋮
1 0 0 … 0

⏞
nx

Iny

0 1 0 … 0
⋮ ⋮ ⋮ … ⋮
0 1 0 … 0

⋮ ⋮

Iny

0 0 … 0 1
⋮ ⋮ … ⋮ ⋮
0 0 … 0 1)

, (5. 18)

with 𝑛𝑥 and 𝑛𝑦 the number of independent force density values in the 𝑥 and 𝑦 directions, respectively, and

supposing 𝑛𝑥 < 𝑛𝑦. This matrix has a rank deficiency of 1, giving an indeterminacy in the force density

method problem: a linear combination of the independent force densities will give the same result in the

final shape. Given the structure of 𝐴, one could believe that those equivalent values are in a vector space of

dimension 1; however, the positions of the nodes at equilibrium are related to 𝑨 and 𝒃 only after multipli-

cations by the lengths of the bars to get to forces acting on the nodes. There is no clear structure to the set

of equivalent independent force densities values.

This indeterminacy is detrimental to the quality of the optimization processes. At every point one direction

of the problem will always be flat, so the solver will never search in that direction even though it might be

on a shorter path to the optimum. Also, it means that solutions exist with unbalanced values of the inde-

pendent force densities. This is also generally unwanted physically – it leads to a high concentration of

forces in certain bars.

One possible remedy is to remove the indeterminacy by adding the constraint ∑ 𝑏𝑖
𝑛𝑥
𝑖=1 = ∑ 𝑏𝑖

𝑛𝑥
𝑖=1 , following

the structure of the 4-bar problem. While this works well in the unconstrained problem, it stops the algo-

rithm too soon in the constrained problem. In fact, when the algorithm finds an optimum on the frontier of

one of the inequality constraints and the equality constraint proposed above, it will not be able to get away

103

from the barrier in the flat direction at that point to then follow a descent direction again. This constraint

was not used in the rest of this chapter except for part of Section 5.4.2.

5.4 Results

5.4.1 Steepest Descent Algorithm (SDA)

In this section, we apply the steepest descent Algorithm 5.1 to the unconstrained problem. The gradient of

the objective function with respect to the independent force densities was given by Equation (5.9). The

gradient can be used to provide a descent direction; as a matter of fact, it provides the steepest descent

direction. The step-size is determined by computing 𝛼𝑘 ≔ argmin
𝛼

𝐹(𝑏𝑘 + 𝛼𝑑𝑘). Hence, in order to find

𝛼𝑘, one has to solve:

2 ((𝐷𝑁
−1𝐶𝑁

𝑇𝑊)|
𝑏=𝑏𝑘+𝛼𝑑𝑘

∗ 𝐾 ∗ 𝐽(𝑏𝑘)𝑇 ∗ (𝑧𝑁 − 𝑧𝑇)|𝑏=𝑏𝑘)
𝑇

∗ (𝑧𝑁 − 𝑧𝑇)|𝑏=𝑏𝑘+𝛼𝑑𝑘 = 0. (5. 19)

No closed-form solution exists in general and we must resort to an approximate line-search by bisection.

Algorithm 5.1: Steepest Descent Algorithm (SDA)

Initialize at 𝑏0, and set 𝑘 ← 0

At iteration 𝑘:

1. 𝑑𝑘 ≔ −∇𝐹(𝑏𝑘) = −2 𝐽(𝑏𝑘)
𝑇
(𝑧𝑁
𝑘 − 𝑧𝑇). If ||𝑑

𝑘|| ≤ ε, then stop (휀 is specified tolerance)

2. Choose step-size 𝛼𝑘 (by performing a line-search)

3. Set 𝑥𝑘+1 ← 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 ← 𝑘 + 1

5.4.1.1 Example 1: 4-bar problem

We use Algorithm 5.1 on the four-bar problem introduced in Section 5.3.2. We apply the steepest descent

algorithm with and without line-search. Our starting point is 𝒃0 = (10,10).

With the line-search, the algorithm converges in one step, which was expected given the structure of the

problem. We note however that we had to modify the bisection algorithm as to avoid overshooting past the

plane 𝑏1 + 𝑏2 = 0, i.e. we had to set an upper bound for the choice of the step-size. Because we knew the

objective surface beforehand and knowingly chose an easy starting point, this constraint was easy to imple-

ment as follows:

104

𝛼𝑘 ≤ min(|
𝑏𝑘

𝑑𝑘
|) , (5. 20)

where 𝑏𝑘 𝑑𝑘⁄ indicates a component-wise division. Generally, this constraint is not necessarily as easy to

formulate. This problem is a motivation for constraining the problem to non-negative force densities. With-

out the line-search (arbitrary step-size of 0.001), the algorithm expectedly converges very slowly as seen in

Figure 5.3 (right).

Figure 5.3: (left) The objective surface with the optimization path (black curve) for the steepest descent algorithm

with a fixed step-size of 0.001. At every iteration, the direction of the gradient remains unchanged because the level

sets of the function are parallel lines. (right) Convergence profile of the steepest descent algorithm with a step-size

of 0.001, for the 4-bar problem.

Figure 5.4: Target surface (left) vs. optimum surface found (right).

105

5.4.1.2 Example 2: 10x10-bar problem

In this example, we deal with a larger dimension problem, i.e. a grid network of size 10 by 10 nodes. The

target surface and optimum found are presented in Figure 5.4. Applying the steepest descent algorithm with

the starting point 𝒃0 = [10…10]𝑇, where 𝒃0 has 20 components, the problem converges to the optimum

solution (𝐹∗ = 38.1539) in 4213 iterations. Convergence is defined by a relative change in the objective

value of less than 10−6. Figure 5.5 (a) shows that the algorithm converges quickly in the first 20 iterations

but considerably slows downs afterward. If instead, we use a starting point 𝒃0 = [1…1]𝑇, the algorithm

does not converge. A solution is to set up an arbitrarily low step-size, as in the previous example but it

results in an exceptionally slow algorithm. Again, these observations motivate us to switch to a constrained

problem.

5.4.2 Quasi-Newton Methods

In this section, we focus on finding a performant algorithm for solving (𝑷𝟓.𝟑) in the 100 nodes examples

of section 5.4.1.2. Looking at the poor performance of the SDA in a realistic problem, we implemented a

Newton Method (NM) with line-search, Algorithm 5.2. Because the method relies on inverting the Hessian,

non-invertible as per Section 5.3.3, it was necessary to enforce the additional constraint ∑ 𝒃𝒊
𝒏𝒙
𝒊=𝟏 = ∑ 𝒃𝒊

𝒏𝒙
𝒊=𝟏 .

The constraint is written as an additional line in the Hessian and the gradient is augmented by one compo-

nent equal to 𝟎 to get a well-formed system of equations in the first step of Algorithm 5.2.

Algorithm 5.2: Newton’s method (NM)

Initialize at 𝑏0, and set 𝑘 ← 0. Let 휀 > 0 be a given error tolerance.

At iteration 𝑘:

1. Set 𝐻𝑐𝑜𝑛𝑠𝑡(𝑏
𝑘) = (

𝐻(𝑏𝑘)

1 ⋯ 1⏟
𝑛𝑥

−1 ⋯ −1⏟
𝑛𝑦

), ∇𝐹𝑐𝑜𝑛𝑠𝑡(𝑏
𝑘) = (

∇𝐹(𝑏𝑘)

0
).

2. 𝑑𝑘 ≔ −𝐻𝑐𝑜𝑛𝑠𝑡(𝑏
𝑘)
−1
∇𝐹𝑐𝑜𝑛𝑠𝑡(𝑏

𝑘). If ‖𝑑𝑘‖ ≤ ε, then stop.

3. Choose step-size 𝛼𝑘 = argminα≥0 𝐹(𝑏
𝑘 + 𝛼𝑑𝑘).

4. Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 = 𝑘 + 1

However, given the narrow zone in which the objective function of (𝑃5.3) is convex, this method only con-

verges with a starting point very close to the optimum. In practice, we were only able to obtain convergence

by using a starting point found as a result of the SDA, stopped when the relative change in the objective

value was 10−3.

106

(a)
(b)

Figure 5.5: Convergence profile of (a) the steepest descent algorithm with an inexact line-search, and (b) of the

interior-point method for the 10x10 bar problem.

5.4.2.1 Levenberg-Marquardt algorithm

To have a better convergence rate for the final iterations along with a large convergence domain, we used

the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) implementation in MATLAB

(The Mathworks Inc., 2015) for non-linear least-square problems. This is the method used by Van Mele et

al. (2011).

The Levenberg-Marquardt algorithm uses a search direction that is intermediate between the one found in

the SDA and the one found in NM. A parameter is used to orient the amount by which the problem is similar

to the SDA or the NM. At the beginning, this parameter is chosen so that the problem is very close to the

SDA (to get a large convergence region) and is progressively updated to match more closely the NM (to

get a faster convergence rate). Because the problem is never exactly the NM, the non-invertible Hessian is

not a problem anymore and we can eliminate the additional constraint used above.

Using this method, we were able to find a solution with the same optimum value as in Section 5.4.1.2, in

1585 iterations using the same stopping criterion. However with several values of the force densities found

are negative, which is unacceptable if we were to build the solution. In consequence, we look at constrained

solvers to find solutions to (𝑃5.3) in both reasonable time and large convergence.

5.4.3 Solvers for the constrained problem

Using the solvers implemented in MATLAB’s fmincon package, we looked at their relative performance

for solving (𝑃5.3) in the 100 nodes example presented in Section 5.4.1.2. The results are compiled in Table

5.1. The solvers are always stopped when the relative improvement in objective value is less than 10−6.

107

Table 5.1: Performance comparison of constrained nonlinear solvers in the 100 nodes example.

(*An additional constraint was added to the interior point method.)

Algorithm Iterations Function calls Objective value

Interior point* 887 1070 38.2510

Sequential Quadrating Programming 923 1431 38.2356

Trust region reflective 28 29 38.2356

The gradient is given explicitly to the solvers. The Hessian is computed numerically by the solvers, as some

of them do not accept a user-defined analytical expression for the Hessian.

Convergence was always obtained when the initial point was a vector of identical independent force densi-

ties within one order of magnitude (above or below) of the uniform load at the nodes. It should be noted

that the excellent convergence rate of the Trust region reflective algorithm fades when the stopping criterion

is made smaller.

For the interior point method, the solver quickly gets stuck against a bound and, because it relies heavily

on the Hessian, does not explore in the flat direction of the problem. When the additional constraint

∑ 𝑏𝑖
𝑛𝑥
𝑖=1 = ∑ 𝑏𝑖

𝑛𝑥
𝑖=1 is added, we get the convergence as for the other algorithms, this is the result presented

in Table 5.1. This explains the different objective values found at the optimum. See Figure 5.5 (b) for a

typical evolution of the objective values using the interior-point method from a poor starting point.

5.5 Conclusions

In this chapter, we analyzed the structure of a closest-fit inverse form-finding problem for funicular struc-

ture. Using the force density method framework, we optimized the force densities of a bar network to reach

a target surface. We formulated the problem first as an unconstrained optimization problem and calculated

the analytic expressions of the gradient and Hessian of the problem. Based on this, we applied the steepest

descent algorithm on a 4-bar problem. The insight gained from this analysis motivated the introduction of

a non-negative force densities constraint. The constraint was dealt with computationally by using nonlinear

constrained optimization methods that proved effective, especially the interior point and trust-region reflec-

tive methods. We note that, for particular surfaces, the constraint will yield solutions that are sub-optimal

compared to solutions of the unconstrained problem. Yet, both for physical and for computational stability

motives, the constraint introduced is useful.

108

Future work should be focused on handling realistic construction constraints, for example limits on the

forces in the bars or smaller deviations of those forces. Looking at self-weight funicular structures, where

the applied load is a function of the geometry of the shell, is also promising. Finally, the optimization

strategy presented in this work could be integrated into a user-guided design tool used by designers to

directly create and interact with funicular structures.

6 Inverse form-finding of funicular structures: Functional design

objectives

This chapter builds on and improves the simple inverse form-finding system for funicular surfaces of Chap-

ter 5 to produce a feature-based representation of the design objective. Thanks to a functional representation

of this objective, combined with automatic differentiation and a “perfect” forward simulation process – that

is fast and always produces a result, we construct a workflow that not only does inverse form-finding to-

wards a target shape, but to any objective that the designer can represent as a function of the properties of

the current iteration. This is a novel way of looking at inverse form-finding design, that we find very prom-

ising in its potential uses.

6.1 Introduction

In our exploration of inverse form-finding, we have so far focused on a single type of objective: a target

shape. However, not all design intents can be efficiently encoded as a target shape. For example, they cannot

represent design objectives such as “aim at having all members of the structure be the same length”. We

hinted at this issue in Chapter 5, and before that in Chapter 2 when we looked at structures built of several

110

construction systems that each need to be form-found. While many of these issues have been tackled sepa-

rately, as part of a forward form-finding system usually, we propose in this chapter a different approach and

instead aim at extending the outer optimizer of an inverse form-finding system so that it can optimize for

multiple and diverse objective types (combining several objectives in a composite objective function if

needed).

While many general-purpose optimizers can accommodate this, we have found that to obtain meaningful

results in a limited time, they work best when combined with a technique called Automatic Differentiation

that could provide exact and fast gradient values to the optimizer at each iteration. To be able to optimize

for general user-coded objectives, and because most general-purpose optimizers require some gradient in-

formation to converge, we need to have a way to derive that information automatically. Otherwise, we

would have to resort to a catalog of pre-coded objectives that the designer could select, and manually com-

pute and code their gradients. The traditional way of solving this issue is to use finite differencing, a tech-

nique we used in Chapter 4. However, this is a slow process, especially when the number of variables is

large as it requires on the order of one forward simulation per variable to compute the gradient. Thus, we

constructed our inverse form-finding framework for funicular structures so that it could use automatic dif-

ferentiation.

Automatic differentiation, a computational tool that automatically finds an exact yet efficient gradient of

general procedures, has recently seen renewed interest due to its usefulness in machine learning algorithms

(Baydin et al., 2018). The tools developed there are useful for many other optimization problems, such as

those encountered in form-finding problems with constraints or objectives of best-fit to target. In this work,

we will demonstrate this by building a differentiable framework for the form-finding of funicular surfaces,

with additional constraints. The word differentiability here is taken to mean that the system will be able to

output gradients for all its numerical procedures, without the programmer explicitly encoding them. Adding

an objective will only require a function giving its value, the gradient is automatically computed from this

function.

Because we set up our problem as an inverse form-finding problem with nested solvers as we have done

several times now in this dissertation, we have the guarantee that all results generated will solve the forward

form-finding simulation. Specifically, here we use the force density method to form-find funicular shapes,

this means that all the results we will extract from our complete workflow will be funicular, and optimize

as best we can the objectives given by the designer. This will let us explore the design space of funicular

structures in a very directed and efficient way. This has the potential to significantly change the way we

usually look at inverse form-finding, as the designer will now be able to encode much more complex fea-

tures than approaching a target shape. It also paves the way for multi-criteria design, where for example a

111

funicular structure is optimized to be close to a shape buildable by an elastic gridshell, or optimized to

reduce the energy consumption of the space it encloses, for example.

Generally, the optimization problems we solve here are very close to what we did in Chapter 5, but with a

general objective function. Also, we directly use the force densities as variables rather than the independent

ones on square grids, to be able to use any kind of meshing:

(𝑃6.1): min
𝑞
𝑓(𝐱) , where 𝐱 = 𝐃𝐍

−1(𝐩 − 𝐃𝐟𝐱𝐟). (6. 1)

For example, we could find a funicular surface that is close to a target surface and minimizes the length

differences in its members by choosing the objective function as:

𝑓(𝐱) =∑‖𝑥𝑖 − 𝑥𝑖
𝑡𝑎𝑟𝑔𝑒𝑡

‖
2

𝑖

+∑(𝑙𝑗 − 𝑙
𝑡𝑎𝑟𝑔𝑒𝑡)

2

𝑗

. (6. 2)

6.2 Background

6.2.1 Related work

Our approach is based on the force density method as expressed for the first time by Schek (1974). This lets

us generate equilibrium shapes for meshes, given their constitutive properties of connectivity (connectivity

matrix 𝐂) and stiffness (force densities 𝐐), and external loads 𝐩, that is funicular shapes (see Chapter 5 for

more details):

{

𝒙𝑁 = 𝑫𝑁
−1(𝒑𝑥 −𝑫𝐹𝒙𝐹)

𝒚𝑁 = 𝑫𝑁
−1(𝒑𝑦 −𝑫𝐹𝒚𝐹)

𝒛𝑁 = 𝑫𝑁
−1(𝒑𝑧 −𝑫𝐹𝒛𝐹)

, where 𝑫𝑁 = 𝑪𝑁
𝑇𝑸𝑪𝑁 and 𝑫𝐹 = 𝑪𝑁

𝑇𝑸𝑪𝐹. (5.4)

We use these shapes as the basis of a design space and then optimize for various objectives inside this

design space.

This is related to other design systems for funicular structures that use thrust network analysis, a method

related to the force density method, to generate funicular forms, and optimize these to match a best-fit-to-

target objective (Block & Lachauer, 2011; Van Mele et al., 2014). Here, we use the force density method

as a generator, tack on additional objectives on our designs, and integrate this in an optimization program,

with the force densities as variables. Similarly, several non-linear force density methods formulations have

been proposed to introduce additional constraints to the force density method, such as to account for time-

112

dependent behavior (Kmet & Mojdis, 2015), material non-linearities in membranes (Koohestani, 2014), or

to fix some nodal positions or reaction forces and solve for compressive elements (Malerba et al., 2012;

Miki & Kawaguchi, 2010). These cited works also use an optimization loop to solve their respective specific

non-linear problems. Even in the original force density paper (Schek, 1974), a workflow around the opti-

mization of the force density method’s results is already described, see Figure 6.1. In these and previous

systems however, there is a high cost associated with adding a new objective, because an explicit procedure

computing its gradient is required to get an efficient optimization program.

Figure 6.1: The optimization system for design objectives described by Schek (1974), and some of the gradients

calculations needed.

Additionally, there are existing systems that have been presented for the design of funicular surfaces, that

do not use the linearization opportunities of the force density method. For example, Vouga et al. (2012) use

a formulation of the equilibrium of funicular surfaces discretized with discrete differential geometry tools

on meshes, and solve the resulting non-linear problems using a conjugate gradient solver to find a funicular

surface close to a target surface. De Goes et al. (2013) improve on this framework both in terms of solving

speed and details encoded in the material behavior’s discretization. Finally, Tang et al. (2014) discretize

the same constitutive equations in a subdivision surfaces framework to allow for true 3-dimensional target

shapes, rather than the 2.5-dimensional heightmaps from the previous works. While all these workflows

encode more details and precision in their formulation of the constitutive equations of funicular surfaces

than a simple force density method formulation, this is only true for meshes that represent continuous sur-

faces. For rigid gridshells made of discrete linear elements, the force density method formulation that lumps

the membrane behavior in the edges of the mesh is sufficient. More importantly, they are all restricted in

the objectives that they can solve for, usually a target surface. The reason is that gradients of the objective

113

function are always needed to produce a form-finding workflow with sufficient speed and stability. Because

these need to be coded manually, the designer is not able to add different objectives or even combine exist-

ing ones in different ways. Using only a target surface as the objective seriously the level of abstraction that

can be encoded in this objective, and prevents us from exploring the design space of funicular surfaces in

more complex directions than finding the closest one to a target surface.

6.2.2 Automatic differentiation

To overcome these limitations, we propose to use automatic differentiation. Automatic differentiation is a

computational process in which a software function is automatically transformed to produce derivative

values as well as the regular function value. It differs from usual ways of software differentiation in im-

portant ways, see Figure 6.2:

- It does not require manually deriving an expression for the gradient of the function, as would a

code not using any kind of software differentiation

- It produces code that is often faster than what symbolic differentiation produces. Symbolic differ-

entiation recognizes known mathematical expressions in the function taken as one operation, de-

rives them, and combines and simplifies them using classical mathematical rules. Compared to

automatic differentiation, it is a slow process that does not deal well with software constructs such

as branches and loops.

- It produces exact values for the gradients, and does not suffer from numerical instabilities like nu-

merical differentiation (or finite differencing) does. Finite differencing finds derivatives by approx-

imating with the limit definition of derivatives: 𝑓′(𝑥) ≈ (𝑓(𝑥 + ℎ) − 𝑓(𝑥)) ℎ⁄ , for ℎ small.

Instead, automatic differentiation attaches to each basic mathematical operation information about how to

compute its derivatives, formally replacing code that computes 𝑓: 𝑣 ⟼ 𝑓(𝑣) by 𝑓: (𝑣, d𝑣) ⟼

(𝑓(𝑣), 𝑓′(𝑣)d𝑣). It then computes and combines them as the code is executed. This is a mathematically

exact operation, that also works through branches and loops. This means the calculation of derivatives will

follow a very similar code path than the simple function, and so be on the same order of execution time.

There are two main modes to automatic differentiation: forward mode and reverse mode. The forward mode

is the simplest in its implementation, it combines derivatives using a chain rule. Imagining that our function

𝑓 can be decomposed into a series of basic mathematical operations 𝑓 = 𝑓1 ∘ 𝑓2 ∘ … ∘ 𝑓𝑛, we have:

𝜕𝑓(𝑣) = 𝜕𝑓1(𝑓2 ∘ … ∘ 𝑓𝑛(𝑣)) × 𝜕𝑓2(𝑓3 ∘ … ∘ 𝑓𝑛(𝑣)) × …× 𝜕𝑓𝑛(𝑣). (6. 3)

114

Figure 6.2: Different ways of obtaining derivatives for a computational function: manual differentiation, symbolic,

numerical, and automatic. After Baydin et al. (2018).

So if, when computing 𝑓𝑖(𝑥), where 𝑥 = 𝑓𝑖+1 ∘ … ∘ 𝑓𝑛(𝑣), we also compute and save 𝜕𝑓𝑖(𝑥) thanks to the

derivative function attached to each basic operation, we will be able to compute 𝜕𝑓 by propagating these

derivatives forward through the function code. The reverse mode is similar but uses the adjoint method to

propagate derivatives backward, in effect finding which variation of the input gives a given variation of the

output.

These two modes mainly differ in practice when applied to multiple-valued functions of multiple variables.

When applied to 𝑓:ℝ𝑛 → ℝ𝑚, forward takes on the order of 𝑛 times the number of operations needed to

compute 𝑓; reverse mode takes on the order of 𝑚 times the number of operations needed to compute 𝑓. So

𝑙1 = 𝑥
𝑙𝑛+1 = 4𝑙𝑛 1 − 𝑙𝑛

𝑓′ 𝑥 = 128𝑥 1 − 𝑥 −8+ 16𝑥 (1 −

2𝑥2) 1 − 8𝑥 + 8𝑥2 + 64 1− 𝑥 (1−

2𝑥)2 1 − 8𝑥 + 8𝑥2
2
− 64𝑥(1 −

2𝑥2) 1 − 8𝑥 + 8𝑥2
2
− 256𝑥 1 − 𝑥 (1 −

2𝑥) 1 − 8𝑥 + 8𝑥2
2

Manual

𝑓 𝑥 = 𝑙4 = 64𝑥 1 − 𝑥 1 − 2𝑥 2

 1 − 8𝑥 + 8𝑥2
2

Numerical

Symbolic

Automatic

Coding
Coding

115

in our case, where we mostly have scalar objective functions of many design variables, the reverse mode

will be much more adequate.

Automatic differentiation is a relatively old technique but has remained sparsely used until recently, when

the increased interest for machine learning and specifically deep learning made its characteristic extremely

desirable. The first ideas were outlined by Beda et al. (1959), with the first generalist implementations ap-

pearing in the 1980s (B. Speelpenning, 1980). Barthelemy and Hall (1995) were first to use it for engineer-

ing design and optimization of complex systems integrating structures, among other things. Big develop-

ments were made with the release of modern deep learning frameworks, which all integrated some form of

automatic differentiation that could be repurposed for general use: Theano (Bergstra et al., 2010), Tensor-

Flow (Abadi et al., 2016), Autograd (Maclaurin et al., 2014/2015), PyTorch (Paszke et al., 2019). It is now

being applied to a wider variety of problems in engineering where the objective function is either not pos-

sible to differentiate mathematically, or user-supplied and so unknown at coding time. For example, we can

cite applications in topology optimization (Nørgaard et al., 2017), robot physical simulation for gait learn-

ing (Degrave et al., 2017), rendering and material properties learning (Wu et al., 2017), or protein structure

prediction (Ingraham et al., 2019).

6.3 Methodology

We solve (𝑃6.1) by implementing the force density method in a package for automatic differentiation of

vector and matrix computations (specifically, we use Autograd (Maclaurin et al., 2014/2015)), and attach it

to a numerical solver for non-linear problems (we used SciPy, generally with L-BFGS). The resulting frame-

work can generate funicular shapes with arbitrary objectives as defined by the designer. Because no gradi-

ents are required from the designer, it is easy to modify the output by changing the constraints or objectives.

For example, we have experimented with objectives that make all elements lengths similar, or chosen from

a list of possible lengths, as well as flat panels, similar angles, and best-fit-to-target. The optimization pro-

grams are efficiently solved, returning in a runtime reasonable for iterative design even for problems with

as many as 10,000 elements.

We note that the force density method is a good example of a form-finding process for experimenting with

an automatic differentiation workflow, in that it is a direct problem that is well-behaved, where the results

of automatic differentiation can be compared to manual differentiation. It is also typical in its mathematical

structure, with its sparse connectivity and many variables attached to the edges and vertices, and in its

intent, as it gives one solution among many. Our workflow is then an exploration tool in the design space

116

generated by the force density method for a fixed mesh connectivity, as the force densities are varied – they

are our design variables.

The objectives can be specified as small Python functions, that depend on the equilibrium position of any

intermediary result.

6.4 Case studies

This section presents some of the results achieved using the framework presented earlier. It can be used to

reproduce the design briefs for some famous funicular shapes, as well as more artificial examples. The case

studies presented are summarized in Table 6.1, with the runtime of the optimizations needed for one solu-

tion of each structure.

The structures include approximations of the Mannheim Multihalle (referenced as “Mannheim” later on), a

dome shape formed of two arches meeting in the dome center at a 90° angle (“oculus”), the Teshima Art

Museum (“Teshima”), the California Academy of Sciences (“California”), and the Montevideo port ware-

house (“Gaussian vaults”).

The Mannheim Multihalle, built in Mannheim Germany in 1974 and designed by Frei Otto, Carlfried

Mutschler, and Winfried Langner, is an exhibition space initially built temporarily to house the 1975 Bun-

desgartenshau and kept later on (Happold & Lidell, 1975). It is an elastic gridshell made of hemlock wood,

spanning around 60 by 60 meters. The shape was selected to be close to funicular – initial physical form-

finding experiments were done with a network of hanging chains, as it was imagined the wood would creep

too much under the permanent bending moments of a non-funicular shape. See Figure 6.3.

Table 6.1: Timings to generate one optimization result in each of the presented examples. Measured on a 2.8 GHz

i7-7700HQ CPU.

 Nodes count Edges count Runtime [s]

Mannheim 705 1080 9.7

Oculus 4681 9060 5.9

Teshima 3313 1260 7.3

California 1684 3120 1.2

Gaussian vaults 880 1620 0.8

117

© Atelier Frei Otto Warmbronn From Wikimedia, public domain. (Burkhardt & Otto, 1978)

Figure 6.3: The Mannheim Multihalle, Germany, 1974, Frei Otto arch. From left to right, the complete structure,

covered with its PVC envelope, the gridshell as seen on the inside, and form-finding models.

© Thomas Seear-Budd © Iwan Baan © Office of Ryue Nishizawa

Figure 6.4: The Teshima Art Museum, Kagawa, Japan, 2010. Nishizawa arch.

The quad-arched dome shape is an invention for this work, representing a simple dome where the designer

wishes to have an opening on the top. It is modeled on a 20 meters wide base, with the arches each forming

a 10 meters boundary on the ground. See Section 6.4.2 images.

The Teshima Art Museum, built in 2010 on the island of Teshima, Kagawa Prefecture, Japan, and designed

by Ryue Nishizawa, hosts a single piece of artwork – Matrix, created by sculptor Rei Nato. It is a thin

concrete shell spanning about 40 by 60 meters, with a maximum height of 4.5 meters, see Figure 6.4. The

shape was optimized (using the control points of a NURBS surface as the variables) to reduce strain energy

while reproducing the architect’s target shape (Sasaki, 2014); however, it is not clear how much more effi-

cient the structure could be made (by being funicular), nor by how much it differs from the original design.

The California Academy of Sciences, for which a new building was erected in 2008 in San Francisco,

California, is a research institute and one of the world’s largest natural history museum (Wels, 2008). The

building was designed by architect Renzo Piano, in collaboration with SWA Group. It is about 160 meters

long by 90 meters wide and is covered by a hill-landscaped green roof of 2.5 acres. The tallest “hills” on

this roof are about 20 by 20 meters domes with a squared base, and perforated with circular skylights to a

varying degree. See Figure 6.5.

118

© Tim Griffith © WolfmanSF @ Wikimedia

Figure 6.5: The California Academy of Sciences, San Francisco, CA, USA. Renzo Piano & SWA Group arch.

© Cámara Uruguya de Logística © Leonardo Finotti © Jesse Eliot

Figure 6.6: The Montevideo port warehouse, Uruguay, 1979. Dieste arch

The Montevideo port warehouse is one of several similarly shaped roofs – so-called non-continuous gauss-

ian roofs – designed by Eladio Dieste from 1970 (Anderson et al., 2004). The warehouse was built in 1979,

is made of 14 double-curvature shells, each 7 meters wide and spanning close to 50 meters, with a maximum

rise of 8 meters. Each shell has an S-shaped cross-section, so that successive shells will slightly overlap

with a vertical gap. Through that gap, light can pass through and illuminate the space below. See Figure

6.6.

6.4.1 Mannheim Multihalle

First, we reproduced the design brief for the elastic gridshell of the Mannheim Multihalle: a shape that is

funicular under its own weight, covered by a grid of regular spacing. We reproduced the dimensions of the

structure faithfully, loaded it by a constant weight, and optimized for a target member length of 4 m initially,

which is reproducing 1/8th of the original grid density. To find this optimum, the objective function we used

in (𝑃6.1) is simple:

𝑓(𝐱) =∑(𝒍𝒊 − 𝒍𝒊
𝒕𝒂𝒓𝒈𝒆𝒕

)
𝟐

𝒊

. (6. 4)

119

The results of the simulations are shown in Figure 6.7, and the code this corresponds to in our system is

shown in Figure 6.8. While a simple force density method simulation with uniform force densities shows a

smooth shape, we can see that the member lengths this leads to a very spread out around 4 m; this would

prevent the structure to be built with an elastic gridshell from a flat regular grid, as was done in reality.

Hence to find a shape that could be built in this way, we initially optimize for all the members to be the

same 4 m length. While we can achieve a very tight grouping of the lengths around this value, this damages

the shape significantly, with many regions becoming too sharp. A possible solution is to allow the lengths

to take one of two values – as was done in reality with some irregular rows in the grid, and optimize for

minimum variations around these lengths. This is what we did in the bottom row of Figure 6.7, and we

effectively get back to a smoother shape while still seeing minimal length variations.

Moving from the first optimization to the second is only a small modification in the objective function code,

and results will be seen only a few seconds later as the simulation is run again. These small changes of

optimization functions demonstrate the flexibility of our system, something that is not usually possible in

typical inverse form-finding systems.

Figure 6.7: Equilibrium positions (left) and member length distribution (right) for a funicular surface reproducing

the Mannheim Multihalle shape. The first row is a simple force density method result with uniform force densities,

the second optimizes for a single 4 m grid size, the third allows members of length 3.5 m or 5.2 m.

𝑞 = 1

𝑙𝑡𝑎𝑟𝑔𝑒𝑡 = 4

𝑙𝑡𝑎𝑟𝑔𝑒𝑡 = {3.5, 5.2}

120

Figure 6.8: Objective function code for a uniform member length optimization.

6.4.2 Quad-arch with an oculus

Next, we imagined variations around finding a four-arched funicular structure with an opening in its center.

We achieve this by penalizing points that have their equilibrium position in the center of the arch, using the

following objective function (see code in Figure 6.9):

𝑓(𝐱) =∑max(𝑒
𝑑2(𝑥𝑖,0)

𝑅2 , 𝑒−1)

𝑖

. (6. 5)

The results are presented in Figure 6.10. Again, simple modifications of this objective function, either

through changing a parameter value or by combining it with additional objectives, lead to a variety of

shapes. Because allowing for this flexibility does not slow down the optimization, or require the designer

to carry complicated gradient calculations, this allows for a novel way of exploring the design space of

funicular structures.

Figure 6.9: Objective function code for creating an opening in a structure.

121

Figure 6.10: Equilibrium position results for the four-arched dome. From left to right, results of a simple force

density method with uniform force densities, opening with a target size of 2 m, a target size of 4 m, and 2 m opening

with an additional uniform member length objective.

6.4.3 Teshima Art Museum

For the Teshima Art Museum’s structure, a more complex objective function was needed. This time, two

openings (of the same form as in the previous section) are added, in addition to a score giving the vertical

distance from the equilibrium position to a shape representing the general cross-section of the structure as

it was built, and a linear slope from the entrance to the larger opening. Figure 6.11 shows an image of the

result that can be obtained, showing a good reproduction of the shell as it was built.

In Figure 6.12 are shown some iterations of the optimization process. The openings form early, then the

optimizer improves mostly on the second part of the objective function, giving its shape to the structure.

While the openings still have some nodes and mesh edges in them, the force densities values show that they

are barely loaded, and in fact only remain there as an artifact of the bounds that were given to the optimizer

on the force densities.

Figure 6.11: Rendering of the funicular shape obtained with this work to reproduce the Teshima museum shape.

𝑞 = 1 𝑅 = 4𝑅 = 2 𝑅 = 2
+ Target length

122

Figure 6.12: Some iterations during the optimization to obtain the Teshima shape. The fit value is the value objective

function relative to the final value found at the optimum.

6.4.4 California Academy of Sciences

Extending on the idea of openings in a funicular roof, we reproduce the large “hills” on the green roof of

the California Academy of Sciences. Each of them is roughly a 20-by-20-meter square dome, with many

openings for skylights. By introducing many objectives for openings like in Section 6.4.2, and moving them

around the surface, a variety of shapes can be obtained. Figure 6.13 shows one such example, and Figure

6.14 some variations on the positions. Along with this study, it is possible to get an estimation of the relative

structural efficiency of the meshes by comparing the elastic energy scores:

∑|𝐹𝑖𝑙𝑖|

𝑖

=∑𝑞𝑖𝑙𝑖
2

𝑖

. (6. 6)

These scores could be included in the optimization, to guide it towards more efficient shapes.

123

Figure 6.13: Rendering of a funicular square dome with multiple openings, reproducing the hills of the California

Academy of Sciences roof.

Figure 6.14: Some variations on the openings of the square dome. The scores on the bottom left represent a quick

estimate of the relative structural efficiency of each dome, and are calculated as the sum of the forces times lengths

in each member.

124

6.4.5 Gaussian vaults

Finally, we experiment with shell-beams shapes, like Dieste for his famous brick roofs of non-continuous

gaussian shapes. The objective here was to give the designer funicular shapes that could be varied easily in

the shape of the roof they realize, their maximum height, and the size of the vertical gap between two

successive beams.

We achieve the roof shaping by simply changing the shape of the boundary that one beam attaches to, which

is simply two lines of supports opposite each other, spanning the roof in its short dimension. The maximum

height of the shell and the vertical gap size are the result of the combination of three objectives. The first

one minimizes the error between the obtained vertical gap and its target value given by the designer, the

second the elastic energy, and the third the material use or total bar length of the mesh:

𝑓 = (ℎ̅ − ℎ̅0)
2
+ 𝛼(∑𝑞𝑖𝑙𝑖

2

𝑖

)

𝑛

+ (1 − 𝛼)(∑𝑙𝑖
2

𝑖

)

𝑚

, (6. 7)

Where 𝛼 are weighting parameters between the last two objectives, ℎ̅ the obtained vertical distance be-

tween the two extreme nodes at the mid-span of the beam, ℎ̅0 the target for ℎ̅, and 𝑛,𝑚 arbitrary scaling

parameters.

Generally, the first term makes the gap close to its input target, the second term gives the beam a high rise

and bulbous dome shape, and the third term makes it taught and flat. By changing the weighing parameter

𝛼, the shape will change between a shallow shell and a deep one. By changing the target height difference

ℎ̅0, the front and back nodes at the mid-span of the beam will rise and fall accordingly. Because of the

additional terms effectively acting as regularization terms, the rest of the mesh will follow and give a smooth

shape, rather than a pointy one with only two nodes matching the objective. This is the reason for the addi-

tional 𝑛 and 𝑚 scaling parameters, which were varied from 1 to 4 to produce better regularization terms.

Figure 6.15 gives some examples of possible results.

125

Figure 6.15: Variations on the Dieste beam shapes. Left column varies the height difference target, right column

changes the weighting between structural efficiency and material use.

6.5 Conclusion

In conclusion, this chapter demonstrated a framework for the easy combination of multiple objectives into

a funicular shapes generation scheme. The funicular shapes are given by a force density method solver, and

the objectives are optimized using a gradient-based general-purpose optimizer. Because the framework is

implemented in an Automatic Differentiation package, there is very little cost to adding new objectives or

recombining them differently, yet the optimization process remains fast and stable. This lets the designer

easily explore a vast design space of funicular shapes, guiding their exploration by the objectives they

choose.

In future work, it would be interesting to extend our design tool and make its use easier by implementing a

catalog of possible objectives that the designer could pick from, instead of coding. Simple combinators like

in Section 6.4 can be added to make building a combined objective easy. Additionally, it would be inter-

esting to use multi-objective optimization techniques to explore a larger expanse of the design space. Sim-

ilarly, human-guided optimization could let the designer change the exploration direction during an opti-

mization.

This also demonstrates how efficient automatic differentiation and general-purpose optimizers can be when

combined, and applying these techniques to other form-finding problems could lead to the creation of pow-

erful design tools.

7 Conclusion

7.1 Summary of contributions

This dissertation has focused on improving form-finding workflows by giving more control over the ob-

tained shapes to the designer. The main contributions were applied to bending-active structures and funic-

ular structures design, and implemented inverse form-finding workflows using a nested-optimizers strategy.

The inner optimizer is a specially selected direct form-finding solver, the outer optimizer is a general-pur-

pose optimization routine that attempts to match the results of the forward simulation to the design intent.

In general, the novelty in this dissertation lies in the focus on inverse form-finding workflows, and how

they can be made to perform well enough for use in interactive design. By defining a clear general frame-

work on the implementation of such workflows in a nested optimizer loop, the key requirements on each

were articulated. This was demonstrated with case studies of two mechanical systems.

128

For bending-active structures, the performance (speed, accuracy, reliability) of direct form-finding solvers

was measured, and recommendations on their use in an inverse form-finding setup given. Because the outer

optimization loop in this setup needs to rely on a robust forward simulation with minimal configuration

during the optimization, general-purpose optimizers like SLSQP and L-BFGS perform better than usual

choices in bending-active simulation like dynamic relaxation. Using this insight, an inverse form-finding

workflow was built and applied to simple elastica-like arc lamp structures, and the closest-fit optimization

of an elastic gridshell. Experimenting with different formulations of the problem, especially through the

definition of its variables, their influence on the final results was demonstrated.

In funicular structures, because robust and efficient direct form-finding solvers are readily available, the

focus was directly taken on an inverse workflow. Initially focusing on a closest-fit to target surface situation,

closed-form formulations of gradients and hessian were derived, which lead to a fast and stable optimiza-

tion. This also demonstrated how finding closed-form expressions of these derivatives is a major blocking

point in creating more versatile inverse form-finding workflows.

This same inner optimizer was reimplemented in an Automatic Differentiation framework, to produce an

inverse form-finding tool for funicular surfaces that was not limited by this issue. Because this is a novel

way of implementing such workflows, this exposed how the design intent can be represented by more com-

plex objects than a target surface. Reproducing several case studies of existing funicular structures, it is

shown how this lets the designer explore new portions of their design space, and how a fine control over

the objectives of the inverse form-finding optimization leads to possible incremental modifications of the

design.

For the tools that are necessary to implement these workflows, a key requirement that was found during the

work presented in this dissertation, is that they should be compatible with tools that are well-known by

designers. This lets designers use a familiar interface for the initial modeling tasks and the display and post-

processing of the results. To achieve this, a communication layer between Rhino/Grasshopper and Python

was created, allowing the use of advanced scientific programming tools from Python (scientific computing

with Numpy, just-in-time compilation with Numba, automatic differentiation with Autograd), in the well-

known Rhino environment. This was achieved with GH Python Remote (Cuvilliers & Mueller, 2017), is

aimed at being as reusable as possible, and so far has been downloaded around 25,000 times

(https://pypi.org/project/gh-python-remote/).

https://pypi.org/project/gh-python-remote/

129

7.2 Potential impact

In building inverse form-finding tools, we hope to give the designer more control on the shapes of complex

structural systems, that are governed by specific rules limiting their design spaces. Because these shapes

adapt to bespoke construction systems, they can be chosen to very efficiently use material. Funicular shapes

for example, will very efficiently span large spaces. Bending-active structures are very adaptable and have

a large potential for reuse. Additionally, thanks to this added control, designers can explore larger regions

of the design space of their chosen construction system, leading to more variety in structures without any

penalty on efficiency. While the shapes of many shells were initially chosen as pre-defined mathematical

functions like revolution surfaces of lines or simple curves, so that their analysis would be simpler, we now

have tools to create and analyze free-form funicular shells.

This new control on the form-finding process will also give designers more freedom in how they use these

tools. While existing direct form-finding tools tend to give results of a similar architectural style, designers

can now guide the exploration towards target shapes and author their own style on them.

7.3 Future work

7.3.1 Current limitations and next steps

For each of the contributions of this dissertation to inverse form-finding of bending-active structures and

funicular structures, there are immediate next steps that could expand the quality of the tools.

In bending-active structures, the solver presented could benefit a lot from the same Automatic Differentia-

tion treatment as was done for funicular structures. The key challenge here is that the inner optimizer used

in bending-active structures is more involved, and if applied carelessly the Automatic Differentiation frame-

work has the potential for greatly slowing down the computation. This should still be possible as it is within

the realm of what Automatic Differentiation can tackle, and similar systems have been implemented in

Automatic Differentiation frameworks (Degrave et al., 2017). Being able to optimize for different metrics

than the closest fit to a surface would be hugely beneficial for elastic gridshells.

In funicular structures, it would be interesting to expand the scope of the inverse form-finding objectives to

produce a catalog that the designer can pick from. This could be compiled into a graphical user interface so

that the objectives can be combined easily; an even more powerful interface would allow the designer to

paint such goals on the regions of the structure where they should apply. Indeed, in the current setup this

130

kind of geographical information needs to be manually coded in the objective function, which is not a very

reusable design.

Finally for the presented inverse form-finding tools, it would make sense to compare these implementations

to existing ones, by reimplementing the specific inverse form-finding that they solve in frameworks pre-

sented in this dissertation. Although the latter are less tailored towards one specific problem than the former,

they need to be competitive so that they are useful on simpler separate problems just as much as on more

complex ones. Both of the implementations presented still suffer from challenging computational power

requirements, and any improvement there will be beneficial. They also tend to require minute manual tuning

of the parameters of the outer optimizer, something that is not desirable in general for a design tool offered

for a wider audience. Additional experiments will be required to find robust optimizers for this.

7.3.2 Open questions

More open questions remain for future work, especially in the area of expending inverse form-finding solv-

ers to generalist frameworks both in terms of the mechanics-based constraints they can encode, and design

intent objectives. This is similar to the shift that happened for direct form-finding solvers with the develop-

ment of tools like Kangaroo.

For inverse form-finding, two important pieces of software engineering would probably be required to make

such a setup work. First, the direct form-finding solver would need to be implemented in an Automatic

Differentiation framework, as we have described previously, so that general design objectives could be

efficiently solved for. Additionally, we expect that the mechanical equilibrium constraints will need to be

compiled in such a way that computing one value of the energy function does not need to loop through the

objects of an object-oriented programming system. In fact, this is already a major roadblock in the imple-

mentation of generalist direct form-finding software, and would be potentially slowed down even further if

implemented in an Automatic Differentiation framework.

Additionally, it will be interesting to run user studies on the resulting design tools, showing how inverse

form-finding tools can help create a faster, more directed design process, and in general give back control

to the designer on form-finding operations. This should also demonstrate how the speed of the design pro-

cess and the ease of options comparison help keep the design process flowing, with more engagement from

the designer.

Finally, these systems can be made easier to use by attaching to them a cookbook of usual systems modeled.

This lets designers pick and match options as they apply to their particular case. A lot of the time, building

the program that represents the building system constraints is difficult, but repeatable, so this would save

131

time. It would also help in avoiding incorrect formulations, and reduce the complexity of the tuning of the

outer optimizer that was mentioned in the previous section.

7.4 Concluding remarks

In conclusion, this dissertation showed how the ubiquitous problem of inverse form-finding in architecture

is made apparent, yet unsolved, by the recent proliferation of direct form-finding tools. All design systems

strive to let the designer stay as true as possible to their original intent, and convey this meaning through

an instance of a construction system realizing the intent and giving it a shape. Because it removes from the

hands of the designer almost all control on the resulting shape, direct form-finding alone can be a limited

design tool. In expert hands, direct form-finding has lead to the design of many great structures; when more

control is gained over its results through inverse form-finding method it can be used by a wider audience

and in more constrained contexts.

By producing designers with well-crafted inverse form-finding solutions, they are empowered again to de-

sign with complex mechanical equilibrium constraints, and can explore a wider range of their design spaces.

This dissertation realized a comprehensive overview of inverse form-finding systems pointing to a way

forward in the direction of better design tools for contemporary construction systems.

8 References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,

Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker,

P., Vasudevan, V., Warden, P., … Zheng, X. (2016). TensorFlow: A system for large-scale

machine learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’16), 265–283.

Adriaenssens, S., & Barnes, M. R. (2001). Tensegrity spline beam and grid shell structures. Engineering

Structures, 23(1), 29–36. https://doi.org/10.1016/S0141-0296(00)00019-5

Adriaenssens, S., Block, P., Veenendaal, D., & Williams, C. (2014). Shell Structures for Architecture:

Form Finding and Optimization. Routledge.

Ahlquist, S., & Menges, A. (2013). Frameworks for Computational Design of Textile Micro-

Architectures and Material Behavior in Forming Complex Force-Active Structures. ACADIA 13:

Adaptive Architecture, 281–292.

Anders, C., Deleuran, H., Quinn, G., Piker, D., Pearson, W., Brandt-Olsen, C., Naicu, D., & Lewis, H.

(2016). Calibrated Modelling of Form-Active Hybrid Structures. Workshops of the Smart

Geometry Conference. Smart Geometry, Gothenburg, Sweden.

134

Anderson, S., Dieste, E., & Hochuli, S. (2004). Eladio Dieste: Innovation in Structural Art. Princeton

Architectural Press.

Audoly, B., & Pomeau, Y. (2010). Elasticity and Geometry: From hair curls to the nonlinear response of

shells. Oxford University Press. https://doi.org/10.1142/9789812792778_0001

B. Speelpenning. (1980). Compiling Fast Partial Derivatives of Functions Given by Algorithms [Ph.D.

Dissertation]. University of Illinois at Urbana-Champaign.

Bagneris, M., Motro, R., Maurin, B., & Pauli, N. (2008). Structural Morphology Issues in Conceptual

Design of Double Curved Systems: International Journal of Space Structures, 23(2), 79–87.

https://doi.org/10.1260/026635108785260560

Bagrianski, S., & Halpern, A. B. (2014). Form-finding of compressive structures using Prescriptive

Dynamic Relaxation. Computers & Structures, 132, 65–74.

https://doi.org/10.1016/j.compstruc.2013.10.018

Ban, S. (2003). The Japanese pavilion. In M. McQuaid (Ed.), Shigeru Ban (pp. 8–11). Phaedon.

Barnes, M. R. (1988). Form-finding and analysis of prestressed nets and membranes. Computers &

Structures, 30(3), 685–695. https://doi.org/10.1016/0045-7949(88)90304-5

Barnes, M. R. (1999). Form Finding and Analysis of Tension Structures by Dynamic Relaxation.

International Journal of Space Structures, 14(2), 89–104.

https://doi.org/10.1260/0266351991494722

Barnes, M. R. (1975). Applications of dynamic relaxation to the topological design and analysis of cable,

membrane and pneumatic structures. 2nd International Conference on Space Structures, 211–

219.

Barnes, M. R., Adriaenssens, S., & Krupka, M. (2013). A novel torsion/bending element for dynamic

relaxation modeling. Computers & Structures, 119, 60–67.

https://doi.org/10.1016/j.compstruc.2012.12.027

Barthelemy, J.-F. M., & Hall, L. E. (1995). Automatic differentiation as a tool in engineering design.

Structural Optimization, 9(2), 76–82. https://doi.org/10.1007/BF01758823

Baverel, O., Caron, J.-F., Tayeb, F., & du Peloux, L. (2012). Gridshells in composite materials:

Construction of a 300 m2 forum for the Solidays’ festival in Paris. Structural Engineering

International, 22(3), 408–414. https://doi.org/10.2749/101686612X13363869853572

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic Differentiation in

Machine Learning: A Survey. Journal of Machine Learning Research, 18, 1–43.

135

Beda, L. M., Korolev, L. N., Sukkikh, N. V., & Frolova, T. S. (1959). Programs for automatic

differentiation for the machine BESM [Technical Report]. Institute for Precise Mechanics and

Computation Techniques, Academy of Science.

Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., & Grinspun, E. (2010). Discrete viscous threads.

ACM Transactions on Graphics, 29(4), 1. https://doi.org/10.1145/1833351.1778853

Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., & Grinspun, E. (2008). Discrete elastic rods. ACM

Transactions on Graphics, 27(3). https://doi.org/10.1145/1360612.1360662

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., & Bengio, Y.

(2010, June). Theano: A CPU and GPU Math Expression Compiler. Proceedings of the 9th

Python in Science Conference. SciPy, Austin, TX.

Birgin, E. G., & Martínez, J. M. (2008). Improving Ultimate Convergence of an Augmented Lagrangian

Method. Optimization Methods Software, 23(2), 177–195.

https://doi.org/10.1080/10556780701577730

Block, P. (2009). Thrust Network Analysis: Exploring three-dimensional equilibrium [Ph.D. Dissertation,

Massachusetts Institute of Technology]. https://dspace.mit.edu/handle/1721.1/49539

Block, P., & Lachauer, L. (2011). Closest-Fit, Compression-Only Solutions for Freeform Shells. 35th

Annual Symposium of IABSE / 52nd Annual Symposium of IASS / 6th International Conference

on Space Structures, London, UK.

Block, P., & Ochsendorf, J. (2007). Thrust network analysis: A new methodology for three-dimensional

equilibrium. Journal of the International Association for Shell and Spatial Structures, 48(3), 8.

Block, P., Van Mele, T., Méndez Echenagucia, T., Hofmann, H., Ochsendorf, J., DeJong, M., & Giardina,

G. (2016). Droneport Prototype—Venice Architecture Biennale 2016. Block Research Group.

https://block.arch.ethz.ch/brg/project/venice-biennale-2016_droneport

Bouaziz, S., Deuss, M., Schwartzburg, Y., Weise, T., & Pauly, M. (2012). Shape-up: Shaping discrete

geometry with projections. Computer Graphics Forum, 31(5), 1657–1667.

https://doi.org/10.1111/j.1467-8659.2012.03171.x

Bouaziz, S., Martin, S., Liu, T., Kavan, L., & Pauly, M. (2014). Projective Dynamics: Fusing Constraint

Projections for Fast Simulation. ACM Transactions on Graphics, 33(4), 154–165.

https://doi.org/10.1145/2601097.2601116

Bouhaya, L., Baverel, O., & Caron, J.-F. (2014). Optimization of gridshell bar orientation using a

simplified genetic approach. Structural and Multidisciplinary Optimization, 50(5), 839–848.

https://doi.org/10.1007/s00158-014-1088-9

136

Brew, J. S., & Brotton, D. M. (1971). Non-linear structural analysis by dynamic relaxation. International

Journal for Numerical Methods in Engineering, 3(4), 463–483.

https://doi.org/10.1002/nme.1620030403

Brew, J. S., & Lewis, W. J. (2007). Free hanging membrane model for shell structures. International

Journal for Numerical Methods in Engineering, 71(13), 1513–1533.

https://doi.org/10.1002/nme.1976

Brown, N. C. (Nathan C. (2019). Early building design using multi-objective data approaches [Ph.D.

Dissertation, Massachusetts Institute of Technology].

https://dspace.mit.edu/handle/1721.1/123573

Bubner, E. (1972). Zum Problem der Formfindung vorgespannter Seilnetzflächen [Ph.D. Dissertation].

University of Stuttgart.

Burkhardt, B., & Otto, F. (1978). Multihalle Mannheim (IL 13). Freunde und Förderer der

Leichtbauforschung.

Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A Limited Memory Algorithm for Bound Constrained

Optimization. SIAM J. Sci. Comput., 16(5), 1190–1208. https://doi.org/10.1137/0916069

Chilton, J., Macdonald, A., & Pedreschi, R. (2000). The Engineer’s Contribution to Contemporary

Architecture: Heinz Isler. Thomas Telford Publishing. https://doi.org/10.1680/eccahi.28784

Coar, L. (2010). On the road / En route. http://ontheroadenroute.blogspot.ca

Coar, L. (2012). Wobbly Structures: Exploring the potentials of flexible frames & fabric formed ice

structures. International Conference on Flexible Formwork, 1–13.

Coar, L., Cox, M., Adriaenssens, S., & De Laet, L. (2017). The design and construction of bending active

framed fabric formed ice shells utilizing principle stress patterns. In A. Bögle & M. Grohmann

(Eds.), Interfaces: Architecture. Engineering. Science. Proceedings of the IASS annual

symposium 2017.

Crane, K. (2014). Discrete differential geometry: An applied introduction [Lecture notes].

https://www.cs.cmu.edu/~kmcrane/Projects/DDG/paper.pdf

Cuvilliers, P., Douthe, C., du Peloux, L., & Le Roy, R. (2017). Hybrid structural skin: Prototype of a

GFRP elastic gridshell braced by a fiber-reinforced concrete envelope. Journal of the

International Association for Shell and Spatial Structures, 58(1), 65–78.

https://doi.org/10.20898/j.iass.2017.191.853

Cuvilliers, P., Mayencourt, P., & Mueller, C. (2018, September). Design and fabrication of bending-

active structures with controlled shapes: The arc lamp. Workshops of the Advances in

Architectural Geometry Conference 2018.

137

Cuvilliers, P., & Mueller, C. (2017). GH Python Remote. Digital Structures Github.

https://github.com/Digital-Structures/ghpythonremote

D’Amico, B., Kermani, A., Zhang, H., Shepherd, P., & Williams, C. J. K. (2015). Optimization of cross-

section of actively bent grid shells with strength and geometric compatibility constraints.

Computers & Structures, 154, 163–176. https://doi.org/10.1016/j.compstruc.2015.04.006

de Goes, F., Alliez, P., Owhadi, H., & Desbrun, M. (2013). On the equilibrium of simplicial masonry

structures. ACM Transactions on Graphics, 32(4), 1. https://doi.org/10.1145/2461912.2461932

Degrave, J., Hermans, M., Dambre, J., & Wyffels, F. (2017). A Differentiable Physics Engine for Deep

Learning in Robotics. Workshops of the International Conference on Learning Representations.

International Conference on Learning Representations, Toulon, France.

https://openreview.net/forum?id=HkrB8XXte

del Blanco García, F. L., & García Ríos, I. (2019). Algorithm Design for Ruled Surfaces. Case Study of

Felix Candela. In C. L. Marcos (Ed.), Graphic Imprints (pp. 1577–1585). Springer International

Publishing. https://doi.org/10.1007/978-3-319-93749-6_131

Deprez, L. (1968). Shape optimization for arch dams [M.Sc. Thesis, Massachusetts Institute of

Technology]. https://dspace.mit.edu/handle/1721.1/87810

Dessi-Olive, J. (2017). Computing with matter, shapes, and forces: Toward material and structural

primacy in architecture [M.Sc. Thesis, Massachusetts Institute of Technology].

https://dspace.mit.edu/handle/1721.1/111705

Douthe, C. (2007). Étude de structures élancées précontraintes en matériaux composites: Application à

la conception des gridshells [Thèse de doctorat, École Nationale des Ponts et Chaussées].

https://pastel.archives-ouvertes.fr/pastel-00003723

Douthe, C., Caron, J.-F., & Baverel, O. (2010). Gridshell structures in glass fibre reinforced polymers.

Construction and Building Materials, 24(9), 1580–1589.

https://doi.org/10.1016/j.conbuildmat.2010.02.037

du Peloux, L., Tayeb, F., & Lefevre, B. (2015). Formulation of a 4-DoF torsion/bending element for the

formfinding of elastic gridshells. Future Visions: Proceedings of the International Association for

Shell and Spatial Structures (IASS) Symposium 2015.

Dudte, L. H., Vouga, E., Tachi, T., & Mahadevan, L. (2016). Programming curvature using origami

tessellations. Nature Materials, 15(5), 583–588. https://doi.org/10.1038/nmat4540

Eigensatz, M., Deuss, M., Schiftner, A., Kilian, M., Mitra, N., & Pauly, M. (2010). Case Studies in Cost-

Optimized Paneling of Architectural Freeform Surfaces. Advances in Architectural Geometry,

49–72. https://doi.org/10.1007/978-3-7091-0309-8_4

138

Eigensatz, M., Sumner, R. W., & Pauly, M. (2008). Curvature-Domain Shape Processing. Computer

Graphics Forum, 27(2), 241–250. https://doi.org/10.1111/j.1467-8659.2008.01121.x

Engel, H. (1967). Tragsysteme = Structure systems. Deutsche Verlags-Anstalt.

Fleischmann, M., & Menges, A. (2012). ICD/ITKE Research Pavilion: A case study of multi-disciplinary

collaborative computational design. In C. Gengnagel, A. Kilian, N. Palz, & F. Scheurer (Eds.),

Computational Design Modelling (pp. 239–248). Springer. https://doi.org/10.1007/978-3-642-

23435-4_27

Frankel, T. (2011). The geometry of physics: An introduction (3rd editio). Cambridge University Press.

Garg, A., Sageman-Furnas, A. O., Deng, B., Yue, Y., Grinspun, E., Pauly, M., & Wardetzky, M. (2014).

Wire Mesh Design. ACM Trans. Graph., 33(4), 66:1–66:12.

https://doi.org/10.1145/2601097.2601106

Germain, S., Scherer, M., & Steinmann, P. (2010). On Inverse Form Finding for Anisotropic

Hyperelasticity in Logarithmic Strain Space. International Journal of Structural Changes in

Solids, 2(2), 1–16.

Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., & Grinspun, E. (2007). Efficient simulation of

inextensible cloth. ACM Transactions on Graphics, 26(3), 49.

https://doi.org/10.1145/1276377.1276438

Govindjee, S., & Mihalic, P. a. (1998). Computational methods for inverse deformations in quasi-

incompressible finite elasticity. International Journal for Numerical Methods in Engineering,

43(5), 821–838. https://doi.org/10.1002/1097-0207

Goyal, S., Perkins, N. C., & Lee, C. L. (2008). Non-linear dynamic intertwining of rods with self-contact.

International Journal of Non-Linear Mechanics, 43(1), 65–73.

https://doi.org/10.1016/j.ijnonlinmec.2007.10.004

Grafe, R., Gröbner, G., Gründig, L., Hennicke, J., Matsushita, K., Otto, F., Sataka, K., Schaur, E.,

Schock, H.-J., & Shirayanagi, T. (1974). Plane nets. In Institut für leichte Flächentragwerke (Ed.),

IL 10—Grid shells (pp. 138–155). Karl Krämer Verlag.

Hablicsek, M., Akbarzadeh, M., & Guo, Y. (2019). Algebraic 3D graphic statics: Reciprocal

constructions. Computer-Aided Design, 108, 30–41. https://doi.org/10.1016/j.cad.2018.08.003

Hairer, E., Lubich, C., & Wanner, G. (2006). Geometric numerical integration: Structure-preserving

algorithms for ordinary differential equations (Second edi). Springer Berlin Heidelberg New

York.

Happold, E., & Lidell, W. I. (1975). Timber Lattice Roof for the Mannheim Bundesgartenschau. The

Structural Engineer, 53(3), 99–135.

139

Huerta, S. (2006). Structural Design in the Work of Gaudí. Architectural Science Review, 49(4), 324–339.

https://doi.org/10.3763/asre.2006.4943

Ingraham, J., Riesselman, A., Sander, C., & Marks, D. (2019). Learning protein structure with a

differentiable simulator. International Conference on Learning Representations (ICLR).

Jacobson, A., Baran, I., Popović, J., & Sorkine, O. (2011). Bounded biharmonic weights for real-time

deformation. ACM Transactions on Graphics (TOG).

https://dl.acm.org/doi/abs/10.1145/2010324.1964973

Jiang, C., Tang, C., Seidel, H.-P., & Wonka, P. (2017). Design and Volume Optimization of Space

Structures. ACM Trans. Graph., 36(4), 159:1–159:14. https://doi.org/10.1145/3072959.3073619

Johnson, S. G. (n.d.). The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt

Joshi, P. P. (2008). Minimizing Curvature Variation for Aesthetic Surface Design [Ph.D. Dissertation,

EECS Department, University of California, Berkeley].

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-129.html

Kilian, A., & Ochsendorf, J. (2005). Particle-spring systems for structural form finding. Journal of the

International Association for Shell and Spatial Structures, 46(2), 77–84.

Kilian, M., Flöry, S., Chen, Z., Sheffer, A., & Pottmann, H. (2008). Developable Surfaces with Curved

Creases. Advances in Architectural Geometry, 33–36.

Kmet, S., & Mojdis, M. (2015). Time-dependent analysis of cable nets using a modified nonlinear force-

density method and creep theory. Computers & Structures, 148, 45–62.

https://doi.org/10.1016/j.compstruc.2014.11.004

Koohestani, K. (2014). Nonlinear force density method for the form-finding of minimal surface

membrane structures. Communications in Nonlinear Science and Numerical Simulation, 19(6),

2071–2087. https://doi.org/10.1016/j.cnsns.2013.10.023

Kovalsky, S. Z., Galun, M., & Lipman, Y. (2016). Accelerated quadratic proxy for geometric

optimization. ACM Transactions on Graphics, 35(4), 1–11.

https://doi.org/10.1145/2897824.2925920

Kraft, D. (1988). A software package for sequential quadratic programming. Forschungsbericht-

Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt.

Levenberg, K. (1944). A Method for the Solution of Certain Problems in Least-Squares. Quarterly

Applied Mathematics 2, 164–168.

Levien, R. (2008). The elastica: A mathematical history (Issue UCB/EECS-2008-103).

140

Lienhard, J. (2014). Bending-Active Structures: Form-finding strategies using elastic deformation in

static and kinetic systems and the structural potentials therein [Dr.Ing. Thesis]. University of

Stuttgart.

Lienhard, J., Alpermann, H., Gengnagel, C., & Knippers, J. (2013). Active Bending, A Review on

Structures where Bending is used as a Self-Formation Process. International Journal of Space

Structures, 28(3), 187–196. https://doi.org/10.1260/0266-3511.28.3-4.187

Lienhard, J., & Knippers, J. (2015). Bending-Active Textile Hybrids. Journal of the International

Association for Shell and Spatial Structures, 56(1), 37–48.

Lienhard, J., Schleicher, S., Poppinga, S., Masselter, T., Milwich, M., Speck, T., & Knippers, J. (2011).

Flectofin: A hingeless flapping mechanism inspired by nature. Bioinspiration & Biomimetics,

6(4), 045001. https://doi.org/10.1088/1748-3182/6/4/045001

Liew, A., Van Mele, T., & Block, P. (2016). Vectorised graphics processing unit accelerated dynamic

relaxation for bar and beam elements. Structures, 8, 111–120.

https://doi.org/10.1016/j.istruc.2016.09.002

Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., & Wang, W. (2006). Geometric modeling with conical

meshes and developable surfaces. ACM Transactions on Graphics, 25(3), 681.

https://doi.org/10.1145/1141911.1141941

Maclaurin, D., Duvenaud, D., Johnson, M., & Townsend, J. (2015). Autograd: Efficiently computes

derivatives of numpy code [Python]. Harvard Intelligent Probabilistic Systems Group.

https://github.com/HIPS/autograd (Original work published 2014)

Malerba, P. G., Patelli, M., & Quagliaroli, M. (2012). An Extended Force Density Method for the form

finding of cable systems with new forms. Structural Engineering and Mechanics, 42(2), 191–210.

https://doi.org/10.12989/sem.2012.42.2.191

Maraniello, S., & Palacios, R. (2016). Optimal vibration control and co-design of very flexible actuated

structures. Journal of Sound and Vibration, 377, 1–21. https://doi.org/10.1016/j.jsv.2016.05.018

Marmo, F., Demartino, C., Candela, G., Sulpizio, C., Briseghella, B., Spagnuolo, R., Xiao, Y., Vanzi, I.,

& Rosati, L. (2019). On the form of the Musmeci’s bridge over the Basento river. Engineering

Structures, 191, 658–673. https://doi.org/10.1016/j.engstruct.2019.04.069

Marquardt, D. (1963). An Algorithm for Least-squares Estimation of Nonlinear Parameters. SIAM

Journal Applied Mathematics, 11, 431–441.

Mayencourt, P. L., Giraldo, J. S., Wong, E., & Mueller, C. T. (2017). Computational Structural

Optimization and Digital Fabrication of Timber Beams. In A. Bögle & M. Grohmann (Eds.),

Proceedings of the IASS Annual Symposium.

Merrick, J. (2006). Glenn Howells / Savill Building. Architect’s Journal, 224(1), 25–39.

141

Mesnil, R., Douthe, C., Baverel, O., & Léger, B. (2016). Marionette Mesh: From descriptive geometry to

fabrication-aware design. Advances in Architectural Geometry 2016, 204–221.

https://doi.org/10.3218/3778-4

Mesnil, R., Ochsendorf, J., & Douthe, C. (2015). Stability of Pseudo-Funicular Elastic Grid Shells.

International Journal of Space Structures, 30(1), 27–36. https://doi.org/10.1260/0266-

3511.30.1.27

Miki, M., & Kawaguchi, K. (2010). Extended force density method for form finding of tension structures.

Journal of the International Association for Shell and Spatial Structures, 51, 291–303.

Mork, H. J., Dyvik, H. S., Manum, B., Rønnquist, A., & Labonnote, N. (2016). Introducing the segment

lath—A simplified modular timber gridshell built in Trondheim Norway. World Conference on

Timber Engineering, 1–8.

Nabaei, S., Baverel, O., & Weinand, Y. (2013). Mechanical form-Finding of the Timber Fabric Structures

with Dynamic Relaxation Method. International Journal of Space Structures, 28(3–4), 197–214.

https://doi.org/10.1260/0266-3511.28.3-4.197

Narain, R., Overby, M., & Brown, G. E. (2016). ADMM ⊇ Projective Dynamics: Fast Simulation of

General Constitutive Models. In J. Jorge & M. Lin (Eds.), ACM SIGGRAPH/Eurographics

Symposium on Computer Animation.

Nealen, A., Müller, M., Keiser, R., Boxerman, E., & Carlson, M. (2006). Physically Based Deformable

Models in Computer Graphics. Computer Graphics Forum, 25(4), 809–836.

https://doi.org/10.1111/j.1467-8659.2006.01000.x

Nesterov, Y. (1983). A method of solving a convex programming problem with convergence rate O

(1/k2). Soviet Mathematics Doklady, 27(2).

Nicholas, P. (2013). Graded Territories. In Designing Material Materialising Design (pp. 49–68).

Nørgaard, S. A., Sagebaum, M., Gauger, N. R., & Lazarov, B. S. (2017). Applications of automatic

differentiation in topology optimization. Structural and Multidisciplinary Optimization, 56(5),

1135–1146. https://doi.org/10.1007/s00158-017-1708-2

Ohlbrock, P. O., & Schwartz, J. (2015, August 20). Combinatorial equilibrium modelling. Future Visions

- Graphic Computation. IASS Annual Symposia, Amsterdam.

Olcayto, R. (2007, June 22). Solutions: Timber Structures—Gridshell glazes over the past. Building

Design, 1776, 14–17.

Orr, J. (2012). Flexible formwork for visual concrete [Ph.D. Dissertation]. University of Bath.

142

Panetta, J., Konaković-Luković, M., Isvoranu, F., Bouleau, E., & Pauly, M. (2019). X-Shells: A New

Class of Deployable Beam Structures. ACM Trans. Graph., 38(4), 83:1–83:15.

https://doi.org/10.1145/3306346.3323040

Panozzo, D., Block, P., & Sorkine-Hornung, O. (2013). Designing unreinforced masonry models. ACM

Transactions on Graphics, 32, 1. https://doi.org/10.1145/2461912.2461958

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,

Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,

S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An Imperative Style, High-

Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F.

d\textquotesingle Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information

Processing Systems 32 (pp. 8026–8037). Curran Associates, Inc. http://papers.nips.cc/paper/9015-

pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Pérez, J., Thomaszewski, B., Coros, S., Bickel, B., Canabal, J. A., Sumner, R., & Otaduy, M. A. (2015).

Design and fabrication of flexible rod meshes. ACM Transactions on Graphics, 34(4), 138:1–

138:12. https://doi.org/10.1145/2766998

Petersen, K. B., & Pedersen, M. S. (2012). The Matrix Cookbook [Book manuscript].

http://matrixcookbook.com

Piker, D. (2016a). Kangaroo 2 Goals. https://github.com/Dan-

Piker/K2Goals/tree/2a2daccbf63206755ad964c0b0c1a23ee18b0aa4

Piker, D. (2016b). Kangaroo physics. http://www.food4rhino.com/app/kangaroo-physics

Piker, D. (2017a). Kangaroo solver.

http://www.grasshopper3d.com/xn/detail/2985220:Comment:1718553

Piker, D. (2017b). Kangaroo solver. Kangaroo Group on Grasshopper Forums.

http://www.grasshopper3d.com/xn/detail/2985220:Comment:1718553

Pottmann, H., Eigensatz, M., Vaxman, A., & Wallner, J. (2015). Architectural geometry. Computers and

Graphics, 47, 145–164. https://doi.org/10.1016/j.cag.2014.11.002

Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., & Wang, W. (2007). Geometry of multi-layer freeform

structures for architecture. ACM Transactions on Graphics, 26(3), 65.

https://doi.org/10.1145/1276377.1276458

Quinn, G., Deleuran, A. H., Piker, D., Brandt-olsen, C., Tamke, M., Thomsen, M. R., & Gengnagel, C.

(2016). Calibrated and Interactive Modelling of Form-Active Hybrid Structures. In K.

Kawaguchi, M. Ohsaki, & T. Takeuchi (Eds.), Spatial Structures: Proceedings of the IASS

Symposium (pp. 1–9).

143

Rao, C., Tian, L., Yan, D.-M., Liao, S., Deussen, O., & Lu, L. (2019). Consistently fitting orthopedic

casts. Computer Aided Geometric Design, 71, 130–141.

https://doi.org/10.1016/j.cagd.2019.04.018

Rippmann, M., Lachauer, L., & Block, P. (2012). Interactive Vault Design. International Journal of

Space Structures, 27(4), 219–230. https://doi.org/10.1260/0266-3511.27.4.219

Rustamov, R. M., Ovsjanikov, M., Azencot, O., Ben-Chen, M., Chazal, F., & Guibas, L. (2013). Map-

based exploration of intrinsic shape differences and variability. ACM Transactions on Graphics,

32(4), 1. https://doi.org/10.1145/2461912.2461959

Sakai, Y., Ohsaki, M., & Adriaenssens, S. (2020). A 3-dimensional elastic beam model for form-finding

of bending-active gridshells. International Journal of Solids and Structures, 193–194, 328–337.

https://doi.org/10.1016/j.ijsolstr.2020.02.034

Sánchez, J., Serna, M. Á., & Morer, P. (2007). A multi-step force-density method and surface-fitting

approach for the preliminary shape design of tensile structures. Engineering Structures, 29, 1966–

1976. https://doi.org/10.1016/j.engstruct.2006.10.015

Sasaki, M. (2014). Structural design of free-curved RC shells. In Shell Structures for Architecture: Form

Finding and Optimization (pp. 259–270). Routledge.

Schek, H.-J. (1974). The force density method for form finding and computation of general networks.

Computer Methods in Applied Mechanics and Engineering, 3, 115–134.

https://doi.org/10.1016/0045-7825(74)90045-0

Sehlström, A., Isaksson, J., & Skeppstedt, M. (2018). Pre-stressed Geodesic Gridshell. Posters of the

Advances in Architectural Geometry Conference. Advances in Architectural Geometry, Göteborg,

Sweden. https://research.chalmers.se/en/publication/507931

Senatore, G., & Piker, D. (2014). Interactive real-time physics. Computer-Aided Design, 61, 32–41.

https://doi.org/10.1016/j.cad.2014.02.007

Skouras, M., Thomaszewski, B., Kaufmann, P., Garg, A., Bickel, B., Grinspun, E., & Gross, M. (2014).

Designing Inflatable Structures. ACM Transactions on Graphics, 33(4), 1–10.

http://dx.doi.org/10.1145/2601097.2601166

Soriano, E., Sastre, R., & Boixader, D. (2019). G-shells: Flat collapsible geodesic mechanisms for

gridshells. In C. Lázaro, K.-U. Bletzinger, & E. Oñate (Eds.), Form and Force: Proceedings of

the IASS Annual Symposium 2019 – Structural Membranes 2019. International Association for

Shell and Spatial Structures (IASS).

Tamke, M., Baranovskaya, Y., Deleuran, A. H., Monteiro, F., Fangueiro, R. M. E. S., Stranghöhner, N.,

Uhlemann, J., Schmeck, M., Gengnagel, C., & Thomsen, M. R. (2016). Bespoke Materials For

Bespoke Textile Architecture. In K. Kawaguchi, M. Ohsaki, & T. Takeuchi (Eds.), Spatial

Structures: Proceedings of the IASS Symposium.

144

Tang, C., Sun, X., Gomes, A., Wallner, J., & Pottmann, H. (2014). Form-finding with Polyhedral Meshes

Made Simple. ACM Trans. Graph., 33(4), 70:1–70:9. https://doi.org/10.1145/2601097.2601213

The Mathworks Inc., a. (2015). MATLAB and Optimization Toolbox Release 2015b. The MathWorks, Inc.

Van Mele, T., & Block, P. (2011). A novel form finding method for fabric formwork for concrete shells.

Journal of the International Association for Shell and Spatial Structures, 52(170), 217–224.

Van Mele, T., De Laet, L., Veenendaal, D., Mollaert, M., Block, P., & Mele, V. (2013). Shaping Tension

Structures with Actively Bent Linear Elements. International Journal of Space Structures, 28(3–

4), 127–135. https://doi.org/10.1260/0266-3511.28.3-4.127

Van Mele, T., Panozzo, D., Sorkine-Hornung, O., & Block, P. (2014). Best-fit thrust network analysis:

Rationalization of freeform meshes. In Shell Structures for Architecture: Form Finding and

Optimization (pp. 157–168). Routledge.

Veenendaal, D. (2017). Design and form finding of flexibly formed shell structures [PhD Thesis, ETH

Zurich, Department of Architecture]. https://doi.org/10.3929/ethz-a-010831669

Veenendaal, D., & Block, P. (2012). An overview and comparison of structural form finding methods for

general networks. International Journal of Solids and Structures, 49(26), 3741–3753.

https://doi.org/10.1016/j.ijsolstr.2012.08.008

Vouga, E., Mathias, H., & Wallner, J. (2012). Design of Self-supporting Surfaces. ACM Transactions on

Graphics (TOG), 31(4), 87–97.

Wallner, J., & Pottmann, H. (2011). Geometric Computing for Freeform Architecture. Journal of

Mathematics in Industry, 1(1), 4. https://doi.org/10.1186/2190-5983-1-4

Wels, S. (2008). California Academy of Sciences: Architecture in harmony with nature. Chronicle Books.

Williams, C. (2014). What is a shell? In S. Adriaenssens, P. Block, D. Veenendaal, & C. Williams (Eds.),

Shell Structures for Architecture: Form Finding and Optimization (pp. 21–31). Routledge.

Wu, J., Lu, E., Kohli, P., Freeman, B., & Tenenbaum, J. (2017). Learning to See Physics via Visual De-

animation. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R.

Garnett (Eds.), Advances in Neural Information Processing Systems 30 (pp. 153–164). Curran

Associates, Inc. http://papers.nips.cc/paper/6620-learning-to-see-physics-via-visual-de-

animation.pdf

Zehnder, J., Coros, S., & Thomaszewski, B. (2016). Designing structurally-sound ornamental curve

networks. ACM Transactions on Graphics, 35(4), 99:1–99:10.

https://doi.org/10.1145/2897824.2925888

145

Zhang, X., Fang, G., Skouras, M., Gieseler, G., Wang, C. C. L., & Whiting, E. (2019). Computational

design of fabric formwork. ACM Transactions on Graphics, 38(4), 109:1–109:13.

https://doi.org/10.1145/3306346.3322988

