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Abstract

Architecture affects our health, especially in hospitals. However, our ability to learn from 
existing hospitals to design buildings that improve patient outcomes is limited. If we want 
to leverage large datasets of health outcomes to build knowledge about how architecture 
affects health, then we need new methods for analyzing spatial data and health data jointly. 
In this thesis, I present several steps toward the goal of developing a computational model 
of architectural epidemiology that aims to leverage both human and machine intelligence 
to do so. 

First, I outline the need for structured architectural datasets that capture spatial information 
in schemas that current drawing formats do not allow. These datasets need to be wide to 
capture multifaceted and qualitative aspects of the built environment, and so we need new 
methods to generate this data. Finally, we need strategies for surfacing insight from these 
datasets by involving both humans and machines in the process.

Next, I propose a framework to satisfy these criteria that consists of four components: 
1) data sources, 2) feature engineering, 3) statistical analyses, and 4) decision-making 
activities. Two case studies provide in-depth illustrations of these components: The first 
presents a 3D interface that enables developers to create 3D visualizations of large health 
outcome datasets in architectural space while taking advantage of the Kyrix details-on-
demand system’s backend performance optimizations. The second tests the efficacy of 
neural network ablation to surface relationships between architectural characteristics and 
health outcomes using a synthetic dataset. 

It is not necessary to ignore human intuition if we want to take advantage of computational 
power, and it is not necessary to leave behind computational power if we want to take 
advantage of human intuition. By overcoming current technical barriers with the methods 
proposed in this thesis, we can work toward achieving both. Ultimately, we can learn from 
our current environments to design buildings that improve our health.
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1. Introduction

Architects face difficult choices during the design process, and we make them

without being able to take full advantage of the evidence at our disposal. We are

constrained–by budgets, by sites, by geometry, and as a result, we must make

trade-offs. This is especially the case in hospitals, where design decisions can

mean the difference between life and death.

A growing body of evidence demonstrates that architectural characteristics in hos-

pitals such as how visible a patient is from a nurse station can affect health out-

comes like mortality rates.21 Some studies claim that patients in rooms with views

to nature may recover faster and request less pain medication than patients with

views to a brick wall.37 We do not yet have a full understanding of these relation-

ships and when they hold, but the pattern is clear: architecture affects our health,

and we have a duty to make design decisions that take this into account.

For an architect that sets out to do so, there is remarkably little support as they

make design trade-offs. Architects put forth design principles that guide these de-
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cisions and cite studies to back them. An architect may understand that fitting an

additional patient room into a layout will increase the numbers of patients that a

hospital can serve, and that including a lounge will reduce stress and allow staff to

provide better care to their patients, but what happens when there is not enough

room for both? One might propose a cost-benefit analysis: consider how many life-

years an additional patient room would save through increased capacity versus the

number of life-years that less overburdened staff would save, and choose accord-

ingly. But that kind of analysis is not currently possible–no such data is available to

architects during the design process.

As other industries build large datasets to enable data-backed decision-making,

architects remain largely unable to take advantage of the lived experiences that

have transpired in millions of buildings across the world to design better buildings.

If we want to do so, then we need frameworks for understanding how architecture

affects our health and computational methods for implementing them.

In this thesis, I take several steps toward the goal of leveraging architectural ev-

idence to improve future designs by interrogating the reasons we have not yet

progressed and outline several methods for overcoming these hurdles. In doing

so, I build on related efforts to propose a computational framework for architectural

epidemiology, or the study of how design affects our health.

In Chapter 2, I provide context for this framework, identifying opportunities and bar-

riers to implementation. Nurses, physicians, designers, and epidemiologists have

been working to understand relationships between our physical environment and

our health for the past two centuries. Their efforts demonstrate that drawing con-

clusions about and acting upon these relationships is important yet complicated;

efforts rarely result in conclusive results nor in design heuristics that architects can

deploy universally. Several barriers contribute to this problem: First, architecture

affects us in indirect and interdependent ways; influences can be challenging to

untangle. Second, we lack large, structured architectural datasets that are rich
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enough to capture the aspects of our environments that affect our health; without

access to evidence, drawing conclusions is not possible. Third, neither human nor

machine intelligence is well-suited to tackle this problem alone; we need meth-

ods to leverage humans’ ability to validate data, frame problems, and account for

factors that are difficult to capture in data. We also need systems to leverage com-

putation to navigate massive datasets, recognize patterns, and conduct analyses

that would take us too long to do manually. A framework for architectural epidemi-

ology must, therefore, make it easy for humans to augment machines’ efforts, and

for machines to augment humans’ efforts.

In Chapter 3, I propose a framework for architectural epidemiology that aims

to satisfy the criteria established in the previous chapter. Data science and ma-

chine learning techniques for recognizing patterns and predicting outcomes are

well-established; my emphasis here is on highlighting domain-specific considera-

tions. To that end, I first highlight several potential datasets and propose avenues

for overcoming obstacles that limit their use in practice. Next, I identify processes

for translating qualitative spatial characteristics into quantitative datasets that can

serve as inputs for data science and machine learning models. Then, I weigh

the merits of several data science and machine learning methods, discussing how

researchers can deploy them for various design analysis tasks. Finally, I identify

techniques and activities that can be deployed during design and analysis pro-

cesses to take advantage of both human and machine intelligence to inform design

processes.

I present two case studies that provide a more tangible illustration of the challenges

that the framework needs to overcome. These more in-depth studies were selected

to consider opposite ends of the human-machine interaction spectrum.

In Chapter 4, I present a new 3D data visualization and discovery frontend

that enables users to navigate electronic medical record data in a 3D model of a

hospital campus. This system aims to harness human intuition in the data valida-
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tion and discovery process. It highlights several challenges in integrating spatial

data into the design process; architectural drawings are often unstructured and

nonstandard. I propose a method for associating room names and levels with ge-

ometric objects to generate structured datasets. Working with massive datasets

like electronic medical records can limit performance and make real-time interac-

tion difficult. This implementation builds on the Kyrix details-on-demand system

developed by the Data Systems Group at MIT’s Computer Science and Artificial

Intelligence Lab (CSAIL) to leverage its backend optimizations, making fluid inter-

actions possible.

In Chapter 5, I present a case study using synthetic data and a neural network

ablation analysis to evaluate the extent to which different spatial characteristics

can predict an outcome variable such as patient mortality rate or length of stay.

In contrast to the 3D visualization case study, the goal of this study is to leverage

machines’ ability to comb through large amounts of data to surface trends. The

case study emphasizes how architecture can serve as an input to a neural network

via a process of feature engineering.

Finally, I reflect on challenges and next steps for this research in Chapter 6.

The work presented in this thesis does not claim to be comprehensive nor to solve

the problem of optimizing buildings for health outcomes with an end-to-end solu-

tion. Instead, my goal is to build upon established domains of evidence-based de-

sign, space syntax, and machine learning to demonstrate that although no perfect

solution may exist, we can do much better than the status quo. It is not necessary

to ignore human intuition if we want to take advantage of computational power, and

it is not necessary to leave behind computational power if we want to take advan-

tage of human intuition. By overcoming current technical barriers with the methods

discussed and proposed in this thesis, we can work toward achieving both. Ulti-

mately, we can learn from our current buildings to design buildings that improve

our health.
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2. Background

Architects, planners, and epidemiologists have deployed wide-ranging techniques

to understand the mechanisms by which architecture affects our health. The past

two hundred years, in particular, have seen new building typologies devoted to

healing, new types of data visualizations that enable new disciplines of epidemi-

ology, and new methodologies for researching and codifying knowledge about the

built environment. If we can learn about the ways that our buildings influence our

health, then we can wield this understanding to improve public health.

Any computational approach to this goal should learn from the opportunities and

limitations that current and previous efforts have elucidated. To that end, this chap-

ter provides an overview of this lineage over the past two centuries with the goal

of establishing a set of criteria that a computational approach of architectural epi-

demiology should satisfy.
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2.1 Sites and contexts

By the mid-nineteenth century, public health had become a key consideration in

urban design and planning. Frederick Law Olmstead’s plan for Boston’s Back Bay

Fens, for example, targeted health issues caused by tidal flats that had been over-

run with sewage. By developing the area into a healthy ecosystem and mitigating

public health concerns, he turned a previously undesirable area at the periphery

of the city into an appealing location for new residents.20 In 1861 Olmstead was

appointed the director of the U.S. Sanitary Commission, essentially working in the

capacity of a public health official for the Union Army during the U.S. Civil War to

oversee camp sanitation for volunteer soldiers.17

Around the same time, physicians began opening sanatoria, facilities for the treat-

ment of tuberculosis. Often located in the countryside so that patients could be

exposed to fresh air that was missing from the cities, these facilities were the pre-

ferred treatment for the illness prior to antibiotics. Previously, patients opted to

be treated at home; healthcare facilities were often considered places where dis-

ease spread rather than was cured. Now, the built and natural environment was

prescribed and used as a treatment in itself.

2.2 Uncovering environmental determinants of health

with data visualization

John Snow and the Broad Street cholera outbreak (1854)

These new ways of thinking about the relationship between our environments and

our health required new modes of representation. Diagrams became tools of both

explication and communication. When the epidemiologist John Snow combined
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Figure 2-1: John Snow’s map tracking the locations of illnesses during a cholera
outbreak illustrates the potential of data visualization to diagnose the source of
disease.30
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medical data with spatial data in the mid 19th century, he discovered the source of

an intractable cholera outbreak and upended conventional wisdom of how disease

spread through the city. Prior to his study, which consisted of mapping the locations

of sick patients as an overlay to a street map, doctors suspected that Cholera was

an airborne illness, and prescribed precautions accordingly.28 With Snow’s new

insight at hand, officials could remove the well’s handle to prevent use and stymie

the spread of the illness.

Florence Nightingale’s On Hospital Reform (1863)

Figure 2-2: Nightingale’s coxcomb charts are early examples of data visualization,
and were used to make the argument that architecture was affecting health.19

Florence Nightingale’s work in data visualization similarly unearthed trends that

weren’t immediately obvious. A nurse and a statistician, Nightingale was dis-

patched to the British Army’s base at Scutari Turkey in 1853 during the Crimean

war, where she described dire conditions. The facilities were dirty, poorly lit,

cramped, uncomfortable, and mortality rates were as high as 42.7%.18 Nightin-
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gale’s coxcomb charts are often cited as early examples of data visualizations; she

used these diagrams to illustrate that the army was suffering significantly more

deaths from diseases that were rampant at the infirmaries than from actual battle

wounds, thereby creating the impetus to act.

She was an early advocate for spatial data, calling for the following details to be

recorded at each facility: "The number of beds. The number of storeys. The num-

ber of wards. The length, breadth, and height of wards. The number of beds per

ward. The cubic feet per bed. The superficial area per bed. Number of windows,

with their dimensions. Means of ventilation. Drainage. Water-closets or latrines.

Water supply".18 As a result of this new spatial data, visual analyses, and the

recommendations that were informed by them, Nightingale was able to convince

lawmakers to make changes that reduced the mortality rate from 42.7% to 2.2%.18

2.3 Incorporating evidence with design guidelines

These early forms of data visualization enabled direct action to solve urgent prob-

lems but did not yet address systemic gaps across the built environment. At the end

of World War II, shifting landscapes in the United States required rethinking the net-

work of facilities that would treat returning war veterans, accommodate mass mi-

gration to the suburbs, and take advantage of new developments in medicine. Suc-

cess would depend on significant coordination and capital investment. Congress

passed the Hill-Burton Hospital Construction Act of 1946 in response. The act pro-

vided funding for the planning, construction, and to some extent, standardization

of facilities, ultimately providing $33.1 billion in funds over three decades, funding

more than 5,000 projects.

Since construction was planned at such a large scale, there was a vested interest

in ensuring that best practices were developed and followed. In response, the

U.S. Public Health Service (USPHS) provided funding for research to investigate
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optimal designs. As hospital administrators began early phases of facility planning,

many USPHS funded studies were targeted to improve hospital performance.

AHA Hospital Design Checklist (1965)

One such effort was a pamphlet entitled Hospital Design Check List, published by

the American Hospital Association (AHA) in 1965. It featured 45 pages of archi-

tectural considerations to be evaluated during reviews of hospital floorplans. For

each of the approximately 2,000 items, the reviewer is asked to indicate whether

the feature is "satisfactorily provided," "desirable but not necessary," or "should be

restudied" in their plans. Items range from a simple check to see whether or not

components are included (nurse’s supply room, oxygen control valves, portable

emergency light), to performative issues (nurses’ visual control, location of phar-

macy with respect to access to elevators), and occasionally more subjective as-

pects (color scheme).?

Whereas Nightingale made specific claims about sizes, locations, and configura-

tions, the AHA checklist leaves it to designers and administrators to make these

decisions; no judgment is provided on the merits of any decision. Instead, the

AHA argues that each facility will have different demands and that the checklist

method accommodates the requirements and preferences of the facilities’ archi-

tects and administrators. It argues that "this method of measuring the probable

effectiveness of architectural features for a hospital has a distinct advantage over

methods employing fixed general standards that do not include all situations and

cannot easily be kept abreast of advances in the many phases of patient care".?

This acknowledgment is perhaps in line with the contingent nature of design, allow-

ing the designer and administrators to weigh the relative importance of a variety

of factors. Intense studies on specific aspects of design are still possible. Still,

it acknowledges a problem of multivariable optimization: optimizing for the per-

formance of one variable often comes at the cost of the performance of another.

18



The AHA checklist puts the onus on the architect and administrator to balance the

wide-reaching considerations.

2.4 Evidence-based design

More recent efforts to assess how architecture affects health have taken advan-

tage of techniques like difference-in-difference analysis, natural experiments, and

randomized control trials.

Ulrich’s view to nature study (1984)

One oft-cited study is Roger Ulrich’s 1984 investigation that found through a natural

experiment that a view to nature from a patient’s room as they recover could lead

to shorter recovery times and lower pain medicine intake.37 The study considered

nine years of data from a ward that consistently served cholecystectomy patients.

Nurses assigned patients to rooms as they became vacant, and Ulrich controlled

for considerations such as a patients’ preexisting conditions, history of previous

hospitalization, and wall color. The goal was to isolate a single variation: some

rooms had views to foliage while others had views to a brick wall. Ulrich did a

remarkable job of addressing confounds. Still, he provides a warning about the

generalizability of his findings: "The conclusions cannot be extended to all built

views, nor to other patient groups, such as long-term patients, who may suffer from

low arousal or boredom rather than from the anxiety problems typically associated

with surgeries. Perhaps to a chronically under-stimulated patient, a built view such

as a lively city street might be more stimulating and hence more therapeutic than

many natural views".37
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2.4.1 Evidence-based design glossary (2011)

Studies in the vein of Ulrich’s view to nature study accumulated over time, and a set

of architects, interior designers, and researchers founded the nonprofit organiza-

tion the Center for Health Design in 1993.? In 2011, a team led by Ulrich conducted

a literature review of hundreds of studies considering architecture’s role in health

outcomes.23 Priority outcomes included health outcomes, patient satisfaction, and

operational efficiency.

Studies continue to add to these findings. Researchers have investigated hypothe-

ses that architecture can contribute to patient outcomes by reducing nosocomial

infections,41 medical errors,5 and patient anxiety,4 while encouraging healthy be-

havior change like hand washing7 and caregiver-patient interactions.4

Several aspects of the built environment may influence patient satisfaction, includ-

ing comfort,14 aesthetic perception,31 and proximity to nursing stations.16 High-

quality physical environments can positively influence perceptions of care, reduce

anxiety, and foster better communication with staff.4 These factors may also con-

tribute to improved patient outcomes via a placebo effect.24

Hospital layout can affect operational metrics like staffing efficiency and team co-

hesion11 while enabling higher quality communication between staff.13 Nurses that

need to spend more time traveling between patient rooms due to inefficient layouts

may suffer more fatigue and spend less time with patients.27 Light and sound at

nursing stations can support or impair nurse performance.9

2.5 Discussion

The preceding examples provide context for the framework outlined in the next

chapter. First, they motivate the approach by demonstrating that architecture af-
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fects our health but that we are just beginning to scratch the surface when it comes

to harnessing these relationships. Then, they highlight several design considera-

tions for a framework that aims to expand these capabilities.

Architecture affects our health.

Hospital architecture affects patient health outcomes, like mortality rates and pain

medication intake. It affects operational outcomes such as staff burnout, team

cohesion, and travel distances. It affects the patient experience. It is critical, there-

fore, that we learn more about these relationships and develop methods for inte-

grating our findings into the design process.

We need to be aware of omitted-variable bias.

Architecture is never the only factor that determines a patient’s outcomes; preex-

isting medical conditions, the care provided by their medical team, and cultural

factors can play a greater role. We, therefore, need to be aware that the results

of any given analysis may have limited relevance outside of its immediate context.

A study of the effect of nurse supervision on patient mortality rates in an ICU will

have limited generalizability to general inpatient wards, for instance.

Further, architectural characteristics are interdependent and difficult to isolate. For

instance, windows provide both views and access to daylight. A study that finds a

relationship between daylight and patient comfort may actually be picking up the

effects of views. It is critical, therefore, to have holistic spatial datasets that capture

multiple qualitative facets of architectural spaces.
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We need larger spatial datasets if we want to generate insight at scale.

The studies that demonstrate the impact of our environments on our health are

limited in scope, but with the advent of electronic medical records, there is the

potential to significantly expand the scope of these insights. Although large repos-

itories of patient data exist, no such repository of spatial data exists that contains

the breadth and depth of data necessary to characterize the relationships we wish

to study at scale while avoiding omitted-variable bias. While some spatial data such

as square footages and locations are tracked, it does not capture the qualities of

space that are relevant for the task at hand.

Architecture affects our health by enabling staff to have clear sightlines to patients,

by providing comfortable settings for patient recovery, and by minimizing travel

distances between essential services. These characteristics are not represented

explicitly in architectural drawings, but instead, need to be extracted from unstruc-

tured drawings through a process of analysis. To generate structured, consistent,

and rich datasets at scale, we’ll need methods to standardize and automate these

analyses.

We need to leverage both human and machine intelligence.

Human intuition is a powerful design tool, but will not be capable of keeping track

of every factor that needs to be considered in the design process. Because of

the breadth of the data necessary for these analyses and the contingent results of

each study, we’ll need to provide computational methods for designers to access

relevant information without manually sifting through every data point and study.

At the same time, computation on its own will fall short on its own. Though gen-

erative design offers the promise that these guidelines could be codified and de-

signs automated, the considerations of healthcare design are likely too complex

and contingent on their context to be fully addressed by a generative design pro-
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cess. Operational subtleties such as staffing models and culture affect the way that

spaces are used, and therefore the ways that a new design will be used.

The tension between these two types of intelligence has been debated hotly for

decades. A reliance on computation requires the belief that design can be treated

as a science and formalized into rules. Herbert Simon argues that "a science of

design, a body of intellectually tough, analytic, partly formalizable, partly empir-

ical, teachable doctrine about the design process" is possible.29 Though some

principles may be formalized, there remain aspects of the design process that

prove more difficult, if impossible, to formalize. In articulating his concept of re-

flective pracitce, the philosopher Donald Schön notes that "indeterminate zones of

practice–uncertainty, uniqueness, and value conflict–escape the canons of techni-

cal rationality. When a problematic situation is uncertain, technical problem solving

depends on the prior construction of a well-formed problem–which is not itself a

technical task".26 The balance comes in merging that which is formalizable with

that which is not.

2.5.1 Conclusions

A computational framework for architectural epidemiology has the potential to im-

prove hospital design and improve patient health outcomes. It will require more and

wider data to overcome omitted-variable bias and provide a holistic representation

of architectural space. It will need to rely on computational methods for surfac-

ing relevant insight from these larger datasets. It will need to include humans in

the loop to perform data validation, make decisions about tradeoffs, and layer in

unrepresented cultural and operational factors into the decision process. Such a

framework is the subject of the next chapter.
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3. A Computational Framework for

Evidence-Based Design

In this section, I propose a framework of architectural epidemiology. The domains

of data science, machine learning, public health, and architecture are vast; my

goal is not to provide a complete, solved solution. Instead, I highlight domain-

specific barriers that have prevented such a framework from being implemented

and propose means by which these barriers can be addressed. No individual step

in the process on its own captures the range of challenges alone; I emphasize

breadth over depth to consider a full cross-section of the pipeline, starting from

data collection and ending with design decision-making.

Work in evidence-based design and space syntax provides a solid foundation for

this framework; here, I illustrate how that work can be extended to utilize large-

scale datasets. This framework draws from parallel efforts in real estate, where

researchers and practitioners have applied data science and machine learning to

the problem of learning from the built environment. Here, I look to extend the
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applicability of those models to the unique challenges of health outcomes.

Criteria for a computational framework

The previous chapter characterized the problem of using multiple sources of data

to inform the design process. Here, I highlight several criteria that a computational

model of architectural epidemiology should satisfy:

1) Analyses considering the effect of architectural characteristics on health out-

comes are likely to suffer from omitted-variable bias. We need wide datasets

that capture multifaceted and qualitative aspects of the built environment to

increase the likelihood of capturing the relevant spatial data in our analyses.

2) No such datasets exist yet at scale for hospital architecture. We need methods

for generating structured spatial data sets by mining multiple unstructured

data sources. The scale of these efforts requires automated systems to reduce

bottlenecks.

3) Human intuition on its own will not enable us to take full advantage of the data;

We need computational methods that are better suited to combing through

the data and surfacing patterns.

4) Computation on its own will not have the capacity to identify and account for

exogeneity in the data, nor to make complex design decisions that depend on

cultural, political, and subjective factors. We need tools for humans to support

and take advantage of computational automation.

3.0.1 Elements of the framework

To that end, I propose a model for generating wide and deep spatial data sets and

methods for benefiting from both human and machine intelligence in the design

process. This framework consists of four elements:
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Figure 3-1: The framework consists of four components: data sources, feature
engineering, statistical analyses, and decision-making.

1) Data sources: I identify relevant data sources and discuss their associated

opportunities and limitations.

2) Feature engineering: I identify processes for translating qualitative spatial char-

acteristics into quantitative data sets that can serve as inputs for data science and

machine learning models.

3) Statistical analyses: I identify data science and machine learning techniques

that are relevant to the task of answering questions data, and discuss the applica-

bility of each approach to aspects of the task at hand.

4) Decision making: I identify techniques and activities that can be deployed dur-

ing the design and analysis process to take advantage of both human and machine

intelligence to inform design processes.
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3.1 Data sources

While no cohesive architectural dataset yet exists for hospitals, several structured

and unstructured data sources can be used to build one. These sources can help

to create static data characterizing aspects of the built environment that remain

constant, real-time data that can track inhabitants’ behavior and movement, and

health outcome data that can be used to assess the ultimate performance of a

facility.

Researchers have recognized the necessity for wide data in applying data science

techniques to research on the built environment. The MIT Real Estate Innovation

Lab, led by Dr. Andrea Chegut, has research efforts specifically devoted to draw-

ing from multiple sources to construct wide datasets. This data helps researchers

assess the value of design, accounting for factors such as lease comps, build-

ing certifications, and property details.6 Commercial solutions like Compstak and

Cherre have emerged to provide data to real estate brokers to enable better in-

vestment decisions.8 These efforts demonstrate that building up large datasets is

possible but have not yet been extended to hospitals or to include characteristics

that affect health outcomes.

3.1.1 Architectural data

Data containing information about buildings often comes in the form of architec-

tural drawings or Building Information Models (BIM). These data types are ubiqui-

tous within the architecture industry but typically exist in unstructured formats that

make them ill-suited for data science applications without pre-processing. These

drawings can exist in several forms: hand sketches, hand-drafted drawings, CAD

files, or BIM, to name a few.
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Architectural drawings are dispersed across many sources.

Drawings are often created by an architect as part of the design process and are

used to communicate design intent to clients, engineers, and those tasked with

constructing the building. After construction, they may be retained by the architect

and building owner, distributed via publications, or used as marketing material for

prospective tenants. The result is that this information may be dispersed rather

than stored in a central repository.

Architectural drawings tend to highlight building components but do so im-

plicitly.

Floor plans contain both explicit and implicit types of information. One of the pri-

mary roles of architectural drawings is to direct the construction of a particular de-

sign; to that end, they tend to contain information about building components such

as walls, windows, and doors rather than emergent spatial qualities that these el-

ements produce. While BIM models may represent these elements explicitly as

components that contain associated metadata such as materials or manufactur-

ers, they may also be represented implicitly by lines or outlines, as is the case in

many DWG files or hand sketches.

Representations of qualitative aspects of design in floor plans are implicit

and inconsistent.

While drawing techniques such as diagrams or renderings can be used to highlight

and communicate design characteristics such as relationships between rooms, the

character of a space, or the views outside of a window, these characteristics are

rarely represented explicitly. Instead, they are implied by line weights, diagram-

matic overlays, precedent, or convention, and in inconsistent ways across floor
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plans.

Architectural data requires structuring

To summarize, floor plans and BIM models are rich sources of architectural infor-

mation, but access to this information is restricted due to a lack of central data

warehouses, highly inconsistent formats, and a lack of explicit encoding of relevant

architectural characteristics. To take advantage of the fullest extent of this informa-

tion, we need to analyze plans for qualitative characteristics. To run these anal-

yses, we need methods for extracting consistent design elements such as rooms

and walls, which may be represented explicitly.

3.1.2 Sensor data

Sensor data can provide real-time insight into the activities that take place inside

of a hospital, tracking how people and equipment move throughout a space. This

data can be used as a process indicator. For example, if a designer is trying to

understand whether a staff lounge affects burnout rates, then they need to discern

whether or not staff uses the lounge since they are likely to only benefit from it if

they use it. Utilization data for these lounges, as captured by sensor data, can

validate this assumption.

Movement traces

Tracking and tracing movement in a space can provide details about utilization,

traffic patterns, and how people socialize. Real-time location systems (RTLS)

are one potential source of this kind of data, and can be used to track people or

equipment as they move throughout a space.10 Often implemented in hospitals

to support day-to-day operations, the data generated can be used in analyses to
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track the effectiveness of interventions. Finer-grain locations can be tracked using

equipment like the commercially available Kinect system. This kind of data can

track movement and gestures, as described by Paloma Gonzalez Rojas in her

thesis Space and Motion.25

Affect recognition

Real-time tracking of human affect and emotion can be achieved by using image

recognition to process facial cues or wearable sensors to capture electrodermal

activity. The Affective Computing Group at MIT has pioneered several related

methodologies, including one study that tracked participants’ skin conductance,

heart rate, and self-reported mood over moth-long periods of time.35

Environmental qualities

Sensors deployed in buildings may also collect data related to human comfort such

as temperature, humidity, ventilation, and light levels.38

3.1.3 Medical records

Medical records provide the primary source for outcome variables. Electronic med-

ical records have increased in prevalence over the past decade after the Affordable

Care Act of 2010 provided incentives for adopting the systems. These records con-

tain information about a patients’ medical history, treatment plans, and events such

as tests, consultations, and administration of medicine. Additionally, they may in-

clude outcomes such as mortality rates and readmission rates. This data may or

may not include details about the locations where the events occurred.
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3.1.4 Surveys

Direct feedback from patients and staff can come in the form of digital or print

forms, interviews, focus groups, or feedback terminals. Responses can be used

as outcome metrics on their own, or they can shed light on model assumptions

by serving as process indicators. For instance, if researchers are interested in

learning about how architecture affects patient satisfaction, they may use an overall

satisfaction score as an outcome variable. Several feedback terminals could also

be deployed in different rooms to assess localized environmental qualities to better

understand how each space contributes to the overall effect.

3.2 Feature engineering

The process of feature engineering, that of extracting data attributes from unstruc-

tured data, poses unique challenges in architectural epidemiology. In this section,

I discuss several means of translating unstructured architectural drawings into nu-

meric architectural features. I provide additional examples of feature engineering

in Chapter 5, demonstrating how architectural characteristics can be transformed

into inputs for a neural network.

Encodings in architectural drawings typically capture distinct elements in a space

rather than implicitly encoding the resultant qualities of a space. Because of this

limitation, translating floorplans into numerical features that can be input into re-

gressions or machine learning models requires analysis. In the case of a hospital,

the patient room makes a suitable unit of analysis. For each room, calculations

such as the travel distance to the nearest nursing station can be input to models as

numerical variables. Categorical variables, such as the view outside of a patient’s

room as in Ulrich’s study, can also be used as inputs by one-hot-encoding.

These encodings can be straightforward, or more in-depth analysis can be con-
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ducted to quantify aspects that are typically discussed in qualitative terms. The

discipline of Space Syntax provides many methods with which to do so, quanti-

fying characteristics such as visibility, proximity to circulation, and connectivity.15

Metrics like these have been used in studies that find significant results. One study

proposed a new metric called isovist connectivity that is calculated from any given

point in a plan by finding "the area of the visual polygon that is visible from any-

where within the isovist of the point".21 Ossmann et al. found that this metric was

able to predict mortality rates in ICUs.

We can use these encodings for large-scale data analyses across multiple facilities,

but first, we’ll need to develop methods for automating these analyses. The quality

of these encodings will only be as good as the quality of the drawings that are

analyzed. Not only do the analyses have to be performed in consistent ways, but

the drawing elements that serve as the basis such as walls, doors, and windows,

need to be accurately and consistently captured as well.

3.3 Statistical analysis

With consistent, qualitative datasets, we can leverage computation to analyze

trends and surface insights. In this section, I provide a high-level overview of

analysis techniques and their potential relevance to architectural epidemiology. In

Chapter 6, I present a more in-depth case study assessing the viability of using

neural network ablation in statistical analysis.

3.3.1 Influence weighting

Econometric methods such as linear regression can reveal correlations between

input architectural features and output health outcomes. This is the method em-

ployed by many studies in the evidence-based design literature. However, satisfy-

33



ing conclusions are often elusive due to small sample sizes or potential omitted-

variable bias.23

Natural experiments can be sought out in the built environment to strengthen

conclusions, as was the case in Ulrich’s landmark 1984 study, in which patients

were randomly assigned to rooms that had naturally occurring variation; rooms on

one side of the hall had views to nature, while rooms on the other side had views

to a brick wall.37 Researchers need to cautiously assess whether hidden factors

may be occurring to the detriment of randomization. For instance, patients with

higher acuity may be assigned to rooms closer to nurse stations so that they can

be supervised more closely. Risks like this highlight the necessity of involving a

human-in-the-loop. Humans can discover and address these outside considera-

tions with data exploration and validation.

In the broader context of studying the value of design, Turan et al. use a hedo-

nic pricing model regression to estimate the value of daylight. Spatial daylight

autonomy is provided as an independent variable along with other relevant inputs

such as building class, lease duration, and building age, and are considered rela-

tive to the output variable of net effective rent.36 This illustrates the importance of

controlling for outside factors; daylight plays a role, but to see it, we first need to

peel back the influence of other influential variables. This is especially the case in

healthcare settings, where factors like a patient’s pre-existing conditions are likely

to have a much greater influence on mortality rates than the architecture.

Neural networks can also provide insight into the extent to which an architectural

characteristic influences health outcomes, though with limited interpretability. By

conducting ablation and inclusion analyses, the relative importance of each input

feature can be assessed. This method is the subject of Chapter 5.
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3.3.2 Influence mapping

Other methods have been used successfully in clinical settings because they of-

fer some degree of interpretability and reasoning about causality. Decision trees

can be constructed using automated processes and can be used to reason about

potential treatment options for patients. Decision trees can reveal causal depen-

dencies and are presented in graphical forms that make them easy for humans to

interact and reason with.22

Bayes nets also enable causal reasoning and have been used widely in health-

care settings. Arora et al. find that this is because they make it easy to visualize

relationships between variables and because they translate easily into deployable

decision models.3

3.3.3 Similarity mapping

Many architectural elements are interrelated; larger rooms may have larger win-

dows, which may provide more daylight, for instance. Trade-offs are equally fre-

quent; larger rooms will lead to longer travel distances between rooms. It may be

useful to used unsupervised learning techniques like k-means clustering to group

together similar rooms based on their holistic qualities, potentially also adding ad-

ditional power to regression analyses.

3.3.4 Discussion

Several data science and machine learning methods will be at our disposal if we

can generate a wide dataset of healthcare architecture. However, cultural and op-

erational nuances could unwittingly corrupt natural experiments. Omitted variables

could create bias in regressions. We should push the limits of the analyses de-
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scribed in this section, but we should do so with the support of a human-in-the-loop

to be on the lookout for these potential pitfalls.

3.4 Decision-making

Ultimately, the results of these analyses need to make it back to the designer if

they are to influence the design of new buildings. In this section, I present several

methods for encouraging this feedback loop. It is an oversimplification to present

these methods along a continuum, but I do so here for clarity. At one end, tools

for data discovery and validation rely on computation but are driven by human

operators. On the other end of the spectrum, optioneering design spaces may

be defined by a human but be explored by machines. In the middle, there is the

potential for design heuristics or human-machine question asking.

3.4.1 Data discovery and validation

New architectural datasets will enable new kinds of data visualization. Researchers

can visualize health outcomes as overlays to 3D models of the hospital, allowing

them to identify trends and patterns not visible in other forms. I provide additional

detail on this topic in the form of a case study in Chapter 4.

3.4.2 Design heuristics

As the statistical methods that are described in the previous section are deployed

across deeper and wider datasets, there is the potential to codify the findings into

best practices. These could come in the form of hard requirements like building

codes, or feed into design-criteria similar to how studies are used today. Fu et

al. identify design "principles, guidelines, and heuristics" as three terms that are
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often used to "codify and formalize design knowledge so that innovative, archival

practices may be communicated and used to advance design science and solve

future design problems".12

3.4.3 Optioneering

To a degree, these heuristics can be translated into fitness metrics for generative

design processes, enabling a process of optioneering. This does not obviate the

need for human involvement; it is still necessary to frame design problems and

goals, define design criteria, and maintain a watchful eye for heuristics that are

misapplied. In an optioneering process, we run the risk of portraying more confi-

dence or generalizability than the statistical analyses actually provide.

While computers can iterate through millions of design options and score each

against established design criteria, they tend to stumble when faced with edge

cases and disappoint when it comes to creative capacity. An uneven fitness land-

scape and goals that are often mutually exclusive make matters more complicated;

a hospital CFO may want to minimize construction cost while a doctor may advo-

cate for larger patient rooms to improve patient experience. The design process

can be more about politics than about optimization. Computers need humans to

exercise creativity, set thorough constraints, and to interpret their output.

Optioneering is difficult because of the vast potential sources of design criteria that

an architect must consider. These criteria come from building codes, programming

documents, letters of intent, community meetings, conversations between clients

and staff, focus groups, studies, simulations, geospatial analyses, and precedents,

to name a few. Many of the criteria that are crucial to improving health outcomes

come in the form of journal articles or best practice compendiums. Design pro-

cesses rarely leave enough time for architects to read and take advantage of these

sources. Computers could help by rapidly surveying these sources to identify rel-
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evant information, but would need a framework to understand stories and convert

them into internal representations to do so.

3.4.4 Recipe following and question asking

Winston and Holmes offer one such framework in their paper, The Genesis Enter-

prise.39 Genesis is a program that takes short stories and translates them into a

robust internal representation. Yang and Winston illustrate how Genesis enables

computational recipe following and question asking.40 In particular, they show how

a computer can be presented with a task, follow recipes for certain behaviors, and

ask another expert for help when it gets stuck. The architectural goals listed above

could be interpreted via story understanding and called via recipe following.

Performance criteria, constraints, and conceptual strategies are specified. A com-

puter can generate many of these constraints automatically, for instance, by con-

solidating relevant studies or running new regressions on data that is relevant to

the problem at hand. A human can establish other goals, such as facilitating mean-

ingful conversations between doctors and patients.

These goals could be integrated with a generative design process, in which many

design options are generated with the goal of sampling a large design space. If

the design space is well constrained, a computer can iterate through options much

quicker than a human. However, constraints are often inadequate or too restrictive,

and humans may be able to intervene to make adjustments to these constraints.

Each design option can be evaluated based on the design criteria by both humans

and machines.
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3.5 Discussion

There is no silver bullet approach to optimizing design. Architecture has multiple

stakeholders, and arriving at a single design solution requires negotiation. Today,

these negotiations happen within an ecosystem of uncertainty, and there is more

that we can and should do to build up a more robust evidence base. But even

once we do so, we need to be aware that these studies will never provide us with

a complete representation of the world and how it functions. We should use gen-

erative design engines to explore design spaces because they can help us track

performance across a multitude of factors that we can’t track on our own, but we

should be on the lookout for areas where our design constraints are too strict or

uncertain. We should learn what drives health outcomes in our buildings and op-

timize for those considerations, but we should be careful not to forget elements of

design that can’t be quantified, whose value is not easily articulated. But by defin-

ing the value of design more broadly to include health outcomes, we can bring

more considerations into the fold and improve the built environment along the way.
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4. Data Discovery in Architectural

Space: A 3D Frontend for Kyrix

If we want to leverage large datasets to understand phenomena that occur spatially,

then we need data visualization tools for conducting data discovery and verification

in three dimensions. In this chapter, I describe several steps toward this goal. First,

I present a 3D frontend for the Kyrix details-on-demand system that enables de-

velopers to create 3D visualizations and interactions that take advantage of Kyrix’s

backend performance optimizations. Next, I describe a process for generating 3D

models by extracting structured geometric and identifying data from unstructured

architectural drawings. Finally, I describe how the frontend can be used for data

discovery and exploration by describing visualizations that help users explore po-

tential transmission paths of the infectious disease c. difficle at Massachusetts

General Hospital.
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4.1 Background

This research was conducted with the Data Systems Group at MIT’s Computer

Science and Artificial Intelligence Lab (CSAIL) in an effort to discover potential

transmission paths of the infection c. difficile (c. diff ). Hospital-acquired infections

like c. diff can spread through facilities and infect patients who had come to the

hospital for other injuries or illnesses, but the mechanisms and transmission paths

by which they spread is unknown. CSAIL’s efforts aim to shed light on these trans-

mission paths by enabling infectious disease experts to navigate large amounts of

patient data. The 3D frontend described in this chapter layers in spatial information

so that users can visualize the spread within its spatial context.

4.1.1 Spatial epidemiology

This investigation is in the spirit of John Snow’s mapping of the Broad Street

cholera outbreak of 1854, which visualized health data spatially on a map and

ultimately led to the discovery of cholera’s previously misunderstood transmission

paths.28 This kind of spatial data visualization remains a powerful tool for studying

disease transmission vectors that are not fully understood today, and we have new

tools at our disposal to add in additional sophistication. Electronic medical records

(EMRs) have become ubiquitous throughout hospitals in the past decade. They

offer rich and voluminous representations of the world that researchers can mine

for the kinds of insights that Snow discovered in 1854.

4.1.2 Challenges for architectural epidemiology

However, several challenges remain. Intuitive data visualization requires fast re-

sponse times to enable fluid interaction, but EMR datasets are massive and can
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slow performance. Second, while advances in geospatial datasets make it eas-

ier for researchers to leverage urban data such as streets and building footprints,

details about the interiors of buildings remain stored primarily in unstructured ar-

chitectural drawings. This presents a barrier to tracking infections like c. diff, which

can spread throughout the interiors of hospitals.

Architectural data is not easily processed or accessed. Information such as room

size, shape, layout, and position are often stored in DWG file formats. These files

consist of geometric information that a user has input through a drawing program

such as Autodesk’s AutoCAD. While BIM formats enable associations between ge-

ometry, spatial relationships, and room details, records of many existing buildings,

including those at MGH, are stored without these embedded attributes.

This chapter proposes a method for overcoming these obstacles by 1) presenting

a new 3D frontend for the Kyrix details-on-demand system that takes advantage of

Kyrix’s backend performance optimizations to allow for data exploration with min-

imal response times while accounting for the unique considerations of 3D data

exploration, and 2) generating structured 3D models from unstructured CAD draw-

ings to enable data exploration in architectural space.

4.2 3D frontend for Kyrix

The Kyrix system provides an end-to-end, general-purpose system for optimiz-

ing details-on-demand data visualizations, minimizing the burden on developers.

Kyrix provides developers with a "concise yet expressive declarative language for

specifying visualizations," enabling the developer to focus on designing the de-

sired interactions while the Kyrix compiler and backend handle precomputation.

This structure provides quick response times even when working with massive

datasets.33
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Kyrix currently supports pan/zoom interactions with two-dimensional interfaces,

but its declarative language had previously not allowed users to create three-

dimensional visualizations and interactions.34 In this chapter, I propose a new

frontend for Kyrix that enables developers to specify three-dimensional visualiza-

tions and interactions with a declarative language that mirrors that of the current

frontend.

4.2.1 Kyrix 2D declarative model

Kyrix’s 2D frontend uses several abstractions that the 3D frontend builds upon.

Kyrix’s 2D frontend uses canvases as the context for the visualization’s geometry,

layers to specify various types of visual encodings, data transforms to access

data via SQL queries, rendering functions to map data to visual objects, place-

ment functions to support faster backend fetching, and jumps to move between

different views.34

To visualize architectural data using the 2D frontend, a developer could create a

canvas containing an SVG floorplan. She could then add additional information to

the plan, such as circles that are color-coded to indicate the number of infections

in any given room. By adding jumps to each of these circles, she could allow users

to access new canvases upon clicking. Jumping to this new canvas would replace

the view of the floorplan with a view of another type of data visualization–a timeline

view of nurse activity, for instance.

While 2D views are practical for many data types, they have significant downsides

when applied to the task of navigating activities that take place in three-dimensional

space. Most significantly, they do not allow users to view activities that take place

over multiple floors in an intuitive way. While it is possible to implement jumps that

allow users to navigate from one floor to another, this kind of transition could be

disorienting for the user. Additionally, it misses the opportunity to highlight spatial
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relationships that occur over multiple floors.

4.2.2 Kyrix 3D declarative model

3D visualizations can use much of the same declarative language. However, some

alterations are necessary to implement 3D scenes and ensure usability. In particu-

lar, visual-spatial references are useful when navigating 3D scenes. For instance,

when visualizing a specific room in a hospital, it may be helpful to visually key the

room into its broader context: a floor, unit, or building. The 3D frontend is designed

with this consideration in mind: it assumes that zooming and jumps will occur within

a persistent global scene. Jumps in Kyrix 2D allow users to navigate between can-

vases. However, jumps in 3D Kyrix typically allow users to view different layers

within the same canvas.

A typical workflow in 3D Kyrix consists of defining a scene to which geometry can

be added. A developer can add different types of geometry to the scene using

layers. Layers use transform functions to query a database and select which

geometry that should be added to the scene and rendering functions that pre-

scribe how the geometry is added to the scene. For instance, a developer could

create a layer consisting of only room geometries on the second level of a build-

ing, and specify a rendering function that displays these objects as white, opaque

rooms within the scene. A developer may wish to present multiple layers at a time;

canvases allow users to specify which layers are presented in the scene. Jumps

can be added to any layer and specify which canvas the frontend will present if a

user clicks on an object.

Scenes

Scenes are a new abstraction in Kyrix 3D that create a persistent environment for

navigating 3D geometry between jumps. In the current implementation, scenes
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Figure 4-1: Kyrix 3D’s declarative language mirrors that of Kyrix 2D, but adds a
scene abstraction to enable a persistent environment when the user jumps be-
tween canvases.

are specified using the three.js 3D library.1 Developers can add camera controls

to a scene to define how a user zooms, pans, and navigates. Developers can also

control the scene’s visual appearance by adding elements like lighting and fog.

Canvases

In 3D Kyrix, canvases are used to declare which layers are visible in a scene.

A typical canvas specification contains a list of layers to be rendered, along with

any 2D user interface elements that should be presented, such as a title or subtitle.

Unlike in 2D Kyrix, the scene persists when new canvases are called. This enables

the user to stay oriented relative to the rest of the building as details are added or

removed from the scene.

Layers

Each layer defines a set of geometric objects that should be added to a scene,

along with specifications that define how the geometries should be visualized and

how users can interact with those objects.
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In a typical implementation of an architectural visualization, there could be:

1) a layer for rooms to allow users to interact with data associated with each room

2) a layer for building envelopes to enable users to interact with aggregated data

for each building or to provide visual context for the room layer

3) a layer for static contextual information like a ground plane or site.

The developer specifies which geometries should be added to the scene by defin-

ing a data transform function for each layer. The developer specifies the appear-

ance of objects on each layer with a rendering function. For instance, a developer

could use a transform function to select only rooms that a certain patient has vis-

ited, and could then use a rendering function to color code those rooms based on

the number of infections present in each room. A developer can also add a jump

to the layer, which specifies which canvas loads when a user clicks on any object

in the scene.

Data transforms

Data transforms define which data is retrieved from the backend for any given layer.

A developer can specify that data should only be presented from a certain build-

ing, floor number, or geometry type. The developer can also provide a predicate

that filters the data according to alternative conditions. Just like in Kyrix 2d, data

transforms consist of SQL queries to fetch raw data.

Rendering functions

Rendering functions control the appearance of geometric objects on each layer and

define how they are added to the scene. The rendering function also controls the

height of objects and whether or not users can interact with them. For instance,
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if the primary focus of a visualization is patient rooms, then the layer containing

patient rooms could have a rendering function that displays the objects as opaque

and white. An additional layer for building envelopes could also be included in

the canvas, and its rendering function could specify that the objects have a lower

opacity and should not interact with the mouse.

A user may specify a color or color function for any layer. For instance, color may

be applied along a gradient to visualize the number of infections present in each

room.

Placement functions

Placement functions are not used in the current implementation. Instead, the back-

end fetches data according to the transform function specified in a given layer.

Jumps

Jumps can be added to a layer and specify the canvas to view when an object is

clicked, along with any associated transitions.

Discussion

Kyrix 3D’s declarative language mirrors that of Kyrix’s original frontend while ac-

counting for considerations that are unique to navigating data in architectural space.

The current implementation tests the flexibility of the frontend in architectural and

campus settings. Still, it has not yet been tested on urban settings where larger

numbers of geometric objects could cause performance issues. Implementing

placement functions that take camera perspective, orbiting, and panning function-

ality into account provides one potential avenue to extend the frontend for this

functionality.
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4.3 Building an associative 3D model from unstruc-

tured CAD plans

The declarative language described in the previous section requires users to pro-

vide geometric data that is structured in such a way that it can be used to construct

a three-dimensional model, which is a nonstandard format for architectural draw-

ings. To match EMR data with architectural data, a method is needed to associate

identifying information with each geometry in the 3D model, such as room number,

floor number, and building name. This section describes a process of building a 3D

model by extracting geometric data and its corresponding identification information

from CAD plans in which no structured association exists.

First, the relevant room outline geometry is manually identified in the CAD plan,

cleaned, and converted into a JSON object. Next, an attempt is made to associate

room names, floor numbers, and building names with each room geometry. The

geometry and the associated data are output in table form, which can then be used

to reconstruct a 3D model using three.js.

Extracting formatted geometry from CAD drawings

Figure 4-2: Outlines of rooms are extracted from the CAD drawings, encoded as
JSON objects, and extruded into three dimensional geometries in the front-end.

First, it is necessary to extract geometry from the CAD drawings that can be used

to generate the 3D model in the frontend. In this implementation, closed polylines

were extracted from the CAD plans that could then be extruded in the frontend to
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generate 3D volumes.

There are several obstacles to automating this process. First, CAD drawings con-

tain many types of information that are not relevant to the task at hand; geometries

and annotations such as walls, lighting, furniture, fixtures, and labels need to be ig-

nored.2 Second, no explicit representation of each room’s outline is guaranteed to

exist in the drawing, making it difficult to automate extraction of these geometries.

Rooms may be implied by individual lines that make up the faces of walls, but these

lines may have no explicit relationship to one another in the drawing file. Gaps for

windows and doors may further complicate the process of automating room outline

detection. Several studies demonstrate advances in automating extraction of room

boundaries from floor plans in specific conditions, but it is a problem that has not

been solved universally.32

MGH’s CAD plans contained polyline outlines of most rooms. CAD drawings are

often organized with a layer table, into which a human drawer sorts certain types

of geometries. This table can later be used to filter out irrelevant geometry. For

instance, annotations may be kept on an annotation layer, while furniture may be

kept on a furniture layer. MGH’s drawings included a layer that contained outlines

of each room and building, making it straightforward to isolate these geometries by

simply selecting by that layer.

Some rooms did not have associated room outlines, and these needed to be identi-

fied and drawn by a human technician. Additional information was also present on

the layer and needed to be filtered out, such as points, lines, and text. These could

be selected and deleted using native selection features in Rhinoceros 3D. Polylines

that were under a threshold square footage were also removed from the selection

to ignore closets, plumbing stacks, and similar spaces that were not of interest.

The result of this process was a cleaned list of polyline objects corresponding to

each room in the floorplan.
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Associating room names with room outlines

In these drawings, room outline geometry is not explicitly associated with room

identities. Instead, room names and numbers are labeled as text objects and are

often located within the room outlines. To determine which room label was associ-

ated with each room, a Grasshopper script was written to determine whether or not

a text label was located within a given outline. If one text label was located within

an outline, the value of that label’s text was associated with the room outline. In

cases where room labels were too small to be located inside the room outline, the

drafter may have located the room label outside of the room and used a leader line

to indicate the room it was associated with, causing this method to fail. In cases

where more or fewer than one label was associated with each room, the user was

notified so that they could manually adjust the labeling.

Associating floor levels with room outlines

Each geometry in the 3D model needed to be associated with the floor number that

the geometry was located on. The CAD files were organized so that each CAD file

contained information from a single floor. Each geometry was associated with a

specific floor level in accordance with the file in which it was located.

Associating building names with room outlines

In order to associate a building name with each geometry, it is necessary to cre-

ate closed polyline outlines of each building. While the CAD drawings sometimes

contained this information on an associated layer, significant manual drafting was

required to generate these outlines. Each building outline was stored on a unique

layer named to match the building. These outlines were added to each floor plan

file and varied from file to file only where the building envelope also varied. Each
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room’s center point was tested for containment in each building’s outline, and as-

sociated with any outline in which it was contained.

Data export

Each geometry was exported in a JSON format, and included the following infor-

mation: 1) a room name stored as a string, 2) a room level stored as a number,

and 3) a building name stored as a string. This data was exported to CSV using

native export functionality in Grasshopper.

Creating a 3D model from room outlines

A rendering function used by each layer in the Kyrix 3D frontend adds a geometry to

the scene by 1) parsing the JSON list of points, 2) generating a three.js polyline, 3)

vertically extruding the polyline to create a 3D volume based on a height specified

in the rendering function. Because points in the CAD plans were all had heights

of 0, these points were translated vertically as a function of the level that the plan

was on and a user-defined floor height.

4.3.1 Challenges and next steps

The process described above performed well on the given set of CAD drawings, but

may not extend well to other drawing sources without adaptation. For instance, all

of the plans used in this case study were in a consistent format with consistent ori-

gins and layer structures, making some portions of the cleaning process automat-

able. This may not always be the case. Taking advantage of recent developments

in automatic scene digitization provides one potential avenue for overcoming this

barrier. As new buildings are designed with BIM software such as Autodesk’s RE-

VIT, the necessity for this scene recognition will be obviated, and instead, simpler
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but separate methods to extract relevant geometric data from BIM models will be

necessary.

4.4 Visualizations of c. difficle events at MGH

In this section, I describe how the methods presented in this chapter were deployed

with data from MGH to support research into transmission vectors of c. diff. A

series of visualizations were developed using the Kyrix 3D frontend to enable users

to explore the campus as a whole and surface macro-level trends, to hone in on

specific levels and units to understand trends within individual rooms, and finally

to view an individual or collection of individuals’ movement across the campus.

The resulting visualizations make use of many aspects of Kyrix 3D’s declarative

language.

4.4.1 Visualizing all buildings

Figure 4-3: Kyrix 3D visualization showing all buildings on MGH’s campus.
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When a user begins to navigate the data, the frontend presents an initial view

that offers a high-level over of the MGH campus. This visualization provides an

opportunity for the user to orient themselves spatially on the campus. A user may

come to the dashboard to investigate events in a predetermined unit of the hospital,

or they may wish to engage in a more exploratory analysis to understand trends or

anomalies across the campus as a whole. This view accounts for both scenarios,

presenting the user with a choice to navigate quickly to a specific unit of interest,

or to select a metric to visualize across the campus as a whole.

The view is constructed as a canvas with a single layer containing geometry for

each level of the building. The rendering function visualizes these objects as

opaque and enables interaction; on hover, these objects provide identifying in-

formation such as the building name, level, and number of infections present over

a pre-specified period. Upon clicking any of these geometries, the user triggers a

jump to a canvas that provides room level information for the selected floor.

Alternatively, the user may wish to color-code each level object based on a metric

such as the number of infections that occurred on that level. UI elements such

as buttons allow users to jump to a slight variation of this canvas that applies a

rendering function that color codes the level objects based on a gradient.

4.4.2 Visualizing patient data by room

It is possible that c. diff spreads in specific rooms or on specific surfaces, and

aggregating the results to units may not provide high enough resolution to observe

these patterns, which may occur only in a single room of a level. For this reason, it

is useful to be able to identify the specific rooms that a patient or staff has entered.

To accommodate this scale of investigation, a view is provided that allows users

to visualize each room with color coding according to individual metrics across an

entire floor. There are more than 20,000 rooms at MGH, making it difficult and
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Figure 4-4: Users can visualize patient data for each room by viewing each level
individually.

overwhelming to view all of them at the same time. Providing rooms for only one

level at a time improves legibility.

The view is constructed as a canvas with two layers: one for room objects, and one

for level objects. The room objects are the primary subject of this visualization and

are color-coded with a rendering function indicating the number of infections that

occurred in each room. These room objects are clickable and trigger a jump to a

visualization that allows users to assess which other rooms patients and staff who

visited this room also visited.

The second layer serves primarily to provide context for the visualization and con-

sists of level objects. The transform function generates an SQL query that returns

only objects that are below the currently selected level. The rendering function for

this layer specifies that the objects have a low opacity so that they visually recede.

It also prevents them from being clickable to avoid any interference, and prevents

them from casting shadows to avoid visual noise.
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4.4.3 Visualizing accumulated staff and patient activity over

multiple floors

Figure 4-5: Users can visualize each room across the campus that a subset of
individuals have visited.

Infected individuals, who may be either patients or staff, are not necessarily con-

strained to moving around a single level. Patients may travel to centralized re-

sources such as x-ray rooms, labs, or consultation rooms. Activities like medi-

cation dispensing, consultations, and testing may be encoded in EMRs as point

events recorded with timestamps and locations. Similarly, staff may have meetings

or take breaks in different buildings or on different floors. Each of these move-

ments presents a potential transmission vector, and it could be useful to view this

accumulated travel without being restrained to viewing a single floor at a time or

by the low resolution of only viewing individual levels. For this reason, a view that

allows users to view accumulated staff and patient activity in individual rooms over

multiple floors provides a useful means of studying these movements.

Similar to the previous visualization, this view is constructed as a canvas with two

layers: one for room objects, and a second for level objects. The room objects are
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the primary focus, and a transform function is used to select only those rooms that

have been visited by the subset of patients and staff specified prior to the jump.

They are color-coded as specified using a rendering function. Level objects are

present only to orient the viewer and are handled with the same rendering function

as described in the previous view, with the exception that all levels are presented

to provide the full outline of the building envelope for context.

4.5 Conclusions

This case study demonstrates that the Kyrix 3D frontend is flexible enough to ac-

commodate several types of data visualizations and their associated tasks: high-

level data discovery at the scale of a campus, detailed exploration limited by geo-

metric constraints such as floor level, and views that highlight selections based on

metric filtering criteria. These interactions cater to humans’ abilities to recognize

patterns, validate data, frame questions, and identify omitted variables.

4.5.1 Contributions

Through this analysis, I 1) Implemented a 3D frontend for Kyrix, enabling users

to create interactive 3D visualizations using a flexible, declarative language, 2)

illustrated functionality through a case study at MGH, and 3) framed the problem

of integrating CAD drawings with electronic medical record data.

4.5.2 Next steps

This investigation is limited by the type of data collected; activity times and loca-

tions are recorded in the EMR only when specific events occurred, and not contin-

uously, as is the case with RTLS data. This means that analysis of transmissions
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that occur between these events, such as in a hallway or elevator, are difficult to

track.

Additional geometric data could be extracted from the floorplans to build a more

robust and flexible 3D model. For instance, if hallways were encoded as pathways,

then potential circulation patterns could be presented and used to approximate the

kind of information that would otherwise come from RTLS data.

Over time and as these visualizations are used by humans to identify patterns and

anomalies, these visualizations could also be coded to learn and search for the

same kinds of trends that humans pick up on. In this sense, interactive visualiza-

tions could serve as a tool for humans to leverage machine intelligence and also

for machines to leverage human intelligence.
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5. Case Study: Neural Network

Ablation Analysis

We experience architecture on multiple sensory, spatial, and temporal levels; the

unique experiences that we can have in space are limitless, and so too are the

ways that we can analyze and encode these spaces’ characteristics. If we hope to

be able to find the signal in the noise, then we need methods for considering mul-

tiple quantitative spatial characterizations at a time and surfacing those that are

most relevant to predicting health outcomes. By combining spatial analytics with

clinical machine learning methods, we can work toward identifying spatial charac-

teristics that are linked to health outcomes and potentially predict the performance

of different configurations before construction.

In this case study, I take several steps toward the goal of building a framework that

enables clinicians and architects to make evidence-based decisions about their

built environments. The process for completing this analysis consists of 1) gen-

erating a synthetic data set of architectural and health outcome data 2) encoding
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architectural characteristics as numeric features, 3) constructing a fully-connected

neural network with spatial characteristics as inputs and health outcomes as out-

puts, and 4) performing an ablation analysis to determine which, if any, features

most contributed to predicting health outcomes in the model.

5.1 Synthetic data set

Neural networks require large datasets to learn from and predict; no such dataset

yet exists for healthcare architecture. For the purposes of this analysis, I generated

synthetic data to demonstrate both the feasibility of building structured datasets of

qualitative architectural information and how these datasets could be used in a

neural network. The results of this analysis, therefore, do not provide insight into

relationships in the real world. Instead, the synthetic data enables us to prototype

models to find and address challenges before actual data is available.

5.1.1 Unit of analysis: patient room

To maximize the number of samples and variation in the data, I selected the patient

room as the unit of analysis. Larger units such as a building, level, or operational

unit (i.e., intensive care unit, emergency room) dilute variation that could otherwise

be observed. For instance, rooms at the end of a hallway may be more private

than rooms with more traffic outside of them, a relationship that would be lost if

analyzed at the scale of the building. Smaller units of analysis, such as a grid

of individual square feet, are challenging to associate with individual patients and

their outcomes and are therefore too high resolution. To that end, the synthetic

dataset consisted of observations for each patient room.
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5.1.2 Generative design engine

Figure 5-1: Synthetic floor plans generated through a generative design model
illustrating variation in size, shape, topology, view, and room locations.

I utilized Rhinoceros and Grasshopper to develop a generative model for hospital

floor plans. The model enabled parameters such as number of rooms, circulation

topology, exterior views, nurse station location, elevator location, and orientation to

be combined to generate over 5,000 unique plans.

5.1.3 Automated spatial analysis

The generative model was paired with an analysis engine in grasshopper, which

recorded the results of spatial analyses for each room in each floor plan. These
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analyses included 1) travel distances to the nearest elevator and nurse station,

2) isovist area calculations at the patient bed and patient room door, 3) the view

outside each window, 4) room depth, and 5) room area.

5.1.4 Synthetic health outcomes

I generated synthetic health outcome data that mirrored the types of patient data

typically collected by hospitals and analyzed in related literature. These metrics

consisted of 1) complication rates, 2) medical errors, 3) pain medicine intake, and

4) length of stay.

Health outcome metrics

Complication rates correspond to the number of avoidable adverse incidents that

occur during a patients’ stay in the hospital. These can include hospital-acquired

infections, cardiac arrest, and unplanned admission to intensive care units. They

may be influenced by spatial characteristics that affect team communication or

patient supervision, such as travel distances and visibility.

Medical errors refer to avoidable errors in diagnosis or dispensing of medication.

They may be influenced by spatial characteristics that affect staff concentration

and fatigue, such as lighting and travel distances.

Pain medicine intake refers to the number of doses that a patient takes of pain

medication per day. The number of doses is an indicator of a patient’s discomfort,

which may also be related to their anxiety levels. This may be influenced by spatial

characteristics such as views to nature and exposure to noise (as may be the case

in rooms that are close to nurse stations or elevators).

Length of stay refers to the number of days that a patient spends in the hospital.

This may be influenced by spatial characteristics that affect staff’s ability to provide
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quality care or the patients’ ability to relax, such as exposure to noise or proximity

to nurse stations.

Synthetic health outcome generation

Each observation (room) was assigned a value for each of these health outcome

metrics based on relationships demonstrated in evidence-based design literature.

For instance, views of nature and quiet environments may reduce discomfort and

lead to lower pain medicine requests. Therefore, rooms that had views to nature or

longer distances to noise generating zones such as elevators were assigned lower

lengths of stay than those with views to hardscapes or were close to elevators.

Values were assigned using the rules indicated in figure 5-2.

Figure 5-2: Synthetic health data was generated based on the rules in this table.

Of course, architecture is never the sole influence of these factors. This dataset

was designed to simulate real-world challenges; events such as medical errors or

complications are rare and may, therefore, be more difficult to pick up in statistical

analysis. Length of stay is likely to be more a function of the medical condition a
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patient enters the hospital for. Medical errors are likely related to operational pro-

tocols or cultural factors such as team cohesion or a patients’ medical history. For

this reason, Gaussian noise was added to the data to simulate real-world variation.

5.2 Feature engineering

To be used as inputs in a neural network, qualitative architectural characteristics

need to be encoded as numeric values. This section describes the process by

which spatial characteristics were analyzed and encoded as input nodes to the

neural network.

Room depth

Room depth, a term coined by Lionel March, corresponds to the extent to which

nurses are likely to walk past a patient room. For each room, a number between

zero and one was generated that corresponded to the percentage of all possible

travel paths that pass that room. This value served as a single input node.

Isovist analysis

For every square foot in the patient room, the weighted average area was calcu-

lated. The area in square feet was normalized to a value between zero and one.

Values were recorded for the isovist weighted area at three locations in the room:

at the patient’s head, at the door, and at the sink. Each location’s value was fed

into an input node.
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Views

Each room had one of three views: to greenery, a building, or a hardscape. These

values were one-hot encoded; each view input node was encoded as either a zero

or one, depending on whether the room’s view corresponded.

Distance

For each room, the distance to the nearest 1) elevator and 2) nurse station was

recorded in linear feet. This value was normalized to a value between zero and

one.

Room area

For each room, the square footage was calculated and normalized to a value be-

tween zero and one.

5.3 Neural network architecture

A neural network was constructed with 1) an input layer of ten nodes consisting of

the spatial features described above, 2) two hidden ReLU activation layers with 64

nodes each, and 3) an output layer of four nodes consisting of the health outcomes

described above, normalized from 0-1.

5.4 Ablation analysis

An ablation analysis was conducted with the synthetic data, in which input features

were sequentially left out of the model, one at the time, to assess how leaving the
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Figure 5-3: An ablation analysis was conducted using spatial features as input
characteristics for a neural network with health outcomes as output features.

value out affected performance. For numeric variables, the mean square error was

calculated, and for categorical variables, accuracy was calculated.

5.5 Results

Figure 5-4: Results of the ablation analysis

The results indicate that the neural network responded to some ablations, but not

others. For instance, MSE for length of stay increased when distance to nurse

station and view types were ablated, indicating that they contained information that
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helped the model perform better. However, the analysis did not see any difference

when distance to elevator was removed from the analysis, perhaps because of the

relatively small size of the influence in the synthetic data, or perhaps because this

geometric relationship was inadvertently captured by another input variable.

The analysis did not appear to respond to ablation of variables that influenced med-

ical errors or complications; the accuracies for these predictions indicate that the

model consistently assumed that there were zero medical errors and zero compli-

cations. This model does not appear to be well-suited to recognizing events like

these that occur only infrequently.

5.6 Conclusions

Architectural characteristics can be transformed into feature vectors that can be

used as inputs to several data science analysis and prediction models, including

neural networks. This case study illustrates one such approach using synthetic

data and suggests that future work could prove fruitful.

5.6.1 Contributions

Through this analysis, I 1) created a synthetic dataset of architectural and health

outcome by implementing a generative process, 2) implemented a feature engi-

neering process for architectural data, illustrating how architectural characteristics

can be used as inputs in data science applications, 3) implemented a neural net-

work that predicts health outcomes as outputs from architectural characteristics as

inputs, and 4) performed an ablation analysis using the synthetic dataset with the

neural network.
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5.6.2 Next steps

This current analysis was limited to only ten input nodes and four output nodes. In

practice, it would be better to include a much wider palette of architectural char-

acteristics: materials, daylight autonomy, isovist connectivity, room shape, orien-

tation, adjacencies, to name a few. Inputs should also ideally include information

about a patient’s medical history, staff, or treatment plan.

It should be noted that neural networks are currently limited in terms of their inter-

pretability and their ability to provide insight into causality. There is always the risk

of observing and acting upon correlations that are not causal. Geometric consid-

erations compound this risk; many architectural characteristics are geometrically

intertwined. Rooms at the end of hallways are likely to be more private and also

likely to be further away from nurse stations, but proximity to nurse stations is more

likely to be a driver of quality patient care than is privacy. Covariances like these

riddle architectural analyses, and should be considered in any investigation.

Because this analysis uses synthetic data, the results do not yet provide insight

into the nature of the relationship between architecture and health. However, this

proof of concept illustrates that with the right data, neural networks are worth in-

vestigating further. With access to wider and larger datasets, there is the potential

to use a method like the one described here to not only learn from existing data

but also to potentially predict the performance of future floorplans.
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6. Conclusion

Hospitals present a unique opportunity in the discipline of architecture to demon-

strate the value of design. Decades of evidence-based design research indicates

that architecture affects our health, but these findings do not guarantee generaliz-

ability. If we want to build out a more robust model of architectural epidemiology,

then we need to take advantage of opportunities that analysis at scale provides us:

the ability to account for omitted variable bias, to search for natural experiments,

and to learn from contexts and situations are most similar to the design task at

hand. To achieve analysis at scale, we need data at scale.

Robust electronic medical records have matured; what remains is to build a large

scale data of architectural characteristics that researchers can use in analyses. We

need to overcome several challenges to do so: structured data must be extracted

from a heterogeneous body of unstructured architectural drawings, and this data

needs to be wide enough that it captures the qualitative aspects of our environ-

ments that affect our health.
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Once we have these datasets, we need methods to validate, explore, and mine

for insight. As we learn from buildings, these methods need to take advantage

of humans’ abilities to recognize factors that fall outside the realm of what current

datasets capture and to define research questions. As we design buildings, these

methods need to account for humans’ abilities to define relevant fitness criteria

and design spaces. At the same time, we need computational methods to reduce

bottlenecks and enable us to deal with the challenges of big data. We need data

visualizations that allow us to work with massive datasets in realtime. We need the

ability to weigh a wide range of factors at once and to evaluate the performance of

large numbers of design options.

These efforts have the benefit of being able to build upon established research

efforts in several related fields. Evidence-based design research provides a foun-

dation for understanding architectural characteristics that affect health, and re-

searchers have demonstrated many methods for testing hypotheses via individual

research studies. Space Syntax provides methods for quantifying qualitative as-

pects of the built environment and has a rich history of using these analyses to

learn about how architecture affects our health and behaviors. What remains is for

these disciplines to adapt to opportunities afforded by more robust datasets.

Researchers in commercial real-estate have made progress on this front. In her

2018 thesis considering the role of AI and machine learning, Jennifer Conway iden-

tified several areas of active application in practice, including in sales tools, prop-

erty management, analytics, contracts, lending, and valuation.8 These applications

highlight the challenges of working with data related to the built environment and

propose ways forward. These methods can and should be enriched by data result-

ing from spatial analysis. Definitions of value should be extended to include not

only dollars and cents but also how buildings affect our health.
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6.1 Contributions

The preceding work took several steps toward the goal of building upon work in

evidence-based design, space syntax, and machine learning applications in real

estate to define a framework of architectural epidemiology.

1) Conducted a literature review to identify criteria for a framework of architectural

epidemiology

2) Proposed a framework of architectural epidemiology to learn from large health

and architectural datasets

3) Implemented a 3D frontend that enables developers to validate and explore

health outcome data in architectural space

4) Implemented a neural network ablation analysis with synthetic data to illustrate

how architectural data can be used in data science analyses

6.2 Next Steps

The efforts described in this thesis suggest that combining structured architectural

datasets with computational analysis in ways that take advantage of human intu-

ition holds the potential to improve our ability to design buildings that will enhance

our health. Still, much work remains.

Most pressingly, we need to develop large scale architectural datasets that capture

a wide range of environmental characteristics. This is a prerequisite for substantive

data analysis and discovery. To do so, we’ll need to develop consistent, standard-

ized ways of analyzing spatial characteristics and processing floorplans in ways

that can be at least partially automated. This is a long-term project; we’ll need to

continue to add features as we learn more about which design aspects are impor-
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tant.

With this data in hand, we will be able to test a growing body of data science

and machine learning techniques to identify relationships, establish heuristics, and

potentially drive generative design processes. Significant work remains in estab-

lishing and testing these methods.

Critically, these insights need to feed back into the design process. We need to

do so in a way that limits information overload for designers while making it easy

to challenge assumptions and conclusions that derive from automated analyses.

This is not a small task. It will require iteration and testing, perhaps comparing the

outcomes of human-driven design processes with those of generative or computer-

assisted processes.

The question of optimization will remain elusive. In order to optimize, we need to

agree on what to optimize for, and in doing so, we risk optimizing for aspects of

design that are quantifiable rather than those that elude analysis. It is my hope

that by bringing more qualitative aspects of design into the fold during discussions

about the value of design that we will be empowered to design buildings that can

help us be happier and healthier.
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