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ABSTRACT 
 
T cells occupy essential roles throughout the immune system to prevent and limit disease. As such, 
breakdowns in their function and recognition underlie poor clinical outcomes across diverse 
maladies including pathogen infection, cancer, autoimmunity, allergies, and transplant rejection. 
Yet, when properly directed, T cells drive potent protective and therapeutic responses in 
prophylactic vaccinations and novel immunotherapies. Therefore, understanding and harnessing T 
cell function and recognition is of great importance to improving patient care and addressing 
currently unmet clinical needs. 
 
The function and recognition of T cells are driven through their T cell receptors (TCRs), which 
bind with great specificity to peptide-MHCs (pMHCs), Major Histocompatibility Complex 
proteins displaying tissue- and disease-specific peptide antigens derived from their host cell or its 
surroundings. However, to specifically and comprehensively present and surveil antigens across 
highly divergent maladies, extreme diversity is required of both the population-level TCR and 
pMHC repertoires. However, this same diversity which drives T cell function also confounds 
generalized understanding of these repertoires, as well as their recognition. Therefore, there has 
been considerable recent interest in the development and application of tools to comprehensively 
define, predict, and screen these repertoires and their recognition at high throughput. 
 
In this thesis, I both utilize and build upon these tools to define TCR and pMHC repertoires and 
explore their recognition, particularly with yeast-displayed pMHC libraries for CD4+ T cell 
recognition of class II pMHCs, and especially in the context of cancer. Using these technologies, 
I empirically define pMHC repertoires, explore the antigenic basis of TCR repertoire convergence 
in a preclinical tumor model, and explore the antigen reactivity of human T cells with clinical 
relevance. While these results provide detailed insights into the specific TCRs and pMHCs studied, 
they also provide guidance for future avenues in the exploration of TCR and pMHC repertoires 
and their recognition.  
 
Thesis Supervisor: Michael E. Birnbaum, PhD 
Title: Assistant Professor of Biological Engineering 
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CHAPTER I. Introduction 
 
1.1 What are T cells? 
 
The principal function of the immune system is to prevent and limit disease throughout the body. 
This function is achieved through the collective action of trillions of individual immune cells 
interacting with our organs, our environment, commensal microbes, and each other. When they 
sense danger, such as pathogens, cancers, or injury, these cells are activated to mobilize massive 
and coordinated protective responses. Yet these cells also have crucial roles in limiting 
inflammation, promoting wound healing, and maintaining homeostasis. Therefore, the immune 
system must be able to differentiate self from foreign, healthy from diseased, and commensal from 
pathogenic 1. As such, breakdowns in the function or recognition of the immune system underlie 
diverse ailments from pathogen infection and cancer 1, 2 to autoimmune diseases and allergies 3, 4, 
as well as chronic and degenerative diseases 5, 6. 
 
The immune system is broadly partitioned by its function and recognition into the innate and 
adaptive immune systems; the innate immune system generates rapid responses against pathogens, 
toxins, and cell damage through evolutionarily conserved motifs and receptor, whereas the 
adaptive immune system generates slower but more specific and specialized responses through 
highly variable immune receptors 1. In addition, the adaptive immune system uniquely possesses 
memory, allowing it to generate memory cell populations that can produce larger, more rapid, 
more specialized, and even more specific responses upon re-exposure to a given pathogen or 
disease 1, 7.  As such, the innate immune system serves as a first line of defense, containing potential 
dangers and recruiting other immune cells, while the adaptive immune system performs higher-
level tasks of distinguishing between potential threats and tailoring its response accordingly.  
 
The adaptive immune system is primarily comprised of two cell types: B and T lymphocytes 1, 7. 
While both cell types display memory and specificity in their activation and functions, these 
functions are highly distinct, and are driven by their divergent recognition. In particular, B cell 
receptors (BCRs) are comprised of two identical recognition domains that bind directly to a diverse 
array of extracellular proteins. In contrast T cell receptors (TCRs) encode a single recognition site 
that binds to specialized cell-surface immune proteins called Major Histocompatibility Complexes 
(MHCs). Furthermore, upon activation, B cells can edit their receptors for higher affinity to their 
target through somatic hypermutation, and can secrete their receptors as antibodies, which can be 
oligomerized for additional binding valency 7. These antibodies can then directly bind to target far 
from their parent B cell to enact aggregation and direct neutralization, as well as facilitate 
phagocytosis and cytotoxicity.  In contrast, T cells cannot edit or secrete their TCR, and their 
activation, localization, and function are all driven through their TCR 8. Yet T cells are uniquely 
capable of recognizing and responding to threats hidden within the cell, and have roles in 
coordinating and modulating the immune response 7. 
 
Although T cell populations can be even further partitioned based upon their function and 
recognition into αβ and γδ subsets 9, as well as innate-like natural killer T (NKT) cells 10, we will 
focus on their most prevalent subset, αβ T cells, which recognize MHCs displaying short, linear 
peptides derived from within their host cell or its environment, known as peptide-MHCs (pMHCs).  
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1.2 The role and recognition of T cells 
 
Owing to their diverse composition and recognition, T cells can fulfill many functions within the 
immune response across highly divergent diseases. These functions can range from directing and 
modulating innate and B cell responses, to enacting direct cell killing, and even suppressing other 
T cell responses 11. Yet these diverse functions can be largely partitioned among T cells based on 
their expression of two cell-surface co-receptors into CD4+ ‘helper’ and CD8+ ‘killer’ T cells, each 
with their own recognition 1,7.  
 
As their name suggests, CD8+ ‘killer’ T cells – also known as cytotoxic T lymphocytes (CTLs) – 
primarily function to directly kill infected or diseased cells. CD8+ T cells recognize class I peptide-
MHC (pMHC) proteins, which are ubiquitously expressed by nucleated cells in the body and 
principally display peptides derived from within their parent cell 1, 12. When activated through their 
TCR, these cells are empowered to directly kill target cells expressing their cognate pMHC. This 
recognition pathway allows CD8+ T cells to monitor for intracellular infection, impaired function, 
and even dysregulated signaling pathways, and are therefore crucial for pathogen and tumor 
surveillance and control 13.  
 
In contrast, CD4+ ‘helper’ T cells serve in broader but less direct roles, coordinating and aiding 
the responses of other immune cells. These cells recognize class II pMHC proteins, which are 
expressed by specialized antigen-presenting cells (APCs) and principally display peptides derived 
from their environment 1, 12. These APCs are often phagocytic members of the innate immune 
system – such as macrophages, dendritic cells, and monocytes – that specialize in rapidly 
internalizing and processing pathogens and cell debris, but also includes B cells and specialized 
endothelial cells 12. This antigen presentation pathway allows CD4+ T cells to respond indirectly 
to both extracellular and intracellular threats. Yet, in order to respond effectively to this vast array 
of threats, CD4+ T cells must be able to tailor their response to a threat.  
 
As such, activated CD4+ T cells can adopt a diverse array of distinct T-helper (Th) phenotypes, 
each with a distinct gene expression and cytokine secretion signature, to tailor the local immune 
response to a broad variety of threats. A detailed description of these phenotypes – such as Th1, 
Th2, Th17, Tfh, and Th9 – and their functions are reviewed elsewhere 14. However, CD4+ T cells 
can also serve in non-inflammatory, regulatory roles. In contrast to conventional CD4+ T cell (also 
known as Tconv) populations, regulatory T cell (Treg) populations dampen the immune response 
and suppress T cell responses through a variety of indirect and direct modalities 15. While activated 
Tconv cells can adopt a Treg phenotype 16, most Tregs are a distinct CD4+ T cell lineage with 
differential recognition 17, 18.  
 
Combined, these diverse functions allow T cells to occupy many crucial roles in the immune 
system simultaneously. But as such, breakdowns in T cell recognition and function can have 
disastrous consequences throughout the body, underlying poor clinical outcomes during viral and 
bacterial infections, facilitating continued outgrowth of tumors, and driving autoimmune diseases, 
allergies, and transplant rejection 19-23. Therefore, a detailed understanding of the diverse functions 
of T cells – and the recognition that drives them – is crucial to our understanding of many diseases, 
as well as to our ability to develop novel therapies. 
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In fact, directing, modulating, and coopting T cell function and recognition already underlies many 
therapies in the clinic: T cells are crucial to forming the protective memory responses required for 
prophylactic vaccinations 24, can be stimulated and directed by therapeutic vaccinations 25, and can 
be activated to fight established tumors by novel cancer immunotherapeutics 26. Furthermore, T 
cell function can be coopted to potent new purposes by redirecting their recognition through 
engineered TCRs and chimeric antigen receptors (CARs) 27, 28. But while each of these applications 
have already had significant impacts in the clinic, further investigation of T cell function and 
recognition is still needed to guide further improvements of these therapies, as well as enable future 
modalities to address unmet clinical needs. Yet in order to fully understand T cell function and 
recognition, we must first understand their common driver, the T cell receptor.  
 
1.3 Drivers of TCR and pMHC repertoire diversity 
 
As previously discussed, the TCR drives both the recognition and function of T cells. Accordingly, 
the diverse functions of T cell populations rely on diverse and distinct population-scale TCR 
repertoires 29. Therefore, a comprehensive understanding of T cell function and recognition 
requires detailed knowledge of the drivers of both the diversity and divergence observed in TCR 
repertoires across T cell populations, as well as how these drivers interact with diverse pMHC 
repertoires. 
 
Diversity in pMHC repertoires stems from the need to comprehensively present antigenic peptides 
from a vast array of potential threats, both endogenous and foreign, to antigen-specific T cells, as 
any holes in these repertoires can blind T cells to ongoing infection or disease. To be properly 
sampled by both CD4+ and CD8+ T cell subsets, these threats also need to be presented across both 
class I and class II MHC proteins 12. In addition, these pMHC complexes must be stable and long-
lived in order to be properly surveilled by potentially rare clonal T cell populations 30, which are 
comprised of as few as 10-100 T cells throughout the entire body 31, and therefore MHCs must be 
specific to their displayed peptides. Yet the number of peptides required to comprehensively 
represent all potential immune threats is too vast to be specifically presented by any one MHC 
protein.  
 
Therefore, to facilitate broad yet specific peptide presentation, MHC proteins themselves are 
highly diverse 32, 33. In humans, this diversity is accomplished on an individual basis by the 
expression of six distinct MHC genes, three class I (HLA-A, -B, and -C) and three class II (HLA-
DR, -DP, and –DQ), each with their own peptide specificities 34. In addition, these MHC genes are 
extremely polymorphic, providing evolutionarily driven peptide-binding diversity on a population 
scale 32, 33. In fact, the MHC locus in humans, also known as the human leukocyte antigen (HLA) 
locus, is the most polymorphic region in the genome 35, with over 26,000 currently known unique 
HLA alleles 36. Importantly, these polymorphisms are clustered in the peptide-binding groove of 
MHC proteins 37, thereby imparting unique peptide-specificities. Combined, this diversity 
provides for the expression of up to 12 unique HLA proteins in humans (as the MHC genes are 
expressed co-dominantly by each chromosome) 37, and therefore up to 12 unique pMHC 
repertories to comprehensively present potential threats to the TCR repertoires. 
 
To enable specific recognition of these diverse pMHC repertoires, TCR repertoires must also be 
highly diverse 38. This is accomplished in the TCR repertoire by VDJ recombination, a process 
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unique to B and T cells that allows receptor formation by recombination of a variable (V), diversity 
(D), and joining (J) region selected quasi-randomly from diverse collections, with untemplated 
nucleotide additions, deletions, and substitutions permitted at their junctions to provide additional 
diversity 1, 7. These segments are then joined to a constant (C) receptor domain, and the pairing of 
two independently recombined receptor chains provides additional diversity. A detailed review of 
this process is available elsewhere 39. This process allows each of the estimated 1012 human T cells 
40 to theoretically choose between 1015-1020 unique TCR combinations 41. However, due to biases 
in VDJ recombination and external factors (discussed below), the true diversity of these repertoires 
has been recently estimated at approximately 1010 unique clones in humans 42. 
 
As a direct result of VDJ recombination, the diversity of the TCR repertoire is greatest at the 
junction between the V, D, and J regions, and comprises the complementary-determining region 3 
(CDR3) of each TCR chain 39. Importantly, these CDR3 regions are positioned in direct contact 
with the MHC-displayed peptide in TCR / pMHC complexes, and are the primary drivers of TCR 
binding and specificity 43, 44. In addition, these CDR3 regions contribute equally to peptide binding, 
and therefore the TCR alpha and beta chains are equally important to pMHC binding. The V 
region-encoded CDR1 and CDR2 regions of each chain contribute additional interactions with the 
displayed peptide – as well as the MHC peptide-binding groove – providing additional specificity 
to these interactions 43, 44. Therefore, the intrinsic diversity of the TCR receptor repertoire drives 
diverse T cell recognition, yet is essential to provide specific recognition of the even more diverse 
pMHC repertoire 38. 
 
However, the TCR repertoire not only samples the pMHC repertoire, but is shaped by it. This 
process primarily occurs during T cell development in the thymus, but occurs to a lesser degree in 
the periphery following development 8. Within the thymus, T cell progenitors express both CD4 
and CD8 once they successfully formed a TCR capable of signaling through VDJ recombination 
1, 8. These so-called double-positive thymocytes then sample pMHC molecules displayed by 
specialized antigen presenting cells as well as endothelial cells that express diverse self-derived 
peptides 45. The strength of TCR signaling during this this developmental stage determines the T 
cell’s fate; excessive stimulation from strong or frequent recognition of these self-antigens drives 
clonal deletion to eliminate potentially autoreactive T cells, but a lack of stimulation causes the T 
cell to die of neglect 8, 45. Therefore, the productive TCR repertoire is derived from TCRs within 
this self-specificity sweet spot 46. However, the nature of this stimulation further determines the 
lineage of this T cell. In particular, preferential interaction with class I or class II pMHCs drives 
CD8+ and CD4+ differentiation, respectively, due to stabilizing co-receptor interactions, and CD4+ 
T cells which receive greater or more frequent TCR stimulation during this stage are preferentially 
driven towards Treg differentiation 1, 8.  
 
Combined, these developmental influences underlie the ability of T cell populations to distinguish 
between self and foreign peptides 1, and are responsible for the distinct TCR repertoire of each T 
cell lineage 29. These distinct repertoires are in turn responsible for the distinct recognition of these 
subsets, and underlie their diverse functions throughout the immune system. However, due to their 
immense diversity and person-to-person variability, individual TCR and pMHC repertoires and 
their interactions are highly unique. Therefore, tools which help define the composition of these 
repertoires and their recognition are of great importance for improved understanding of T cell 
function – as well as our ability to coopt and redirect it – across many diseases. 
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1.4 Defining pMHC and TCR repertoires and recognition 
 
In line with their importance to understanding and utilizing T cell function, there is great interest 
in developing tools to study TCR and pMHC repertoires 47, 48, as well as TCR and pMHC 
recognition 49. These tools can be used to define individual TCR and pMHC repertoires, screen 
interactions in high-throughput, and used to train computational algorithms that predict these 
repertoires and interactions. 
 
As discussed, diverse TCR repertoires drive T cell function and recognition. Therefore, monitoring 
and defining the TCR repertoire can uncover temporal shifts or convergence in these repertoires 
that reveal underlying disease biology and T cell targeting. For example, temporal shifts within 
the TCR repertoire can reveal the temporal dynamics of viral infection and convergence in the 
TCR repertoire can point to shared targeting of immuno-dominant epitopes 50. These insights can 
then be used to guide future studies of the immune response or to design therapeutic modalities.  
 
Although early methods to define and monitor TCR repertoires through their v-region usage (via 
flow cytometry), and later CDR3 length (via immune spectratyping), provided partial insights into 
their composition, dynamics, and convergence 51, these techniques did little to define or monitor 
diversity in the CDR3 junctions that drive recognition. Therefore, the most powerful tool for 
defining these repertoires is TCR sequencing, which provides detailed coverage of entire TCR, 
including the CDR3. These sequencing techniques most frequently utilize reverse transcription 
polymerase chain reactions (RT-PCR) to amplify expressed TCR transcripts, and with the advent 
of next generation sequencing (NGS) can be used on a repertoire scale 47, 51. Yet while bulk TCR 
sequencing of T cell populations (often focused on the TCR beta chain 52) can be used to identify 
broad trends in repertoire dynamics and convergence, these approaches lose the linkage between 
TCR alpha and beta chains that is essential for defining antigen reactivity 43, 44. Therefore, paired-
chain TCR sequencing techniques represent the state-of-the-art for defining TCR repertoires 47. 
Although these techniques were originally low throughput 53, 54, recent advances now enable 
thousands of T cells to be fully defined simultaneously 55-58, and may soon enable full repertoire 
definition in tissue- and disease-specific contexts. 
 
In contrast, pMHC repertoires cannot be defined with sequencing, as they rely on both MHC allele 
and peptide diversity. However, sequencing of MHC gene usage, known as HLA typing in 
humans, can establish MHC allele usage in a given individual, and provide partial insights into 
these repertoires 59. This is because while over 19,000 unique class I and 7,000 unique class II 
HLA alleles have been observed in human populations 36, a small subset of these alleles are 
frequently observed or dominant within given ethnic groups 60. This allows researchers to partially 
generalize allele-specific pMHC repertoires between individuals through the expression of these 
over-represented alleles. However, these repertoires definitions are only partial because they are 
also dependent on peptide expression and antigen processing 12, 61. Therefore, pMHC repertoire 
definition and utilization is largely dependent on computational algorithms, called antigen 
prediction algorithms, that allow allele-specific prediction of individual peptide / MHC 
interactions and pMHC repertoires by extrapolating insights from previously curated datasets 48.  
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The allele-specific peptide datasets used to train these antigen prediction algorithms are derived 
from many divergent sources. However, these methods can be broadly partitioned into MHC 
ligand binding and ligand elution methods 62. MHC ligand binding assays often use recombinantly-
expressed MHC to measure the binding of pre-selected peptides to measure quantitative metrics 
of binding, such as peptide-binding mode, affinity, or kinetics 48. Yet while these datasets provide 
detailed binding information, they are low throughput and do not incorporate antigen processing 
pathways. In contrast, MHC ligand elution methods utilize natively expressed and loaded pMHC 
molecules, and therefore capture antigen presentation biases. These methods most frequently 
utilize mass spectrometry (MS) to determine the sequence of the bound peptide and can be used 
to define pMHC repertoires in both homeostatic and disease-specific contexts 63. Furthermore, the 
recent development of mono-allelic engineered cell lines that express only a single MHC allele 
has enabled unambiguous linkage between observed peptides and their displaying MHC in MS 
datasets 64-66. Yet while these MS-based technologies are high throughput and can broadly define 
pMHC repertoires, they have notable biases 66 and provide only qualitative binding data 67. 
 
However, neither TCR or pMHC repertoire information can define or predict recognition at their 
interface. For this, researchers require an entirely separate set of tools. The earliest such tools use 
biochemical methods for T cell antigen discovery, such as the use fluorescently-labeled tetramers 
of recombinant pMHC proteins to identify antigen reactive T cells or mass spectrometry to identify 
pMHC proteins bound to a given TCR. However, these tools are low throughput and require 
knowledge of at least one component of the interaction 49, and therefore are incompatible with 
comprehensive or broad T cell antigen discovery 68. In the absence of a known antigen or eluted 
ligands, antigen discovery requires time- and resource-intensive ‘epitope mapping’ approaches to 
determine the specificity of a given TCR 69. In addition, these methods provide little-to-no 
information on potential antigen cross-recognition, which is essential to T cell function and 
comprehensive epitope coverage 38, 68. While this cross-recognition can be assessed through site-
directed mutagenesis 70, or predicted in silico 71, 72 these methods are largely restricted to closely 
related sequences 49. 
 
Therefore, in order to achieve both comprehensive and broad T cell antigen discovery, researchers 
use pMHC library technologies. Broadly, these technologies consist of a pool of unique cells 
expressing many copies of a single pMHC protein that are then probed with endogenously or 
recombinantly expressed TCR 49. To achieve single pMHC expression, the peptide and MHC are 
typically expressed as a single construct. The platforms used to express these pMHC library 
approaches can be mammalian, insect, yeast, or phage, each with unique advantages and short-
comings 49. While mammalian libraries can accurately recapitulate native protein expression and 
antigen presentation, their potential library size is limited to 105-106 unique peptides which can 
limit comprehensive epitope coverage, whereas phage-displayed libraries can express up to 1012 
unique variants but express very few copies of their pMHC protein 73, and can fail to express many 
pMHC proteins 68  While insect- and yeast-displayed pMHC libraries exist within the middle of 
these spectrums, achieving both improved protein expression relative to phage-displayed libraries 
and achieving larger library sizes than mammalian platforms, yeast-displayed libraries have larger 
library sizes (up to 109 unique variants 49) and have improved growth rates and modularity 74. 
Collectively, these advantages underlie the recent increase in use of yeast-displayed libraries for 
T cell antigen discovery 75-78, as well as the frequent use of yeast-display for assays and 
optimizations of many diverse immune proteins 74. 
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1.5 Thesis overview and motivation 
 
In this thesis, we both utilize and build upon these tools to define TCR and pMHC repertoires and 
recognition, particularly with yeast-displayed pMHC libraries for CD4+ T cell recognition of class 
II pMHC repertoires, especially in the context of cancer. 
 
As our lab is located within the Koch Institute for Integrative Cancer Research at MIT, 
understanding and treating cancer shapes our perspective of immunology, and drives many of our 
projects and collaborations. In particular, with the advent of potent and efficacious new cancer 
immunotherapies such as immune checkpoint inhibitors 26, there is great interest in the recognition 
of tumor-infiltrating T cells 79, which requires T cell repertoire sequencing to identify T cell clones 
of interest. Although early immunotherapy research focused largely on the antigen reactivity of 
CD8+ ‘killer’ T cells, as they directly affect tumor clearance, there is increased appreciation of the 
role – and therefore the recognition – of CD4+ Tconvs in the anti-tumor response 80, as well as 
CD4+ Tregs in suppressing tumor clearance 81. Therefore, in chapter 3 of this thesis, we use single-
cell TCR sequencing to investigate the TCR repertoire of tumor-infiltrating Tregs in a preclinical 
model of lung adenocarcinoma and identify clones of interest. We then screen these TCRs with 
yeast-displayed pMHC libraries to probe for their antigen recognition.   
 
Furthermore, the clinical successes of personalized cancer vaccines have driven great interest in 
improved methods for pMHC repertoire definition to facilitate improved tumor-specific antigen 
prediction for these vaccines 82. This is especially true for class II pMHC antigen prediction 
algorithms which underperform their class I counterparts 83. Therefore, in chapter 2 of this thesis, 
we develop a new method to define class II pMHC repertoires by modifying an existing yeast-
displayed class II pMHC library platform. We then use this data to retrain existing class II antigen 
prediction algorithms and find that they significantly improve their performance, including in the 
context of candidate antigen identification for personalized cancer vaccines. 
 
The insights we gained from TCR and pMHC repertoire definition are then applied in chapter 4 to 
define the native antigen reactivity of both clinically-relevant CD4+ and CD8+ T cells. Finally, 
through each of these projects we identified pitfalls, bottlenecks, and shortcomings in the 
application of our yeast-displayed pMHC libraries. Therefore, in chapter 5 of this thesis, we 
highlight these issues, discuss possible solutions, and discuss future applications of this powerful 
technology in defining TCR and pMHC repertoires and recognition. 
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CHAPTER 2: Empirical determination of class II MHC peptide repertoires for 
improved antigen prediction. 
 
Abstract 
 
CD4+ ‘helper’ T cells play a central role in the immune system, coordinating the immune response 
in pathogen infection and cancer, but also in autoimmune diseases and allergies. Accordingly, 
accurate prediction of which antigens can be displayed on class II MHCs for recognition by CD4+ 
T cells is an important consideration for the study of immune disorders, and for the design of novel 
antigen-targeted vaccines and cancer immunotherapies. While many algorithms have been 
developed to predict peptide binding to class II MHCs, they under-perform their class I 
counterparts – even for well-characterized alleles – due in part to gaps and inaccuracies within 
their underlying training sets, and deficiencies arising from limited peptide diversity. 
 
In this chapter, we describe a yeast-display-based platform to screen libraries of 108 peptides for 
binding to a co-expressed class II MHC, identifying over an order of magnitude more unique 
binders than comparable approaches. The enriched peptide data contains strong motifs that reflect 
previous reports, but also highlight gaps and inaccuracies in current data collection techniques and 
frequently used prediction algorithms, which are validated by in vitro binding assays.  We further 
validated that these gaps and inaccuracies are rectified when existing prediction algorithms are 
trained upon our yeast-display library data, providing improved prediction of peptide-binding 
affinity and improved antigen prediction for pathogen and tumor-associated peptides. Together, 
these findings demonstrate that this platform yields large, high-quality peptide-binding datasets 
that can be used to improve the accuracy of class II MHC prediction algorithms for improved 
understanding and application of CD4+ T cell recognition. 
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2.1 Introduction 
 
T cells recognize short, linear peptides displayed by Major Histocompatibility Complexes 
(MHCs), or Human Leukocyte Antigens (HLAs) in humans, through their T cell receptors (TCRs). 
Upon recognition of a cognate peptide-MHC (pMHC) complex, the T cell is activated, initiating 
an immune response that can protect against infectious diseases and cancer 1, 2, but that can also 
potentiate autoimmunity, allergy, and transplant rejection 3-5. 
 
As T cells occupy a central role in many diseases and underlie the successes of novel antigen-
targeted vaccinations and immunotherapies 6-8, there is considerable interest in determining which 
peptides can be presented by MHCs for T cell surveillance. However, the highly polymorphic 
peptide-binding groove of MHCs and the immense diversity of potential binding peptides 
necessitates the use of allele-specific antigen prediction algorithms. Recent advances have 
described improvements of these computational algorithms 9-11, their underlying training data 12, 

13, or both 15-18. But while these advances have benefited antigen prediction for both classes of 
MHC proteins – class I and II, which are canonically recognized by ‘killer’ CD8+ and helper CD4+ 
T cells, respectively – there is sustained interest in improving the performance of class II MHC 
prediction algorithms 19, which frequently under-perform their class I counterparts 11, 20-24. 
 
Although this under-performance is at least partially due to a paucity of curated peptide-binding 
data for class II MHC alleles 25 – as under-performance is particularly pronounced for alleles with 
few reported binders 20, 21 – these predictions under-perform for even well-characterized alleles 20, 

24. This is likely due to challenges inherent to class II MHCs, which have more degenerate peptide-
binding motifs than class I MHCs 26, and have an open peptide-binding groove that requires an 
added algorithmic step of peptide-register determination 21, 27-29. Additionally, publically available 
class II MHC peptide-binding datasets contain many redundant nested peptide sets and single 
amino-acid variants of well-characterized peptides, limiting their effective depth and 
generalizability 25, 30. Therefore, we hypothesize that the under-performance of class II MHC 
prediction algorithms is driven primarily by deficiencies in their underlying training data that can 
be rectified with large and diverse high-quality peptide datasets. 
 
In this chapter, we describe a yeast-display-based platform to screen 108 peptides for their ability 
to bind a co-expressed class II MHC to highlight and rectify these deficiencies. This platform 
generates over an order of magnitude more unique peptide data than comparable approaches for 
two human class II alleles, and enriches peptide motifs that mirror previous reports. However, our 
datasets contain additional peptide-binding information that results in consequential differences 
from existing prediction algorithms and other state-of-the-art data collection techniques. We 
demonstrate that these differences represent systemic gaps and inaccuracies in current class II 
MHC peptide-binding data that are rectified by training existing algorithms on yeast-display data. 
Finally, we show that an algorithm trained on our data improves prediction of peptide-binding 
affinity and improves antigen prediction for pathogen- and tumor-associated peptides. These data 
show the importance of large, unbiased pMHC repertoires to improve existing antigen prediction 
training datasets, and suggest our approach can facilitate improved understanding of CD4+ T cell 
recognition and improved patient benefit from antigen-targeted therapeutics. 
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2.2 Results 
 
2.2.1 Yeast-displayed class II MHC platform identifies peptide binding 
 

 
Figure 2.1. Design and validation of a yeast-display platform to identify peptide binding to a co-expressed 
class II MHC. A) Structural representation (adapted from PDB 1J8H) of platform highlighting 3C protease 
cleavage site and Myc epitope tag within the linker connecting the peptide and MHC β1 domain. B) 
Schematic of validation protocol, including linker cleavage with 3C, peptide exchange at low pH in the 
presence of HLA-DM and high-affinity competitor peptide, and quantification of remaining bound peptide 
with an anti-Myc antibody. C) Time course of mean fluorescence intensity (MFI) of a fluorescently labeled 
anti-Myc antibody for HLA-DR401-CLIP81-101-encoding yeast without treatment (Untreated), with linker 
cleavage (3C), or with linker cleavage and peptide exchange (3C + HLA-DM), as determined by flow 
cytometry. D) Comparison of peptide retention for HLA-DR401-CLIP81-101, -CII261-273, or -HA306-318-
encoding yeast with linker cleavage and peptide exchange, as determined by flow cytometry and normalized 
to MFI before treatment. 
 
Yeast-displayed class II pMHC platforms have previously been used to identify peptides that 
facilitate TCR binding 31, 32. To enable this platform to determine peptide binding to the MHC, we 
modified the previously-described design of HLA-DR401 (HLA DRA1*01:01, HLA-
DRB1*04:01) 32 to express a 3C protease site and an antibody-trackable Myc epitope tag within 
the flexible linker connecting the peptide to the N-terminus of the HLA β chain (Figure 2.1A). 
Protease treatment cleaves the linker, allowing unbound peptides to freely disassociate. Peptide 
exchange is then initiated at low pH in the presence of a high-affinity competitor peptide and the 
catalyst HLA-DM (Figure 2.1B), emulating the native endosomal environment of peptide loading 
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and exchange 33. If the original peptide is displaced by the competitor peptide, the peptide-
proximal epitope tag is lost, enabling us to differentiate yeast encoding binding and non-binding 
peptides by flow cytometry with a fluorescently-labeled antibody directed against the peptide-
proximal Myc tag. 
 
This platform was validated through its specificity in peptide retention. Yeast expressing HLA-
DR401 and the class II-associated invariable chain peptide (CLIP81-101), the peptide displaced 
during endogenous antigen presentation 33, exhibited significant loss of peptide-proximal epitope 
tag signal following linker cleavage that increased with incubation at low pH with a competitor 
peptide (Figure 2.1C). Consistent with its role as a peptide-exchange catalyst, the addition of HLA-
DM significantly accelerated signal loss. However, yeast expressing known binders of HLA-
DR401, HA306-318 34, 35 and CII261-273 35-37, exhibited retention of their peptides when treated with 
3C and HLA-DM (Figure 2.1D). 
 
2.2.2 Selection, analysis, and validation of a class II MHC peptide library  
 
To enable large-scale identification of HLA-DR401-binding peptides, we generated a yeast library 
encoding 1x108 random MHC-linked peptides. To simplify downstream analysis, peptides were 
designed as a randomized 9mer flanked by constant residues that favor binding to the MHC in a 
single register, as the class II MHC peptide-binding groove is open at either end and allows binding 
in many possible registers 22,23. The library was subjected to iterative rounds of linker cleavage, 
peptide exchange, and selection for epitope tag retention (Figure 2.2A), resulting in a pool of strong 
binders after five rounds (Figure 2.2B). Upon deep sequencing, we observed enrichment of 
predicted binders (Figure 2.2C). The enriched library was highly diverse, consisting of 81,422 
unique peptides in the correct register, of 85,756 total peptides. To visualize positional amino acid 
enrichment and depletion, positional residue frequencies were benchmarked against the unselected 
library to generate positional log2-fold-change enrichment values. The resulting data are presented 
as heatmaps representing unweighted averages, as the distribution of peptide frequency in the 
enriched library was largely flat, with no observed correlation between individual peptide 
frequency and affinity (Figures 2.2D, E). 
 
We observed the strongest enrichments at peptide positions P1, P4, P6, and P9 (Figure 2.3A), 
which are considered ‘anchor’ positions where the peptide backbone orients the amino acid side 
chain directly into pockets of the MHC surface (Figure 2.3B) 28. These enrichments largely match 
previous reports for HLA-DR401 37, 39-43: the deep P1 pocket favors large hydrophobic residues; 
the basic P4 pocket favors acidic residues; P6 favors polar residues Ser, Thr, and Asn; and the 
shallow P9 pocket favors Ala, Gly, and Ser. However, the observed enrichment of P9 Cys and P6 
Asp do not match this consensus, and only the latter has been previously reported 43, 44. We also 
observed a less stringent preference for Pro and Asn at P7, which is considered to be an auxiliary 
anchor position 45. While the remaining positions are considered to be determinants of TCR 
binding 46, each displayed marked preferences, such as the uniform depletion of Trp, the 
enrichment of Pro and Asp at P5, the strong depletion of P2 Pro, and the previously described 
preference for P2 Arg 37, 40. Each described enrichment or depletion was highly statistically 
significant (p < 0.001). 
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Figure 2.2. Selection of a yeast-displayed HLA-DR401 randomized peptide library displays rapid 
convergence. A) Schematic of sequential rounds of library selection to eliminate non-binding peptides and 
enrich binders. B) Histogram of the fluorescence intensity of a labeled anti-Myc antibody for 10,000 yeast 
in each round of selection either before linker cleavage (Black), following cleavage (Red), or after 24h 
peptide exchange (Blue), with gating strategy. C) Cumulative distribution function of predicted peptide IC50 

(top) and percentile rank (bottom) of 1000 peptides from each round of selection, as determined by 
NetMHCII and the IEDB consensus tool, respectively. Dashed lines represent previously established cut-
offs for peptide binding. D) Histogram of occurrences of each unique peptide found in round 5 of selection. 
E) Table of the most enriched peptides found within round 5 of selection with occurrences and estimated 
IC50 value from two-point fluorescence polarization competition assays. 
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Figure 2.3. Selection of a yeast-displayed HLA-DR401 randomized peptide library reveals a strongly 
enriched binding motif that differs from existing prediction algorithms. A) Unweighted heat maps of 
positional percent frequency and log2-fold enrichment of each amino acid in round 5 of selection (N = 
81,422 unique peptides). B) Structure of HA306-318 peptide in the HLA-DR401 peptide-binding groove (PDB 
1J8H), with primary peptide ‘anchor’ positions denoted in bold. (C-E) Kullback-Leibler relative entropy 
motifs of the core nine amino acids of HLA-DR401-binding peptides, as determined (C) empirically from 
our yeast-display library, (D) by clustering of binders curated on the SYFPEITHI database, or (E) by 
application of existing class II MHC prediction algorithms to computationally-generated peptides. 
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Notably, our overall library-enriched motif (Figure 2.3C) closely resembles that of known HLA-
DR401 binders (Figure 2.2D), generated by clustering previously reported HLA-DR401-binding 
peptides curated on the SYFPEITHI database 30. In particular, we found stringent preferences at 
each anchor position that matched our own, with the exception of P9 Cys. However, these motifs 
were highly dissimilar to those generated by existing class II MHC prediction algorithms 
NetMHCII 11, NetMHCIIPan 11, TEPITOPE 48, or IEDB consensus 49 (Figure 2.2E). Comparison 
suggests that while these algorithms mirror the importance and nature of preferences at P1 and P6 
(excepting P6 Asp), they have increased uncertainty or miscall preferences at the remaining anchor 
positions, P4 and P9. 
 
In addition, we performed library selection without the addition of the endosomal class II peptide-
exchange catalyst HLA-DM in order to quantify its impact on the peptide repertoire. With the 
exception of differences in their magnitudes, the observed enrichments and depletions were 
consistent with HLA-DM addition (Figure 2.4), suggesting that HLA-DM selects for the retention 
of high-affinity peptides uniformly across each position, but does not impart unique positional 
preferences, consistent with previous reports 18, 47. 
 

 
Figure 2.4. HLA-DM addition increases the stringency of library selection. A) Unweighted heat maps of 
the positional percent frequency and log2-fold enrichment of each amino acid in round 5 of selection 
without the addition of HLA-DM (N = 105,717 unique peptides). B) Kullback-Leibler relative entropy 
motifs of the core nine amino acids of HLA-DR401-binding peptides, determined empirically from round 5 
of library selection with or without HLA-DM addition. 
 
To quantify the consequence of these differences, we performed fluorescence polarization 
competition assays on selected peptides to determine their IC50 values for recombinant HLA-
DR401, which correlate with affinity 50. We selected 16 peptides that were enriched by our library 
but deemed non-binders by both NetMHCII and the IEDB consensus tool (predicted IC50 > 1 µM, 
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consensus rank > 10 45, 49); each contained either cysteine at P4, P7, or P9, aspartic acid at P6, or 
an unfavorable P1 residue (Table 2.1). Upon measurement, each of these peptides had an IC50 less 
than 1 µM, and 14/16 bound stronger than HA306-318 (76 nM), a known strong binder 34, 35 (Figure 
2.5A). Importantly, the binding of the cysteine-containing peptides was specific, as two allele-
mismatched cysteine-containing peptides did not exhibit binding (Figure 2.5B). We further 
identified 8 peptides from Influenza A virus [A/Victoria/3/75 (H3N2)] that both NetMHCII and 
IEDB consensus predicted as binders (IC50 < 200 nM, consensus rank < 5) but that did not match 
our enriched motif, largely due to departures at P4 and P9 (Table 2.1). Each had a measured IC50 
> 2 µM, and 6/8 bound weaker than CLIP89-101. Overall, there was minimal concordance between 
the measured IC50 of these peptides and the predictions of NetMHCII, IEDB consensus, or 
TEPITOPE, and the predictions of both NetMHCII and IEDB consensus were negatively 
correlated with measured IC50 (Figure 2.5C). 
 
Table 2.1. Peptides either enriched by our randomized 9mer HLA-DR401 library selections but not 
predicted to bind HLA-DR401 by NetMHCII or IEDB Consensus (Library-enriched), or derived from 
Influenza A virus and predicted to bind HLA-DR401 but not matching our enriched motif (IAV-derived), 
with prediction values and IC50 measured via from fluorescence polarization competition assays. 
 

 
 
Together, these data highlight consequential gaps and inaccuracies in current class II prediction 
algorithms, and suggest that our yeast-display platform enriches high-quality peptides that may 
rectify these deficiencies. 
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Figure 2.5. Validation of library-enriched HLA-DR401-binding motif reveals consequential gaps and 
inaccuracies in class II prediction algorithms. A) Relative binding curves for HLA-DR401 in fluorescence 
polarization competition assays for peptides either enriched by selection of a 9mer HLA-DR401 library but 
not predicted to bind HLA-DR401 (Library-enriched) or derived from Influenza A virus and predicted to 
bind HLA-DR401 but not matching our enriched motif (IAV-derived), with selected control peptides 
(green). B) Relative binding of cysteine-containing peptides found in round 5 of selection of either the 
randomized 9mer HLA-DR401 (allele-matched) or HLA-DR402 (allele-mismatched) libraries, tested at two 
concentrations with HLA-DR401 in a fluorescence polarization competition assay. Curves are fit to N = 3 
replicates. C) Scatterplots of algorithmic predictions versus measured IC50 with lines of best fit and their 
associated coefficients of determination (R2). Asterisk denotes R2 values of negative correlations. 
 
2.2.3 Preferences outside the peptide ‘core’ greatly affect binding 
 
Canonically, peptide positions P1 through P9 are considered to form the ‘core’ of the interface 
with the class II MHC peptide-binding groove 27, 28. However, positions outside of the MHC 
groove, also known as peptide flanking residues (PFRs), can reportedly affect peptide binding 51-

53. Most notably, modifications at position P10 can reportedly alter peptide IC50 up to two orders 
of magnitude 52, without altering the peptide ‘core’ or TCR interactions 46. We therefore sought to 
investigate peptide preferences outside the groove using a randomized peptide library. 
 
To this end, we constructed a randomized 13mer HLA-DR401 library, which was selected 
analogously to the original library. While peptides from round 5 showed no initially obvious motif 
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(Figure 2.6A), register deconvolution by Gibbs Cluster 54 identified 7 distinct registers among the 
15,147 unique peptides, of which 3,374 were found to occupy the central register where positions 
P-2 through P11 are diversified (Figure 2.6B). Analysis at P10 showed a preference for aromatic 
residues, consistent with previous findings 52, and depletion of both Gly and Glu. We also observed 
depletion of hydrophobic residues and enrichment of acidic residues at positions P-2 and P-1. 
Positional preferences between positions P1 and P9 were consistent with the original library, 
suggesting our motif was not influenced by the fixed peptide flanking residues in our original 
design.  
 

 
Figure 2.6. Preferences at TCR contacts and positions outside the peptide core affect peptide binding. (A-
B) Unweighted heat maps of log2-fold enrichment and/or positional percent frequency of each amino acid 
for either (A) all peptides in round five of selection of a randomized 13mer HLA-DR401 library (N = 15,147 
unique peptides) or (B) only those determined to bind in the third peptide register (N = 3,374 unique 
peptides). C) Table of modified CII261-273 peptides with associated IC50 values and the predictions of 
NetMHCII. Peptide positions 1-9 of are underlined, and detrimental (red) or beneficial (blue) modifications 
are denoted in bold. D) Relative binding curves for HLA-DR401 fluorescence polarization competition 
assays of CII261-273 variants. Wild-type peptide is shown by dashed line and curves are fit to N=3 replicates. 
 
To validate these observations, we performed competition assays with variants of CII261-273. 
Notably, modifying P10 to its most enriched residue, tyrosine, resulted in a 30-fold decrease in 
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measured IC50, transforming CII into a strong binder (Figure 2.6C, D) Furthermore, modification 
to its most depleted residue, glycine, resulted in a 4-fold increase in IC50. Interestingly, added 
modification of P-2 and P11, which sit outside the groove but are not considered TCR contacts 46, 
did not further benefit peptide binding for favorable residues, but furthered loss of binding for 
unfavorable residues. We observed comparable effects from modifying each TCR contact (P-1, 
P2, P3, P5, and P8) to favorable or unfavorable residues, and the singular modification of P2 Pro 
resulted in the loss of any detectable binding, consistent with its strong depletion. Although 
NetMHCII reportedly considers PFRs 11, 29, we did not observe substantial changes in predicted 
IC50 when positions -2, 10, or 11 were modified (Figure 2.6C).  
 
These data demonstrate that peptide binding is greatly affected by positions outside the MHC 
groove, especially at P10, highlighting an additional deficiency in existing class II prediction 
algorithms that is highlighted by our yeast-displayed libraries.  
 
2.2.4 Application to a poorly characterized HLA-DR allele 
 

 
Figure 2.7. Design and validation of a yeast-displayed HLA-DR402 construct. A) Structure of HLA-DR401 
complexed with HA306-308 (PDB 1J8H) highlighting HLA-DR402 polymorphisms (red) and polymorphism-
proximal peptide positions (blue), with associated sequence alignment. B) Comparison of peptide retention 
for HLA-DR402-CLIP81-101, -DG3190-204, or -CD4836-43-encoding yeast, with linker cleavage and peptide 
exchange, as determined by flow cytometry.  
 
Among human class II MHC alleles, HLA-DR401 is well-studied, with over 5,000 peptides 
curated in the Immune Epitope Database (IEDB) 25. However, many alleles have few, or no, 
reported binders. We therefore sought to apply our platform to one such allele, where the need for 
high-quality peptide data is greatest. We chose HLA-DR402 (HLA-DRA1*01:01, HLA-
DRB1*04:02), which differs from HLA-DR401 by only four amino acids (Figure 2.7A) yet has 
only 256 peptides curated on the IEDB, many of which are non-unique nested sets and single 
amino-acid variants of a parental sequence 25, 30. 
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Figure 2.8. HLA-DR402 library selection enriches two distinct peptide-binding motifs that differ from 
prediction algorithms. A) Cumulative distribution function of the predicted IC50 of 1000 peptides from each 
round of selection of a randomized 9mer HLA-DR402 library, as determined by NetMHCIIPan, with a 
previously reported cut-off for peptide binding (dashed line). B) Unweighted heat maps of positional 
percent frequency and log2-fold enrichment of each amino acid in round 5 of selection (N = 7,692 peptides). 
C-D) Kullback-Leibler relative entropy motifs of the core nine amino acids of HLA-DR402-binding 
peptides, determined empirically from (C) all peptides in round 5 of selection or (D) in each distinct cluster. 
E) Amino acids at each position within the core of HLA-DR402-binding peptides significantly (p < 0.05) 
differentially distributed between clusters. Residue size correlates with statistical significance. F) Kullback-
Leibler relative entropy motifs of the core nine amino acids of HLA-DR402-binding peptides, determined 
by applying existing class II MHC prediction algorithms to computationally-generated peptides. 
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Yeast-displayed HLA-DR402 was validated through its ability to specifically retain previously 
reported peptide binders 43, 55-59 (Figure 2.7B). A randomized 9mer HLA-DR402 library was 
constructed, selected, and analyzed as above. While the predicted affinity of observed sequences 
increased throughout selection, the final proportion of predicted binders was low (27%), 
suggesting a large divergence between our enriched library and prediction algorithms (Figure 
2.8A). Sequences from round 5 of selection again revealed a strongly enriched motif (Figure 2.8B), 
with 7,692 unique peptides within the correct register, of 10,189 total peptides. 
 
Consistent with the location and nature of its polymorphisms, residue preferences at positions P2, 
P3, P6, P8, and P9 mirror those of HLA-DR401, yet differ notably at positions P1, P4, P5, and P7 
(Figure 2.8C). Specifically, the truncated P1 pocket favors small hydrophobic residues; P4 favors 
basic residues and large hydrophobic residues Trp and Met; P5 increasingly favors Pro as well as 
basic residues; and P7 favors basic residues, consistent with the consensus of previous reports 37, 

43, 44, 56, 60-62. However, the decreased information content at positions P1 and P4 was notable. 
Further analysis revealed that the enriched sequences represented two unique motifs (Figure 2.8D): 
The first, a conventional HLA-DR motif with strong preferences at anchor positions P1, P4, P6, 
and P9; the second, an unconventional motif dominated by hydrophobic residues, especially Trp, 
at P4, and significantly (p < 0.05) less dependent on hydrophobic residues at P1, but more 
dependent on P5 Pro (Figure 2.8E). 
 
Table 2.2 Peptides either found enriched by in round 5 of selection of a randomized 9mer HLA-DR402 
library but not predicted to bind HLA-DR402 (Library-enriched), or derived from Influenza A virus and 
predicted to bind HLA-DR402 but not matching our enriched motif (IAV-derived), with associated 
predictions of NetMHCIIPan and TEPITOPE, and estimated IC50 values from by two-point fluorescence 
polarization competition assays 
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Our enriched motif again differed substantially from those generated by existing prediction 
algorithms (Figure 2.8F). For this allele, the dearth of curated peptides necessitates the use of 
algorithms that incorporate structural data, such as TEPITOPE 48, or nearest-neighbor algorithms, 
such as NetMHCIIpan 11. This is demonstrated by the inconclusive motif of NetMHCII, which is 
trained on only allele-specific curated peptides. While TEPITOPE and NetMHCIIPan reflect the 
truncation of the P1 pocket and consistent preferences at P6 – again excepting P6 Asp – they 
continue to have increased uncertainty at P9. While TEPITOPE mirrored our observed preferences 
at P4 and P7, it does not consider P5 48, which was essential to our observed motif.  
 

 
Figure 2.9. Validation of library-enriched HLA-DR402-binding motif reveals further gaps and 
inaccuracies in existing class II MHC prediction algorithms. A) Two-point fluorescence polarization 
competition assay relative binding curves for peptides either found enriched by our randomized 9mer HLA-
DR402 library but not predicted to bind HLA-DR402 (Library-enriched) or derived from influenza A virus 
and predicted to bind HLA-DR402 but not matching our enriched motif (IAV-derived). Selected control 
peptides are shown in black and curves are fit to N = 3 replicates. B) Scatterplots of algorithmic predictions 
versus measured IC50 with lines of best fit and their associated coefficients of determination (R2). Asterisk 
denotes R2 values of negative correlations 
 
Our enriched motif was supported by competition assays that validated 16/16 library-enriched 
peptides (measured IC50 < 150 nM) that were not predicted to bind HLA-DR402 by both 
NetMHCIIpan and TEPITOPE (Table 2.2, Figure 2.9A). These peptides were derived from both 
clusters within our data, supporting each motif. We further identified 8 peptides from Influenza A 
virus predicted to be strong binders by both NetMHCIIPan and TEPITOPE, but not matching our 
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overall enriched motif. Interestingly, only 3/8 were found to be weak or non-binders (IC50 > 500 
nM). This discrepancy may have been caused by treating the two overlapping motifs as one 
averaged motif. However, the predictions of existing algorithms were again negatively correlated 
with measured IC50 (Figure 2.9B). 
 
These results demonstrate that our platform can generate large quantities of high-quality training 
data even for alleles for which there are no allele-specific reagents to validate fold and function. It 
further revealed that HLA-DR alleles can bind peptides in multiple distinct peptide motifs, 
including non-conventional motifs, introducing inaccuracies in algorithms that overweight 
hydrophobic preferences at position P1. 
 
2.2.5 Benchmarking performance of yeast-display trained algorithms 
 

 
Figure 2.10. Training on yeast-display library data rectifies deficiencies in existing class II MHC 
prediction algorithms. Scatter plots of predicted value and measured IC50, with associated lines of best fit 
and coefficients of determination (R2) for the following peptides: (A) Enriched by selection of a 9mer HLA-
DR401 library but not predicted to bind HLA-DR401, or derived from influenza A virus and predicted to 
bind HLA-DR401 but not matching our enriched motif; (B) Enriched by selection of a 9mer HLA-DR402 
library but not predicted to bind HLA-DR402, or derived from influenza A virus and predicted to bind HLA-
DR402 but not matching our enriched motif; C) or variants of wild-type CII261-273 peptide. The allele of 
predicted and measured binding is displayed in bold above each panel. 
 
We hypothesize that the deficiencies observed in existing class II prediction algorithms in each of 
the above examples is primarily driven by deficiencies in their underlying training data, rather than 
the training architectures. To address this hypothesis, we trained prediction algorithms with our 
yeast-displayed library data using NN-Align, the training architecture underlying NetMHCII and 
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NetMHCIIPan 63, facilitating direct comparison of the training data. Importantly, training on our 
yeast-display data improved prediction performance for both alleles when applied to the peptide 
sets that differentiated our enriched motif from existing algorithms above. Specifically, they 
displayed greatly improved correlation with measured IC50 (Figure 2.10A, B), and correctly 
classified 24/24 of the HLA-DR401 peptides and 21/24 of the HLA-DR402 peptides as binders or 
non-binders (rank < 10%, measured IC50 < 1 µM, or rank > 10 %, measured IC50 > 1 µM, 
respectively). Furthermore, consistent with the effect of peptide flanking residues on binding, 
training on the 13mer HLA-DR401 yeast-display data resulted in improved correlation with 
measured IC50 for the CII261-273 variant peptides, relative to training on the 9mer library, or to 
NetMHCII (Figure 2.10C). 
 

 
Figure 2.11. Eluted ligand mono-allelic mass spectrometry and yeast-display library datasets display 
similar motifs, but vary in size and result in divergent preferences in trained algorithms. A) Kullback-
Leibler relative entropy motifs of the core 9 amino acids in HLA-DR401 or -DR402-binding peptides, 
determined from clustering of the filtered minimum core epitopes of nested sets in eluted ligand mono-
allelic mass-spectrometry (MS) datasets, or empirically from round 5 of selection of randomized 9mer 
yeast-display libraries (YD library-enriched). Number of unique cores comprising each motif are shown. 
 
To further benchmark the predictive performance of each algorithm, we identified two peptide-
binding datasets for each allele that are not represented in current prediction training data 18, 43. 
These datasets were generated from eluted ligand mono-allelic mass spectrometry (MS), which 
utilizes antigen-presenting cells that express only a single class II MHC allele, eliminating the 
ambiguity in allelic assignment encountered in conventional poly-allelic MS 14, 26.  This method 
has recently been used to generate high-quality data for many class I and II MHC alleles 14, 15, 18 

43,. While these datasets are over an order of magnitude smaller than those generated by yeast-
display in terms of unique peptide cores (Figure 2.11), their peptide motifs are largely consistent 
with yeast-display, with the exception of P9 Cys, and the absence of two distinct motifs for HLA-
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DR402. As the latter dataset 18 underlies the recently published prediction algorithm NeonMHC2, 
we chose to generate an additional prediction algorithm on this data – again using NN-Align – to 
provide an additional comparison for training data versus training algorithm.  
 

 
Figure 2.12. Benchmarking predictive performance on eluted ligand MS data reveals source of algorithmic 
false positives. A,C) Receiver operating characteristic (ROC) curves for prediction of eluted ligand MS 
data for HLA-DR401 and -DR402, with expression-matched decoy peptides, before (A) or after (C) 
unsupervised outlier removal, for existing algorithms or algorithms trained on our 9mer yeast-display 
library (YD-trained) or independent mono-allelic MS (MS-trained) data. The area under the ROC curve 
(AUC) and positive predictive value (PPV) of each prediction is shown. B) List of the 8 most differentially 
ranked peptides within these benchmarking datasets for NeonMHC2, relative to the MS-trained algorithms. 
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Each algorithm was applied to the remaining allele-matched dataset 43, with length- and 
expression-matched decoy peptides, to determine two metrics of predictive performance: the area 
under the receiver operating characteristic curve (AUC), and the positive predictive value (PPV). 
For both alleles, the MS- and 9mer yeast-display (YD)-trained models performed comparably to 
one another, and outperformed NetMHCII and NetMHCIIPan, yet were substantially 
outperformed by NeonMHC2 (Figure 2.12A). However, analysis of the peptides most 
differentially valued by NeonMHC2 relative to the MS-trained algorithms (Figure 2.12B) revealed 
that NeonMHC2 valued proline-rich peptides (two of which were shared between alleles), and 
highly basic and hydrophobic peptides, which are prone to non-specificity. This finding suggests 
that eluted ligand MS datasets may contain substantial amounts of non-specific peptides that drive 
an erroneous outperformance of NeonMHC2, which may be over-fit to these non-specific peptides. 
In fact, unsupervised clustering of each evaluation set via Gibbs Cluster 54 revealed that each 
contains a substantial portion (26% for HLA-DR401, 19% for HLA-DR402) of outliers, including 
peptides with long stretches of Gly or Pro – previously reported to non-specifically populate eluted 
ligand datasets 64 – and 15/16 of the peptides most differentially valued by NeonMHC2. 
 
In further support of this notion, removal of outlier peptides from the evaluation sets greatly 
diminished the outperformance of NeonMHC2, but universally improved prediction performance 
(Figure 2.12C). For both alleles, the MS- and YD-trained algorithms performed comparably (AUC 
0.92-0.94), and outperformed NetMHCII and NetMHCIIPan, especially for HLA-DR402. This 
outperformance was more pronounced for PPV, with the YD-trained algorithm reaching 67% for 
HLA-DR401. NeonMHC2 also demonstrated impressive AUC (0.96-0.97) and PPV (64-69%) 
performance for both alleles. As NeonMHC2 is built upon the same underlying data as the MS-
trained algorithms, its improved performance here may be due to the incorporation of peptide 
processing information, such as peptide cleavage preferences 18. In addition, NeonMHC2 
outperformed the recently published class II MHC prediction algorithm, MARIA 16, which is also 
trained on eluted ligand MS data and considers peptide processing, but utilizes conventional poly-
allelic MS data, displaying the importance of non-ambiguous allelic assignment. 
 
While our data suggests that benchmarking on MS-derived data may underestimate false positives 
for MS-trained algorithms due to over-fitting, benchmarking on these datasets may also 
underestimate algorithmic false negatives due to gaps in MS-derived data, such as systemic under-
sampling of cysteine 18, 43. Therefore, we further evaluated predictive performance of each 
algorithm on the 13mer HLA-DR401 YD library data. Here, we observed comparable performance 
between the MS-trained algorithm, NetMHCII, and NetMHCIIPan (AUC 0.79-0.82, PPV 27-30%) 
(Figure 2.13A). Additionally, NeonMHC2 slightly underperformed its NN-Align-based 
counterpart, even though it was used in ‘tiling mode’ which ignores peptide cleavage preferences, 
suggesting that the previously noted outperformance was due to factors inherent to MS-derived 
data, such as peptide processing. Notably, the 9mer YD-trained model clearly outperformed each 
of the four alternatives, with an AUC of 0.92 and a positive predictive value of 55%, and prediction 
performance was only minimally improved by removal of outlier peptides (Figure 2.13B). 
 
Considered together, the comparable predictive performance of the yeast-display-trained 
algorithm on MS-derived data and its over-performance on non-overlapping yeast-display data 
suggests that there may be peptide motifs in yeast-display data that are not adequately sampled by 
MS. Direct comparison of the MS- and YD-trained algorithms at a positional level revealed 
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significantly (p < 0.05) more stringent preferences at P9 for the YD-trained algorithms (Figure 
2.13D), but was less notable for the 13mer-trained algorithm, suggesting it is at least partially 
driven by register uncertainty in the MS-derived data. Consistent with its under-representation in 
MS-derived data, Cys was significantly over- or under-represented at multiple positions. 
Additionally, MS-trained algorithms had a greater preference for small hydrophobic residues at 
multiple positions. Consistent with these findings, the most differentially ranked peptides in the 
13mer YD evaluation set displayed these motifs (Figure 2.13C), and did not appear non-specific. 
 

 
Figure 2.13. Benchmarking on yeast-display data suggests the presence of unique motifs. Receiver 
operating characteristic (ROC) curves for prediction of round five 13mer yeast-display library data, with 
decoys from the naïve library, for existing algorithms or algorithms trained on 9mer yeast-display library 
(YD-trained) or mono-allelic MS (MS-trained) data, before (A) or following (B) unsupervised outlier 
removal, with associated area under the ROC curve (AUC) and positive predictive values (PPV). C) List of 
peptides most differentially ranked between the YD- and MS-trained algorithms, with 9mer core 
underlined. D) Amino acids significantly (p < 0.05) differentially represented at each position within the 
9mer core of HLA-DR401 or -DR402-binding peptides, as determined by the YD-trained algorithms relative 
to the MS-trained algorithms. Displayed size of residues corresponds with statistical significance. 
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Figure 2.14. Prediction of pathogen and tumor-associated peptides shows unique improvements for 
training existing algorithms on yeast-display library data. A) Table of mutant peptides from human lung 
adenocarcinomas differentially predicted as neoantigens for HLA-DR401, or peptides derived from 
influenza A virus differentially predicted as strong- versus non-binders, by NeonMHC2 or a model trained 
on our 9mer yeast-display library data. Mutations in adenocarcinoma-derived peptides are noted in bold. 
B) Table of predicted percentile ranks and measured IC50 values of peptides on which NeonMHC2 or a 
yeast-display trained algorithm disagreed, with associated binding curves for HLA-DR401 from 
fluorescence polarization competition assays for these peptides (C). Curves are fit to N = 3 replicates. 
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To investigate the effect these differences may have on the prediction of clinically relevant 
peptides, we performed antigen prediction for HLA-DR401 with NeonMHC2 and the 9mer yeast-
display-trained algorithm on the proteome of Influenza A virus (IAV), and expression-validated 
mutations from human lung adenocarcinoma patients 65. From these datasets, the 9mer yeast-
display-trained model differentially classified (relative to NeonMHC2) 5 IAV-derived peptides as 
strong or non-binders, and differentially classified 13 adenocarcinoma-derived peptides as 
potential neoantigens (Figure 2.14A). Interestingly, these algorithms displayed non-overlapping 
algorithmic misses (Figure 2.14B), suggesting that there are peptide motifs unique to each training 
set that contribute to improved peptide prediction performance. Importantly, however, when all 
peptides assayed for binding to HLA-DR401 in this study were considered, yeast-display-trained 
models displayed substantially improved correlation with measured IC50 relative to all alternative 
algorithms, which performed poorly (Figure 2.15A). Consistent with our findings on peptide 
flanking residues, the predictions of the 13mer yeast-display-trained model displayed the greatest 
correlation with measured IC50 (R2 = 0.62). These findings also held true when each prediction 
was converted to percent rank to match the output of NeonMHC2 (Figure 2.15B). 
 

 
Figure 2.15. Training existing algorithms on yeast-display library data improves estimation of peptide-
binding affinity. Scatterplots of algorithmic predictions versus measured IC50 values for 56 peptides 
assayed for binding to HLA-DR401 in fluorescence polarization competition assays for native output (A) 
or converted to percentile rank (B), with associated lines of best fit and coefficients of determination (R2).  
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Overall, our results demonstrate that both mono-allelic-MS- and yeast-display-generated peptide 
datasets greatly improve the performance of class II prediction algorithms, and can identify unique 
peptide motifs that contribute to improved prediction performance. However, we find that yeast-
display provides much larger datasets than mono-allelic MS, and provides improved performance 
in predicting peptide affinity. 
 
2.3 Discussion 
 
The central role of CD4+ T cells across infection, cancer, autoimmunity, and allergy motivates a 
need to better predict which peptide antigens can be presented by class II MHCs. However, class 
II prediction algorithms suffer from consequential gaps and inaccuracies in coverage, especially 
for poorly characterized alleles 11, 20-24.   
 
Here, we present a platform for large-scale unbiased identification of class II MHC-binding 
peptides to identify and rectify these gaps and inaccuracies. We showed that this platform does not 
require extensive prior knowledge of a peptide-binding motif or allele-specific reagents, allowing 
application to poorly characterized class II MHC alleles. We demonstrated that our platform 
generates over an order of magnitude more unique data than comparable approaches for two human 
class II MHC alleles, and identifies motifs that are missed by current data collection techniques 
and frequently used prediction algorithms. We further validate that these deficiencies and 
inaccuracies are rectified when existing algorithms are trained upon our yeast-display library data, 
and use these algorithms to discover bona fide peptide binders that are not predicted by other 
prediction algorithms.  
 
Analysis of the training data underlying existing prediction algorithms revealed multiple sources 
of underperformance. For both alleles studied, we found large numbers of nested sets and single 
amino acid variant peptides within curated training sets. While training algorithms account for 
redundant information from nested sets 29, their presence diminishes the functional size of the 
training set. However, single amino acid variants are considered unique peptides, and can therefore 
impart biases. Furthermore, a systemic absence of cysteine in training sets resulted in substantial 
algorithmic false negatives for both alleles. While this is likely due in part to an aversion to 
working with cysteine-containing peptides, it is also driven by the difficulties inherent to sampling 
them in mass-spectrometry (MS) datasets 66. A systemic underrepresentation of acidic residues in 
the IEDB has also been reported 18. In comparison, no systematic absences were observed within 
our yeast-display data. 
 
In addition, we found that yeast-displayed libraries uniquely benefit from their large size and 
engineered composition. By engineering randomized peptide libraries with defined flanking 
residues, we reduced register uncertainty and increased anchor preference resolution. Meanwhile, 
the large size of our libraries enabled identification of consequential preferences at non-anchor 
residues, including those outside the peptide-binding groove. Our libraries also enabled us to 
identify two distinct motifs for HLA-DR402 that were not adequately captured by curated peptides 
or eluted ligand MS. The coexistence of two unique binding motifs, including one of which defies 
the conventional notion of a hydrophobic P1 residue-driven HLA-DR motif in favor of 
hydrophobic residue at P4, is unique relative to recent reports of HLA-DR alleles 17-18. The smaller 
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size of the mono-allelic MS-derived dataset and its under-representation of Trp 18 – which 
dominated this newly-described motif – may account for its absence. 
 
By using our data to train prediction algorithms and benchmark their performance against existing 
algorithms and those generated by comparable approaches, we identified key considerations for 
antigen prediction moving forward. First, our results demonstrate that high-quality training data 
improves the performance of class II prediction algorithms without alteration of underlying 
training algorithm architectures, especially for poorly characterized alleles. However, there are 
important opportunities for algorithmic improvement, such as improved binding register 
determination and increased focus on peptide flanking residues. Second, we find that each source 
of data has non-overlapping strengths and weaknesses for improving prediction performance. 
Therefore, we believe that an ideal class II MHC prediction algorithm may be trained on high-
quality datasets that reflect native processing 66, such as mono-allelic MS datasets, as well as large 
and diverse peptide datasets, such as those generated by our yeast-display platform. Third, we 
highlight the importance of the choice of validation sets for benchmarking prediction algorithms, 
as frequently used metrics of prediction performance underestimate false negatives due to gaps in 
test sets, allowing entire classes of peptides to be missed without impacting performance metrics. 
Additionally, we found that false positives may be under-represented when benchmarking on 
eluted MS data when using MS-trained algorithms, such as NeonMHC2, which appears to be over-
fit to this data source.  Finally, we find that yeast-display-trained algorithms are markedly superior 
at predicting peptide affinity, which is a crucial consideration in identifying peptides suitable for 
antigen-targeted therapeutics 6-8. The non-binary nature of yeast-display data, which is trained on 
peptides from five rounds of selection, possibly accounts for this key disparity.  
 
Lastly, as this platform does not require allele-specific reagents, we believe it can generate high-
quality repertoire-scale data for many additional class II alleles, even those with few curated 
binders, greatly increasing its applicability. As such, we believe this technology will greatly benefit 
the field of class II MHC antigen prediction, and therefore the study and application of CD4+ T 
cell recognition across pathogen infection, cancer, and immune disorders. 
 
2.4 Methods 
 
2.4.1 Yeast-displayed pMHC design and peptide exchange 
 
Full-length yeast-displayed HLA-DR401 (HLA-DRA1*01:01, HLA-DRB1*04:01) with a 
cleavable peptide linker was based upon a previously described HLA-DR401 construct optimized 
for yeast display with the mutations Mα36L, Vα132M, Hβ62N, and Dβ72E to enable proper 
folding without perturbing either TCR- or peptide-contacting residues 32. The alpha and beta chain 
ectodomains are expressed as a single transcript connected by a self-cleaving P2A sequence. The 
peptide is joined through a flexible linker to N-terminus of MHC β1 domain. This construct was 
further modified to express a 3C protease site (LEVLFQ/GP) and MYC epitope tag 
(EQKLISEEDL) within the flexible linker, for a total of 32 amino acids between the peptide and 
β1 domain. HLA-DR402 (HLA-DRA1*01:01, HLA-DRB1*04:02) was generated by 
modification of this construct with each native HLA-DRβ polymorphism of HLA-DR402. All 
yeast-display constructs were produced on the pYAL vector as N-terminal fusions to AGA2. All 
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yeast strains were grown to confluence at 30°C in pH 5 SDCAA yeast media then subcultured into 
pH 5 SGCAA media at OD600 = 1.0 for 48h induction at 20°C 67. 
 
For peptide retention experiments, the linker between peptide and MHC was cleaved with 1 µM 
3C protease in PBS pH 7.4 at a concentration of 2x108 yeast/mL for 45 minutes at room 
temperature. After linker cleavage, yeast expressing the pMHC were washed into pH 5 citric acid 
saline buffer (20mM citric acid, 150 mM NaCl) at 1x108 yeast/mL with 1 µM HLA-DM and a 
high-affinity competitor peptide at 4°C to catalyze peptide exchange. HLA-DR401-expressing 
yeast were incubated with 1 µM HA306-318 (PKYVKQNTLKLAT) and HLA-DR402-expressing 
yeast were incubated with 5 µM CD4836-53 (FDQKIVEWDSRKSKYFES) (Genscript, Piscataway 
NJ). Peptide dissociation was tracked through a AlexaFluor647-labeled ∝-Myc antibody (Cell 
Signaling Technologies, Danvers MA) on an Accuri C6 flow cytometer (Becton Dickinson, 
Franklin Lakes NJ). For each construct, N = 3 aliquots were treated independently and measured 
for each time point and condition. Statistical evaluation of dissociation experiments was performed 
by repeated measures two-way ANOVA with Dunnett’s test for multiple comparison within 
treatment conditions, or Tukey’s test for multiple comparisons across treatment conditions, in 
Prism 8.0 (GraphPad Software Inc, San Diego CA). 
 
2.4.2 Library design and selection 
 
Randomized peptide yeast libraries were generated by polymerase chain reaction (PCR) of the 
pMHC construct with primers encoding NNK degenerate codons. To ensure only randomized 
peptides expressed within the library, the template peptide-encoding region encodes multiple stop 
codons. Randomized 9mer libraries were designed as [AAXXXXXXXXXWEEG…] to constrain 
peptide register and randomized 13mer libraries were designed as [AXXXXXXXXXXXXXG…]. 
Randomized pMHC PCR product and linearized pYAL vector backbone were mixed at a 5:1 mass 
ratio and electroporated into electrically competent RJY100 yeast 68 to generate libraries of at least 
1x108 transformants. Libraries were subjected to 3C cleavage and peptide exchange for 16-18 h, 
as described above, and were selected for peptide-retention via binding of ∝-Myc-AlexaFluor647 
antibody and magnetic ∝-AlexaFluor647 magnetic beads (Miltenyi Biotech, Bergisch Gladbach, 
Germany). Selected yeast were re-cultured, induced, and selected for an additional four rounds, 
for five total rounds of selection. 
 
2.4.3 Library deep sequencing and analysis 
 
Libraries were deep sequenced to determine the peptide repertoire at each round of selection. 
Plasmid DNA was extracted from 5x107 yeast from each round of selection with the Zymoprep 
Yeast Miniprep Kit (Zymo Research, Irvine CA), according to manufacturer’s instructions. 
Amplicons were generated by PCR with primers designed to capture the peptide encoding region 
through the polymorphic region that differentiates HLA-DR401 from HLA-DR402. An additional 
PCR round was then performed to add P5 and P7 paired-end handles with inline sequencing 
barcodes unique to each library and round of selection. Amplicons were sequenced on an Illumina 
MiSeq (Illumina Incorporated, San Diego CA) with the paired-end MiSeq v2 500bp kit at the MIT 
BioMicroCenter. 
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Paired-end reads from were assembled via FLASH 69 and processed with an in-house pipeline 
which filters for assembled reads with exact matches for the expected length, polymorphic 
sequences, and 3C protease cleavage site, then sorts each read based on its inline barcode and 
extracts the peptide-encoding region. To ensure only high-quality peptides were analyzed, reads 
were discarded if any peptide-encoding base pair was assigned a Phred33 score less than 20, or 
did not match the expected codon pattern at NNK sites (N = any nucleotide, K = G or T). To 
account for PCR and read errors of high-prevalence peptides, reads were discarded if their peptide-
encoding regions were Hamming distance 1 from any more prevalent sequence, Hamming distance 
2 from a sequence 100 times more prevalent, or Hamming distance 3 from a sequence 10,000 times 
more prevalent within the same round, in line with previously published analysis methods 70. 
Unique DNA sequences were translated by Virtual Ribosome 71 and filtered for peptides not 
encoding a stop codon. 
 
2.4.4 Heat map visualization of library peptide preferences and determination of peptide register 
 
Heat maps were generated from filtered sequences from each round to visually represent positional 
preferences. For each round, the unweighted prevalence of each amino acid at each position was 
calculated as a percentage. This positional percent prevalence was compared to its matched value 
in the unselected library to generate log2-fold enrichment values. The significance of deviations 
from unselected library positional amino frequencies was evaluated using an unweighted binomial 
test using 10,000 peptides to establish each distribution in kpLogo 72, with a Bonferroni correction 
for multiple hypothesis testing.  
 
For randomized 9mer libraries, these log2-fold enrichment values were used to generate 20x9 
position-specific scoring matrices (PSSMs) that were used to identify out-of-register peptides in 
round 5 of selection. Each 15mer peptide was scored in each of its seven possible 9mer registers 
by the PSSM, without positional weighting. Peptides which scored highest in a shifted register, 
regardless of score, were deemed out-of-register. For the randomized 13mer library, peptide 
register was determined by Gibbs Cluster 2.0 54, with settings imported from ‘MHC class I ligands 
of the same length’, a motif of 13 amino acids, no discarding of outlier peptides, and background 
amino acid frequencies derived from the data. This allowed visualization of each peptide register 
independently, without collapsing to a common 9mer motif. The number of unique clusters was 
determined by maximum Kullback-Leibler distance. Results were comparable between both 
methods of register determination for the 9mer peptide data. 
 
2.4.5 Analysis of peptide data from external data sources 
 
External MHC-binding peptide data was curated either from the SYFPEITHI database 30 or from 
two previously-published eluted ligand mono-allelic mass-spectrometry (MS) datasets 18, 43. 
Eluted ligand mono-allelic MS peptide data was analyzed as previously recommended 43, 
identifying the minimum epitope of nested peptide sets and filtering for those which do not map 
to immunoglobulin or HLA proteins. Each dataset was clustered by Gibbs Cluster 2.0 54 with 
default settings for ‘MHC class II ligands’, excepting the default removal of outlier peptides, and 
amino acid frequencies ‘from data’, to identify the core 9mer of each peptide. In each case, 
Kullback-Leibler distance was maximized for one cluster. For identification of outlier peptides, 
the default removal of outlier peptides was enabled.  
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2.4.6 Generation and comparison of peptide motifs  
 
Kullback-Leibler relative entropy motifs were generated with Seq2Logo 2.0 73. For yeast-display 
data, the core 9mers of round 5 sequences were input with background amino acid frequencies 
derived from their average in their matched unselected library. For externally sourced peptide data, 
unique core 9mers were input with background frequencies from the UNIPROT 74 average of each 
amino acid. Motifs for prediction algorithms were generated by application of each prediction to 
a computationally-generated set of 50,000 unique 15mer peptides with the UNIPROT average 
frequency of each amino acid. Prediction with each of NetMHCII 2.3 11, TEPITOPE 48, 
NetMHCIIPan 3.2 11, the IEDB consensus tool 49 produces a predicted value and core 9mer. 
Predicted core 9mers of peptides that met published recommendations for binding (NetMHCII and 
NetMHCIIPan: IC50 < 500 nM, TEPITOPE: rank < 6, IEDB Consensus: rank < 10) were input 
into Seq2Logo with UNIPROT average background frequencies.  
 
Comparison of the two clusters found within round 5 of our randomized 9mer HLA-DR402 library 
selection data was performed with Two Sample Logo 75. Significance was determined by two-
sided unweighted binomial test for p < 0.05, with a Bonferroni correction for multiple hypothesis 
testing.  
 
2.4.7 Training of peptide prediction algorithms 
 
Allele-specific class II MHC prediction models were generated from yeast-display library data or 
from external mono-allelic MS data 18, 43 using NN-Align 2.0 63. For yeast-display library data, the 
randomized residues of up to 80,000 sequenced peptides were assigned a target value 
commensurate with the final round of selection in which they were observed between 0 and 1, with 
increasing target value for observation in later rounds. The 9mer library data was used for training 
with default settings for ‘MHC class II ligands’, excepting expected peptide length set to 9 amino 
acids and expected PFR (peptide flanking residue) length set to 0 amino acids. The 13mer library 
data was used for trained with default settings, excepting expected peptide length set to 13 amino 
acids.  
 
For the mono-allelic MS data, curated filtered minimum epitopes were assigned a target value of 
1. In order to prevent the algorithm from conflating altered amino acid frequencies arising from 
MS data collection with peptide-binding preferences, each peptide was scrambled to generate 
negative instances and assigned a target value of 0, in line with previously published 
recommendations 18. These algorithms were trained with default ‘MHC class II ligands’ settings.  
 
Reported prediction values are the inverse of model output prediction values (1-value) to match 
other prediction models for ease of comparison. Percentile ranks were established by comparison 
of prediction values to the distribution of prediction values generated by applying each prediction 
to 50,000 computationally generated random 15mer peptides (see above). 
 
2.4.8 Benchmarking and comparison of prediction algorithms 
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Prediction algorithms were benchmarked against independently generated allele-specific eluted 
ligand mono-allelic MS or yeast-display library data, with matched decoy peptides. For the MS 
datasets, the filtered minimum core epitopes (see above) were classified as positive instances, and 
length- and expression-matched decoy peptides were randomly selected from a pool of 
computationally generated peptides as previously described 18. For each protein observed within 
the dataset, we tiled across its sequence with peptide lengths randomly selected from the length 
distribution of the observed peptides, starting at the first amino acid in the protein and allowing an 
eight amino acid overlap between subsequent proteins. If the length of the last peptide extended 
beyond the end of the protein, we randomly shifted the starting amino acid such that the starting 
amino acid of the first peptide and last amino acid of the final peptide were all within the protein. 
We randomly selected decoy peptides from this set such that the length distribution of decoy 
peptides matched that of the positive instances, and that there was no 9mer sequence match with 
the other decoys or positive instances. For the yeast-display dataset, a randomly selected size-
matched set of peptides found enriched in round 5 of selection were classified as positive instances, 
and decoy peptides were randomly selected from peptides only observed in their respective 
unselected library. A 1:1 ratio of positive instances and decoy peptides was used to generate 
receiver operating characteristic (ROC) curves. A 1:19 ratio of positive instances and decoy 
peptides was used for calculation of positive predictive value (PPV), which is calculated as the 
fraction of true instances observed in the top 5% of predicted value for each algorithm 18. 
 
Prediction algorithms were compared at a positional level by Two Sample Logo 17. For each 
comparison, the two algorithms were applied to a common set of 50,000 computationally-
generated 15mer peptides (see above). The predicted core 9mer of peptides which rank within the 
90th percentile or higher of predicted value for only one algorithm are evaluated against the cores 
of peptides which rank within the 90th percentile or higher of predicted value for both algorithms. 
Significance was determined by two-sided unweighted binomial test for p < 0.05, with a 
Bonferroni correction for multiple hypothesis testing. 
 
2.4.9 Recombinant protein production 
 
Recombinant soluble HLA-DM, HLA-DR401, and HLA-DR402 were produced in High Five 
(Hi5) insect cells (Thermo Fisher) via a baculovirus expression system, as previously described 
for other class II MHC proteins 31. Briefly, ectodomain sequences of each chain followed by a 
poly-histidine purification site were cloned into pAcGP67a vectors. For each construct, 2 µg of 
plasmid DNA was transfected into SF9 insect cells with BestBac 2.0 linearized baculovirus DNA 
(Expression Systems, Davis CA) using Cellfectin II reagent (Thermo Fisher, Waltham MA. 
Viruses were propagated to high titer, co-titrated to maximize expression and ensure 1:1 MHC 
heterodimer formation, and co-transduced into Hi5 cells, which were then grown at 27°C for 48-
72h. Proteins were purified from the pre-conditioned media supernatant with Ni-NTA resin and 
size purified via size exclusion chromatography using a S200 increase column on an AKTAPURE 
FPLC (GE Healthcare, Chicago IL).  HLA-DRB1*04:01 and HLA-DRB1*04:02 chains were 
expressed with CLIP81-101 peptide connected by a 3C-protease-cleavable flexible linker to the 
MHC N-terminus, which improved protein yields. 
 
2.4.10 Fluorescence polarization competition assays and peptide IC50 determination 
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The IC50 of characterized peptides was quantified with a protocol adapted from Yin, L. and Stern, 
L.J. (2014) 50. Relative binding values were generated at each concentration according to the 
equation (FPsample – FPfree)/(FPno comp – FPfree), where FPfree is the polarization value of the 
fluorescent peptide before addition of MHC, FPno_comp is the polarization value with added MHC 
but no competitor peptide, and FPsample is the polarization value with added MHC and competitor 
peptide. Relative binding curves were generated and fit by Prism 8.0 (GraphPad Software Inc, San 
Diego CA) to the equation y = 1/(1+[pep]/IC50), where [pep] is the concentration of competitor 
peptide, to determine the IC50 of each peptide, its concentration of half-maximal inhibition.  
 
For each 200 µL assay, 100 nM soluble MHC was combined with 25 nM of fluorescently-modified 
peptide in pH 5 binding buffer and incubated at 37°C for 72h in black 96-well flat bottom plates 
(Greiner Biotech, Kremsmünster, Austria). Modified HA306-308 peptide [APRFV{Lys(5,6 
FAM)}QNTLRLATG] was used for HLA-DR401 and modified CD4836-53 peptide 
[AQRIVEWDSR{Lys(5,6) FAM)}SRYG] was used for HLA-DR402. N=3 replicates were 
performed for each unlabeled peptide (Genscript, Piscataway NJ) concentration, ranging in five-
fold dilutions from 20 µM to 1.28 nM. Plates were read on a Tecan M1000 (Tecan Group Ltd., 
Morrisville NC) with 470nm excitation, 520 nm emission, optimal gain, and a G-factor of 1.10. 
An important modification of our protocol is the presence of the MHC-linked CLIP peptide, which 
was released by incubation with 3C protease at a 1:100 molar ratio at room temperature for 1h 
prior to dilution into plates. Residual cleaved CLIP peptide at 100 nM is not expected to alter 
peptide binding. 
 
Due to poor soluble expression of HLA-DR402, the assay for HLA-DR402-binding peptides was 
limited to two concentrations of unlabeled competitor peptide for this allele. However, we found 
high correlation between two-point estimated IC50 values and those obtained from full titration 
curve fitting for HLA-DR401. 
 
Lines of best fit between predicted and measured affinity for characterized peptide, and associated 
determinants of determination (R2), were generated in Prism 8.0 (GraphPad Software Inc, San 
Diego CA). 
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CHAPTER 3 - Decoding the origin and antigen discovery of a conserved regulatory 
T cell response to highly immunogenic murine lung adenocarcinomas 
 
ABSTRACT 
 
Tumor-infiltrating regulatory T (Treg) cells suppress anti-tumor immune responses – facilitating 
continued outgrowth and treatment resistance – and are associated with poor clinical prognoses 
across many tumor types, including non-small cell lung cancer (NSCLC). Although the success of 
checkpoint-blockade inhibitors in a subset of NSCLC patients demonstrates the potential for 
immune-mediated tumor clearance, T cell responses to these tumors are highly inhibited and 
successful therapy is largely dependent on elevated tumor immunogenicity. Previous studies in the 
‘KP’ genetically engineering mouse model of NSCLC have identified tumor-infiltrating Tregs as 
a key driver of this immunosuppression, and demonstrated that depletion or modulation of these 
Tregs improves anti-tumor immunity, even in the absence of potent immunogens. However, 
therapies that systemically deplete or modulate Tregs greatly increase the risk for immune-
mediated adverse events, prompting increased focus on specifically targeting tumor-infiltrating 
Treg populations.   
 
In this chapter, we investigate the identity, origin, and antigenic basis of Tregs infiltrating highly 
immunogenic KP lung adenocarcinomas to facilitate improved targeting of this population. We 
find that these populations are highly diverse and functionally unique, yet contain prevalent clones 
with nearly identical T cell receptor (TCR) pairings across mice. These ‘public’ Tregs appear to 
be lung-resident, expand synchronously with anti-tumor immune responses, and appear in 
independent studies of acute lung inflammation. However, their antigenic basis remains uncertain. 
Nevertheless, these data provide novel insights into the composition of tumor-infiltrating Tregs, 
and may provide a model system for the study of Treg immunosuppression in a highly treatment-
resistant murine model of NSCLC. 
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3.1 Introduction 
 
The infiltration of regulatory T (Treg) cells into many tumor types is correlated with poor clinical 
prognoses 1, 2. Within the tumor microenvironment, Tregs – which limit immune-mediated damage 
to healthy tissues during inflammation and autoimmunity 3 – suppress anti-tumor responses, 
facilitating continued outgrowth and treatment resistance 1, 2. Although the systemic depletion or 
modulation of Tregs can alleviate immunosuppression, these treatments increase the risk of 
immune-related adverse events, particularly autoimmune toxicities 1. As such, specific targeting 
of tumor-infiltrating Tregs is of great interest for the development of more effective 
immunotherapies. However, the composition of these populations is still poorly understood, and 
in particular, their clonal identity, origin, and antigen-specificity are rarely known 4. Therefore, in 
order to improve targeting of tumor-infiltrating Tregs for improved cancer immunotherapies, it is 
essential to understand their clonal identity, origin, and antigen specificity. 
 
One tumor type which exhibits robust immunosuppression and treatment-resistance is non-small 
cell lung cancer (NSCLC), which despite treatment advances still accounts for ~25% of all cancer-
related deaths in the U.S., and has an 80% 5-year mortality rate 5. Although the success of immune-
checkpoint inhibitors in a subset of NSCLC patients demonstrates the presence of T cells responses 
against these tumors, immunosuppression greatly inhibits their function 6, 7. Furthermore, 
successful therapy is largely limited to patients with high densities of non-synonymous coding 
mutations – which give rise to potently immunogenic cancer ‘neoantigens’ 8, 9 – leaving an unmet 
clinical need for NSCLC patients with lesser mutational burdens and tumor immunogenicity, such 
as never smokers 8.  
 
The use of genetically engineered mouse models (GEMMs) has greatly informed our 
understanding of the tumor biology and treatment-resistance of NSCLC 10. In particular, the ‘KP’ 
(KrasLSL-G12D/+, Trp53fl/fl) model of Kras-driven lung adenocarcinomas (which account for ~25% 
of NSCLCs 11) – wherein intranasal administration of a Cre recombinase-encoding virus initiates 
multi-focal autochthonous tumorigenesis in the presence of a fully functional immune system – 
mirrors the progression, poor immunogenicity, and robust immunosuppression of the human 
disease 10, 12-15. Furthermore, ‘LucOS’ (firefly luciferase fused to the potent OT-I, OT-II, and 2C 
T cell epitopes)-encoding variants of these tumors display potent immunogenicity, yet remain 
treatment-resistance due to robust immunosuppression 12, 13. Previously, it has been demonstrated 
that Treg infiltrates drive this immunosuppression, and that their systemic depletion releases potent 
anti-tumor responses, even in the absence of defined antigens 13. Furthermore, these tumor-
infiltrating Tregs are functionally diverse, but differentiate towards an effector phenotype, and 
modulation of their signaling bolsters anti-tumor immunity 16. Yet while these findings suggest 
that tumor-infiltrating Tregs are a key deterrent of immune-mediated tumor clearance in these lung 
adenocarcinomas, little is known about their clonal composition or recognition. 
 
Here, we study the identity, origin, and antigenic basis of Tregs infiltrating ‘KP’ lung 
adenocarcinomas by investigating their T cell receptor (TCR) repertoires. We discover that 
KP.LucOS-infiltrating Tregs are highly diverse and distinct from matched conventional CD4+ 
(Tconv) populations or healthy lung-resident Tregs, yet converge on two nearly identical TCRs 
that are highly conserved between mice. Our findings suggest that these ‘public’ Tregs are lung-
resident and expand to suppress the anti-tumor response directed against highly immunogenic 
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KP.LucOS tumors, but their antigen specificity remains unknown. We believe that the description 
of these highly conserved public Tregs provides novel insights into the composition of this key 
immunosuppressive population, and may provide a defined model system of Treg 
immunosuppression in highly treatment-resistant lung adenocarcinomas. 
 
3.2 Results 
 
3.2.1 Highly conserved public Tregs emerge in highly immunogenic lung adenocarcinomas 
 
The defined-antigen autochthonous KP.LucOS murine lung adenocarcinoma model has previously 
been shown to elicit robust anti-tumor immune responses 12, 13.  Following intra-tracheal delivery 
of a lentivirus encoding Cre recombinase and the LucOS fusion protein 12, 17, Cre recombinase 
causes spontaneous loss of p53 and expression of oncogenic KrasG12D mutant protein, resulting in 
multi-focal tumorigenesis and progression to stark adenocarcinoma, mimicking the progression of 
Kras-driven NSCLC in humans 17, 10. Although these tumors have a very low burden of non-
synonymous protein coding mutations 14 – and therefore very few cancer ‘neoantigens’ – they are 
highly immunogenic owing to the expression of defined T cell antigens, with large infiltrates of T 
and B cells within 4 weeks of tumor initiation 12.  However, these immune responses become 
highly suppressed and these tumors display high frequencies of infiltrating Tregs 13. Previous 
studies have shown that these tumor-infiltrating Tregs are critical to tumor immunosuppression, 
as their systemic depletion or modulation bolsters anti-tumor immunity and delays tumor 
progression 13, 15, 16, yet little is known about their composition. We therefore sought to investigate 
the identity, origin, and antigenic basis of Tregs within the highly immunogenic KP.LucOS lung 
adenocarcinoma model in order to better understand their role in tumor immunosuppression.  
 

 
Figure 3.1. Highly immunogenic LucOS lung adenocarcinoma induce large and diverse Treg response. A, 
B) Percent of regulatory T cells (Tregs) among all lung-resident CD4+ T cells (A) or ratio of lung-resident 
CD8+ T cells to Tregs (B) from naïve mice or from mice bearing late-stage LucOS- or AdCre lung 
adenocarcinomas. C) Mean resampled Chao1 diversity of pooled lung-resident regulatory (Treg) or 
conventional (Tconv) CD4+ T cells from T cell receptor (TCR) beta chain amplicon sequencing. Asterisk 
denotes value from n=3 samples pooled prior to sequencing.  
 
To facilitate this analysis, we also analyzed Tregs and conventional CD4+ T cells (Tconvs), from 
LucOS tumor-bearing mice, as well as from naïve mice and mice bearing AdCre lung 
adenocarcinomas. In contrast to LucOS tumors, AdCre tumors are established by transient 
infection with an adenovirus encoding Cre recombinase but no defined antigens 17, and therefore 
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express no foreign antigens following tumorigenesis and are poorly immunogenic 15. In line with 
previous reports, we found that the lungs of mice bearing late-stage (week 16-20 post-initiation) 
LucOS and AdCre tumors had elevated fractions of regulatory T cells among lung-resident CD4+ 
T cells relative to naïve mice (Figure 3.1A). However, only LucOS tumor-bearing mice displayed 
decreased ratios of CD8+ T cell to Treg infiltration (Figure 3.1B) indicative of strong 
immunosuppression. 
 

 
Figure 3.2. Regulatory T cell repertoire converges on common motif during the immune response to a 
highly immunogenic lung adenocarcinoma. Percent frequency of V and J region pairings from TCR beta 
chain amplicon sequencing of pooled lung-resident regulatory T cells from naïve or late-stage LucOS or 
AdCre tumor-bearing mice, averaged within conditions. 
 
To investigate their identity, lung-resident Tconvs and Tregs from a subset of these mice were 
bulk sorted and submitted for targeted T cell receptor (TCR) beta-chain amplicon sequencing. TCR 
beta chain sequencing is frequently used to probe T cell populations for clonal expansions and can 
reveal convergence in receptor composition that is indicative of shared antigen recognition. 
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Analysis revealed that both lung-resident Tconvs and Tregs from LucOS tumor-bearing mice were 
more diverse than matched populations from AdCre tumor-bearing or naïve mice (Figure 3.1C), 
consistent with increased immune infiltration. Furthermore, the Tconv response in LucOS tumor-
bearing mice was significantly more diverse than the matched Treg response, and overlap between 
these two repertoires was minimal (average F2 = 0.033 ± 0.007), in line with previous reports 4. 
Notably, despite the overall diversity of the LucOS-infiltrating Treg response, we observed overlap 
in Treg populations between mice (average F2 = 0.066 ± 0.025) and strong convergence (> 10% 
of reads) upon a single TRBV and TRBJ pairing (TRBV20/TRBJ1-2) across mice (Figure 1D). 
This convergence was not observed in the matched Tconv population (Figure 3.2), or in the Treg 
populations of naïve or AdCre tumor-bearing mice, suggesting a unique antigenic basis. 
 
Analysis of this convergent TRBV/TRBJ pairing revealed that it was largely comprised of two 
closely related TCR beta (TRB) chain sequences that were highly conserved across mice. The two 
beta chains share near identical CDR3β sequences (CGARQGANSDYTF and 
CGAREGANSDYTF) and at least one was observed in each LucOS-infiltrating Treg population 
(Figure 3.3A). While these sequences were also observed in the matched Tconv populations, their 
prevalence was diminished by orders of magnitude, suggesting that this Treg population is not 
derived from Tconvs (i.e. induced Tregs). Neither sequence was observed in the lung-resident Treg 
or Tconv populations of the n = 3 naïve or n = 2 AdCre tumor-bearing populations submitted for 
beta-chain sequencing. Single-cell sequencing further revealed that these T cells share highly 
similar TCR alpha (TRA) chains that utilize closely related V regions TRAV 4D-3 or 4N-3, and 
share common CDR3α motifs (Figure 3.3B). These T cells therefore represent a highly conserved 
‘public’ regulatory T cell response to KP.LucOS lung adenocarcinomas, and are likely to have a 
common origin and antigenic basis 18. 
 
To investigate this origin and antigenic basis, we analyzed previously published bulk RNA-seq 
datasets of Tregs from the lungs, tumor-draining lymph nodes (TDLN), and spleen of late-stage 
LucOS tumor-bearing mice 16. We observed substantially increased prevalence of the conserved 
TRB sequences in the lung-infiltrating populations, relative to the TDLN or spleen (Figure 3.3C), 
supporting a lung-specific antigenic basis, as opposed to a systemic response to inflammation. 
Furthermore, these conserved sequences were found more frequency in previously described 16 
tissue-resident CD103 single-positive (SP), and tissue-resident effector CD103 KLRG1 double-
positive (DP), Treg subpopulations within the lung (Figure 3.3D), further supporting lung-specific 
function. In addition, analysis of Treg and Tconv RNA-seq datasets collected at multiple time 
points during LucOS tumor progression revealed that this Treg population expands as early as 5 
weeks post tumor-initiation and appears to peak in prevalence around week 8 before collapsing in 
late-stage tumors (Figure 3.3E), matching the dynamics of the anti-tumor immune response, which 
peaks between weeks 4-8 12. Importantly, these sequences were only observed in Tconv samples 
at 12 weeks post tumor initiation, following the peak immune response, further supporting a 
Tconv-independent origin for this conserved Treg response.  
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Figure 3.3. Highly conserved public regulatory T cells arise specifically in lungs during peak immune 
response. A) Prevalence of two highly related public regulatory T cell beta chains, and combined 
prevalence, as a fraction of all TRB-associated reads in pooled TCR beta-chain amplicon sequencing from 
tumor-infiltrating Treg and Tconv populations in late-stage LucOS tumor-bearing mice. B) Paired-chain 
TCR sequences identified from single cell RNA-seq of lung- or tumor-draining lymph node (TDLN)-resident 
CD4+ Tregs from KP.LucOS tumor-bearing mice. C) Combined prevalence of the conserved TRB chains, 
as a fraction of all TCR-associated reads in RNA-seq of pooled Tregs from the lung, TDLN, or spleen of 
late-state LucOS tumor-bearing mice. Asterisk denotes statistical significance from two-sided paired t test 
at p < 0.05. D) Combined prevalence of the conserved TRB chains, as a fraction of all TCR-associated 
reads in RNA-seq of CD103- KLRG1- (DN), CD103+ KLRG1- (SP), or CD103+ KLRG1+ (DP) Treg 
subpopulations from late-stage LucOS tumor-bearing mice. E) Combined prevalence of the conserved TRB 
and paired TRA sequences in RNA-seq, as a fraction of all TCR associated reads, of pooled lung-resident 
Treg or Tconv cells from various time points in LucOS or AdCre tumor development. E) Combined 
prevalence of conserved TRB chains, as a fraction of all TRB-associated reads from three subpopulations 
of lung-resident Tregs isolated 5d post Influenza A virus (IAV) challenge. 
 
Lastly, these conserved TRB sequences were present at low levels in 1/4 naïve and 2/4 late-stage 
AdCre tumor-bearing mice from this dataset in lung-resident Treg populations. This finding 
suggests that these public Tregs may be present as low frequencies in lung-resident Treg 
populations (possibly explaining their absence in beta chain sequencing datasets), but may 
preferentially expand in response to conditions unique to LucOS lung adenocarcinomas. These 
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unique conditions may be the expression of foreign antigens encoded by the LucOS tumors, or 
conditions secondary to the vigorous anti-tumor immune response. In support of the latter origin, 
we observe these same conserved TRB sequences in an independent RNA-seq dataset 19 of lung-
resident Tregs collected 5 days post-infection with Influenza A virus at the onset of the anti-viral 
immune response (Figure 3.3F). Within this dataset, these sequences were observed preferentially 
in an IL-10 single-positive Treg subpopulation that was differentiated by TCR-dependent IL-10 
secretion and a tissue-resident effector phenotype.  
 
Together, these data suggest that this conserved public Tregs population are derived from a lung-
resident population that expand to suppress lung-specific inflammation secondary to the vigorous 
immune response directed against KP.LucOS lung adenocarcinomas. However, we sought to 
understand the antigenic basis of their localization and expansion to better understand their origin 
and function within the tumor microenvironment. 
 
3.4.2 Attempts to define antigenic basis of conserved public regulatory T cell response in vitro 
 
To discover antigens for these TCRs, we turned to yeast-displayed pMHC libraries, which we have 
previously used to discover bona fide stimulatory antigens for class II MHC-restricted murine 
CD4+ T cells 20. To this end, we created a single-chain yeast-displayed pMHC platform design of 
I-Ab (H2-Ab), the sole class II molecule expressed in C57BL/6 mice. Analogous to the previously 
described murine class II molecule I-Ek 20, this design expresses a peptide, the β1 and α1 domains 
of I-Ab (which encode the MHC peptide-binding groove), and a FLAG epitope tag, connected by 
flexible Gly-Ser linkers, as an N-terminal fusion to Aga2, facilitating surface display through its 
linkage to the yeast-surface protein Aga1 (Figure 3.4A). To validate the expression and fold of this 
construct, we expressed a p1Y variant of the 3K peptide and stained with fluorescently-labeled 
tetramers of B3K506 TCR, which is known to bind I-Ab/3K 21. The p1Y variant of 3K was used 
to improve predicted peptide binding without alteration of TCR recognition.  
 
As is typical of this system, this original construct did not display binding to its cognate TCR (data 
not shown). Therefore, to rescue the fold and function of this construct, we subjected its MHC-
encoding domains to error-prone PCR to construct a yeast-displayed library of 108 unique I-Ab/3K 
variants (Figure 3.4A). This library was then subjected to sequential rounds of affinity-based 
selection B3K506-coated magnetic beads to enrich a population of constructs with gain-of-
function mutations. Single-cell analysis of this enriched population yielded a tetramer-positive 
clone with 3 alpha chain mutations, α63D, α67A, α75I (Figure 3.4B). However, α63 and α67 lie 
within the peptide-binding groove of I-Ab, and are therefore undesirable for faithful reproduction 
of its native peptide-binding preferences. These mutations were therefore reverted to wild-type 
and the α75I mutation was combined with two frequently observed beta chain mutations, β28F 
and β31, which reduce the hydrophobicity in a previously solvent-inaccessible region of the native 
MHC. Although this construct failed to display tetramer binding, further mutation of three 
additional small hydrophobic residues within this region rescued tetramer binding (Figure 3.4B). 
This final construct design also bound strongly to another known I-Ab/3K-restricted TCR, YAe62 
22 (Figure 3.4C), demonstrating faithful and generalizable reproduction of I-Ab recognition. 
 
This platform was then used to construct a yeast-displayed library of randomized MHC-linked 
peptides to identify antigenic peptides for the conserved Treg TCRs. Using degenerate primers, 
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we constructed a yeast-displayed library of 108 peptide variants linked to I-Ab (Figure 3.5A). This 
library was then subjected to sequential rounds of selection with magnetic beads coated with 
recombinantly expressed CGR7 and CGR8 TCRs, which were reconstructed from single-cell 
sequencing data (Figure 3.5B). However, after three rounds of affinity-based selection we did not 
observe notable enrichment of a TCR-binding yeast population for either TCR, and sequencing of 
selected clones revealed peptides that did not display convergence but displayed signs of non-
specific binding, such as up-facing cysteine and tryptophan residues (Figure 3.5C).  
 

 
Figure 3.4. Design and validation of a yeast-displayed I-Ab peptide-MHC (pMHC) platform. A) Schematics 
of the design of a single-chain yeast-displayed murine I-Ab/3K pMHC construct, and library-based 
identification of MHC mutations facilitating successful expression and fold. B,C) Flow cytometry analysis 
of yeast expressing I-Ab/3K pMHC variant constructs with fluorescently-labeled tetramers of B3K506 (B) 
or YAe62 (C) cognate TCRs and anti-FLAG epitope tag antibody, with associated MHC mutations. 
 
As murine H2-A alleles have previously shown weak peptide binding 23, we attempted to rescue 
binding by increasing the apparent MHC-binding affinity of library encoded peptides or increasing 
the fraction of MHC-binding peptides within the library. First, we engineered a peptide ‘disulfide 
trap’ by modifying peptide position p11 and neighboring MHC position α72 to cysteines (Figure 
3.5C). This technique has previously been used to study low-affinity peptides on other murine 
class II MHC molecules 23 and moderately improved B3K506 tetramer staining of I-Ab/3K 
construct (data not shown). However, yeast-displayed libraries built upon this design again failed 
to show enrichment. In addition, to increase the proportion of library-encoded peptides which bind 
to I-Ab (and therefore increase the likelihood of a TCR-binding peptides), we limited diversity at 
MHC-facing anchor positions (P1, P4, P6, and P9) to preferred residues derived from clustering 
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of eluted ligand mass-spectrometry 24 (Figure 3.5E). However, these this library also failed to 
display enrichment when selected with CGR7 and CGR8 TCRs. 
 

 
Figure 3.5. Investigating the antigenic basis of a conserved Treg response with yeast-displayed peptide-
MHC (pMHC) libraries. A) Schematic of the design and sequential affinity-based selection of a randomized 
yeast-displayed peptide-MHC (pMHC) library with TCR-coated magnetic beads. B) Composition of CGR7/8 
conserved Treg TCRs derived from single-cell sequencing and used for library screening. C) Sequential 
rounds of selection with CGR7 TCR-coated yielded no convergence in the linked peptide among selected 
clones from round 3 of selection. Select peptide positions are labeled. D) Structural representation 
(adapted from PDB ID: 3C5Z) of ‘disulfide-trap’ construct design, showing engineered cysteine linkage 
between peptide position p11 and MHC alpha chain position α72. D) Core 9mer of I-Ab-binding peptides, 
as determined by clustering of mono-allelic eluted ligand mass spectrometry data, with associated library 
design to enforce observed peptide ‘anchor’ positions. 
 
3.4.3 Attempts to define antigenic basis of conserved public regulatory T cell response in vivo 
 
The absence of observed antigen reactivity from our large yeast-displayed libraries suggests the 
possibility that these conserved Treg-derived TCRs may not be restricted to the class II molecule 
I-Ab, or may have very low affinity for their cognate antigen, thereby confounding our affinity-
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based selections. Therefore, to study the reactivity of these TCRs in the context of native and 
complete antigen presentation, we studied the localization and expansion of TCR-transduced 
primary T cells following adoptive transfer. To this end, a mixed CD4+ and CD8+ population of 
primary splenic T cells from wild-type hosts were transduced with retroviruses encoding CGR7 or 
B3K506 TCR. Successfully transduced T cells were sorted through their co-expression of EGFP 
fluorescent protein and adoptively transferred into wild-type or Rag2-/- hosts (which lack B cells 
and T cells), and monitored their organ-specific accumulation after 10 days. Although we observed 
little to no accumulation of the transduced T cells in wild-type hosts, we observed sizeable 
accumulation in each Rag2-/- mouse (Figure 3.6A), likely due to the lack of niche competition from 
other T cells. For each mouse, the transduced T cells displayed greatest accumulation in the spleen, 
but accumulation was indistinguishable between the two TCRs in the spleen, lung, and mediastinal 
and inguinal lymph nodes. This result suggests that the cognate antigen of the conserved Tregs is 
either not expressed or not presented within the lungs under normal healthy conditions.  
 

 
Figure 3.6. Investigating the antigenic basis of a conserved public Treg response in vivo. Organ-specific 
accumulation of GFP+ TCR-transduced primary T cells following adoptive transfer into (A) healthy wild-
type (WT) or Rag2-/- (RAG) mice or (B) healthy or orthotopic ‘KP’ tumor-bearing Rag2-/- mice, as assessed 
by flow cytometry for N = 3 mice per group. 
 
To explore whether this cognate antigen is expressed or presented in the context of KP lung 
adenocarcinomas, we then adoptively transferred TCR-transduced primary T cells into Rag2-/- 
hosts bearing orthotopic KP lung tumors. Unlike their autochthonous variants, transplanted 
orthotopic KP tumors are rapidly established, and are more susceptible to anti-tumor immunity, 
possibly due to increased T cell priming 12, 15. As a positive control for T cell tumor reactivity, 2C 
TCR-transduced T cells – which are specific to the class I MHC-restricted antigen SIY 25 – were 
adoptively transferred into mice bearing established KP.SIY orthotopic lung tumors. Although we 
did not observe accumulation of 2C-transduced T cells in the lungs of these mice, they were present 
in large numbers within the spleen, and the lung tumors were no longer visible at sacrifice (data 
not shown), consistent with rapid tumor rapid rejection. However, neither CGR7 or B3K506 TCR-
transduced T cells displayed comparable accumulation in either the lungs or spleens of mice 
bearing orthotopic KP lung tumors lacking defined antigens, and accumulation was again 
indistinguishable between TCRs (Figure 3.6B). This result suggests that the conserved Treg 
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response is not directed directly against KP lung tumors in the absence of defined antigens, nor 
against a self-antigen that is mis- or over-expressed within the lungs during KP tumor outgrowth. 
However, this result does not rule out direct reactivity to the foreign antigens encoded by LucOS 
tumors or to self-antigens uniquely presented in the highly inflammatory environment created by 
the anti-tumor response against these foreign antigens. Therefore, further experimentation is 
needed to determine the antigenic basis of this highly conserved Treg response. 
 
3.3 Discussion 
 
Specific targeting of tumor-infiltrating Tregs for deletion or modulation is an attractive therapeutic 
modality to alleviate tumor immunosuppression and drive anti-tumor immunity without inducing 
systemic autoimmunity 1. This modality is especially attractive in poorly immunogenic tumors – 
such as those with low burdens of non-synonymous coding mutations 8, 9 – as greater alleviation 
of immunosuppression is required to overcome the barrier for anti-tumor immunity 2. However, 
the identity, origin, and antigenic basis of tumor-infiltrating Treg populations are rarely known 4, 
complicating efforts to specifically target these antigen-specific populations. Here, we investigate 
the composition of tumor-infiltrating Tregs in the KP murine model of Kras-driven NSCLC that 
displays robust immunosuppression and resistance to chemo- and immune-therapeutics 12, 13, 15, 
even when engineered to be highly immunogenic. Within this population, we identify and explore 
the origin and antigen reactivity of a prevalent and highly conserved public Treg clone that may 
provide a defined model system for Treg-mediated tumor immunosuppression. 
 
Through population-level TCR beta chain sequencing, we found that the Treg response to the 
highly immunogenic yet immunosuppressed KP.LucOS lung adenocarcinoma model is both 
highly diverse and distinct from matched Tconv populations. Although peripherally induced Treg 
(iTreg) populations have been shown to form from Tconv populations in immunosuppressive 
environments 26, Treg and Tconv TCR repertoires are largely distinct 27, 28, and previous studies 
have failed to observe Treg induction in a tumor context 29, 30, suggesting thymically-derived Tregs 
(tTregs) dominate the tumor-infiltrating Treg response. Importantly, the TCR repertoire of these 
tTregs reportedly skews towards self-reactivity 1, 4 and previous studies have identified self-
reactivity in tumor-infiltrating Tregs 30, 31. 
 
Although the Treg response to KP.LucOS lung adenocarcinomas was highly diverse, there was a 
convergence on two nearly-identical TCRβ chains, and T cells bearing these beta chains share 
highly similar paired TCRα chains, suggesting shared antigen recognition. Similar ‘public’ T cell 
responses have been noted previously in many human and murine studies 18, and Treg responses 
to murine tumors have been previously reported to skew towards public responses in a tumor- and 
antigen-specific manner 32. Consistent with this notion, these conserved Tregs were observed 
almost exclusively within the lungs, and were preferentially found in tissue-resident effector 
populations, both within this model and in the Treg response to Influenza A virus infection. In 
addition, this conserved Treg population appears to expand and contract with the anti-tumor 
immune response, and was largely restricted to Treg populations, suggesting a thymic origin for 
this population. These observations and the purported self-reactivity of tumor-infiltrating Tregs 
lead us to postulate that these Tregs are reactive to a lung-specific self-antigen and their expansion 
is driven by the highly inflammatory immune response to the defined antigens in LucOS tumors. 
However, we were unable to identify antigen reactivity in the context of large yeast-displayed class 
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II peptide-MHC libraries, or in the lungs of healthy mice or mice bearing KP tumors without 
defined antigens using adoptive transfer of TCR-transduced T cells.  
 
These results suggest either a weak affinity for their cognate antigen or an unconventional mode 
of antigen recognition, and further suggest that this antigen is not presented during healthy lung 
function or during outgrowth of KP tumors without defined antigens. However, as KP tumors 
without defined antigens are poorly immunogenic 12, 15, these findings do not rule out self-
reactivity during acute lung inflammation. Therefore, these results must be supplemented with 
adoptive transfer in a model of lung inflammation in the absence of tumor, such as Influenza A 
virus challenge 19, to confirm this hypothesis. In the absence of reactivity in this model, adoptive 
transfer into mice bearing orthotopic or autochthonous KP.LucOS tumors is warranted, as these 
Tregs could be cross reactive to the foreign antigens encoded within the LucOS fusion protein. 
Although we were unable to define the antigen reactivity of this conserved Treg response, our 
findings provide insight into the identity and origin of tumor-infiltrating Tregs in a highly 
immunosuppressive and treatment-resistant model of Kras-driven NSCLC, and may provide a 
model system for future modalities to specific targeting or modulation of tumor-infiltrating Tregs.  
 
3.4 Methods 
 
3.4.1 Animal studies 
 
C57BL/6 mice were used for all experiments. KrasLSL-G12D/+ Trp53fl/fl (KP) FoxP3GFP C57BL/6 
mice have previously been described 13, and were used for sorting and sequencing of T cells. Wild-
type C57BL/6 mice were used for isolation of primary T cells for peptide restimulation and 
adoptive transfer experiments. C57BL/6 wild-type or Rag2-/- mice were used as hosts for adoptive 
transfer. Experimental and control mice were co-housed whenever appropriate. All studies were 
performed under an animal protocol approved by the Massachusetts Institute of Technology (MIT) 
Committee on Animal Care. Mice were assessed for morbidity according to MIT Division of 
Comparative Medicine guidelines and humanely sacrificed prior to natural expiration. 
 
For in vivo labelling of circulating immune cells, anti-CD4-PE (1:400, eBioscience) and anti-
CD8β-PE (1:400, eBioscience), or anti-CD45-PE-CF594 (1:200, BD Biosciences) antibodies were 
diluted in PBS and administered by intravenous injection 5 minutes before harvest 33. Labeled cells 
constitute the IV+ population in flow cytometry experiments. 
 
3.4.2 Tumor induction 
 
Lentiviral Lenti-LucOS and adenoviral AdCre vectors have been described previously 12, 17. 
Lentiviral plasmids and packaging vectors were prepared using endo-free maxiprep kits (Qiagen). 
Lentiviruses were produced by co-transfection of 293FS* cells with Lenti-LucOS, psPAX2 
(gag/pol), and VSV-G vectors at a 4:2:1 ratio with Mirus TransIT LT1 (Mirus Bio, LLC). 
Supernatant was collected 48 and 72h after transfection and filtered through 0.45mm filters before 
concentration by ultracentrifugation (25,000 RPM for 2 hours with low decel). Virus was then 
resuspended in 1:1 Opti-MEM (Gibco) - HBSS. Aliquots of virus were stored at -80°C and titered 
using the GreenGo 3TZ cell line. AdCre virus was provided by the University of Iowa Viral Vector 
core at a titer of 1x1012 particles/mL (1 x 1010 PFU/mL). For tumor induction, mice between 8-15 
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weeks of age received 2.5 × 104 PFU of Lenti-LucOS or 2.5 x 107 PFU of AdCre intratracheally 
as described previously 17. 
 
For orthotopic KP tumor challenges, tumor lines were previously generated 12 and propagated in 
DMEM supplemented with 10% FBS, 1% penicillin-streptomycin, 1% non-essential amino acids, 
and 25 mM HEPES. Cells were trypsinized, washed, counted, and 250,000 were injected 
intravenously via the tail vein into WT or Rag2-/- female mice. 
 
3.4.3 Tissue isolation and preparation of single cell suspensions 
 
After sacrifice, lungs were placed in 2.5mL collagenase/DNAse buffer in gentleMACS C tubes 
(Miltenyi) and processed using program m_impTumor_01.01. Lungs were then incubated at 37°C 
for 30 minutes with gentle agitation. The tissue suspension was filtered through a 100 μm cell 
strainer and centrifuged at 1700 RPM for 10 minutes. Red blood cell lysis was performed by 
incubation with ACK Lysis Buffer (Life Technologies) for 3 minutes. Samples were filtered and 
centrifuged again, followed by resuspension in RPMI 1640 (VWR) supplemented with 1% heat-
inactivated FBS and 1X penicillin-streptomycin (Gibco), and 1X L-glutamine (Gibco).  
 
Bone marrow-derived dendritic cells were collected from the femurs and tibias of mice by 
perfusion with PBS. BMDCs were cultured with GM-CSF (40 ng/ml, Biolegend) for 8 days post-
isolation in RPMI supplemented with 10% heat-inactivated FBS, 1X penicillin-streptomycin, 25 
mM HEPES, and 1% non-essential amino acids (Gibco). Cells were frozen and stored in liquid 
nitrogen until future use.  
 
Spleens were mechanically disrupted in culture dishes in PBS supplemented with 2% FBS. Cells 
were passed through a 70 µm cell strainer (Fisher), centrifuged at 300 x g for 10 minutes and 
resuspended at 1 x 108 cells/mL. Primary T cells were isolated from mixed splenic populations 
using EasySep mouse T cell or CD4 T cell isolation kits (Stem cell technologies), according to the 
manufacturer’s instructions. T cells were expanded in RPMI media supplemented with 10% FBS, 
1X penicillin-streptomycin, 50 µM beta-2-mercaptoethanol, and 100 U/mL recombinant human 
IL-2 (RnD systems) with Dynabeads mouse T cell activator beads (Gibco) at a 1:1 ratio. 
 
3.4.4 Retroviral transduction of T cells and adoptive transfer 
 
Retrovirus MP-71 was used to deliver TCR genes into primary mouse T cells. These plasmids 
were designed essentially as previously described 34, encoding full length TCR alpha and beta 
chains, and the fluorescent protein EGFP, connected by self-cleaving P2A sequences. B3K506 and 
CGR7 TCR constructs were encoded with synthetic gene blocks (Integrated DNA Technologies) 
and OT-II TCR was generated from the murine TCR OTII-2A.pMIG II plasmid (Plasmid #52112, 
AddGene). For each virus, TCR plasmid DNA was combined with pCL-Eco retroviral vector and 
polyethylenimine (PEI) at a 5:3:24 mass ratio, diluted in Opti-MEM, and applied to a confluent 
layer of HEK 293 cells (ATCC) cultured in DMEM supplemented with 10% FBS, 1X penicillin-
streptomycin, and 25 mM HEPES. Media was exchanged after 4 hours and virus-containing 
supernatant was collected at 48-72h, passed through 0.45 µM filters, and stored in aliquots at -
80°C until use.  
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Each virus aliquot was applied to 2 x 106 activated primary murine T cells at 48h post-isolation in 
6 well cell culture plates (Corning). Plates were centrifuged for 90 minutes at 1000 x g (with low 
acceleration and deceleration) to aid transduction. T cells were collected 48-72h post-transduction 
and bulk sorted for EGFP expression on a MA900 Cell Sorter (Sony) and returned to culture for 
expansion. 
 
Following expansion, 1 x 105 TCR transgenic T cells were injected into the tail vein of the mouse 
in 100 µL PBS. Mice were sacrificed for analysis 7-14 days later. Following harvest (below), 
samples were gated on IVneg live (Fixable Live/Dead discriminator, 1:500, eBioscience), CD45+ 
(1:200, Biolegend) singlets, and further gated on TCRβ+ (1:200, Biolegend) GFP+ cells. Cells were 
also analyzed for CD4 (1:200, Biolegend) and CD8 (1:200, Biolegend) expression. Before 
analysis, 5 x 103 count bright beads (Life Tech) were added to the sample for normalization of cell 
counts, and the fraction of beads recovered was assumed to be the fraction of sample analyzed.  
 
3.4.5 T cell sequencing and analysis 
 
For bulk TCR beta chain sequencing, 1,000-10,000 Tconv (IVneg CD4+ GFPneg) or Treg (IVneg 
CD4+ GFP+) cells were sorted directly into 250μl RNAprotect buffer (Qiagen), spun down for 1 
minute at 2000 RPM, and immediately frozen at −80°C. Naïve samples were pooled to reach 
minimum sample size requirements. Samples were sent to iRepertoire (Huntsville, AL) for library 
preparation and sequencing. TCR sequences were analyzed and compared with MiXCR and 
VDJtools software 35, 36.  
 
All analyzed bulk and single-cell RNA-seq datasets have been previously reported 16, 19. TCRs 
were reconstructed and compared from bulk RNA-seq datasets with MiXCR and VDJtools 
software 35, 36 using recommended RNA-seq settings. TCRs were reconstructed from previously 
published single-cell RNA-seq datasets 4 using TraCeR 37, run in short read mode with the 
following settings ‘--inchworm_only=T --trinity_kmer_length=17’.  
 
3.4.6 Soluble protein production 
 
Recombinant soluble TCR for yeast selections were produced in High Five (Hi5) insect cells 
(Thermo Fisher) via a baculovirus expression system, as previously described 20. Briefly, 
ectodomain sequences of each chain followed either an acidic or basic lysine zipper domain and a 
poly-histidine purification site were cloned into pAcGP67a vectors. An AviTag peptide 
(GLNDIFEAQKIEWHE) was expressed between the acidic leucine zipper and poly-histidine site 
for single chain biotinylation. For each construct, 2 µg of plasmid DNA was transfected into SF9 
insect cells with BestBac 2.0 linearized baculovirus DNA (Expression Systems) using Cellfectin 
II reagent (Thermo Fisher). Viruses were propagated to high titer, co-titrated to maximize 
expression and ensure 1:1 heterodimer formation, and co-transduced into Hi5 cells, which were 
then grown at 27°C for 48-72h. Proteins were purified from the pre-conditioned media supernatant 
with Ni-NTA resin and biotinylated overnight through addition of BirA ligase, ATP, and biotin. 
Protein were size purified via size exclusion chromatography using a S200 increase column on an 
AKTAPURE FPLC (GE Healthcare) and stored in 20% glycerol aliquots at -80°C until use. 
 
3.4.7 Yeast-display construct design and validation 
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Yeast-displayed I-Ab was designed and validated for correct fold essentially as previously 
described for I-Ek 20. Briefly, a single construct encoding a peptide, the β1 domain of H2-Ab1, the 
α1 domain of H2-Aa, and a Flag (DYKDDDDK) epitope tag connected by flexible Gly-Ser linkers 
was expressed as an N-terminal fusion to Aga2 in a pYAL vector. All constructs were transformed 
into electrically competent RJY-100 yeast. Yeast were grown to confluence at 30°C in pH 5 
SDCAA yeast media then subcultured into pH 5 SGCAA media at OD600 = 1.0 for 48h induction 
at 20°C. 
 
Proper fold was assessed by expression of p1Y-modifed 3K (FEYQKAKANKAVD) peptide and 
probing with fluorescently-labeled tetramers of known binders B3K506 21 and YAe62 22. 
Following initial absence of tetramer staining, the MHC-encoding domains were mutagenized 
using a GeneMorph II kit (Agilent), according to manufacturer’s instructions, and yeast libraries 
were created via homologous recombination of linearized pYAL vector and mutagenized pMHC 
construct. The MHC mutations Vβ6T, Iβ28F, Rβ31G, Iα9T, Vα11T, and Tα75I, none of which are 
located within the peptide- or TCR-binding interfaces, rescued fold and function, largely through 
breaking hydrophobic patches within previous protein interfaces. 
 
Peptide libraries were created through use of mutagenic primers allowing all 20 amino acids via 
NNK codons. The libraries allowed limited diversity at the known MHC anchor residues to 
maximize the number of correctly folded and displayed pMHC clones in the library. Final libraries 
contained approximately 2 x 108 yeast transformants. Yeast libraries were selected for binding to 
the TCR of interest coupled to streptavidin-coated magnetic beads (Miltenyi) through magnetic-
activated cell sorting. Plasmid DNA was extracted from 5x107 yeast from the final round of 
selection with the Zymoprep Yeast Miniprep Kit (Zymo Research), according to manufacturer’s 
instructions, and transformed into chemically competent DH5α E. coli for single colony selection 
and sanger sequencing.  
 
3.4.8 Statistical analyses 
 
Statistical analyses were performed with paired or unpaired two-sided t tests, or two-sided one-
way ANOVA tests with Tukey’s correction for multiple comparisons, where appropriate. Size of 
test groups and statistical tests used are indicated in figure legends. 
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CHAPTER 4. Design and application of yeast-displayed peptide-MHC libraries for 
cognate antigen discovery 
 
ABSTRACT 
 
T cells achieve specificity in their activation, localization, and function through highly specific 
interactions between their T cell receptor (TCR) and specialized immune MHC proteins, which 
display potential antigenic peptides on their surface for TCR surveillance. When TCRs interact 
with their cognate peptide-MHC (pMHC) proteins, T cell responses are initiated or perpetuated. 
However, due to the complexity of these interactions, the cognate antigens underlying T cell 
responses are rarely known, and efforts to uncover them are time and resource intensive. However, 
recent advances have enabled high-throughput screening and computational prediction of TCR / 
pMHC interactions to facilitate faster and easier cognate antigen determination. One such advance 
is the use of yeast-displayed pMHC libraries, which express distinctively large (108) collections of 
unique pMHC complexes on the surface of engineered yeast to screen for TCR recognition. 
However, likely due to their large size, these libraries are prone to discovering so-called 
‘mimotopes’, peptides that mimic the function of – but bear little-to-no sequence or structural 
homology with – the true cognate antigen. Therefore, improvements to this technology are needed 
to facilitate rapid and unambiguous cognate antigen discovery 
 
In this chapter, we present two case studies of the design and application of yeast-display pMHC 
libraries for cognate antigen discovery for clinically relevant T cell populations. While successful, 
these case studies highlight shortcomings in previously established methods, and demonstrate how 
deeper understanding of the underlying system can be utilized during the design and analysis of 
library selections to overcome these shortcomings. However, as these improvements rely on an in-
depth understanding of the system, broad application of these methods still remains infeasible. 
Therefore, the methods described herein should serve as a template for future cognate antigen 
discovery efforts, but must be supplemented by further improvements in library design to facilitate 
broad and rapid application of this powerful technology. 
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4.1 Introduction 
 
T cells achieve specificity in both their activation and function through interactions between their 
T cell receptor (TCR) and short, linear peptides displayed on the surface of Major 
Histocompatibility Complexes (MHCs). These peptide-MHC (pMHC)-TCR interactions are 
highly specific and can initiate a robust T cell response with as little as a single short-lived 
interaction 1. However, the specific cognate pMHC which initiates the activation of a given T cell 
is rarely known due to the complexity of the system, which arises from the diversity of both the 
pMHC and TCR repertoires. In particular, the MHC locus encodes multiple MHC genes, each of 
which are highly polymorphic, yielding expression of many distinct MHC proteins with divergent 
repertoires of presentable peptides (see Chapter 2). In humans, this results in the expression of up 
to 12 unique MHC proteins (known as HLA proteins in humans) presenting unique peptide 
repertoires, convoluting even the MHC-restriction of a given TCR. In addition, TCRs are 
inherently cross-reactive, and can recognize peptides with little sequence or structural homology 
2-4. While this increases the probability of identifying a peptide agonist for a T cell of interest, it 
complicates identification of the original peptide agonist of T cell responses as the mimetic 
epitopes, or mimotopes, can bear little-to-no resemblance to the original agonist 5.  
 
Early methods to identify the cognate antigen of a T cell response relied upon labor intensive 
techniques to identify the MHC restriction and source protein reactivity of the T cell response 6. 
This process culminates in assays with pools of overlapping peptides to identify the agonist 
peptide, a process known as epitope mapping 6. While advances in the field have enabled high-
throughput screening and computational prediction of pMHC-TCR interactions (recently reviewed 
extensively 7), researchers still utilize early methods when to determine the original peptide agonist 
of a T cell response 8. This is due to limitations inherent to these computational and high-
throughput screening techniques, which can require extensive a priori knowledge of the system, 
specialized techniques, reagents, and equipment, and can fail to identify candidate antigens or 
identify only peptide mimotopes. Therefore, improvement of these techniques can greatly simplify 
and hasten the determination of the antigenic bases of T cell responses. 
 
One such method to identify T cell epitopes is the use of yeast-displayed pMHC libraries. 
Compared to other techniques, yeast-displayed pMHC libraries, which encode up to 108 unique 
peptide variants 2, allow high-throughput screening for peptides that facilitate TCR-binding yet 
retain linkage to their parent MHC 7. However, their engineered nature can fail to fully recapitulate 
the biology of the native system, resulting in the identification of peptides that bind but fail to 
stimulate the TCR 9. Additionally, the randomized nature of their encoded peptides often leads to 
the identification of peptides that strongly bind and activate T cells – sometimes stronger than the 
native antigen – but do not map to any known proteome 2. Although this method has been used to 
identify natively expressed agonist peptides using computational extrapolation of the TCR 
recognition motif and proteomic database searches 2, 3, this method can overlook subdominant 
recognition motifs or fail to identify natively expressed antigens 10.   
 
In this chapter, we describe two case studies for the identification of the natively expressed cognate 
antigens underlying T cell responses using yeast-displayed pMHC libraries. While these studies 
were primarily motivated by a desire to elucidate the underlying biology of these T cell responses, 
they also highlight shortcomings in previously established methods and demonstrate novel 
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methods to improve the identification of bona fide cognate antigens. Therefore, the methods 
highlighted in this chapter may greatly improve our ability to rapidly and unambiguously 
determine the antigenic bases of T cell responses using yeast-displayed pMHC libraries. 
 
4.2 Results  
 
4.2.1 Antigen discovery for an allo-HLA reactive virus-specific TCR 
 
The first case study is of the LDC12 TCR, also known as clone 12 TCR 11. This TCR was first 
isolated from a CD8+ T cell reactive to the IPSINVHHY (IPS) peptide from human 
cytomegalovirus (CMV) protein pp65 presented by HLA-B*35:01 12. This TCR is a δ/αβ TCR, a 
rare class of T cells formed by VDJ rearrangement of a TCR-δ variable gene (Vδ1) with α joining 
(Jα) and constant (Cα) domains, paired with a TCR-β chain, but displays a typical αβ TCR class I 
pMHC binding mode 11. Notably, this TCR was derived from a healthy donor but displays 
reactivity to antigen-presenting Epstein Barr virus (EBV)-immortalized lymphoblastiod cell lines 
(LCLs) in the absence of exogenous antigen 12. This allo-HLA reactivity was restricted to LCLs 
expressing HLA-DRB1*04:01 (HLA-DR401) or HLA-DRB1*14:01, but not observed in antigen 
presentation-deficient T2 cells engineered to express HLA-DR401 (personal correspondence, 
M.H.M. Heemskerk). These finding suggests that this allo-HLA reactivity is peptide dependent in 
the context of HLA-DR401 presentation, and that this antigen is endogenously expressed, in line 
with previous reports 13.  
 
Despite a known HLA restriction and a candidate protein pool from endogenously expressed 
genes, the fine peptide specificity of this TCR in the context of HLA-DR401 presentation has not 
been determined. However, a using a cDNA library, the HLA-DR401-restricted mimetic antigen 
‘GSEFVSALVRPAASGPQ’ (GSE) peptide was discovered to activate LDC12 TCR (personal 
correspondence, M.H.M. Heemskerk). Yet, as this peptide does not map to any known human 
protein, the endogenous antigen driving this TCRs reactivity remains unknown.  
 
In order to elucidate this endogenous antigen, we designed a yeast-displayed HLA-DR401 peptide 
library for selection with recombinant LDC12 TCR. This library was based on the previously 
described (see Chapter 2) construct of full-length yeast-displayed HLA-DR401 (Figure 4.1A). In 
contrast to previously described HLA-DR401 libraries, this library was designed to encode 
peptides that favor MHC binding in a set register but retain diversity at canonical TCR contact 
positions. In particular, the amino acid composition of MHC anchor residues P1, P4, P6, and P9 
was designed to recapitulate the enriched motif for HLA-DR401 binders derived from selection 
on the basis of peptide retention (Figure 4.1B), and canonical class II pMHC TCR contact positions 
P-1, P2, P3, P5, and P8, as well as auxiliary MHC anchor positions P7 and P10, were encoded 
with degenerate ‘NNK’ primers (Figure 4.1A). This design is an extension of previously described 
yeast-displayed class II pMHC libraries 2, and deep sequencing of the resulting pre-selection 
library reveals successful execution of this design (Figure 4.1C). 
 
This library was then subjected to sequential rounds of affinity-based selections with magnetic 
beads coated with recombinant LDC12 TCR (Figure 4.1D), resulting in a population of yeast 
enriched for strong expression of linked FLAG epitope tag following round 3 of selection (Figure 
4.2A), demonstrating enrichment of yeast with successful construct expression. Deep sequencing 
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of this TCR-enriched yeast population revealed strong convergence on a small set of peptides by 
round 3 of selection (Figure 4.2B) that were highly related (Figure 4.2C). Importantly, the most 
enriched peptide ‘ATYYPEWNRLGPAAG’ (ATY) displays comparable stimulatory activity to 
the GSE mimotope in LDC12-expressing T cells (Figure 4.2D), demonstrating enrichment of a 
functionally relevant motif. 
 

 
Figure 4.1. Design and selection of randomized peptide yeast-displayed pMHC library to identify LDC12 
TCR binders. A) Schematic of yeast-displayed HLA-DR401 pMHC construct and design of partially 
randomized peptide library that favors MHC binding but retains diversity at TCR contact positions. B) 
Kullback-Leibler relative entropy motif of the core 9mer of HLA-DR401 binders, derived empirically from 
a yeast-displayed HLA-DR401-linked peptide library selected for peptide retention. C) Weighted heat map 
of positional percent frequency of each amino acid found in peptides from the pre-selection library. D) 
Schematic of library selection to enrich LDC12 TCR peptide-MHCs through sequential rounds of affinity-
based selections with LDC12 coated magnetic beads 
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Figure 4.2. Library selection with LDC12 TCR enriches yeast population with a dominant and stimulatory 
peptide motif. A) FLAG epitope tag staining prior to each round of selection shows enrichment of yeast 
expressing well-expressed pMHC protein. B) Multivariate plot of the number of unique peptides observed, 
and proportion of peptide reads assigned to the 10 most frequent peptides, in each round of yeast library 
selection. C) Table of the 10 most frequently observed peptides in round 3 of library selection. D) Activation 
of LDC12 TCR-expressing T cell line following stimulation with various concentrations of the most 
frequently observed peptide (ATY) and a previously discovered LDC12 agonist (GSE), as assessed by flow 
cytometry. E) Weighted positional percent frequency of each amino acid in round 3 of library selection. F) 
Unweighted Shannon entropy sequence logos of all peptides (top) or peptides found within the most 
dominant cluster (bottom) found in round 3 of library selection 
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It has previously been shown in reports of TCR selections of yeast-displayed pMHC libraries that 
peptides in round 3 of selection display TCR specificity, but retain positional diversity that is 
indicative of sub-optimal but tolerated substitutions 2. Consistent with this notion, analysis of the 
read count-weighted positional frequency heat map of each amino acid in peptides found in round 
3 of selection, and analysis of the unweighted Shannon entropy logo of these peptides (Figure 
4.2F), reveals strong but not absolute amino acid preferences at each TCR contact position (Figure 
4.2E). In particular, we observe strong selection for P2 Tyr (87% usage), P3 Pro (88% usage), P5 
Trp (97% usage), and P8 Leu (95% usage), and more tolerant selection at P-1, with Thr and Asn 
most favored (59% and 24% usage, respectively). However, we also observe subdominant amino 
acids at each of these positions, such as P2 Trp (8% usage), P3 Thr (7% usage), P5 Val (2% usage), 
and P8 Gly (3% usage). While these subdominant amino acids could indicate an orthogonal and 
subdominant peptide motif, these preferences are retained in the dominant peptide motif (95% of 
reads) following clustering (Figure 4.2F), indicating that they instead represent tolerated but sub-
optimal TCR contacts. In addition, we observe convergent residue preferences at primary MHC 
anchor positions P4, P6, and P9, as well as auxiliary positions P7 and P10, indicating that amino 
acid usage at these positions may contribute to preferential orientation of TCR contacting residues, 
or may directly contribute to TCR binding. 
 
Combined, these amino acid preferences provide a footprint for LDC12’s peptide recognition in 
the context of HLA-DR401 presentation. However, as expected for the selection of a randomized 
peptide library, none of the most enriched peptides (Figure 4.2C) map to any known protein. 
Therefore, in order to discover endogenously expressed candidate antigens that may underlie the 
allo-HLA reactivity of LDC12, we used the weighted positional frequency heat map to generate a 
substitution matrix to search the human proteome (Figure 4.3A), as previously described 2, 3. 
However, even with a very lenient amino acid positional percent frequency threshold of 0.1%, we 
were unable to find a single candidate antigen in the human proteome (data not shown). This was 
likely due to overly stringent constraints at MHC anchor positions P1, P4, P6, and P9, due to their 
semi-fixed engineered composition. Therefore, we replaced these amino acid positional percent 
frequencies with those generated from round 5 of selection of a randomized 9mer yeast-displayed 
HLA-DR401 pMHC library selected for peptide retention (see Chapter 2). This loose anchor 
design represents an improvement of previously used substitution matrix-based proteome 
searches, as it significantly broadened our search space for candidate antigen discovery. 
 
Accordingly, using this loose anchor motif (Figure 4.3B) we discovered 22 candidate antigens at 
a moderate positional percent frequency threshold of 0.5%. However, possibly due to loosened 
constraints on these anchor positions, none of these candidate antigens were predicted to bind 
HLA-DR401 in the correct register for LDC12 recognition, according to a prediction algorithm 
trained on the randomized 9mer yeast-displayed HLA-DR401 peptide library selection data (see 
Chapter 2). Consistent with these predictions, 5/5 candidate antigens from this list failed to exhibit 
LDC12 reactivity in vitro (data not shown). While loosening the positional percent frequency 
threshold increases the number of candidate antigens, it decreases the likelihood that any given 
antigen will bind HLA-DR401 or the TCR of interest. However, by loosening this threshold 
slightly at primary and auxiliary MHC anchor positions, we discovered the candidate antigen 
‘GVRAVTPLGP’ (GVR), which maps to HLA-DQB1*03 proteins, the beta chain of a subset of 
HLA-DQ alleles (Figure 4.3D). Importantly, as HLA-DQ is co-expressed in all HLA-DR 
expressing cells, this antigen would be consistent with endogenous presentation by HLA-DR401.  
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Figure 4.3. Library-guided search for human-origin antigens uncovers an endogenous candidate antigen 
underlying LDC12 allo-HLA reactivity. A) Schematic of library-guided identification of endogenous TCR-
activating antigens. B) Weighted positional percent frequency of each amino acid in following round 3 of 
selection with LDC12, adjusted for native MHC anchor position frequencies. C) Antigens identified from 
proteome search with 0.5% positional frequency threshold, with associated predictions for HLA-DR401 
binding. D) Minimum core epitope of a known LDC12-activating mimotope (red) and DQB1-associated 
candidate antigen identified from proteome search with loosened search threshold at P7 (black), with 
residues mapped onto weighted positional frequency heat map. E) List of DQB1 alleles which encode the 
candidate antigen. F) Activation of LDC12- or LC13-TCR expressing T cells following co-culture with 
antigen-presenting cell lines, with or without the addition of exogenous peptides. 
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Unlike other candidate antigens, this HLA-DQB1*03-associated antigen is predicted to bind HLA-
DR401 in the correct register for recognition (Figure 4.3D). In addition, this antigen exceeds the 
positional percent frequency threshold at 5/5 primary TCR contact (least dominant contact is P5 
Val with 2% usage), and contains dominant P2 Tyr and P8 Leu residues (Figure 4.3D). In addition, 
this antigen contains favorable residues at each primary MHC anchor position and at the auxiliary 
anchor position P10, yet narrowly evaded our previous search due to P7 Pro, which was only 
observed in 0.45% of reads. Importantly, this peptide is encoded by a polymorphic region of HLA-
DQB1 and therefore only encodes each of these favorable TCR contacts for a subset of HLA-
DQB1*03 alleles (Figure 4.3 D). Therefore, we hypothesized that LDC12 recognizes this antigen 
when presented by HLA-DR401 in cells expressing one of these HLA-DQB1*03 alleles. In 
support of this hypothesis, HLA-DR401+ LCL 9031 antigen-presenting cells stimulate LDC12-
expressing T cells even in the absence of endogenous peptides and express HLA-DQB1*03:02, 
which encodes the candidate antigen. However, further testing of this epitope in antigen-
presentation deficient T2.DR4 cells and investigation of LDC12 allo-HLA reactivity in a diverse 
panel of LCL antigen-presenting cells is still needed to confirm this hypothesis.  
 
In contrast to the DQB1-associated antigen, the minimum stimulatory epitope (data not shown) of 
the GSE peptide, ‘EFVSALVRPAA’ (EFV), has only one TCR contact above 0.5% usage, P5 Leu, 
but does contain the highly favored P7 Arg residue and is predicted to bind HLA-DR401 in this 
register (Figure 4.3D). This suggests that LDC12 TCR may bind EFV peptide in an orthogonal 
mode to the dominant peptide motif found in our library selections. This hypothesis will be 
investigated by producing crystal structures of LDC12 bound to HLA-DR401-EFV, -ATY, or -
GVR complexes, which will provide detailed information on differential TCR binding modes. 
 
4.2.2 Antigen discovery for tumor-infiltrating T cells with defined antigen libraries 
 
The second case study is of antigen discovery for T cells found enriched in tumor-infiltrating 
populations of patients with glioblastomas following treatment with an immunotherapeutic 
regimen 14. These patients received a ‘neoantigen’ vaccine comprised of an immune-activating 
adjuvant and peptides that are predicted to be displayed by the patient’s HLA molecules and 
contain a coding mutation unique to the tumor. These vaccinations have shown promise in other 
cancer types 15, and in treated glioblastoma patients extended survival and increased tumor-
infiltrating T cell activity 14. To understand their clonality and the antigen basis of their localization 
and function, these tumor-infiltrating T cells were isolated from treated patients and single-cell 
sequenced to recover their TCR pairings. By re-expressing these TCRs in T cell lines, it was found 
that many of these expanded T cell clones were specific to the tumor neoantigens or common viral 
peptides. However, after neoantigen and viral reactivity was ruled out, there remained expanded 
T cell clones which had no known antigen. Therefore, to discover their antigen reactivity, we 
expressed these TCR in soluble format and used them to select yeast-displayed pMHC libraries. 
 
Unlike each of the previously described antigen discovery efforts in this thesis, these TCRs were 
derived from CD8+ ‘killer’ T cells, which are canonically restricted to class I pMHCs 16. Although 
relative to CD4+ T cells, CD8+ T cells have divergent roles in the immune response, TCR 
repertoires, and recognize different classes of MHC molecules, they are equally amenable to 
antigen discovery with yeast-displayed pMHC libraries 3, 9, 10. These yeast-displayed pMHC 
constructs are expressed as previously described 3, as a single-chain trimer of peptide, beta-2-
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microglobulin (β2M), and MHC α1-α3 domains that is linked to Aga2 through flexible Gly-Ser 
linkers, with a Myc epitope tag (Figure 4.4A). In addition, each yeast-displayed pMHC construct 
has a Y84A mutation that opens the natively closed class I MHC peptide-binding groove to 
facilitate single-chain expression. Importantly, this mutation does not alter TCR recognition 3. 
 
In further contrast to the previously described antigen discovery efforts, this library was designed 
to encoded a defined pool of peptides expressed on multiple MHC alleles, rather than randomized 
peptides expressed on a single MHC allele. The MHC alleles were selected based on the class I 
HLA type of the patient from which the TCRs were derived, and the peptides were either directly 
observed in eluted ligand mass spectrometry (MS) of pMHC complexes expressed by 
immortalized lines of the patient’s tumor cells, or were predicted to bind the patient’s HLA alleles 
and derived from genes found over-expressed (via RNA-seq) by these immortalized cells. These 
directly observed and predicted tumor-associated antigens (TAA) – as well as predicted neoantigen 
and viral peptides – were synthesized as pooled oligonucleotides and used to generate a peptide 
library for each patient HLA allele (Figure 4.1A). Combined, this defined composition library 
design theoretically allows us to recapitulate the class I pMHC repertoire of the patient’s tumor to 
unambiguously determine the cognate antigen of the patient-derived tumor-infiltrating T cells in 
the absence of mimetopes that may arise from randomly-encoded libraries. However, unlike 
randomized libraries, design of these peptide pools required deep knowledge of the system. 
 
Yeast-displayed constructs of each of the class I MHC molecules that comprised this patient’s 
HLA type, HLA-A*24:02 / 68:01, HLA-B*35:02 / 35:03, and HLA-C*04:01 (for which the patient 
was homozygous) were generated and expressed. Yeast-displayed HLA-B*35:03 was previously 
designed and validated 9 and HLA-B*35:02 was generated with two (D114N, F116Y) mutations 
of this template. HLA-A*24:02 and HLA-A*68:01 were validated by expression of known allele-
restricted HIV antigens and selection with known cognate TCRs S19.2 17 and c23 18, respectively. 
This HLA-A*24:02 construct displayed binding to fluorescently labeled S19.2 TCR tetramer 
(Figure 4.4B) and HLA-A*68:01-expressing yeast were enriched when selected with c23-coated 
magnetic beads, despite the absence of c23 tetramer binding (Figure 4.4C). The remaining allele, 
HLA-C*04:01, could not be validated for fold because there are no previous reports of HLA-
C*04:01-restricted TCRs, but was included in the library as a wild-type construct for 
completeness. These alleles showed successful expression following library generation (Figure 
4.3D) and deep sequencing revealed representation of the majority of candidate antigens for each 
allele in the pre-selection library (range 92-96%, data not shown).  
 
Based on their enrichment in tumor-infiltrating CD8+ T cells, eight TCRs (Figure 4.5A) of 
unknown antigen specificity were selected to screen these libraries. Sequential rounds of affinity-
based selections with TCR-coated magnetic beads (Figure 4.4A) produced an enriched pool of 
TCR-bound yeast for 3/8 TCRs of interest, GBM 04, 34, and 35 (Figure 4.5B). Each of these TCRs 
dominantly enriched a single pMHC construct (Figure 4.5B), in contrast to previously described 
libraries that enrich many related pMHC constructs, but consistent with our expectation for a 
library encoding defined antigen pools. Two of these antigens were TAAs bound to HLA-A*68:01 
and the remaining was a mutant variant of a library-encoded TAA bound to HLA-B*35:02 (Figure 
4.5C). Of note, each of these peptides were predicted to bind their linked MHC by NetMHCPan 
(data not shown), and each construct displayed specific binding to tetramers of their respective 
TCR (Figure 4.5D), confirming their specificity.  
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Figure 4.4. Validation of yeast-displayed pMHC constructs and libraries. A) Schematic of yeast-displayed 
single chain trimer pMHC expressed as an N-terminal fusion to Aga2, with construct and library design, 
and TCR affinity-based selection strategy B,C) Validation of fold for yeast-displayed single-chain trimer 
pMHC constructs for HLA-A*24:02 (B) and HLA-A*6801 (C) alleles, using previously established cognate 
peptide and TCR combinations, with fluorescently labeled tetrameric TCR. In the absence of tetrameric 
TCR binding, fold was validated by enrichment of Myc+ yeast following selection with TCR-coated 
magnetic beads. D) Validation of successful pMHC library generation and induction for each allele studied, 
as assessed by percent Myc+ yeast prior to library selection. 
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Figure 4.5. Defined composition yeast-displayed pMHC libraries discover tumor-associated-antigen 
(TAA)-reactive T cells. A) Table of TCRs found enriched in tumor-infiltrating CD8+ T cells in a 
glioblastoma patient following administration of an immunotherapeutic regime. B) Representative plot of 
unique peptide reads and the percent of reads associated with the most enriched peptide, for each round of 
library selection with TCRs found enriched in tumor-infiltrating CD8+ T cells, for each TCR which enriched 
a population of yeast during selections. C) Table of TCRs which enriched yeast populations, with respective 
library-discovered candidate antigen. D) Scatter plot of fluorescent intensity of fluorescently labeled TCR 
tetramer and anti-Myc antibody, for yeast expressing the candidate antigen (or variants thereof) of selected 
TCRs, as assessed by flow cytometry. 
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In support of their purported cognate antigen reactivity, the two HLA-A*68:01-linked TAAs were 
derived from genes found upregulated in glioblastoma patients, MET and CDK6, that are 
implicated in the pathogenesis or progression of glioblastoma 19, 20. However, while the HLA-
B*35:02-linked mutant antigen was derived from an over-expressed TOP2A gene the V869F 
mutation was not observed within this patient, but was encoded in the pre-selection library due to 
an error during oligonucleotide synthesis. As the wild-type variant of this peptide fails to show 
binding to GBM 34 (Figure 4.5D), this peptide may represent a mimotope for the true antigen. 
Therefore, individual validation of each of these peptides, as well as the wild-type variant of the 
TOP2A V869F antigen, in TCR-transduced primary T cell lines is needed to further confirm each 
these observed antigens. 
 
4.3 Discussion 
 
Due to the complexity of the system, the antigenic basis of most T cell responses is uncertain. 
Although technologies such as yeast-displayed pMHC libraries can elucidate the antigen reactivity 
of T cells, these methods are time and labor intensive, and can fail to uncover viable candidate 
antigens underlying a T cell response. Here, we described two case-studies that demonstrate both 
the successes and pitfalls of the application of yeast-displayed pMHC libraries to this purpose, and 
describe improvements to their design and use.  
 
The first case study for LDC12 shows that while fully randomized peptide MHC libraries can 
discover many peptide antigens that both bind and stimulate a TCR of interest, these antigens often 
fail to map to any known protein. Therefore, methods have been designed to computationally 
search for antigens that match the overall peptide-recognition motif of the TCR of interest 2, 3. 
However, as we have shown, these methods are highly sensitive to arbitrary thresholds that hold 
no physiologic relevance but attempt to balance antigen discovery with the likelihood of 
recognition. Comparable to another recent study 10, our original attempt at antigen discovery failed 
to produce a viable candidate antigen. However, by incorporating information on MHC-binding 
preferences at peptide anchor positions derived from a previous study (see Chapter 2) and setting 
lower thresholds at non-TCR contact positions, we were able to identify a candidate antigen that 
is endogenously expressed by the target cell line of interest.  
 
While this modification represents an improvement to yeast-displayed pMHC library-guided 
candidate antigen discovery, it was accomplished through detailed information about the peptide 
repertoire of the MHC allele that is often not available. Beyond this limitation, this case study 
highlights other pitfalls in this method. In particular, the large divergence between our observed 
motif and a known LDC12 stimulatory peptide suggests that our method is only able to identify 
antigens that match one of potentially many orthogonal TCR recognition modes. These orthogonal 
recognition modes may rely on TCR contacts not covered in our library (outside of P-1 to P10), or 
may rely on non-conventional MHC contact residues not encoded in our semi-fixed design, yet 
could encompass the true antigenic peptide underlying the allo-HLA reactivity of LDC12 TCR. In 
addition, as seen in a previous application 2, this candidate antigen search may have yielded many 
plausible antigens for which further validation and testing would be required. Therefore, while this 
case-study displays an improvement in the design and application of yeast-displayed pMHC 
libraries for the discovery of antigens underlying T cell responses, it shows that this improved 
method is still not yet broadly applicable. 
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The second case study of antigen discovery for glioblastoma tumor-infiltrating T cells represents 
the first description and application of a defined antigen yeast-displayed pMHC library. As 
demonstrated by the TCR-mediated enrichment of two candidate antigens that map to genes over-
expressed in the patient tumor from which these TCRs were derived, this library design has a clear 
advantage for directly enriching antigens of interest. However, as demonstrated by the enrichment 
of a peptide containing a mutation not found in this patient’s tumor, this method may still be 
susceptible to discovering mimotopes that are irrelevant to the underlying immune response. 
Furthermore, this design was highly dependent on a detailed understanding of the pMHC repertoire 
of this particular tumor, relying on patient and tumor-specific information such as HLA type, gene 
expression, and gene mutations. This information then required individual validation of each MHC 
allele for yeast display, which was not uniformly possible, as well as antigen prediction, which is 
subject to its own pitfalls (see Chapter 2). The potential impact of these limitations may be best 
demonstrated by the absence of antigen reactivity for 5/8 TCRs found enriched in this tumor, as 
their cognate antigens may not have been included in our defined antigen pool or could have failed 
to be presented properly by our yeast-displayed libraries. Therefore, while defined antigen library 
approaches for antigen discovery, such as described here and in the recently described method T-
Scan 21, have clear advantages for limiting the confounding effects of mimotopes, they require 
both detailed patient- and tissue-specific information, as well as extensive validation, in order to 
function properly, limiting their broad and rapid application. 
 
Combined, these case studies show the unique advantages and pitfalls of using yeast-displayed 
pMHC libraries to guide TCR antigen discovery, and in particular, the discovery of bona fide 
cognate antigens that underlie T cell responses. Although the distinctly large size of these libraries 
enables broad searches of peptide space, discovered antigens can be physiologically irrelevant. 
Furthermore, attempts to limit false positive results can blind us to potential antigens. Therefore, 
while yeast-displayed pMHCs libraries were successfully applied in these case studies, further 
advances are needed to guide broad but relevant antigen searches and improve the applicability of 
this powerful method. 
 
4.4 Methods 
 
4.4.1 Yeast-displayed pMHC designs 
 
Full-length yeast-displayed HLA-DR401 (HLA-DRA1*01:01, HLA-DRB1*04:01) with a 
cleavable peptide linker was based upon a previously described HLA-DR401 construct optimized 
for yeast display with the mutations Mα36L, Vα132M, Hβ62N, and Dβ72E to enable proper 
folding without perturbing either TCR- or peptide-contacting residues 22. The alpha and beta chain 
ectodomains are expressed as a single transcript connected by a self-cleaving P2A sequence. The 
peptide is joined through a flexible linker to N-terminus of MHC β1 domain. This construct was 
further modified to express a 3C protease site (LEVLFQ/GP) and MYC epitope tag 
(EQKLISEEDL) within the flexible linker, for a total of 32 amino acids between the peptide and 
β1 domain 
 
Full length yeast-displayed HLA-A*68:01, -A*24:02, -B*35:02, -B*35:03, and -C*04:01 were 
designed as previously described 3, 9 as a single-chain trimer of peptide, β2M, and the MHC 
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ectodomains α1-α3 (containing the modification Y84A), connected by flexible Gly-Ser linkers. 
The HLA-B*35:03 construct was previously generated and optimized for yeast display with the 
MHC mutation T71I to enable proper folding without perturbing either TCR- or peptide contacting 
residues 9. This construct was modified with HLA-B*35:02 polymorphisms D114N and F116Y to 
generate the HLA-B*35:02 construct. Yeast-displayed HLA-A*24:02 and HLA-A*68:01 
constructs were validated without mutations through the previously described interactions of HLA-
A*24:02 expressing RYPLTFGWCF peptide with recombinant S19.2 TCR 17, and HLA-A*68:01 
expressing ITKGLGISYGR peptide with recombinant c23 TCR 18. HLA-C*04:01 was generated 
without mutations but could not be validated for fold due to the absence of previously characterized 
HLA-C*04:01-restricted TCRs.  
 
All yeast-display constructs were produced on the pYAL vector as N-terminal fusions to Aga2. 
All yeast strains were grown to confluence at 30°C in pH 5 SDCAA yeast media then sub-cultured 
into pH 5 SGCAA media at OD600 = 1.0 for 48h induction at 20°C 23. 
 
4.4.2 Library design and selection 
 
The randomized HLA-DR401-linked peptide library was generated by polymerase chain reaction 
(PCR) of the pMHC construct with mutagenic primers allowing all 20 amino acids via NNK 
codons, as previously described 2. The libraries allowed limited diversity at the known MHC 
anchor residues P1, P4, P6, and P9 to maximize the number of correctly folded and displayed 
pMHC clones in the library. To ensure only randomized peptides expressed within the library, the 
template peptide-encoding region encodes multiple stop codons. Randomized pMHC PCR product 
and linearized pYAL vector backbone were mixed at a 5:1 mass ratio and electroporated into 
electrically competent RJY100 yeast 24 to generate a library of at least 1 x 108 transformants. 
 
Defined antigen class I pMHC libraries were generated by PCR of synthesized pooled 
oligonucleotides encoding the defined antigens (Twist Biosciences) with DNA encoding constant 
regions of the yeast-displayed construct. Defined antigens were selected based upon their presence 
in eluted ligand mass spectrometry (MS) datasets from immortalized lines of patient tumor cells 
with or without addition of recombinant IFN-γ, or upon predicted binding to one or more patient-
derived MHC alleles using a previously described antigen prediction algorithm 25, for genes found 
over-expressed in patient tumor cells or expressed by common human viruses. Defined antigens 
were individually designed with codons randomly chosen at frequencies that mimic their native 
usage in yeast to ensure expression and to add nucleotide diversity to highly similar peptides. PCR 
product and linearized DNA containing MHC allele-encoding regions and pYAL vector backbone 
were mixed at a 5:1 mass ratio electroporated into electrically competent RJY100 yeast to generate 
libraries of at least 1x107 transformants. Libraries were generated separately for each MHC allele 
to prevent homologous recombination between alleles, and were pooled prior to selection. 
 
Yeast libraries were selected for binding to the TCR of interest coupled to streptavidin-coated 
magnetic beads (Miltenyi) through magnetic-activated cell sorting, as previously described 2. 
Selected yeast were washed into SDCAA media for regrowth and sequential rounds of selection.  
 
4.4.3 Library deep sequencing and analysis 
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Libraries were deep sequenced to determine the peptide repertoire at each round of selection. 
Plasmid DNA was extracted from 5x107 yeast from each round of selection with the Zymoprep 
Yeast Miniprep Kit (Zymo Research), according to manufacturer’s instructions. Amplicons were 
generated by PCR with primers designed to capture the peptide encoding region through regions 
that differentiate alleles. An additional PCR round was then performed to add P5 and P7 paired-
end handles with inline sequencing barcodes unique to each library and round of selection. 
Amplicons were sequenced on an Illumina MiSeq (Illumina Incorporated) at the MIT 
BioMicroCenter. 
 
For the randomized HLA-DR401 linked peptide library, paired-end reads from were assembled 
via FLASH 26 and processed with an in-house pipeline which filters for assembled reads with exact 
matches for the expected length then sorts each read based on its inline barcode and extracts the 
peptide-encoding region. To ensure only high-quality peptides were analyzed, reads were 
discarded if any peptide-encoding base pair was assigned a Phred33 score less than 20, or did not 
match the expected codon pattern at NNK (N = any nucleotide, K = G or T) or semi-fixed sites. 
To account for PCR and read errors of high-prevalence peptides, reads were discarded if their 
peptide-encoding regions were Hamming distance 1 from any more prevalent sequence, Hamming 
distance 2 from a sequence 100 times more prevalent, or Hamming distance 3 from a sequence 
10,000 times more prevalent within the same round, in line with previously published analysis 
methods 27. Unique DNA sequences were translated by Virtual Ribosome 28 and filtered for 
peptides not encoding a stop codon. 
 
For the defined antigen class I pMHC libraries, reads were not assembled due to a designed 
absence of overlap (due to a long amplicon). Forward reads were filtered for sequences with exact 
matches for defined flanking regions and the peptide-encoding region was extracted. Reads that 
did not encode a peptide (original template sequences) were removed from analysis. Reverse reads 
were filtered for sequences with exact matches to encoded alleles. Extracted peptide sequences 
were compared with designed DNA sequences and sequences observed from sequencing of pooled 
oligonucleotide library. Sequences not designed or observed in the supplied library were removed 
from analysis, as well as sequences that were out of frame or encoded stop codons. 
 
4.4.4 Soluble protein production 
 
Recombinant soluble TCR for yeast selections were produced in High Five (Hi5) insect cells 
(Thermo Fisher) via a baculovirus expression system, as previously described 2. Briefly, 
ectodomain sequences of each chain followed either an acidic or basic lysine zipper domain and a 
poly-histidine purification site were cloned into pAcGP67a vectors. An AviTag peptide 
(GLNDIFEAQKIEWHE) was expressed between the acidic leucine zipper and poly-histidine site 
for single chain biotinylation. For each construct, 2 µg of plasmid DNA was transfected into SF9 
insect cells with BestBac 2.0 linearized baculovirus DNA (Expression Systems) using Cellfectin 
II reagent (Thermo Fisher). Viruses were propagated to high titer, co-titrated to maximize 
expression and ensure 1:1 heterodimer formation, and co-transduced into Hi5 cells, which were 
then grown at 27°C for 48-72h. Proteins were purified from the pre-conditioned media supernatant 
with Ni-NTA resin and biotinylated overnight through addition of BirA ligase, ATP, and biotin. 
Protein were size purified via size exclusion chromatography using a S200 increase column on an 
AKTAPURE FPLC (GE Healthcare) and stored in 20% glycerol aliquots at -80°C until use. 
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4.4.5 Antigen search in human proteome 
 
Human antigen searches were conducted as previously described 2, 3. Briefly, at each peptide 
position, amino acids above a set threshold (for example, 0.5%) were considered viable. Peptides 
were then generated with every combination of viable amino acids. These peptides were then 
searched across the known human proteome (Uniprot UP000005640) for peptides with a 100% 
match. Peptides found within the human proteome were then assigned a score corresponding to 
the sum of its positional amino acid frequencies. 
 
Each peptide was also evaluated using an allele-specific class II MHC prediction model generated 
from yeast-display library data (see Chapter 2) using NN-Align 2.0 28. Briefly, this algorithm was 
generated using up to 80,000 sequenced peptides assigned a target value commensurate with the 
final round of selection in which they were observed between 0 and 1, with increasing target value 
for observation in later rounds. This library data was used for training with default settings for 
‘MHC class II ligands’, excepting expected peptide length set to 9 amino acids and expected PFR 
(peptide flanking residue) length set to 0 amino acids. Peptides were considered a binder if they 
had a predicted value higher than 0.47 (the 90th percentile of scores for 50,000 computationally 
generated peptides) in the correct peptide register. 
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CHAPTER 5 – Perspectives and future directions 
 
5.1 Summary 
 
T cell responses have a critical role in our immune systems’ defense against pathogens and cancer, 
but can also potentiate and exacerbate autoimmune diseases, allergies, and transplant rejection 1-5. 
Importantly, each of these roles is dependent on highly specific interactions between their T cell 
receptor (TCR) and peptide-MHC (pMHC) molecules. Therefore, to gain insight into the role and 
function of T cells across many diseases, and to leverage this insight into new therapeutic 
modalities, it is crucial to understand the TCR / pMHC interactions that drive T cell responses.  
 
However, the simultaneous requirements for specificity and comprehensive epitope recognition 
within this system necessitates immense diversity across both the TCR and pMHC repertoires 6, 
confounding generalized understanding. Furthermore, evolutionary pressure for population-level 
immunity drives immense person-to-person variability in these repertoires 1, contributing 
additional complexity. Therefore, in order to understand the TCR / pMHC interactions that drive 
T cell responses, we must first understand the underlying repertoires of each constituent 
component within this system. To this end, many technologies have been developed to probe the 
composition of TCR repertoires 7, pMHC repertoires 8, and recognition at their intersection 9. 
 
In this thesis, we employ and build upon these technologies to define pMHC repertoires, explore 
the antigenic basis of TCR repertoire convergence in a preclinical tumor model, and explore the 
antigen reactivity of human T cells with clinical relevance. While these results provide detailed 
insights into the specific TCRs and pMHCs studied, they also provide guidance for future avenues 
in the exploration of TCR / pMHC repertoires and their recognition, some of which are discussed 
below. In addition, these studies have revealed critical pitfalls and bottlenecks in current 
technologies that limit their rapid or broad application. These pitfall and bottlenecks, as well as 
potential technologies and innovations that may rectify them, are also discussed. 
 
5.2 Future directions 
 
5.2.1 Broadening current applications 
 
In chapter 2 of this thesis, we presented the development and first application of randomized yeast-
displayed pMHC libraries for defining pMHC repertoires. While this technology was successfully 
implemented for the specific MHC alleles for which it was designed, there remain vast 
opportunities for expanding the breadth and comprehensiveness of its application.  
 
In particular, we developed a randomized yeast-displayed pMHC library to empirically define the 
peptide-MHC repertoire of the human class II HLA alleles, HLA-DR401 and HLA-DR402 (HLA-
DRA1*01 / HLA-DRB1*04:01, HLA-DRA1*01 / HLA-DRB1*04:02, respectively). Most 
notably, we found that while these repertoires mirrored the structure of the MHC groove and well-
curated datasets, they confounded antigen prediction algorithms that attempt to predict class II 
MHC peptide presentation. Furthermore, it was found that training these same algorithms on our 
yeast-displayed library data improved their performance and revealed novel peptide motifs that 
had been overlooked due to systemic amino acid under-representations in their training data. But 
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while this technology improved our understanding of the peptide repertoires of these two HLA-
DR alleles, as well as our ability to predict them, there are over 7000 known human class II alleles 
10. Therefore, for this technology to broadly benefit the field of class II MHC antigen predictions, 
it must be expanded to many more class II MHC alleles.  
 
There are two primary limitations to the broad application of this technology: Allele validation 
and allele-specific reagents. For the original development of this technology, HLA-DR401 was 
chosen both because it is well-characterized and because it was previously developed as a full-
length yeast-displayed class II pMHC construct. A full-length class II MHC was desired to fully 
capture the interaction with the class II MHC peptide-exchange catalyst, HLA-DM, that we 
suspected (and later confirmed) would shape the resulting peptide repertoire. It is uncertain 
whether HLA-DM would exert the same influence on a ‘platform’ yeast-displayed class II MHC 
design, as described in Chapter 3. As HLA-DR401 was previously validated for successful fold 
and replication of native function through the introduction of stabilizing mutations 11, this construct 
was immediately portable to this new application. In addition, HLA-DR402 was designed by minor 
modification of this scaffold, again allowing rapid application. 
 
However, validation of MHC alleles for yeast display is not always straight-forward or simple. As 
described in Chapter 3 for yeast-displayed I-Ab, these constructs can require many modifications 
that require individual validation. Furthermore, we have found that the modifications which enable 
HLA-DR401 and -DR402 yeast display do not stabilize the display of other more distantly-related 
HLA-DR alleles (data not shown), suggesting that broad application of yeast-displayed pMHC 
libraries to defining class II MHC peptide repertoires will require many allele-specific validations. 
In addition, as seen in Chapter 4 for HLA-C*04:01, many alleles do not have previously 
characterized interactions with TCRs – or other proteins – to validate their fold and function. 
 
However, there are a few possible strategies to avoid this bottleneck. One possible route is to 
validate fold and function through peptide retention, as was accomplished with HLA-DR402. 
However, a novel selection strategy to select for successfully folded MHC variants would be 
required, and some MHC alleles have few-to-no known curated or characterized peptide binders 
12. Another potential work-around would be to use recombinant MHC molecules that can be 
expressed in insect cells (see Chapter 2) to select for binding and retention of peptides expressed 
on the yeast surface. However, while this alternative obviates the need for allele-specific 
validation, it may be prone to non-specific peptide binding often observed in phage-displayed 
libraries 13, and highly hydrophobic and cysteine-containing peptides (which were essential to our 
observed peptide-binding motifs) may be prone to aggregation and disulfide-bond formation in the 
absence of a co-expressed MHC protein. 
 
Therefore, innovations in the design or selection of yeast-displayed pMHC libraries are still needed 
to more broadly improve our understanding of class II MHC peptide repertoires and transform the 
field of class II MHC antigen prediction.  
 
5.2.2 Expanding to new applications 
 



93 
 

Beyond their current applications, such as defining class II pMHC repertoires and antigen 
discovery for tumor-infiltrating T cells, the technologies developed in this thesis can be expanded 
to new applications to broaden their benefit.  
 
One such expansion is the application of the cleavable linker peptide exchange platform, 
developed in Chapter 2 for class II MHC proteins, to class I MHC proteins. As for class II MHC 
proteins, this expansion would allow empirical determination of class I MHC peptide repertoires 
and may improve class I MHC antigen predictions. This design would be directly portable to the 
yeast-displayed class I pMHC designs described in Chapter 4 due to their engineered peptide-
binding grooves. In addition, these selections could also be performed in the presence of soluble 
TAPBPR, which has been reported that to act as a class I MHC peptide-exchange catalyst 14, 
similar to HLA-DM in the class II MHC antigen-presentation pathway. 
 
However, class I MHC antigen prediction algorithms already perform substantially better than 
their class II counterparts 15, and this performance has only improved with the advent of eluted 
ligand mono-allelic mass spectrometry (MS) training datasets 16, 17. In addition, as the peptide-
binding groove in yeast-displayed class I pMHCs is engineered to be open at the C-terminal aspect 
of the peptide (as opposed to closed in its’ native form), not all peptide lengths and binding modes 
may be accurately captured by this technology. Yet it is possible that the methods and datasets 
currently used to benchmark the performance of class I MHC antigen prediction algorithm 
underestimate the true false negative rate of these algorithms, due to the systemic under-sampling 
of some residues (such as Cys, Trp, and Met 18), as observed in our class II MHC system. In 
addition, as we and others 19 have observed, algorithms trained on MS-derived data underperform 
yeast-displayed library-derived data in predicting peptide affinities. Therefore, class I MHC 
antigen prediction algorithms may still benefit from our newly described yeast-displayed pMHC 
platform. 
 
Another beneficial expansion would be the application of our defined antigen yeast-displayed 
pMHC libraries to antigen discovery following pathogen infection. While conventional antigen-
discovery techniques are well suited to pathogens with small genomes, such as using pMHC 
tetramers libraries to cover the entire HIV proteome 20, which is comprised of only 15 proteins 21. 
However, these techniques are not well suited to bacterial pathogens that encode an average of 
5000 unique genes across a genome of 5x106 base-pairs 22. However, the entire proteome of a 
bacterial pathogen could be encoded within a single yeast-displayed library, which can present up 
to 108 unique peptides 9. In addition, these peptide libraries can be synthesized to exhaustively 
cover the bacterial proteome regardless of patient HLA type, obviating the need for potentially 
flawed antigen predictions. This feat requires significantly less peptides for class II pMHC libraries 
due to the natively open class II MHC peptide-binding groove, which allows a peptide length-
independent binding in many possible registers 23, but is also feasible for class I pMHC libraries.  
 
This technology could therefore be immediately useful for the study of T cell targeting in chronic 
bacterial infections such as tuberculosis, in which CD4+ T cells of uncertain antigen specificity 
control the infection 24. Beyond pathogens, this technology could be used to comprehensively 
encoding peptides from proteins frequently found over-expressed in certain tumor types for tumor-
associated antigen discovery for T cells found enriched in those tumors, regardless of patient HLA 
type. Yeast-displayed pMHC libraries are also much better suited to these tasks than mammalian 
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cell-based defined antigen pMHC libraries, such as the recently described T-Scan 25, due to their 
superior size. Therefore, the possible applications for defined antigen pMHC libraries for antigen 
discovery are many, and will only become more accessible with the decreasing cost of 
oligonucleotide synthesis 26.  
 
5.2.3 Future technologies 
 
Regardless of the application, there are many technological innovations that could facilitate more 
rapid, broad, and effective application of pMHC libraries for antigen discovery. These include 
innovations in TCR sequencing and recombinant expression, as well as high-throughput library 
selection platforms. 
 
Two of the greatest bottlenecks in our antigen discovery pipeline were the identification and 
expression of TCRs of interest. As T cell receptor function relies on unique pairings between 
diverse TCR alpha and beta chains, any T cell sequencing strategy must contain paired-chain 
sequencing. Early strategies for paired-chain T cell sequencing relied on single-cell polymerase 
chain reactions (PCR) in 96-well plates 27, 28, greatly limiting their throughput. However, recent 
advances in T cell sequencing such as improved TCR transcript recovery 29, 30, single-cell transcript 
barcoding 31, 32, and improved computational deconvolution of sequencing data 33, 34 now enable 
paired-chain TCR information to be recovered from thousands of T cells simultaneously.  
 
Yet while these advances greatly have greatly diminished the bottleneck of identifying TCRs of 
interest, these TCRs must still be recombinantly expressed individually for use in yeast-displayed 
pMHC library selections. This process involves cloning individual TCRs into vectors for 
recombinant expression in bacterial 35, insect 36, or mammalian 37 expression vectors, followed by 
protein isolation and purification. In total, the time between TCR identification and recombinant 
expression was approximately 50 days in our hands using an insect expression system. However, 
two classes of technological innovation may diminish this bottleneck: direct porting of amplified 
transcripts into expression vectors, and small-scale TCR expression.  
 
While plate-based single-cell sequencing strategies allow direct porting of amplified TCR-
encoding regions into expression vectors 38, this is not currently possible in higher throughput 
sequencing technologies. This is because many of these sequencing technologies do not provide 
coverage of the entire V region of either TCR chain and fragment the amplified DNA to allow for 
more rapid and accurate sequencing 7. Therefore, DNA encoding TCRs of interest must be 
synthesized either in part or in their entirety for recombinant expression, increasing the time from 
identification to expression. Therefore, innovations which allow high-throughput recovery of full-
length TCR variable (V, D, and J) regions will greatly reduce this bottleneck.  
 
In fact, one such innovation was recently described 39, and uses microfluidics and single-cell 
emulsion PCR to generate single-transcript paired-chain TCR constructs for millions of T cells. 
While these transcripts were generated for expression as full-length TCRs in T cell lines, the 
ectodomains of both TCR chains could be extracted from these paired-chain constructs for use in 
soluble expression vectors with a single PCR step. Therefore, adaptation of this high-throughput 
microfluidic strategy for extracting full-length paired-chain TCRs would greatly diminish the time 
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between TCR identification and expression, allowing for more rapid antigen discovery with yeast-
displayed pMHC libraries.  
 
Another innovation that could facilitate more rapid antigen discovery by diminishing the time to 
expression is small-scale TCR expression. In our current insect expression protocol, we recover 
up to 1 mg of soluble recombinant TCR per liter of culture. However, we typically used less than 
30 µg of TCR during library selection. Despite this, the larger format expression is used in part to 
ensure optimal TCR chain pairing ratios 40. However, successful soluble expression of the TCR 
using a single paired-chain construct would obviate the need to balance TCR chain ratios, and may 
enable small-scale TCR expression without the need for additional viral amplification steps (which 
currently require an additional 7-9 days). In addition, insect cell expression of BirA ligase 41 (used 
for biotinylation of the purified protein expressing an AviTag peptide) may further facilitate rapid 
small-scale expression of biotinylated TCR for use in library selections. These innovations would 
also greatly diminish the cost of protein expression, which is largely driven by the cost of insect 
media. Therefore, innovations for small-scale expression of soluble recombinant TCRs will greatly 
reduce both the time and monetary costs associated with generating TCRs to screen our yeast-
displayed pMHC libraries.  
  
Should these innovations be successfully implanted and substantially reduce both the time and 
effort required for TCR discovery and expression, higher throughput selection methods will be 
needed to facilitate broader antigen discovery efforts. Fortunately, as current selection methods 
utilize magnetic-activated cell sorting technologies, commercially available (AutoMACs, 
Miltenyi) or custom automated magnetic cell sorting platforms can be used to stream-line 
selections for higher throughput discovery. 
 
Yet even with each of these above described innovations, yeast-displayed pMHC library-guided 
antigen discovery campaigns will still be limited to tens of unique TCRs at a time. As such, higher 
throughput antigen discovery will require a complete reformatting of current strategies. These so-
called ‘library-versus-library’ selection strategies 42 will therefore require significant innovations 
of existing TCR and pMHC expression platforms, or the development of entirely new platforms, 
but represents the ideal format for future TCR antigen discovery efforts. 
 
5.3 Closing thoughts 
 
In conclusion, yeast-displayed pMHC libraries are a uniquely powerful tool for exploring TCR 
and pMHC repertoires and recognition due to their large size and engineered composition. In this 
thesis, we described the development and application of these libraries to define class II MHC 
peptide repertoires, explore CD4+ regulatory T (Treg) cell TCR repertoire convergence in a pre-
clinical tumor model, and discover the native antigen reactivity of clinically relevant human T 
cells. Yet while this thesis focused principally on class II pMHCs and CD4+ T cells, the 
technologies we developed, as well as the insights we gained through their application, are readily 
applicable to class I pMHCs and CD8+ T cells. Therefore, we believe that the research described 
herein will contribute not only to a detailed understanding of the systems studied, but will greatly 
enable future applications of yeast-displayed pMHC libraries for the study of T cell responses 
across many distinct maladies. However, as we have discussed, key advancements are still needed 
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to optimize this powerful technology for rapid and broad application, providing a foundation for 
both continued innovation and discovery in this field.   
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