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Abstract 
 
Heterogeneity of the immune system has increasingly necessitated the use of high-resolution 
techniques, including flow cytometry, RNA-seq, and mass spectrometry, to decipher the immune 
underpinnings of various diseases such as cancer and autoimmune disorders. In recent years, 
high-throughput single-cell RNA sequencing (scRNA-seq) has gained popularity among 
immunologists due to its ability to effectively characterize thousands of individual immune cells 
from tissues. Current techniques, however, are limited in their ability to elucidate essential 
immune cell features, including variable sequences of T cell antigen receptors (TCRs) that confer 
antigen specificity. Incorporation of TCR sequencing into scRNA-seq data could identify cells with 
shared antigen-recognition, further elucidating dynamics of antigen-specific immune responses 
in T cells. 

In the first part of this thesis work, we develop a strategy that enables simultaneous analysis of 
TCR sequences and corresponding full transcriptomes from 3′ barcoded scRNA-seq samples. 
This approach is compatible with common 3′ scRNA-seq methods, and adaptable to processed 
samples post hoc. We applied the technique to identify transcriptional signatures associated with 
clonal T cells from murine and human samples. In both cases, we observed preferential 
phenotypes among subsets of expanded T cell clones, including cytotoxic T cell states associated 
with immunization against viral peptides. 

In the second part of the thesis, we apply the strategy to a 12-patient study of peanut food allergy 
to characterize T helper cell responses to oral immunotherapy (OIT). We identified clonal T cells 
associated with distinct subsets of T helper cells, including Teff, Treg, and Tfh, as well as Th1, 
Th2, and Th17 signatures. We found that though the TCR repertoires of the patients were 
remarkably stable, regardless of their clinical outcomes, Th1 and Th2 clonotypes were 
phenotypically suppressed while Tfh clonotypes were not affected by therapy. Furthermore, we 
observed that highly activated clones were less likely to be suppressed by OIT than less activated 
clones. Our work represents one of the most detailed transcriptomic profiles of T helper cells in 
food allergy. 

In the last part of the thesis, we leverage the simplicity and adaptability of the method to recover 
TCR sequences from previously processed scRNA-seq samples derived from HIV patients and a 
nonhuman primate model of TB. In the HIV study, we recovered expanded clonotypes associated 
with activated T cells from longitudinal samples from patients with acute HIV infections. In the TB 
study, we modified the primers used in the method to T cells from TB granulomas of cynomolgus 
macaques. We identified not only expanded clonotypes associated with cytotoxic functions, but 
also clonotypes shared by clusters of activated T cells. In total, these results demonstrate the 
utility of our method when studying diseases in which clonotype-driven responses are critical to 
understanding the underlying biology. 

Thesis Supervisor: J. Christopher Love Title: Professor of Chemical Engineering 
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1. Introduction 

Intuitions regarding the adaptive immune response, namely immunological memory, likely existed 

before the recognition of immunology as a field of study. Even before the introduction of the first 

successful vaccine (or at least, one of the firsts) by Edward Jenner, many had likely observed that 

survivors of infectious diseases were granted virtual immunity from those diseases1. Almost a 

hundred years later, experiments pinpointed humoral immunity by transfer of serums from 

immunized to unimmunized animals2. These experiments, which postulated existence of 

“antitoxin” that could confer protection, constituted an early proof-of-concept of antibody therapy, 

an industry now worth over $250 billion globally3. 

 Study of the adaptive immune system accelerated in the 20th century. Organs associated 

with B and T cells were identified first in birds (e.g. bursa fabricus), then in other animals4. Despite 

early advances made by Burnet and others regarding clonal selection and maturation of antibody 

producing B cells, the exact mechanism by which these cells originate without available precedent 

was only partially known5. It was not until the works of Hozumi and Tonegawa, using the newly 

available techniques of restriction enzyme digest and gel electrophoresis, did evidence of distant 

gene fragments joining together become evident6. This process was later termed V(D)J 

Recombination. In this process, segments of variable genes (V, or variable; D, or diversity; and J, 

or junction) randomly join together in an imprecise manner to generate random and diverse 

antigen receptors in both B and T cells7. 

 Analogous processes were identified in a wide variety of animals, including most 

vertebrates. It is clear that the ability for the body to maintain memory of past exposures to 

pathogens confers tremendous evolutionary advantage. Despite the energy costs of producing a 

large number of nonfunctional clones and cells that ultimately have to be deleted via apoptosis, 

the adaptive immune system, in one form or another, remains preserved across species5. The 

generated diversity is staggering. It is estimated that V(D)J recombination could generate up to 
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1018 different antigen receptors8. The realistic repertoire is likely much smaller in practice, as the 

number of possible combinations outnumbers the number of available cells in the body. Were the 

repertoire to be “hardcoded” in the human genome, it would take roughly the same number of 

nucleotides as the entire genome.  

 Because the antigen receptor repertoire is not hardcoded in the genome, it also means 

that the repertoire of any individual could change and evolve in response to exposures to 

pathogens. Early attempts at characterizing the T and B cell repertoires depended on basic 

molecular biology techniques, such as spectrographing, wherein the sizes (that is, the lengths of 

the nucleotide sequences) of the re-arranged T or B cell receptors (TCRs and BCRs, respectively) 

are visualized via gel electrophoresis, resulting in a gaussian distribution of bands in a normal 

repertoire, and a skew distribution in those that have gone through clonal selection and 

expansion9. Advances in qPCR further allowed researchers to quickly identified the presence of 

specific V or J gene segments in their samples, though still without exact nucleotide sequences10. 

Later development in Sanger sequencing allowed for investigation of the exact nucleotide 

sequence of the junctional region in a selected T or B cell, one at a time. 

 Breakthroughs in massively parallel DNA sequencing, or Next Generation Sequencing 

(NGS), in the 2000s presented a significant technological leap for immunologists studying the 

immune repertoire. No longer were researchers restricted to investigating a single, isolated clone 

at a time, but rather it was now possible to assess the repertoire as a whole in a single experiment 

with high accuracy. For the remainder of the chapter, we review the various methods that have 

been used to query the immune repertoire at various resolutions, including at the bulk (i.e. 

population) level and at the single-cell level. We also discuss the motivation for the subsequent 

chapters, which describe our attempts at combining TCR sequencing with existing scRNA-seq 

platforms and the application of our technique to several immunological studies, including the 

those of food allergy and infectious diseases.  
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 This thesis represents our endeavors to improve upon available technologies in a rational 

way that can be easily adapted by others without significant investment of labor and financial 

resources. This work focuses entirely on the TCR, though we anticipate many of the methods 

detailed here can also be applied to BCR. Along with the development of our technique, we were 

also faced with the challenge of integrating and analyzing TCR repertoires with their 

corresponding single-cell transcriptomic data. In the latter half of the thesis, we describe our 

attempt to make sense of such data to better understand clonal T cell responses in our samples. 

 

1.1 Motivation for characterizing the TCR repertoire 

Due to the nature of the adaptive immune system, the ability for a single T cell to recognize a 

specific antigen is of great interest to researchers. Antigen-specific T cells play key roles in a 

number of diseases including autoimmune disorders and cancer10–12. T cells recognize antigens 

presented in major histocompatibility complexes (MHCs) through their TCRs. In response to 

cognate recognition of antigen, T cells can respond through activation and clonal expansion, 

resulting in a progeny of daughter cells of identical TCR sequences. Therefore, characterizing 

TCR sequences and their relative proportions, or the TCR repertoire, in populations of relevant T 

cells can illuminate the dynamics and diversity of antigenic responses against pathogens, and 

how these characteristics associate with different disease states. TCR repertoire measurements, 

such as clonal expansion and selection, have been shown to be predictive of vaccine and therapy 

efficiencies, in a wide range of conditions and diseases12–16. The dynamics of clonal expansion 

and the diversity of the TCR repertoire have been correlated to autoimmune and other 

hypersensitivity conditions such as food allergy17. Accurate characterization of the TCR repertoire 

has also proven to be pivotal in designing new immunotherapeutic modalities, where expansion 

of antigen-specific T cells is crucial to treatment efficacy18.  
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 The TCR comprises two subunits: an alpha chain (TCR) and a beta chain (TCR). Each 

chain contains three complementarity-determining regions (CDRs) that are directly involved with 

recognition of antigens presented on MHCs. Of the CDRs, the CDR3 contains the highest amount 

of sequence variability, and is directly in contact with the presented antigen (whereas the CDR1 

and the CDR2 mainly contact the MHC protein itself). Together, the alpha and beta chains 

determine the antigen-specificity of the T cell (Figure 1-1). As such, TCR sequencing at the 

single-cell level is of particular interest to researchers. At the single-cell level, the exact pairing of 

alpha and beta chain can be quantified, making it possible to directly investigate the receptor’s 

antigen target through expression of the TCR in cell lines19. The potential of identifying and 

recapitulating antigen-specific TCRs is particular important for development of new therapeutics, 

such as CAR (chimeric antigen receptor) T cell therapy, in which an antigen-specific receptor 

could be repurpose as potent treatment for diseases20. 

 

Figure 1-1. Protein structure of TCR and TCR. The CDR regions are highlighted in pink. 
Figure adapted from Castro, C. et al21. 
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 Nonetheless, both bulk and single-cell TCR sequencing can be useful, depending on the 

application. In the next section, we briefly review several conventional methods for both.  

 

1.2 Conventional methods of bulk and single-cell TCR sequencing 

Traditional techniques of TCR characterization have depended on gene specific amplification of 

the TCR mRNA or gDNA. In both cases, a multiplex pool of primers targeting the variable (V) 

genes on the 5’ side of the transcript and the constant (C) or joining (J) regions on the 3’ side are 

used to amplify the TCR sequences. Due to the complexity of the primers, and the nonspecific 

artifacts inherent to the approach, a nested PCR approach is usually used, wherein two sets of 

gene-specific primers are used to successively amplify the target of interest22. Flanking 

sequences that are necessary for NGS platforms (e.g. Illumina) are then attached to the 

amplicons with additional PCR amplification or ligation23.  

 While TCR sequences can be amplified from mRNA or gDNA, each presents different 

advantages and challenges. mRNA contains the recombined TCR transcripts without introns 

between the V, D, J, and C genes. This allows for efficient amplification of the TCR transcripts 

that can be readily sequenced on the Illumina sequencers. The resulting insert length varies 

between 400-600bp, which is just under the sequencing length limit of major Illumina platforms 

(i.e. 600 cycle kit on the MiSeq). However, each T cell could contain a different amount of mRNA 

TCR transcripts. Therefore, at the population level in which the frequency of a TCR sequence is 

equated to the frequency of the T cell clone, the variable number of transcripts could confound 

the results, making comparing the frequencies of different T cell clones more difficult. On the other 

hand, while each cell only has a fixed number of gDNA molecules, the introns between the C 

genes and the recombined VDJ segments are not excised at the gDNA level, making amplification 

of the recombined receptor sequences more difficult. Furthermore, while mRNA sequences 
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directly represent protein sequences that are being produced by the cells, gDNA sequences may 

not necessarily represent translated protein, since multiple loci are available within each cell24. 

 PCR amplification can also introduce other artifacts in the resulting data. Firstly, a DNA 

polymerase can often introduce errors into the amplified products, though with the current 

generation of error correcting enzymes this issue is at least somewhat ameliorated25. Secondly, 

during a PCR reaction, different templates are often preferentially amplified at different rates, often 

due to the variable GC content of the template molecules. Templates can also be preferentially 

amplified randomly, a process termed PCR “jackpotting,” wherein a particular template molecule 

is preferentially amplified in the early stages of the PCR process by chance26. Then due to the 

exponential nature of PCR, the jackpotted template exponentially amplifies over other template 

molecules.  

 Both issues are in large part ameliorated by the introduction of unique molecular identifiers 

(UMIs) into the reverse transcription of mRNA transcripts. In this process, a random nucleotide 

barcode is introduced to each transcribed cDNA product, resulting in an identifier for each unique 

mRNA molecule that is maintained in the subsequent steps of PCR amplifications. The barcode 

can be read out during sequencing, and therefore amplified products originating from the same 

cDNA transcript could be computationally grouped together. This process not only ameliorates 

the differential amplification of different cDNA templates, but PCR errors introduced into individual 

amplified product can also be corrected by comparing the sequences sharing the same UMI to 

derive a single consensus sequence27.  

 While UMIs may be introduced using a variety of methods, they are most often 

incorporated using template switching oligos (TSOs) as part of a 5’ rapid amplification of cDNA 

ends (RACE) reverse transcription reaction (Figure 1-2). In this process, a reverse transcriptase 

derived from the Moloney Murine Leukemia Virus is used to transcribe mRNA into cDNA. As the 

enzyme transcribes the mRNA molecule, it adds additional cytosines to the end of the transcribed 

molecule (on the 3’ side of the cDNA, or 5’ on the mRNA template). The cytosines act as a capture 
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site for the TSO, which contains guanines on its 3’ side. In the ideal situation, the TSO attaches 

to the newly transcribed cDNA, and the enzyme continues to transcribe the oligo (i.e. “switching” 

the template), incorporating the TSO sequence, including the UMI, into the cDNA product. 

 This method has been utilized to good effect by various groups28. The template switching 

reaction has the added benefit of obviating the need for V region-specific primers. This allows for 

easy adaptation of the technique to different species without redesigning the multiplex primer 

pools, which can often contain an upwards of 30-60 different primers.  

 

  

Template switching is an inherently inefficient process, however29. This presents a 

significant challenge especially when the starting RNA material is sparse, such as the case in 

single-cell TCR sequencing. Conventionally, single-cell TCR sequencing is done by isolating 

single T cells into separate compartments, most often by flow cytometry sorting (FACS), followed 

Figure 1-2. Example schematic of TCR amplification using 5’ RACE. UMIs are introduced via 
the TSOs (grey) during reverse transcription. Subsequent PCR amplification is nested with 

primers specific to the constant regions. Final amplification completes the sequencing handles. 
Final library is commonly sequenced on the Illumina Miseq. 
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by amplification of the TCR genes in individual reactions using multiplex primer pools30. The 

process is often laborious and expensive, limiting throughput.  

 Nevertheless, efforts in TCR sequencing of sorted single T cells have resulted in better 

understanding of antigen-specific responses in diseases such as cancer31,32. Furthermore, 

because the pairings of alpha and beta chains are maintained, it is possible to clone the 

sequenced receptors into cell lines to validate their specificities. These approaches have led to 

better definition of factors necessary to elicit TCR-mediated activation, including putative binding 

affinity as well as the cellular context of the TCR-MHC interaction33–35.  

 In recent years, computational pipelines have also been developed to reconstruct TCR 

and BCR sequences from full-length RNA-seq results36,37. The pipelines usually first identify short 

reads that have been mapped onto the TCR transcripts, then perform de novo assembly to 

generate the likely full-length TCR sequences. This approach relies on good collective coverage 

of the TCR sequences by the short reads, and as such is best applied to full-length RNA-seq 

results, such as SmartSeq2. To avoid erroneous construction of unrelated sequences, this 

approach is best applied to single-cell sorted datasets, though it is still possible to construct 

multiple sequences at the bulk level. 

 

1.3 Challenges and Opportunities 

While characterization of TCR repertoire can elucidate the dynamics of antigen recognition 

by the immune system, RNA sequencing (RNA-seq) in contrast, can reveal novel states and 

functions of disease-relevant T cells through unique patterns of gene expression, albeit without 

determination of whether those cells are recognizing common antigens38–40. Coupling these two 

types of data is of great interest for modeling T cell responses and isolating those cells most 

relevant to disease states30,36,41. Currently, the preferred method for linking these measures relies 

on sorting single T cells into multi-well plates by flow cytometry, performing full-length single-cell 
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RNA-seq (scRNA-seq), and then reconstructing the sequences of rearranged TCR and TCR 

genes. This strategy is limited in throughput (~10–1,000 cells) by cost, labor and time13,42,43. 

Recently developed high-throughput scRNA-seq methods can profile the transcriptomes 

of 103–105 single cells at once, but accomplish this task by first barcoding mRNAs on their 3′ ends 

during reverse transcription followed by quantification of gene expression by sequencing only 

those 3′ ends44–46. While sufficient to enumerate mRNA abundances, this process hinders precise, 

direct sequencing of recombined TCR genes because the variable regions of those transcripts—

particularly the CDR3 regions closer to the 5′ end of those mRNAs—are not captured efficiently 

by 3′ library preparation and sequencing protocols39. Primer-based approaches that target 

constant regions of the TCR transcripts to directly enrich CDR3 sequences eliminate reverse-

transcription-appended cellular barcodes and UMIs positioned on the 3′ ends of transcripts during 

amplification, and thus obscure the single-cell resolution of the data (Figure 1-3).   

New approaches have emerged to determine clonotypes from high-throughput 3′ or 5′ 

scRNA-seq libraries. These typically rely on specialized RNA-capture reagents (e.g., the 

customized TCR transcript capture beads of DART-seq or specific kits for InDrop, Dolomite and 

10X), limiting their adoption and application to previously archived samples. Some also require 

combinations of different sequencing technologies (e.g., Illumina and Nanopore in RAGE-seq), 

complicating their implementation41,47–51. Methods that allow for cost-efficient and simple recovery 

of TCR sequences from 3′ scRNA-seq libraries would enable the study of clonotypic T cell 

responses with confidence. 
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Figure 1-3. Schematic of conventional CDR3 amplification applied to 3′ barcoded libraries. The 
use of primers specific to the constant regions results in efficient amplification of the TCR CDR3 

region but leads to loss of single-cell barcodes. 

 

1.4 Thesis objectives 

The aims of this thesis work are twofold. The first is to develop a method that can reliably recover 

TCR sequences from 3’ barcoded single-cell RNA sequencing libraries, such as those produced 

by most popular single-cell platforms. The method would ideally be easy to carry out, requiring 

minimal customized reagents, and be applicable to previously processed scRNA-seq samples. 

The second aim of this thesis is to apply the technique to clinical and animal studies to advance 

the understanding of antigen-specific responses in T cells. Considering these aims, the thesis is 

organized into two parts: 

Part 1: Technology development 

Chapter 2: Size selection enrichment of TCR sequences from single-cell sequencing libraries. 

Reliable recovery of TCR variable sequences is hindered by the 3’ bias of short-read sequencing 

platforms. In this chapter, we investigate the use of careful, precise size-selection of fragmented 
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sequencing libraries to preferentially enrich for the CDR3 region of TCR sequences in a 

nonbiased way. We attempted several size selection and enrichment methods, including several 

forms of gel electrophoresis and magnetic selection. We discovered significant challenges 

associated with this approach, including repeatability and inherent noise from imprecise 

expression of TCR transcripts. The work in this chapter highlights the challenge in developing a 

reliable technique that is also compatible with the limitations of broadly available sequencing 

technologies.  

Chapter 3: Recovery of paired TCR sequences from single-cell Seq-Well libraries reveals 

clonotypic T cell signatures. After investigating the plausibility of recovering TCR CDR3 

sequences through size selection, we attempted using multiplex V primer pools to construct TCR 

sequencing libraries that maintain single-cell resolution of the libraries. We successfully achieved 

this goal by using a combination of biotin-streptavidin enrichment of TCR transcripts and single-

step primer extension to avoid direct amplification with the multiplex primer sets. We validated the 

method by applying it to murine T cell libraries containing known proportions of T cells from OT-I 

transgenic mice. We then applied the method to study clonotypic response in tetramer sorted T 

cells from animals that were immunized with HPV-E7 antigen. We detected multiple groups of 

clonotypes with different transcriptomic profiles. Finally, we applied the method to CD154 

enriched T cells from peanut allergy patients. We identified expanded T cells that were likely to 

be antigen-specific for peanut antigens. These expanded T cells also coincided with expression 

of Th2 cytokines, a known signature of food allergies. 

Part 2: Application to the studies of immunological disorders and diseases 

Chapter 4: Application of Seq-Well and TCR recovery to the study of peanut oral immunotherapy. 

Peanut food allergy is a type 1 hypersensitivity disorder that is mediated by IgE antibodies. The 

exact roles of T helper cells in the condition remain largely unknown. We applied the improved 

versions of Seq-Well and TCR recovery methods to study longitudinal samples from patients 

undergoing oral immunotherapy (OIT). We identified T cells with known T helper cell profiles, 
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including Th1, Th17, and several subtypes of Th2 phenotypes. We found that each of the subsets 

was largely clonally distinct. Interestingly, while we did not find evidence of OIT-induced changes 

in the TCR repertoires of patients, we found that T cell clones were phenotypically suppressed 

over the course of treatment, except for clonotypes of the Tfh phenotype. We also found evidence 

of clonal sequence convergence in each of the T helper subtypes, suggesting that phenotypes in 

peanut reactive T cells could be in part driven by their TCR sequences. Our findings suggest that 

OIT is likely only effective in modulating a subset of T helper cells, leading to varied clinical 

outcomes. 

Chapter 5: Application of TCR recovery to other biological systems. Due to the nature of the TCR 

recovery technique, it is applicable to processed samples post hoc, allowing us to retroactively 

study TCR profiles of samples that have already been processed using standard scRNA-seq 

techniques. In this chapter, I will highlight two examples of such efforts. In collaboration with the 

Alex Shalek lab, I applied our method to longitudinal HIV samples collected in South Africa. We 

were able to detect clonal CD8 T cells that have likely expanded in response to infection. Next, I 

applied the method to a study of tuberculosis (TB) in an animal model of cynomolgus macaques. 

We were successful in adapting the method for this species, which necessitated a new design of 

primers. We were able to detect clonal expansion in TB granulomas with high bacterial burden, 

suggesting that the cells were clonally expanded in response to infection.
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2. Size selection enrichment of TCR sequences from 

single-cell sequencing libraries 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter describes our initial attempts at recovering TCR sequences, in particular the CDR3 

sequences, from 3’ barcoded single-cell libraries. 3’ barcoding is a common strategy for various 

high-throughput single-cell sequencing platforms. We show that by carefully selecting for the size 

of the sequencing libraries, we were able to mitigate the effects of 3’ bias and recover CDR3 

sequences from a significant portion of T cells. Additional testing of the methodology, however, 

revealed several unexpected challenges. These included issues with repeatability and scalability. 

By carefully analyzing the bottlenecks of this approach, we were able to use the results to inform 

better technique design, detailed in Chapter 3. 
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2.1 Motivation 

2.1.1 Challenges in recovery TCR CDR3 from massively parallel single-cell libraries 

While several different platforms for high-throughput single-cell sequencing have emerged over 

the years, most follow similar design principles to achieve their higher throughputs. In general, 

tissues are dissociated into single-cell suspension, then the cells are individually segregated into 

separate compartments with a barcoded mRNA capturing reagent. Cells could be separated into 

single-cell compartments through various methods, such as FACS sorting into individual wells, 

laser capture, droplet emulsion, or random loading into nanowells36,44. Once the cells are 

separated into individual compartments, the cells are then lysed, and their mRNA transcripts are 

captured with a randomly barcoded reagent that maintains single-cell resolution. Once the 

barcoded mRNA transcripts are recovered and transcribed, the recovered material can then be 

pooled and processed in a single reaction. The barcodes can then be read out by sequencing, 

and single-cell resolution can be deconvoluted.  

 The most common mRNA barcoding method is 3’ barcoding, or barcoding on the 3’ side 

of the mRNA. In this strategy, single-cell barcodes are included in the poly-d(T) primers, which 

are then used to generate first-strand cDNAs through reverse transcription and thereby 

incorporating the barcodes into the transcribed molecules. The full-length cDNA products are then 

amplified to generate enough materials for sequencing library preparation. Due to the restriction 

of common short-read sequencing technologies, the amplified cDNAs need to be first fragmented, 

whether physically or enzymatically, into smaller pieces before the final library can be prepared. 

During the subsequent library preparation, the 3’ side of the fragmented cDNAs is preferentially 

amplified to ensure that the single-cell barcodes could be sequenced. This process results in 

pairing of the single-cell barcodes with their corresponding 3’ mRNA sequences, which can be 

computationally processed for downstream analysis. 
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 Seq-Well, which was developed in the J. Christopher Love lab in collaboration with the 

Alex Shalek lab, is one such single-cell sequencing platform (Figure 2-1). A single-cell 

suspension is loaded onto a PDMS chip with nanowells, each loaded with a mRNA capture bead. 

Each bead is coated with poly(dT) primers that are barcoded with single-cell barcodes and UMIs 

that uniquely label each captured mRNA molecule. Once the cells are loaded, the nanowell array 

is then sealed with a polycarbonate semi-permeable membrane that allows for buffer exchange 

to promote mRNA capture. Once the cells have been lysed and the mRNAs hybridized to the 

beads, the beads can then be recovered from the array, and the captured mRNAs can be pooled 

and amplified, and processed for sequencing and analysis. 

 

 

Figure 2-1. Single-cell RNA-seq processing by Seq-Well. Tissue of interest is dissociated into a 

single-cell suspension before being loaded into a PDMS nanowell array preloaded with 

barcoded mRNA capture beads. After cells are loaded into the array, a semi-permeable 

membrane is attached to seal the array. Cells are then lysed and the mRNAs are hybridized 

onto the beads. The beads are then removed from the array for bulk processing. The resulting 

data are demultiplexed by the original bead barcodes to achieve single-cell resolution. Figure 

adopted from Gierahn, T. M. et al46. 

 

 3’ barcoding presents several advantages. Firstly, it is straightforward. The strategy does 

not require significant changes to the reverse transcription reaction. Secondly, barcoded primers 

are also relatively easy to synthesize on solid substrates through split-and-pool synthesis. Though 
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the process introduces significant 3’ bias, it is sufficient for quantifying frequencies of most genes 

(Figure A2-1). However, as mentioned in Chapter 1, 3’ bias presents significant challenges for 

TCR sequencing, as the CDR3 is located closer to the 5’ side of the TCR transcripts. Furthermore, 

in order to accurately determine the CDR3 sequences, TCR transcripts would have to be 

sequenced relatively deeply. In the whole transcriptome library data, TCR transcripts are often 

relatively lowly expressed, and as such are not adequately sequenced in most workflows. 

 Amplification with TCR specific primers presents other issues as well. As noted in Chapter 

1, constant region primers are situated upstream of the single-cell barcodes, and therefore would 

eliminate the barcodes after amplification. Amplification with V region primers alone, without 

constant region primers, often produce non-specific products, and therefore the resulting library 

could be difficult to sequence successfully.  

 To overcome these challenges, we attempted to develop a method that does not require 

amplification with TCR specific primers. In this chapter, we present an approach using size 

selection to enrich for CDR3 sequences. 

 

2.2 Methods 

Single-cell transcriptome sequencing. Human or murine T cells were processed for single-cell 

RNA sequencing via Seq-Well. In brief, up to 30,000 cells per sample were loaded into the arrays, 

resulting in roughly single-cell occupancy in each nanowell with a single barcoded poly(dT) bead. 

The arrays were then washed, and sealed with a semi-permeable polycarbonate membrane. The 

sealed arrays were then submerged in lysis buffer, and subsequently in hybridization buffer to 

allow mRNAs to hybridize onto the beads. The beads were then recovered from the arrays 

through centrifugation, and the captured mRNAs were reverse-transcribed, amplified, and 

prepared for sequencing using the Nextera XT kit. Libraries were sequenced on either the Illumina 

NextSeq or Novaseq. 
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Sequencing data preprocessing. Single-cell transcriptomic data was processed using Drop-seq 

tools (http://mccarrolllab.com/dropseq) as previously described44,46. In brief, barcodes and UMIs 

were collapsed with a single-base error tolerance. Cells with less than 500 detected genes and 

1,000 UMIs were filtered. The resulting data were then natural-log normalized for each cell to 

account for library size, and variance due to detected mitochondrial genes were regressed from 

the data.  

Biotin-streptavidin enrichment for TCR. Enrichment of TCR-encoding transcripts from whole 

transcriptome amplified (WTA) starting materials was done with the XGen Lockdown reagents 

(IDT; Cat.No.1072281), with modifications. Biotinylated TCR and TCR probes were purchased 

(IDT Ultramer services), mixed, and diluted to 1.5 µM each. Up to 3.5 µL of WTA was added to 

8.5 µL of xGen 2x hybridization buffer, 2.7 µL of buffer enhancer, 0.8µL of UPS primer (50 µM), 

and 0.5 µL of human cot-1 DNA (Invitrogen; Cat.No.15279011). The mixture was incubated at 

95oC for 10 min, and 1 µL of diluted TCRC mix was added. The final mixture was then incubated 

at 65oC for 1 h. Then the remainder of the xGen Lockdown protocol was followed. 50 µL of 

streptavidin Dynabeads (Invitrogen; Cat.No.65306) was used for each sample. Each sample was 

eluted into 20 µL of water. 

 To amplify the TCR and TCR transcripts after enrichment, five PCR reactions were 

done for each enriched sample with the following composition: 2 µL of eluted sample, 2 µL of UPS 

primer (10 µM), 8.5 µL of water, and 12.5 µL of 2x Kapa Hifi Hotstart Readymix (Kapa 

Biosystems). The following PCR cycling condition was used: 1 cycle of 95oC for 3 min; 25 cycles 

of 98oC for 40 s, 67oC for 20 s, 72oC for 1 min; and 1 cycle of 72oC for 5 min. The five reactions 

were then pooled to a final volume of 100 µL. Products of >1,000bp were purified using 

homemade purification reagents outlined by Rohland and Reich52. The purified product was 

eluted into 15 µL of water. Quality of the final product was assessed using fragment analyzer 

(Advanced Analytical/Agilent). 
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Assessment of TCR transcript enrichment. A qPCR assay was used to assess enrichment of 

TCRA or TCRB transcripts after affinity enrichment. Three rounds of TCR affinity enrichment were 

performed as described. TaqMan Fast Advanced Master Mix (Applied Biosystems; 

Cat.No.4444556) was used along with FAM TaqMan primer mixes (TCRA, HS00354482_m1; 

TCRB, HS01588269_g1; GAPDH, HS02758991_g1). Amplification was done according to 

manufacturer’s instruction. qPCR was done before and after TCR enrichment, and the difference 

of crossing point (∆Cp) for TCR and GAPDH was calculated.  ∆Cp for each the enriched sample 

was compared to that of the unenriched sample, and the difference was calculated (∆∆Cp). ∆∆Cp 

was used to calculate relative increase in concentration of TCR transcripts after enrichment 

compared to GAPDH.  

Size selection enrichment of TCR variable sequences through SPRI. After barcoded single-

cell cDNAs were made, or after the cDNAs have been enriched for TCR sequences, a portion of 

the resulting material was used for size selection enrichment of the TCR variable region. Full 

length material (pre- or post-enrichment) was used in tagmentation with low proportion of Nextera 

tagmentation enzyme (50% of amount recommended by manufacturer). After amplification, library 

fragments greater than 1kbp was enriched using either AmpureXP or homemade SPRI reagent. 

The resulting libraries were quantified on fragment analyzer (Advanced Analytical/Agilent). 

Size selection enrichment of TCR variable sequences through Pippin-prep. Similar to size 

selection through SPRI, after sequencing libraries were tagmented (pre- or post-TCR 

enrichment), the products were used for size selection through the pippin prep. Pippin prep 

(BluePippin) was used to select for library fractions larger than 1kbp. The collected fractions were 

concentrated using SPRI and analyzed using fragment analyzer (Advanced Analytical/Agilent). 

Sequencing of size-selected TCR libraries. After TCR-enriched libraries were constructed, they 

were quantified via qPCR and sequenced on the Illumina MiSeq. Read 1 was performed with the 

Seq-Well sequencing primer to sequence the single-cell barcodes. Standard Nextera sequencing 
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primer was used in Read 2 to sequence the enriched variable region of the TCR. Read 1 was 

performed for 20 cycles, and Read 2 was performed for 150 cycles.  

Analysis of TCR sequences. TCR sequencing data were filtered by mapping to the TCR-

encoding loci (chromosome TCRB 7 and TCRA 14 for human, and Tcrb 6 and Tcra 14 for mouse, 

respectively). The filtered data were categorized by cell barcodes and unique molecular identifiers 

(UMIs). Cell barcodes and UMIs with at least 10 filtered reads were kept and the rest were 

discarded. Each set of reads was then mapped to TCRV and TCRJ IMGT (imgt.org) reference 

sequences via IgBlast, and mapping to each V and J region were tabulated. The reads were then 

filtered for “strong plurality,” wherein the ratios of the most frequent V and J calls to their respective 

second most frequent calls were calculated, resulting in possible values of 0.5 to 1. Cell barcodes 

with top V and J ratios of greater than 0.6 were kept, and the rest were filtered out. Within each 

cell barcode group, reads with the top V and J calls were then used for CDR3 calling, and a similar 

ratio was calculated based on the nucleotide sequence of the CDR3 region. For CDR3 calling, 

nucleotides corresponding to the 104-cysteine and 118-phenylalanine were identified according 

to IMGT references, and amino acid sequences in between the residues were translated. TCR 

sequences were then matched to single-cell data via the cell barcodes. If multiple TCR and  

chains were detected for a cell barcode, the TCR sequence with highest numbers of UMIs and 

raw reads were kept. Up to two TCR sequences with the top two highest numbers of UMIs and 

raw reads were kept. We note that non-functional CDR3s  (i.e. CDR3s with stop-codon or out-of-

frame sequences) are often a result of initially unsuccessful V(D)J recombination, and are often 

shared in clonal cells43.  As such, nonfunctional CDR3s were excluded from additional functional 

phenotype analysis, but used as unique markers for clonal tracking. 

 

2.3 Results  

2.3.1 Enrichment of TCR transcripts through biotin-streptavidin pull-down 
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To increase the proportion of TCR transcripts within the amplified cDNA pool, we decided to use 

biotinylated oligonucleotide probes designed to target the constant regions of the TCR and 

TCR chains. The oligonucleotides were designed to be roughly 90 nucleotides long, with a 

number of degenerate nucleotides to accommodate different alleles of the constant regions. 

Oligonucleotide probes specific for both murine and human sequences were designed. While the 

probes were used in combination with the IDT xGEN enrichment kit in accordance to 

manufacturer’s instruction, we believe that any other similar protocol for biotin-streptavidin pull-

down enrichment would be equally effective. 

 To quantify the effects of the enrichment, we used qPCR to quantify the relative 

concentrations of the TCR transcripts to housekeeping genes, such as actin or GAPDH. We 

performed the enrichment on cDNA samples generated from a variety of different starting 

materials with varying proportions of T cells. We also performed the enrichment for multiple 

successive rounds to determine the optimal number of enrichments that we should perform. 

 The results are shown in (Figure 2-2). Across the samples, we were able to reach 104-

105 fold enrichment with just one round of enrichment. Interestingly, depending on the relative 

proportions of T cells in the different samples, subsequent rounds of enrichment provided varying 

benefits. In cases where T cells were a small proportion of the total population, we observed a 

larger increase in fold enrichment between first and second rounds. However, in samples with 

relatively high proportions of T cells, we observed little to no increase in relative enrichment in 

subsequent rounds. This observed increase in TCR transcript concentration was consistent 

across TCR and TCR transcripts. Due to the efficiency of the enrichment, we decided to use 

just one round of enrichment for a majority of following experiments. Additional enrichments were 

performed only when necessary.  
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Figure 2-2.qPCR enrichment of TCR and  chain by biotin-streptavidin pulldown. Enrichment is 
calculated as increase of ratio relative to GAPDH transcript before and after each enrichment. 
Cytobrush sample consisted minority T cells (~5%), while CEFT and DMSO-stimulated T cells 

consisted majority T cells (>99%). 

 

 After TCR enrichment, we used a low ratio of tagmentation enzyme to complete 

preparation of TCR enriched sequencing libraries, resulting in a distribution of products of different 

sizes (Figure 2-4). Before the final product can be sequenced, lower-sized products must be 

removed. 

2.3.2 Enrichment of TCR variable region through size selection 

We reasoned that, given that the sequencing library is enriched for TCR transcripts after biotin-

streptavidin enrichment, we would be able sequence the variable region of the TCR efficiently if 

we could preferentially sequence the longer fragments of the library (Figure 2-3). Given the 

penchant for current short-read sequencing platforms to favor shorter library fragments, we would 

have to remove the shorter fraction of the library, so that the short reads could be targeted to the 

longer fraction.  

 For NGS library preparation, our preferred method for size selection is solid phase 

reversible immobilization (SPRI). SPRI is a common technique to preferentially purify DNA 

fragments of a desired size. In a SPRI protocol, a mixture of magnetic beads and DNA crowding 

reagents (frequently a combination of buffers and a soluble polymer such as polyethylene glycol, 

or PEG) is added to the amplified cDNA pool at a predetermined ratio. The crowding reagent 

preferentially drives DNA fragments of a certain size to bind to the beads. The magnetic beads 
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can then be removed, and the bound nucleotides eluted. Based on the ratio of the crowding 

reagents in the reaction, DNA fragments of different sizes can be preferentially selected.  

 

Figure 2-3. Size selection of larger fragments allows paired-sequencing of cell barcode and 
CDR3. After fragmentation of full-length cDNAs, larger fragments contain the CDR3 region 

(yellow), while the smaller fragments contain only the constant region (dark blue). Sequencing 
of larger fragments allow for CDR3 sequences (Read 2) to be linked to the cell barcode (beige; 

Read1). 

 

 One commonly used reagent for SPRI is the AmpureXP reagent from Beckman Coulter, 

though it is also possible to use homemade reagents. We tested several different SPRI conditions 

using AmpureXP as well as a homemade version of SPRI reagent. We found that, for enriching 

fragments of greater than 1kbp, the homemade reagent resulted in better, cleaner enrichment. 

This is likely due to the slight differences in concentrations of polymer (i.e. PEG) and buffer salts, 

resulting in differing size selection properties from that of AmpureXP.  

 By using an aggressive SPRI purification protocol, we were able to achieve relatively 

precise size enrichment of large nucleotide fragments. However, due to the nature of the protocol, 

trace amounts of the lower-sized fragments can still be detected by fragment analyzer.  

 



33 
 

 

Figure 2-4. Size-selection using SPRI selects for fragments larger than 1kbp. A, Typical size 
distribution of fragmented cDNA using low tagmentase ratio to input cDNA. B, Typical size 

distribution after TCR pull-down enrichment and SPRI purification of fragmented cDNA pool 
shown in A. Combination of the two processes resulting in libraries with average sizes of greater 

than 1kbp. 

 

2.3.3 Sequencing of size-selected libraries 

We then attempted to sequence the size-selected libraries on the Illumina MiSeq. The MiSeq was 

chosen for several reasons. Firstly, since we were only interested in the TCR transcripts for each 

cell, we did not need the higher throughput of the NextSeq or the HiSeq. Secondly, we suspected 

that due to the lower complexity of the sequencing libraries, the sequencing results could contain 

low diversity regions (such as the TCR constant regions). MiSeq uses 4-color imaging, which is 

better suited for resolving low-diversity sequencing libraries. 

 To investigate the feasibility of the size selection approach, we sequenced libraries that 

were selected to have different average sizes, ranging from 500bp to roughly 900bp (Figure 2-

5). As expected, larger libraries produced higher proportions of sequencing reads mapping to the 
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CDR3 region of the TCR, though large portions of the reads still mapped only to the constant 

regions of the TCR. 

 

Figure 2-5. Size-dependent mapping of TCR regions. Standard library had average size of 
roughly 500bp. Percentage of reads mapping to the CDR3 region (yellow) is compared to reads 

mapping to constant regions (including reads that also span parts of the CDR3 region). 

 

 We then attempted to combine the TCR sequencing results with the corresponding single-

cell transcriptomic data. We first attempted the experiment in a murine library of mostly T cells. 

From the TCR-enriched sequencing library, we were able to recover TCR CDR3 sequences for 

37% and TCR CDR3 sequences for 59% of T cells in the dataset, compared to less than 0.5% 

and 2% for TCR and TCR, respectively, in the whole transcriptome data (Figure 2-6). In total, 

over 50% of T cells had recovered TCR or TCR chain, and the proportion of T cells with 

mapping to both was consistent with the expected result of independent recovery of both TCR 

chains. The numbers of reads mapping to the TCR genes were also a magnitude higher in the 

TCR-enriched library compared to the whole transcriptome library. As expected, the lengths of 

the recovered TCR sequences had a gaussian distribution. The clonotypes were also each largely 

only attributed to one cell. 

 We then repeated the experiment with human as well as other murine samples, and we 

quickly noticed issues with repeatability. One issue was that the stringent size-selection required 
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to adequately enrich for the CDR3 region of the TCR was often difficult to repeat consistently. As 

shown in Figure 2-7, even low amounts of carryover of lower-sized fragments often led to 

sequencing of predominantly just the constant regions of the TCR. Even though the lower-sized 

products were a minor fraction of the libraries, due to the sequencer’s preference for shorter 

fragments, they were still preferentially sequenced. This result was observed multiple times 

across separate samples, regardless of the species or the sample origin. 

 

Figure 2-6. Mapping of TCR sequences onto transcriptomic data in a murine sample. A, (top) 
Proportion of total reads mapping to TCR by the type of sequencing library. TCR-enriched 

libraries have roughly two magnitudes greater in frequency of TCR mapping reads. (bottom) 
Percentage of cell barcodes with mapped TCR reads in the total transcriptomic sequencing 

library compared to the TCR-enriched libraries. B, tSNE representation of the murine 
transcriptomic data. Clusters of T cells are circled in pink. C, (left) Amino acid length of 

recovered CDR3 sequences and (right) counts of cells that share the same CDR3. 
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Figure 2-7. Examples of low mapping of TCR variable regions due to incomplete size selection. 
A, Example of incomplete size selection after SPRI, resulting in carryover of lower-sized 

products. B, TCR mapping results of library shown in A. C, Pull-down enrichment of sample 

shown in A. D, TCR mapping results of library shown in C. 

 

2.3.4 Modification to the size-selection process 

 We attempted various solutions to ensure more consistent size selection, Including 

multiple steps of SPRI purification, additional rounds of TCR enrichment, and DNA gel extraction. 

We discovered several modifications to the protocol that improved the selection of CDR3 

containing fragments. Firstly, we found that the design of the TCR-enrichment oligonucleotide 

probes can substantially influence the results. By doing an enrichment using probes targeting the 

most 5’ ends of the constant regions before amplification, we were able to more effectively select 

for fragments that contained the CDR3 sequences (Figure 2-7). Enrichment with the re-designed 

probes must be done on already tagmented libraries to be effective. As a result, we modified the 

protocol to perform TCR enrichment after, instead of before, tagmentation. 
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 We also noted that physical size selection methods (i.e. those that allow users to directly 

separate different fractions of the sample, such as DNA gel extraction), were often more effective 

than SPRI. Instead of traditional DNA gel extraction, which often requires additional steps of 

column-based purification, we decided to use the Pippin Prep system, which selectively elutes 

DNA fragments of a preselected size without column purification. Using the Pippin Prep, we were 

able to dramatically increase our enrichment efficiency (Figure 2-8). Sequencing of the resulting 

libraries confirmed dramatic increases in mappings of V and J genes, and consequently recovery 

of CDR3 sequences. 

 

Figure 2-8. Improvement in V and J gene mappings after Pippin Prep size selection. A, An 
example of a TCR-enriched sequencing library (top) before Pippin Prep and (bottom) after 

Pippin Prep. B, TCR and TCR mapping results of Pippin Prep library shown in A. 

 

 Despite these efforts, we noticed several issues that were still difficult to solve. Firstly, with 

gel selection and additional steps of pull-down enrichment, we often needed to amplify the 

samples with additional cycles of PCR amplification to generate enough materials for sequencing. 

Due to uneven amplification and PCR-jackpotting, additional amplification could reduce the 
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diversity of the final product, leading to lower TCR recovery53. Secondly, we also often observed 

a significant amount of “sterile” TCR transcripts, wherein the constant region of the TCR transcript 

was not joined to the recombined VDJ segment. We observed that a large portion of these 

transcripts were mapped to the UTR regions of various J genes, or otherwise intronic regions 

flanking the V genes (Figure 2-9). This seems to be due to constitutive expression of un-

recombined transcripts, and since the protocol, as described in this chapter, only directly targets 

the constant genes, these sterile transcripts could not be effectively removed.  

 

Figure 2-9. An example of sequencing reads mapping to introns of J genes. Top track shows a 
histogram of reads mapping to the TRBJ reference on bottom track. Reads mapping to the 

intron regions are boxed in red. 

 

2.4 Discussion 

In this chapter, we show that it is feasible to recover the variable region of TCR transcripts by 

simply selecting for larger fragments from single-cell barcoded sequencing libraries. This method 

presents several advantages, the chief of which is simplicity. This method does not rely on 

multiplex primer sets specific to each of the V genes, meaning it can be easily applied to different 

species without additional optimization. The constant region sequences are typically much better 

defined and annotated than the V genes, particularly for species with less established genome 

references. A method that does not require a prior knowledge of V region sequences could be 

particularly useful for these species. 
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 Nonetheless, we found this approach difficult to repeat consistently. As mentioned before, 

current short-read sequencing technologies have extreme biases for shorter library segments. In 

the case of Illumina platforms, this is caused by preferentially clustering of shorter fragments on 

the flow cell. Meaning, given a sequencing library with a distribution of lengths, the shorter 

segments will be preferentially sequenced. Magnetic bead-based purification (e.g. SPRI) alone is 

insufficient in selecting for larger fragments. While physical size selection of the libraries (i.e. gel 

selection) is effective, it is labor-intensive, and often results in low yields of recovered libraries. 

Therefore, size selection by gel electrophoresis would be difficult to scale-up efficiently and could 

present significant risks for processing clinical samples where multiple attempts may not be 

possible. 

 Nevertheless, we established biotin-streptavidin pull-down as an efficient approach to 

enrich TCR transcripts from whole-transcriptome libraries. With just one enrichment step, we were 

able to achieve roughly 104-fold enrichment of TCR transcripts, which translated to higher 

proportion of TCR-mapping reads in the sequencing data. The enrichment process could also be 

repeated for multiple rounds in cases where TCR transcripts may be in low abundance. In the 

following work, we decided that pull-down enrichment would be an appropriate method to increase 

the frequencies of TCR transcripts before examining other methods of sequencing library 

preparation.  
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3. Recovery of paired TCR sequences from single-cell Seq-

Well libraries reveals clonotypic T cell signatures 

 

This chapter is in part adapted from: A.A. Tu, T.M. Gierahn, et al54.  

 

 

 

 

 

 

 

This chapter follows up on the size selection approach in Chapter 2. While we were able to 

achieve some success by size selection, we had difficulties with repeatability and scalability. As 

a result, we decided to re-evaluate our strategy.  

 In this chapter, we incorporate multiplex primer sets specific to V genes into our technique 

to more effectively enrich for the CDR3 region of the TCR transcripts. We modified our approach 

to minimized amplification bias from the primer sets. We further modified our sequencing 

approach to incorporate custom sequencing primers to more effectively target sequencing reads 

to the CDR3 region.  

 Here, we also demonstrate the utility of our approach in both a murine T cell model and 

human samples from peanut allergic patients. In both cases, we were able to detect clonotype-

specific transcriptomic signatures that highlight the importance of TCR clonotypic data in better 

understanding scRNA-seq results.  
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3.1 Motivation 

3.1.1 Learning from difficulties in previous TCR enrichment approaches 

After we determined that size selection alone is insufficient in enriching for the CDR3 region of 

TCR transcripts from 3’ barcoded single-cell libraries, we reconsidered the necessary criteria for 

a useful technique for TCR recovery. Firstly, the method must be repeatable. We anticipated that 

we would have to reliably process an upwards of 20-50 clinical samples for each project, based 

on our conversation with collaborators and the needs of several projects within our group. In the 

same vein, the method must be scalable. While we did not anticipate on utilizing high-throughput 

machineries, such as a liquid-handling machine, we wanted to avoid steps that could significantly 

bottleneck throughput, such as gel extraction.  

 Secondly, we wanted to avoid unnecessary amplification. While the transcripts in our 

libraries are single-cell barcoded with UMIs, and as a result are resistant to PCR bias, excessive 

amplification could still result in other artifacts, such as chimeric products and PCR errors. Lastly, 

we wanted to drastically increase our sequencing efficiency of the CDR3 region. While we were 

able to recover some CDR3 sequences in Chapter 2 and map them onto the transcriptomic data, 

it was often done with large amounts of total sequencing reads. This is because a large portion 

of the reads was mapping exclusively to the constant regions, contributing no useful information 

regarding the CDR3. A higher sequencing efficiency would allow us to utilize the single-cell 

barcodes more effectively and sequence more T cells using fewer reads, and thus lowering the 

cost of the method. 

 In the remainder of the chapter, we detail our attempts to meet all the above-mentioned 

criteria by modifying our approach with V gene primers and utilizing a custom sequencing scheme 

compatible with Illumina sequencing platforms. We then used the modified method to investigate 

clonotypic immune responses in both murine and human samples. 
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3.2 Methods 

Mouse splenocyte processing for OT-I spiked-in experiments. Spleens were taken from 

C57BL/6NTac (Taconic) wild-type (WT) mice and B6 Rag1+/+Rag2+/+ OT-I (C57BL/6-Tg; Jackson) 

transgenic mice. Mice were male at age of 8-12 weeks. T cells from each spleen were isolated 

using magnetic bead-based enrichment (StemCell; Cat.No.19853). Cell concentration was 

estimated by counting on a hemocytometer. Four mixes of WT and OT-I cells were made with 

10%, 1%, 0.1%, and 0.01% of OT-I T cells. Each cell mixture was processed via Seq-Well as 

previously described46. No OT-I Tcra or Tcrb chain was observed in the 0.01% spiked-in sample. 

The resulting single-cell libraries were sequenced on the Illumina NextSeq 500 as previously 

described. A portion of each constructed library was used for TCR recovery as described below. 

All animal work was conducted under the approval of the Massachusetts Institute of Technology 

(MIT) Division of Comparative Medicine in accordance with federal, state, and local guidelines 

(CAC protocol #01717-076-20, #0917-092-20). 

Mouse splenocyte processing for HPV-E7 experiment. C57BL/6NTac (Taconic) mice (female, 

8 weeks of age) were primed with 100 µg of MSA-E7 and 25 µg of cyclic di-GMP subcutaneously 

in the tail base (Day 0). The mice were boosted with the same mixture at Day 14, and at Day 20 

spleens from the mice were collected. Splenocytes were stimulated for 6 hours with 10 µg/mL of 

E7 peptide (RAHYNIVTF) in RPMI with 10% FBS. The cells were then stained with anti-CD8-APC 

(clone 53-6.7; BioLegend) and E7-tetramer-PE (MBL; Cat.No.TB-5008-2) and flow sorted with a 

FACSAria II instrument (BD Biosciences) for double-positive T cells. The sorted cells were 

processed via the updated version of Seq-Well (Seq-Well S3)29. All animal work was conducted 

under the approval of the Massachusetts Institute of Technology (MIT) Division of Comparative 

Medicine in accordance with federal, state, and local guidelines (CAC protocol #01717-076-20, 

#0917-092-20). 

Human subjects. The human subjects in this study were all screened for participation in a peanut 

oral immunotherapy trial (NCT01750879), and some were included in a high-threshold peanut 
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challenge study (NCT02698033), at the Food Allergy Center at Massachusetts General Hospital. 

All subjects were recruited with informed consent, and the study was approved by the Institutional 

Review Board of Partners Healthcare (protocol no. 2012P002153) and MIT (protocol no. 

1312006071). The participants all had a previous diagnosis of peanut allergy, a history of peanut-

induced reactions consistent with immediate hypersensitivity, and confirmatory peanut- and Ara 

h 2 (a dominant peanut allergen)-specific serum IgE concentrations (> 0.35 kU/l; ImmunoCAP; 

Thermo Fisher). Blood samples were taken at the time of patient intake, before any treatment of 

peanut allergy. 

Human PBMC processing for allergy samples. PBMCs were isolated from patient blood 

samples by density gradient centrifugation (Ficoll-Paque Plus; GE Healthcare). Fresh PBMCs 

were cultured in AIM V medium (Gibco) for 20 h with 100 µg/ml peanut protein extract. The peanut 

extract was prepared by agitating defatted peanut flour (Golden Peanut and Tree Nuts) with PBS, 

centrifugation, and sterile-filtering. Anti-CD154-PE (clone TRAP1; BD Biosciences) was added to 

the cultures for the last 3 h. After harvesting, the cells were labeled with anti-CD3-AF700 (clone 

UCHT1), anti-CD4-APC-Cy7 (RPA-T4), anti-CD45RA-FITC (HI100), anti-CD154-PE (all from BD 

Biosciences), anti-CD69-AF647 (FN50; BioLegend), and Live/Dead Fixable Violet stain (L34955; 

Thermo Fisher). Live CD3+CD4+CD45RA– activated CD154+ were sorted with a FACSAria II 

instrument (BD Biosciences). The sorted cells were processed via Seq-Well46. 

Construction of TCR sequencing libraries. TCRV-UPS2 primers were purchased30,43 (Eurofin). 

Two primers mixes were made (one for TCR and one for TCR), and diluted to 10µM each. 

TCR and TCR reaction mixes were made with 4 µL of purified enriched product, 6 µL of water, 

2.5 µL of TCRV-UPS2 primer mix (TCR or TCR), and 12.5 µL of 2x Kapa Readymix. Primer 

extension was done with the following conditions: 1 cycle of 98oC for 5 min, 1 cycle of 55oC for 30 

s, and 1 cycle of 72oC for 2 min. The final product was purified as previously described, and eluted 

into 11 µL of water. 
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Complete sequencing handles were added to the final product using the following PCR 

mix: 0.5 µL of UPS2-N70x primer (10 µM), 0.5 µL of UPS2-N50x primer (10 µM), 9 µL of water, 

and 12.5 µL of 2x Kapa readymix were added to 2.5 µL of previously eluted product. Four 

reactions were performed for each sample, using a total of 10 µL of the eluted product. 

Amplification was done using the following cycling conditions: 1 cycle of 95oC for 2 min; 12-15 

cycles of 95oC for 30 s, 60oC for 30 s, and 720C for 1.5 min; and 1 cycle of 72oC for 5 min. All four 

reactions were pooled and purified for products >1000bp as previously described. Final product 

was assessed using fragment analyzer, and a major peak of around 1100 bp was observed for 

TCR product, and 1300 bp for TCR products. Library concentrations were assessed using the 

KAPA Library qPCR quantification kit (Kapa Biosystems). A more detailed step-by-step protocol 

(including example size distributions of successfully amplified samples) is available on  

http://shaleklab.com/resources/ and on the Nature Protocol Exchange.  

Conditions for TCR sequencing. TCR and TCR libraries were pooled at equimolar 

concentration. For single-end sequencing, 1-2 nmol of the final library was used to sequencing 

on the Illumina MiSeq. 150 cycles was performed on read 1 using the TCR-specific sequencing 

primers, and 20 cycles was performed on index 1 using Seq-Well sequencing primer. Sequencing 

primers were used at a final concentration of 2.5 µM. We aimed for 8-12 * 106 pass filter reads 

per lane (cluster density of roughly 450K/mm2). Based on the whole-transcriptome data, we 

allotted ~6,000 T cells per lane. 

Single-cell analysis of T cells from mice immunized with HPV-E7. Single-cell analysis was 

performed as previously described, with modifications46. The modifications are as follows: we 

identified 461 variable genes with log-mean expression values greater than 0.1 and dispersion 

(variance/mean) of greater than 1. Principal component analysis (PCA) was performed on the 

variable genes using the RunPCA function in Seurat. Principal components (PCs) were analyzed 

with the PCElbowPlot function in Seurat, and five significant components were identified. A two-

http://shaleklab.com/resources/


45 
 

dimensional tSNE visualization was then generated from the PC loadings for these first five PCs. 

Clusters were identified using the FindClusters function in Seurat with resolution = 0.4. Genes 

shown in Figure 3-5 was chosen by using the FindAllMarkers function in Seurat using the 

previous defined clusters. The resulting list was filtered for genes that show average fold change 

of greater than 2 with an adjusted P value of less than 0.001. To calculate gene expression by 

clonotypes, normalized gene count of cells sharing the same clonotypes were averaged. Then 

each gene was scaled to produce a z-score with maximum and minimum of +/- 2, respectively. 

The clonotype gene expression was clustered using ward.D2. Module 2 and 3 were also 

separately queried against C5 reference set. Signatures from Singer et al.55 was implemented on 

the dataset using the AddModuleScore function in Seurat. 

Single-cell analysis of T cells in peanut allergy. Single-cell analysis was performed as 

previously described, with modifications46. The modifications are as follows: for dataset including 

all four patients, we identified 486 genes with log-mean expression values greater than 0.1 and 

dispersion (variance/mean) of greater than 1. PCA was performed on the variable genes using 

the RunPCA function in Seurat. A two-dimentional tSNE visualization was then generated from 

the PC loadings 20 most significant PCs. For patient 77, we identified 701 variable genes with 

log-mean expression values greater than 0.1 and dispersion (variance/mean) of greater than 1. 

PCA was performed on the variable genes using the RunPCA function in Seurat. PCs were 

analyzed with the PCElbowPlot function in Seurat, and 15 significant components were identified. 

A two-dimentional tSNE visualization was then generated from the PC loadings for these first 15 

PCs. UMAP was also separately applied to the loadings of these identified principal components. 

The cluster of T cells with highest clonal expansion was used pseudotemporal analysis by 

Monocle 356. UMAP dimension reduction was used for pseudotemporal analysis, as was 

suggested by the authors of Monocle 3. Trajectory was calculated using the implementation of 

DDRTree in the learnGraph function in Monocle. Signatures from Wei, et al.57 were implemented 

using the AddModuleScore function in Seurat. 
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MsigDb signature enrichment analysis. Genes of interest (Modules from Figure 3-5, Cluster 3 

and 4 from Figure 3-10) were queried against gene sets from MsigDb to calculate significant 

overlap of gene signatures58,59. For the murine dataset, Module 2, 3, and 4 were compared against 

H, C2, and C7 reference sets. The results were filtered for signatures relevant to T cells, and the 

top five most significant signatures for each Module were shown in Figure 3-6. Module 1 was 

compared against H reference set, and the top five most significant signatures were shown in 

Figure 3-6. For the human dataset, Cluster 3 and 4 were compared against C7 reference set. 

The results were filtered for signatures relevant to T cells, and the top 10 most significant 

signatures for each Cluster were shown in Figure 3-11. Each signature was manually assigned 

a short description to aid visualization.  

Primer sequences, MsigDb signature enrichment results, and other supplementary 

information are available online at A.A. Tu, T.M. Gierahn, et al54.  

 

3.3 Results 

3.3.1 V gene selection using multiplex primer sets 

We reasoned that, in addition to targeting the constant regions of TCR transcripts by the biotin 

pull-down, we also needed to select for the 5’ side, or the V genes, of the transcripts. For this 

purpose, we examined the use of V gene specific primers. Multiplex primer sets specific to the V 

genes are often used in conventional methods of TCR sequencing, as described in Chapter 1. By 

using the V gene primers in our protocol, we could potentially select against the sterile transcripts 

detected by the size selection method, since these transcripts are less likely to have V genes on 

the 5’ side.  

 Multiplex primer sets specific to the V genes are often difficult to design. As there are an 

upwards of roughly 50-70 V genes for each chain, the primer sets would often contain 30-60, or 

even more depending on the exact protocol, separate primers. Off-target interactions between 
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the primers are difficult to predict, and the resulting PCR artifacts could significantly degrade the 

quality of the sequencing results. This issue is compounded by the number of cycles needed in 

amplification using these primer sets, wherein the PCR artifacts could be exponentially 

amplified60,61. 

 For our application, however, we reasoned that because we had already enriched and 

amplified the TCR transcripts from our samples, we would only need to use the V gene primer 

sets to attach the sequencing handles upstream of the CDR3 region, and not to further amplify 

our cDNA materials. We hypothesized that by avoiding amplification with the primer sets, we 

would also avoid much of the issues associated with multiplex primer sets. 

 As such, we decided to only use the multiplex primer sets in a one-step primer extension 

to add partial sequencing handles to the TCR cDNA, then following up with a final amplification 

using primers targeting shared priming sites to complete the extension of the sequencing handles 

(Figure 3-1). The resulting sequencing library can then be sequenced as normal to recover the 

CDR3 sequences. 

 We first tested the approach using an established primer set designed for human TCR 

sequences. TCR transcripts were first enriched using pull-down enrichment as before, then a one-

step primer extension was performed using Kapa Hifi polymerase, followed by sequencing handle 

amplification. The products were sequenced on Illumina MiSeq using standard paired-end 

Illumina sequencing primers. First, we noted that, unlike the size selection method, the modified 

method produced sequencing libraries with much less size variation, with almost no detectable 

short-length products (Figure 3-2). Second, upon analysis and comparison to the size selection 

sequencing results, we recovered almost identical distribution of V genes for both alpha and beta 

chains (Figure 3-2). This indicates that despite the V region specific selection, we introduced very 

little selection bias into our protocol. 
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Figure 3-1. Strategy for TCR recovery from 3′ barcoded single-cell sequencing library. Barcoded 

cDNA libraries (WTA products) including TCR and TCR transcripts in addition to other 
transcripts (top). Fragmentation and selective amplification of cDNA results in sequencing 

library used for transcriptomic sequencing, and analyzed via 3′ gene mapping as previously 
described46. TCR enrichment of same cDNA library through affinity capture with biotinylated 

oligonucleotides results in produces amplified products enriched in TCR and  transcripts. 
Sequencing library is made by primer extension with  V region primer sets followed by PCR 

amplification using the UPS2 handles (bottom). The CDR3 region is sequenced using Illumina 
MiSeq with custom sequencing primers, and merged with the transcriptomic data based on 

single-cell barcodes. 
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Figure 3-2. Incorporation of V gene primers improves mapping efficiency of TCR-enriched 
library. A, Typical size distribution of TCR enriched libraries with V gene selection. The major 

product is typically ~1300bp for TCR, and ~1100bp for TCR B, TCR mapping results of 
library shown in A. C, Comparison of TRAV gene mapping between V gene-selected library 

(orange) and size-selected library (blue). D, same as C, but for TRBV genes. 

 

3.3.2 Sequencing using custom sequencing primers 

Next, we looked for ways to further optimize the sequencing protocol to ensure optimal 

sequencing quality and cost efficiency. Up to this point, we had been relying on conventional 

paired-end sequencing (i.e. Read 1 and Read 2) to recover and pair single-cell barcodes to CDR3 

sequences. In this fashion, Read 1 would be used to sequence the cell barcodes, and Read 2 (on 

the opposite strand) would target the CDR3 sequences. While this approach was acceptable in 

our initial testing, it did contain several inefficiencies. Firstly, despite several steps of enrichment, 

our final sequencing libraries often still contained a small fraction of non-TCR products, which 
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may still be preferentially clustered on the Illumina flow cell depending on the lengths of the 

products. Secondly, sequencing quality on Read 2 of the paired-end reads is often worse than 

that of Read 1. This is due to the additional on-chip cluster amplification required to sequence 

Read 2 of the paired-end reads. 

 While neither issue was severe enough to hinder successful sequencing, we nevertheless 

thought there was significant room for improvement, and thus decided to optimize the process by 

using custom sequencing primers specific to the TCR transcripts. Illumina sequencing platforms 

allow for the use of custom-designed sequencing primers to target specific DNA sequences. An 

example of a custom primer is the Drop-Seq sequencing primer, which is also used to sequence 

Seq-Well libraries. We reasoned that it should be possible to leverage the constant region flanking 

the 3’ side of the CDR3 to directly target the sequencing reads to the CDR3 region. 

 As a result, we designed custom sequencing primers specific to the constant sequences 

of both TCR and TCR chains (Figure 3-3). We used the primers to perform Read 1 to directly 

sequence the CDR3 region. Then, leveraging the Seq-Well custom sequencing primer, we 

sequenced the single-cell barcodes using 20 cycles on the index read (Index 1), which would 

normally be used to demultiplex pooled samples. The entire process was done with a single-end 

sequencing scheme, removing the need for paired-end reads. 

 As shown in Figure 3-3, we were able to achieve high sequencing quality using this 

sequencing scheme, and because we used a TCR specific sequencing primer, virtually all 

resulting reads mapped to the variable regions of the TCR. We did note that there is an abrupt 

drop of quality at around 120th cycle in Read 1. This is likely due to some reads sequencing into 

the sequencing handle, due to the design of the primers. In the future, the primers should be 

adjusted to produce longer inserts. We also note that while we could no longer use Index 1 for 

sample barcodes, it is still possible to incorporate Index 2 on the 5’ side of the sequencing 

libraries.  
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Figure 3-3. Sequencing quality of data produced with constant region sequencing primers. A 
total of 170 cycles were used to sequenced the CDR3 (1-150) and the cellular barcodes (151-
170). (left) Cumulative percentages of reads with overall QScore >=30 by cycle number. (right) 

Median QScore of each cycle. 

 

3.3.3 Assessing accuracy by OT1 spike-in 

To test the sensitivity of our approach, we enriched TCR transcripts from Seq-Well WTA products 

derived from mouse splenic T cells spiked with T cells from an OT-I transgenic Rag1+/+Rag2+/+ 

mouse (0.01-10%). We recovered Tcra (25+/-3%) and Tcrb (65+/-4%) CDR3 sequences from 

cells detected in our whole transcriptome data (n = 4 samples). Both chains were recovered for 

20 +/- 3% of cells—similar to the predicted rate of recovery, assuming the capture of each 

transcript to be an independent event (16+/-7%; Figure A3-1).  Mapped Tcr sequences coincided 

with expression of T cell markers, such as Cd3e (Figure A3-1). Sequences sharing the same UMI 

also had high degree of sequence consensus (Figure A3-1; Methods). The proportion of OT-I 

CDR3 sequences recovered in each sample was consistent with expectations (Figure 3-4). Cells 

with an OT-I Tcra chain almost exclusively matched to the expected OT-I Tcrb chain (97.7%; 

33/34 cells); cells with OT-I Tcrb chains, meanwhile, primarily matched with the expected OT-I 

Tcra chain (70.5%; 33/45), though not exclusively (Figure 3-4). These results are similar to 
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previous studies, wherein Rag1+/+Rag2+/+ OT-I T cells were observed to produce functional TCRα 

chains in addition to the OT-I TCR chain62.  

 

Figure 3-4. Recovery of OT-I Tcra and Tcrb CDR3s. a, Proportions of recovered OT-I Tcra and 
Tcrb sequences from murine samples spiked-in with 10%, 1%, 0.1%, and 0.01% OT-I 

Rag1+/+Rag2+/+ T cells. Dash line indicates expected recovered proportions. b, Pairing of 
recovered OT-I Tcra and Tcrb chain from cells in all spiked-in libraries with either OT-1 Tcra or 

Tcrb chain sequences. Number of detected cells indicated in parenthesis. Yellow band indicates 
pairing of OT-I Tcra and Tcrb sequences from recovered cells. c, Proportion of T cells with 

successful CDR3 recovery (y-axis) as a function of the constant region mapping via scRNA-Seq 
by Seq-Well (x-axis). Number of cells with the corresponding number TCR constant region 
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transcripts within their 3′ scRNA-Seq data are indicated above the respective column. Error bar 
indicates standard deviation of estimated binomial distribution. 

 

We next assessed the relationship between the fraction of cells expressing TCR 

transcripts in their whole transcriptome data (based on TCR constant region mapping) and the 

percentage of CDR3 sequences recovered from the same cells (Figure 3-4). We observed a high 

correlation: cells with more copies of TCR transcripts in their whole transcriptome data yielded 

higher rates of CDR3 recovery from the TCR-targeted libraries (Tcra: rs = 1, n = 5, P value =0.017 

by Spearman; Tcrb: rs = 1, n = 15, P value < 10-6 by Spearman). Overall, excluding classified T 

cells with no detected TCR genes in their transcriptomic data, we recovered CDR3 from an 

average of 70+/-4% of cells, and CDR3 from 52+/-3%, resulting in combined pairings of Tcra 

and Tcrb sequences for 40+/-4% of T cells (Figure A3-1). Finally, we investigated the 

reproducibility of our approach by comparing technical replicates of the TCR-targeted libraries 

produced from the same starting WTA material. Across replicates, 94% of detected cellular 

barcodes were the same, and 99.7% of detected shared transcripts (12,849 out of 12,883) 

resulted in identical assignments of clonotypes (Table A3-1). Taken together, our results show 

that the method allows consistent and reproducible recovery of CDR3 sequences with high yields. 

3.3.4 TCR recovery reveals clonal expansion in immunized mice 

Antigen-specific T cells are often enumerated by flow cytometry using tetrameric reagents 

comprising known antigenic peptides bound to recombinant MHC molecules. The same peptide-

MHC complex, however, can select multiple T cell clonotypes63. This intrinsic multiplicity can 

obscure the underlying relationships between phenotypic states and associated clonotypes.  We 

sought to resolve the clonotypic diversity of tetramer-sorted T cells by applying our approach to 

murine T cells specific to a canonical envelope antigen (E7) from human papilloma virus (HPV16). 

After immunization and challenge, splenocytes were harvested from mice. Half of the splenocytes 

were stimulated ex vivo with E7 antigen for six hours, and half of the cells were not (Methods). 
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E7 tetramer+ CD8+ T cells were then sorted from both groups of splenocytes (Figure A3-2). These 

cells were prepared for scRNA-seq using Seq-Well, and their TCR CDR3 sequences were 

recovered (Figure A3-2). In total, 14,424 cells from across four mice were included in the study. 

We found a diverse set of clonal, expanded T cells within the tetramer-sorted populations isolated 

from individual animals. For each animal, the 20 most expanded Tcrb clones accounted for 69% 

to 89% of recovered T cells (mean = 908+/-332 cells). Between 77% to 90% of the recovered T 

cells had clonal Tcrb chains. In total, over 900 unique Tcra and 1200 Tcrb clonotypes were 

detected.   

We next analyzed the clonality of these cells with respect to their whole transcriptomes 

(Figure 3-5). The majority of stimulated cells were transcriptionally distinct from unstimulated cells 

isolated directly ex vivo (Figure 3-6). Computationally-determined clusters of cells (PCA followed 

by tSNE visualization; Methods) were preferentially enriched for either unstimulated or stimulated 

cells; only cluster 5 contained nearly equal portions of both (Figure 3-6). The degree of expansion 

observed among the clonotypes—that is, the number of cells sharing the same clonotype in the 

dataset—associated strongly with phenotypic clusters of T cells determined based on scRNA-

Seq (Figure 3-5). The most expanded clonotypes were observed in clusters 0 through 4.  These 

clusters were enriched (compared to cluster 5) in genes associated with cytotoxic effector 

functions such as Gzmb and Id2. The least expanded clonotypes were concentrated in cluster 5, 

and were characterized by enrichments for genes encoding naïve or central memory markers, 

such as Ccr7 and Sell64 (compared to clusters 0-4)  (Figure 3-5 and Figure A3-3). This 

association between the degree of clonal expansion and T cell activation affirms common 

principles of antigen-dependent activation among T cells65.  
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Figure 3-5. scRNA-Seq and TCR analysis of HPV-E7 immunized mice. a, tSNE visualization of 
all cells colored by computationally determined clusters based on transcriptomic data (n = 

14,424 cells). b, (top) Clonal size of Tcrb chain mapped on tSNE visualization of scRNA-Seq 
results. Cells are colored by the clonal size of their detected Tcrb clonotype. Clonal size is 
defined as the number of cells that share the particular clonotype. (bottom) Distribution of 
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differentially expanded clonotypes between the stimulated and ex vivo conditions. Each colored 
circle indicates a unique clonotype. c, Example mappings of selected clonotypes from Group 1 

(blue) and 2 (magenta) shown in d on tSNE visualization of all cells. d, Heatmaps of 
differentially expressed genes amongst the expanded clonotypes (>=15 cells) and 15 randomly 

sampled non-expanded cells (singletons) from Cluster 5 (see a) between the ex vivo and 
antigen-stimulated conditions. Gene expression represent scaled averages within cells of the 

same clonotype across the two conditions. Number of cells shown in parenthesis. Data 
represent combined data from four independent experiments of four mice total (a-d). 

 

 

Figure 3-6. Stimulated and ex vivo cells are transcriptionally distinct. a, tSNE visualization of all 
cells colored based on stimulation condition (n = 6,912 stimulated cells, dark grey; 7,512 ex vivo 

cells, light grey). b, Proportions of stimulated and ex vivo cells in each of the computationally 
determined clusters shown in Figure 3-5. Dash line indicates expected proportions assuming 

even distributions of cells from both conditions. c, Enriched MsigDb signatures of the four 
modules of genes identified in Figure 3-5. FDR q-values represent Benjamini and Hochberg-

corrected, one-tailed hypergeometric P values.  50, 49, 35, and 48 genes are included in 
Module 1, 2, 3, and 4, respectively for enrichment calculation. Data represent combined data 

from four independent experiments of four mice total (a-c). 
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3.3.5 Stimulated cells show clonotype-associated transcriptional profiles 

To further investigate transcriptomic differences between the expanded clonotypes, we filtered 

the data to expanded clonotypes (detected in at least 15 cells) that were shared between the 

stimulated and the ex vivo groups (Figure 3-5). We also included 15 randomly sampled singletons 

(i.e. clonotypes that were only detected once in the dataset) from the naïve cluster (cluster 5) in 

each stimulation condition as a point of comparison. We examined the gene expression among 

these clonotypes ex vivo and after antigenic stimulation (Figure 3-5). We observed three groups 

of clonotypes associated with four modules of differentially expressed genes. Unsurprisingly, by 

comparing to annotated gene sets (MsigDb; Methods), we found that the sampled singletons 

(group 3) associated with a set of naïve and central memory T cell-related genes (e.g. Sell, Ccr7; 

Module 4) across both ex vivo and stimulated conditions64. We also observed another group 

(group 2) of clonotypes that strongly upregulated cell-cycle related genes, characterized by Myc 

and Myc-targeted genes (module 1). The last group of clonotypes (group 1) exhibited higher 

expression of canonical cytotoxic effector markers such as Gzmb, Ccr2, and Ccr5 (module 3), but 

only moderately upregulated genes in module 1 upon stimulation64 (Figure 3-5 and Figure 3-6). 

These observed signatures were also consistent with previously published signatures of effector 

CD8+ T cells55 (Figure A3-4).  

While module 2 and module 3 were both associated with phenotypes of effector T cells, 

module 2 contained markers of cytokine signaling and interferon response such as Irf7 and Ifit1, 

as opposed to the cytotoxic markers in module 3 (Figure 3-5). Module 2 was accordingly enriched 

in cytokine-mediated signaling signatures, while module 3 was enriched in cell motility signatures 

(Figure A3-5). Module 3 was differentially expressed between group 1 and group 2 of clonotypes, 

but module 2 was upregulated directly ex vivo for both groups of clonotypes. Downregulation of 

module 2 upon stimulation may represent a transcriptional response to TCR-dependent 

activation66. We also note that group 1 clonotypes were also significantly more expanded than 
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group 2 clonotypes, suggesting that the two groups of clonotypes may have experienced different 

levels of activation and expansion in vivo (P value < 0.001 by Mann-Whitney U test; Figure 3-7). 

Overall, the clonotypes within groups 1 and 2 responded similarly upon exposure to antigens. 

That is, similar genes were up- or down-regulated upon stimulation in both groups (Figure 3-7). 

The two groups of clonotypes differed, however, in the magnitude of transcriptional changes, 

particularly for genes in module 1 (Myc-related genes), and in the expression of genes in module 

3 (cytotoxic-associated genes) (Figure 3-5; Figure 3-8). Together, these results highlight how 

our method can further reveal clonotype-specific transcriptional responses not delineated by 

scRNA-seq alone.  
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Figure 3-7. Group 1 and 2 clonotypes differ in expansion and gene expression upon stimulation. 
a, Clonal sizes of Group 1 and 2 clonotypes in the stimulated and ex vivo conditions shown in 

Figure 3-5. P value calculated by two-sample Mann-Whitney U test (Stimulated: n = 74 
clonotype groups in Group 1; 37 Group 2 clonotypes. ex vivo: n = 82 Group 1 clonotypes; 40 
Group 2 clonotypes). Box and whisker plots indicate the (box) 25th and 75th percentile along 

with (whisker) +/- 1.5*interquartile range. Violin plots represent estimated density of clonotypes. 
b, Gene expression fold changes between stimulated and ex vivo cells in (x-axis) Group 1 

clonotypes and (y-axis) Group 2 clonotypes. Each point represents a shared gene across Group 
1 and 2 clonotypes. Red line indicates fitted linear model. P value calculated by one-tailed F 

statistics (F(1,5908)) of the linear regression. n = 5908 genes. c, Volcano plots of differentially 
expressed genes between Group 1 and 2 clonotypes in the (left) stimulated and the (right) ex 
vivo conditions. P values were determined using a two-tailed likelihood ratio test, and adjusted 

by Bonferroni correction. Top 10 genes with positive or negative fold changes are labeled. Cells 
in Group 1 and 2 have been downsampled to 300 each (n = 300 cells for each of the groups). 

 

3.3.6 Public clonotypes exhibit similar CDR3 sequences 

We next investigated public clones that were shared among the four animals. We detected 76 

unique Tcrb sequences shared in at least two of the four animals (Figure 3-8). We focused our 

analysis on the 21 clonotypes detected in at least three of the four mice. Amongst the public 

clones, we observed five sequences across mice that exhibited clear convergence, wherein only 

two amino acid residues (7th and 8th residues) varied across the CDR3 sequences (Figure 3-8). 

Among these, Leu-Gly account of 70% of cells, Ser/Ala/Gly-Gly for 20%, and a shortened Asp-

only sequence the remaining 10%. Analysis of shared CDR3 sequences revealed variable 

pairing with CDR3 sequences both within and across mice, but several identical  pairings 

were observed in multiple animals (Figure 3-8). The most common CDR3 

(CASSQDLGNYAEQFF) and its two distinct CDR3 partners (CAMREGLMATGGNNKLTF and 

CAVSNSGGSNYKLTF) were present in the same cells in three of the four animals (n = 225 cells; 

Figure 3-8 and Table A3-2). These data suggest that these cells may possess dual functional 

TCR chains, a molecular feature that may play an important role in infection-induced 

autoimmunity42,43,67. 
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Figure 3-8. Analysis of shared clonotypes across four E7-HPV immunized mice. a, Venn 
diagram of shared unique Tcrb clones across the four mice. b, Amino acid logo plot of TCRβ 

sequences that show high similarity among public clones shared by at least three of four 
animals. Individual sequences are shown in c. c, TCRα and β matching of highly similar 

clonotypes found in public clones shared by at least three of four animals. Bold outline indicates 
dual TCRα chains found in the same cells (Table A3-2). Structural amino acids shown in grey. 
Number of cells shown in parenthesis. TCRα and β sequences that were detected in less than 

two cells were excluded for visualization. 

3.3.7 Clonally expanded T cells detected in peanut-allergic patients 

We next adapted the technique for use with human antigen-reactive CD4+ T cells. Antigen-specific 

MHC-tetramers are often not available for human T cells, making identification of disease-relevant 

T cells difficult compared to standard inbred mouse models. Instead, it is common to use either 

proliferation or expression of proteins associated with antigen-dependent activation (e.g., CD154) 

as a proxy for response to disease-relevant antigens68,69. We applied our approach to profile T 

cells isolated from patients with peanut allergy—a type 1 hypersensitivity condition linked to 

dysregulation of CD4+ T cells70. Peripheral blood mononuclear cells (PBMCs) from four patients 

were incubated overnight with peanut antigens and then sorted for CD154+ expression to enrich 

antigen-activated cells68,69 (Figure A3-6; Methods). Single-cell RNA-Seq was then performed on 
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the sorted cells via Seq-Well, and the corresponding TCR sequences were recovered (Figure 

A3-6 and Figure A3-7). We note that there were differences observed in the gene expression of 

cells from different patients, even after controlling for technical sources of variation (i.e. 

sequencing depth, mitochondrial content; Methods). The differences observed were due in part 

to varied expression of a number of genes associated with basal cellular functions, including sex-

linked genes (XIST and RPS4Y1) that were upregulated in cells from female and male subjects, 

respectively (Figure A3-7). Overall, 2,712 cells from four patients were included in the analysis. 

Contrary to what was observed for the tetramer-sorted mouse cells, the majority of the human 

CD154+ T cells were not clonal (mean = 75+/-12%). One of the patients (patient 77) exhibited a 

substantial expansion of T cells sharing common TCR sequences relative to the others (All 

patients: Figure A3-6 and Figure A3-7; patient 77: Figure 3-9).  These clonally expanded T cells 

expressed genes associated with activation, such as CD154, CD69 and TNFRSF4, as well as 

GATA3, a transcription factor associated with TH2 cells68,71. In contrast, the non-expanded cells 

exhibited genes associated with central memory or naïve cells including CCR7, SELL and 

LEF172,73(Figure 3-9). Composite scores of known signatures of CD4+ T cell subtypes confirmed 

an enrichment of TH2 signature in some of the expanded T cells57 (Figure A3-7). 
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Figure 3-9. ScRNA-Seq and TCR analysis of peanut-dependent activated T cells from one of 
the peanut-allergic individuals (patient 77) combined with pseudotemporal analysis. a, Clonal 
size of TCRB clonotypes mapped onto tSNE visualization of transcriptomic data (n = 1,496 

cells). b, Expression of canonical markers associated with naive/central memory, T cell 
activation, and TH2 phenotypes. Color indicates log-normalized gene expression (yellow to red). 
c, (top) Pseudotime trajectory of scRNA-Seq results with (bottom) TCRB clonal size mapped. d, 
TH2 pathogenic markers expression amongst expanded (n>=5 cells per clonotype, resulting in 
16 total clonotypes included) TCRB clonotypes with high pseudotime value (mean > 0.4, see 
Figure 3-11). Gene expression represent averages within each clonotype group and scaled 

across all groups. Structural amino acids shown in grey. Number of cells shown in parenthesis. 
Color indicates scaled and log-normalized gene expression (purple to yellow). 
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3.3.8 Expanded clonotypes exhibit varied expression of Th2 genes 

To examine whether these heterogeneous T cells from patient 77 might represent a spectrum of 

activation states, we next performed pseudotemporal analysis that showed a trajectory correlated 

with the degree of T cell stimulation, marked by increased expression of JUN, FOS, NFKB and 

CD154, among others68,74 (Figure 3-10). Genes associated with early pseudotime were enriched 

in canonical markers for naïve T cells, while genes associated with late pseudotime were enriched 

in markers for effector T cells (Figure 3-10). The T cells most associated with activation on the 

trajectory were also the most clonally expanded (rs = 0.39, n = 851, P value < 0.001 by Spearman; 

Figure 3-9).  Further, our pseudotemporal trajectory correlated strongly with expression of IL-5, 

IL-9, IL-13 and IL-17RB, known to encode markers of pathogenic TH2 cells70,71 (Figure 3-10, 

cluster 1). From these data, we posit that clonotypes that are both expanded and located towards 

the end of the trajectory may enumerate activated peanut-specific T cells. Among such cells, a 

subset of clonotypes exhibited TH2 functional signatures (Figure 3-9). In particular, only one 

clonotype (CASSDGNTEAFF) had high expression for all four TH2 markers, suggesting a robust 

polyfunctionality that may represent a highly differentiated TH2-polarized clone involved in the 

allergic state of the individual75,76. Although the majority of expanded clonotypes were located at 

the end of the pseudotime trajectory, we noted some clonotypes showed higher variation in 

phenotypic states than others (Figure 3-11). It is possible that other factors may also contribute 

to the observed cell state and expansion of these T cells, such as transcriptional pulsing or 

bystander activation77–79. Taken together, our data suggest that our method can resolve 

differential degrees of antigen-dependent activation among clonotypes from human T cells and 

potentially highlight clonotypes among enriched pools of activated T cells that are most relevant 

to a disease state of interest. 



64 
 

 

Figure 3-10. Distinct patterns of gene expression correlate with pseudotime. a, Expression of 
top 100 most significant genes visualized across pseudotime. Genes were clustered via 

Ward.D2 based on their patterns of expression. Data represent an individual experiment with 
1847 single-cells from one patient (patient 77). 
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Figure 3-11. Psuedotime correlates with effector T cell signatures. a, MsigDB analysis of genes 
enriched early (cluster 3 in Figure 3-10; n = 38 genes) or late (cluster 4 in Figure 3-10; n = 123 

genes) on the pseudotemporal trajectory. Description indicates cell state enriched with the 
corresponding gene set in comparison to another cell state. FDR q-values represent Benjamini 

and Hochberg-corrected, one-tailed hypergeometric P values. b, Pseudotime distribution of 
expanded clones shown in Figure 3-9. Number of cells for each clonotype group indicated in 
parenthesis. A total of 16 clonotype groups are shown. All box and whisker plots indicate the 

(box) 25th and 75th percentile along with (whisker) +/- 1.5*interquartile range (b). Data represent 
an individual experiment with 1847 single-cells from one patient (patient 77; a,b). 
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3.4 Discussion 

In this chapter, we took the lessons we learned from the size selection method to develop a 

more reliable method for recovery of CDR3 sequences from 3’ single-cell barcoded libraries. We 

continued with the biotin enrichment of TCR sequences, and by incorporating a V region 

selection using multiplex primer sets for primer extension, but not amplification, we achieved 

consistent recovery of sequences without introducing noticeable biases.  

The protocol also does not require overly precise pipetting, as the size selection 

methods often did. For the samples shown in this chapter, we routinely used multichannel 

pipettes, allowing us to process up to 96 samples at once. This feature will become important in 

later chapters, as studies become larger and necessitate more samples. 

The modified method also presents significant computational advantages. Previously, 

because the sequencing libraries were randomly tagmented, each read would be randomly 

mapped onto the TCR genes. As such, many of the reads would not cover the junctional regions 

within the CDR3 (i.e. the junctions between the different gene segments), thus requiring a much 

higher total number of sequencing reads to recover the CDR3 sequences from each cell. While 

we attempted several different computational packages to reconstruct consensus sequences 

from the data, many of those were not successful. In the modified method, because each read 

is specifically targeted to cover the junctions between the V, D, and J genes, we can directly 

derive the junctional sequences without de novo assembly, resulting in a higher yield of CDR3 

sequences. 

Since this method relies on a universal primer element for PCR amplification (UPS2 and 

a modified UPS), the method simplifies adaptation to other model species, such as non-human 

primates, by minimizing the need for additional optimization with new multiplex pools of primers. 

We also foresee that our general approach can also be used for other targets where isoform 

information is paramount, such as identification of CD45RA or CD45RO in T cells80.  
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Nonetheless, there are currently two practical limitations. First, the innate efficiency of the 

mRNA capturing reagents (i.e. 3′ barcoded beads for Seq-Well and Drop-Seq) limits the maximum 

potential representation (and thus recovery) of TCRs in libraries. Currently, for Drop-Seq, it is 

estimated that the barcoded beads capture 10-12% of available transcripts44. Improved quality of 

these reagents or the molecular biology used to generate the WTA products will likely address 

this limitation29.  Second, due to the incorporation of V region primers, the method presently does 

not recover full-length TCR transcripts, and therefore our analysis is restricted to the CDR3 region. 

The CDR3 region contains the majority of variability in TCR transcripts, and therefore, is likely 

sufficient for assessing clonal expansion and clonal tracking analysis60. Further, the design of the 

V region primers depends on adequate annotation of V genes, which may not be available for 

less characterized model species.  

 In summary, we have developed a simple approach to recover TCR CDR3 sequences 

from whole transcriptome libraries produced by common high-throughput scRNA-seq techniques 

that rely on 3′ barcoding of transcripts. We found the technique reliable and also high yielding, 

limited predominantly by the efficiency of initial capture of mRNA. Our approach can map murine 

and human antigen-reactive T cells, and in principle, is extensible to other species (e.g., non-

human primates) and target genes of interest (e.g., viral antigens, isoforms, germline and somatic 

variations of B cell receptors). Extension of this technique should be feasible so long as the 

targeted variable regions are flanked by suitable known sequences. Overall, our data demonstrate 

that enhancing the resolution of these populations of cells by the combined recovery of TCRs and 

scRNA-seq can further reveal phenotypic variations that emerge as a function of clonotype, and 

reveal convergent public clones with precision. We anticipate that our method will be especially 

useful for elucidating the intrinsic heterogeneity among antigen-specific T cells and their roles in 

immunological diseases, such as cancer, autoimmune disorders, and food allergy.   
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4. Application of Seq-Well and TCR recovery to the study 

of peanut oral immunotherapy 

 

 

This chapter is in part adapted from: B. Monian, A.A. Tu, B. Ruiter, et al, in prep. 

 

 

 

 

 

 

 

This chapter details the application of TCR recovery to further study peanut food allergy in a 

cohort of 12 patients undergoing treatment. Food allergy is a hypersensitivity condition with 

increasing prevalence globally, especially in developed countries. While some of the relevant 

cellular components have been identified, the mechanism of tolerance is still largely unknown. 

Due to the rarity of peanut-specific cells and the multitude of helper cells involved, peanut food 

allergy is apt for single-cell RNA and TCR sequencing.  

We uncovered a wide variety of T helper cell functions. Some only represented an 

extremely minor fraction of reactive T cells, and were therefore unlikely to have been detected in 

bulk measurements. Fortuitously, this study coincided with not only the development of the final 

TCR recovery method, but also an improved version of Seq-Well that dramatically increased the 

numbers of genes and transcripts per cell. As a result, we believe this is one of the most 

comprehensive views of not just peanut-reactive, but all T helper cells in general to date. 
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4.1 Motivation 

4.1.1 Immunotherapy is effective for some, but not all, peanut-allergic patients 

Food allergy is an immune hypersensitivity condition that affects an estimated 8% of children in 

the US, with increasing severity and global prevalence81. Allergic reaction could be directed to a 

variety of allergens, including milk, shellfish, and tree nuts82. The condition is characterized by the 

presence of allergen-specific Th2 cells, which in turn mediate the production of allergen-specific 

IgE antibodies83. The antibodies prime effector cells, such as mast cells, basophils, and 

eosinophils, through FcRI receptors that can be cross-linked in the presence of allergen. The 

resulting cellular degranulation leads to systemic release of histamine and other mediators81. 

Symptoms of the allergic reaction can range from mild to life-threatening (i.e. anaphylaxis).  

 At the time of writing, oral immunotherapy (OIT) is an emerging treatment for food allergy 

that was recently approved84. OIT involves daily ingestion of allergen wherein the dose gradually 

increases over time to promote clinical tolerance. The efficacy of OIT is variable: 80-85% of 

patients achieve desensitization (a loss in clinical reactivity with regular consumption of allergen), 

but most do not maintain unresponsiveness after treatment85 (i.e. without continued allergen 

consumption). 

 Nevertheless, OIT has been proven effective in inducing at least temporary tolerance, and 

even sustained tolerance in some patients. Though the mechanism of the therapy is still unclear, 

studies have characterized some aspects of the immune response to OIT. The prevalence of 

circulating allergen-specific Th2 cells and their expression of Th2 cytokines, may decrease or be 

suppressed by anergic gene programs, and patients who achieve sustained tolerance may have 

higher frequencies of regulatory T cells (Tregs) post-treatment86,87. OIT may also result in 

suppression of other cell types, such as basophils and eosinophils88. Th17 and Th1 responses, 

whether measured in expression of the respective cytokines or in cell numbers, have also been 

linked to allergic status, suggesting roles of non-Th2 response in food allergy89. 
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 Beyond the canonical markers of Th2 cells, including GATA3, IL-4, IL-5, and IL-13, distinct 

subsets of Th2 cells have also been reported90. Wambre et al. reported a subset of Th2 cells, 

termed Th2A, that correlated with allergic conditions91. In addition to the canonical cytokines, 

Th2A cells also exhibited increased expression of KLRB1 and IL17RB. Similarly, Mitson-Salazar 

et al. reported a pathogenic subset of TH2 cells, called peTh2 cells, that also similarly associated 

with expression of IL17RB as well as PTGDS92. Gawtham et al. proposed a model of different T 

follicular helper cells (Tfh cells) that helps explain class switching of B cells in response to foreign 

antigens. The group proposed that Tfh13, marked by expression of CXCR5 in addition to Th2 

cytokines, may promote food allergen specific IgE antibodies, leading to allergic outcomes93. 

 Despite the advances in the understanding of allergen-reactive T cells, most studies of the 

immunological responses induced by peanut OIT have relied predominantly on population-level 

measurements of T cells and other allergic effectors. As a result, past studies have relied on 

isolation of specific cell populations based on a priori knowledge, limiting the breadth of the 

studies. Similarly, study of TCR repertoire in OIT have been limited to measuring bulk changes, 

limiting further association of specific clonotypes to specific phenotypic response.  

 In the work presented in this chapter, we used scRNA-seq to study peanut-reactive T cells 

from patients undergoing OIT. We identified subsets of Th2 cells that shared markers with 

previously identified subsets in prior studies. By incorporating TCR recovery, we were also able 

to track common T cell lineages within patients across multiple timepoints.  

 

4.2 Methods 

Patients. Peanut-allergic individuals aged 7 and up were enrolled in a peanut OIT trial 

(NCT01750879) at the Food Allergy Center at Massachusetts General Hospital. All subjects were 

recruited with informed consent, and the study was approved by the Institutional Review Board of 

Partners Healthcare (protocol 2012P002153). Subjects were first screened for a diagnosis of 

peanut allergy by medical history, evidence of peanut-specific IgE per skin prick test (reaction 
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wheal ≥5mm larger than saline) or serum peanut-specific IgE titer (≥5 kU/L), and Ara h 2-specific 

serum IgE > 0.35 kU/L. Subjects then underwent a double-blind, placebo-controlled food 

challenge (DBPCFC) up to a maximum dose of 443 mg of peanut protein. Patients who reacted 

during the challenge, and had passed the prior screening, were eligible for inclusion in the study. 

Oral immunotherapy (OIT) study. The main objective of this phase I/II, double-blind placebo-

controlled, interventional study was to provide additional safety and mechanistic data on OIT for 

people with IgE-mediated peanut allergy. Enrolled patients were randomized to receive either 

treatment (peanut flour) or placebo (roasted oat flour) at a ratio of 3:1. Treatment consisted of a 

modified-rush protocol, followed by a build-up phase lasting for 44 weeks or when the patient 

reached 4000mg, whichever came first. Treatment dose was administered daily, and dosing 

escalation was incremental (based on previous OIT studies), occurring every two weeks. After 

the buildup phase, patients entered a maintenance phase in which treatment was continued at 

the top tolerated dose for each patient for 12 weeks. Finally, patients underwent an avoidance 

phase, an additional 12 weeks off therapy while strictly avoiding dietary peanut protein, in order 

to assess the durability of any desensitization resulting from OIT. During each phase of the study, 

a blood sample was taken, for four samples total per patient: two weeks prior to the start of 

treatment at baseline, fourteen weeks into the buildup phase, eight weeks into the maintenance 

phase, and eight weeks into the avoidance phase. 

Clinical assessments were made by double-blind placebo-controlled food challenge at 

baseline (DBPCFC1), at the end of 12 weeks of maintenance therapy (DBPCFC2), and at the 

end of 12 weeks of avoidance (DBPCFC3). Clinical outcomes were defined as: 1) treatment 

failure (failure to achieve the minimum maintenance dose (600 mg) of peanut protein by 12 

months, or an eliciting dose less than 1443 mg at DBPCFC2, or less than 443mg at DBPCFC3, 

OR less than 10-fold more than at DBPCFC1), 2) partial tolerance (eliciting dose less than 

4430mg at DBPCFC3 but at least 430 mg AND more than 10-fold more than at DBPCFC1), and 

3) tolerance (ingestion of 4430 mg of peanut protein at DBPCFC3 without symptoms). 
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Cell purification and sorting. After a blood sample was collected, PBMCs were immediately 

isolated by density gradient centrifugation (Ficoll-Paque Plus; GE Healthcare) and cryopreserved 

in FBS with 10% DMSO. After the study was completed, PBMCs from a patient at all four time 

points (15-30 x 106 PBMCs per timepoint) were simultaneously thawed, washed with PBS, and 

cultured in AIM-V medium (Gibco) with 100 µg/ml peanut protein extract for 20h, at a density of 5 

x 106 PBMCs in 1 mL medium per well in 24-well plates. (Peanut protein extract was prepared by 

agitation of defatted peanut flour with PBS, centrifugation, and sterile-filtering.) Anti-CD154-PE 

antibody (BD Biosciences; clone TRAP1) was added to the cultures at a 1:50 dilution for the last 

3h. After harvesting, cells were labeled with anti-CD3-AF700 (BD Biosciences; UCHT1), anti-

CD4-APC-Cy7 (BD Biosciences; RPA-T4), anti-CD45RA-PE-Cy7 (BD Biosciences; HI100), anti-

CD154-PE (BD Biosciences; TRAP1), anti-CD137-APC (BD Biosciences; clone 4B4-1), and 

Live/Dead Fixable Blue stain (Thermo Fisher; cat. no. L23105). Cells were then sorted on a 

FACSAria Fusion instrument (BD Biosciences). Cells were gated as live CD3+CD4+CD45RA- 

and sorted as either CD154+CD137+/- (referred to as “CD154+”), CD154-CD137+ (“CD137+”), 

or CD154-CD137- (referred to as “DblNeg”). 

Gene module discovery. Coexpressed gene modules were generated based on a sparse PCA 

approach described by Witten et al and implemented in the R package “PMA”94. This method 

employs an L1 norm penalty to reduce and eliminate gene loadings that do not materially 

contribute to each component. Prior to running sparse PCA, the gene expression matrix was 

randomly downsampled to have an equal number of cells from the top 70 (out of 109) samples, 

in order to limit bias caused by unequal cell numbers and to decrease computational time. Genes 

were filtered to the union of immune genes (as defined by the sets of gene lists available on 

ImmPort) and the variable genes in the dataset using the ‘var.genes’ command in the R package 

“Seurat”95. Finally, the gene expression data was scaled with respect to genes, and sparse PCA 

was run using the command “SPC” (with “orth” parameter set to TRUE and tuning parameter 
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“sumabsv” set to 1.8). Gene module scores were calculated as the scaled gene expression input 

matrix multiplied by the outputted loadings matrix “v”. 

Cells were deemed to “express” a module (that is, “positive” for a module) using a gating 

strategy similar to flow cytometry gating. Module scores of CD154-CD137- cells were used as a 

negative control, and a gate was set such that no more than 0.1% of CD154-CD137- cells were 

in the positive population. 

Each gene module was analyzed for contributions from the individual patients. Proportions 

of cells that scored positive for a module from each of the patients were tabulated. Modules with 

over 65% of cells from a single patient were removed from subsequent analysis (Figure A4-1). 

Distance analysis of TCR sequences. Pairwise similarity of TCR CDR3 sequences was 

evaluated using an adapted version of the TCRdist method published by Dash et al63. In brief, for 

two TCR CDR3 amino acid sequences of the same length, each residue position was compared 

and a penalty was assessed for every mismatch. The penalty for two different amino acid residues 

i and j was assessed using the BLOSUM62 matrix and was defined as min(4 – BLOSUM62[i, j], 

4). Each substitution thus incurred a penalty between 1 and 4. The overall distance between two 

CDR3s was calculated as the sum of penalties at all positions. In the case of two CDR3s of 

unequal length, the sequences were aligned in all possible ways and the minimum overall penalty 

was taken, with each gap incurring a penalty of 8. In this way, a pairwise distance matrix for all 

CDR3 sequences was generated. To accrue sufficient numbers for comparison, close CDR3 pairs 

were binned according to the following distances: 1-4, 5-8, 9-12, 13-16, 17-20, and 20 or more. 

Probability-based association between TCR and gene expression. Probability-based 

analysis was used to determine the degree of association between a categorical transcriptional 

feature (such as cluster or status of gene module expression) and a TCR CDR3 sequence. A 

likelihood ratio of association was defined as P/P0, where P was the probability of two cells, drawn 

randomly without replacement from all cells sharing the same TCR CDR3 sequence (in the case 
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of TCRdist = 0) or a defined pair of sequences (with a defined TCRdist > 0), both expressing a 

gene module or belonging to the same cluster of cells. The probability is normalized by P0, the 

probability of two cells, drawn randomly from all cells, both expressing the module or belonging 

to the same cluster. P0 represents the prior probability without the constraint of TCR information; 

thus, the ratio P/P0 represents the gain in probability due to the knowledge of TCR sequence. A 

ratio of 1 represents random co-occurrence of TCR sequence and the transcriptional feature, 

while a ratio of 2 represents a two-fold increase in the likelihood of shared transcriptional features 

given the same TCRb sequence. 

scRNA-seq and TCR recovery. Sorted subsets of CD4 memory T cells were processed for 

scRNA-seq and TCR recovery as previously described in Chapter 3. 

Visualization and clustering of single-cell RNA-Seq data. Visualization and clustering were 

done with the Python package “scanpy.” Prior to visualization, the normalized gene expression 

data was transformed using a standard “regress-out” approach to mitigate batch effects. A 

multiple linear regression was performed on all genes with two covariates that could be batch-

associated: numbers of transcripts per cell, and percent of transcripts aligning to the mitochondrial 

chromosome. The residuals from this regression were taken as the transformed data. 

Next, a principal components analysis was performed, and the top 10 components were used to 

generate a visualization with UMAP96 (uniform manifold approximation and projection). Clustering 

was performed on the top 10 principal components using the Louvain graph-clustering method. 

Clustering and clonotype assignment of Th1, Th2, and Th17 subsets. Cells that were positive 

for the Th1 (module 38), Th2 (module 7), and Th17 (module 9) modules were clustered via UMAP 

separately. In this scheme, cells that were positive for multiple modules were included in the 

analyses of all relevant modules. For Figure 4-4, clonotypes were each assigned to the subset 

with the highest proportion of cells of the clonotype. 
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Correlation of gene modules to clinical outcome. An average score was calculated for each 

gene module in the CD154+ compartment of each patient in the treatment group. The correlation 

of each module to clinical outcome was calculated by Spearman’s correlation. P values were 

adjusted by Bonferroni correction.  

 

4.3 Results 

4.3.1 Single-cell transcriptomic landscape of the patients undergoing peanut OIT  

Despite the higher throughputs of Seq-Well and other scRNA-seq platforms, studying peanut-

specific T cells directly from patient still presents several challenges. Firstly, the number of 

peanut-specific T cells is expected to be low. This due to the relatively small sample size of T 

cells derived from PBMCs of any single blood sample, compared to the total number of T cells 

within an individual. The sampling issue is compounded by the fact that patients undergoing OIT 

have most often been under peanut-avoidance for extended periods of time. As such, peanut-

reactive T cells are not expected to have gone through recent clonal expansion or activation. 

Therefore, to enrich for peanut-reactive T cells in our study, we used a peanut activation 

assay to identify cells expression activation markers CD154 and CD137 (Figure 4-1). PBMCs 

collected from four time points during the trial were cultured with peanut extract, and peanut-

activated CD4 memory T cells were enriched via FACS (Figure 4-1). The sorted cells were then 

processed for scRNA-seq and TCR recovery. We elected this strategy to not restrict our study 

only to cells reactive to known antigens. Peanut reactive cells were rare, consisting only less than 

5% of memory CD4 cells (as defined by CD154 expression by FACS). 

A UMAP representation of the transcriptomic data show that cells largely clustered with 

the sorted subsets (Figure 4-1). CD154+ and CD137+ cells showed distinct transcriptional states, 

with top differentially expressed genes including CD40LG in CD154+ cells and TNFRSF9 as well 

as the regulatory markers FOXP3 and TIGIT in CD137+ cells (Figure 4-2). Despite normalizing 
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for technical factors such as library size and expression of mitochondrial genes, we also observed 

patient-dependent variation within each cluster (Figure 4-1). Many patient-related differences 

could be attributed to features such as sex-linked genes and baseline inflammation, suggesting 

that these features represent inherent biological differences rather than batch effects. An analysis 

of the patient contribution in each of the modules also confirmed that some of patient-specific 

clusters were driven by genes specific to a subset of patients (Figure A4-1).  Overall, there was 

no association of time points with broad transcriptional states, indicating that OIT-induced effects 

were likely to be subtle.  

To observe the finer-grain subsets among peanut-reactive T cells, we developed an 

unsupervised approach to discover immune-related gene expression programs. The dataset was 

filtered to 1,500 immune-related or variable genes. Then, co-expressed genes were aggregated 

into gene modules using an implementation of sparse principal components analysis (PCA) to 

derive a set of 50 gene modules, each containing 4-10 genes. Known relevant functional states 

of T cells were recovered as individual modules, such as Th1, Th2, and Th17. (For more details 

about generation of the modules, please see thesis work of Brinda Monian.) 
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Figure 4-1. Peanut-reactive T cells from individuals undergoing oral immunotherapy have 
diverse transcriptional signatures. a, OIT study design, definition of outcomes, and experimental 

workflow. CD3+CD4+CD45RA- memory T cells were further sorted as CD154+CD137+/-, 
CD154-CD137+, or CD154-CD137-. b, Two-dimensional UMAP visualization of all single-cell 
transcriptomes, colored by sorted subset and time point (top) or by patient and clinical group 
(bottom). Data represent 134,129 total cells (74,646 CD154+, 41,186 CD137+, and 18,297 
CD154-CD137-) c, Selected gene modules discovered from the data using sparse principal 

components analysis overlaid on UMAP from b. For each module, a putative name, the weights 
of each contributing gene, and an overlay of module score on the UMAP coordinates are 

shown. 
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Figure 4-2. Top differentiating genes of the three sorted subsets of memory T cells. CD154 
(CD40LG) and CD137 (TNFRSF9) are mainly differentiated by transcripts of their respective 

surface protein markers. 

 

4.3.2 TCR recovery from peanut OIT samples 

Next, to investigate clonal T cell responses to peanut antigens, we recovered paired TCR 

sequences for each cell. We recovered paired TCR sequences for 60% (sd = +/-17%) of cells, 

TCR for 55% (+/-15%) of cells, and both chains for 36% (+/- 12%) of cells for each patient. 

Recovery was uniform across samples, and expanded clones largely localized within certain 

areas of the UMAP, suggesting an association between expansion and transcriptional state 

(Figure 4-3). 

 The vast majority of expanded TCR sequences were paired with a single TCR (Figure 

A4-2). As a result, we used TCR for all downstream analyses involving clonotypes. The 

diversities of CD154+ and CD137+ repertoires were significantly less than that of the CD154-
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CD137- (double negative) cells, suggesting that these markers enriched for a pool of expanded, 

antigen-specific clonotypes (Figure 4-3).  

Across the three sorted subsets, we detected clear distinction of clonotypes between 

CD154 and CD137 population, suggesting that the two subsets represent distinct clonal lineages 

of peanut-reactive T cells. Further, we noted similar, though much less distinct separation of 

clonotypes between CD154 and double negative populations (Figure A4-3). We believe this result 

is expected, considering that CD154 has been noted as an early and transient activation marker. 

It is likely that cells of identical clonotypes would not expression the marker at uniformly the same 

time, or even at the same level. Therefore, our CD154 enrichment may only capture some fraction 

of cells of a particular clonotype. Taken together, we interpret this to mean that we were 

successful in enriching for peanut-reactive cells based on the two activation markers. 

To determine how the gene modules associated with clonal T cell expansion, we first 

assigned cells as positive or negative for each module based on their respective module scores 

(Methods). We then calculated the average TCR clonal size for cells associated with each 

module as well as the average expression of that module in the CD154+ cells relative to the 

double negative cells (Figure 4-3; Methods). We found that modules representing Th1, Th2, and 

Th17 functions exhibited strong upregulation in the CD154+ compartment and were associated 

with expanded T cell clonotypes, suggesting that these modules were associated with expanded, 

peanut-responsive T cells. As expected, modules unrelated to T cell effector functions were not 

associated with upregulation in the CD154+ compartment. Of these, modules representing 

general T cell activation and survival were also associated with clonal expansion (such as module 

6, which included interferon response-related genes, and module 26, which included PDE4A, a T 

cell activation marker). 
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Figure 4-3. Functional gene modules are associated with clonal expansion and enriched 

expression in activated cells. a, Clonal size of TCR sequence (left) or TCR sequence (right) 
overlaid onto the UMAP. Clonal size is defined as the number of cells sharing a TCR sequence. 
b, Diversity (Shannon index) of TCR repertoire by sorted subset. Each data point represents the 
repertoire from one patient at all time points. Comparisons between subsets are annotated with 

p-values from Wilcox rank-sum test. c, Distribution of TCR clonal sizes (defined as the number 
of cells sharing a TCR sequence), within each sorted subset. Comparisons between subsets 

are annotated with p-values from Wilcox rank-sum test. d, Heatmap of the percentage of TCR 
sequences shared between time points and activated subsets. ‘Percent shared’ is defined as 

the number of unique TCR sequences detected in both conditions, divided by the geometric 

mean of the number of unique TCR sequences in each of the two conditions. Sequences from 
all treatment-group patients were pooled. e, Average clonal size and CD154 enrichment in 

expression above CD154-CD137- cells for every gene module. Clonal size was calculated with 
respect to all cells and then averaged for those cells expressing the module. Expression 

enrichment is defined as the average expression of CD154+ cells, divided by the average 
expression in CD154-CD137- cells (Methods). 
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4.3.3 T helper cells comprise six clonally distinct subtypes 

Due to their strong enrichment in the CD154 compartment and known contribution to food allergy, 

we further analyzed the heterogeneity among cells expressing the Th1, Th2, and Th17 modules. 

We found three distinct clusters of Th2 cells, two clusters of Th1 cells, and only one cluster of 

Th17 cells. Our results suggest heterogeneity within the Th1 and Th2, but not Th17, cells (Figure 

4-4). 

 The three clusters of Th2 cells corresponded to a Tfh2-like population (high in CXCR5 and 

PDCD1), a Treg-like state (FOXP3 and TNFRSF9), and a Th2A-like population6 (GATA3, 

IL17RB, and PTGDR2) (Figure 4-4). The Tfh2-like population showed similarity to a previously-

described pathogenic Tfh13 subset, while the Th2A-like-high population shares markers 

previously identified in Th2A and peTh2 populations91,93.  

 Within the Th1 cells, the clusters corresponded to a Tfh1-like population and another 

larger population with canonical Th1 signatures (Figure 4-4). Both of these clusters expressed 

high levels of IFNG and GZMB, and the Tfh1-like cluster exhibited high overlap of upregulated 

genes with the Tfh2-like population, including ICOS, PDCD1 and TNFRSF9. Unlike the Th1 and 

Th2 cells, we did not observe distinct subsets within the Th17 population, which is marked by 

expression of IL17A and IL17F. 

Next, we examined how highly expanded TCR clonotypes were distributed between these 

six subsets. We found that most clones were primarily associated with a single subset (Figure 4-

4), suggesting that these subsets represent distinct clonal lineages. We also observed a pattern 

of overlapping clones between the Th1 and Th17 states. This is in accordance to previous studies 

that have reported overlap of Th1 and Th17 phenotypes97. 
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Figure 4-4. Subsets of T helper are clonotypically distinct. a, UMAP visualization of Th1, Th2, 
and Th17 scoring cells. Clusters are annotated by their putative identities. b, Differentially 

expressed genes in each subset, averaged by patient. Genes were selected using a ROC test 
and manual curation. Each column represents the average expression of all cells in a given 

patient, for a given gene (row). Average expression levels were row-normalized. c, Heatmap of 

the percentage of TCR sequences shared between the subsets. Sharing is defined as the 
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number of cells of particular TCR sequence (row) detected in each of the subset, divided by 
the total number of cells within the clonotype. Sequences from all patients were pooled. d, TCR 

distance analysis of TCR sequences in the subsets. The x-axis represents bins of successively 
greater pairwise TCR distance, calculated using TCRdist. The y-axis represents likelihood ratio 

of cells with highly similar TCRs (of similarity indicated on the x-axis) to be of the same 
subset,relative to the prior probability of any two cells belonging to that subset. ‘****’ refers to a 

p-value of <0.0001 by a Chi-square proportion test, ‘***’ refers to p-value of <0.001, and ‘**’ 
refers to p-value of <0.01.  

 To determine whether the association between clonotypes and phenotypes was likely 

influenced by TCR structure, we looked for homology using TCRdist, which quantifies homology 

between TCR sequences using a modified FLOSUM matrix63 (Methods). We found that pairs of 

cells with TCR sequences with a similarity distance of less than 9 had a significantly increased 

likelihood of both cells belonging to the same T helper cluster, with the exception of cells in the 

Th2A-like cluster (Figure 4-4d). This result indicates a convergence onto common TCR motifs 

within each of the subsets, suggesting that clonotype-specific factors such as TCR affinity or 

epitope selection may drive the induction of specific T helper phenotypes. 

4.3.4 Th1 and Th2, but not Tfh, expression is suppressed by OIT  

We next assessed the influence of OIT on the TCR repertoire and the identified T helper 

phenotypes. One possible mechanism of OIT is by either inducing expansion of T cell clones 

associated with regulatory function, or by promoting contraction of reactive clones. We quantified 

the frequencies of expanded clonotypes at different timepoints. The majority of expanded Th2-

expressing clonotypes were present at all four timepoints, and the clonal frequencies at baseline 

was significantly correlated with clonal frequency at maintenance, suggesting that OIT introduced 

little change in the peanut-reactive TCR repertoire (Figure A4-4). Furthermore, we assessed 

whether any of the timepoints were associated with emergence of lowly-expanded clonotypes, 

which could represent emergence of newly activated clonal T cells. We did not find any of the four 

timepoints to be associated with higher amount of unique clonotypes than expected (Figure A4-

4).  
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Figure 4-5. Th1 and Th2, but not Tfh, subsets are suppressed by OIT. a, Average Th1 Th2 and 
Th17 module expression by patient, over time, for treatment patients. Data points are colored by 
the clinical outcome for each patient. ‘*’ refers to an adjusted p-value of <0.05 by a Wilcox rank-

sum test. b, Proportion of Th1+, Th2+, and Th17+ cells within clonotypes of six identified T 
helper subsets. The fraction of cells within each clonotype that were positive-scoring for their 
respective module at a given time point was plotted for each clonotype with at least two cells 

detected at that time point. ‘*’ refers to an adjusted p-value of <0.05 by a Wilcox rank-sum test, 
“**” refers to adjusted p-value of <0.005, and “****” refers to adjusted p-value of <0.0005. c, 
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Correlation of modules to clinical outcome and their CD154 enrichment. Dashed line indicates 
adjust p-value = 0.05. Each module colored by their correlation to allergic (TF and PT) or 

tolerance (TO). Data represents all patients at all timepoints with the exception of placebo (PL) 
patients. d, Expression of Th1, Th2, and Th17 modules by patient and timepoint. Size of the 

circle indicates scaled percent of CD154+ cells expressing the respective modules. Color 
indicates the level of expression, within cells that express the respective modules.  

 

We then evaluated the mean expression of Th1, Th2, and Th17 modules in patients 

undergoing treatment. We found that only the Th2 module showed significant changes over the 

course of OIT (Figure 4-5). We did not detect significant changes in patients treated with placebo 

(Figure A4-5).  

Next, we quantified the clonotype-specific impact of OIT. Due to the varying expression of 

Th1, 2, and 17 genes by different clonotypes, we decided to quantify the uniformity of clonotypes 

in their expression of Th1, 2, or 17 module, instead of their average expression directly. For each 

clonotype associated with each subset, we calculated the proportion of cells (of the same 

clonotype) that meet the respective module gating threshold at each timepoint. This resulted in a 

“clonal ratio” metric that demonstrates suppression and activation of clonal cells.  

We found that clonotypes associated with Th1 and Th2A-like populations showed 

decreases in proportions of Th1+ and Th2+ cells, respectively, over the course of treatment, 

indicating that OIT induced a suppression of inflammatory activities in these populations, a trend 

which was not detected in placebo-treated patients (Figure A4-5). In contrast, we did not detect 

statistically significant changes in the Tfh1-like, Tfh2-like, or the Th17 subset (Figure 4-5), 

suggesting that these populations are more resistant to the effects of OIT. 

Interestingly, we found that the expression of the Th17, but not Th1 or Th2, module 

significantly correlated with clinical outcome: across all timepoints, patients in the treatment failure 

or the partial tolerance group exhibited higher expression of Th17 than patients in the tolerance 

group (Figure 4-5). The Th17 module was also significantly enriched in the CD154+ population 
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over the double negative compartment, suggesting that its expression was also specifically 

induced by peanut antigens. Other modules that significantly correlated with the allergic patients 

were mostly associated with signatures of general T cell activation, such as OX40L (Module 22), 

LAG3 (Module 8), and STAT1 (Module 4). 

4.3.5 Clonotypes associated with increased expression are more resistant to OIT 

To more precisely determine the effect of OIT on clonotypes, we decided to further quantify 

clonotypic changes overtime. We saw the largest changes in Th1 and Th2 expression levels 

between baseline (BL) and maintenance (MN) timepoints. Therefore, we decided to focus our 

analysis on just those two timepoints. We filtered the dataset to just clonotypes from treated 

patients that have been detected at both timepoints. Then, we separated clonotypes into ones 

that are Th2+ at just BL, Th2+ at just MN, and Th2+ at both timepoints and neither timepoints 

(Figure 4-6).  

 We compared the mean Th2 scores of the clonotypes. We found that clonotypes that were 

classified as ‘both’ had higher mean Th2 scores and clonal ratios at both timepoints than 

clonotypes that were only classified as Th2+ at one, but not both timepoints (Figure 4-6). 

Clonotypes in the four categories were not significantly different in clonal expansion. Our results 

would suggest that clonotypes with higher expression of Th2 genes were more likely to maintain 

their expression over the two timepoints. Interestingly, we did not find significant enrichment of 

the categorized clonotypes in any of the Th2 subsets (Figure 4-7). 
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Figure 4-6. Highly Th2 clonotypes are more likely to remain highly activated at both BL and MN 
timepoints. a, Th2 module scores of clonotypes at BL (x-axis) and MN (y-axis). Each point 

represents average expression of a clonotype. Vertical and horizontal lines represent Th2 gating 
on the module score (Methods). Clonotypes are then classified as ‘BL-only’, or Th2 + at only BL 

timepoint; ‘MN-only’, or Th2+ at only the MN timepoint; ‘Neither’ for not Th2+ at either 
timepoints; or ‘Both’ for Th2 + at both timepoints. b, Proportion of Th2+ cells for each of the 

categories of clonotypes identified in a. p-value shown for wilcoxon rank-sum test. 

 

Figure 4-7. Clonotypes that are Th2+ at BL and MN are not more clonally expanded or more 
likely to be of a particular Th subset. a, Clonal expansion of categories of clonotypes shown in 

Figure 4-6. b, Distribution of the categories of clonotypes among the three subsets of Th2 cells. 

 

4.4 Discussion 

In this chapter, we applied scRNA-seq and TCR recovery to study peanut-reactive T cells. By 

using an antigen activation assay and leveraging the resolution of scRNA-seq, we were able to 
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delineate multiple subsets of relevant T helper cells simultaneously, despite the rarity of these 

populations. We were also able to quantify clonotypic responses associated with each of these 

populations. To our knowledge, this work represents the most comprehensive characterization of 

T helper cells in the context of food allergy. 

 Our results suggest that OIT may only be effective in modulating certain subsets of T 

helper cells. In our data, Tfh cells, which may be most directly responsible for the initial production 

of allergen-specific IgE antibodies, were less likely to be suppressed by OIT. Nevertheless, we 

detected a significant decrease in the response of other Th2 cells. Our findings suggest a possible 

explanation for the temporary effects of peanut OIT. It is possible that only the non-Tfh Th2 cells 

are responsive to therapy, and as a result IgE-driven immune responses, which may be 

associated with Tfh cells, could return after the end of treatment. Furthermore, our analysis of 

clonotypes detected in both BL and MN would indicate that the most pathogenic Th2 cells may 

also be the most resistant to therapy, further indicating that OIT may only modulate a subset of 

peanut-reactive cells. 

Surprisingly, we did not detect an emergence of Treg response in our dataset. Treg 

module did not change significantly with time, nor did it associate with clinical outcome. The Treg 

subset within the Th2 cells is the smallest subset, making the study of this subset over the four 

timepoints more difficult.  

Our study had several limitations. First, it is likely that the peanut activation assay likely 

also induced some bystander activation of T cells. We believe that by incorporating TCR 

clonotype information, we were at least able to in part ameliorate this source of noise and identify 

the likely antigen-specific T cells. Secondly, due to the size of the study, we were unable to 

determine gene expression modules predictive of clinical outcome at baseline, simply due to p-

value adjustment. We believe that if we were to increase the size of the study, our correlation 

could reach statistical significance. Nevertheless, by including datapoints from all timepoints (and 

not just those from baseline) we were able to detect statistically significant correlations between 
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clinical outcome and expression of the Th17 module as well as other modules related to general 

T cell activation. Our analysis indicates that Th17 as well as other signatures of T cell activation 

may be upregulated in patients with worse outcomes.  

Our results suggest that while OIT is effective in inducing changes in the Th2 cells, it is 

likely ineffective in modulating key populations of T cells, limiting the effectiveness of the 

treatment. In the future, treatment that can more directly target Tfh cells may lead to more lasting 

benefits.   
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5. Application of Seq-Well and TCR recovery to the studies 

of other diseases 

 

 

 

This chapter is in part adapted from: S.W. Kazer, T.P. Aicher, … A.A. Tu, et al98, and T.K. 

Hughes, D. Gideon, … A.A. Tu, et al, in prep. 

 

 

 

 

 

 

 

 

 

 

In this chapter, we detail the application of our TCR recovery technique to previously processed 

samples. One of the main advantages of our method is that it is applicable to any 3’ library in 

general, and as such is applicable to processed samples post hoc. We applied the technique to 

two clinical studies. First, we recovered TCR sequences from HIV samples originally processed 

in South Africa to find T cell clonality associated with known markers of activated T cells. Then, 

we expanded the application of the method to cynomolgus monkeys by designing new primers 

specific to the TCR V genes of the cynomolgus genome.  
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5.1 Motivation 

5.1.1 Retroactive study of TCR from processed clinical samples 

Single-cell sequencing is an increasingly common technique used to study immunological 

questions. There are an increasing number of published and commercially available platforms for 

research groups to choose from. The costs of these platforms are often high both in terms of the 

monetary costs and the learning curve associated with technology adoption. Therefore, it is 

uncommon for any individual group to utilize multiple platforms, and as a result, different research 

labs often utilize different platforms, depending on various factors such as the specific application 

and the ease of adoption. 

 As such, our outlined TCR recovery technique presents several advantages. Firstly, it is 

applicable to any single-cell 3’ barcoded library, regardless of how the library is generated, 

whether via Seq-Well, or another commercial solution such as those of 10X genomics. Secondly, 

our method relies on short-read sequencing, which is more widely available than long-range 

sequencing to most research groups. Thirdly, because library amplification is only done with 

universal primers, it is relatively easy to adapt the technique for other species or other gene 

targets by changing the gene-specific primers, since these primers would need less optimization. 

 The first two points offer further advantages for sample processing. Namely, a T cell 

sample could be process and analyzed before deciding whether sequencing of the TCR repertoire 

would likely be fruitful. Furthermore, it also means that the technique could be applied to archived 

clinical samples that were previously processed, should the T cells in these samples warrant 

further analysis. We leveraged this characteristic to further study T cells in the context of human 

immunodeficiency virus (HIV) infection using samples that were collected and processed in South 

Africa. 

 Predicting primer interactions in a multiplex primer pool is often difficult, and therefore 

optimization often requires laborious trial and error.  Much of the difficulty comes from the PCR 
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amplification process, which could intensify imperfections in the primer design by amplifying off-

target products. Therefore, we reasoned that it would be relatively simple to design new V primer 

sets in our protocol since the primers would only be used for a single-step extension instead of a 

multi-cycle amplification. We demonstrated this principle by extending our technique to study T 

cells in a cynomolgus monkey model of tuberculosis (TB). We designed the primers based on 

limited knowledge of V genes, and was able to recovered TCR sequences in a wide variety of T 

cells. 

 

5.2 Methods 

FRESH study subjects. The FRESH study recruits HIV negative women, age 18-24, and tests 

for HIV-1 RNA in the plasma twice weekly for one year. Each subject participates in peer-support 

groups and receive a stipend for each visit. If a plasma test resulted positive, the participant in 

asked to return to the clinic the same day to collect a blood sample. Thereafter, blood samples 

are collected weekly through first 6 weeks of infection, and regularly afterward as long as the 

participant continues to return to the study center. At the time of positive plasma test, subjects 

also initiate anti-retroviral therapy, as per standard treatment guidelines. 

Cynomolgus macaque animals. Four Cynomolgus macaques (Macaca fascicularis), >4 years 

of age, (Valley Biosystems, Sacramento, CA) were housed within a Biosafety Level 3 (BSL-3) 

primate facility. Animals were infected with low dose M tuberculosis (Erdman strain) via 

bronchoscopic instillation of 7-12 colony-forming units (CFUs)/ monkey to the lower lung lobe. 

Animals were infected for a period of 10 weeks and Infection was confirmed by tuberculin skin 

test conversion. Serial clinical, microbiologic, immunologic, and radiographic examinations were 

also performed. 

Necropsy of cynomolgus macaques. an 18F-FDG PET-CT scan was performed on every animal 

1-3 days prior to necropsy to measure disease progression and identify individual granulomas. At 

necropsy, monkeys were maximally bled and humanely sacrificed using pentobarbital and 
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phenytoin (Beuthanasia; Schering-Plough, Kenilworth, NJ). Individual lesions previously identified 

by PET-CT and those that were not seen on imaging from lung and mediastinal lymph nodes 

were obtained for histological analysis, bacterial burden, and immunological studies. 

Design of cynomolgus TCR primers. Cynomolgus TCR gene references were provided by the 

Sam Behar lab. Human primer sets were mapped to the reference via Blast, and primer 

sequences were adjusted to include all genes in the cynomolgus reference. Homologies between 

different genes were leveraged to decrease the total number of primers needed.  

 

5.3 Results 

5.3.1 Recovery of TCR sequences from HIV samples 

Due to the complex immune response involved in the disease, scRNA-seq is an attractive tool for 

the study of HIV infection. The dynamics of immune response during the early stages of infection, 

particularly Fiebig Stage I and II, as well as before and at peak viral load, could be important for 

identification of better therapeutics targets99,100. To this effort, the Females Rising through 

Education, Support and Health (FRESH) study, which combined education, job training, and 

administration of treatment, was started to track high-risk individuals in South Africa before and 

after acute infection101. The study involved regular collection of blood samples from enrolled 

individuals. The individuals were tested for HIV infection, and samples before, during, and after 

acute infections were processed for scRNA-seq. 

 Due to the scarcity of the samples, Seq-Well was well suited for the application, as it can 

process low-input samples with minimal losses. Samples were acquired and processed in an 

ongoing basis, often directly onsite in South Africa. As a result, transcriptomic data from the 

samples were acquired and analyzed before the development of work described in this thesis (the 

data was also collected using an earlier version of Seq-Well). The data indicated upregulation of 
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interferon stimulated genes as well as pro-inflammatory T cell differentiation. Modules of viral 

response genes were also identified in subsets of CD8 T cells.   

 We were interested to investigate whether we could also detect clonally expanded T cells 

in individuals over the course of the study. We recovered TCR sequences from four individuals in 

the study (Figure 5-1). While we were able to recover on average 40% of TCR from each of the 

patients, we were only able to recover roughly 25% of TCR leading to low pairing of alpha and 

beta chain. As a result, we focused our analysis on TCR sequences.  

 While we were able to detect clonal cells in the dataset, the overall clonal expansion was 

low, and there was no observable trend in each of the patients (Figure 5-2). This could be due to 

low numbers of T cells recovered for each of the patients, making consistent discovery of 

expanded clonotypes difficult (Figure A5-1). Furthermore, the samples were not enriched for 

antigen-specificity or reactivity, meaning the number of antigen-reactive T cells in the dataset may 

be inconsistent from timepoint to timepoint. Nevertheless, we detected some clonal T cells, 

particularly around two-four weeks after infection. As expected, clonal expansion was higher in 

the cytotoxic T lymphocyte (CTL) populations (Figure 5-3). The detected expanded clones could 

represent T cell expansion in response to acute infection. 
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Figure 5-1. Recovery rate of TCR and TCR sequences from human HIV samples. Each data 
point represents a sample from one patient at one timepoint. 
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Figure 5-2. Clonal expansion of T cells from each of the HIV patient samples. Dark blue 
segments indicate proportion of cells with expanded clonotypes. Each segment indicates 2 

unique clonotypes from the most expanded (i.e. rank 1 and 2) to least expanded. White portion 
indicates singletons, or clonotypes detected in only one cell. 
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Figure 5-3. Clonal expansion by T cell cluster. Cytotoxic T lymphocyte (CTL) clusters are 
separated into one with proliferation markers (CTL.Prolif) and one without (CTL.Bulk). Blue 

segments indicate proportion of expanded cells. 

 

5.3.2 Recovery of cynomolgus monkey TCR sequences 

So far, we have shown applications of our method on samples derived from murine and human 

tissues. However, many research groups also utilize non-human primates (NHPs), particularly to 

study infectious diseases102. Therefore, extension of our method to NHP species could prove 

valuable for those studies.  

TCR sequencing of NHP models can be particularly challenging, since the relevant loci 

(particularly those of V and J genes) of the species may not be well-annotated, and well-validated 
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primer sets may not be available. Working with the Samuel Behar lab, we adapted our human 

primer sets to cynomolgus references. While there are many homologies between the human and 

the cynomolgus references, many of the primers required modifications to avoid erroneous 

matching of primer and target sequences, and to ensure that all relevant V genes were targeted 

by at least one primer in the pool.  

 We then applied our modified method to study Mycobacterium tuberculosis (Mtb) in an 

NHP model. Mtb is the major causative agent of TB, which is estimated to cause 1.5 million deaths 

per year103. Mtb infection is characterized by the formation of granuloma, a structure of immune 

and stromal cells formed in response to Mtb. Immune cells within the granuloma are critical to the 

control of persistent infections104,105. Due to the nature of the disease, human samples of 

granulomas are typically only available in cases when surgery is needed (often for unrelated 

reasons) or posthumously. NHP model provides an opportunity to study Mtb granulomas in 

different stages of disease. 

 We recovered TCR sequences from single-cell libraries of 28 granulomas from four 

cynomolgus macaques. The recovered T cells of the samples exhibited a variety of phenotypes, 

including a Th1/Th17 (cluster 0), a cytotoxic CD8 (cluster 1 and 4), and a proliferating (cluster 5) 

phenotype (Figure 5-4). Recovered clonotypes from the T cells indicated high amount of clonality 

among the T cells, suggesting that the cells have gone through extensive proliferation (Figure 5-

5). Clonal expansion was highest among the Th1/17, proliferating, and cytotoxic clusters. Further, 

sharing of the clonotypes was also the highest among these three clusters of T cells, suggesting 

that these clusters of cells had shared antigen-recognition (Figure 5-6). Besides these 

phenotypes, most TCR sequences were restricted to just one T cell cluster. We also found that 

TCR clonotypes were mostly specific to each individual animal, with very few public (or shared) 

clones (Figure A5-2).  
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Figure 5-4. T cells of granulomas form distinct clusters. a, tSNE representation of T cell 
transcriptomic data from granulomas. Cells are colored by putative clusters. Clusters with 

known canonical phenotypes are noted on the right. b, Heatmap of gene expression of T cells 
shown in a. 
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Figure 5-5. Clonal expansion detected in T cells from granulomas. a, tSNE representation of T 

cells, with expanded T cell clusters circled. b, tSNE representation of T cells colored by TCR 
clonal size, defined as the number of cells in the dataset sharing the same clonotypes. Darker 

blue represents more clonal T cells (on log2 scale). 

 

Figure 5-6. Number of TCR sequences shared between clusters of T cells shown in Figure 5-4. 
The number in the heatmap indicates the count of unique clonotypes shared between the two 

respective clusters. 
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5.4 Discussion 

In this chapter, we demonstrate the utility of our TCR recovery method to previously processed 

samples. In both the study of HIV and the study of TB, samples were processed without the 

expressed intent of characterizing the TCR repertoires. It was only after the transcriptomic data 

were analyzed, indicating strong T cell-associated immune responses, was the decision made to 

study the TCR repertoires of the samples. 

 Due to the simplicity of our method, we were able to adapt the technique to recover TCR 

sequences from the archived samples (that is, frozen WTA samples), and incorporate them into 

the processed data. We believe that this workflow offers notable cost-saving potential: since NGS 

sequencing is still often the most expensive part of a single-cell workflow, it is often more cost-

efficient to process and analyze the whole transcriptomic data first, before deciding whether the 

additional costs of TCR sequencing would likely yield useful information. We believe this workflow 

may be attractive to groups with limited resources.  

 Similarly, as 3’ barcoding is one of the most common schemes employed in various 

scRNA-seq platforms, we believe our method could be especially useful for research groups with 

archived libraries of various platforms. The potential to augment existing samples presents an 

interesting avenue to further study T cell immunology.  
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6. Conclusion and outlook 

The maturation of NGS platforms followed by the development of high-throughput single-cell 

methodologies represents leaps in technical ability similar to that of flow cytometry for 

immunologists. The immune system is necessarily heterogenous, making it a suitable application 

for scRNA-seq to investigate biological questions without a priori knowledge. While data produced 

by these techniques seem comprehensive, there are still nevertheless biologically critical 

characteristics missed by the currently established technologies. One example is the TCR 

sequence, which has largely eluded available scRNA-seq platforms due to technical reasons. 

While new, emerging sequencing platforms and technologies hold promise to better capture TCR 

sequences at single-cell resolution, a cost-effective method that is easily adaptable to existing 

platforms would still provide significant advantages to many research groups that are already 

analyzing and processing valuable clinical samples. 

 In Part I of this thesis, I detail our attempts at developing such a method through the 

perhaps naïve approach of size selection. We reasoned that by preparing the sequencing library 

in such a way as to preferentially sequence larger fragments, we could more effectively capture 

the CDR3 sequences of the TCRs. While we were correct in principle, we encountered several 

difficulties that would prove ultimately too difficult to overcome. Firstly, precise size selection was 

simply difficult to repeat consistently from sample to sample without a gel electrophoresis-based 

approach, which significantly limited throughput, making the approach impractical. Secondly, the 

expression of TCR mRNA was less strictly regulated than expected: we captured a significant 

number of transcripts with incompletely spliced TCR genes. These segments would not be 

efficiently filtered by size selection alone. Interestingly, we also seemed to see similar results in 

bulk TCR sequencing techniques that do not rely in V region primers (such as the 5’ RACE-based 

approached outlined in Figure 1-2). These methods, in general, seem to capture a higher 

proportion of non-functional sequences.  
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 We took the lessons learned from the size selection approach, and decided to incorporate 

a V gene selection in the form of primer extension by primers specific for V genes. By using the 

multiplex primers for just a single-step extension instead of amplification, we by and large avoided 

issues with PCR artifacts. The modified technique resulted in sequencing libraries characterized 

by monodispersed sizes that can be sequenced with TCR-specific sequencing primers, resulting 

in high yields of CDR3 sequences that can be combined with the transcriptomic data. To 

demonstrate the utility of our method, we applied the technique to characterize MHC-tetramer 

sorted CD8 T cells in mice immunized with HPV-E7, and in patients with peanut food allergy. In 

both cases, we detected clonal T cells associated with specific T effector functions, such as Th2 

cells and cytotoxic CD8 T cells. 

 In Part II of this work, we further characterized T helper cell responses in food allergy 

patients undergoing treatment. We profiled putatively peanut-reactive T cells enriched by an T 

cell activation assay. By using scRNA-seq, we identified subsets of T helper cells with Th1, Th2, 

Th17, Tfh, and Treg effector phenotypes. By further studying their clonotypes, we observed that 

these subsets were clonotypically distinct. We also found that though the TCR repertoires of each 

patient was stable through OIT, regardless of clinical outcome, Th1 and Th2 clonotypes were 

suppressed in their effector functions, while Tfh clonotypes were unchanged by treatment. 

Interestingly, the Th17 gene module, instead of Th2, correlated with clinical outcome along with 

other signatures of T cell activation. Furthermore, these signatures did not change significantly 

throughout the course of OIT. By tracking clonotypes over the course of treatment, we also found 

that more highly activated clonotypes were less likely to be modulated by therapy. 

 Next, we applied the technique to previously processed clinical samples, including 

samples from studies of HIV. We were able to identify clonally expanded T cells correlated to 

activated phenotypes. We also extended the technique to characterize the  TCR repertoires in TB 

granulomas of cynomolgus macaques. By changing the biotin pull-down probe to target the 

constant regions, which are well-annotated, of cynomolgus monkey, we were able to enrich the 
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corresponding TCR transcripts. Then by adapting the V gene primers to the V genes of the 

monkeys, we were able to successfully modify the method to the species. In the study of TB, we 

detected clonal expansion correlated to activated subsets of T cells. We also identified clusters 

with shared TCR sequences, indicating shared T cell lineages among those T cells. 

 The work described here demonstrates an example of combining and utilizing 

conventional techniques with cutting-edge methods to enhance our ability to study complex 

biological systems. By identifying the importance of including T cell clonal information in scRNA-

seq dataset, and by analyzing why this information was not commonly captured by available 

technology, we were able to design a methodology to complement existing workflows. Much of 

this work was also guided by practical and secondhand experiences of adopting and working with 

scRNA-seq technologies. We understood that adopting new technologies, and all the associated 

downstream data analyses, is often a labor- and cost-intensive process for many research groups, 

and as such methods that are compatible with a wide array existing platform would be especially 

useful. We believe the methods described in this work would be especially helpful for groups that 

have already adopted one of the common scRNA-seq platforms, and are looking to also 

complement their existing datasets with T cell clonotypic information. 

 Nevertheless, we recognize that as the NGS technological landscape continues to 

develop, there will be other technologies that will eventually supersede current workflows and, 

therefore, the work presented in this thesis. The advent of long-range sequencing, such as those 

of Pacific Biosciences and Oxford Nanopore, holds promise to improve our ability to not just 

sequence relatively short pieces of mRNA at a time, but rather full-length sequences of the 

transcripts. Though currently, these technologies are still limited by their sample efficiency (i.e. 

number of reads per nanogram of cDNA) and sequencing quality (which presents difficulties in 

accurately determining single-cell barcodes), we expect that these technologies will continue to 

improve and eventually allowing accurate sequencing of not just TCR and BCR clonotypes, but 

also transcript isoforms and single-nucleotide mutations.  
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 As for the future of high-resolution characterization of adaptive immune system, we 

believe that the work presented here, along with works presented by others elsewhere, indicates 

that inclusion of TCR and BCR sequences is crucial to better understanding of antigenic immune 

responses. It has been our experience that T cells subsets are often difficult to segregate into 

useful subsets. Effector phenotypes that are clearly defined by previously defined panel of surface 

proteins and receptors are often much less useful when analyzing large sets of single T cell 

transcriptomics, as the differences among the T cells are often much subtler. Incorporating 

clonotypic information allows us to group cells by shared antigen-recognition and lineage, often 

giving us a better understanding of the recent history of antigen exposure in the populations of 

cells. Despite the relatively elementary analyses of TCR and transcriptome in this work, we have 

already shown the utility of such approach by tracing T cell lineages over time and identifying cells 

that are more likely to be truly antigen-specific. We expect further incorporation of sophisticated 

analytical techniques such as binding-affinity prediction and similarity classification of TCR 

sequences will further advance our understanding of antigen-specific T cells in different disease 

contexts. 
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A. Appendix 

 

Figure A3-1. a, Total TCR recovery across four OT-I Spiked-in libraries (n = 4 samples). (left) 
Overall CDR3 recovery rates for all cells. (right) CDR3 recovery rates after removing cells 
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without mapped TCR transcripts in whole transcriptome data. b, (left) CDR3 recovery mapped 
on tSNE visualization of whole transcriptomes, and (right) key cell type surface markers (n = 

6,620 cells). (right) Color indicates log-normalized gene expression (yellow to red). T cells were 
marked by expression of Cd3e, Trac and Trbc. Small numbers of other cell types were present 
due to incomplete magnetic enrichment. These included B cells (Igkc), macrophages (Mpeg1), 
and myeloid cells (Cd74). A small number of TCR sequences was also recovered from these 
clusters, correlating with trace amount of Cd3e expression in these clusters. These clusters 

were removed in subsequent analysis. c, Ratios of most frequent V,J, and CDR3 call for each 
UMI relative to either the second most frequent call (for V and J segments, resulting in 

“consensus frequency” between 0.5-1) or to the total number of reads (for CDR3, resulting in 
consensus frequency between 0-1). 

 

 

Table A3-1. Repeatability statistics from OT-1 spiked-in samples technical duplicates 
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Figure A3-2. a, Gating strategy for flow cytometry sorting of E7-tetramer+ CD8+ T cells. b, Total 
TCR recovery across four HPV-E7 immunized mice (n = 4 animals). (left) Overall CDR3 

recovery rates for all cells. (right) CDR3 recovery rates after removing cells without mapped 
TCR transcripts in whole transcriptome data. 
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Figure A3-3. Expression of canonical markers associated with naïve/CM, effector, and T cell 
activation/exhaustion phenotypes. Color indicates log-normalized gene expression (yellow to 

red). Color scales apply to each respective row separately. 

 

 

Table A3-2. E7-tetramer sorted CD8+ T cells with dual functional TCRα transcripts 
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Figure A3-4. Average scores of CD8+ T cell modules identified by Singer, M. et al.29 (C1-10, 
labeled on bottom of heatmap) in Group 1, 2, and 3 clonotypes shown in Figure 3-5d. In Singer, 

M. et al., C3, C4, C5, C6, C8 were upregulated in sorted naïve or TIM3- PD1- CD8+ T cells 
(naïve/resting). C1, C2, C7, C9, C10 were upregulated in sorted effector/effector memory, 

TIM3+ PD1-, or TIM3+ PD1+ CD8+ T cells (Effmem/Activated). 
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Figure A3-5. Gene Ontology (GO; C5) term enrichment of genes in Module 2 and 3. FDR q-
values represent Benjamini and Hochberg corrected hypergeometric P values. 49 and 35 genes 

are used from Module 2 and 3, respectively. 
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Figure A3-6. Gating strategy for flow cytometry sorting of CD154+ CD4+ T cells after ex vivo 
stimulation with peanut antigens. b, tSNE visualization of CD154+ T cells from four peanut-

allergic patients, colored by patient identity (n = 2,712 cells). c, Clonal size of TCRβ mapped on 
the tSNE visualization (n = 2,712 cells). 
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Figure A3-7. a, (left) CDR3 recovery rates of all cells, and (right) CDR3 recovery rates after 
removing cells without mapped TCR transcript in the whole transcriptome data. b, Expression of 

selected genes that most differentiated the four patients. Violin plots represent estimated 
density of cells (n = 398 cells for Patient110; 246 cells for Patient71; 221 cells for Patient74; and 

1847 cells for Patient 77). c, Module scores (yellow to red) of CD4 effector T cell signatures 
outlined by Wei, G., et al.38 mapped on the tSNE visualization of cells from Patient 77 (n = 

1847 cells). 
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Figure A4-1. a, Distribution of module-expressing cells by patient, for the top 50 gene modules. 

“Module-expressing” cells were determined using the CD154-CD137- cells as described in 

Methods. b, UMAP overlay of module expression, and module loadings, for key patient-

associated modules. 

. 
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Figure A4-2. TCR pairing for top expanded TCR sequences. Heatmap of TCR pairing 

sequences (columns) found in cells with the top expanded TCR sequences (rows). Within each 

TCR clonotype, the percent of cells mapping to each TCR is plotted. Rows are annotated 

with the majority patient in which the TCR clonotype was detected. 

 

Figure A4-3. Sharing of TCR clonotypes between the three sorted across timepoints. Sharing 

of clonotypes is calculated as a geometric mean between the two respective sorted subsets and 

timepoints. 
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Figure A4-4. a, Proportions of clonotypes detected at one, two, three, or all four timepoints as a 
function of clonal size. b, Number of clonotypes detected at each combination of different 
timepoints. c, Normalized Shannon diversity of TCR repertoire by patient and timepoint. d, 

Fraction of singletons (clonotypes with clonal size of one) detected within each patient and at 
each timepoint. 
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Figure A4-5. a, Mean expression of the Th1, Th2, and Th17 gene modules at baseline (BL), 
buildup (BU), and maintenance (MN) in CD154+ cells from each of the three placebo patients. 
b, Clonal expression ratio over time of clones from placebo patients in each Th subset. Clonal 

expression ratio was defined as the fraction of cells within each clonotype that scored as 
module-expressing for the relevant module (Th2, Th1, or Th17) at a given time point. 

Clonotypes were only included in the analysis at time points for which they had at least two cells 
recovered. P values were calculated using Wilcoxon rank-sum test. 
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Figure A5-1. Number of T cells in each timepoint for each of the four patients. In many samples, 
less than 500 T cells were detected in the dataset. 
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Figure A5-2. Unique TCR shared between granulomas from the four animals. Sharing of 

clonotypes between animals are mostly restricted within the individual animals. 


