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Abstract

In solutions, the dynamic behavior of soft materials is often critical to their func-
tion. In biological materials such as proteins and peptides, the edict that ‘structure
dictates function’ has been supplanted in recent decades by recognition that features
like intrinsic disorder, conformational distribution, and solvent dynamics often play
a part which is equally fundamental to the binding and reactivity of these materials.
The same revelation holds for many other functional soft materials, including abiotic
peptides and self-assembling materials, where function is controlled by the dynamic
behavior of both the compound and the substrate. In this work, I elucidate the role
of dynamics in several significant functional polyamides by the synthesis and charac-
terization of samples spin-labeled for electron paramagnetic resonance (EPR) spec-
troscopy. By this approach, I developed insight into several soft-materials systems,
including abiotic peptide tags, combinatorially selected for bioconjugation; fibronectin
mimetic peptides, designed for therapeutic purposes, biomaterials and drug delivery;
and finally, novel, self-assembling polyamide materials designed for water purification
and energy conservation.
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Chapter 1

Introduction

1.1 Dynamic Behavior in Materials

For over 40 years, bioactive materials have played a pivotal role in the modern

medicine. Bioactive materials, here defined as materials which interact constructively

with cells in the human body, frequently hinge upon the incorporation of bioactive

sites which provide functional value.

Few problems prove more vexing than studying and manipulating the conforma-

tional behavior of these bioactive sites. While the community now accepts the impor-

tance of dynamics to the activity of peptides and proteins1–3, the dynamic properties

of these materials remain particularly difficult to characterize. Nevertheless, a few

experimental techniques, such as nuclear magnetic resonance (NMR), quasi-elastic

neutron scattering (QENS), and electron paramagnetic resonance (EPR), can pro-

vide quantitative insight into the conformational dynamics of materials.

Dynamic behavior perhaps matters most to protein interactions. Proteins show

tremendous potential as a tool for treating disease, healing injuries, and designing

biocompatible implants and devices. By incorporating functional proteins or peptides

into biomaterials, researchers have successfully facilitated bone repair4–7, the growth

of nerve and brain cells8–11, the regeneration of dental pulp12–14, and the formation

of vasculature to speed the healing of wounds.15–17 Their high specificity of function

makes them incredibly versatile. Often, solving a biological problem simply means

15



finding the right protein for the job.

Although scientists recognized the importance of proteins in physiology over a

century ago, we did not understand their chemical nature until the early 1950s.18

First, in 1949, Sanger succeeded in sequencing the terminal amino acids of insulin –

demonstrating the high predictability of amino acid positions in these materials.19,20

The second great insight into protein properties came from Linus Pauling, who in

1951 predicted the helical structure of some proteins based on hydrogen bonding.21

The revelation that a protein’s structure and sequence help dictate its function gave

birth to the field of molecular biology, paving the way for tremendous advances in

science and medicine.

Over the next 60 years, we became more sophisticated in our attempts to charac-

terize the structure and sequence of proteins. Today we have the protein data bank

(PDB), which contains millions of crystallographic structures with atomic resolution,

accessible to all, and typically confirmed using atomistic simulation and characteri-

zation techniques such as NMR and X-ray scattering.22–31 Even in lieu of structural

information, most proteins may be sequenced using mass spectrometry and database

matching.32–34

In the 1960s, scientists began studying protein sequences in order to identify the

regions involved in binding. We refer to these regions as ’epitopes’. The term, which

originates in the field of immunology, initially applied only to subsequences of antigens

(molecules that activate antibodies or T-cells).35 In contemporary usage within the

biomaterials community, ’epitope’ refers to the active part of any protein. Epitopes

have long interested immunologists, who aim to identify the active sites of antigens

(sometimes called ’antigenic determinants’) in order to produce vaccines, viral in-

hibitors, and other therapeutic agents.36–40 Scientists then began identifying epitopes

of other proteins for use in bioactive materials. By producing synthetic versions of

these epitopes, known as biomimetic or epitope-mimetic peptides, researchers aim

to imitate the function of the parent protein, while avoiding the drawbacks (such as

toxicity or difficulty of production) associated with its use.

Some of the earliest examples of epitope identification came from Atassi, who
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identified five epitopes of myoglobin and attempted to form general conclusions about

functional sites in proteins.41 In particular, Atassi advocated for the idea that all

bonding subsequences of proteins: i) do not exceed six or seven amino acids, arranged

consecutively; and ii) are very sensitive to mutation, losing most of their functionality

with the replacement of even a single residue.

Although the scientific community still accepts some of Atassi’s conclusions, sci-

entists have reported counterexamples or exceptions to many of them. For instance,

some myoglobin binding sites use several, disjointed regions of the protein sequence,

rather than one continuous subsequence.42 This led to the general classification of

epitopes as continuous (sequential) or discontinuous (non-sequential). According to

the work of Barlow, Edwards, and Thornton, discontinuous epitopes appear most

often in globular proteins, since lengthy, continuous subsequences rarely reside at the

protein surface.43 Huang and Honda compiled a database of well-established examples

of discontinuous antigen epitopes in 2006.44

One of the key ideas of twentieth century biology was the realization that in pro-

teins, ’structure dictates function’. This model, called the lock-and-key mechanism

for protein binding, remains fundamental to our understanding of the interactions be-

tween proteins and other molecules. It states that protein interactions occur primarily

as a result of protein structure. This is particularly true in the case of proteins that

target small molecules. However, in the context of protein-protein interactions, this

model has proven insufficient, failing to explain the natural ubiquity of intrinsically

disordered proteins in nature. For instance, hub proteins, which interact separately

with large numbers of other proteins, seem to accomplish this feat through confor-

mational changes in the chain backbone.2 Most of these proteins display biological

activity, despite the fact that they routinely diffuse through distinct structures over

time.

These kinds of conformational variations occur regularly in nature, where proteins

typically occupy a statistical distribution of distinct conformations, rather than one

single conformation. A pair of mechanisms, known as the conformational selection

model and the induced fit model, help to explain the role of conformation in protein
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interactions.45,46 The conformational selection model assumes that structure remains

fundamental to the role of protein binding, and that proteins can only bind at times

when they have already folded into a conformation resembling their bound state. In

contrast, the induced fit mechanism assumes that the presence of a binding target

induces a conformational change in the protein structure. Both of these mechanisms

occur in protein binding systems, although conformational selection appears more

often than induced fit.45–49 In both of these models, binding kinetics depend upon

the protein’s conformational distribution. This, in turn, provides the first indication

of the importance of dynamics to protein binding.

In biotechnology, we typically desire sequences with high affinity and rapid kinet-

ics. When proteins change conformation slowly, the rate of diffusion between distinct

conformations limits the protein binding kinetics, and may even modify the binding

equilibrium. Importantly, this does not mean that faster-moving sequences are neces-

sarily better. For one thing, structure still remains the dominant factor in reactivity.

A slow-moving structure with a highly stable binding epitope will bind much more

effectively than a structurally unstable molecule experiencing rapid conformational

change. Moreover, binding in peptides likely depends on their dwell-time in favorable

binding conformations. However, these models certainly demonstrate that under-

standing protein binding often requires a dynamic picture of these molecules, and an

understanding of how complex properties like flexibility and the rate of conformational

change affect functionality. Several studies support the importance of dynamics in

protein binding.1–3,50,51 However, very few of these examine the relationship between

sequence, structure, and chain dynamics. Generally, these factors interconnect. For

instance, a computational study demonstrated that functionally distinct proteins with

similar structures possess similar dynamic properties.52 Another study, analyzing the

effect of mutation on chain dynamics, concluded that even after residue substitution,

chain conformations and dynamics remain very similar to the unmutated protein.53

Experimental studies relating protein chain dynamics with function present a

tremendous technical obstacle. Some techniques, such as NMR or QENS, enable

direct observation of protein dynamics. Unfortunately, these techniques often require
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isotopic labeling, a very difficult process in proteins and peptides.1,51,54 Moreover,

these techniques require very high protein concentrations, making them unrepresen-

tative of real, biological conditions. Most other tools for measuring protein dynam-

ics (e.g. dynamic light scattering, DLS, and X-ray photon correlation spectroscopy,

XPCS) measure the diffusion of the overall molecule, rather than local chain dynam-

ics.

One of the simplest approaches for measuring site-specific dynamics is by us-

ing electron paramagnetic resonance (EPR) – a technique that detects the motion

of unpaired electrons in a material. Through the selective introduction of stable

free-radicals as spin-labels, EPR allows site-specific measurement of chain motion in

solution. Fitting the data with spectral simulations allows direct measurement of

an unpaired electron’s rotational diffusion coefficient – a quantity that relates to the

rate at which a protein backbone changes conformation. This allows highly quantita-

tive calculations of backbone dynamics, which agree with observables computed via

molecular dynamics simulations.55

The high sensitivity and site-specificity inherent in EPR measurements makes this

technique substantially more robust than NMR and QENS measurements, because

it is still useful for dilute or multicomponent systems. Nonetheless, it has its own

challenges, including the difficulty of synthesizing and characterizing sample, and the

challenge of spectral fitting. Since I studied material dynamics using EPR, system-

atically overcoming these challenges became fundamental to this thesis.

Dynamic properties also relate to the behavior of self-assembling materials. For

instance, scientists use EPR to study the behavior of thermodynamic phases in mem-

branes, as well as the degradation of vesicles by antimicrobial peptides.56–58 This ap-

proach can even distinguish distinct thermodynamic phases present within nanofibers

comprised of a single, self-assembling amphiphile – a first step towards engineering

the mechanical and thermal properties of these materials.59

In this thesis, I describe my efforts to characterize the dynamic behavior of biotic

and abiotic peptides, as well as self-assembled oligamides, by developing and apply-

ing powerful new synthetic and analytical protocols to the characterization of soft
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matter dynamics. With this approach I observed structural transitions and novel dy-

namic properties of molecules with outstanding potential for creating biological and

functional materials.
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Chapter 2

Experimental Techniques and

Methods

2.1 Electron Paramagnetic Resonance

Historically, dynamic characterization in soft matter has been achieved in several

ways. Most of these detect atoms of a particular isotopic type (e.g. hydrogen vs

deuterium), and are difficult to apply to dilute systems due to their low sensitivity

or high cost. This motivates the need for electron paramagnetic resonance (EPR).

EPR, like NMR, measures the interaction of a spin with a magnetic field.

The fundamental principle of EPR spectroscopy is that in the presence of a mag-

netic field, 𝐵, the energy state of otherwise identical unpaired electrons depends upon

their spin state. By absorbing photons, unpaired electrons may transition from a low-

energy spin-state to a high-energy spin-state. This is called the Zeeman effect, and is

described in its simplest form by the equation

ℎ𝜈 = 𝑔𝑒𝜇𝐵𝐵 (2.1)

which equates the photon energy (ℎ𝜈, expressed in terms of Planck’s constant, ℎ,

and photon frequency, 𝜈) with the energy difference between the two states. This

difference is written as 𝑔𝑒𝜇𝐵𝐵, where 𝑔𝑒 is the electronic 𝑔-factor (a dimensionless
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parameter describing the magnetic moment of the electron), 𝜇𝐵 is the Bohr magneton,

a unit of magnetic moment, and 𝐵 is the magnetic field strength.

In materials, unpaired electrons typically belong either to radical atoms, or to the

𝑑 or 𝑓 orbitals of metallic atoms. In order to make EPR measurements of a peptide

or protein, scientists typically synthetically modify some of its constituent molecules

to include a spin-label – a site-specific tag containing a stable free-radical electron.

The structures are highly regular, meaning that the site-specificity of these probes

implies site-specificity of EPR measurements. Using a dilute concentration of spin-

labeled molecules, which we assume do not interact with each other, we measure the

dynamics of the probes using a highly sensitive, bulk measurement.

EPR is customarily divided into continuous-wave (CW) measurements and pulsed,

Fourier-Transform methods. In CW experiments, spectra are collected one frequency

at a time, by varying either the photon energy or, more commonly, the magnetic field

strength, 𝐵. By modulating the magnetic field strength sinusoidally, and collecting

the first-derivative of the absorbance spectrum, rather than the absorbance spectrum

itself, we drastically improve our ability to exclude noise, since noise is aperiodic.

Thus, CW-EPR typically records the first derivative of absorbance. As I shall explain

in Section 2.1.1, the shape of these distributions depends strongly on the dynamic

behavior of the unpaired electron, and this can provide tremendous insight into the

dynamic behavior of soft materials.

In contrast to this relatively straightforward method, the theoretical underpin-

nings of pulsed EPR experiments are fairly complex. Rather than collecting a spec-

trum one energy at a time, these methods make use of the Fourier transform to

extract all points simultaneously. By exciting transitions using a single pulse (or se-

ries of pulses) of radiation, and by Fourier-Transforming the time-domain data into

the frequency domain. By changing the number, shape or time-dependence of pulses,

this approach can be used to induce different spin distributions in the sample, provid-

ing a greater degree of control than CW-EPR. Thus, pulsed EPR, unlike CW-EPR, is

often used for structural determination, since experimenters have greater control over

the nature of the information that they collect. Unfortunately, the time-dependence
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of the signal makes dynamics measurements much more challenging than the CW

case, since scientists are only now overcoming the limitations of existing theory. Thus

in this work, while I make use of pulsed methods for structural analysis, I principally

rely on CW-EPR methods.

The ability of EPR to make site-specific, quantitative measurements makes it

invaluable for the study of soft matter. However, it suffers from two main drawbacks,

which merit some discussion. First, since EPR measures unpaired electrons rather

than atomic nuclei, the dynamic measurements made by EPR only relate indirectly

to dynamic measurements of the molecule itself. More specifically, EPR measures the

rotational diffusion (or rotational correlation times) associated with motion of the

radical electron in a magnetic field. This means that EPR can only indirectly sample

conformational fluctuations. However, studies have shown that the correlation times

associated with electron diffusion in the slow-motion regime correspond directly to the

dynamics of the spin-labeled molecule. This means that EPR measurements can still

make meaningful dynamic statements, even though they don’t directly quantify chain

rotation. The second critique of EPR is that for most materials (i.e., for materials

which do not contain free-radicals, excitons or transition metal atoms), EPR analysis

requires chemically modifying target molecules. EPR spectroscopists sometimes call

this problem, ‘the price of peeking’.

Nonetheless, if we accept the approximation that spin-labeled molecules behave

similarly to their unmodified counterparts, this technique can allow unprecedented

access to the dynamic, chemical and structural properties of soft matter.

Nitroxide dynamics

The most common spin-labels are nitroxide radicals, which are prized for their high

chemical stability and their multi-peak EPR spectra. In proteins, these labels are

most commonly attached by chemical modification of cysteine residues with (1-Oxyl-

2,2,5,5-tetramethyl-3-pyrroline-3-methyl) Methanethiosulfonate (MTS) to produce an

MTS spin-label (MTSSL).60,61 In synthetic peptides, we can spin-label them at arbi-

trary positions by replacing an amino acid with 2,2,6,6-tetramethylpiperidine-N -oxyl-
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Figure 2.1: Common nitroxide probes used to study soft materials.
Nitroxide radicals are highly stable in solution, and can be synthetically attached to
materials as diverse as proteins, nucleotide sequences, lipids, and fatty acids.

4-amino-4- carboxylic acid (TOAC).62,63 In addition to arbitrary placement, another

advantage of TOAC is that it integrates more rigidly into the chain’s backbone, re-

sulting in more directly meaningful data. For the structures of these and several other

common spin-labels, refer to Figure 2.1.

A unique advantage of using nitroxide radicals is that, unlike most organic radicals,

the nitroxide radical has several well-defined peaks which can be used for fitting. This

is because, in addition to the electron Zeemann (EZ) interaction that corresponds to

the spin quantum number (𝑚𝑠), the radical electron can transition between 𝑝 orbitals

of the nearby oxygen atom, and thus experiences a nuclear Zeeman (NZ) interaction

corresponding to the (𝑚𝑙) quantum number. The EZ interaction is described by the
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Hamiltonian (𝐻𝐸𝑍)

𝐻𝐸𝑍 =
𝜇𝐵

~
B𝑇gS (2.2)

whereB and g are tensorial forms of the magnetic field and 𝑔 values found in Equation

2.1, 𝜇𝐵 is again the Bohr Magneton, ~ is the reduced Planck constant, and S is the

spin operator. We use the superscript 𝑇 to denote the transposition of a matrix.

Similarly, the NZ interaction is described by its Hamiltonian:

𝐻𝑁𝑍 = −𝜇𝑁

~
∑︁
𝑘

𝑔𝑛,𝑙B
𝑇 I𝑘 (2.3)

where 𝑘 denotes the 𝑘𝑡ℎ nucleus and I𝑘 is the spin operator of that nucleus. The term

𝜇𝑁 denotes the nuclear magneton – a constant analogous to 𝜇𝐵. In nitroxides, only

the oxygen atom plays a significant role in splitting energy levels.

In nitroxide radicals, these terms give rise to 6 energy levels, which are further

modulated by electron-nuclear (hyperfine, HF) interactions, given by the equation

HHF =
∑︁
𝑘

S𝑇A𝑘I𝑘 (2.4)

where Ak, the hyperfine coupling tensor, provides important information about the

magnetic environment of the spin. (In general, only the nearest atom contributes

significantly to this term, which can be condensed to HHF = S𝑇AI). The role of

these 3 interactions is summarized in Figure 2.2. Since electronic transitions must

conserve momentum, only three energetic transitions are possible, resulting in a three-

peak spectrum.

Nuclear quadrupole (NQ) interactions can cause small resonance shifts, but be-

yond that do not contribute majorly to EPR signals and are not important to this

thesis. Zero-field splitting can contribute to the Hamiltonian, but only in cases where

a paramagnetic species has 𝑆 > 1/2, whereas for nitroxide radicals, 𝑆 = 1/2.

Finally, electron-electron (EE) interactions, can be very important to EPR anal-

ysis under conditions where nitroxide radicals are placed in close proximity to one

another. This may occur accidentally, when experimental conditions impose very
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Figure 2.2: Energy levels in nitroxide radicals. a) The electron’s energy is
split by the electron Zeeman (EZ) and the nuclear Zeeman (NZ) interaction, giving
rise to 6 energy levels. These are modulated by the hyperfine (HF) interaction, as
well as several others that minorly change energy levels. Due to momentum
conservation, only 3 energetic transitions occur, giving rise to the 3 peaks shown in
(b). b-c) Simulated EPR spectra for nitroxide radicals near the isotropic limit (b)
and the rigid limit (c). Each spectrum contains 3 peaks, though these are more
easily distinguished in the isotropic limit, where peaks are narrower and do not
overlap.

high concentrations of spin-labels, resulting in spectral broadening. It may also be

exploited, by intentionally introducing multiple probes into the same molecule in

order to deduce the distances between them. The EE Hamiltonian is given by:

HEE = S𝑇
1 JS2 (2.5)

J describes the total interaction between the two spins. By specifically studying

the dipole-dipole (DD) interaction between these two probes and simplifying, we can

express this Hamiltonian (HDD) in terms of the distance vector (r12) between the two

spins:

HDD = S𝑇
1 JS2 (2.6)

=
𝜇0𝜇

2
𝐵𝑔1𝑔2

4𝜋~
1

𝑟312

[︂
S𝑇
1 S2 −

3

𝑟212
(S𝑇

1 r12)(S
𝑇
2 r12)

]︂
(2.7)
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Because the energy varies approximately with probe-probe according to 𝑟−3
12 , exper-

imentalists can exploit this relationship to determine the distribution of 𝑟12 using

pulsed EPR methods like DEER or DQC. This gives data analogous to data collected

from Förster resonance energy transfer (FRET) experiments, but with physically

smaller probes.

2.1.1 Continuous-wave electron paramagnetic resonance the-

ory

Today, one of the primary uses of CW-EPR is the study of dynamic behavior in spin-

labeled samples. The principle is straight-forward: the shape of an observed EPR

spectrum depends on the average rate of rotational diffusion of an observed probe,

as well as several energetic parameters. EPR is sensitive to diffusion over a broad

range of correlation times (𝑡𝑅 = 10−12 s in the fast motion limit to 𝑡𝑅 = 10−6 s in the

slow motion limit)64, making it a very robust measurement tool. The range itself can

be further subdivided, based on the type of model appropriate for spectral fitting.

Dynamics for virtually all spin-labeled macromolecules fall within the slow-motional

regime (with correlation times ranging from 𝜏𝑅 = 10−6 s to 𝜏𝑅 = 10−9 s), which

requires the most challenging theoretical treatment.

In the slow-motion regime, which corresponds to dynamic fluctuations in chain

position, continuous wave electron paramagnetic resonance (CW-EPR) spectra follow

the stochastic Liouville equation:

𝐼(𝜔 − 𝜔0) =
1

𝜋

⟨⟨
𝑣
⃒⃒⃒
[(Γ̃− 𝑖H̃ + 𝑖(𝜔 − 𝜔0)𝐼]−1

⃒⃒⃒
𝑣
⟩⟩

(2.8)

In this equation, 𝐼 represents the spectral intensity as a function of angular mi-

crowave frequency (𝜔) relative to some reference frequency (𝜔0), represents a start-

ing vector that already contains the spin operator and the statistical distribution of

up/down spins, Γ̃ represents the symmetrized diffusion superoperator, H̃ represents

the Liouville superoperator, and 𝑖 represents the imaginary unit. Given a set of pa-

rameters c = {𝑐1, 𝑐2, · · · , 𝑐𝑛} describing our experiment, we may solve this equation
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numerically with high computational efficiency. Freed derived and implemented this

approach in 1976, and his original solution remains central to most CW-EPR analysis

tools.64–68

The precise number and definition of the parameters studied depends on the degree

of detail that the user needs, but typically they include the hyperfine tensor (A), the

tensor of electron 𝑔 values (g), the rotational diffusion tensor (DR, which is generally

expressed in terms of a tensor of rotational correlation times, 𝜏R, or in terms of the

base 10 logarithm of tensor components, R̄). Since each of these tensors is real-

symmetric, they may be expressed in terms of 3 axial components. For instance:

A =

⎡⎢⎢⎢⎣
𝐴𝑥𝑥 0 0

0 𝐴𝑦𝑦 0

0 0 𝐴𝑧𝑧

⎤⎥⎥⎥⎦ (2.9)

Similarly, g may be resolved into 𝑔𝑥𝑥, 𝑔𝑦𝑦 and 𝑔𝑧𝑧, and R̄ may be resolved into

𝑅𝑥𝑥, 𝑅𝑦𝑦 and 𝑅𝑧𝑧. Because the model involves relativistic rotations between frames,

a director angle (𝜓), which describes spin orientation, and a set of Euler angles (𝛼,𝛽

and 𝛾) are also involved. Additional line-broadening parameters are also frequently

included.

One assumption of this classical model is that spins are uniformly distributed in

the director frame. When this assumption fails, as often happens in real systems, more

complex models are needed. For these cases, researchers typically turn to two more-

detailed models: the macroscopic order, microscopic disorder (MOMD) model, where

spectra are generated for a variety of orientations and then composed into a single

spectrum; and the slowly relaxing local structure (SRLS) model, which generalizes

this idea to allow time-dependent variation in the area of locally-ordered region.

Because SRLS requires higher-frequency measurements, MOMD calculations are more

common.

These models make the CW-EPR spectra of radicals in the slow-motional regime

computable. However, in order to truly make use of these insights, we need to reverse-

engineer them, using non-linear fitting, a process where the deviation between exper-
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imental data and a model is minimized as a function of important fit parameters.

(For further details, refer to Section 2.1.3.) In practice, this only works well when

varying a small number of parameters. Generally, if we tried to optimize over all 15+

of the parameters mentioned in this section, we could expect the fitting process to

become difficult and unreliable – either because local minima of the error function

would become too common, or because we would identify so many high-quality fits

that it would be impossible to select the physically accurate one.

For these reasons, we make several assumptions that reduce the size of our pa-

rameter space. First, based on the experimental setup, we note that most of the

angles are known so we can use trusted default values. Second, we note that the

A and g tensors are independent from the diffusion rate, and can be established by

freezing a sample and fitting its rigid-limit spectrum (which has the benefit of being

far less computationally intensive than fits in the slow-motional regime). If further

simplification is needed, we can reduce the complexity of A and g by assuming that

𝑔𝑥𝑥 = 𝑔𝑦𝑦 = 𝑔⊥ (in this notation 𝑔𝑧𝑧 = 𝑔‖) and 𝐴𝑥𝑥 = 𝐴𝑦𝑦 = 𝐴⊥. Finally, we can

(and typically do) assume that rotational diffusion occurs much more rapidly around

one axis than any of the others, allowing us to rely on a single diffusion parameter

𝑅 = log(𝐷𝑅).69 In practice, these assumptions allow us to reliably fit spectra using

as few as 3-4 fit parameters – a much more manageable optimization problem.

Today, most researchers use Freed’s NLSL package or Stoll’s EasySpin package for

this process.66,67 NLSL contains a high-efficiency implementation of the Levenberg-

Marquardt minimization algorithm, but uses a Fortran 77 command-line utility rather

than a callable function. This makes it difficult to script. EasySpin contains a MatLab

wrapper for NLSL. However, it ignores higher order contributions to spectral broad-

ening, and it does not allow users to vary every the parameter accessible in NLSL.

Both EasySpin and NLSL operate by performing nonlinear fitting of experimental

spectra. The details of this procedure are described Section 2.1.3.
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2.1.2 Pulsed dipolar spectroscopy

Given a molecule containing two spin-labels, pulsed EPR measurements allow us to

extract the distance distribution between them (effectively, a pair-distribution func-

tion). This enables scientists to make direct distance measurements in spin-labeled

molecules. When a pair of spins are close together (and thus have a strong dipo-

lar coupling) the dipole-dipole interaction may affect a CW-EPR spectrum – how-

ever, over the longer distances (> 1.5 nm) that typically interest spectroscopists,

this component is week, and can generally only be detected using Fourier-transform

methods.70–73 By using this family of techniques, generally called pulsed dipolar spec-

troscopy (PDS) techniques, it is possible to gain insight into the structure of proteins

and other macromolecules, in much the same way that fluorescence spectroscopists

use FRET experiments.

As explained in Section 2.1, pairs of spins experience an electron dipole-dipole cou-

pling that strengthens as the distance between them shrinks. By exciting the sample

with a controlled sequence of microwave pulses designed to suppress the hyperfine

interaction, we become particularly sensitive to this energetic contribution, allowing

us to determine the inter-spin distance of a pair of spins (see Equation 2.7). The

most common technique for this is double electron-electron resonance (DEER), also

known as pulsed electron-electron double resonance (PELDOR). In this experiment,

we typically use 4 pulses, applied in a particular time sequence, in order to determine

interprobe distances. The method works best for distances between 1.5 and 8 nm.

In this work, I also employed double quantum coherence (DQC) experiments, which

work similarly, but are sensitive to smaller inter-probe distance distributions.74,75

These distributions are then fit using Tikhonov regularization, an optimization algo-

rithm that imposes reasonable constraints (i.e. a degree of smoothness) on the shape

of the inter-probe distribution.
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2.1.3 Nonlinear Fitting of EPR Spectra

This approach aims to minimize the deviation of a model spectrum 𝐼(𝜔−𝜔0, c), from

an experimental spectrum, 𝐼𝑒𝑥𝑝(𝜔−𝜔0), as a function of the experimental parameters

c. We represent this by the 𝜒2 function:

𝜒2(c) =
𝑛∑︁

𝑖=1

[𝐼(𝜔𝑖 − 𝜔0, c) − 𝐼𝑒𝑥𝑝(𝜔𝑖 − 𝜔0)]
2

𝜎2
𝑖

(2.10)

In this equation, 𝜎2
𝑖 represents the individual uncertainty in 𝐼𝑒𝑥𝑝(𝜔𝑖 − 𝜔0) at each

point 𝑖. In general, 𝜒2 is non-convex, meaning that it may possess many disconnected

local minima. In such cases, we must rely on numerical methods to identify the opti-

mal set of parameters, c*, that describe the spectrum. Below, I provide an overview

of common methods for fitting.

Grid-Search Optimization

In this approach, we overlay a grid of points upon the c parameter space and choose

the point producing the best 𝜒2 value. This method exists in both NLSL and

EasySpin, but is very inefficient.

Monte Carlo Optimization

This approach resembles grid-search optimization, except that we choose points ran-

domly from within the parameter space. In low-dimensional parameter spaces, this

is marginally efficient than grid-search; however, it becomes more efficient when the

dimension of c increases. This method is only implemented in EasySpin.

Levenberg-Marquardt Optimization

This algorithm uses a gradient-descent method designed specifically for curve-fitting

problems. In this process, users provide an initial guess value, c0, and the algorithm

iteratively steps along the negative gradient of 𝜒2 until reaching a local minimum.

Adaptations exist to enable bounded optimization, but typically this algorithm is

used in an unbounded fashion. The algorithm typically obtains linear convergence
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(which means that the difference between 𝜒2 at the 𝑛th iteration and 𝜒2 at the op-

timum, 𝜒2(cn) − 𝜒2(c*), decreases at a rate proportional to 𝑒−𝑛. It is well-suited to

most problems where 𝜒2 is convex. However, when 𝜒2 is not a convex function, the

algorithm requires a lucky initial guess to reach the global minimum. In the case of

typical EPR spectra, random initial guesses rarely reach the global minimum of 𝜒2.

Both NLSL and EasySpin enable Levenberg-Marquardt optimization.

By establishing reasonable physical bounds, we can adapt Levenberg-Marquardt

optimization for global optimization by employing a Monte Carlo or grid-search ap-

proach to selecting c0 values. By selecting a randomized sequence of initial guesses

and starting the Levenberg-Marquardt algorithm from each of these, we become likely

to identify the global optimum within the bounds. A grid-search approach to picking

c0 will also work. Neither NLSL nor EasySpin implements these variants, despite

their comparatively rapid convergence rates in CW-EPR spectral analysis.

Particle-Swarm Optimization

In particle swarm optimization, a selection of ’particles’ receive initial positions and

random velocities within the problem space. Then, each particle moves according to

its velocity. The position of each particle updates to the best position it has found,

and the particle receives a new, randomized velocity. This process iterates until

reaching a convergence criterion, at which point the algorithm has reached the global

minimum. The method makes no assumptions of differentiability and does not require

gradient calculations, making it useful in cases where 𝜒2 is highly multimodal, as is

often the case in EPR spectral fitting. Particle swarm optimization tends to be quite

robust, generally identifying the optimum of 𝜒2, even in parameter spaces of fairly

high dimension. For EPR fitting, particle swarm optimization is only implemented

in EasySpin.

Simulated Annealing

Like particle swarm optimization, simulated annealing provides robust global fitting.

In a basic iteration, the program probabilistically chooses whether to remain in its
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current state or to move to a nearby state, based on the value of 𝜒2 in both states.

Changes that reduce 𝜒2 are always accepted, and changes that increase 𝜒2 are ac-

cepted with a probability that depends upon the ’temperature’ of the system. Over

time, the ’temperature’ of the system is slowly reduced. In this way, the algorithm

explores a large fraction of parameter space before cooling to a minimum value. This

helps to ensure global convergence. Neither NLSL nor EasySpin currently employs

this optimization protocol, despite its popularity in the broader curve-fitting commu-

nity.

2.2 Flow synthesis of peptides

In general, I synthesized the peptides presented in this thesis using the flow-synthesis

methods developed in the Pentelute group.76 The advantages of this approach over

conventional solid state peptide synthesis include high speed (each coupling takes

approximately 1 minute) and high synthetic yield. Briefly, a sample of H-rink amide

resin is prepared in a syringe and swelled in N -N dimethylformamide (DMF). First,

the resin is washed with DMF at the desired temperature generally 90 ∘C. Then,

in turn it is: 1) washed with a solution containing an Fluorenylmethyloxycarbonyl-

(Fmoc-) protected amino acid and activating agents; 2) washed with more DMF;

3) washed with a solution of DMF-20% piperidine to remove the Fmoc, leaving an

exposed amine; and 4) washed again with DMF. The result is a resin that is covalently

bound to the C-terminus of an amino acid. With the molecule’s N-terminus free,

steps 1-4 can now be run again, with a new amino acid. Downstream, an absorbance

detector provides information about the quality of the synthesis. A schematic of this

process, and of the expected absorbance profile, is shown in Figure 2.3.

By iteration, sequences of high length and purity can be synthesized, provided that

the per-step yield remains very high. To spin-label our sequences, we incorporated

TOAC (Fig. 2.1) directly into their backbone, substituting it for an amino acid of

choice. While theoretically TOAC can be attached like any other amino acid (Fmoc-

TOAC is commercially available) the molecule’s rigid and bulky structure makes this
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Figure 2.3: Peptide flow synthesis schematic. a) The four flow-steps that are
iterated to attach each consecutive amino acid to the resin. b) A diagrammed
absorbance profile of the attachment of 4 amino acids. Fmoc is UV-active, so in
Step 1, the high concentration of reactants overwhelms the detector. In Step 3, the
profile of Fmoc deprotection products is observed. In the wash step, signal vanishes
because DMF is not active at this wavelength.

process challenging, a difficulty I overcame in Chapter 3.

2.3 Liquid Chromatography Techniques

Molecules including those synthesized according to Section 2.2 typically require char-

acterization and purification before use. In general, peptide-based samples in this

paper were characterized by reverse-phase liquid chromatography mass spectrometry

(LC-MS) in order to determine their purity. In this technique, samples are suspended

in a mixture of water, acetonitrile and a dilute additive (typically formic acid for

LC-MS) to control pH and promote solubility. Then, a small quantity is loaded onto

a column – typically a C3 or C18 column – and a water:acetonitrile gradient is used to

separate distinct chemical components by their polarity. Upon reaching the end of the

column, the solution is then injected into a mass-spectrometer, where the charge:mass

ratio of the solute can be studied to determine its molecular weight. I used LC-MS

to identify compounds of interest for subsequent purification, to verify the quality of

purified products, and to quantify reaction yields.
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To purify samples, I used high performance liquid chromatography (HPLC), which

works very similarly. A solution of water, acetonitrile and dilute trifluoroacetic acid

was used to dissolve a crude product, which was then loaded onto a preparatory

HPLC column and separated by a water:acetonitrile gradient. Using UV and mass-

spectrometric intensity of the eluted product, I could separate the important com-

pounds from impurities by identifying and isolating the product-peak.

2.4 Flow cytometry

In this technique, specially prepared cell cultures are loaded onto a fluorescence detec-

tor. Fluorescently-labeled macromolecules are flowed over the cultures, so that adhe-

sion can be detected by a fluorescence measurement. By varying the concentration of

the macromolecule, we can establish the binding constant of the macromolecule. Sim-

ilarly, by measuring fluorescence between a fixed concentration of the macromolecule

and a varying concentration of competing analogues, we can compare the viability

of those analogues quantitatively, using the half-maximal inhibitory concentration

(IC50) – the competitor concentration required to inhibit 50% of the binding of the

fluorescent molecule. Thus, compounds which more effectively bind to cells will have

a lower IC50 than compounds which bind less effectively, since it will take a lower

concentration to displace the fluorophor.

2.5 Molecular dynamics

In this work, I occasionally studied short molecular dynamics simulations of peptides

in order to gain insight into their secondary structure. In order to prepare initial struc-

tures, I used the Pep-Fold 3 algorithm to predict an energetically favorable starting

conformation, and ran brief simulations using the CHARMM36 force field in Gro-

macs. Using Gromacs algorithms, I computed hydrogen bonding maps, secondary

structure maps, distance distributions, and assorted other data for comparison with

EPR results.
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Chapter 3

Quantifying residue-specific

conformational dynamics of a highly

reactive 29-mer peptide

This chapter was adapted from the publication "Quantifying residue-specific conforma-

tional dynamics of a highly reactive 29-mer peptide", originally published in Scientific

Reports.77

3.1 Abstract

Understanding structural transitions within macromolecules remains an important

challenge in biochemistry, with important implications for drug development and

medicine. Insight into molecular behavior often requires residue-specific dynamics

measurement at micromolar concentrations. We studied MP01-Gen4, a library pep-

tide selected to rapidly undergo bioconjugation, by using electron paramagnetic res-

onance (EPR) to measure conformational dynamics. We mapped the dynamics of

MP01-Gen4 with residue-specificity and identified the regions involved in a structural

transformation related to the conjugation reaction. Upon reaction, the conformational

dynamics of residues near the termini slow significantly more than central residues,

indicating that the reaction induces a structural transition far from the reaction site.
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Arrhenius analysis demonstrates a nearly threefold decrease in the activation energy

of conformational diffusion upon reaction (8.0 𝑘𝐵𝑇 to 3.4 𝑘𝐵𝑇 ), which occurs across

the entire peptide, independently of residue position. This novel approach to EPR

spectral analysis provides insight into the positional extent of disorder and the nature

of the energy landscape of a highly reactive, intrinsically disordered library peptide

before and after conjugation.

3.2 Introduction

Combinatorial, library-based strategies for discovering functional peptides have trans-

formed biochemistry, enabling tremendous improvements in enzyme design, disease

diagnosis, and drug development.78 One prototypical example of sequences identified

by combinatorial discovery is the family of MP peptides – molecules selected to un-

dergo nucleophilic aromatic substitution (S𝑁Ar) reactions via a single cysteine residue

(Fig. 3.1).79–81 Their mild reaction conditions make reactive MP peptides optimal

for bioconjugation82–84 while preserving orthogonality to other popular conjugation

methods including click chemistry85–87, protein-facilitated approaches (such as the

biotin-streptavidin interaction)88–92, and the use of peptide tags.93–96 Bioconjugation

tools have become essential technology, enabling controlled coupling of biomolecules

for important diagnostic and therapeutic purposes. In the case of MPs, many features

of their backbone dynamics and conformational behavior remain unknown because

the residue-specific measurements required are difficult to achieve at low (𝜇M) con-

centrations.79–81

Here we investigate MP01-Gen4, an abiotic 29-mer selected from among 5 x 1013

randomized peptides and subsequently optimized via experimental and computational

methods.79,81 The resulting sequence reacts rapidly with perfluoroarenes, demonstrat-

ing quantitative conversion in under five minutes (Fig. 1). Previously reported circu-

lar dichroism (CD) measurements show experimentally that MP01-Gen4 undergoes a

random-coil-to-helix structural transformation upon interaction with a perfluoroarene

probe.81,97 Calculations from the PrDOS intrinsic disorder prediction tool suggested
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Figure 3.1: The MP01-Gen4 peptide reacts rapidly with a perfluoroarene
capture agent (CA) via nucleophilic aromatic substitution (S𝑁Ar) to
form the complex MP01-CA in approx. 5 mins. The peptide backbone’s
dynamic structure (illustrated here as a cartoon) is related to the high reactivity of
MP01-Gen4 with perfluoroarenes.

disorder in residues 1-7 and 24-29, and predictions using Rosetta software suggest the

existence of transient 𝛼-helix-like order in residues near the center of the peptide, prior

to S𝑁Ar reaction.81 Circular dichroism studies demonstrate that the peptide increases

in helical content upon reaction, but neither these experiments nor PrDOS/Rosetta

predictions could identify the residues involved. Thus, experimentally identifying the

residues involved in this transition, and understanding the extent to which distinct

regions of the sequence exhibit disorder or flexibility, is important for understanding

the behavior of MP01-Gen4. Although this type of structural transition is common

among natural sequences, its emergence from a library of abiotic peptides in the con-

text of a non-biological reaction is noteworthy.47–49 We aimed to identify the residues

involved in this structural transition and to understand the relationship between the

dynamic behavior of MP01-Gen4 and its structural transition.81

Conformational studies of peptides typically require residue-specific insight into

dynamics. We acquired this information by introducing radical electron spin-labels

at specific residues of MP01-Gen4 and performing electron paramagnetic resonance

(EPR) spectroscopy to obtain rotational diffusion coefficients (inversely related to
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Figure 3.2: Experimental approach to dynamics measurements. a) TOAC is
embedded along the MP01-Gen4 backbone. b) EPR line shapes of a TOAC-labeled
MP01-Gen4 peptide at 308 K (top) and 150 K (bottom) indicate fast and slow rate
of motion, respectively. c) EPR spectra are fit for rotational diffusion rate at
different temperatures. d) The fitting function (𝜒2) represents deviation between
experimental data and a fitting model. Optimal values for fit parameters such as the
log of the rotational diffusion coefficient (log (𝐷𝑅)) and the Gaussian line-broadening
(𝛾0) are extracted from clusters of good fits near the global minimum of 𝜒2.

rotational correlation times) of the spin-label’s motion.65–67,98 This motion primarily

originates from conformational changes of the backbone, and its timescale depends on

position, since more flexible regions of a peptide change conformation more rapidly.99

We can therefore use this approach to map the flexibility of a sequence with residue-

level resolution, even at micromolar concentrations.3,58,68,100–104

3.3 Experimental Methods

The basic methodology of our experiments is outlined in Fig. 3.2. In brief, we

used TOAC (TOAC = 2,2,6,6-tetramethylpiperidine-N -oxyl-4-(9-fluorenyl methyloxy

carbonyl-amino)-4-carboxylic acid) to spin-label each peptide (Fig. 3.2a) and mea-

sured its EPR spectrum. The line shapes of the spectra encode dynamics information

(Fig. 3.2b). We fit our measurements at each probe position at ten temperatures,

ranging from 280 K to 308 K (Fig. 3.2c), and measured distributions of good fits in

order to quantify uncertainty (Fig. 3.2d). This strategy enabled rotational diffusion

rate, 𝐷𝑅, measurements at each site and temperature.

Ten MP01 variants were selected, with TOAC positions chosen to provide approx-

imately regular spacing, by a systematic scan of alanine substitutions, which we used
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Table 3.1: Names and sequences of the MP01-Gen4 variants employed in
this study. J is the amino acid spin-label TOAC; C is the reactive cysteine.

Designation Sequence
MP01-Gen4 MNQKYKMAKACFFAFLEHLKKRKLYPMSG

MP01-J3 MNJKYKMAKACFFAFLEHLKKRKLYPMSG

MP01-J5 MNQKJKMAKACFFAFLEHLKKRKLYPMSG

MP01-J7 MNQKYKJAKACFFAFLEHLKKRKLYPMSG

MP01-J13 MNQKYKMAKACFJAFLEHLKKRKLYPMSG

MP01-J16 MNQKYKMAKACFFAFJEHLKKRKLYPMSG

MP01-J18 MNQKYKMAKACFFAFLEJLKKRKLYPMSG

MP01-J20 MNQKYKMAKACFFAFLEHLJKRKLYPMSG

MP01-J23 MNQKYKMAKACFFAFLEHLKKRJLYPMSG

MP01-J27 MNQKYKMAKACFFAFLEHLKKRKLYPJSG

MP01-J29 MNQKYKMAKACFFAFLEHLKKRKLYPMSJ

to identify locations where modifications would minimally perturb the reactivity of

the peptide. In a two positions (5 and 7) we were willing to replace residues known

to be important for reactivity, on the basis that we didn’t want to replace nearby

charged residues. Sequences and designations are reported in Table 3.1.

3.3.1 Materials

1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluo-

rophosphate (HATU), Fmoc-L-Ala-OH, Fmoc-L-Cys (trt)-OH, Fmoc-L-Glu (tBu)-

OH, Fmoc-L-Phe-OH, Fmoc-Gly-OH, Fmoc-L-His (Boc)-OH Fmoc-L-Lys (Boc)-OH,

Fmoc-L-Leu-OH, Fmoc-L-Met-OH, Fmoc-L-Asn (Trt)-OH, Fmoc-L-Pro-OH, Fmoc-L-

Gln (Trt)-OH, Fmoc-L-Arg (Pbf)-OH, Fmoc-L-Ser (tBu)-OH, Fmoc-L-Tyr (tBu)-OH

and Fmoc-TOAC-OH were purchased from Chem-Impex International. H-rink-amide

ChemMatrix Hyr resin was obtained from PCAS BioMatrix, Inc. (7-Azabenzotriazol-

1-yloxy)tripyrrolidino phosphonium hexafluorophosphate (PyAOP) was purchased

from P3 BioSystems. N,N-dimethylformamide (DMF), acetonitrile (ACN) and di-

ethyl ether were purchased from VWR (Radnor, PA). N,N-diisopropylethylamine

(DIPEA), formic acid (FA), 10x phosphate buffered saline (PBS), trifluoroacetic acid

(TFA) and triisopropylsilane (TIPS) were obtained from Sigma-Aldrich. Potassium

hexaferrocyanate (III) (K3Fe(CN)6) was purchased from Alfa-Aesar.
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Alltech low pressure polytetrafluoroethane (PTFE) tubing and Leica BioSystems

Crytoseal capillary tube sealant were purchased from Fisher-Scientific. Liquid ni-

trogen was purchased from Airgas. Wilmad 4x250 mm quartz glass EPR tubes were

purchased from Cambridge Isotope Laboratories. Water (18.2 MΩ) was purified using

a Milli-Q Direct 8 system.

3.3.2 TOAC Peptide Synthesis

Peptides and the perfluoroarene capture agent (CA) were synthesized according to

literature, using ChemMatrix H-rink amide resin (0.49 meq/g) on the 0.1 mmol

scale.76,79 Flow-synthesis of standard amino acids uses a DMF solution of 0.2 M

amino acid, 0.17 M activating agent and 5% (v/v) DIPEA flushed over the sample

at 80 mL/min for 15 s, followed by DMF washing and deprotection using DMF 20%

piperidine. TOAC was coupled using 50 mM Fmoc-TOAC, 47.5 mM HATU, and

10% DIPEA at a rate of 40 mL/min for 15 s, followed by the usual washing and

Fmoc-deprotection steps. Due to steric limitations of the TOAC, the kinetics of cou-

pling natural amino acids to resin-bound TOAC proved to be exceptionally slow. To

bypass this problem, we couple the sterically-hindered post-TOAC residue using 0.2

M amino acid, 0.14 M activating agent and 10% DIPEA pumped at 10 mL/min for

10 min, followed by the usual wash and deprotection steps. All subsequent residues

were coupled normally. Completed peptides were cleaved for 2 h at RT using (90%

TFA, 5% water, 5% TIPS v/v), a cleavage cocktail for TOAC peptides.40 The result-

ing peptides were then precipitated and washed 3x in diethyl ether (-80 ∘C), before

drying under vacuum. The dried product was dissolved and purified by reverse phase

high performance liquid chromatography (HPLC). Synthetic yields for each peptide,

calculated from the crude mass collected, are reported in Table 3.2.

3.3.3 LC-MS Analysis

The purity of all peptides was analyzed by liquid chromatography mass spectrometry

(LC-MS) using an Agilent 6520 ESI-Q-TOF mass spectrometer. For convenience,
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Table 3.2: Crude yields and LC-MS data for MP01-Gen4 variants.Crude
yields (mg) are reported for each peptide (column 2), along with masses
expected/observed for the peaks present in the LC-MS traces in Figures 3.3 and 3.4.
In most cases, hydroxylamine signal is dominant, due to reduction of the nitroxide
in acidic conditions before/during the LC-MS scan. A minor peak, corresponding to
the nitroxyl version of the C-terminal glycine deletion product, appeared in a few
spectra – however, this is always a minority product and probably had a negligible
impact on EPR analysis. Observed masses are calculated using the [M+3H]3+

charge state for the unlabeled peptides, and the [M+4H]4+ charge state for the
labeled peptides. MS data are reported in Appendix B.

Name Crude Yield (mg) Peak Exp./Obs. MW
MP01-J3 131 (69%) Hydroxylamine 3576.89/3576.87*

Nitroxide –
Hydroxylamine (Labeled) 4891.35/4891.35*
Nitroxide (Labeled) –
Glycine Deletion –

MP01-J5 50 (26%) Hydroxylamine 3541.88/3541.88*
Nitroxide 3540.88/3540.88
Hydroxylamine (Labeled) 4856.35/4856.35*
Nitroxide (Labeled) 4855.34/4855.34**
Glycine Deletion –

MP01-J7 64 (33%) Hydroxylamine 3573.91/3573.92*
Nitroxide 3572.90/3572.90
Hydroxylamine (Labeled) 4888.37/4888.34*
Nitroxide (Labeled) 4887.36/4887.39**
Glycine Deletion 4830.34/4830.41

MP01-J13 110 (59%) Hydroxylamine 3557.88/3557.91*
Nitroxide 3556.87/3556.87
Hydroxylamine (Labeled) 4872.34/4872.36*
Nitroxide (Labeled) –
Glycine Deletion 4814.31/4814.29

MP01-J16 82 (41%) Hydroxylamine 3591.86/3591.86*
Nitroxide 3590.85/3590.85
Hydroxylamine (Labeled) –
Nitroxide (Labeled) 4905.32/4905.35*†

Glycine Deletion –

MP01-J18 56 (30%) Hydroxylamine 3567.89/3567.88*
Continued on next page
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Table 3.2 – Continued from previous page
Name Crude Yield (mg) Peak Exp./Obs. MW

Nitroxide –
Hydroxylamine (Labeled) 4882.35/4882.31*
Nitroxide (Labeled) 4881.34/4881.30
Glycine Deletion –

MP01-J20 81 (42%) Hydroxylamine 3576.85/3576.85*
Nitroxide 3575.84/3575.84
Hydroxylamine (Labeled) 4891.32/4891.18*
Nitroxide (Labeled) 4890.31/4890.17
Glycine Deletion –

MP01-J23 62 (32%) Hydroxylamine 3576.85/576.83*
Nitroxide –
Hydroxylamine (Labeled) 4891.32/4891.22*
Nitroxide (Labeled) 4890.31/4890.21
Glycine Deletion –

MP01-J27 100 (53%) Hydroxylamine 3573.91/3576.92*
Nitroxide –
Hydroxylamine (Labeled) 4888.37/4888.31*
Nitroxide (Labeled) –
Glycine Deletion 4830.34/4830.22

MP01-J29 20 (10%) Hydroxylamine 3647.92/3647.94*
Nitroxide –
Hydroxylamine (Labeled) 4962.39/4962.36*
Nitroxide (Labeled) –
Glycine Deletion –

* This is the principle peak observed in the LC-MS traces shown in Figures 3.3 and
3.4

** The nitroxide LC-MS trace overlaps the hydroxylamine trace, but appears to be
the minor product.

† In all but this case, the primary product contains the hydroxylaminated version
of the TOAC residue, due to reducing conditions prior to/during loading onto the
LC-MS column. In this case, the true nitroxide form (which differs by the mass of
an H1 atom) dominated – either because the sample was loaded relatively quickly
or because proximity to the labeled cysteine more effectively protected this nitroxyl
radical from reduction.
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solutions A and B are defined as follows: A – water, 0.1% formic acid; D – acetonitrile,

0.1% formic acid. LC-MS was carried out according to the following steps: in the

range of 0-2 min, a 95% A - 5% B wash; in the range of 2-11 min, a 5-65% B linear

ramp; and in the range of 11-12 min, a 65% B. We used a flow rate of 0.8 mL/min on

a Zorbax 300SB C3 column (2.1 x 150 mm, 5 𝜇m), at 40 ∘C. MS was performed by

positive electrospray ionization (ESI). Observed masses were reported by averaging

the major peak in the total ion current (TIC).

3.3.4 Preparative HPLC

Crude peptides were purified by reverse phase high performance liquid chromatogra-

phy (HPLC). Solutions C and D are defined as follows: C – water, 0.1% trifluoroacetic

acid; D – acetonitrile, 0.1% trifluoroacetic acid. Peptides were dissolved in 50% C,

50% D and loaded onto an Agilent Zorbax C3 column (21.2 x 250 mm, 7 𝜇m). HPLC

was carried out at a flow rate of 5 mL/min according to the following steps: in the

range of 0-5 minutes, a 95% C – 5% D wash; in the range of 5-80 min, a 5-45% C

linear ramp; and in the range of 80-85 min, a 45% C wash.

3.3.5 EPR Sample Preparation

All EPR samples were prepared by injecting 10 𝜇L solutions of peptide in 1x phos-

phate buffer solution (PBS) at a concentration of 45 𝜇M into a PTFE capillary

tubes, sealed with Crytoseal resin. S𝑁Ar reactions were performed at 45 𝜇M peptide

concentration in PBS at RT for 15 min, with CA in 5x molar excess. Potassium

hexacyanoferrate(III) (K3Fe(CN)6) was added to all samples before EPR analysis to

reverse the reduction of nitroxides by TFA. The maximum K3Fe(CN)6 concentration

that did not result in detectable peptide degradation was used in each case, and no

subsequent purification efforts were made since neither unreacted hydroxylamines nor

K3Fe(CN)6 interfere with the nitroxide EPR signal. The elution profiles are reported

in Fig. 3.3 (before conjugation) and Fig. 3.4 (after conjugation), with all peaks la-

beled. By comparing integrated intensity of the unreacted peptide elution peak in
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each profile, we computed the reaction S𝑁Ar yields reported in Fig. 3.5. In the case

of unreacted peptides, 0.2 equiv. K3Fe(CN)6 was used for all analysis. In the case of

the reacted peptides, 1 equiv. K3Fe(CN)6 was used for all analysis. The exception

in both cases was the sequence MP01-J29. This peptide is less stable in the presence

of K3Fe(CN)6, so none was added to unreacted MP01-J29 and 0.2 equiv. were used

for EPR analysis of the reacted peptide. The reduction of the nitroxide in MP01-J29

increased the uncertainty of the fit of unreacted MP01-J29. After EPR, each sample

was recovered and analyzed by LC-MS.

3.3.6 EPR Experiments

Continuous wave electron paramagnetic resonance (CW-EPR) spectra were collected

at X-band (9.43 GHz) using a Bruker EMX+ with a variable temperature unit. Spec-

tra were collected over 150 G field sweep with center field at 𝐵 = 3315 G, with atten-

uation of 15 dB and modulation amplitude of 1.5 G. EPR spectra of a background

sample containing only PBS and K3Fe(CN)6 were subtracted from each peptide spec-

trum. Variable temperature spectra of each sample were collected in the range of

275-310 K, in increments of 5 K. We verified by LCMS that each peptide was undam-

aged by the heating process and that they reacted completely with the perfluoroarene

target, demonstrating that their functionality was retained.

3.3.7 EPR Fitting

Initial fitting of each sample at 150 ∘C was carried out to determine hyperfine A

and electron g tensors using the pepper function in Easyspin.67 Since frozen spectra

were identical under scaling, regardless of the position of TOAC, the fitted tensor

components of 𝑔𝑥𝑥 = 2.0081, 𝑔𝑥𝑥 = 2.0051, 𝑔𝑥𝑥 = 2.0020, 𝐴⊥ = 5.13 G and 𝐴‖ = 37.6

G were assigned to all samples during EPR fitting at higher temperatures.

Analyses of higher-temperature EPR data were carried out using non-linear least

squares analysis via the NLSL program to perform Levenberg-Marquardt curve-

fitting.66,67 We fit the data for the base 10 logarithm of rotational diffusion rate,
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Figure 3.3: LC-MS elution profiles of MP01-Gen4 variants before S𝑁Ar
reaction and after EPR analysis. Since the samples were diluted in a solution
containing TFA, and because the LC-MS column contains FA, the product often
appears in both its nitroxyl and its hydroxylamine forms, and these are marked by
red and black lines, respectively. The presence of a small dimer peak was usually
noted. This is marked by a green line when separate from the principle peak.
Reaction yields were estimated by comparing the integrated peak intensities of the
unreacted species shown here (via integration/addition of both hydroxylamine and
nitroxyl peaks) and after undergoing reaction (Fig. 3.4).
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Figure 3.4: LC-MS elution profiles of the MP01-Gen4 variants following
S𝑁Ar reaction and EPR analysis. Since the samples were diluted in a solution
containing TFA, and because the LC-MS column contains FA, the product often
appears in both its nitroxyl and its hydroxylamine forms, and these are marked by
red and black lines, respectively. The unreacted peptide peak is marked with a
green line. Reaction yields were estimated by comparing the integrated peak
intensities of the unreacted species shown here (via integration/addition of both
hydroxylamine and nitroxyl peaks) and the same peak prior to reaction (Fig. 3.3).
In MP01-J7, -J13 and -J27, a minor glycine deletion product was noted (blue) that
is invisible in the elution profiles prior to S𝑁Ar reaction, due to overlap with the
principle product.
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log(𝐷𝑅), the Gaussian line-broadening, 𝛾0, and the 𝑐20 ordering parameter , using

the microscopic order, macroscopic disorder (MOMD) model with 50 orientations.

Monte-Carlo variation of initial fit parameters was carried out with an in-house Mat-

Lab script within a reasonable physical range, adding a random Gaussian noise to each

data point during each iteration. The mean of this Gaussian noise distribution was

zero, and the standard deviation was taken from a region of the spectrum containing

no TOAC intensity (where all signal arose from instrument noise). We performed 500

fits for each of the 200 spectra, choosing parameters in the range log(𝐷𝑅) ∈ [6.5, 9],

𝛾0 ∈ [10−3, 8], and 𝑐20 ∈ [−5, 8]. Fits converging outside this range were discarded.

log(𝐷𝑅) values were computed as the median value of good fits, inversely weighted

by the fitting error 𝜒2, and 95% confidence intervals were computed using the distri-

bution of fits with 𝜒2 > 1.5 * 𝜒𝑚𝑖𝑛, where 𝜒𝑚𝑖𝑛 is the 𝜒2 value of the global best fit.

This approach incorporates the error associated with overfitting into the confidence

interval calculation. Overfitting is more common in slower-moving spectra, where a

broader range of parameters can give rise to similar spectra. A representative exam-

ple of EPR spectral fits is presented in Fig. 3.2c and remaining data are included in

Appendix A.

Activation energy (𝑄) was calculated by linear fitting of Arrhenius plots, using

the equation:

log𝐷𝑅 = log𝐷0 −
𝑄 log 𝑒

𝑅𝑇
(3.1)

where 𝐷0 is a constant, 𝑅 is the universal gas constant, 𝑒 is Euler’s number and 𝑇 is

temperature.
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Figure 3.5: Estimated conversion yield of the S𝑁Ar reaction, computed
by the peak-integration of the LC-MS traces shown in Figure 3.3-3.4.
Precise values are reported in Table 3.2.

3.4 Results and Discussion

3.4.1 Rapid flow peptide synthesis enables incorporation of

amino acid spin labels

We synthesized spin-labeled MP01-Gen4 using an Fmoc-protected amino acid whose

R-group contains a nitroxide radical spin-label, TOAC.63,105 TOAC-containing pep-

tides are desirable as EPR probes because they integrate intimately into the peptide

backbone, providing an accurate measure of local dynamics. However, their synthesis

remains challenging. Overcoming TOAC’s steric limitations requires long coupling

times and multiple couplings.62 The speed and reliability of most amino acid cou-

plings is improved by rapid-flow synthesis at elevated temperatures.76,106 We adapted

rapid-flow peptide synthesis to the preparation of TOAC peptides to enable reliable

incorporation at arbitrarily chosen sites. In general, our results were good, producing

high yields and products which could be easily purified. (Table 3.2)
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Figure 3.6: Arrhenius plots of residue-specific dynamics of MP01-Gen4
before (black) and after (red) reaction with MP01-Gen4. 𝑦-axes reflect
conformational dynamics, indicated by rotational diffusion rates, determined by
EPR analysis of residue-specific spin labels. Unreacted peptides diffuse more rapidly
than the reacted peptides, especially near the termini. Due to the high error
associated with MP01-J29, arising from low spectral intensity, a fit is not provided
for these data.
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3.4.2 Conformational stabilization of the peptide’s termini

We introduced TOAC-substituted MP01-Gen4 to the perfluoroarene capture agent

(CA) and observed rapid, near-quantitative conversion of MP01-Gen4 in almost every

case (Table 3.5). These yields suggest that the incorporation of TOAC conserved

the important features of MP01-Gen4 for enhanced reactivity. The only damaging

substitution came at the lysine at position 20, which showed a reaction yield of 81%

after replacement with TOAC. Interestingly, literature shows that substituting alanine

into position 20 of a closely-related peptide enhances reaction rate.81 Nonetheless, we

kept this substitution to maintain approximately uniform TOAC spacings across the

peptide.

We measured EPR spectra of TOAC peptides after conjugation with the CA. In

Fig. 3.6, we report the rotational diffusion coefficients (𝑙𝑜𝑔(𝐷𝑅)) of each spin-label

site of MP01-Gen4, both before (black) and after (red) conjugation. MP01-Gen4

experiences a sharp change in dynamics upon reaction with its target, behaving more

like a rigid, structured molecule.

MP01-Gen4’s rate of conformational change varies strongly with position (Fig.

3.6). For instance, dynamics of the unreacted peptide at residue 27 (Fig. 3.6i) are

greater than at residue 23 (Fig. 3.6h), as shown by the overall higher rotational

diffusion rates across the temperature sweep. Residues near the termini of MP01-

Gen4 change conformation more rapidly than the central residues (Fig. 3.7). The

five TOAC positions located within the central region show similar rates of dynamic

motion at any given temperature (log (𝐷𝑅) ≈ 8 at 310 K). Dynamics at the other

five positions are faster - especially residues 27 and 29. Upon reaction with CA,

the rate of dynamic motion slows dramatically throughout MP01-Gen4 (Fig. 3.7).

This change is most pronounced in non-central residues, and is almost constant in

the central region. The most drastic decline in dynamics upon binding occurs in the

terminal residues (3, 5, 7, 27 and 29), suggesting that these undergo the greatest

structural change.
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Figure 3.7: The initially disordered region of MP01-Gen4 experiences a
greater change in dynamics upon reaction. a) Rotational diffusion at each
probe position, collected at 35 ∘C for unlabeled (black) and labeled (red) MP01. b)
Change in rotational diffusion upon reaction. Resides predicted to be ordered before
the reaction (shaded region), experience a smaller and consistent ∆ log (𝐷𝑅) of
0.32±0.03, compared to other residues, located in initially disordered regions.

3.4.3 Connecting the structural transition with the activation

energy of diffusion

The activation energy (𝑄) of rotational diffusion represents the energetic barrier to

conformational change of the peptide backbone. Using the Arrhenius plots (Fig.

3.6), we extracted activation energies of rotational diffusion of each peptide, which

we plotted as a function of residue number (Fig. 3.8). Upon reaction, MP01-Gen4

exhibits a global >60% drop in 𝑄 (from an average of 8.0 𝑘𝐵𝑇 to 3.4 𝑘𝐵𝑇 at 𝑇 = 298

K). The observed positional independence of 𝑄 implies that dynamic motion occurs

because of global changes in conformation, rather than local effects.

At a given temperature and in the absence of significant structural changes, we

would expect 𝐷𝑅 and 𝑄 to scale inversely, according to the Arrhenius equation 𝐷𝑅 =

𝐷0exp
(︀
− 𝑄

𝑅𝑇

)︀
. However, despite the positional-independence of 𝑄, we observed

substantial variation in 𝐷𝑅 as a function of position within a peptide (Fig. 4). This

occurs because the Arrhenius prefactor, 𝐷0, depends upon the degree to which each
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Figure 3.8: S𝑁Ar Reaction is accompanied by a significant drop in
diffusional activation energy. Activation energy (𝑄) of rotational diffusion vs.
TOAC position in unreacted (black) and reacted (red) MP01. Average 𝑄 (8.0 𝑘𝐵𝑇
unreacted, 3.4 𝑘𝐵𝑇 reacted) is plotted as a line. Notably, 𝑄 is relatively
independent of residue number but drops by >60% upon conjugation. Due to the
high error associated with MP01-J29, arising from low spectral intensity, 𝑄 is not
provided for this peptide.
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conformational change displaces the nitroxide. This explains why, within a given

peptide, 𝐷𝑅 is greater in regions which are more flexible – despite the similarity of

their 𝑄 –values. Changes in 𝐷0 also explains why, upon reaction with CA, MP01-

Gen4 experiences a decrease in 𝐷𝑅 despite also experiencing a decrease in 𝑄. In

this case, the molecule becomes not only more helical, but also larger, reducing the

amplitude of vibrations that displace the nitroxide radical.

In spin-labeled EPR experiments, rotational diffusion is known to occur because

the peptide diffuses through distinct conformations. Therefore, temperature depen-

dence of conformational motion is related to the peptide’s conformational free energy

landscape.107–109 For peptides and proteins, this energy landscape is rough, populated

by small kinetic traps.110–113 As the peptide diffuses through its conformations, it must

hop between these traps. Therefore, by measuring log(𝐷𝑅) we sample the subset of

those conformational changes of the backbone which move the nitroxide probe. We

hypothesize that in our peptides, the activation energy of rotational diffusion must

scale with the average energy barrier between distinct peptide conformations.

Typically, short proteins demonstrate energy landscape roughness values in the

range of 0-5 𝑘𝐵𝑇 . Our observed activation energies of 8.0 𝑘𝐵𝑇 before conjugation

and 3.4 𝑘𝐵𝑇 after conjugation fall above this range – though still well within the

diffusional regime. Other EPR experiments demonstrate similar activation behavior

in proteins, noting that these values suggest H-bond formation between the nitroxide

probe and the hydration shell.108 Therefore, our observed 𝑄 values suggest that we

are sampling the subset of conformational changes with sufficient energy to break this

H-bond.

The decrease in 𝑄 upon MP01-Gen4 conjugation is significant. In the absence of

other factors, the activation energy for diffusive motion of short polymers typically

increases with molecular weight, due to increased internal friction.114,115 Higher acti-

vation energies correspond to rougher energy landscapes, which occur when no single

configuration adequately satisfies all of the intramolecular interactions necessary to

fully stabilize it.116 Rougher energy landscapes tend to correspond to greater intrin-

sic disorder, since disordered peptides experience greater structural change between
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quasi-stable states. Therefore, this decrease in 𝑄 demonstrates that reaction with

a perfluoroarene stabilizes multiple chemical sites on the MP01-Gen4 peptide that

cannot otherwise be simultaneously satisfied.116 These stabilizing interactions could

form directly with the perfluoroarene, or because structural reorientation enables

stronger intra-chain interactions elsewhere within the peptide. Energy landscape

roughness cannot be used as a proxy for depth of the energy basin, and does not

describe a peptide’s overall stability or absolute state of disorder. However, in the

case of MP01-Gen4, the decrease in roughness likely occurs because the system finds

a more stable secondary structure. This methodology provides a novel approach for

describing conformational changes within a peptide.

3.4.4 Potential reasons for positional variation in activation

energy

Residue-specific variation in 𝑄 originates from three sources: site-specific variations

in dynamic behavior, the uncertainty associated with spectral fitting, and the re-

placement of other amino acids with TOAC. We addressed fit uncertainty through

Monte Carlo analysis of fit parameters, providing meaningful uncertainty estimates

and avoid overfitting. Despite the care with which we selected positions for TOAC

substitution, we did observe minor, sequence-specific differences in peptide reactivity.

These substitutional differences likely account for most of our variation in activation

energy. However, the self-consistency of both reactivity and spectral measurements

indicates that the TOAC did not seriously perturb the behavior of the native MP01-

Gen4 sequence (Figure 3.5).

Finally, variations arise because although conformation is a global variable, only

conformational changes causing TOAC reorientation will affect an EPR spectrum.

In other words, the apparent activation energy only corresponds to the subset of

conformational changes that cause spin-label motion, and these changes may require

traversal of an average energy barrier different than the energy barrier for overall

conformational change. This means that, unlike every other technique to measure
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energy landscape roughness, EPR may sample a specific subspace of the conforma-

tional energy landscape, rather than sampling the entire landscape. According to this

hypothesis, a protein containing both an unstructured, flexible region and a highly

structured, immobile region could experience differences in activation energy of rota-

tional diffusion, depending on whether TOAC appears in the rigid part or the flexible

part. While this effect is likely minor in small peptides like MP01-Gen4, it nonetheless

explains some of the variability observed between peptides with differently positioned

labels.

3.5 Conclusions

We performed the first flow-synthesis of TOAC peptides in order to study the residue-

specific dynamic behavior of MP01-Gen4, a peptide designed to react with perfluo-

roarenes for bioconjugation chemistry. Through EPR analysis, we found that while

native MP01-Gen4 is flexible and largely disordered, upon reaction with the per-

fluoroarene the peptide becomes significantly more rigid. Further, we identified the

residues involved in the structural change, and designate the expansion of the cen-

tral helical region towards the termini as its origin. Based on new physical insights,

we demonstrated that a >60% decrease in the activation energy of diffusion upon

reaction of MP01-Gen4 with a perfluoroarene capture agent suggests a decrease in

the conformational energy landscape roughness. Thus, we conclude that MP01-Gen4

experiences a structural change upon reaction, especially in the initially-unstructured

region near the N-terminus, suggesting a disorder-to-order transition upon reaction.

Our results identify frustration and disorder of unreacted chains as a potentially im-

portant parameter in designing reactive peptides, and demonstrates the broad poten-

tial of EPR spectral simulations and Arrhenius analysis for studying the relationship

between peptide structural transitions and reactivity. These insights could be used

to design more effective screening libraries for bioconjugation.
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Chapter 4

Conformational dynamics in

extended-RGD binding peptide

sequences

Reproduced with permission from ACS Biomacromolecules, in press. Umpublished

work copyright 2020 American Chemical Society.117

4.1 Abstract

Proteins offer a vast array of potent binding and signaling motifs with high selectivity

for particular targets. The ability to reproduce the function of these signaling do-

mains in small synthetic peptides is a central goal for advanced biomaterials design.

RGD is a prolific example of a tripeptide used in biomaterials for cell adhesion, but

the potency of free or surface-bound RGD tripeptide is orders-of-magnitude less than

the RGD domain within natural proteins. We designed a set of peptides with varying

lengths, composed of fragments of fibronectin protein whose central three residues

are RGD. With these peptides, we measure conformational dynamics and transient

structure of the active site. Our studies reveal how flanking residues affect confor-

mational behavior and integrin binding. We find that disorder of the binding site

is important to the potency of RGD peptides, and that transient hydrogen bonding
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near the RGD site affects both the energy landscape roughness of the peptides and

peptide binding. This phenomenon is independent of longer-range folding interac-

tions, and helps explain why short binding sequences, including RGD itself, do not

fully replicate the integrin-targeting properties of extracellular matrix proteins. Our

studies reinforce that peptide binding is a holistic event and fragments larger than

those directly involved in binding should be considered in design of peptide epitopes

for functional biomaterials.

4.2 Introduction

Proteins offer a rich and bountiful array of functions including binding, signaling,

catalysis, and transport. An important target is to create smart biomaterials that

are capable of performing diverse functions analogous to proteins themselves.118 One

promising route towards this goal is to identify the amino acid sequence in a protein

that is directly involved in a biochemical event, and covalently tether this short se-

quence to surfaces.119–122 This approach has shown initial success, however, little is

known about the properties and behavior of short peptide sequences when removed

from their natural protein environment.

Few peptide motifs garner more attention than those containing the RGD (arginine-

glycine-aspartic acid) tripeptide.118–123 This sequence is found in extracellular matrix

proteins and is known to bind to integrins – transmembrane proteins important for

cell survival and adhesion. RGD is often tethered to hydrogel surfaces to promote

cell adhesion, boost biocompatibility, or prevent apoptosis. RGD is also important

to cancer therapeutics, where it facilitates drug delivery and inhibits angiogenesis.122

Similar to other peptide sequences taken out of the context of natural proteins, RGD

is orders-of-magnitude less effective than its parent proteins123, but its simplicity and

ease of synthesis have anyway led to its use in a vast number of technologies.120,123

Recent improvements in peptide synthesis techniques have enabled high through-

put peptide couplings with dramatic improvements in reaction times, yields, and ver-

satility of peptide sequence.76,106 As a result, the prospect of producing long RGD-
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containing peptides that more closely resemble the active domain of their parent

protein is now a viable route to scalable integrin-targeting materials with enhanced

potencies.

Many RGD peptides work by imposing a particular conformation on their bind-

ing site, as is demonstrated by molecular dynamics (MD) and nuclear magnetic reso-

nance (NMR) studies of conformation in RGD-integrin complexes.124–126 Very short,

integrin-bound RGD peptides have been studied by X-ray crystallography, and their

conformations are shown to vary depending on the specific nature of the integrin in

question.123 Only a few studies report structural information for complexes between

integrins and longer fibronectin-mimetic RGD-containing sequences.127 In solution,

MD simulations demonstrate that the RGD site of fibronectin is flexible, changing

conformation regularly128, and is therefore considered to be intrinsically disordered.129

This assessment is consistent with our predictions of disorder in the fibronectin se-

quence130 using the PrDOS97 disorder prediction tool (Fig. 4.1). The disorder of

RGD is difficult to confirm directly, however disorder has been shown to play an

important role in integrin-binding proteins131–134 and other protein-binding peptides

systems.135,136

Conformational disorder of the RGD site suggests that the conventional lock-and-

key model, in which function is purely dictated by structure, does not adequately

describe RGD binding interactions. More recently, two other models – the induced

fit and the conformational selection models – have been used to explain the role of

conformational distributions in protein binding.45,48,137,138 In the induced fit model,

the binding conformation of one binding site is induced by the presence of the other,

facilitating an interaction.137 In the conformational selection model, some subset of

the unbound protein already exists in its binding conformation, and this subset is

preferentially selected for binding.138 Both cases appear in nature, and in both cases,

the rate of conformational change and the range of conformations adopted by a protein

binding site are central to the binding interactions of the protein.45,139–141 Therefore, a

detailed understanding of the conformational dynamics of RGD-containing fibronectin

fragments is important for designing effective integrin-targeting materials.
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Figure 4.1: Predicted disorder probability for each amino-acid residue in
the 1FNF sequence, centered on the RGD site (blue), computed by
PrDOS.97 Disorder probability ranges from 0 to 1, so the algorithm predicts that
the RGD region is likely disordered.

Electron paramagnetic resonance (EPR) spectroscopy is routinely used to study

dynamic behavior in peptides and proteins. EPR detects interactions between a

magnetic field and radical electron spin labels. In proteins and peptides, spin la-

bels are nitroxide radical moieties incorporated by site-directed spin labeling (SDSL)

or through the direct synthesis of molecules containing an amino acid with a ni-

troxide spin label R-group, TOAC (2,2,6,6-tetramethylpiperidine-N -oxide-4-amino-

4-carboxylic acid).61,63 Where possible, synthetic introduction of TOAC is preferable

to SDSL because, unlike most spin label probes, TOAC is directly and rigidly inte-

grated into the backbone of the protein or peptide.63

Continuous-wave EPR (CW-EPR) enables measurement of the rotational diffu-

sion coefficient (𝐷𝑅) of the probe according to the stochastic Liouville model.98 This

parameter provides information about the local dynamic behavior of the molecule at

the site of the probe and has been widely used to study binding and folding behavior

in peptides and other molecules.3,58,60,100,103,104,142–145 EPR is sensitive to dynamics of

analytes at micromolar concentrations, enabling analysis of samples that are prone to

aggregation. Such dynamics measurements describe the rate of conformational change
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of a molecule. Consequently, EPR spectral measurements are related to the confor-

mational energy landscape.77,107,108 In particular, the activation energy of diffusion

represents the characteristic energy barrier to conformational change.77

4.3 Experimental Methods

4.3.1 Materials and Measurements

Amino acid couplings were performed according to literature76 using 50 mg of Chem-

Matrix H-Rink amide resin (0.49 meq./g). For the TOAC coupling, 3 eq. (0.075

mmol) 2,2,6,6-tetramethylpiperidine-N -oxyl-4-(9-fluorenylmethyloxycarbonyl-amino)-

4-carboxylic acid (Fmoc-TOAC) was coupled overnight (RT) with 2.62 eq. HATU in

2.53 mL DMF 8% (v/v) DIPEA. Fmoc was deprotected for 20 min in DMF 20%

piperidine (RT). The subsequent residue was coupled in flow by a 10 min, 10 mL/min

coupling (70 ∘C) on the peptide synthesizer, and all remaining residues were coupled

normally. Peptides were cleaved using a protocol described elsewhere62, and precip-

itated by centrifugation in diethyl ether (-70 ∘C). The identity of each peptide was

verified by high-res liquid chromatography/mass spectrometry (LC-MS) analysis on

an Agilent 6520 ESI-Q-TOF LC-MS system. Each peptide was then purified by high

performance liquid chromatography (HPLC) and the isolated product was tested by

LC-MS and lyophilized. LC-MS was performed on a Zorbax 300SB C3 column (2.1 x

150 mm, 5 𝜇m, 0.8 mL/min) using solvents A (water 0.1% (v/v) formic acid) and B

(acetonitrile 0.1% (v/v) formic acid) by the following steps: 0-2 min, a 95% A, 5% B

wash; 2-11 min, a 5-65% B linear ramp; and 11-12 min, a 65% B wash. Preparative

HPLC was performed on an Agilent Zorbax C3 column (21.2 x 250 mm, 7 𝜇m, 5

mL/min) using solvents C (water 0.1% (v/v) trifluoroacetic acid) and D (acetonitrile

0.1% (v/v) trifluoroacetic acid) by the following steps: 0-5 min, a 95%C, 5%D wash;

5-80 min, a 5-45% C linear ramp; 80-85 min, a 45% C wash.
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4.3.2 PDS Experiments

Thirty minutes prior to each experiment, peptides (130 uM, final concentration) were

dissolved (water, 30% (v/v) glycerol, 9 mM tris buffer (p.H 7.4), 0.07 M NaCl, 1.5%

(v/v) hydrogen peroxide, 0.1 mM sodium tungstate). Hydrogen peroxide and sodium

tungstate helped re-oxidize the spin labels from hydroxylamines to nitroxides, and

glycerol kept the samples vitreous upon freezing. Samples were centrifuged (3 min.,

15,000 RPM) to separate any aggregated peptides, and the supernatant was studied.

Deuterated glycerol and water were used for the longest peptide to improve measure-

ment accuracy.146 Samples were loaded into quartz capillaries and quenched in liquid

nitrogen.

All PDS measurements were conducted at 17.3 GHz and 60 K using a home-built

Ku-band pulse EPR spectrometer.146 DQC experiments used the 6-pulse sequence147

having 𝜋/2- and 𝜋-pulses of 3 and 6 ns, respectively and employing a 64-step phase

cycling.147 Four-pulse DEER experiments147 utilized for echo detection a 𝜋/2-t1-𝜋

-t2-𝜋 pulse sequence with 𝜋/2- and 𝜋-pulses having widths of 16 and 32 ns, which

was applied at the low-field side of the nitroxide spectrum. A 16 ns 𝜋-pulse pumped

at a 70 MHz lower frequency corresponding to the central maximum of the EPR

spectrum. In all PDS measurements four data records were obtained, advancing each

time initial inter-pulse distances by a quarter period of proton ESEEM frequency (26.2

MHz), and summed up to suppress proton modulation. The data collection time was

1-2 h per sample. The recorded data were subjected to background subtraction.

The latter points (about half of the record) in the logarithm of DEER data were

fit to linear background which was then subtracted out. The resulting linear-scale

DEER data for distance reconstruction, 𝑉 (𝑡) , were modified as 𝑉 ′(𝑡) = (𝑉 (𝑡) −

1)/𝑉 (0) to give the amplitude at zero equal to DEER signal modulation depth and

the asymptotic value of zero148, DQC data required just to have fitted and subtracted

out small linear backgrounds. Based on DEER modulation depth, spin label re-

oxidation efficiency was 0.8±0.1. All data were processed into distance distributions

using either L-curve Tikhonov regularization149 followed by the MEM refinement150
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or de-noising/SVD methods151,152 with the outcomes being close enough, so just the

Tiknonov distributions are presented.

4.3.3 CW-EPR

Measurements were performed using a Bruker EMX+ X-band EPR (9.43 GHz), with

a variable temperature unit. Stock peptide solutions were prepared at a concentration

of 0.75 mg/mL and were centrifuged through 10,000 MWCO Thermo-Fisher protein

concentrator tubes (30 s, 15,000 RPM) to remove contaminants and larger aggregates.

Peptides were then diluted to a concentration of 150 𝜇M in a aqueous solutions con-

taining either 0% (v/v) or 25% (v/v) DMSO, as well as 1x phosphate buffered saline

(PBS, pH 7.4), 1.5% (v/v) hydrogen peroxide (aq.) and 0.1 mM sodium tungstate.

Five uL of the supernatant was loaded into a PTFE capillary tube, and sealed using

Crytoseal resin. We prepared 2x, 4x, 8x 16x and 20x dilutions of these samples in

the same media, in order to ensure that no concentration effects (such as peptide

aggregation) changed dynamics.

EPR spectra for each sample were collected in the range of 275-325 K in incre-

ments of 5 K. Spectra were collected over a 150 G range centered at 𝐵 = 3315 G, with

attenuation of 15 dB and a modulation amplitude of 1.5 G. EPR spectra of a back-

ground sample containing only water, PBS, hydrogen peroxide and sodium tungstate

were subtracted from each peptide spectrum. Finally, samples were frozen to 150 K

and frozen spectra were collected. Subsequent LC-MS analysis of the scanned samples

confirmed the integrity of each peptide. Using the pepper function in Easyspin67, hy-

perfine (A) and electron g values were collected from frozen spectra. Then, NLSL66

was used to analyze room-temperature data, employing the MOMD99 model, and

using an in-house MatLab software package to analyze error. For each spectrum,

1000 fits were started from a randomized initial guess within constraint rectangle. In

every case, a randomized Gaussian noise (based on background noise from the EPR

spectrum) was added to each intensity value in the spectrum to account for experi-

mental error. Error bars were calculated based on the final coordinates of all ’good

fits’, defined as those with a final 𝜒2 parameter within 50% of the global minimum
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of 𝜒2. Arrhenius plots were fitted using the linearized diffusion equation (Equation

3.1).

4.3.4 Molecular Dynamics

MD simulations were performed using Gromacs v5.1.4. Initial peptide inputs were

predicted using PEP-FOLD 3, an in silico conformational prediction tool.153,154 The

output of these calculations was used as an input for 200 ns simulations of each

peptide, using the CHARMM36 force field and explicit water under constant NPT

conditions. The temperature was maintained at 310 K. Simulations were performed in

dodecahedral unit cells with periodic boundary conditions, and charges were neutral-

ized using sodium/chloride ions, as necessary. An additional 0.154 M sodium chloride

concentration was added. The dodecahedral cell was designed to allow a 1.2 nm min-

imum space between the peptide and the boundary. Simulations were conducted run

on a pair of HP Z240 Tower Workstations over the course of 14 days. Trajectories

were analyzed using either built-in Gromacs functions or using Visual Molecular Dy-

namics (VMD). For comparison with PDS results, we corrected for TOAC probes by

assuming a rigid, TOAC structure and at each step adding the Îś-carbon-nitroxide

distance vectors to the inter-carbon distance vector.

4.3.5 Cell Lines and Cell Culture

The human erythroleukemia cell line K562 stably expressing recombinant 𝛼V𝛽3

(K562-𝛼V𝛽3) was described previously.127 Cells were maintained at 37 ∘C, 5% CO2

in Iscove’s modified Dulbecco’s medium supplemented with 1 mg/ml G418, 10% fetal

bovine serum, penicillin and streptomycin.

4.3.6 Fluorescence labeling of hFN10

hFN10 was labeled with N -hydroxysuccinimidyl ester derivative of Fluor 647 (Alexa

Fluor 647) from Invitrogen according to the manufacturer instructions. Excess dye
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was removed using dialysis and buffer exchange into PBS. The final protein concen-

tration and dye/protein molar ratio were measured spectrophotometrically.

4.3.7 Ligand Binding and Flow Cytometry

K562-𝛼V𝛽3 cells were harvested and washed three times in HEPES-buffered saline (20

mM HEPES and 150 mM NaCl, pH 7.4) containing 0.1% (w/v) BSA (binding buffer,

BB). 0.5x106 cells were suspended in 100 ml BB containing 1mM each Ca2+ plus Mg2+

or 1mMMn2+ and washed again in the right metal ion-containing BB. For competition

studies, K562-𝛼V𝛽3 were incubated first with serially diluted concentrations of the

unlabeled RGD-peptides in Mn2+-containing BB and subsequently with 10 nM of the

reporter Alexa647-conjugated hFN10 ligand for an additional 20 minutes at room

temperature in the dark. Cells were washed with 4 mL metal ion-containing BB to

remove the unbound reporter, centrifuged for 5 minutes at 525xg, re-suspended, and

fixed in 1% paraformaldehyde. They were finally analyzed using a BD-LSRII flow

cytometer (BD Biosciences) and processed using FlowJo software. The binding of

soluble hFN10 to K562-𝛼V𝛽3 cells was expressed as mean fluorescence intensity units

(MFI), and the mean and standard deviation from three independent experiments

were calculated and compared using student’s 𝑡-test. The binding profile of each

peptide was fit in MatLab using a Hill curve model, in order to determine half-

maximal inhibitory concentrations (IC50s) and associated uncertainties.

4.4 Results

We aimed to understand the relationship between dynamic behavior and peptide

structure, and to identify what, if any, connection exists between these properties and

peptide binding. We used CW-EPR to analyze the conformational behavior of a series

of four peptides, shown in Figure 4.2. These peptides mimic the sequence of human

fibronectin (Fn) in the region surrounding an RGD site from the 1FNF fragment

reported in the protein data bank.130 We designate these sequences as fibronectin-

mimetic peptides (FMPs). Each peptide sequence corresponds to a fragment of the
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a)                                                               b)                                                             c)                                                            d)

Figure 4.2: The structure of RGD-containing fibronectin fragments. RGD
sites of each peptide fragment are highlighted in yellow. a) FMP9 includes the RGD
site and three flanking residues on either side. b) FMP15 includes the RGD site and
six flanking residues on either side. c) FMP21 includes the RGD site and nine
flanking residues on either side. d) FMP27 includes the RGD site and twelve
flanking residues on either side.

human fibronectin protein centered at residue 1494, the glycine of RGD. We chose

four sequences for RGD conformational dynamics and binding analyses: a 9-residue

sequence composed of RGD with three flanking residues on either side (FMP9, Fig.

4.2a), a 15-residue sequence with six flanking residues on either side of RGD (FMP15,

Fig. 4.2b), a 21-residue sequence with nine residues flanking RGD (FMP21, Fig.

4.2c), and a 27-residue sequence with twelve residues flanking RGD (FMP27, Fig.

4.2d).

We used CW-EPR spectroscopy and spectral analysis of each peptide to measure

conformational dynamics of the FMPs as a function of temperature and peptide

length. To accomplish this, we substituted an amino acid spin label (TOAC) for

the glycine of the RGD sequence of each FMP peptide. For simplicity, we refer to

the TOAC residue as J. The amino acid sequences, designations, and expected and

observed molecular weights of each compound are reported in Table 1. We measured

CW-EPR of the TOAC-substituted FMPs at temperatures between -3 ∘C and 53 ∘C

and fit each EPR spectrum to find the probe’s rotational diffusion coefficient (𝐷𝑅)

(See Supplemental Information, Fig. 4.3). Lower rotational diffusion rates correspond

to slower conformational dynamics at the spin label site.

Figure 4.4a shows the Arrhenius plots of each FMP in phosphate-buffered saline

(PBS) solution. The rotational diffusion coefficients in the Arrhenius plots are de-

rived from EPR fitting shown in the Supplemental Information (Fig. 4.3). Figure
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Figure 4.3: CW-EPR data (black) superimposed over spectral best-fits
(red) for each FMP sample. Spectra are vertically offset based on their
temperature, so that spectra collected at higher temperatures have a higher vertical
offset. For associated dynamic data, refer to Figure 4.4.

4.4b presents Arrhenius plots of the same FMPs, except in a solvent mixture of 3:1

PBS:DMSO, where DMSO is a denaturant. The overall slower diffusion of the spin

labeled FMPs in the presence of DMSO results from the greater viscosity of the

DMSO/PBS solvent mixture compared to PBS alone. We calculated the activation

energy of diffusion (𝑄) of each peptide as a function of length from the slopes of

the Arrhenius plots (Fig. 4.4c) and found 𝑄 = 11.3 kJ/mol (FMP9), 19.4 kJ/mol

(FMP15), 20.8 kJ/mol (FMP21) and 22.4 kJ/mol (FMP27) in PBS. As expected, the

slope of activation energy of diffusion versus peptide length is linear when DMSO in

present, since no secondary structure is possible. In contrast, a discontinuity is ob-

served in PBS buffer, where the activation energies of diffusion of the shortest FMP

(FMP9) is significantly less than that of FMP15, deviating from linear behavior. This

discontinuity suggests that a structural change occurs when the number of flanking

residues on each side of the RGD increases from three to six.

Few previous EPR studies describe activation energy of diffusion of polymers, pep-

tides, or proteins. One study indicates that polymers activation energies of diffusion
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Table 4.1: Fibronectin-mimetic peptide (FMP) designations, sequences,
and exact masses. Each FMP sequence (named in bold) has two associated
TOAC peptides – a singly labeled sequence for EPR dynamics measurement, and a
twice labeled sequence used for PDS experiments. The sequences are given with the
RGD site in bold, and the position of TOAC spin label residues indicated by a red
J. Exact masses were computed from LC-MS spectra in Appendix C.

Name Sequence Exp. MW Obs. MW
FMP9 VTGRGDSPA 857.41 857.43
FMP9-J5 VTGRJDSPA 998.53 998.51
FMP9-J0J5 JVTGRJDSPA 1196.66 1196.65

FMP15 VYAVTGRGDSPASSK 1492.74 1492.77
FMP15-J8 VYAVTGRJDSPASSK 1633.85 1633.83
FMP15-J0J8 JVYAVTGRJDSPASSK 1831.99 1831.99

FMP21 TITVYAVTGRGDSPASSKPIS 2105.09 2105.01
FMP21-J11 TITVYAVTGRJDSPASSKPIS 2246.20 2246.15
FMP21-J0J11 JTITVYAVTGRJDSPASSKPIS 2444.34 2444.36

FMP27 VDYTITVYAVTGRGDSPASSKPISINY 2872.44 2872.43
FMP27-J14 VDYTITVYAVTGRJDSPASSKPISINY 3013.55 3013.52
FMP27-J0J14 JVDYTITVYAVTGRJDSPASSKPISINY 3211.69 3211.69

a)                b)                         c)
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Figure 4.4: Dynamic behavior at the RGD site changes discontinuously
with length. a) Arrhenius plots of rotational diffusion of TOAC peptides in buffer,
generated from EPR spectral analysis. b) Arrhenius plots of rotational diffusion
determined by EPR in 25% DMSO/75% buffer. The DMSO denaturant prevents
secondary structure formation. c) Activation energy of rotational diffusion in buffer
(black data points) and 25% DMSO as a denaturant (red data points).
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exhibit no length-dependence, but in that case, the polymers were much larger than

FMPs (33-500 kDa), and were not composed of amino-acids. Another report describes

the diffusive motion of shorter biopolymers in terms of internal friction effects, which

also applies to short peptides such as FMPs – but these results are system-specific

and do not indicate the physicality of a linear relationship in this case.114

The activation energies of diffusion demonstrated in Figure 4.4c arise from the

characteristic energy barriers associated with conformational changes that displace

the nitroxide radical.77 These barriers are influenced partially by hydrogen bonding

between the peptide and its hydration shell, and partially by the roughness of the

conformational free energy landscape.77 The roughness of free-energy landscapes is

important for describing protein folding.111,113 The lower the conformational energy

barrier, the more smoothly the molecule changes conformation, and the lower the

conformational dwell-time.77,111 Figure 4.4c indicates that the longer three peptides

are substantially more frustrated than the shortest peptide, and are therefore more

likely to exhibit strong intramolecular interactions in multiple configurations.

To understand the structural origin of dynamic behavior of FMPs, we carried out

200 nm all-atom molecular dynamics (MD) simulations and mapped the probabilities

of hydrogen bond formation between residue pairs of the free FMP peptides. Figure

4.5 shows intramolecular hydrogen bonding within each FMP by indicating the prob-

ability of each pair of residues participating in a hydrogen bond. These results show

that while transient hydrogen bonding is possible, the RGD site remains disordered,

exhibiting several stable conformations, even in the longest peptide. This conclusion is

supported by Ramachandran plots calculated for the five central residues (GRGDS)

of each sequence (Fig. 4.6). Further, the disorder of FMPs is consistent with the

EPR results shown in Figure 4.4, which demonstrate a relatively rapid overall rate of

diffusion in all four peptides.

Figure 4.5 indicates that, near the RGD site, the longer three peptides exhibit

transient hydrogen-bonding that is less pronounced in the shortest peptide (Fig. 4.5).

These hydrogen bonds form intermittently between pairs of nearby residues, and do

not constitute permanent secondary structure. A hydrogen bonding pattern begins
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Figure 4.5: Molecular dynamics simulations illustrate intra-chain
hydrogen bond formation in FMP peptides and fibronectin protein. a)
Hydrogen bond probability maps of FMP peptides and the corresponding region of
fibronectin, determined by MD simulations. Weak hydrogen bonding between
residues near to the RGD site (appearing near the 𝑦 = 𝑥 line) is observed. Strong
hydrogen bonding between flanking chains is observed in FMP27 and fibronectin,
but the residues involved in these intramolecular hydrogen bonds differ between
FMP27 and fibronectin. b) Intramolecular hydrogen bonding occurring more than
4% of the time is depicted in purple. A transient hydrogen bonding pattern appears
along the 𝑦 = 𝑥 line for FMP15, FMP21, and FMP27 which has not fully evolved in
FMP9.
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Figure 4.6: Ramachandran plots of the RGD site in 200 ns peptide
simulations and a 25 ns (brief) simulation of Fibronectin, labeled by
amino acid (top) and by sequence name (right). The 𝑥- and 𝑦-axes represent
the dihedral angles, while the color axis represents the energy associated with a
given conformation within a residue. These plots demonstrate the conformational
flexibility of the RGD-loop in all four of the peptides (since many conformations are
stable), but affirm that the correct binding conformation (observed in the
fibronectin row) is likely accessed by all four of the shorter peptides. Fibronectin
likely has other stable conformations, but these are not reflected in the 1FNF
crystal structure that we studied.
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to emerge as RGD is flanked by a greater number of residues. As seen in FMP15,

FMP21, and FMP27, the hydrogen bonding probability profile remains similar despite

the emergence of more permanent secondary structure in FMP27. This structure is

absent in our simulation of a fibronectin protein fragment (labeled as Fibronectin in

Figure 4.5), due to limitations in simulation time given the large number of atoms.

These simulations demonstrated a second change in FMP behavior as a function

of length. FMP27 folded permanently due to the formation of strong hydrogen bonds

between residues 9-26 and 11-24, whereas the shorter three peptides did not. Although

this structure is similar to the hydrogen bonding interactions in the analogous region

of fibronectin, there is a slight misalignment between the interactions of FMP27 and

the analogous region in fibronectin (which has bonds between residue-pairs 6-26, 8-

24, and 10-21). This mismatch preferentially distorts the RGD site into a non-ideal

conformation for binding. Formation of hydrogen bonds does not appear to affect the

activation energy of diffusion of the longest peptide. We attribute this phenomenon

to the high stability of these hydrogen bonds, since they are nearly permanent in

FMP21. While these interactions modify the overall energy landscape, they appear

to have a minimal impact on its roughness.

To support these simulations, pulsed dipolar spectroscopy (PDS), an EPR tech-

nique, was used to analyze the distance between the N-terminus and the RGD binding
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site. Table 1 shows the twice-labeled FMPs used for this study. With PDS, we mea-

sured inter-probe distance distributions (between 1.1-10 nm) based on the interference

between radical electrons within a molecule. We used double quantum coherence147

(DQC) and double electron-electron resonance155 (DEER) experiments to compute

each distance distribution, and compared with distributions extracted from our MD

simulations. Figure 4.7 shows the distance distributions between the RGD site. The

distance distributions determined by PDS are consistent with MD simulations, show-

ing that the short peptide is generally extended, with a uniform distance distribution.

As the peptide length increases, the distributions increase. This observation is con-

sistent with the formation of hydrogen bonds in a largely disordered peptide. The

general agreement between these MD and PDS distance distributions is high – the

average inter-probe distance differs by no more than 2 Åin any simulation. Minor

deviations between MD and PDS measurements may result from a change in se-

quence behavior due to the introduction of TOAC, as well as the possibility that MD

simulations did not survey the entire conformational space of each peptide.

We measured binding of FMPs to 𝛼V𝛽3 integrins on cell surfaces via displacement

of fluorophore-labeled hFN10 (a high affinity ligand for the 𝛼V𝛽3 integrin) bound

to K562-𝛼V𝛽3 cells127. Cell binding measurements for each peptide are shown in

Figure 4.8 along with the numerical fits used to calculate the IC50 for each FMP.

Using scrambled analogs of FMPs and RGA (arginine-glycine-alanine) mutations as

controls, we demonstrated that specific, rather than non-specific, binding occurs.

All four peptides bound to the activated integrins, however, there were significant

differences between the potency of each sequence. FMP15 and FMP21 exhibited

the strongest binding, followed by FMP9 and finally FMP27. These results suggest

that the dynamic transition, associated with hydrogen bonding along the peptide

backbone, corresponds to increased energy landscape roughness and stronger peptide-

integrin binding. We observe weaker binding between integrins and the short FMP

that does not form intramolecular hydrogen bonds. We observe the weakest binding

between integrins and the FMP that misfolds (FMP27), highlighting the importance

of localized secondary structure in a largely disordered peptide.
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Figure 4.8: Displacement of fluorescently labeled fibronectin, bound to
cellular 𝛼V𝛽3, by FMP peptides. Normalized mean fluorescence intensity
(MFI) of integrin-bound Alexa647-labeled hFN10 protein is presented as a function
FMP peptide concentration. The longer peptides, relative to FMP9, exhibit a 5̃x
improvement in their ability to bind to activated integrins. In the longest peptide
(FMP27), this improvement is eliminated completely due to misfolding. The
half-maximal inhibitory concentrations (IC50s) observed are: FMP9: 1030±208 nM;
FMP15: 172±30 nM; FMP21: 218±52 nM; and FMP27: 2740±1070 nM.
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4.5 Discussion

Here we present a strategy for improving the potencies of short peptide signals that

are derived from protein active sites. We introduce four peptides that contain the

RGD integrin-binding motif. Each peptide contains a different number of residues

flanking RGD, with the residue sequences adapted from a fibronectin protein. We

show that binding efficacy of short fibronectin fragments, with RGD as the central

three residues, increases with length between nine and 21 residues, but that misfolding

occurs in the 27-residue sequence. We use conformational dynamics measurements

and molecular dynamics simulations to understand this behavior in the context of

free energy landscapes.

The geometric and chemical structure of proteins or peptides has historically been

regarded as the key feature that dictates binding efficiencies. In the case of RGD-

integrin binding, our results show that dynamic behavior also plays an important

role. We performed dynamics experiments on a set of short fibronectin fragments

and find that rough conformational energy landscapes are correlated with significant

improvements in the potency of RGD peptides. From these results, we suggest energy

landscape roughness as a new design parameter for generating more potent bioactive

peptides. We observed two notable features that affect binding of FMP peptides.

The first feature is the emergence of transient hydrogen bonding structure. This

transient hydrogen bonding increases the energy landscape roughness discontinuously

with peptide length and corresponds to an increase in binding affinity of FMPs to

integrins in cells. As a control, we observe that in the presence of a denaturant

(DMSO), the energy landscape roughness of FMPs varies continuously with peptide

length. The second feature corresponds to the formation of permanent intramolecular

hydrogen bonding structure within the longest FMP (FMP27), which detrimentally

affects binding.

A likely explanation for this phenomenon is that rough energy landscapes corre-

spond to increased dwell-times of peptides in configurations appropriate for binding.

These longer dwell-times stabilize a favorable conformation of the RGD site, fitting
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with our understanding of conformation as the primary mechanism by which protein

binding occurs. This explanation suggests that intrinsic disorder at the RGD site pro-

motes fibronectin binding, and could reveal why this site is disordered in fibronectin.

Notably, permanent folding of FMP27 via hydrogen bonding had little or no bearing

on the energy landscape roughness or dynamic behavior at the RGD site. Further

studies are needed to confirm that this behavior plays a role in integrin binding by

fibronectin proteins.

In summary, we used EPR spectroscopy, quantitative spectral analysis and molec-

ular dynamics simulations to understand the role of flanking residues in controlling

the conformational dynamics and the free energy landscapes of RGD peptides. We

observed the emergence of transient secondary structure, which significantly improved

RGD binding to integrins. We conclude that energy landscape roughness may con-

tribute to binding of native fibronectin proteins, and should be considered in fu-

ture analyses of peptide binding. Finally, we suggest that dynamic and transient

structure is important for peptide binding, and that binding interactions of peptide-

functionalized biomaterials could benefit from consideration of dynamics and incor-

poration of additional residue, beyond the active binding site.
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Chapter 5

A global minimization toolkit for

batch-fitting and 𝜒2 cluster analysis

of CW-EPR spectra

5.1 Abstract

Electron paramagnetic resonance spectroscopy (EPR) is a uniquely powerful tech-

nique for characterizing conformational dynamics at specific sites within a broad range

of molecular species in water. Computational tools for fitting EPR spectra have en-

abled dynamics parameters to be determined quantitatively. While these tools have

dramatically broadened the capabilities of EPR dynamics analysis, their implemen-

tation can easily lead to overfitting, user errors, or insufficient self-consistency. As

a result, dynamics parameters and associated properties become difficult to reliably

determine, particularly in the slow-motion regime. Here, we present a novel EPR

analysis strategy, and the corresponding computational tool, for batch-fitting EPR

spectra and cluster analysis of the chi-squared landscape. We call this tool CSCA

(Chi-Squared Cluster Analysis). The CSCA tool allows us to determine self-consistent

rotational diffusion coefficients and enables calculations of activation energies of dif-

fusion from Arrhenius plots. We demonstrate CSCA using a model system designed
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for EPR analysis: a self-assembled planar nanofiber with radical electron spin la-

bels positioned at known distances off the surface. We anticipate that this tool will

increase the reproducibility of EPR fitting for the characterization of dynamics in

biomolecules and soft matter.

5.2 Introduction

The dynamic behavior of biomolecules and soft materials is often critical to their

function.59,77,115,156 In protein biology, for instance, a dynamic picture of proteins

has gradually replaced the purely structural ’lock-and-key’ model describing their

function. More recent models, such as the induced fit and the conformational selection

models, describe proteins as conformationally fluctuating molecules and relate the

equilibrium conformational distribution and the rate of conformational change to

the activity and interaction of these macromolecules with each other.45,46 In self-

assembling materials with biological applications, dynamics measurements are used to

understand thermodynamic phase behavior, and even to identify liquid/solid phases

within different regions of the same self-assembled sample.59,68 Dynamic behavior

is complicated and challenging to study, especially in heterogeneous systems such as

membrane proteins, or in systems that precipitate or aggregate at high concentrations.

Continuous wave electron paramagnetic resonance (CW-EPR) is a powerful tool

for measuring dynamic behavior64–67,98,157,158 of site-specific radical electron spin la-

bels. By synthetically introducing nitroxide (also called nitroxyl) radicals into the

sample at known positions, the rotational diffusion rate (𝐷𝑅) of these radicals can be

determined by fitting their EPR spectra. Most commonly, EPR is used to characterize

the dynamics of proteins60,61,157, peptides63,77, polymers159,160, and small-molecules in

water.59,68,161 In these systems, spin-labels are covalently tethered to molecules that

tumble slowly. Rotational diffusion rates of the spin labels are inversely related to

rotational correlation times (𝜏𝑅), which are typically on the order of picoseconds to

tens of microseconds.

The stochastic Liouville equation (SLE) quantum-mechanically describes the spec-
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tra associated with slowly-moving electrons and is important for analyzing confor-

mational dynamics on timescales relevant for EPR dynamics measurements.64,98,158

Several software packages that use the SLE model are available for fitting EPR spec-

tra: most notably, the NLSL software package66, EasySpin67, and MultiComponent,

a LabVIEW wrapper for NLSL.162 Since the introduction of these software packages,

the SLE model has been enhanced by incorporating the macroscopic order microscopic

disorder (MOMD) model and the slowly relaxing local structure (SRLS) model.99,163

The validity of the SLE model in the slow-motion regime has been verified by MD sim-

ulations, which can accurately reproduce EPR spectra from atomistic trajectory files,

and which confirm that the diffusion of spin labels gives an accurate approximation

of the dynamics of the local environment.55,164–167

Despite the availability of fitting programs, challenges remain in the analysis of

dynamics by CW-EPR. Expert analysis is typically necessary to reliably estimate fit

uncertainty, as well to obtain self-consistent results in variable temperature experi-

ments.77 Such analysis reduces the risk of overfitting and improves the reproducibility

and consistency of fits. In non-linear curve fitting, there are many cases where the

absolute best-fit is less consistent with physical reality than other possible fits – even

in systems with very few parameters.168,169

Here we report an open-source MatLab-based software referred to as CSCA (Chi-

Squared Cluster Analysis) that interfaces with NLSL to improve the quality of EPR

spectral fitting. The CSCA toolkit enables users to 1) automatically resample data

points from spectra to incorporate the effects of noise into error analysis; 2) map and

analyze the 𝜒2 error function, allowing visualization of clusters of local minima; 3)

provide more meaningful fit values and error bars, based on statistical analysis of

high-quality fits; and 4) incorporate a variety of popular bounded global optimization

tools, including simulated annealing, genetic algorithms, particle swarms and Monte

Carlo methods.

We used CSCA to analyze the dynamic behavior of spin labels attached via

oligoproline spacers to aramid amphiphile (AA) planar nanofibers after spontaneous

self-assembly in water. These amphiphilic molecules were designed to form planar
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Figure 5.1: Self-assembly of planar nanofibers with spin labels tethered
at known distances off the surface. a) A cationic aramid amphiphile (AA,
compound (1)) and spin labeled analogues with oligoproline spacers (AA-Pn-SL,
(2-5) self-assemble spontaneously in water. b) AA (compound 1) is co-assembled
with 2 mol % (2), (3), (4), or (5) to form planar nanofibers in water with integrated
oligoproline-linked spin labels at distances, 𝑑, off the nanofiber surface. c) A
representative TEM micrograph of compound (1) co-assembled with compound (5)
show that spin labeled oligoproline AAs do not affect the geometry or dimensions of
AA nanostructures.

nanofibers of 5 nm width, 4 nm thickness, and up to 20 Îĳm in length. AA nanofibers

exhibit negligible molecular exchange over two months, in addition to high Young’s

moduli and tensile strengths.170 Figure 5.1a illustrates the chemical structure of the

AA molecule (1) and the spin labeled analogues (2-5) that are incorporated by co-

assembly at low concentrations (2 mol %). The spin labeled planar nanofiber is

schematized in Figure 5.1b, and a transmission electron microscopy (TEM) image of

a spin-labeled assembly is presented in Figure 5.1c. Oligo- and polyproline spacers

are often incorporated into biomaterials, where they are used to enhance cellular in-

teraction with functionalized end-groups.171,172 A major advantage of prolines over

other spacers is their rigidity – oligo- and polyprolines are often used as ’molecular

rulers’, due to their tendency to coil into stiff helices with known lengths.173,174

The dynamic structure of protein-binding peptides can also play a significant

role in peptide interactions.77 Therefore, the length-dependence of dynamics in oligo-

prolines is likely important to the behavior of binding sites attached to the end of

the helix. However, these molecules are very rigid, resulting in slow conformational

changes.174 In this regime, self-consistent analysis of EPR results becomes very chal-
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Figure 5.2: The structure of (6), the AA tail coupled to polyproline to
synthesize compounds (2-5).

lenging, making it an ideal test-case for our novel analytical methods.

5.3 Experimental Methods

5.3.1 Sample synthesis

TOAC was coupled to 50 mg of ChemMatrix H-Rink amide resin (0.49 meq./g) using

3 eq. 2,2,6,6-tetramethylpiperidine-N -oxyl-4-(9-fluorenylmethyloxycarbonyl-amino)-

4-carboxylic acid (Fmoc-TOAC) and 2.62 eq. 1-[Bis(dimethylamino)methylene]-1H-

1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU) in 2.53 mL N,N -

dimethylformamide (DMF) 8% (v/v) N,N -Diisopropylethylamine (DIPEA). Fmoc

was cleaved using DMF 20% piperidine and the resin was washed with DMF. The

subsequent proline was attached via an overnight reaction with 7 eq. Fmoc-proline

and 6.65 eq. HATU in 4.80 mL DMF 8% (v/v) DIPEA. Literature protocols were

used for the coupling of all subsequent proline residues.76 Compounds (1) (Fig. 5.1)

and (6) (Fig. 5.2) were synthesized according to methods which we report else-

where.170 After Fmoc deprotection of the N-terminal proline, (6) was coupled to the

N-terminus of the resin-bound peptide via an overnight coupling with 5 eq. (6) and

4.5 eq HATU in 800 𝜇L DMF 8% (v/v) DIPEA at 60 ∘C. The result was washed

under DMF, dried, cleaved via a protocol described elsewhere62, and precipitated by

centrifugation in diethyl ether (-70 ∘C). The identity of each compound was verified

by high-resolution liquid chromatography/mass spectrometry (LC-MS) analysis on

an Agilent 6550 ESI-Q-TOF LC-MS system. Each peptide was then purified by high

performance liquid chromatography (HPLC) and the isolated product was tested by
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LC-MS and lyophilized. LC-MS was performed on a Zorbax 300 SB-C3 column (2.1

x 150 mm, 5 𝜇m, 0.8 mL/min) using solvents A (water 0.1% (v/v) formic acid) and

B (acetonitrile 0.1% (v/v) formic acid) by the following steps: 0-2 min., a 1% B

wash; 2-12 min., a 1-91% B linear ramp; and 12-13 min, a 1% B wash. Preparative

HPLC was performed on an Agilent Zorbax C3 column (21.2 x 250 mm, 7 𝜇m, 5

mL/min) using solvents C (water 0.1% (v/v) trifluoroacetic acid) and D (acetonitrile

0.1% (v/v) trifluoroacetic acid) by the following steps: 0-5 min., a 95%C wash; 5-80

min., a 5-45% C linear ramp; 80-85 min., a 45% C wash.

5.3.2 EPR sample protection

Compound (1), AA-P3-SL, AA-P5-SL, AA-P8-SL, and AA-P12-SL were dissolved

separate stock solutions of 50% C and 50% D, and the concentration of each was

estimated based on the UV absorbance at 260, 280 and 320 nm, with reference to a

standard absorbance curve determined for compound (1). Aliquots containing 98%

(1, 2% linker (mol/mol) were prepared, and these were lyophilized. We calculated the

mass of the mixture from the initial molar concentrations of each species, dissolving

the dry mixture in ultrapure water to reach a final concentration of 5 mg/mL (label

concentration was 200 𝜇M). The resulting aqueous aliquots were then bench soni-

cated for 30 minutes, to facilitate assembly of nanofibers containing labeled oligopro-

line linkers. Nanofiber assembly was verified by negative-stain TEM, and potassium

hexacyanoferrate was added (at a final concentration of 0.94 mg/mL) to reoxidize

spin-labels that were reduced by trifluoroacetic acid (TFA) during synthesis. Ten 𝜇L

of this product was then added to a PTFE capillary tube, which was sealed with

crytoseal resin.

5.3.3 EPR data collection

EPR was performed on a Bruker EMX+ X-band EPR (9.43 GHz), with a variable

temperature unit. Dilutions down to 1 mg/mL, 0.5 % (mol %) labeled oligoproline

were prepared, but noting no deviation in the shape of the EPR spectra, we chose
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the comparatively higher label-concentrations noted in the previous subsection, since

these provided the greatest signal-to-noise ratio. Spectra were collected over a 150 G

field sweep centered at 𝐵 = 3315 G, with an attenuation of 15 dB and a modulation

amplitude of 1.5. Variable temperature experiments were performed in the range of

275-302 K, in increments of 3 K.

5.4 Computational Methods

5.4.1 Background on the SLE model and fitting function

The theory of EPR spectral simulation is complex, and has been more thoroughly

described elsewhere.64,67,98 In brief, EPR spectra of nitroxide radicals may be com-

puted numerically by iteratively solving the SLE equation, which depends on several

parameters. In particular, spectra are usually defined by an electron’s gyromagnetic

g-tensor, its hyperfine A-tensor, and its rotational diffusion D-tensor, which con-

tains elements inversely related the electron’s rotational correlation times, called the

𝜏 -tensor. In the literature, D and 𝜏 appear with relatively equal frequency. Here, we

limited ourselves to the case of isotropic diffusion, where all diagonal components of

the diffusion tensor are equal to the scalar 𝐷𝑅, and all off-diagonal components are

zero (because the tensor is defined relative to the principle axes of diffusion).

Simply simulating EPR spectra is usually insufficient for interpreting real data

sets. Instead, we perform nonlinear fitting in order to find simulation parameters

which best describe experimental data sets – this is done using an algorithm for 𝜒2

minimization. 𝜒2 (defined in Eq. 2.10) is a function quantifying the difference between

experimental and model-predicted values as a function of a set of fit-parameters, c

(10, 12).64,66

In this equation, 𝐼𝑒𝑥𝑝 denotes the experimental spectral intensity at a frequency

𝜔𝑖, which is taken with reference to frequency 𝜔0 (𝜔0 is typically chosen to be 0). 𝜎𝑖

represents an uncertainty associated with each point, and it weights the fit to more

closely conform to points with greater experimental significance. The set c = c𝑚𝑖𝑛,
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which most effectively minimizes 𝜒2, is the set of parameters that best explains the

spectral data. Unfortunately, the 𝜒2 function is nonconvex, and therefore it can

have any number of local minima that often trap algorithms designed to minimize

𝜒2.175 The algorithms used for this purpose range in sophistication from the relatively

simple family of gradient-based methods, such as gradient-descent and Levenberg-

Marquardt, to more sophisticated techniques, such as simulated annealing and particle

swarm methods (29, 36).168,175

All optimization algorithms for 𝜒2 are iterative. Therefore, we cannot be assured

that any will find the global minimum with perfect confidence. Nonetheless, many

effective numerical algorithms exist for global optimization, particularly over bounded

intervals. In such cases, simulated annealing, genetic algorithms, particle swarms

and Levenberg-Marquardt Monte Carlo methods will all typically agree on a global

optimum, if run for a sufficient number of iterations. In modeling, the hardest problem

is rarely identification of the global 𝜒2 minimum. Much more challenging is the process

of understanding the extent to which an identified global minimum can be trusted to

describe observed data.168,169

The 𝜒2 landscape of a non-linear fit is commonly populated by a large number of

local minima, often clustered in the vicinity of the global optimum. This phenomenon

can be referred to as multimodality or ruggedness.175 If multiple experimental repeti-

tions are collected and analyzed, random variations will result in random deviations

within this cluster, suggesting that global optima are statistically uncertain. In some

cases, multiple, distinct clusters of optima exist, indicating that multiple models are

good fits to the data. Under these circumstances, deciding which model is more physi-

cally accurate requires an understanding of the physics of the problem, which can help

constrain the fit to a particular region of parameter space.168 In rarer cases, obvious

clusters of local minima are misleading, and a truly accurate model is ill-informed

by 𝜒2 analysis alone. This means that true insight into the nature of the model is

required for accurate fitting of data.169 Continuous-wave EPR analysis is subject to

these confusions, and thus global optimization alone is not sufficient for the analysis

of experimental spectra.
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5.4.2 Fitting protocols and analysis of the 𝜒2 landscape

Here, we consider that the uncertainty associated with fitting always arises from two

sources. Experimental uncertainty arises from noise, artifacts, or other error associ-

ated with data collection. Fit uncertainty arises because multiple sets of parameters

describe a given data set with sufficient accuracy, and we are unable to meaningfully

distinguish between them. As we will demonstrate in the results section, fit uncer-

tainty is important, even when we analyze ideal, simulated spectra. Therefore, fit

uncertainty encompasses the effects of overfitting within a rugged cluster, as well as

the possibility that the SLE model or 𝜒2 function interacts unexpectedly with data

artifacts. Our results suggest that for CW-EPR in the X-band, fit uncertainty is a

much more significant problem than experimental error.

We can easily account for the effects of experimental noise in EPR fitting via

a Monte-Carlo approach.168 By fitting the same spectrum many times, randomly

varying the experimental noise, we ensured that we accurately incorporated the effect

of noise into any uncertainty estimates we generated. In our software, we refer to

this option as Monte Carlo resampling. To describe fit uncertainty, we ran multiple

Levenberg-Marquardt optimization algorithms with a randomly-varied starting point

(Monte Carlo Levenberg-Marquardt, MCLM). The iteration of this process within a

bounded region identifies a large number of local 𝜒2 minima, as well as the function’s

global minimum. As a minor technical note, our algorithms operate via minimization

of the reduced 𝜒2 function, defined as 𝜒2
𝜈 = 𝜒2/𝜈, where 𝜈 is the number of degrees

of freedom available to the fit. These have the same optima because 𝜈 is constant.

We select the subset of these minima whose values fall below some threshold value

(𝜒2
𝑡ℎ𝑟𝑒𝑠ℎ). The threshold value is small enough that all models accurately describe the

data, but is large enough to provide a statistically representative sampling of local

𝜒2
𝜈 minima for the cluster containing the global optimum. We use this cluster of

good fits to assign a univariate distribution to each parameter, and treat this as the

fit uncertainty. This distribution allows us to assign reliable confidence intervals to

each parameter. Since the values of parameters within a cluster are often correlated,
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these distributions certainly overstate the uncertainty of our fitting process – how-

ever, this process allows us to assign uncertainty estimates to fitted parameters. We

combined the MCLM method with Monte Carlo spectral variation to account for both

experimental and fit uncertainty.

In our view, the reproducibility problem of continuous wave EPR fitting results

from the fact that positions of global optima vary considerably within their good-fit

cluster as a consequence of random variations in data. In contrast, we observed the

positions of the clusters themselves to be quite reproducible. We therefore took the

approach of assigning a measure of central tendency to fit clusters, in order to achieve

self-consistency. Since these clusters tended to have unusual shapes, we compared four

metrics for central tendency – the mean, the marginal median, the geometric median

and the medoid – to identify which of these could describe the data accurately. All

four metrics are included within our software package, and our comparisons between

these and the global optima are presented in the results section.

5.5 Results

5.5.1 Peptide spin labels incorporated into self-assembled nanofibers

We synthesized four samples, whose sequences are outlined in Table 5.1, for co-

assembly into AA nanofibers. 𝐷𝑅 values were smallest for the shortest proline se-

quences, indicating that the motion of these peptides was the most restricted. This,

coupled with the observed lack of concentration dependence, is a good indicator that

labeled samples integrate into the self-assembled nanostructure. If the samples had

dissolved in water, shorter peptides would ordinarily move faster than longer ones.114

If the labeled molecules had instead precipitated into a unique phase, spin-spin inter-

actions would have resulted in a significantly different EPR spectral shape. Therefore,

we conclude that the labels are present in all four systems, as a dilute species dissolved

in the self-assembled nanofibers.

As evidence of synthetic purity, we submit LC-MS elution profiles and mass-
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Table 5.1: Spin-labeled oligoprolines tethered to the surface of AA
nanofibers. The spin label TOAC residue is denote by J. The expected and
observed molecular weights are presented, with supporting LC-MS data presented in
Figure 5.3. The expected oligoproline helix length is calculated based on the known
PPII helix length of 0.31 nm per proline residue.176

Compound Name
Surface
sequence

Exp.
MW

Obs.
MW

Appx. helix
length (Å)

(2) AA-P3-SL -PPPJ 961.48 961.50 9.3
(3) AA-P5-SL -PPPPPJ 1155.58 1155.61 15.5
(4) AA-P8-SL -PPPPPPPPJ 1446.75 1446.76 24.8
(5) AA-P12-SL -PPPPPPPPPPPPJ 1834.96 1834.98 37.2

spectrometry data for each spin-labeled amphiphile in Figure 5.3. A small, secondary

elution peak was observed slightly prior to the elution of the principle peak in all four

peptides. This resulted from an impurity on the LC-MS column, which was present

in the absence of any injection. It features more prominently in the elution profiles

of shorter peptides because these were loaded at smaller concentrations.

5.5.2 Measures of central tendency achieve self-consistent de-

scriptions of 𝐷𝑅

We produced Arrhenius plots of the rotational diffusion coefficient, 𝐷𝑅, of each sample

as a function of temperature. In almost every case, using the global optimum of

𝐷𝑅 resulted in a high degree of inconsistency and the appearance of non-Arrhenius

behavior – particularly in colder, slower-moving samples. For these samples, the mean

also proved inconsistent, so we chose to neglect it from further analysis. However,

all three median-based methods agreed on the value of 𝐷𝑅 at every temperature,

resulting in the linear, Arrhenius behavior for𝐷𝑅 that is typical for diffusive processes.

Figure 5.4 presents these results, with Figure 5.4(a-d) demonstrating the Arrhenius

fits produced by each method for compound (1) co-assembled with (2), (3), (4), and

(5) respectively. 50% confidence intervals based on the univariate histogram of 𝐷𝑅

values are overlaid, indicating that the global optimum frequently falls at an extreme

position within the cluster – a fundamental weakness of the approach. Figure 5.4(e)

presents the 𝑅2 obtained for each Arrhenius fit. This figure indicates that all three
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Figure 5.3: Elution profiles (left), and mass-spectrometry (m/z) profiles
(middle, right) of HPLC-purified a) AA-P3-SL, b) AA-P5-SL, c)
AA-P8-SL, and d) AA-P12-SL. In every case, the principle peak corresponds to
the mass expected for each compound (Table 1). For AA-P3-SL and AA-P5-SL the
[M+1H]+ charge state was used to compute molecular weight, and for AA-P8-SL
and AA-P12-SL, the [M+2H]2+ state was used. We observed high relative signal
from sodium adducts, explaining the multiple peak-sets observed in the central mass
spectrometry profiles.
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Figure 5.4: Arrhenius plots describe 𝐷𝑅 derived from EPR fits. Arrhenius
plots of co-assemblies of a) compound (1) and (2), where the spin label is positioned
close to the nanofiber surface, b) compound (1) and (3), c) compound (1) and (4),
and d) compound (1) and (5), where the spin label is far from the nanofiber surface.
Within each Arrhenius plot, 𝐷𝑅 values computed using the global optimum, the
marginal median, the geometric median and the medoid are included. The mean
was excluded because, like the global optimum, it lacks self-consistency in 𝐷𝑅. A
50% confidence interval for each 𝐷𝑅 is also presented, based on the 𝐷𝑅 histogram.
e) The 𝑅2 values for each Arrhenius-type fit are presented. Each measure of central
tendency agrees on the Arrhenius behavior of 𝐷𝑅, with the exception of the global
optimum.

median methods agree that 𝐷𝑅 is thermally activated, whereas the global optimum

method does not.

Although 𝐷𝑅 was effectively unchanged between AA-P8-SL and AA-P12-SL, the

shorter peptides exhibited much slower rates of conformational change. Multiple

explanations may justify this, but the likeliest are either i) interaction between the

helices, labels, and/or amphiphile head-groups, which are only possible in the shortest

peptides; or ii) an effect of solvent dynamics, since it is well-established that the

dynamics of water molecules slow down near interfaces.

Significantly, median-methods agree that for slowly-moving probes, an accurate

value for 𝐷𝑅 should fall well below the value associated with the global optimum. In

the EPR community, it is known that the SLE tends to perform worse when rotational

correlation times are longer.64 Our observation strongly supports this fact, indicating

that overfitting becomes more prevalent at lower temperatures due to broadening of

good-fit clusters. This broadening is manifest in the larger error-bars observed at

low temperatures. Thus, a particular strength of cluster-based fit analyses appears

to be a substantial increase in the range of 𝐷𝑅 values for which fitting can provide
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meaningful insights using the SLE model.

5.5.3 The geometric median and medoid provide the most

physically representative estimates of other parameters.

Despite their agreement on 𝐷𝑅, the measures of central tendency often failed to agree

on appropriate values for other parameters. This resulted from the unusual curvature

of good fit clusters in parameter space. Figure 5.5(a) represents the 𝜒2
𝜈 landscape of

these parameters for a representative AA-P3-SL sample collected at 275 K, based on

values calculated during every iteration of an MCLM analysis which started from 500

initial positions. Purple points are overlaid to represent the positions of 𝜒2 minima,

which clearly form a cluster containing the global optimum (labeled). Each metric of

central tendency is also indicated. For these spectra we used a 3-parameter model,

fitting for the 𝑐20 ordering parameter, the Gaussian line broadening, 𝛾0, and 𝐷𝑅.

The two-dimensional scatter plots in Figure 5.5(a) flatten the 𝜒2
𝜈 function to show

its dependence on each pair of these variables, while the complete dependence is

presented in the three-dimensional plot. The positions of the global optimum and the

various median positions are marked on the plots, and the final figure compares the

global optimum fit with the original data.

Figure 5.5(b) exists to demonstrate the overfitting problem. It is identical to

Figure 5.5(a), except that instead of fitting the original data set, we fit the sim-

ulated, global optimum spectrum that best describes the original data. The same

randomized starting values were used to analyze both the experimental and the sim-

ulated data sets. In a self-consistent system, these two spectra should have the same

global optimum. However, we observed that the position of the global 𝜒2 optimum

deviates significantly from the best-fit parameters used to generate this spectrum.

This demonstrates the inconsistency and uncertainty of the global 𝜒2 optimum as a

representation of reality.

In contrast, all median methods were self-consistent in comparisons of simulated

vs. real data. This can be verified by comparing inspection of the figures in Ap-
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Figure 5.5: Representations of the 𝜒2
𝜈 landscape for a spectral fit. a)

Scatter plots of the 𝜒2
𝜈 landscape associated with fitting the EPR spectrum of

AA-P3-SL at 275 K. The first three plots flatten the 𝜒2
𝜈 landscape to a function of 2

parameters, while the fourth preserves its full, three-dimensional shape. Local
minima, the global optimum, and the various cluster medians are plotted in each
figure. The final plot shows the raw EPR spectrum (black) as well as the best fit
(blue). b) This row is identical to the row above it, except that instead of fitting
experimental data, we analyzed the best-fit spectrum taken from the line above.
The position of the new global optimum shifts significantly, indicating that the
initial data-set was over-fit. In contrast, the median-methods remained highly
self-consistent.
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pendix D, which are identical to Figure 5.5, except that they describe every other

sample/temperature spectrum we collected. This indicates that clusters of good fits

are self-consistent, even if positions of the global optimum are not. Therefore, we

argue that all four metrics describe reality more accurately than the global optimum

of 𝜒2, since they reference self-consistent clusters of good fits. Furthermore, the Ar-

rhenius behavior of all of these metrics suggests that cluster position seems to depend

logically on temperature, further supporting this method of analysis.

However, not every median-measurement performed equally. While they all agreed

on the value of 𝐷𝑅, the U-shaped nature of good-fit clusters meant that the marginal

median frequently selected points that did not fall within the cluster itself. In con-

trast, the geometric median tended to conform quite closely to the cluster, and the

medoid must fall within the cluster by its own mathematical construction. In general,

we preferred the medoid, since this produced a highly self-consistent and physically

representative description of all parameters used to fit a spectrum.

Since we established univariate distributions for each parameter, our error-bars

do not depend on the precise position of the global best fit. In our experience, they

greatly overstated error (since good fit clusters tended to follow predictable patterns,

and appropriate analysis of these could produce a significantly more certain estimate

of uncertainty in each parameter). However, we view this as a benefit because we

have greater confidence that the accurate value falls within our prescribed range.

Notably, the global best fit rarely falls within the range containing the central 50%

of 𝐷𝑅 values.

5.5.4 Observed activation energies closely correspond to pre-

dictions based on the energy landscape model.

The activation energies computed for each peptide are presented in Figure 5.6, as

a function of estimated distance from the fiber surface. We estimated this distance

based on the helix length presented in Table 5.1, but acknowledge that the absence

of a head-group in AA-Pn-SL compounds, the added length of the TOAC, and the
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Figure 5.6: Activation energies of diffusion, 𝑄, of spin labels tethered at
known distances off a nanofiber surface. Values of 𝑄 computed from the
medoid values for 𝐷𝑅, as a function of spin label height with error bars based on the
standard error of each linear fit. The oligoproline spacer of compound (2) is too
short to form a complete helix (<4 residues). The activation energies of diffusion of
compounds (3-5) integrated into compound (1) nanofibers are consistent –
approximately 40 kJ/mol – comparable to the energy barrier associated with
conformational change in oligoproline helices.

angle between the helix and the assembly’s surface may affect this length. For pep-

tides long enough to form oligoproline helices (longer than 3 residues), the activation

energy of diffusion was effectively constant, 40.4 ± 0.4 kJ/mol. These values far ex-

ceed the values observed for other peptides, which typically fall below 10 kJ/mol.77

However, the peptides with activation energies of diffusion < 10 kJ/mol are intrin-

sically disordered, whereas oligoprolines exhibit a stable conformational structure,

especially when the oligoproline contains four or more residues, in which case stable

helix formation occurs.173,174
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In other works, we have concluded that the activation energy of peptide diffusion

corresponds to the characteristic energy barrier associated with diffusion through a

rough energy landscape. In oligoproline helices, these landscapes have been thor-

oughly examined by molecular dynamics simulations, making our oligoproline-based

samples an ideal test of this conclusion.174 These studies indicate that the confor-

mational energy landscape of oligoproline contains a significant number of energy

wells, each corresponding to a stable point between pure PPI and pure PPII sec-

ondary structure. The observed energy barrier for transitions between these wells

was approximately 40 kJ/mol, indicating very close agreement with our observa-

tions.174 Thus, our observed activation behavior is consistent with the picture of rigid

oligoproline helices, whose only motions are associated with the gain or loss of PPII

structural character. The strong agreement between our data and simulations also

supports the connection between the activation energy of 𝐷𝑅 and the characteristic

roughness of the energy landscape.

5.6 Discussion

While serious consideration has been dedicated to pinpointing global optima in rugged

𝜒2 landscapes, we have seen surprisingly few works that prioritize the self-consistency

of these fits over the location of an absolute optimum. In this manuscript, we imple-

ment methods to self-consistently place an optimum within a rugged cluster of local

minima. Furthermore we identify continuous-wave EPR as an experimental area

where these methods can provide significant and valuable insights into the physics of

a system, which would elude analyses based on the global best fit. We used cluster-

based methods that select the medoid, the geometric median or the marginal median

to demonstrate that diffusional motion within oligoproline linkers is a thermally acti-

vated (Arrhenius) process, and we demonstrated that, as we had previously hypoth-

esized77, the activation energy matches the characteristic energy barrier associated

with conformational change in oligoproline helices.174 Naturally, these techniques will

not apply for all curve-fitting analyses, but in our experience based on EPR analysis
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of these and more than 20 other spin-labeled peptides, these methods are extremely

reliable for fitting continuous-wave EPR spectra collected in the X-band. In concert

with rapid protocols for peptide synthesis76,77, this methodology provides a robust

new approach for the experimental analysis of conformational energy landscapes in

peptides. By employing a medoid-based approach, we can assure that good fits are

both fully descriptive of experimental data (i.e. they fall within an obvious cluster of

local minima) and self-consistent enough to allow Arrhenius analysis of 𝐷𝑅.

By making CSCA software toolkit available publically, we hope that this approach

can be adapted to suit the needs of a variety of experimenters. Moreover, we hope

that our analysis will contribute to the growing body of evidence supporting the need

for nuance and open-mindedness with respect to non-linear fitting of data.169 In a

mathematical sense, the goal of optimization is clear – identification of the point

within a defined region which minimizes or maximizes a function. However, in a

scientific context, we should never forget to prioritize reproducibility and meaning

over mathematical idealism. By developing methods to balance these priorities, we

achieved new insights into the physics of an important biomaterial system. We hope

that our approach will allow others to achieve the same.
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Chapter 6

Perspectives on the Role of Dynamics

in Biomaterials

For the past 50 years, the concept that ’structure dictates function’ has informed our

understanding of molecular biology. This idea is central to our understanding of how

life evolved on the earth, and is important for developing potent drugs, therapeu-

tics and biomaterials. However, if I were to summarize my graduate work in one,

simple phrase, it would be this: structure alone isn’t enough. Although structure

always plays a major role in the behavior of biopolymers in vivo, we must remember

that evolution operates without rational principles of any kind. Life simply chooses

methods that work.

In this work, I provide evidence for a connection between conformational dynamics

and function within intrinsically disordered peptide sequences. I further demonstrate

that this connection can be decoupled from permanent structural changes within the

material, suggesting transient configurations also play a key role in the function of

disordered peptides.

Conformationally unstable biopolymers are ubiquitous within the natural world,

where they play many important, functional roles.2,47 In my view, it is probable that

many such proteins, the rate of structural transformation is an important parameter

governing protein activity.

Thus, the continued study of conformational dynamics remains an important ob-
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jective for the design of better biomaterials. For medically important biopolymers

such as antimicrobial peptides58, peptide-based vaccines177, cell-penetrating pep-

tides178, and nuclear localization signaling peptides179, the role of conformational

dynamics remains a signficant unknown. However, the generality of our approch for

synthesizing and characterizing spin-labeled peptides provides a path to answer these

questions, and to expand our capacity to rationally engineer biomedical technologies.
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Appendix A

EPR fits for MP01-Gen4 spectra
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EPR spectra and best fits for unreacted (top) and reacted (bottom) MP01-J3
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EPR spectra and best fits for unreacted (top) and reacted (bottom) MP01-J5
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EPR spectra and best fits for unreacted (top) and reacted (bottom) MP01-J7
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EPR spectra and best fits for unreacted (top) and reacted (bottom) MP01-J13
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EPR spectra and best fits for unreacted (top) and reacted (bottom) MP01-J16
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EPR spectra and best fits for unreacted (top) and reacted (bottom) MP01-J18
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EPR spectra and best fits for unreacted (top) and reacted (bottom) MP01-J20
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EPR spectra and best fits for unreacted (top) and reacted (bottom) MP01-J23
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EPR spectra and best fits for unreacted (top) and reacted (bottom) MP01-J27
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EPR spectra and best fits for unreacted (top) and reacted (bottom) MP01-J29. The
unreacted peptides have very low spectral intensity because they were not reacted
with K3Fe(CN)6, since LC-MS demonstrated that this damaged unreacted
MP01-J29. Consequently, the bulk of the MP01-J29 existed in the spectrally inert
hydroxlyaminated form, giving very low-intensity spectra. Consequently, noise
heavily affected these fits, resulting in a wide range of fitting error.
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Appendix B

LC-MS spectra for MP01-Gen4

peptides

B.1 Before S𝑁Ar labeling
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The LC-MS spectrum of major peaks of the MP01-J3 chromatography curve. A
feature of the [M+3H]3+ charge state used for mass calculation is shown beneath.
For predicted and calculated masses, refer to Table 3.2.
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The LC-MS spectrum of major peaks of the MP01-J5 chromatography curve. A
feature of the [M+3H]3+ charge state used for mass calculation is shown beneath.
The (major) hydroxylamine product is shown in black, and the (minor) nitroxide
product is shown in red. For predicted and calculated masses, refer to Table 3.2.
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The LC-MS spectrum of major peaks of the MP01-J7 chromatography curve. A
feature of the [M+3H]3+ charge state used for mass calculation is shown beneath.
The (major) hydroxylamine product is shown in black, and the (minor) nitroxide
product is shown in red. For predicted and calculated masses, refer to Table 3.2.
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The LC-MS spectrum of major peaks of the MP01-J13 chromatography curve. A
feature of the [M+3H]3+ charge state used for mass calculation is shown beneath.
The (major) hydroxylamine product is shown in black, and the (minor) nitroxide
product is shown in red. For predicted and calculated masses, refer to Table 3.2.
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The LC-MS spectrum of major peaks of the MP01-J16 chromatography curve. A
feature of the [M+3H]3+ charge state used for mass calculation is shown beneath.
The (major) hydroxylamine product is shown in black, and the (minor) nitroxide
product is shown in red. For predicted and calculated masses, refer to Table 3.2.
Smaller peaks in these spectra originate from a minor, dimerized peptide.
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The LC-MS spectrum of major peaks of the MP01-J18 chromatography curve. A
feature of the [M+3H]3+ charge state used for mass calculation is shown beneath.
For predicted and calculated masses, refer to Table 3.2.
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The LC-MS spectrum of major peaks of the MP01-J20 chromatography curve. A
feature of the [M+3H]3+ charge state used for mass calculation is shown beneath.
The (major) hydroxylamine product is shown in black, and the (minor) nitroxide
product is shown in red. For predicted and calculated masses, refer to Table 3.2.
Smaller peaks in the hydroxylamine signal originate from a minor, dimerized
peptide.
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The LC-MS spectrum of major peaks of the MP01-J23 chromatography curve. A
feature of the [M+3H]3+ charge state used for mass calculation is shown beneath.
For predicted and calculated masses, refer to Table 3.2.
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The LC-MS spectrum of major peaks of the MP01-J27 chromatography curve. A
feature of the [M+3H]3+ charge state used for mass calculation is shown beneath.
For predicted and calculated masses, refer to Table 3.2. Smaller peaks in the
hydroxylamine spectrum originate from a minor, dimerized peptide.

122



The LC-MS spectrum of major peaks of the MP01-J29 chromatography curve. A
feature of the [M+3H]3+ charge state used for mass calculation is shown beneath.
For predicted and calculated masses, refer to Table 3.2. The dominant set of
impurity peaks in the hydroxylamine spectrum originate from a TOAC deletion
product, which is EPR-invisible.
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B.2 After S𝑁Ar labeling
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The LC-MS spectrum of major peaks of the labeled MP01-J3 chromatography
curve. A feature of the [M+4H]4+ charge state used for mass calculation is shown
beneath. For predicted and calculated masses, refer to Table 3.2.
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The LC-MS spectrum of major peaks of the labeled MP01-J3 chromatography
curve. A feature of the [M+4H]4+ charge state used for mass calculation is shown
beneath. For predicted and calculated masses, refer to Table 3.2.
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The LC-MS spectrum of major peaks of the labeled MP01-J7 chromatography
curve. A feature of the [M+4H]4+ charge state used for mass calculation is shown
beneath. The (major) hydroxylamine product is shown in black and the (minor)
nitroxylated glycine deletion product is shown in blue. For predicted and calculated
masses, refer to Table 3.2.
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The LC-MS spectrum of major peaks of the labeled MP01-J13 chromatography
curve. A feature of the [M+4H]4+ charge state used for mass calculation is shown
beneath. The (major) hydroxylamine product is shown in black and the (minor)
nitroxylated glycine deletion product is shown in blue. For predicted and calculated
masses, refer to Table 3.2.
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The LC-MS spectrum of major peaks of the labeled MP01-J13 chromatography
curve. A feature of the [M+4H]4+ charge state used for mass calculation is shown
beneath. The (major) hydroxylamine product is shown in black and the (minor)
nitroxylated glycine deletion product is shown in blue. For predicted and calculated
masses, refer to Table 3.2.
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The LC-MS spectrum of major peaks of the labeled MP01-J18 chromatography
curve. A feature of the [M+4H]4+ charge state used for mass calculation is shown
beneath. The (major) hydroxylamine product is shown in black, and the (minor)
nitroxide product is shown in red. For predicted and calculated masses, refer to
Table 3.2.
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The LC-MS spectrum of major peaks of the labeled MP01-J20 chromatography
curve. A feature of the [M+4H]4+ charge state used for mass calculation is shown
beneath. The (major) hydroxylamine product is shown in black, and the (minor)
nitroxide product is shown in red. For predicted and calculated masses, refer to
Table 3.2.
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The LC-MS spectrum of major peaks of the labeled MP01-J23 chromatography
curve. A feature of the [M+4H]4+ charge state used for mass calculation is shown
beneath. The (major) hydroxylamine product is shown in black, and the (minor)
nitroxide product is shown in red. For predicted and calculated masses, refer to
Table 3.2.
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The LC-MS spectrum of major peaks of the labeled MP01-J27 chromatography
curve. A feature of the [M+4H]4+ charge state used for mass calculation is shown
beneath. The (major) hydroxylamine product is shown in black and the (minor)
nitroxylated glycine deletion product is shown in blue. For predicted and calculated
masses, refer to Table 3.2.
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The LC-MS spectrum of major peaks of the labeled MP01-J29 chromatography
curve. A feature of the [M+4H]4+ charge state used for mass calculation is shown
beneath. The smaller set of peaks visible in the signal originate from the TOAC
deletion product, to which EPR measurement is insensitive. For predicted and
calculated masses, refer to Table 3.2.
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Appendix C

LC-MS spectra for FMP peptides
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LC-MS elution profiles (left) and mass-to-charge (m/z) data integrated over the
highlighted region (middle, right) for a) FMP9, b) FMP15, c) FMP21, and d)
FMP27. The specific peaks used for mass determination were the FMP9 [M+H]1+
peak-set, the FMP15 [M+2H]2+ peak-set, the FMP21 [M+3H]3+ peak-set and the
FMP27 [M+4H]4+ peak-set. These are shown in high-resolution on the right.
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LC-MS elution profiles (left) and mass-to-charge (m/z) data integrated over the
highlighted region (middle, right) for a) FMP9-J5, b) FMP15-J8, c) FMP21-J11,
and d) FMP27-J14. The specific peaks used for mass determination were the
FMP9-J5 [M+2H]2+ peak-set, the FMP15-J8 [M+3H]3+ peak-set, the FMP21-J11
[M+3H]3+ peak-set and the FMP27-J14 [M+4H]4+ peak-set. These are shown in
high-resolution on the right. The observed masses typically deviate by 1 hydrogen
from the mass of the TOAC peptides because TOACs reduce to hydroxylamines
(+1 H atom) under the acidic conditions on the column. They were reoxidized
during experiments, so this did not affect other measurements. In FMP9-J5 both
forms were observed as separate peaks. The nitroxide peak is plotted/highlighted in
blue, while the hydroxylamine peak is plotted/highlighted in red.
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LC-MS elution profiles (left) and mass-to-charge (m/z) data integrated over the
highlighted region (middle, right) for a) FMP9-J0J5, b) FMP15-J0J8, c)
FMP21-J0J11, and d) FMP27-J0J14. The specific peaks used for mass
determination were the FMP9-J0J5 [M+2H]2+ peak-set, the FMP15-J0J8 [M+3H]3+

peak-set, the FMP21-J0J11 [M+3H]3+ peak-set and the FMP27-J0J14 [M+4H]4+

peak-set. These are shown in high-resolution on the right. The observed masses
deviate by 2 hydrogens from the mass of the TOAC peptides because TOACs
reduce to hydroxylamines (+1 H atom) under the acidic conditions on the column.
They were reoxidized during experiments, so this did not affect other measurements.
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Appendix D

Calculated 𝜒2𝑚𝑖𝑛 plots for AA-Pn-SL

spectra

Below are the calculated 𝜒2 landscapes for each EPR spectrum we computed, along

with fits to the simulated best-fit spectrum. These figures are analogous to Figure

5.6 of Chapter 5. They record the position of the global optimum, as well as the

marginal median, the geometric median, the medoid and the mean the cluster of

local minima with 𝜒2 < 2𝜒2
𝑚𝑖𝑛, but were observed to be broadly invariant when larger

𝜒2 thresholds were chosen. Fits to simulated spectra were analyzed within a different

threshold (𝜒2 < 2𝜒2
𝑚𝑖𝑛) because they had a different 𝑦-scaling and because the perfect

quality of the data reduced the value of 𝜒2
𝑚𝑖𝑛 to near-zero. Thus, a larger threshold

was needed to identify clusters large enough that measures of central tendency became

invariant. Although means are reported for each plot, we broadly observed that they

were inconsistent metrics, and we disregarded them for the purpose of Arrhenius

analysis.
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𝜈 maps for fitting of the experimental AA-P3-SL spectrum (top), collected at

275K, and fitting of the simulated spectrum (bottom) that best describes the
experimental data. Local minima are plotted in purple, the large green marker
corresponds to the global minimum, and the yellow square, circle and diamond
corresponds to the geometric median, the medoid and the marginal median.
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𝜈 maps for fitting of the experimental AA-P3-SL spectrum (top), collected at

278K, and fitting of the simulated spectrum (bottom) that best describes the
experimental data. Local minima are plotted in purple, the large green marker
corresponds to the global minimum, and the yellow square, circle and diamond
corresponds to the geometric median, the medoid and the marginal median.
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278K, and fitting of the simulated spectrum (bottom) that best describes the
experimental data. Local minima are plotted in purple, the large green marker
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284K, and fitting of the simulated spectrum (bottom) that best describes the
experimental data. Local minima are plotted in purple, the large green marker
corresponds to the global minimum, and the yellow square, circle and diamond
corresponds to the geometric median, the medoid and the marginal median.

146



0 2 4 6

7

7.5

8

8.5

9

0 2 4 6

-4

-2

0

2

4

6

7 8 9

-4

-2

0

2

4

6

-5

9

0

6

5

8 4
2

7 0
3250 3300 3350

0 2 4 6

7

7.5

8

8.5

9

0 2 4 6

-4

-2

0

2

4

6

7 8 9

-4

-2

0

2

4

6

-5

9

0

6

5

8 4
2

7 0
3250 3300 3350

𝜒2
𝜈 maps for fitting of the experimental AA-P5-SL spectrum (top), collected at

287K, and fitting of the simulated spectrum (bottom) that best describes the
experimental data. Local minima are plotted in purple, the large green marker
corresponds to the global minimum, and the yellow square, circle and diamond
corresponds to the geometric median, the medoid and the marginal median.

0 2 4 6

7

7.5

8

8.5

9

0 2 4 6

-4

-2

0

2

4

6

7 8 9

-4

-2

0

2

4

6

-5

9

0

6

5

8 4
2

7 0
3250 3300 3350

0 2 4 6

7

7.5

8

8.5

9

0 2 4 6

-4

-2

0

2

4

6

7 8 9

-4

-2

0

2

4

6

-5

9

0

6

5

8 4
2

7 0
3250 3300 3350

𝜒2
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290K, and fitting of the simulated spectrum (bottom) that best describes the
experimental data. Local minima are plotted in purple, the large green marker
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296K, and fitting of the simulated spectrum (bottom) that best describes the
experimental data. Local minima are plotted in purple, the large green marker
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302K, and fitting of the simulated spectrum (bottom) that best describes the
experimental data. Local minima are plotted in purple, the large green marker
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278K, and fitting of the simulated spectrum (bottom) that best describes the
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