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Abstract

In this thesis, I study two problems in the arithmetic of superelliptic curves. By a superel-
liptic curve, I mean the smooth projective model of the affine plane curve y"™ = f(x) where
f(z) is separable, n is coprime to deg(f), and the characteristic of the ground field does
not divide n. When n = 2, this is commonly referred to as a hyperelliptic curve.

I first generalize Zarhin’s formula for division by 2 [68] on hyperelliptic curves to the
superelliptic case. Rather than divide by n, I invert the 1—( endomorphism on the jacobian.
My formula reduces to Zarhin’s when n = 2.

Next, I study torsion points on superelliptic curves. Work of Coleman [15] and Grant—
Shaulis [29] together classifies all torsion points on the hyperelliptic curve y? = z? + 1,
where d > 5 is prime. I extend their results to the superelliptic curve y” = 2% + 1, where
n,d > 2 are coprime. Using a specialization argument, I also classify torsion points on a
generic superelliptic curve, extending Theorem 7.1 of Poonen—Stoll [57] to the hyperelliptic
case.

In order to classify torsion points, I prove a result about Galois action on the p-torsion
of the jacobian of y? = 9+ 1, where p and ¢ are distinct primes. This problem is equivalent
to a new p-adic congruence for Jacobi sums, which I state and prove. This congruence is
related to (but does not follow from) a congruence of Uehara [63].
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Chapter 1

Introduction

1.1 History and motivation

Suppose that K is a field such that char(K) ¢ {2,3}. Recall that an elliptic curve is the
smooth projective model of an affine plane K-curve given by an equation of the form

y? = f(x) (1.1)

where f(z) € K[z] is separable with deg f € {3,4}. Elliptic curves are a central object
of study in number theory. The proof of Fermat’s last theorem uses a special kind of
elliptic curve called the Frey curve. Elliptic curve cryptography is one modern approach
to cryptography that is based on elliptic curves defined over finite fields. The Birch and
Swinnerton-Dyer conjecture, which is one of the open Millenium problems, states that the
analytic rank and algebraic rank should agree for every elliptic curve defined over a number
field; much of modern number theory is motivated by studying this conjecture.

Hyperelliptic curves are a natural generalization of elliptic curves; a hyperelliptic curve
is the smooth projective model of y? = f(x) where f(z) € K[z] is separable, but with no
constraint on deg f. Understanding the arithmetic of hyperelliptic curves is a major area
of research in arithmetic geometry. In particular, when the genus of the curve is at least
2 (which is equivalent to deg f > 5), Faltings’ theorem implies that there should only be
finitely many rational points.

In this thesis, we study a further generalization by considering curves of the form

where char(K) t n, f(x) € KJz] is separable, and (n,deg f) = 1. Such curves are called
“superelliptic” curves. Let ¢ be a primitive nth root of unity in K. We will also use ¢ to
denote the automorphism (z,y) — (z,(y) of the curve.

Superelliptic curves are a natural generalization of hyperelliptic curves, so it is sensible
to investigate the arithmetic of superelliptic curves. Algorithms for computing in the jaco-
bian of superelliptic curves and for the discrete logarithm problem for superelliptic curves
are given in [26]. Many techniques for understanding hyperelliptic curves have recently been
extended to the superelliptic case, including generalizing Kedlaya’s algorithm for computing
zeta functions of hyperelliptic curves via Monsky-Washnitzer cohomology [42] to superel-
liptic curves [7, 27, 28, 49] and generalizing explicit Coleman integration on hyperelliptic
curves [9] to the superelliptic curves [13].



In particular, we will generalize three results from hyperelliptic curves to superelliptic
curves: in Section 3.2, we generalize Zarhin’s “division by 2” formula on hyperelliptic curves
and jacobians [68]; in Section 5.2, we generalize Grant and Shaulis’s work on determining the
cuspidal torsion packet on hyperelliptic Fermat quotients [29]; in Section 5.3, we generalize
Theorem 7.1 of [57], which determines the cuspidal torsion packet on a generic hyperelliptic
curve.

1.2 Methods and new results

1.2.1 Explicit division on superelliptic curves

In [68], Zarhin considers the following problem: given a point P = (zp,yp) € C(K),
how does one compute its “halves” inside J(K)? That is, compute every divisor class
[D] € J(K) such that

2[D] = [P — .

To represent divisor classes [D], Zarhin uses the Mumford representation, which is a pair of
polynomials U, V € K[X] that uniquely determines [D]. For reference, we restate his result.

Theorem 1.2.1 (Theorem 3.2 of [68]). Let C be the hyperelliptic curve given by y* =
(x —a1) - (x — aggy1) where ay,-- -, qogq1 are distinct elements of K. Suppose that P =
(a,b) € C(K). Then the 2%9-element set

Mo p:={ac J(K):2a=[P— o]}

can be described as follows. Let Ry p be the set of all (2g + 1)-tuples v = (v1,- -+ ,v2g11)
of elements of K such that

2g9+1
t?:a—aiforall1§i§2g+1, Hti:_

Let s;(t) be the value of the ith basic symmetric function at ti,--- ,vogr1. We put

g so;(t)(a — x)9™/

= 3 (s2i41(8) — 51(0)s25(6)) (@ — )77,

J=1

Then there is a natural bijection between Ry 5 p and My /o p such thatt € Ry 9 p corresponds
to ar € My 5 p with Mumford representation (U, Vz).

Theorem 3.2.1 extends Zarhin’s result to the superelliptic case; setting n = 2 in Theo-
rem 3.2.1 recovers Zarhin’s theorem. Instead of dividing by 2, we divide by “1 — (. One of
the challenges is that points of superelliptic jacobians do not, in general, admit a “Mumford
representation.” Instead, we track the data of a degree zero divisor class with n elements of
Kz, y].
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1.2.2 Torsion points on superelliptic curves

In [29], Grant and Shaulis consider hyperelliptic curves of the form
P =al+1

where d > 5 is prime. A torsion point is a geometric point P on the curve such that the
divisor class [P — oc] is torsion. The set of torsion points includes {0, (0, £1), (—¢3,0)}; call
a torsion point exceptional if it does not lie in this list. When d > 7, Grant and Shaulis
prove that there are no exceptional torsion points. When d = 5, earlier work of Coleman
[15] shows that the only exceptional torsion points are {(¢iv/4, £v/5)}.

In Section 5.2, we classify torsion points on curves of the form

y":xd—l—l

where n,d > 2 are coprime. Denote this curve by C,, 4. Let Z be the subgroup of Aut(C,, 4)
generated by (z,y) — (Cax, (ry).

Theorem 5.2.73. Suppose that n,d are coprime integers with n,d > 2.

(1) If (n,d) = (2,3), then Ca3 is an elliptic curve, so it has infinitely many torsion points.
d) =

(2) If (n, (2,5), then the set of exceptional torsion points of Co5 is the Z-orbit of
(v/4,V/5). Each has exact order (1 — (5)3; in particular, each is killed by 5.

(3) If (n,d) = (4,3), then the set of exceptional torsion points of Ca3 is the Z-orbit of
(2,v/3). Each has exact order (1 — (4)(1 — (3)?; in particular, each is killed by 12.

(4) If (n,d) € {(3,2),(5,2),(3,4)}, then Cp g =~ Cqp, via (z,y) € Cn.a — (Cony, C2d2) € Capn,
so the exceptional torsion points of C, 4 are described by one of Theorem 5.2.73(1),

Theorem 5.2.73(2), Theorem 5.2.73(3).

(5) Otherwise, Cy,q has no exceptional torsion points.

The method of proof uses techniques from the “Galois theory of torsion points,” for
which there is the excellent survey article of Baker and Ribet [8]. In short, we proceed by
contradiction and assume that P is a torsion point of C, 4 that is not among our list. Then,

Step (i) Use the Gal(Q/Q)-action and the Z-action to produce more torsion points.
Step (ii) Construct relations among the torsion points found in Step (i).

Step (iii) Low-degree relations in Step (ii) produce low-degree maps C,q4 — P!. Too
many low-degree maps will place upper bounds on the genus (for example, via
the Castelnuovo—Severi inequality), which provides a contradiction.

A related result is the following.

Theorem 1.2.2 (Theorem 7.1 of [57]). Let C be a generic hyperelliptic curve of genus g > 1
over a field k of characteristic 0; i.e., the image of the corresponding morphism from Spec k
to the moduli space over Q is the generic point. Assume that C' has a k-rational Weierstrass
point, which is used to embed C into its jacobian J. Then C (k) N J(k)tors consists of only
the Weierstrass points.

11



Concretely, C is the curve y? = H?ffl(x—ai) over k := Q(a1,- - ,azg+1) and it is shown
that the only torsion points are {oo, (a1,0), ..., (a2g+1,0)}. We generalize Theorem 1.2.2 in

the following theorem.

Theorem 5.3.1. Suppose that n,d > 2 are coprime and satisfy n+d > 7. Let 6, be the
curve over k := Q(aq,...,aq) defined by the equation

d
y" = H(a: —a;).
=1

Suppose that 6, is embedded into its jacobian 7, wusing the unique point oo at infinity.
Points fized by ¢, are torsion points of order dividing n.

(1) If d > 3, there are no other torsion points defined over k.

(2) If d =2 and n # 5, the only other torsion points defined over k are

a) + as ’ ai — as 2
T,—,’L < 5 ) 0<1<n—-1

(3) If d =2 and n =5, the only other torsion points defined over k are

2
ai + as i 5/ (01— az ) .
: ,—5,/< 5 > 0<i<4,|

{(i(a2—a1)\/25+(a1+a2), éW) :0§i§4}-

The key idea of the proof of Theorem 5.3.1 is a specialization argument; we already know
the torsion points when we specialize to C, 4 due to Theorem 5.2.73. A short argument
involving specialization to the curve y™ = z? + 2 essentially takes care of the rest.

1.2.3 Congruences for Jacobi sums

In Subsection 1.2.2, we mentioned in Step (i) that the core of the proofs required computing
Gal(Q/Q)-action on torsion points. In particular, we needed large Galois action for the
rest of the method to succeed.

Suppose that p, ¢ are primes and J, , := Jac(Cp,4). One technical ingredient in the proof
of Theorem 5.2.73 is the computation of the Gal(Q/Q((pq))-action on 7, 4[p]. This action
turns out to factor through a certain p-Kummer extension of Q((p,). In order to access
particular elements of Galois, we turn to explicit Frobenius elements whose eigenvalues are
expressible in terms of Jacobi sums. To compute generators for the p-Kummer extension,
we need congruences for Jacobi sums. Our goal in Chapter 4 is to obtain the relevant
congruences for Jacobi sums.

As we shall see in Section 4.1, congruences for Jacobi sums have many applications
in number theory, including but not limited to, quadratic, cubic, and quartic reciprocity.
Congruences for Jacobi sums can also be found in [20, 34, 36, 48, 63]. In the language

12



of Anderson and Thara [2, 1], it seems that our main result is an example of a “higher
reciprocity law” for Jacobi sums. We now state our result.

Suppose that ¢, f are distinct primes and ¢ = 1 (mod £f) is a prime. Let (;, (s be a
primitive /th and a primitive fth root of unity in F, respectively. For integers 7, j satisfying
0<i</—Tland1<j<f—1,define

-1

mig =] (1 - C}CE)(

r=0

)

X
eF).

Theorem 4.2.25. For k € [1,{ — 1], the following are equivalent:
(1) J(, f)+1emOr;
(2) nij € Byt for alli € [0,k —2] and j € [1, f — 1];
(3) nij € Fyt for alli € [0,k —2] and j € [1, f/2].

In particular, J(¢, f) + 1 € 7,01, always holds.

1.3 Organization of this thesis

In Chapter 2, we give some background on superelliptic curves. We start in Section 2.1 by
setting up some definitions for superelliptic curves. In Section 2.2, we use the Castelnuovo—
Severi inequality to obtain bounds on degrees of maps from superelliptic curves to genus
zero curves. In Section 2.3, we define the 1 — ¢ endomorphism of superelliptic jacobians
and sets up the (1 — ¢)-descent map in order to motivate the problem of division by 1 — ¢,
which is the central object of study in Chapter 3. In Section 2.4, we define torsion points
on superelliptic curves, which will be studied in Chapter 5. In Section 2.5, we compute the
homology of superelliptic curves; we will use this in Subsection 5.2.1. In Section 2.6, we
review the notions of Weierstrass gaps on Riemann surfaces and state Riemann’s theorem;
we will use these in Section 3.3 and Subsection 5.2.6.

In Chapter 3, we prove our result about division by 1 — ¢ on superelliptic curves. We
start in Section 3.1 by reviewing Zarhin’s work [68] on hyperelliptic curves. In Section 3.2,
we state and prove our superelliptic generalization. Our formula implies that for any su-
perelliptic curve C, the intersection of (1—¢)~!C and the theta divisor © inside J := Jac(C)
is contained in J[1 — ¢]. In Section 3.3, we compute the corresponding intersection multi-
plicities.

In Chapter 5, we study torsion points on superelliptic curves. We start in Section 5.1
by giving an overview of our new results and how they generalize previous work of Grant
and Shaulis [29] and work of Poonen and Stoll [57]. In Section 5.2, we state and prove
our classification of torsion points on the superelliptic “Catalan curve” y” = 2% + 1. In
Section 5.3, we state and prove our classification of torsion points on a generic superelliptic
curve.

The aim of Chapter 4 is to prove a congruence for Jacobi sums which shows up as a
key technical ingredient in Section 5.2. We begin in Section 4.1 by recalling the definition
of Jacobi sum and explain how they arise when computing point counts of the superelliptic
Catalan curve over finite fields. As an application, we calculate the field Q(u15, J3,5[2]). In
Section 4.2, we state and prove our new congruence for Jacobi sums.

13
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Chapter 2

Background on Superelliptic
Curves

2.1 Definitions

Definition 2.1.1. Let n,d > 2 be coprime integers and let K be a field such that char(K) 1
n. Suppose that f(z) € K[z] is separable with deg(f) = d. Let C be the smooth projective
model of the affine plane K-curve given by the equation

Then we call C a superelliptic curve. When n = 2, we call C a hyperelliptic curve.

Since n and d are coprime, C has a unique point at infinity, denoted by co. The Riemann-
Hurwitz formula implies that the genus of C is

g=(n—1)d-1)/2

Furthermore, suppose that
flx) =(x+a1)-(z+ aq)

where aq,--- ,aq € K. Since f is separable, the a; are distinct.

Let J be the jacobian of C. Then C naturally embeds into J via the Abel-Jacobi map
P +— [P — o0]; that is, the point P of C goes to the divisor class [P — oo]. Given divisors X
and Y on C, we write “X ~ Y” to indicate that X is linearly equivalent to Y. Moreover,
the notation “X > Y” means that X — Y is effective. Define the “gcd” of a collection of
divisors {X;} to be the maximal X such that X < X, for all i. See [25, 56] for more details
about curves, their jacobians, and divisor classes.

Given a rational function f on C, we write

div(f) :== va(f)P

P

to denote the principal divisor associated to f and

divo(f) == Y wp(f)P

P:op(f)>0

15



to denote the effective portion of div(f).

2.2 Some consequences of the Castelnuovo—Severi inequality

Proposition 2.2.1 (Castelnuovo—Severi inequality). Let k be a perfect field. Let F', Fy, Fy
be function fields of curves over k, of genera g, g1, ga, respectively. Suppose that F; C F
fori=1,2 and the compositum of Fy and Fy in F equals F. Let d; = [F : F;] fori=1,2.
Then

g <dig1 +dogo + (d1 — 1)(d2 - 1).

Proof. See Theorem 3.11.3 of [62]. O

As in Section 2.1, assume that C is the superelliptic curve y™ = f(x) where deg f = d
from now on.

Corollary 2.2.2. Suppose that C has a degree di map to a genus zero curve and a degree
ds map to a genus zero curve. If di and ds are coprime, then

(n—1)(d—-1)/2 <(dy —1)(da —1).

Proof. Let F be the function field of C. Each map gives an embedding of the function field
of a genus zero curve into F'; let their images be F and Fy. Since [F' : F;] = d; and the
d; are coprime, the compositum FjF; is F. Since g = (n — 1)(d — 1)/2, we are done by
applying Proposition 2.2.1 in this situation with g; = g2 = 0. ]

Lemma 2.2.3. If n,d > 3, then C cannot have a 2-to-1 map to a genus zero curve.

Proof. For contradiction, suppose that ¢ is a map from C to a genus 0 curve. We also have
the degree d map y : C — P! and the degree n map = : C — P!. Since n and d are coprime,
they cannot both be even.

Suppose that n is odd. Applying Corollary 2.2.2 with ¢ and the xz-map yields (n —
1)(d—1)/2 < (2—=1)(n — 1), which implies d < 3, so since d > 3 by assumption, d = 3.
Now d is odd, so similarly, n = 3, contradicting the assumption that n and d are coprime.

The case d is odd is similar. O

2.3 The 1 — ¢ endomorphism and (1 — {)-descent

Now we assume that K contains a primitive nth root of unity (. We also use ( to denote
the automorphism (: C — C which acts on points of C via

¢: (@) = (2, Cy)-

Then ¢ also induces an automorphism of 7, which we will also denote by (. Then 1 — ( is
an endomorphism of 7. In Chapter 3, we aim to invert this endomorphism.

We now state a few properties about the 1 — ( endomorphism. We adapt the main
results of Sections 6.1, 6.2, and 6.3 of [56], which states everything in the hyperelliptic case.
However, the extension to superelliptic curves is straightforward and we omit aspects of the
proofs that generalize immediately. The case when n is prime is considered in [55, 59].
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We need a few more definitions.

:= a separable closure of K

=Cxg K

= Gal(K /K)

:= the z-coordinate map C — P!

= (—a;,0) € C(K)

= {W,..., Wy}

(Z/nZ)" := the free Z/nZ-module with basis Wi, ..., Wy.

S5 Qa N

Observe that W U {oo} is the set of ramification points of m over K and that W is a
G-module.

Proposition 2.3.1. There is a split exact sequence of G-modules

0 Z/nZ a (Z/nZ)"

TN =]

where

Al)=(1, ..., 1)
s(ai,...,aq) :Zai[Wi—oo].
i=1

Proof. (c.f. [56], Proposition 6.1.1)

Step 1: s is well-defined.
Each point in W U {oo} is fixed by (, so [W; — o] € J[1 — (]. The calculation

div(z + o) = nW; — noo (2.1)
shows that the divisor classes [W; — oo] are n-torsion.

Step 2: A and s are G-module homomorphisms.
This is clear.
Step 3: so A =0.
d

This follows from div(y) = > [W; — oc].
=1

Step 4: ker(s) is generated by (1,...,1).

Step 5: s is surjective.

We modify the proof of Proposition 3.2 in [59] to prove Step 4 and Step 5 simultaneously.
Use Div? to denote the degree-zero divisors on C and use Princ to denote the subgroup
of principal divisors. The following are exact sequences of Z[¢]-modules.
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Princ —— 0

We now apply group cohomology with the group Z, = (¢).

(i)

(iii)

Since Z,, ~ Gal(K(C)/K (z)),

H'(K(C)*) =0 (2.3)
Since K~ is a trivial Zn-module,
HY (K™ ) =0 (2.4)
HYK") = 1n(E) (2.5)
H* (K Y =K /K" =0. (2.6)

Substituting (2.3) and (2.6) into
HI(R(C)*) —— H'(Princ) —— H2(K).

yields
H'(Princ) = 0. (2.7)

Substituting (2.4), (2.2), (2.5), (2.3) into

H(K™) — H°(K(C)*) — H°(Princ) — HY(K™) — HYK(C)*)

yields

0 K(z)* ——— H°(Princ) ——— u,(K) 0,
so since the image of div(y) € H°(Princ) generates pi,,(K),

HO(Princ) is generated by {div(y)} U {div(u): v € K (z)*}. (2.8)
We substitute (2.7) into the long exact sequence
0 H°(Princ) —— H%(Div") J[1 —¢] —— H'(Princ)

to obtain

0 HO(Princ) —— HO(Div’) —— J[1 — (] 0.
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The group H°(Div") consists of the (-fixed divisors, so it is generated by [W; — oc]
and Norm(P — oo) for arbitrary P € C(K). Observe that

div(z — z(P)) = Norm(P — c0),
div(y) = ) _[W; - o],
so by (2.8), HY(Princ) is generated by >_[W; — oo] and Norm(P — co) for arbitrary

P € C(K). Therefore, the [W; — o] generate J[1 — ¢] ~ H(Div")/H°(Princ) and
the only relation is ) [W; — oo] = 0.

Step 6: The exact sequence in the statement of Proposition 2.3.1 splits.
The splitting is given by

(Z/nZ)Y ————— Z/nZ

(at,...,aq) ——— d_lzai.

Corollary 2.3.2. Each element of J[1 — (] has a unique representation of the form

d
Zai[W —
i=1

for a; € Z/nZ satisfying a1 + -+ 4+ ag =0 (mod n).

Proof. 1t Z?:l a;[W; — oo] = 0, then Proposition 2.3.1 implies that a; = -+ = ag (mod n),
so since a1 +---+aq4 =0 and (n,d) =1, wesee that a1 =---=aq =0 ( n); hence the
representation is unique.

For existence, Proposition 2.3.1 implieb that each element of j [1—(] has a representation
of the form S>% | af[W; — oc] for d; € Z/nZ, so if we let a; = a} — d~' (@ + --- + d;), then
aj+---+as=0 (mod n) and

d d d
Zai[Wi—oo]:Zag[Wi—oo]—df (ah +- +ay Z
i=1 i=1 i=1

d
= aj[Wi — od]
i=1

since Zle[Wi — 0] =0. O
Define
L:= KI[T]/(f(T)).
and
L:=Lox K~K[T ~ [[ R/ +a)) 2 &
We have the natural norm homomorphism Norm: L — K which sends a tuple (ai,...,aq) €

K" to the product a; - --ag € K. For any ring R, let u,(R) := {r € R: r" = 1}.
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Proposition 2.3.3. There is a split exact sequence of G-modules

Norm

I = ——— (D)

pin(K)
Proof. This is a straightforward generalization of Proposition 6.1.2 of [56]. O

Proposition 2.3.4. We have

(2.9)

1 - ~ Lx Norm K>
H (K,J[1 C])_ker<LXn KXn).

Proof. (c.f. Proposition 6.2.1 of [56]). Since the short exact sequence in Proposition 2.3.3
is split, it induces short exact sequences after applying H'(K, —), so
HY(K, I (1= ) = ker (HY(K, () “22 H' (K, j(K)) ). (2.10)

Applying an extension of Hilbert’s Theorem 90 (exercise 2 on page 152 of [60]) gives the
identifications

HYK, (L)) ~ L* /L (2.11)
HYK, jn(K)) ~ K* JK*", (2.12)
so we are done by substituting (2.11) and (2.12) into (2.10). O

Consider the short exact sequence

1-¢
J—(] J J 0.

The first coboundary map in Galois cohomology induces the following injective homomor-
phism, which we denote by 6.

O—jc()?(K) S HY(K, T[1 - ().

Composing with the isomorphism of (2.9), we obtain an injective homomorphism

j(K) Norm K>
oo e (e 2 o)

(2.13)

Theorem 2.3.5.
(1) Suppose that P = (zp,yp) € C(K) and that yp # 0. The image of

J(K)
P— € ——
P g
under the map (2.13) equals
LX orm KX
[zp — T € ker <an al KXn).
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(2) Suppose that Wy, --- , Wy are defined over K. The image of

J(K)

Wi= el e a8 7m)

under the map (2.13) is

(—aj —T) + H(—ai —T)"' (mod L*").

Proof. This is a straightforward generalization of Proposition 3.3 of [59]; see the computa-
tion on page 461 of [59]. O

As is standard, we will call (2.13) the “x — T descent map.
Lemma 2.3.6. Suppose that a1,...,0q € K and that P = (xp,yp) € C(K). Then
[P —oo] € (1= Q)T (K)

if and only if
xp+o; € K" for alli e [1,d].

Proof. Since ag,...,aq € K, we have an isomorphism

d
K|T
L:H[]'):HK, (2.14)
such that the image of ¢(T') € L is (g(—a1),...,9(—aq)).
Since the map of (2.13) is an embedding, [P — o0] € (1 — () J(K) if and only if

L* Norm K~
LXTL KXTL

the image of [P — oo] in ker < > is trivial. (2.15)

Case A: P¢gW

Theorem 2.3.5(1) implies (2.15) is equivalent to [xp — T] € L*", which from (2.14) is
equivalent to xp + a; € K*" for i € [1,d], and since zp & {—«; : ¢ € [1,d]}, this is
equivalent to xp + «; € K" for i € [1,d].

Case B: P =W
Theorem 2.3.5(2) implies (2.15) is equivalent to
(—a; = T) + [[(~ei =" € L7,
i#]
which from (2.14) is equivalent to the two conditions
(a) a; —aj € K*" for all i € [1,d] \ {j}
(b) Tlipj(e — i)t € Kx*

Note that (a) implies that K*" > [, .;(c; — o)l = [Liz(a; — ;)" since (n —
1)(d — 1) = 2¢ is even, so (a) implies (b). In particular, the two conditions together
are equivalent to oy — oj € K™ for all i € [1,d]. O
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Corollary 2.3.7. Suppose that P = (zp,yp) € C(K). Let K' be the field
K' =K ([D] € J(K): (1-¢)[D] =[P — o).

Then
K/:K(\"/l'p—i-ai: 1 S’Lgd)

Proof. To avoid confusion, define

For any [D;] € J(K) satisfying (1 — ¢)[D1] = [P — o],
{[D] € T(K): (1= QD] = [P — oo} ={[D1] + T: T € J[1 - (]},
K =K (J[1-¢,[D1]) = K (o, ...,aq,[D1]). (2.16)

Observe that o; = (¥Yzp + ;)" — xp must lie in Ko, so we may as well assume that K
contains aq, ..., qq.

Let M D K be any extension. By (2.16), M D K if and only if [P —o0] € (1—-()T (M),
which by Lemma 2.3.6 holds if and only if xp + a; € M™, which is equivalent to M D Ko.
Hence K7 = K. ]

Hence, our formulas for “division by 1 — ¢” in Chapter 3 will have coefficients in K’.
Corollary 2.3.8. K (J[(1-¢)?]) =K (o, ..., a4, /i —a;: 1 <i,j <d).

Proof. Since

K (I =0 =K(a,...,aq),

we may as well assume that K contains o, ..., aq. Since the [W; — oo] generate J[(1— ()],
K (J1(1=¢)]) = K (D] € J(K) : (1= QD] € {{Wi — o]z i € [L,d]}) ,

so we are done by applying Corollary 2.3.7 to P € W. O

2.4 Torsion points

Suppose that X is a smooth proper geometrically irreducible curve defined over a field K

of characteristic zero. Let J be the jacobian variety of X. Suppose that B € X (K); then
one may define the Abel-Jacobi map with respect to B as follows:

Alp:PeX —[P—BleJ

Definition 2.4.1. We say that P € X(K) is a torsion point of X (with respect to the

basepoint B) if its Abel-Jacobi image [P — B] has finite order in J(K). Denote by Tr(X)
the set of torsion points with respect to B.
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Raynaud’s theorem (formerly the Manin-Mumford conjecture) states that when the
genus of X is at least 2, each Tp(X) is finite.

Now suppose that C is a superelliptic curve of genus at least 2. In Chapter 5, we will
determine the finite set T, (C) in two instances: when C is the “superelliptic Catalan curve”
Cn.q given by the equation y" = 2% 4+ 1 and when C is an appropriate “generic superelliptic
curve.”

We already saw some examples of torsion points on superelliptic curves in Section 2.3
since (2.1) implies T (C) 2 WU {oo}. The examples in Chapter 5 will demonstrate that it
is possible for this containment to be an equality and also possible for it to not to be.

2.5 Homology of superelliptic curves

In this section, we compute H;(C,Z) using topology. We will apply results in Section 3 of
[51].

Fix B € C(C)\ WU {oo}). For each i € [1,d], choose a loop #; in P1\ 7 (W U {oo})
that starts and ends at w(B) which goes around —a; once and does not go around oo or
—ay, for any k # 1.

Then 7 (P! \ 7 WU {o0}),n(B)) is the free group generated by Bi,---,8s. Take
the subscripts of § modulo d, so that 8,14 := ;. By Galois theory of covering spaces,
m1(C\ WU{o0}), B) is the kernel of the map

v:m P\ 7w (WU{o0}),n(B)) = Z/nZ

which sends each ; to 1 (mod n). By the van Kampen theorem, 71(C, B) is a quotient of
m1(C\ (WU {o0}), B). In this way, we will view 71(C, B) as a subquotient of the free group
generated by 1, -, 4. Recall that Hy(C,Z) is the abelianization of 71(C, B), so for each
B € m(C, B) we will use [5] to denote the class of 5 in H;(C,Z).

Definition 2.5.1. For each i € [1,d], Biﬁijrll lies in ker v, so for each j € [0,n — 1], define
Vi = GBiBi5]. Define W := {1;;: i € [I,d— 1] and j € [0,n — 2]}.

Lemma 2.5.2. For each j € [0,n — 1],
Yrj+ o+ +Ya; =0

Proof. Observe that (8185 1) (8283 1) - (Bafy ') = 1 m(P1\ (WU {oo}),m(B)), so taking
its image in H1(C,Z) yields ¥1 0+ 20+ +v40 = 0. Apply ¢, to both sides to finish. [

Lemma 2.5.3. For each i € [1,d],
Yio +in+ -+ Yin-1 =0.

Proof. This is shown in the proof of Theorem 3.6 of [51]. Briefly, the idea is that there exists
a path p; from W; to Wit in C and some | € Z/nZ such that the cycle ;¢ is homotopic

to (Cflpi)(C;(Hl)pi)_l, so the sum ;0 + ;1 + -+ ; n—1 telescopes to give zero. O
Proposition 2.5.4. The inclusion ¥ C Hy(C,Z) induces an isomorphism

Z¥ - H((C,Z).
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Proof. This is Theorem 3.6 of [51]. O
Definition 2.5.5. Let S :=Z[T|/(1+T +---+ T 1).
Corollary 2.5.6. H1(C,Z) is a free S-module of rank d — 1 for which T acts as (.

Proof. Lemma 2.5.3 implies that 14 ¢ +--- 4+ ("1 acts trivially on all the ;. j, and since
these generate H;(C,Z) by Proposition 2.5.4, H;(C,Z) is an S-module for which T" acts as
¢. From Proposition 2.5.4, ¢, ..., ¥4_1, is an S-module basis for H,(C,Z). O

Suppose now that n = p is a prime. Then S ~ Z[(,].

Definition 2.5.7. Define the Tate module 7,7 ~ mz Jp']. Since T,J ~ H1(C,Z) @z Zy,
Corollary 2.5.6 gives that T),J is a free Zp[(y]-module of rank d — 1. Define Endg,_ ¢, (1,J)
to be the ring of endomorphisms of 7,7 that commute with ;. Then

Endgz ¢, (TpT) ~ Ma—1(Zp[Gp)) -

The relation (1 — (,)P~t € pS™ implies J[p] = J[(1 — ¢,)P!], so we also make the identifi-
cations )
1,0 ~im J((1 - G

7

and

I~ G)) =TT/~ G)

Lemma 2.5.8. Suppose 1 € Endg ., (TJ). Then n kills J[(1 — ()Y if and only if
ne (]. — Cp)z Endzp[gp} (ij)

Proof. Note that n kills J[(1 — ¢(,)"] if and only if it lies in the kernel of the reduction map
Endg, i¢,) () — Endg,(¢,) (T,7/(1=G)") = Endg,(,) (11 = G)'])-

Sinpe Endz ¢, (TpT) ~ Mg_1(Zp[¢p)) and Ende[Cp} (Tp.]/(l — Cp)i) ~ Mg 1(Zp[¢p)/(1 —
(p)*), the kernel of the reduction map is (1 — ()" Endg, ¢, (TpJ ), so we are done. O

Definition 2.5.9. Define

Op: Zp [Gal (Q(1p, T[p™1)/Q1p))] = Endg, ) (TpT)
to be the map which sends v € Z, [Gal (Q(p, T [p™])/Q(11p))] to its action on Tp,J.

Corollary 2.5.10. An element € € Zy, [Gal (Q(up, T [p™])/Q(up))] kills T[(1 — )"] if and
only if ‘
Op(e) € (1 —¢p)' Endg 0,1 (T,T) -

Proof. This follows from the definition of 6, and Lemma 2.5.8. O

Lemma 2.5.11. Let i > 0 be an integer and v € Z, [Gal (Q(pp, T[p™])/Q(1p))]. Suppose
that v — 1 kills J[(1 — ¢p)Y].

(1) For any integer k >0, (v — 1)¥ kills J[(1 — ¢,)™*].

(2) P4 AP 2 1 Kills Tp) = T[(1 - G)PY.
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(3) 77 — 1 kills T[(1 — )P~ 7).

Proof. Define € := v—1 and 7 := 6,(¢). Then ¢ kills J[(1— ()], so Corollary 2.5.10 implies
that n € (1— ) Endg, ¢ | (TpJ).

(1) Then n* € (1 — ()" Endgz (¢, (1pJ), so we are done by Corollary 2.5.10.

(2) Using
P AP 2L e (v - P 4 pZ[y)

yields
Op(Y7 "1+ 977 4+ 1) € pEndg, ) (T,T) = (1= G)P ™ Bndg i) (T,T), (217)
and we are done by Corollary 2.5.10.
(3) Multiplying both sides of (2.17) by 6,(y — 1) yields
Op(7P —1) € (1= ()P Endz ¢, (1pT),
so we are done by Corollary 2.5.10. O

Corollary 2.5.12. For any integer i > 1, the exponent of the group Gal(Q(pp, J[(1 —
Cp)z(p_l)ﬂ])/Q(Npa T = Gpl)) divides p'.

Proof. Suppose that v € Gal(Q(p, T[p™])/Q(kp, T[1 — (p])). By assumption, v — 1 kills
J[1 — (], so by induction with Lemma 2.5.11(3), 4*" — 1 kills J[(1 — ¢,)"®Y*!], which
means that 7?" acts as the identity on J[(1 — ¢,)'®~1+1]. O
2.6 Weights and gaps on compact Riemann surfaces

Let

X be a compact Riemann surface
g be the genus of X
Cx be the structure sheaf of X.

For each line bundle £ on X, define
ho(L) := dim H°(L).

Definition 2.6.1. For each point P on X, define WM(P) to be the set of pole orders at
P of meromorphic functions on X which are holomorphic on X \ {P}. Then WM(P) is a
monoid, and it is called the Weierstrass monoid of P.

We define gaps as Nakayashiki does in [53].

Definition 2.6.2. For each point P on X and degree zero line bundle £ on X, define
Gp(L) = {k € Zzo: A(L(KP)) = WO(L((k — 1)P))}

to be the set of gaps for £ at P.
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Lemma 2.6.3. Gp(L) is a subset of [0,2g — 1] of size exactly g.

Proof. This is a straightforward consequence of the Riemann—Roch theorem. O

Lemma 2.6.4. Gp(L) = Z>¢ \ WM(P).

Proof. This follows from the definitions. O
We define weights as Nakayashiki does in [53].

Definition 2.6.5. For each point P on X and degree zero line bundle £ on X, let k; <
ko < --- < kg4 be the gaps for £ at P. Define

g

wtp(L) =Y (ki — (i — 1)).

i=1
Also, define wt(P) := wtp(Ox). A point P on X is called a Weierstrass point if wt(P) > 1.

Theorem 2.6.6. Suppose that g > 1. Then

Y wi(P)=¢*—g.

pPeX
In particular, X only has finitely many Weierstrass points.

Proof. See equation (5.11.1) on page 88 of [21]. O
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Chapter 3

Division by 1 — ¢ on Superelliptic
Curves and Jacobians

The main goal of this chapter is to understand how to invert the 1—( endomorphism defined
in Section 2.3. We first give an introduction to this problem in Section 3.1 and highlight
how earlier work by Zarhin in the hyperelliptic case provided the motivation to generalize
to the superelliptic setting. In Section 3.2, we state and prove the formula for division by
1 — (. In Section 3.3, we study a problem motivated by our formula; namely, we study the
intersection of (1 — ¢)~!C and the theta divisor © inside the jacobian.

Sections 3.1 to 3.3 form the content of my paper [4] on division by 1 — (.

3.1 Introduction and motivation
As in Section 2.1, we let C be the superelliptic curve given by the equation
Yy =(r4+ao) (x4 aq) (3.1)

where n,d > 2 are coprime and aq,--- ,aq € K where K is a field with char(K) t n. We
will furthermore assume that K is algebraically closed. Every point of the jacobian J of C
can be represented as [D — goo| for some effective degree g divisor D.

Our goal is to provide formulas for “division by 1 — (” for points of C. For a fixed point
P on C, we seek to find rational functions on C which cut out an effective degree g divisor
D satisfying the property

(1= Q)[D — goo] = [P — oc],

which is equivalent to

(1-¢)D ~ P — .

When n = 2, the curve C is hyperelliptic and we seek to divide by 1 — { = 2. Let ¢ be
the hyperelliptic involution on C. In [68], Zarhin provides formulas for division by 2 in the
hyperelliptic setting. His formulas are written in terms of the Mumford representation (see
[52], page 3.17). More specifically, Zarhin finds two rational functions fi, fo on C for which
there exist effective degree g divisors D and E such that

div(f1) = D+ «(F) — 2goo
div(fa) =D+ E+ «(P) — (29 + 1)oc.
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From this, we get (1 —¢)D ~ P — oo, or equivalently, 2(D — goo) ~ P — oo.

In the superelliptic setting, there is no direct analogue of the Mumford representation.
Instead, we find n rational functions fi,--- , f,, such that for some degree g effective divisors
D and F,

div(f1) = D+ ¢ 1(E) — 2go0
div(fa) = D+ ¢ 4(E) + (H(P) = (29 + 1)o0

div(f) =D+ E+ (Y P)+ ¢ 2P) + -+ V(P) = (294 n — 1)o0.

The first two equations yield div(fi/(*f2) = (1 =)D — (P —o0),s0 (1 = ()D ~ P — .
Moreover, we will show that
D= ng diV() fj. (32)
1<j<n
When n = 2, our formulas reduce to Zarhin’s. However, Zarhin’s techniques do not
readily extend from n = 2 to general n; the main obstruction is the lack of a Mumford
representation when n > 2.

e When n = 2, it is the case that

fi=U(z)
fo=y—-V(z)

for some U(z), V(z) € K|x] satisfying U|(V? —[](z + ;)). (The pair (U, V) is called
the Mumford representation of D.) Assuming that fi, fo are in this special format
greatly simplifies the rest of the computation. However, even when n = 3, one cannot
assume that f1, fo will have this special form; one must work with the more general
Ji=Uoi(x) + Upi(x)y + Usi(z)y?.

o There are other ways to represent divisor classes on superelliptic curves; see [26] for an-
other possible representation and algorithms for computations in that representation.
However, we were not able to use their representation for our formulas.

As an application, we can divide any point (—ca;,0) by 1 — ¢. Since [(—a;,0) — o0
generate J|[1 — (], we obtain generators for J[(1 — ¢)?]. In particular, for the case n = 3
we know that J[(1 — (3)?] = J[3], so our formulas give a representation for each 3-torsion
divisor class on a trigonal superelliptic curve. We also hope that our formula can be used
to perform explicit descent and compute the rational points on some superelliptic curves.

One curious aspect of this formula is that whenever P # oo, no D satisfying (1 —()D ~
P—o0 lands on the theta divisor © of the jacobian. That is, CN(1—¢)© = {0}, which implies
that (1 —¢)~'CNO = J[1 —¢]. In Section 3.3, we compute the intersection multiplicity of
(1 —¢)~'C and © at each point of J[1 — (].

3.2 The formula for division by 1 — ¢

Let T' be an nxn matrix. Let T; ; denote the (4, j)-th entry of T'. The indices i, j will be taken
modulo n to make sense of expressions of the form 7" 5, (this means T;,_; ). The notation
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T(3) represents the submatrix of T' obtained by removing the ith row and jth column of
T. The notation “adjT” stands for the adjugate matrix of T'; its (4, 7)-th entry is defined
to be (adj T); j := (—1)"7 det TUA). Tt is a fact that T(adjT) = (adj T)T = (det T')1,.

3.2.1 Statement of main result

Suppose that P = (a,b). By translating P and C, we may assume that the the xz-coordinate
of P is zero; that is, P = (0,b). Choose 7; such that

n __
T

7“7;:b

Let s; be the jth elementary symmetric polynomial evaluated on the r;, where the conven-
tion is that s, =0 for m & [0,d]. (So b = s4.) For each ¢ € Z, define

Ay(x) = Z(—l)(”*l)kw,nkxk € K|z].
k>0

Let A,Z, M, N be the following n x n matrices with entries in KJz,y].

Aq Ag1 o Agnyz Adgng]
Adgi1 Ag - Agngs Agoni2
A= " : " :
Adin—2 Adin-3z - A4 Agq
| Adin—1 Adin—2 -+  Aan Aq
_CO o --- 0 0
0o ¢t ... 0 0
Zi=1: e : :
0 0 ... (2 0
0o 0 .- 0 ¢-(=1]
M:=A—-yZ
N :=adj M.

The goal is to prove the following theorem.
Theorem 3.2.1. The divisor

D = ng diVoNLj
1<j<n

is an effective degree g divisor on C such that

(1-¢)D ~ P — 0.
Proof. We will prove this theorem at the end of Subsection 3.2.3. O
3.2.2 Computational lemmas

As mentioned before, view the entries of A, Z, M, N as elements of K|x,y].

Definition 3.2.2. Define o to be the automorphism of K[z, y] over K[z] sending y — ¢~ 'y.
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Now we seek to understand how o operates on the entries of M and N. We do so in
Lemma 3.2.4, and the following notation makes it easier to express those relations.

Definition 3.2.3. Define

1 ifi=j (modn)
5i,j = X
0 otherwise.
Lemma 3.2.4. We have
Mt i1 = ((—=1)*1g)05n=%n . 5L .
i+1,j+1 = (=1)" ") 0 iV,j (3.3)

Nit1gp1 = ((=1)"z)%n =% g Ny 5.
Equivalently, if C' is the n X n matriz

0  |[Ina

“=lTorE] o

(where the I,—1 block is the (n — 1) x (n — 1) identity matriz) then
oM =CMC™! (3.5)
oN =CNC™.

Proof. (3.3) follows from the fact that for £ > d +1, Ay = (=1)""'2A4,_, and the fact
that for i,j € [1,n], M;; = Aqyi—j — 0;;¢' 'y, (3.3) is equivalent to (3.5). Both ¢ and
conjugation commute with the adj-operation, so taking adj of both sides of (3.5) gives (3.6).
(3.6) is equivalent to (3.4). O

Lemma 3.2.5. Ny ; lies in the ideal

n—1
xz, H(y - Cksd)

k=j

of K[z,y].

Proof. Since Ay =0 (mod z) whenever ¢ ¢ [0,d],

Nij = (=1)7"! det MO = (=1)7+ det [ g ;[// ] (mod z),
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where

Sd—1 Sd—2 Sd—-3 T Sd—j+1
-1
sqa—C 'y 541 542 B Sd—j+2
-2
U — Sq4—C "y Sq-1 e Sd—j+3
0
i sqa—C7y  Sg-1 |
Sd—j  Sd—j—1 *°° Sd—n+1
Sd—j+1 Sd—j o Sd—n+2
V = [Sd—j+2 Sd—j+1 "  Sd—n+3
| Sd—2 8d-3 " Sd—n+j—1]
Sd—C_Jy Sd—1 Sd—n+j+1
—(74+1
54— ¢ G+ )y Sd—n+j+2
W = .
—(n—1
| sq — ¢~y

Hence Ny j = (—1)T1det U - det W (mod z). Since W is upper triangular,

n—1

det W = [ [ (sa— ")

k=j

which implies
n—1

Nij = (=1 (detU) - [[(sa— ¢ Fy)  (mod =),
k=j

as desired.

We work in a slightly larger ring L where the eigenvalues of A are defined.

Definition 3.2.6. Define
L= Klz,y, T]/(T" + (-1)"z) ~ Ky, T].
Then o extends to an automorphism of L over K[T] sending y — ¢~ 'y.

Lemma 3.2.7. For 1<k <n, define

d
A =[] (ri +¢*T) € K[T] C L.
=1

Then the A\, are distinct and form the complete set of eigenvalues of A.

Proof. The Ay, are distinct because the T%-coefficient of Ay, is (¥ and d is coprime to n.
Now we show that each A\ is an eigenvalue of A by showing that

V1= [1 CkT C(n—l)an—l]T
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is a corresponding eigenvector. We will show that Avy = Ayvr by showing that their jth
entries for j € [1,n] are the same. This will complete the proof.
We first compute (Avy); as follows:

(Avg); =D ¢FDT Ay,

i=1
n
= CFEITTE Y ()P s i ™
i=1 m>0
n
_ Z k=1 pi-1 Z(—1)(n_1)m8d+j—i—mn(_(_T)n)m
i=1 m>0
n
=3 O sy T
=1 m>0
n . .
=3 > rHmr gy T
=1 m>0

As i and m vary in the range 1 < i < n and m > 0, the quantity ¢ + mn represents every
positive integer exactly once. However, sq;j_;—mn Will be zero whenever i +mn —j ¢ [0,d].
So we may perform the change of coordinates a := i + mn — j and turn this into the finite
sum

d

(Avg); =D (FUte g, Tite!
a=0

d
_ gk(jfl)ijl Z(CkT)an_a
a=0

d
= Ck(j_l)Tj_l Z(CkT)a Z Tiy " " Tig_q
a=0

11<ig < <id_q

d
= ¢hu-Dpi-1 H(Tl + ¢k
i=1
_ kG-,

= (Apvg);-

Hence, vy, is a nonzero eigenvector of A with eigenvalue . Since we have shown that {\;}
are n distinct eigenvalues of A, they must be all the eigenvalues of A. O

Lemma 3.2.8. We have

d
det A = H(x + ;)
i=1
d
det M = H(x +a;) —y".

=1
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Proof. The first equality comes directly from multiplying the eigenvalues computed in
Lemma 3.2.7 and by observing that

n—1
[[0i+¢T) =0 = (—1)"T" = o + .
k=0

Observe that det M is a polynomial in y of degree n with leading term H?gol(—giy) = —y".
By taking the determinant of both sides of (3.5), we deduce that det M is invariant under
o. Therefore det M can have no other terms in y, so it is of the form det M = g(x) — y".
By plugging in y = 0 we see that ¢(z) = det(A —0-Z) = det A, so the rest comes from the
computation of det A. O

Lemma 3.2.9. The determinant of any 2 x 2 submatriz of N is divisible by y™ — (z +

Proof. We show this for the submatrix of N obtained by taking the {7, k} rows and {j, ¢}
columns. Let F' be the submatrix of M obtained by deleting the {7, k} rows and {j, ¢}
columns. Apply Jacobi’s complementary minor formula (Theorem 2.5.2 of [58]) with these
rows and columns to obtain

N, . N )
det | " Y =+ det M - det F.
[Nk,j Nk,e]

Since —det M = y" — (z + a1)--- (z + a4) by Lemma 3.2.8, we are done. O

For t,,t, € K, define A(t;), M(t,ty), N(ts,ty) € My(K) by substituting x = t, and
Yy = ty.
Lemma 3.2.10. For any t, € K, the rank of A(t;) is at least n — 1.

Proof. The eigenvalues of A were computed in Lemma 3.2.7. Define T'(t;) € K to be an
nth root of —(—1)"t, and define A\ (t;) := ngl(ri + ¢*T(t,)). Then the eigenvalues of
A(ty) are Ai(tz), -+, An(ta).

Case A: t, #0

Suppose that Ag(t;) = A¢(tz) = 0. Then there exist 4,5 such that T'(t,) = —¢ *r;
and T(t;) = —( ‘rj. Hence a; = r?* = (=T(t))" = r? = aj, so i = j. Then
F = —riT(ty)"t = —rjT(t;) "' = %, so k = £. Hence \(t,) = 0 for at most one k,

so the rank of A(t,) is at least n — 1

Case B: t, =0

Since Ay = sy (mod z) for all £ and s, = 0 when ¢ ¢ [0, d|, we see that A(0) is an upper
triangular matrix with diagonal entries sq and “super-diagonal” entries sq_1. If sq # 0,
then A(0) is invertible and we are done. If s4 = 0 and s4_1 # 0, then the submatrix
obtained by deleting the first column and last row of A(0) is upper-triangular with
diagonal entries sy_1 and is therefore invertible, implying that the rank of A(0) is at
least n — 1.

If s4 = s4—1 = 0, then at least two of the {1, - - , agq} are zero, which is impossible. [

Lemma 3.2.11. For any t,,t, € K, the matriz N(t,,t,) is not zero.
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Proof. We will use the following fact: for each square matrix F', the rank of F' is at most
n — 2 if and only if adj F' = 0.

Consider the matrix N +oN + --- 4+ ¢" LN it is o-invariant and it involves powers of
y only between 0 and n — 1, so it is independent of y. Hence

(N+oN+--+ 0" 'N)(z,y) = (N +0N +---+ 0" 'N)(z,0) = nN(z,0) = nadj A(z).
(3.7)

Case A: t; #0

If N(ty,ty) = 0, then (3.4) implies that (0°N)(ts,t,) = 0 for all i. Substituting this
into (3.7) yields

0=(N+0N+--+ " N)(ty,t,) = nadj A(t,).

Since char(K) 1 n, we may divide by n on both sides to see that adj A(t,) = 0, so
A(t,) has rank at most n — 2, contradicting Lemma 3.2.10.

Case B: t, =0

Then the matrix M(0,t,) = A(0) — t,Z is upper triangular with diagonal entries
54—ty C iOIf ty # 0, then these diagonal entries will all be distinct; in particular, at most
one is zero, so M(0,t,) will have rank at least n — 1. If ¢, = 0, then M(0,t,) = A(0)
and we are done by Lemma 3.2.10. O

3.2.3 Main proof

Vanishing loci of IN; ;

We will now view entries of N as elements of the function field K(C) when writing expres-
sions of the form div IV; ; or divg IV; ;. In order to make sense of such expressions, we need
to check that NV; ; reduces to a nonzero element of K(C).

Lemma 3.2.12.
(1) —voo(z) =n
(2) —vool(y) =d

(3) Fort>0,
— Uoo(Ay) <Y, (3.8)

with equality holding if and only if £ =0 (mod n).

(4) For1l <wu,v<n,
— Voo (Myn) <d+u—w, (3.9)

with equality holding if and only if u =v or u —v = —d (mod n).

Proof. Lemma 3.2.12(1) and Lemma 3.2.12(2) follow directly from (3.1), the equation of C.
(3) Since
Ap =Y (1) Drsy

k>0
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and sy = 0 whenever ¢ — nk ¢ [0,d],
deg, Ay < |€/n],
so by Lemma 3.2.12(1),
—Voo(A¢) < nll/n].

Since n|£/n| < ¢, we obtain (3.8). If ¢ # 0 (mod n), thenn|[¢/n| < ¢, so the inequality
must be strict. If £ = 0 (mod n), then the z*/"-coefficient of Ay is (—1)(~D/ngy =
(=1)(=D/" £ 0 and hence —voo(Ag) = n(f/n) = L.

(4) Since
Mu,v = Ad+u—v - Cl_uéu,vya

(3.9) follows by breaking into cases depending on whether or not v = v and then
applying Lemma 3.2.12(2) and Lemma 3.2.12(3). If u # v, then M, , = Agsy—y, SO
Lemma 3.2.12(3) gives that equality holds in (3.9) if and only if u —v = —d (mod n).
If w = v, then equality holds in (3.9) because —v(Ag) < d (since d # 0 (mod n))
and —vs(y) = d. O

Lemma 3.2.13.
(1) —voo(Nij) =29+ (i — 1)+ (n—j). In particular, N;j # 0.

(2) Each N;j satisfies

1—2
diVONiJz Z CkP

k=j—n

Proof.

(1) For every integer k, let L(koo) be the subspace of K(C) consisting of meromorphic
functions that are holomorphic everywhere except at oo and whose valuation at oo is
at least —k. Define £ :=2g+ (i — 1) + (n — j).

Label the rows of MU4) by {1,2,...,5—1,7+1,...,n} and the columns of M) by
{1,2,...,i—1,i+1,...,n}. We remind the reader that row and column indices are
taken modulo n.

Expand det M%) as a sum over permutations

det MU = Z sign(o) My 1) M1 0(—1)Mjt1,0(+1) - Mn,o(n)-
O'GSTL
o(j)=i

For every o € S, satisfying o(j) = 4, apply (3.9) to the summand corresponding to o
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to get

- Uoo(Sign(U)Ml,o(l) cee Mj—l,cf(j—l)Mj+1,o(j+1) T Mn,a(n))
= Z —Voo (M (k) )

1<k<n
k#j
< > (d+k-o(k)
1<k<n
k#j
=—(d+j—i)+ Y _ d+ (k—o(k))
k=1
= —(d+j—i)+nd
=

and hence y
— oo (det MUDY < ¢,

Furthermore, det M%) (mod L((£—1)co)) will be unchanged if we replace the (u,v)-
entry of M with zero whenever we do not have equality in (3.9). That is, the n x n
matrix M defined by

T My, ifu—ve{0,-d} (modn),
“ 0 otherwise
satisfies N o
det MUY = det MUY (mod L((£ — 1)00)). (3.10)

Claim. Let u € [0,n — 1] be the unique integer such that j =i + ud (mod n). Then

det MU = tMiitd- Miy(u—1)ditud

XMt (ur)ditui)d Miy(n-1)dit+(n—-1)d (3.11)

Proof of claim. Write

det MU = Z Sign(U)MLau) EE ]\,Zj—l,a(j—l)Mj-i-l,a(j-i-l) My omy-  (312)
oc€Sh
o(j)=i

Suppose that o € S, satisfies o(j) = ¢ and o(m) € {m,m + d} (mod n) for every
m € [1,n]\ {j}; otherwise, the summand corresponding to o in (3.12) is zero. Then:

(i) o(t +kd) =i+ (k+1)d for k € [0,u —1].
Induct on k. If k = 0, then u # 0 and hence i # j = 0~ 1(i), so (i) # 4. Since
o(i) € {i,i+d}, this forces (i) = i+d. Now suppose that o(i+kd) =i+ (k+1)d
for some k € [0,u —2]. Then i+ (k+ 1)d # i +kd = o7 1(i + (k + 1)d), so
o(i+ (k+1)d) # i+ (k+1)d. Since o (i + (k+1)d) € {i + (k+1)d, i+ (k+2)d},
this forces o(i + (k + 1)d) =i+ (k + 2)d.

(ii) o(i — kd) =i —kd for k € [1,n —u —1].
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Induct on k. If k = 1, then v # n—1 and hence i —d # j = o~ 1(i), so o (i—d) # i.
Since o(i — d) € {i — d,i}, this forces o(i — d) = i — d. Now suppose that
o(i—kd) = i—kd for some k € [1,n—u—2]. Then i—(k+1)d # i—kd = o~ (i—kd),
so o(i — (k+1)d) # i — kd. Since o(i — (k + 1)d) € {i — (k+ 1)d,i — kd}, this
forces o(i — (k+ 1)d) =i — (k+ 1)d.

Properties (i) and (ii) uniquely determine o, so the proof of the claim is complete.

We attain the upper bound in (3.9) for every term on the right hand side of (3.11),
so applying —vs, to both sides of (3.11) yields

— Voo (det MUY = ¢. (3.13)

Combining (3.10) and (3.13), we conclude that —vs(det MU#)) = ¢. Since N;; =
(—=1)"*7 det MU | we are done.

(2) Use (3.4) to reduce to the case i = 1. Lemma 3.2.13(1) implies that N;; is not
identically zero, so applying divy to Lemma 3.2.5 (which makes sense since polynomials
in x,y can only have poles at co) yields

-1
divg N1, > ged < divg z, divg H (y — Cksd)

k=j—n

Definition 3.2.14. Define

i—2
Qi,j = diVo Ni,j — Z CkP

k=j—n
D; = ged Qg
1<k<n
Ej:=Q1;— ged Qi
1<k<n

By Lemma 3.2.13(2), Q;; > 0, so D; > 0. Also, E; > 0.

Our first task is to translate the lemmas in the previous section to results about the
effective divisors Q; j, D;, ;.

Lemma 3.2.15. The effective divisors D;, E; satisfy
D; + Ej = Qi,j’

Proof. Apply Lemma 3.2.9 to the 2 x 2 submatrix of N obtained by taking rows {4, k} and
columns {j,¢} to obtain the equality N; jNi, = N;¢Ny ; as elements of K(C). Since the
entries of N have poles only at co, we may take divg of both sides to obtain divg V; ; +
divg Nlﬁg = divg N@g + divyg Nk,j- Therefore,

Qi+ Qrye = Qie+ Qrj, (3.14)
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and hence

1<k<n 1<k<n

Di —|—Ej = < ng Q7,7k;> +Q1,j - ng Ql,k

= < ged (Qin — Q11+ Q1,k)> + Q1 — ged Qi (by (3.14))

1<k<n 1<k<n

= (Qi1 — Q11) + < ged Q1,k> +Q1,; — ged Qi

1<k<n 1<k<n

=Qi1— Q11+ Q1
Lemma 3.2.16. We have
ged D; = ged E; =0.

1<i<n 1<j<n

Proof. 1f there existed a point R on C such that Q); ; > R for all 4, j, then all the IV; ; would
vanish on R, which contradicts Lemma 3.2.11. Therefore 0 > ged; ; (i ;. Since each Q; ; is
effective, we get the reverse inequality ged; ; (i ; > 0. Hence

ng Qz”j = 0.

1<i,j<n
Taking ged, <; j<,, of both sides of Lemma 3.2.15 yields

ged Dj+ ged Ej = ged Q.

1<i<n 1<j<n 1<i,j<n
Therefore ged; D; and ged; Ej are effective divisors whose sum is 0; hence both are 0. [
Lemma 3.2.17. For 1 <14,5 <n,

D; =Dy (3.15)
E;=({'E;. (3.16)

Proof. Taking divy of both sides of (3.4) yields
divo Nig1,j+1 = (00 — 0in) divg x + (divg Ny 5.
Breaking into cases depending whether ¢ = n and/or j = n, we obtain
Qit1,j+1 = CQij)
so by Lemma 3.2.15,
Diy1+ Ej11 =(D; + CE;. (3.17)

Taking ged; of both sides and applying Lemma 3.2.16 yields D;1 = (D;. Similarly, Ej+1 =
CEj. O

Definition 3.2.18. Define D := Dy and F := Ej.
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We summarize our work in the following proposition.

Proposition 3.2.19. For1 <1i,j5 <n,

divoNij =¢"'D+ 7 'E4+ | Y kP

1—2
divNi;j = 'D+ITE4+ [ YD P = (2¢+ (i 1)+ (n — j))oo.

k=j—n

Proof. Combine Definition 3.2.14, Lemma 3.2.15, (3.15), (3.16), and Lemma 3.2.13(1). O

Orders at infinity

Lemma 3.2.20. There is no f € K(C)* having a pole only at oo such that the pole order
at oo isnd —n —d.

Proof. Let R be the ring R = K|[x,y]/(y" — H?:l(:z‘ + «;)); this is the affine coordinate ring
of C\ {oc}. A K-basis for R is {z%: 0 < a and 0 < b < n—1}; since Lemma 3.2.12(1) and
Lemma 3.2.12(2) implies —vs(2%y®) = na + db and (d,n) = 1 by assumption, each element
of this basis has a different order pole at oco. Therefore, the order of the pole at oo of any
element of R is of the form na + db for nonnegative a, b.

Suppose that f € K(C)* has a pole only at co. Then f € R. From the previous
paragraph, we have —vs(f) = na + db for nonnegative a,b. If it were the case that
na +db =nd —n — d, then a = —1 (mod d) and b = —1 (mod n), so by nonnegativity of
a,b we conclude that a > d — 1 and b > n — 1. But then

nd—n—d=na+db> (nd—n)+ (nd—d) =2nd —n —d,
which is a contradiction. O

Definition 3.2.21. Define the Abel-Jacobi map

Al
C

J
P—— [P — ]

For every r > 1, this induces a map C" — J". Denote by W, the image of the composite
morphism C" — J" — J, where the second map is the addition map. We define © := W,_;
to be the theta divisor.

Lemma 3.2.22. Forr>g, W, =J.

Proof. 1t is a simple consequence of the Riemann-Roch theorem that any degree zero divisor
on C has a representation as [Py + ... + P, — goo] for points P, ..., P, of C. O

The n = 2 case of the following theorem is Theorem 2.5 of [68] (on page 506).
Theorem 3.2.23.
(1) The intersection of AJso(C) and (1 —¢)O in J is exactly {0}.
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(2) The intersection of AJs(C) and (( —1)O in J is also exactly {0}.
Proof.

(1) Suppose that there were some P € C \ {oco} such that [P — oo lies in (1 — {)©. Then
there is some effective divisor D of degree r < g — 1 such that (1 —¢)D ~ P — oo and
Voo(D) = 0. By Lemma 3.2.22, there is an effective divisor E of degree s < g such
that D + E ~ (r + s)oo and v (E) = 0. Define

t:=(nd—n—d)—(r+s).
Sincer <g—1,s<g,and nd—n—d=2g— 1, we have t > 0. Consider the divisor
=1
F:=('D+E+) (P
i=0
Since E ~ (r+ s)oo — D and P ~ oo+ (1 =)D,

t—1
F~('D=D+) (('D-¢"'D)+ (r+s+t)oo
=0

=0+ (r+s+t)oo
= (nd —n — d)oc.

Since Voo (F) = 0 and F ~ (nd — n — d)oo, this contradicts Lemma 3.2.20.

(2) Applying the previous part to ¢(~! instead of ¢, we see that C N (1 — ¢~1)O = {0}.
Applying ¢ to both sides gives (C N (¢ — 1)© = {0}. Since (C = C, we are done. [

Lemma 3.2.24.

(1) We have deg D = degE = g.

(2) The support of D avoids {(—a1,0),- -, (—ag,0),00}. The same holds for E.
Proof.

(1) Applying Proposition 3.2.19 gives

div(Nin/C*Nip—1) = div Ny — (div Ny -1
=(D+(¢TE—2g00) —((D+C2E+ (P — (29 +1)0)
=(1-¢)D—(P-). (3.18)

Suppose that deg D < g—1. Then [(1 —()D] € (1 —()©. Since [(1 —¢)D] also equals
[P —o0] € AJso(C) \ {0}, we have found an element of (1 — ()© N (AJ(C) \ {0}),
contradicting Theorem 3.2.23(1). Hence,

degD > g. (3.19)

Similarly,
div(¢** N1 /C*Nay) = (C — 1)E — (CP — 0), (3.20)
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and a similar argument with Theorem 3.2.23(2) implies

deg £/ > g. (3.21)

Taking ¢ = 1 and j = n in Proposition 3.2.19 yields D 4+ ('E — 2goo = div N1 p, so
deg D + deg F = 2g. (3.22)

Combining (3.19), (3.21), and (3.22) gives deg D = deg E = g, as desired.

(2) Suppose that R € {(—a1,0),---,(—aq,0),00} and D > R. Then (1 —()[D — R] €
(1 —¢)©. Since R € J[1 — (], (3.18) implies that (1 — ()[D — R] = [P — o] €
AJ(C) \ {0}. Hence (1 — ¢)[D — R] is an element of (1 — {)® N AJ(C) \ {0},
contradicting Theorem 3.2.23(1).

Similarly, if S € {(—a1,0),---,(—aq,0),00} and E > S, then (3.20) implies ({ —
DE—-S]=[CP—o0],s0 ((—1)[E—-S]€((—1)0NAJ-(C)\ {0}, contradicting
Theorem 3.2.23(2). O

Corollary 3.2.25. P L FE.

Proof. Suppose that P < E and let B/ = ("'E — ("1 P, so that by Lemma 3.2.24(1), E’ is
an effective degree g — 1 divisor on C satisfying

C-DE =C-1D)('E-(C-1)¢'P

(¢ - )(2900 D)— (P — CilP) (by Proposition 3.2.19 with i = 1,j = n)
(1-¢)(D)—(P-¢'P)

P — oo — (P ¢p) (by (3.18))
¢!

2

2

which contradicts Theorem 3.2.23(2). O

Proof of Theorem 5.2.1. We wish to check gedy<;<, divo N1; = D. Applying Proposi-
tion 3.2.19 with ¢ = 1 and then taking gcd yields

ng diV() Nl,j > D.
1<j<n

For contradiction, suppose that @ is a point on C such that

Q < ng (diVo Nl,j — D)

1<j<n

Then Proposition 3.2.19 implies that for all j € [1,n],

-1 -1
Q=B+ Y (P=E+ Y (P (323)

k:j—n k::j—n
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by (3.16). By Lemma 3.2.16, there must be some u € [1,n] such that @ £ E,. Then

-1

Q< Y p

k=u—n
so @ = ¢"P for some v € [u —n,—1].

Case A: P is fixed by ¢

Then Q = (P = P. Substituting j = n into (3.23) produces Q < (" 'E, so we
conclude that P = (P = (Q < F, contradicting Corollary 3.2.25.

Case B: P is not fixed by ¢
Then the ¢*P are distinct. Applying (3.23) with j = v +n + 1 then gives

-1
Q<C¢'E+ > ¢kp
k=v+1
Since Q = (P and the ¢*P are distinct, we conclude that (VP < ¢UE, which implies
that P < F, again contradicting Corollary 3.2.25. O

3.2.4 Varying the choice of r;

Recall that (r1,---,74) is any d-tuple of elements of K satisfying
ﬁlz:ai
Ti::U

Write r to denote (ri,...,74). Since the D in Theorem 3.2.1 depends on the choice of
r, we will denote it D, from now on. For a = (ay,...,aq) € (Z/nZ)?, write (2r to denote
(Calrl,...,cadrd)
Applying Theorem 3.2.1 with b replaced by ¢ (@1 +ad)p and r replaced with ¢~2r, we
obtain
(1= () Dony ~ O+ p o

SO
Dy — ¢t D o € J[1 (]

Our goal is to write down Dy — (“F -+ D._a, in terms of a basis for J[1 — ¢]. First, we
recall our description of J[1 — (].

Definition 3.2.26. For 1 < i < d, define P; := (—«;,0) € C(K).

Lemma 3.2.27. The map

(Z/nZ)" I~ ¢
ar—— 37 [P — o]

is surjective and its kernel is generated by (1,...,1).
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Proof. This is Proposition 2.3.1. O

The n = 2 case of the following theorem is Theorem 1.1 of [69].

Theorem 3.2.28. For each a € (Z/nZ)?,
Dr _ Ca1+."+adDC7ar ~ alpl + e _|_ ade — (Z aj) 0.

Proof. By induction, it suffices to treat the case a = (1,0, ...,0). To do so, we will first refor-
mulate Theorem 3.2.1 in terms of a family over an open subset of A% = Spec K[r1,...,7q].

Let U be the open subset of A?( = Spec K[r1,...,r4) given by removing every hyperplane
of the form r}* = r}. Let % be the smooth proper family of superelliptic curves over U given
by the equation

d
v =T+,
=1

The morphism ¥ — U admits two sections of interest to us; these are the “oco section” which
sends (71, . ..,74) to the point at oo on the fiber and the “P section” which sends (r1,...,7q)
to the point (0,71 ---rq) on the fiber. Let ¢ be the relative jacobian of the family ¢ and
embed ¢ into _# using the Abel-Jacobi map induced by the oo section (denoted AJ). We
seek to compare the two sections Dy and (D¢-a, of the map # — U. Here is a diagram
representing all the morphisms considered thus far.

P Al
U 4 A

A SN L N

The map _#[1 —(] — U is smooth of relative dimension 0; it is étale. Consider the sections
7,7 U — _#Z[1 — (] given in coordinates by

y:(r1,.-57q) = Dy — (De-ay

/

i (ri, ... rq) — (0,0) — 0.

We wish to show that v = /. Let H; be the hyperplane of U cut out by r; = 0. On Hj,
we know that (72r =r, so

D, — CDC_BI' = (1 =¢)Dr ~(0,0) — oo.
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Therefore, the sections v,~' agree on the nonempty closed subset H;. Every section of an
unramified cover with connected base is uniquely determined by its image on a single point
(by Corollaire 5.3, Exposé 1 of SGA 1 [32]), so v =7+, O

Remark 3.2.29. Lemma 3.2.27 and Theorem 3.2.28 together imply that our formula in
Theorem 3.2.1 produces every effective degree g divisor D satisfying (1 — ()D ~ P — oo.

3.3 Application to the intersection of (1 — ¢)™! AJ.(C) and
)

Let C' :== (1 — ¢{)7' AJo(C). Theorem 3.2.23(1) implies that the intersection of ¢’ and ©
is contained in J[1 — ¢]. In this section, we will compute the intersection multiplicities at
each intersection point. We will work over the complex numbers; that is, K = C.

We identify points of J with degree zero divisor classes, and in this section, we use D
to denote degree zero divisor classes (as opposed to effective divisors).

For each P € C and D € J, recall the definition of the gap set Gp(D) from Section 2.6.

Definition 3.3.1. Suppose that D € J. By Lemma 2.6.3, Goo(D) = {b1,--- ,by} for
integers 0 < by < by < ... < by < 29— 1. As on page 5204 of [53], define the partition

Api=(by— (g —1), by1 — (g —2), ..., by —0).

Let |Ap| be the size of Ap, i.e.,

g

Al = (b= (i—1)).

i=1

Definition 3.3.2. For each D € J, define i(D) to be the intersection multiplicity of C' and
O at D.

The main theorem of this section is the following.
Theorem 3.3.3. For each D € C' N O,
i(D) = |Ap|.
Proof. This theorem will be proved at the end of the section. O

Remark 3.3.4. We warn the reader that textbooks on Riemann surfaces [21, 50] usually
define gaps differently. For a point P and linear system () on a Riemann surface X, let
G'(Q) be the gaps for @ at P defined in [50]. Let we be the canonical bundle on C and £
be the line bundle associated to D. Applying the Riemann—Roch theorem shows that the
relationship between the two notions of gaps is

Gp(D)={b€Z>y:b+1€CGp(wc®LT®Ox(P))}

and that |Ap| coincides with the inflectionary weight for we ® L7 ® €@x(c0) at co.

Definition 3.3.5. Define the ring

R:=Z[ X7, . X7/(XP—1,..., X5 -1, X1 Xq - 1).
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Then R has a natural basis of the form {X{*--- X ;*;": 0 < a; < n}. Define
pral,.,.,ad,l : R - Z

to be the map that extracts the X{* - X;f’ll—coefﬁcient. By abuse of notation, we also use
Py, ..a, , t0 denote the same map, but tensored up to Z[T7]:

pral,...,ad,l : RHT]] - ZHTH

Finally, define

pi=1+T"+7*" +--)- [+ X7+ -+ XP 7 € R[T]

.

1

1

Pai,.oag—1 = Play, as_, (P) € Z[T].
Lemma 3.3.6. Every element of J[1 — (] has a unique representation of the form
[P+ +ag-1Pg1— (a1 +---+ag1) )]
for some 0 < a; < n.
Proof. This is an immediate consequence of Lemma 3.2.27. 0
Proposition 3.3.7. Suppose that D = [a1Py + -+ + ag—1Py—1 — (a1 + -+ - + ag—1) 00| for

some 0 < a; <mn. Then
Pai,...ag1 = Z T".

i€Z50\Goo (D)

Proof. Writing out an explicit sum for p gives

n—1
p= 2@ | Xl XD X
m>0 e1,...,eq=0
= Z XeL... xeaertteatnm

e1,...,eg€[0,n—1],m>0
Using the relation X;Xs--- X4 =1, the above equals

_ e1—€q . yCd-1—€drp(e1—eq)+...+(eq—1—eq)+nm-+deq
pP= Z X Xy T ’

€1,.-,d€[0,n—1],m>0

Perform the change of variables a; = e; — eq (mod n) where a; € [0,n — 1]. Then using

ej =aj +eq —n[ajnﬁj and X{' =--- = X | =1 yields
p= Z X Xgi—llT(Z “j)-i-”(m—zrj:edb—l-ded
ai,...,aqg—1,eq4€[0,n—1],m>0
and hence .
n— ] _ a;teyg
Pai,..aq_1 = Z Z T(Z%H_n(m ZL K J)+ded (3.24)

eq=0m>0
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For each eq € [0,n — 1] and m > 0, define

Bleqm) = (3 a;) +n (m -3 VJZG"D +deg (3.25)

to be the exponents arising in (3.24). Observe that E(eq, m) uniquely determines e; and
m:

eq=d <E(ed,m) - Za]) (mod n) (3.26)

uniquely determines ey, and then

m = % (Blea.m) = (3 aj) — dea) + 3 V]Z%J

is uniquely determined by eq and E(eq, m). Therefore, no terms in (3.24) combine.
For each pair (e4,m), the function

d—1 te
|z
heym =y (z + ag)" [[(z+ay) L™
j=1
satisfies
d—1 ai+e
d
div(heym) = (nm—i—ed)Pd—i—z; <€d— L J - J) P;
j:
d—1
—[nlm- {a]+edJ +deg | 00
‘ n
7=1
and hence

d—1

div(hey,m) + 3 ai(P; — o0)
=1

d—1
a; +e
= (nm+eq) Py + (aj—l—ed— LJ dJ)Pj
1

p n
d—1
a
- Za] +n|m-— J +deg | oo
]:1
d—1 ai +e
= (nm+eq)P; + (aj—l—ed—n{]?l‘iJ)Pj — E(eq,m)oo,

=1

<.

so E(eq,m) € Z>o \ Go(D).

To finish, we must check the reverse containment Z>g \ Goo(D) C {E(eq,m) : €4 €
[0,n — 1],m > 0}. By Lemma 3.3.8 below, #{FE(eq,m) : ¢4 € [0,n — 1],m > 0} = g, so we
are done. O

Lemma 3.3.8. Suppose that ay,--- ,a4-1 € [0,n — 1]. For each eq € [0,n — 1] and m > 0,
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define E(eq,m) as in (3.25). Define
S :={E(eq,m): eq € [0,n —1],m > 0}.

Then Z>o \ S is finite and has size exactly g.

Proof. For any real number z, define {x} := z — |z]|. Let ay = 0 and a = Z;lzl a;. For

each e € [0,n — 1], (3.26) implies that the subset of S congruent to a + de (mod n) is
Se :={FE(e,m) : m > 0}
= E(e, 0) + nZZO

d—1 d—1 w e
= Zaj -n Z{] J +de | +nZ>o
j=1 j=1 n
d
= Z(aj—i—e—n{WJ) + nZ> (since ag = 0)
=1 "
d a; +e
j
= Z>o.
n;{ o } + nd>q

Therefore,

# (20 (0 de )\ 50) = |3 {254

J=1
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and hence

n—1
#(Z>0\ ) =Y #((Zz0N (a+de+nZ))\ S.)
e=0
n—1 d
o a; +e
__6:0 ;22{: n }

[
3
L
Q
.
=+
)
|
.
Q
<
=+
®
| I

o
Il
=)
i
—

I
3
|
AN
—
s}
s |+
j<8
R
—_
|
—
s
S,
S+
o
|

Y
Il
=)

<
Il
—

3
L
7N
=)
+
=¥
)

®
Il
o

Il
3
L
|
—
S|
3|t
QL
aQ
H/_/ ’_/H
+
)=
——
S
<
S|+
4}
——

o
[l
o
<.
Il
—

Ol ot ) I

Note that the numbers {a+de: e € [0,n — 1]} hit each residue class modulo n exactly once.
The same goes for {a; +e: e € [0,n — 1]}. Hence,

n—1 n—1
a+ de aj +e 0 1 n—1 n-—1
_ — . — 3.28

e=0 e=0

and substituting (3.28) into (3.27) yields

#(ZZO\S)__<TL;1>+i1<ng1)_(n—1)2(d—1)_g. .

J

The next step is to extract [Ap| from pg, . a, ,, which we will do in Corollary 3.3.10.
Definition 3.3.9. For h € Z[T] and i > 0, write [T?]h to denote the T"-coefficient of h.

Corollary 3.3.10. Keeping the notation of Proposition 3.3.7, we have

(g—1)

Aol + F= =TT+ T+ pun g}
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Proof. We have

[T*9UT* A+ T+ - )pay,..ag_s }
= [T2gil]{T(1 +T+--- )2pa1 ----- ad—l}
= [T (T +2T° +3T° + .. )pay,.. 001 }

= Z (29 —1—1) (by Proposition 3.3.7)
i€[0,29—1]\Goo (D)

=g29-1)~ Y

i€[0,29—1\G oo (D)
2g—1
=g(29—1)— (Zz)— Z i
i=0 i€G oo (D)
— Z i

1€G o0 (D)
glg—1)

= |\
|Ap| + 5

Lemma 3.3.11. We have

_gln+ 1)nd=t
Z |Ap| = DT
DeJ1-(]

Proof. Using Lemma 3.3.6 to sum both sides of Corollary 3.3.10 over all D € J[1 —(] yields

( > AD) 99T e ),
]

2
DeJ[1-¢
and since
Plximex,mr = (L + T+ T2 4 YA+ T+ -+ T 1)
—(A+T+T*+--)Y1+T -+ T H¢
we have

-1 d—1
( > )\D) +g(92)” = [T29{T?*(A+T+--- 3A+T+---+T" 14711 (3.29)
DeJ[1—(]
Define ¢; so that
(n=1)(d-1)
Y T =(1+T+---+T )" (3.30)
i=0
Since 2g = (n —1)(d — 1),

2g .
[P2T2 A+ T 4 P+ T4 T =5 <292_ Z) ¢ (331)
=0
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The 0th, 1st, and 2nd derivatives of (3.30) are

ZCiTi — (1 + T +--- +Tn—1)d—1

29
Y ieT T = (d - 1)1 +2T+3T°+ ...+ (n— DT )L+ T+ -+ T H*?
=0
2g

> i = 1)e T

1=0
=d=1)2+6T+...+(n—D)(n—2)T" A+ T+ -+ T )2
+(d—1)(d—2)A+2T+3T%+ ...+ (n— DT 21+ T+ + T 1?3

Substituting T' = 1 everywhere above gives
29
i=0
29
-1
Zici =(d—-1) (n 5 ) nd=t
i=0

— gnd1

ii(i—l)ci:(d—l) <(”_1)3(”_2)> a4 (d - 1)(d—2) (n—1)2nd1

=g <g+ng5> nd_l,

so the right hand side of (3.31) is

2 (29— i 1 2 29
3 ( ) ) - (Z@ i) ) (29— 1) (Z) o290 1) (Z)
=0 i=0 i=0
= (; (9 + ) (29 -1)g+9(29 - 1)> !
— (; g(n — 5)) nd=1L. (3.32)
Combining (3.29), (3.31), and (3.32) finishes the proof. O

Lemma 3.3.12. If D ¢ O, then |A\p| = 0.

Proof. Suppose that D ¢ ©. If k € [0,g — 1] \ Goo(D), then there would be an effective
degree k divisor E such that D = [E — koo] = [(E+ g — 1 —k)oo — (g — 1)o0] € O, which
contradicts the assumption that D ¢ ©. Therefore G (D) = [0,9 — 1], so |Ap| = 0. O

Lemma 3.3.13. We have

Z Ap| > g(n + 1)nd_1'

12
DeC'ne
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Proof. We have

Y =R N PV (since C' 2 J[1 - (])
DeC'ne DeJ[1-¢Ne
= Z IAp| (by Lemma 3.3.12)
DeJ 1]
d—1
= g(n—i—112)n (by Lemma 3.3.11). O

For the next couple lemmas, we recall some notions of singular cohomology with integral
coefficients:

HY(C,Z)=H"J,Z) ~ 7%
H*(7,2) = \ (H'(J,2)).

The wedge product provides the cup product pairing — on H*(7,Z). The automorphism
¢ of C induces the pullback automorphism ¢* of H'(C,Z).

Lemma 3.3.14. The characteristic polynomial of ¢* acting on H'(C,Z) is
2 n—1)d—1
(I+T+T°+--+T"H" .
Proof. Since H'(C,Z) is the dual of Hy(C,Z) , this follows immediately from Corollary 2.5.6.
[

Definition 3.3.15. Denote the singular cohomology classes of the cycles {0}, AJ(C), C',
© on J by [oo] € H¥(J,Z), [C],[C'] € H¥%(J,Z), [©] € H*(J,Z) respectively.
For r > 0, define W, as in Definition 3.2.21 to be the image of the composite morphism

sum

C" — J7 ™ 7 and denote its cohomology class by [W,] € H29~")(7,Z). In our notation,
[Wo] = [o0], [W1] = [C], [Wy—1] = [O] by Lemma 3.2.22.

Lemma 3.3.16. There is a C-basis {ay,...,a4,b1,...,b,} for HY(J,C) such that
(1) The basis is symplectic: for every 1 <i,j <n,

a; — bj = i
aivaj:O

b; — b; = 0.

(2) Each a; and b; is an eigenvector for (*.

(3) Let )\(clL,-), A(bj) be the eigenvalues corresponding to a;, bj, respectively. Then A(b;) =
)\(ai)’ .

Proof. From symplectic linear algebra, each diagonalizable matrix M in Sp(2g,C) has a
symplectic eigenbasis. To see this, let E be the eigenspace corresponding to the eigenvalue
A € C. Since M respects the symplectic pairing, the eigenvalues come in pairs {\, A\71}.
For A & {£1}, select any basis for E) and take the corresponding dual basis for Ey-1. For
A € {£1}, the dimension of E) must be even so one may pick any symplectic basis for E).
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The lemma now follows from the observation in the previous paragraph since the pull-
back of any automorphism of a manifold respects its cup product and Lemma 3.3.14 implies
that the action of ¢* on H'(J,C) is diagonalizable. O

Lemma 3.3.17. The following equality holds in H*(J,Z):

n nd—l
€] — o] = D" o)

Proof. The following proof was suggested by Aaron Pixton.

We may as well verify this identity after tensoring up to C. Let {a1,...,a4,b1,...,bg}
be a C-basis for H!(7, C) as in Lemma 3.3.16.

“Poincaré’s Formula 11.2.1” of [14] implies that for r € [0, g],

(W] = Z (ai, A bil) ARSRNA (aig—r A big—r)’

1<i1<ig < <ig—r<g

g
O] = [Wya] =D aiAb;
=1

g

Cl=[W] = arAbiA--Aa; Abi A+ Aag Abg
1=1

[oo] = [Wo] = a1 Abi A~ Aag Abg.

(The hat indicates that the term is not there.)
Since [C'] = (1 — ¢)*[C], a computation using Lemma 3.3.14 and Lemma 3.3.16 yields

21
=npd-L. < Jg_.n ) [oc]  (from Lemma 3.3.19)

DeC'ne

Proof. The dual of Lemma 3.3.17 implies that the total intersection of ¢’ and © in J is
g(n+ 1)nd=1/12. O
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Lemma 3.3.19. We have

n—1
n?—1

1
2 o 1

=1

Proof. The following proof was suggested by Bjorn Poonen.
The differential d(z™ —1)/(z™ — 1) has a simple pole with residue 1 at each nth root of
unity and a simple pole with residue —n at infinity. Therefore the sum equals the sum of

the residues of
Y 1 d(z"—1)
S\l -2 —-21)) -1

at nth roots of unity not 1, or equivalently — Resso(w) —Resy(w). Since 1/((1—2)(1—2z"1))
vanishes at oo, w is holomorphic at co. On the other hand, Mathematica computes that
Resp (w) = (1 —n?)/12. O

Definition 3.3.20. Let

we be the canonical bundle of C

1% be H°(C,we)

ACVY be the period lattice of C

z be a local coordinate for C at oo

A be the set {(a,b) € Z*: 1<a<d—1,1<b<n—1, na< db}.

We abuse notation and also use z to denote a local coordinate for AJ.(C) at 0.

Theorem 3.3.21. There is an isomorphism &: J — V'V /A such that for all P € C, if v is
a path on C from oo to P, then

E(AJx(P)) = (n eV '—>//€ € C) (mod A) € VV/A.
g

Proof. See Section A.6.3 of [3]. O

-1
Definition 3.3.22. Let 7 be the composite V¥ — VV /A £, J. The kernel of 7 is A and
7 expresses V'V as the universal cover of J.

Definition 3.3.23. Define ¢: A — Z by v(a,b) = db — na. For all (a,b) € A, note that
¥(a,b) > 1 and ¥(a,b) = db—na < d(n — 1) —n = 2g — 1, so the image of 1 is contained
in 1,29 — 1].

Lemma 3.3.24.
(1) ¢ is an injection.
(2) The set {z* 1y=bdx: (a,b) € A} is a basis of V.

(3) There exist nonzero constants Cqp such that

2yl de = Cop2 7 (14 0(2)) dz.
Proof.
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(1) If(a,b) = (a’, V'), then d(b—b") = n(a—a’), and since d is coprime to n, this would
imply d|a — @/, and since a,a’ € [1,d — 1], this means a = o’. Similarly, b =b'.

(2) Applying Theorem 2.2 of [18] to C gives a basis of V', which we reindex and rescale to
produce the basis in the statement of Lemma 3.3.24(2).

(3) Since —vso(x) = n and —vo(y) = d by Lemma 3.2.12(1) and Lemma 3.2.12(2), there
exist constants C; and Cy, such that 271 = C,2"+0 (") and y~! = Cy2¢+0(2411),
so we are done by substituting these into % 1yt dz. O

In light of Lemma 3.3.24, we make the following definition.

Definition 3.3.25. Let the image of ¢ be {wi, -+ ,wy} for wy < wp < -+ < wy. Let
(a;, b;) be the unique element of A such that ¥ (a;,b;) = w;. Define
Ki = a_ilbixai_ly_bi dx.

Corollary 3.3.26. The set {k1,--- ,Kkq} is a basis for V such that
ki = 21+ 0(2)) dz. (3.33)
Proof. This is a restatement of Lemma 3.3.24(3). O

Definition 3.3.27. Let u,, be the coordinate function on V" associated to k;, i.e., if
(-,-) : V¥ x V — C is the natural bilinear pairing, then for all v € V'V, u,, (v) = (v, k;).

Definition 3.3.28. Let (* be the automorphism of V induced by ¢ and let (. be corre-
sponding dual automorphism of V.

Lemma 3.3.29. For allv e V"V,
U, (G0) = ¢y, (v).

Proof. Since ( acts on the function field of C by (*z = = and (*y = (y, it follows that
C*k; = (Y k;, and the lemma follows by taking the dual of this relationship. O

Definition 3.3.30. Let U be a small simply-connected neighborhood of 0 in AJ(C). Note
that zo0 AJ gol is a local coordinate on U; we will abuse notation and denote it by z.

Since 1—( is a covering map, let U’ be the neighborhood of 0 in C’" such that (1-¢)(U’) =
U and (1—¢)|y: U' — U is an isomorphism. Let t = (1 —¢)*z be a local coordinate on U".

We have the following commutative diagram.

{0} « - Y -7
1-¢ 1-¢ 1-¢ 1-¢
{0} U« Alo(C) ——— T

Definition 3.3.31. Since 7 is also a covering map, letNﬁ C 771(AJ(C)) be a neighborhood

of 0 in 71 (AJs(C)) such that 7(U) = U and 7|5: U — U is an isomorphism. Similarly,
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let U" C 7=1(C’") be a neighborhood of 0 in 7~ 1(C’) such that 7(U’) = U’ and |5 U —u
is an isomorphism. B

Note that z o 7 is a local coordinate on U; we will abuse notation and denote it by z.
Similarly, we will abuse notation and write ¢ to be the analogous local coordinate on U’.

Going to the universal cover yields the following commutative diagram.

{0} - A
\(1 -0, (1= h(l -¢). (1=,

{0} « ~U > 1 (A (C)) —— VY

Lemma 3.3.32.
(1) The following equality holds in U:
=w; 2" (1 + O(2)).

Uny,

k3

(2) The following equality holds in U

U, = w; (1= ¢ TR+ O(1)

K3 1

Proof.

(1) Let k € V. Suppose that P € C is such that AJ(P) € U and ~ is a path from
oo to P that lies in U. Since U is simply-connected, the value of the integral f7 K is
independent of the choice of v (as long as v is contained in U), so we will denote this
integral by fcf, k. By Theorem 3.3.21,

€ (AJoo(P)) = </<c eV /Pm € c) (mod A) € VY/A.

o

Since U is simply-connected, we may lift this equality to ﬁ; that is, there exists some
A € A such that for all v € U,

AT (7w (v))
v= A+ /<c»—>/ K.

Taking v = 0 shows that A = 0. Hence, by definition of u,,,,

AT (m(v)) -
Uy, (V) = / ki for allv € U. (3.34)

[e.e]

Let P = AJ! (n(v)), so that Corollary 3.3.26 implies
P z(P)
/ Ki = / 2 N1+ O0(2)) dz = w; H(2(P))™ (1 + O(2(P))) . (3.35)
) 0
Since z(v) was defined to be z(P), we are done by (3.34) and (3.35).
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(2) Lemma 3.3.29 implies that for all v € V'V,

s, (V) = (1= ¢7%) g, (1 = ¢)ww), (3.36)
so since U = (1 — ()*ﬁ, Lemma 3.3.32(2) is a consequence of (3.36), the definition of
t, and Lemma 3.3.32(1). O

Suppose that D € ' N O. Let ep € 7~ 4(D).

Definition 3.3.33. Define 6, A, ¢ as on page 5208 of [53] to be the theta function, the
Riemann divisor, and Riemann’s constant, respectively. (Nakayashiki mentions on the same
page that 6 = A — (g — 1)oo.) Then 6 € J, so let e5 € 71(4).

Definition 3.3.34. For F € J, let Tr : J — J be the “translation by F” map. For
ecVV let T, : VV — VV be the “translation by e” map.

Theorem 3.3.35. The vanishing locus of 0 is (m o T;)~'O.

Proof. Riemann’s vanishing theorem (see pages 6-7 of [24]) states that the vanishing locus
of 0 is 7717510 = (Ty o m)~1@. Since Ty o = 7 o T, we are done. O

Corollary 3.3.36. i(D) is the order of vanishing of (0 0 Te,—e; )| at 0.

Proof. By definition, i(D) is the intersection multiplicity of © and C’ at D. Since 7 o T
is a local diffeomorphism at ep — e5, we know that (D) is the intersection multiplicity of
(roT.;) 'O and (7o T.,;)"1C" at ep — es, so by Theorem 3.3.35,

i(D) is the order of vanishing of 0|(or,,)-1¢' at ep — €. (3.37)

Since D € J[1 — (], Tp(U’) is a neighborhood of D in C’, so T¢,,—, (/(7’) is a neighborhood
of ep —es in (w0 T,,)~1C’, so (3.37) yields

i(D) is the order of vanishing of 6|, (@) & ep —es,
€D—¢s
which is equivalent to
i(D) is the order of vanishing of (0 o T¢,, ;)| at 0

since translation by ep — e; is an isomorphism on V. 0

Definition 3.3.37. Ason page 5211 of [53], let s, € Q[t1, 12, -] be the Schur function as-
sociated to the partition Ap. Nakayashiki proves that sy, lies in the subring Q[ty,, - - - ,tw,]
(Proposition 1 on page 5211 of [53]). Assign weight w; to the variable ¢,,. Then s, is
weight-homogeneous and it has weight |Ap|.

Proposition 3.3.38. For all D € C'N O,
i(D) > |Ap].

Proof. Applying Theorem 10 on page 5232 of [53] to e = ep — es5 (the period matrix 2w;
defined on page 5231 is the identity matrix in our application) shows that there is a nonzero
constant C such that for all u € V'V,

CO(u+ep — e5) = $xp (t)|t, =u,, + higher weight terms,
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which we rewrite as
(00 T.p—e5)(u) =C sy, (t)[t., =u.,, + higher weight terms.
Restricting to u € U’ and applying Lemma 3.3.32(2) yields
0oT., o = O on U7,
so we are done by Corollary 3.3.36.

Proof of Theorem 3.3.3. Combining Lemma 3.3.13 and Corollary 3.3.18 yields

Y. D)= <o,

DeC'ne

so we are done by Proposition 3.3.38.
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Chapter 4

Congruences for Jacobi Sums

In this chapter, we take a brief break from superelliptic curves to study Jacobi sums. The
main result is a new congruence for Jacobi sums (Theorem 4.2.25) which we will re-interpret
in Subsection 5.2.4 as a statement about the field of definition of the p-torsion of the jacobian
of the superelliptic Catalan curve y? = z9 4+ 1 (Theorem 5.2.28). In Chapter 5, we will use
Theorem 5.2.28 as a key technical ingredient to classify torsion points on the superelliptic
Catalan curve (Theorem 5.2.73) and also on a generic superelliptic curve (Theorem 5.3.1).
First, we will review the definition of Jacobi sums and explain their connection to the zeta
function of the Catalan curve in Section 4.1.
The contents of Section 4.2 are the same as that of my paper [5] on Jacobi sums.

4.1 Jacobi sums and the Catalan curve

Definition 4.1.1. Fix a finite field F, a field L, and two nontrivial multiplicative characters
X, : Fof — L*. Then the Jacobi sum J(x,v) is

J(x, ) = Z x(x)y(1 —=x) € L.

z€F,\{0,1}

Jacobi sums (and the closely related Gauss sums) have many applications in number
theory [11]. As the introduction of [11] mentions, they also have applications in physics [12,
33, 46, 70], quantum algebra [61], graph theory and combinatorics [67, 66], operator theory
[23, 22], coding theory [45, 47], cryptography [43], combinatorial designs [10, 39, 40], and
algebraic combinatorics [35].

Definition 4.1.2. For n,d > 2 coprime, define C, 4 to be the smooth projective model of
the curve y" = 2%+ 1. Let Jn.,a be its jacobian. For every prime /¢, define the Tate module

TZJn,d = 1£1 jn,d[‘gz]

with the “multiplication by ¢” transition maps Jy, a[0'™!] = Jn.all']-

Definition 4.1.3. Suppose C is a projective curve defined over a finite field F,.. Then the

zeta function of C is
~ #C(Fs)
Z(C/F,.,T) = — 2T
(C/F,,T) :=exp (; -
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Theorem 4.1.4. Suppose n,d > 2 are coprime and v = 1 (mod nd) is a prime power.
Then

(1) We have

I1 I[I a+x=nJ0e)1)

X FR(Ca) ¥ FE—(G)
Z(Cn,d/FTa T) - (1 — T)(l — TT) ) (41)

where the double product is over all multiplicative characters x, ¥ of order exactly
d,n, respectively.

(2) For any prime £ { ndr, the numerator of Z(Cp q/F;,T) equals

det (I - TFI“ObT |T€u7n,d) .

Proof. (4.1) is a special case of Weil’s computation of the zeta function of a diagonal hy-
persurface [65]. Theorem 4.1.4(2) holds for any smooth projective curve, and it is a special
case of the Weil conjectures [19, 31]. O

By applying Lemma 1.1 of Katz [41], we will deduce a refined version of Theorem 4.1.4 in
Proposition 5.2.16(2). Computations with (4.1) are used in [37, 38]. A similar computation
is done for Fermat curves in [41].

Example: Determination of Q(¢15, J3,5(2])

In this section, we will use (4.1) with (¢,n,d) = (2,3,5) to compute the torsion field

L :=Q(C15, J3,5[2])-

Let

E  be Q(C5),

t be a prime of F,

B be a prime of L above t,

F, be the residue field of F at t,
Fo be the residue field of L at 8.

For any finite set S of primes of F, let

Og:={a € E: ordy(a) >0 for all v & S},
Clg(FE) := the S-ideal class group of F,

and for any integer m, define
E(S,m):={a€ EX/E*™: ordy(a) =0 (mod m) for all v & S}.

From algebraic number theory, the natural map OF /O™ < E(S,m) is an injection and
it is a surjection if and only if Clg(E)[m] = 0.
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(4.1) implies the eigenvalues of Frob, € Gal(L/FE) acting on 1573 5 are

—x(=1)J(x, V) € Z2[C15]

for multiplicative characters x,v : FY — O] of orders 5 and 3, respectively. Since
(Z2[C15])"® C 14 2Z5[C15], Froby® operates as the identity on J35[2]. By the Chebotarev
density theorem, every element of Gal(L/E) must have order dividing 15. We will see in
Lemma 5.2.11 that L is an abelian extension of F, so L is an abelian extension of E of
exponent dividing 15.

By Kummer theory, L/E must be generated by 15th roots of elements of E*/E*'5. Let
S be the primes of E that lie above either 2, 3, or 5. Since C35 has good reduction away
from 3 and 5, the extension L/FE is unramified outside S, so L/FE is generated by 15th roots
of elements of elements of E(S,15). The S_class_group functionality of Sage shows that
Clg(E) =0, so E(S,15) ~ 05 /O, Hence, there is some subgroup

A<0O5/05"

such that
L=FE(Ya:a€cA).

For each prime r of Q, define
Cy(T) :=det (I — T Frob, [12J35) .
For any number field K, define
Spl(K) := {prime r of Q : r splits completely in K}.

Note that
Spl(E) = {prime r of Q : =1 (mod 15)}.

Also, r € Spl(L) if and only if r € Spl(£) and Frob, acts as the identity on 73 5[2], which is
equivalent to C,.(T) = (1—T)8 (mod 2). Since C,(T) is the numerator of the zeta function
by Theorem 4.1.4(2), we may apply efficient computer algorithms which calculate the zeta
function for superelliptic curves over finite fields [7, 28, 49] to test whether a prime r lies in

Spl(L).
For each prime t of E not in 5, define the reduction map
pe: O3 /055 5 By /1105

If r € Spl(L) \ {2, 3,5} and ¢ lies above r, then ker ¢, contains A. So

AC m ﬂ ker . (4.2)

reSpl(L)\{2,3,5} tabover

Though we will not need this, the Chebotarev density theorem implies that (4.2) is an
equality.
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Step 1: We prove that A # {1} by using a computer to show that 31 ¢ Spl(E) \ Spl(L):

C31(T) = 923521T° + 20853777 — 30752T° — 5921T° 4 355T% — 19173 — 3272 + 7T + 1
ZT%+1 (mod 2)
=(1-T7)% (mod 2).

Step 2: Sage gives a set of generators for OJ:
OF =(—Ci5, Gs— 1, (§5— 1, G5+ 1, (s +Gs+ 1, 2, 1= (5, 1—(F5). (4.3)

Step 3: A computer shows that 1321, 1831 € Spl(L), so (4.2) implies

AC m ﬂ ker ¢

re{1321,1831} v above r
= ((1+ )22 (1 (5 - (1 —¢5)°)  (by computer calculation using (4.3)),

which must be an equality since A # {1} (by Step 1), so

Q(Ci5, J35[2]) = Q <C15, 1{/(1 + )10 22 (1= ¢)2 - (1 - Ci)’5)5> .

4.2 A new congruence for Jacobi sums

Congruences for Jacobi sums have many applications in number theory [17, 20, 34, 36, 48,
63]. In this section, we prove a new congruence for Jacobi sums of the type considered by
Uehara [63].

Fix two distinct primes ¢ and f, a finite field F, satisfying ¢ = 1 (mod ¢f), and a
primitive £fth root of unity ¢,y € Q. Let

L :=Q(ey)
Or, = Z[y]

Cr = iy
M = Q((y)
Oum = Z[(y]

G = C{f

e = (p — 1.

Let &.,&; € Q be /th and fth roots of unity such that
& =
4
§ = G-

Let x : FJ — L™ be a character of order £f.
Let g be a generator of the multiplicative group F; and abuse notation to define (s :=

gla=D/(F) and CfsCe, Ef, & analogously to be elements of F .
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Lemma 4.2.1. We have Qf = &gff.

Proof. Since ¢ and f are coprime, &, is the unique £th root of unity such that f{ =(

l

Cey f_Cz_
<§f> —T—Cﬂa

Definition 4.2.2. For integers a, b, define

we are done.

J(a,b):=J(x"X") = Y x"@x'1-z) €0y
z€F,\{0,1}

Definition 4.2.3. For i € [0,/ — 1] and j € [1, f — 1], define
= NG
ng =] <1 —Qfﬁc) " €eF,.
r=0
Our main result is the following.
Theorem 4.2.25. For k € [1,{ — 1], the following are equivalent:
(1) Jie, f)+1e ﬂéf(’)L;
(2) nij € FqXE foralli€ [0,k —2] and j € [1, f —1];
(3) mij € F;Z foralli e [0,k —2] and j € [1, f/2].
In particular, J(¢, f) + 1 € mOr always holds.

. Since

Our methods allow us to even reach the case k = ¢, which we analyze in Subsection 4.2.8.

Theorem 4.2.29. The following are equivalent:

(1) J(E, f) +1€ ﬂ'fOL

(2) ¢ =1 (mod £2f) and 1 —5%} € F;e forallie€ [0, —1] and j € [1, f —1];

(3) ¢ =1 (mod £*f) and 1 — &&} € Bt for alli € (0,0 —1] and j € [1, f/2].

4.2.1 A few properties of binomial coefficients

<Z> - <aib)'
<bil>:bil<a;1>'
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Lemma 4.2.4.
(1) Fora€Z and b € [0,al,

(2) Fora€eZ andb € Z>o,




(3) ForaeZ and b € Z>y,

()= (37650
(3) =020+ G)
)

(4) Fora€Z and b € Z>,

(5) Fora€Z and b € Z>,

Q

Il |

o =
7N\
[ e
N

Il

N\
IS

(6) Fora,beZ and c € Z>,
(7) Fora€Z and b € Z>,

(8) Fora€Z and b € Z>o,

azé‘:@) _<a_1)<bil) B (bi2>'

(9) Forai,az € Z and b € [0, — 1] such that a; = az (mod {),

ORGRSE

(10) Fora € Z and b € Z>o such that a =0 (mod £), b # 0 (mod /),

<Z) =0 (mod 0).
(Zﬁ) (‘Z) (mod ¢).

(11) Fora € Z and b € Z>,

Proof. For Lemma 4.2.4(1), use



For Lemma 4.2.4(2) — Lemma 4.2.4(4), use

@) :x(:x—l)~--k(;!r—(l<:—1))‘

(5) Induct on a and use Lemma 4.2.4(3).

(6) This is Vandermonde’s identity for binomial coefficients, and it follows by comparing
the x¢-coefficient of both sides of (1 + z)%? = (1 + 2)*(1 + z)°.

(ba> _(~a)(-a-— 1).-b!-(a (b-1)) _ (_1)b<a+z; 1)7

so we are done by applying Lemma 4.2.4(6).

(7) Note that

(8) We have

SCG) = g <(b +1) (bi 1) + b(g)) (by Lemma 4.2.4(4))

c=0
:(b+1)<b 2) <b+1)
<bil> <b+2> <b+1>> (by Lemma 4.2.4(4))
~o=0(,5)=(5s)

(9) Consider the polynomial ¢(z) := (j) € Fy[z]. It follows from blp(z) = z(z—1) - (z —
(b —1)) that blp(a1) = blp(az) (mod ¢). Since b € [0,¢ — 1], b! is invertible modulo ¢,
so we may divide both sides by b! to get p(a1) = p(az2) (mod ¢).

(by Lemma 4.2.4(5))

(10) For any i, note that (§) (mod /) is the z'-coefficient of the polynomial p(z) := (1 +
z)® € Fy[z]. We have p(z) = ((1+2)")%/* = (14292, sosince b1 ¢, (}) = [2°]p(z) =0
(mod /).

(11) As in the previous part, define p(z) := (1 + x)* € Fy[z]. Then

(Z) = [«"]p(«)  (mod ¢), (4.4)
and since p(z’) = (1 + 29 = (1 4+ )%

[2Yp(af) = <Z§> (mod ?), (4.5)
so we finish by combining (4.4) and (4.5). O

4.2.2 The index

Recall that g is a generator of the multiplicative group F.
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Definition 4.2.5. For x € F, define ind(x) € {0,1,---,¢ — 2} such that

indz

rT=g
Then by definition of (s,
qg—1

ind Gy = = (4.6)

Lemma 4.2.6. {indz:2z € F,\ {0,1}} ={1,2,...,q —2}.
Proof. This is immediate by the definition of ind since ind(1) = 0. O

Lemma 4.2.7. Fory,z € F*

o> ind(yz) =indy +ind 2z (mod g —1).

Proof. This follows immediately from the definition of ind. O

Lemma 4.2.8. Forr € [0,{—1] and j € [1, f —1],

3 ind(1-g%) =ind (1 - ggg}) (mod ¢ — 1).
a€ll,q—2]

a=j (mod f)
a=r (mod ¢)

Proof. Take the equality

g=1_
3]
-1
[T a-dx)=1-X"7  inFyx]
k=0
and substitute X = g to obtain
ol _q
of B
H (1 o gaJrk’Zf) =1 gUL(%)
k=0
=1-(jf
=1- /¢t (by Lemma 4.2.1)
=1-¢¢,
so we are done by taking ind of both sides and using Lemma 4.2.7. O

Definition 4.2.9. For integers a and b, define

5”_{1 ifa=0

0 otherwise.
Lemma 4.2.10.
(1) Forme|[l,f—1],

To,m = 1- 5?16
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(2) We have

ind§y =0 (mod /) (4.7)
1
ind¢ = QW (mod ?). (4.8)
(3) Forie [0, —1] and j€[1,f—1],
-1 r ‘
indn; ; = Z <Z) ind (1 — §}f§§c> (mod ¢ — 1).
r=0

(4) Forie€ [0, —1] and j € [1, f —1],

(- (55) s (57 (i
k=0

(mod /). i

(5) Suppose that i € [1,£ —1], j € [1,f — 1], and m € [1, f — 1] are such that m{ = j
(mod f). Then

-2

. icd\ - o S\ .
ind (1 - Qf}) = ind ng,m — Z <a> indn_2_4; (mod¢).
=0

s=l—1—i a
(6) Forie 1,4 —1] and je[1,f—1],

ind (1 - g;;g}) = ind(—1) + i <q£_f1> +ind (1 - gf—ig}”‘j) (mod £).

Proof.

(1) Take the equality

-1
[[a-gx)=1-X" inFyX]

r=0
and substitute X = 5}” to obtain

-1

mom = | [(1 = &&F)

r=0
=1-(&)"
(2) Since & is an fth root of unity and F, contains a primitive £fth root of unity, £ €
qug; (4.7) follows. Taking ind of both sides of Lemma 4.2.1 and using Lemma 4.2.7
yields ind (oy = ind & +ind §; (mod g — 1), so (4.8) follows from (4.6) and (4.7).
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(3) Take ind of both sides of Definition 4.2.3.

(4) Modulo ¢, we have
ind nif —j

_Z< )md(lfeff )

(by Lemma 4.2.10(3))

= Z( > <md )+ rindg& — jind€; + ind (1-5;%3;))

(by Lemma 4.2.7)

= ind(~ ( <>> <q—1><§r<:>>+::ind(1_§€r£;>

(by Lemma 4.2.10(2

=indn), | )(q_1)<(€_1)(if1>_<z‘f2>>
()m( — 7€)

(by Lemma 4.2.4(5) and Lemma 4.2.4(8))

= 6101 <ind(—1) - <q£—f1>> - <q£—f1) + ei (:) ind (1 ~67), (49)

r=0

since (f;) is divisible by ¢ except when k € {0, ¢}, in which case it equals 1 (and we
assume that ¢ € [0,¢— 1]). Change variables in the last sum to s € [0, — 1] such that
s = —r (mod /) (the values (}) and & only depend on r (mod ¢) by Lemma 4.2.4(9)
and by definition of &). This yields

H?“-d PR~ =5\ g s
;(i)m (1-¢ sf)—s_o(i)m (1-g¢)

1) 2};0 (z B ;) <Z> ind (1 - ¢}

(by Lemma 4.2.4(7))

SENY <z B ;) ind e ; (4.10)

k=0

by Lemma 4.2.10(3). We finish by combining (4.9) and (4.10).
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(5) Modulo ¢, we have

-2 s s
Z < ) indng_2-q,;
a
—1-
0—

5= i a=0
2 -1 s
Z Z <Z> < o ) ind (1 - 655}) (by Lemma 4.2.10(3))
s=f—1—1 r=0 a=0
1 + ~N '
Z ) ind (1 - g,ﬁ;g;) (by Lemma 4.2.4(6))
s={—1—i r=0
-2
= (ind (1 - 5,{,5—2—5{;;) —ind (1 - gf—l—sgg)) (by Lemma 4.2.4(9))
s=0—1—1
= ind (1 — f}) —ind (1 — féf;) (telescoping sum)
= ind g, — ind (1 - féﬁ}) (by Lemma 4.2.10(1)).

(6) Taking ind of both sides of 1 — Qf? = —§é§§; (1 — {f_if}c_j> and using Lemma 4.2.7
gives

ind (1 — g;;g?) = ind(—1) +iind & + jind & + ind (1 - gﬁ*igjf*j) (mod )

=ind(-1) + z(qu>+1nd(1—f §fﬁj> (mod ¢)

by (4.8) and (4.7). O

4.2.3 Some rings

Definition 4.2.11. Define Q := Z[t]/(t/ — 1). Define ring homomorphisms a: Q — Oy,
and #: Q — Z by «a(t) = ¢ and 3(t) = 1. Define

R = QQ = Z[H) /(6,1 — 1)
R := the subring Z/¢Z of R
w: R— On/tOym := the ring homomorphism induced by «; i.e., w(t) = [(f]
T: R— Z/lZ := the ring homomorphism induced by 3; i.e., 7(t) = 1.
Each r € R has a unique representation r = ag + a1t +--- + af_ltf_l for ap,a1,...,ar_1 €

Z/lZ, so for j € [0, f — 1], define '
1) = a

to be the jth coefficient of r.

Lemma 4.2.12. The product homomorphism
(w,7): R— (Op /O ) x (Z/VZ)

s an isomorphism.
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Proof. The ideals I, I of R defined by

Il = (tf—1_|_tf—2+...+1)
IQ = (t—l)

are pairwise coprime because for

=t 2 el
=t =)+ W=D+ (t-1) €I,
the difference i; — io = f is a unit of R, so by the Chinese remainder theorem, the natural

map

R — (R/I1) x (R/I5)

is an isomorphism. Since w is the composite map w: R — R/I; ~ Op;/lOp; and 7 is the
composite map 7: R — R/Iy ~ Z /{Z, we are done. ]

Lemma 4.2.13. Forr € ker 7, the following are equivalent.

(2) r=0;
(3) reR.

Proof. The restriction 7|g : R’ — Z/{Z is an isomorphism, so r € R’ Nker 7 if and only if
r =0, giving Lemma 4.2.13(3) <= Lemma 4.2.13(2). By Lemma 4.2.12, r = 0 if and only
if 7(r) =0 and w(r) = 0, giving Lemma 4.2.13(1) <= Lemma 4.2.13(2). O

Definition 4.2.14. For nonnegative integers u and v, define

S(u, v) = 3 anx><huﬂi—*W)tmdx .

z€F,\{0,1}
T (u,v) =7(S(u,v)) €Z/lZL
W(u,v) = w(S(u,v)) € On /Oy

Lemma 4.2.15. Fori€ [0, — 1],

~1 ifi=0
T(0,i)=490  ifie(l,0—2]
r fi=t— 1.



Proof. We have

T(0,3) = 7(5(0,7))

_ . ( 3 <ind(1ix)>tindx>

z€F4\{0,1}
2€F,\{0,1} !
q—2 k
- Z <) (by Lemma 4.2.6)
k=1 !
= <(Z]; i) — (?) (by Lemma 4.2.4(5)),
and the rest follows from Lemma 4.2.4(10) and Lemma 4.2.4(11). O

Lemma 4.2.16.
(A) Fori e [1,£—2], the following are equivalent:

(1) S(0,4) € R';
(2) W(0,i) = 0.

(B) The following are equivalent:

(1) S0,6-1) = A+t +2+---+t/ ) e R;

(2) W(0,¢—1)=0.
Proof. Lemma 4.2.15 implies that

S(0,i) € ker T
qg—1

5(0,6—1) — W(1+t+t2+"'+tf_l) € ker,
so we are done by applying Lemma 4.2.13(1) <= Lemma 4.2.13(3) to » = S(0,4) and to
r:S(O,B—1)—%(1+t+t2+...+tf—1)' 0

4.2.4 f-adic valuation of Jacobi sums

Definition 4.2.17. For integers a,b Z 0 (mod £f), define

J(a, b) — Z <'.}Leind(:ﬂ)—i—bind(l—z)‘
z€F,\{0,1}

Lemma 4.2.18.
(A) For k € [1,¢ — 1], the following are equivalent:

(1) J(&, f)+1em;Or;
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(2) S(0,1), S(0,2), ..., S(0,k—1) € R.
(B) The following are equivalent:

(1) J, f)+ 1€,
(2) S(0,1), 5(0,2), ..., 8(0,=2), S(0,£—1) =47 (1+t+---+t/"!) e R

Proof. By definition,

J(¢, f)

_ ¢ind(z)+f ind(1—z)
= 2
z€F\{0,1}

_ Z C]ivnd(a:)génd(lfx)

z€F,\{0,1}

_ Z Cmd(z ( + ﬂ_ﬁ)ind(l—:p)
z€F\{0,1}
ind(1—z)

_ Z Clnd(x) Z (ind(li_x))ﬂé

zeF \{0,1} i=0

nd(z) <= (ind(1— )\ o
= Z 5 Z ( . )778 (since ind(1 —xz) <q—1)

2€F \{0,1} =0

(o))

=0 2€F,\{0,1}
-1 .
i ind(1 ind(z
€ (ZTQ( Z < (Z ))Cf ))-l-ﬂ'fOL
=0 2€F,\{0,1}

By Lemma 4.2.6, the i = 0 term contributes C}c +- 4 {?72 = (C;?il ()¢ —1)=-1
since ¢ =1 (mod ¢f), so

-1 .
J(L, f) € (1 +3 7 ( 3 (md(li )> ¢ ) ) vrto,  (411)
1=1 z€F,\{0,1}

Since vy(me) = ﬁa the term <Za;qu\{o,1} (md (1= x))C}nd ) lies in Oy, and M is unramified

at ¢, the ith term in the sum on the right hand side of (4.11) has f¢-adic valuation é_%
(mod 1). In particular, all the valuations are distinct, so

J, f)+1enfor

if and only if

3 <md(1,_m>)<}“d €(Oy forie |1k 1],
(3

z€F4\{0,1}
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which is the same as
W(O> 1)1 W(072)7 R W(ka - 1) = 07

so we are done by Lemma 4.2.16. O
4.2.5 The connection between S(%,1) and cyclotomic units

—1
Recall that g is a generator for F*. We abuse notation and define (s := quf € F. Using
Cef, define Cr, (g, &r, & as before.

Lemma 4.2.19. Foriec [0,{—1] and j € [1, f — 1],
[t7]S(i,1) = indn; ; (mod £).
Proof. By definition of S(i,1),

s,y = > (?)ind(l—g“)

a€ll,q—2]
=i (mod /)
1

S~ 9

= Z <a> ind(1 — ¢g%)
r=0 a€[l,q—2] !

a=j (mod f)
a=r (mod ¢)

~
—_

Il
(]

<:> Z ind(1 —g¢%) (mod /) (by Lemma 4.2.4(9))

r=0 a€ll,q—2]
a=j (mod f)
a=r (rnod ()
/-1
= <Z> ind (1 — §g§f) (mod /) (by Lemma 4.2.8)
r=0
=ind7n;; (mod ¢) (by Lemma 4.2.10(3)). O

Lemma 4.2.20.

(A) Forie [0, — 3], the following are equivalent:

(1) S(i,1) e R;
(2) indn;; =0 (mod ¢) forj e [1, f—1].

(B) The following are equivalent:

(1) St—2,1)+ %L (1 +t+ -+t e R;
+ 0 (mod ¢) for je[l, f—1].

Proof. For any r € R, the condition r € R’ is equivalent to [t/]r = 0 (mod 0) for] €1, f-1].
Apply this observation to r € {S(0,1),---,S(¢( —3),5(¢ —2,1) + (1 +t+-+ )
and use Lemma 4.2.19 to finish. O
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4.2.6 A recursion for S(u,v)
In this section, we will investigate the product of expressions of the form S(u,v).

Lemma 4.2.21. Fori e [1,{ —2] and s € [1,1],

(i—s+1)S(i—s+1,8)—(s+1)S(i —s,s+1)

= (Z i = s —r8)5(r, 1>> - (ZT<17s—k>S(i—s,k>> — (i —25)S(i — 5,5)
r=0 k=1
(mod R).
Proof. By definition of S(u,v),

1—S

ZS(Z' —s—r,5)5(r1)

r=0

— Z Z < lnd(y) ) <1nd(z>> <1nd(1 - y)) 1nd(1 _ Z)tindytindz
1—8—7T r S
y,2€F4\{0,1} r=0
_ Z (Hld(y) + lnd(2)> <1nd(1 - y)) 1nd(1 - Z)tinderindz
71— S S
y,2€F4\{0,1}
(by Lemma 4.2.4(6))

_ Z (Hl.d(yz)) <1nd(1 - y)) 1nd(1 - Z)tind(yz)
i—s s
y,2€F4\{0,1}
(by Lemma 4.2.7, Lemma 4.2.4(9), and t97! = 1)

_ Z (ind(l - y)) nd (1 B :L‘) (indx)tindx
s Y 1— S
z€F\{0}

yeF,\{0,1,z}
(by setting = := yz)

- ¥ (ind(ls— y)) (ind(y — ) — ind(y)) (i.nd x) inda

2€F,\{0} t—Ss
yeF,\{0,1,z}

(by Lemma 4.2.7)
3 (ind(ls_ y)) (ind(y — x) — ind(y)) (i.“d x) £ (mod R'),

72— S
z€F4\{0,1}
yEF\{0,1,z}

so if we define

A= ¥ <ind(1s— y)> nd(y — ) (i}nd x) indz

17— S
2€F,\{0,1}
yeFq\{0, 1}

B= Y <ind(1s y)> ind(y) (llnil :;) indz

z€F,\{0,1}
yeF,\{0,1,z}
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then

ZS(i—S—’F,S)S(T, 1)=A-B (mod R'). (4.12)
r=0
We have
B Z <1nd(1 - y)) ind(y) (1.nd x> jinda
s i—s
z€F4\{0,1}
yeF\{0,1}

_ (ind(ls—y)> ind(y)cniii)tindm

z€F,\{0,1}
y==

( Z imd(y)<ind(18Z/)))( Z <iind§'>tindz)

y€F\{0,1} z€F \{0,1}
- Z (md(l — IZ‘)> lnd(gj) <1'nd l’) tindx
S 11— S
2E€F,\{0,1}

=T(1,5)S(i — s,0)
B Z (md(l—x)) ((i—s—i—l)(‘ ind z )—i—(i—s)(l,ndx))tindx
S t—s+1 i—s
z€F4\{0,1}
(by definition of T'(1,s), S(i — s,0), and Lemma 4.2.4(4))
=T(1,8)S(i—s,0)—(i—s+1)SGE—s+1,s)—(i—5)S(i —s,s)
(by definition of S(i — s+ 1,s) and S(i — s, )).
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Since s > 1, the summand in A vanishes when y = 0, so we can put it back in to get

A= % (ind(ls_ y>) ind(y — z) (iinf 935) sinde

z€F\{0,1}
yeF\{1,z}
_ Z (md((l —z)(1 - w))> ind((1 — 2)uw) (1‘nd x) inda
s i—s
z€F4\{0,1}
weF\{0,1}

(by setting w = (z —y)/(z — 1))

_ Z 3 <ind(1k— x)) (inds(l_—kw)> ind (1 2) (iinii ;;:) Jindz

k=0 z€F,\{0,1}
wEFq\{O 1}

Yy (ind(lk - x)) (inds(l_ - w)> ind (1) (iinil i) Jind

k=0 z€F,\{0,1}
wWEF\ {01}

(by Lemma 4.2.7, Lemma 4.2.4(9), and Lemma 4.2.4(6))

3 > <(k i <m0}€(+ 1@) N k(ind(lk_ x))) (inds(l_—kw)> <1Znii:;:> inda

k=0 z€F4\{0,1}
weF4\{0,1}

B (e ()

k=0 z€F,\{0,1}
weF \{0,1}

(by Lemma 4.2.4(4))

£[(n )

weF,\{0,1}

(5, E () ) )
ﬁ( > (M) (£ () (e

k=0 \weF,\{0,1} 2€F,\{0,1}
<ZT (0,5 — k) ((k+1)S(i — s, k+ 1)+ kS(i — s,k:))) +) T(1,5—k)S(i — s5,k)
k=0
(by definition of S(u,v) and T'(u,v))

—(s+1)S(i —s,s+1) = sS(i —s,5) + > _T(1,5—k)S(i — 5, k)
k=0
(by Lemma 4.2.15)

—(s+1)S(i—s,s+1)—sS(i—s,8)+T(1,5)S(i — s,0) + iT(l,s —k)S(i — s, k),
k=1
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and we finish by substituting these expressions for A and B into (4.12). O

Corollary 4.2.22. Suppose that i € [1,0 — 2]. Assume that S(u,v) € R’ holds whenever
u+v<iandv>1. Then for all s € [1,1],

(i—s+1)S(i—s+1,s)=(s+1)S(i—s,s+1) (mod R').

Proof. The assumptions imply that all the terms on the right hand side of Lemma 4.2.21
lie in R’, so Lemma 4.2.21 implies the corollary. O

Corollary 4.2.23. Suppose that i € [1,£ — 2]. Assume that S(u,v) € R’ holds whenever
u+v <iandv>1. Then if one of

S(i,1), S(i—1,2), ..., S(0,i+1)
is in R, then they must all be in R’.
Proof. For s € [1,1], Corollary 4.2.23 implies
(i—s5+1)S(i—s+1,8)=(s+1)S(i—s,s+1) (mod R),
so since ¢ — s + 1 and s + 1 are invertible modulo ¢ (they lie in 1,4 — 1]),
S(i—s+1,s) € R if and only if S(i —s,s+1) € R.

Since this holds for all s € [1,1], we are done. O

4.2.7 Proof of main theorem

Now we combine all of our results from the previous sections in the following lemma.

Lemma 4.2.24. For k € [1,¢ — 1], the following are equivalent:

(1) 8(0,1),S(1,1),---,S(k —2,1) lie in R';

(2) S(u,v) lies in R’ for w >0 and v > 1 satisfying u+v < k — 1;
(3) S(0,1),5(0,2),---,8(0,k — 1) lie in R';

(4) J(, f)+1eniOyr.

Proof. By Corollary 4.2.23, conditions Lemma 4.2.24(1) to Lemma 4.2.24(3) are equivalent.
By Lemma 4.2.18(A), conditions Lemma 4.2.24(3) and Lemma 4.2.24(4) are equivalent. [

Theorem 4.2.25. For k € [1,¢ — 1], the following are equivalent:
(1) J(, f)+1€eniOr;
(2) nij € Byt for alli € [0,k —2] and j € [1, f — 1];
(3) nij; € Fyt for alli € [0,k —2] and j € [1, f/2].

In particular, J(¢, f) + 1 € 7,01, always holds.
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Proof. Theorem 4.2.25(1) <= Theorem 4.2.25(2) follows by combining Lemma 4.2.20(A)
and Lemma 4.2.24(1) <= Lemma 4.2.24(4).

Lemma 4.2.10(4) implies that for ¢ € [0,£ — 3] and j € [1, /2], indn; s—; is a linear
combination of indgj,...,ind; ; modulo ¢, and this implies Theorem 4.2.25(2) <= Theo-
rem 4.2.25(3). O

4.2.8 The case k = #¢

Lemma 4.2.26. The following are equivalent.

(1) J(ev f) +1e 71-50[/;

1
(2) S(0,1), S(1,1), -, S(£—3,1), S(£—2,1)+qﬁ(l+t+t2+-~-+tf_l) €R.

Proof. By Lemma 4.2.18(B),
o J(0,f)+1emiog
is equivalent to
e 5(0,1), S(0,2), ..., S(0,£ —2) lie in R, and
« S(0,0—1) = LA +t+---+t/71) lies in R/,
which by Lemma 4.2.24(3) <= Lemma 4.2.24(2), is equivalent to
o for u >0 and v > 1 satisfying u +v < £ — 2, S(u,v) lies in R/, and
« S(0,0—1) = LA+ t+--+t/71) lies in R/,
which by Corollary 4.2.22, is equivalent to
o for u >0 and v > 1 satisfying u +v < £ — 2, S(u,v) lies in R/,
o forallse[1,4—2], {—1—5)S(l—1—s,8)=(s+1)S¢—2—3s,s+1) (mod R'), and
« S(0,0—1) = L1+ t+--+t/71) lies in R/,
which is equivalent to
o for u >0 and v > 1 satisfying u +v < £ — 2, S(u,v) lies in R/,
o forallse[1,/-2],l—1—-95)S{l—1—s,5)=(s+1)S({—2—3s,5s+1) (mod R’), and
o« S(t—2,1) = (=) 242 (1t +--- +t/71) lies in R,
which by Corollary 4.2.22 is equivalent to
o for u >0 and v > 1 satisfying u +v < £ — 2, S(u,v) lies in R/,
o« S(t—=2,1) = (=) 242 (1t +--- + /1) lies in R,
which by Lemma 4.2.24(2) <= Lemma 4.2.24(1), is equivalent to
. S(0,1), S(1,1), ..., S(¢ —3,1) lies in R/,
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S(—=2,1) = (1) 247 (14t + -+ t/71) lies in R,

and we are done by observing that (—1)¢~2 = —1 (mod /). O]

Lemma 4.2.27. The following are equivalent:

(1) J(, f)+1€mbOL;
(2) All the following are divisible by £:
ind(no,1) ind(no,2) . ind(no,f—1)
ind(n1,1) ind(n1,2) oo ind(n1,7-1)
ind(ne—3,1) ind(ne—3,2) o ind(ne—3,7-1)
ind(e—21) + % ind(neo2) + G ... ind(peos1) + G
Proof. Combine Lemma 4.2.20 and Lemma 4.2.26. O

Corollary 4.2.28. The following are equivalent:

(1) J, f)+ 1€ mtOy;
(2) L =0 (mod €) and ind(1 - &j¢}) = 0 (mod ¢) for alli € [0,¢—1] and j € [1, f —1];
(3) qTf = 0 (mod () and ind(1 — &¢}) = 0 (mod €) for all for all i € [0,£— 1] and
jelL f/2.
Proof.
(a) Corollary 4.2.28(2) = Corollary 4.2.28(3)

(b)

()

This is obvious.

Corollary 4.2.28(2) = Corollary 4.2.28(1)
This follows from Lemma 4.2.10(3) and Lemma 4.2.27(2) = Lemma 4.2.27(1).

Corollary 4.2.28(3) = Corollary 4.2.28(2)
Suppose that ¢ € [0,¢ — 1] and j € [f/2, f — 1]. Then

ind (1 - g;;gj;)

=ind(—-1) +4 (qgf ) + ind (1 - {ﬁﬂf}tj) (mod ¢) (by Lemma 4.2.10(6))

-1
= ind(—1) <since qgf =0 (mod¢) and f—je€ [1,f/2]> . (4.13)
If £ =2, then ind(—1) = (¢—1)/2 = (¢—1)/£ =0 (mod ¥) since g—1 =0 (mod ¢2f)
by assumption. If ¢ is odd, then ind(—1) = (¢ —1)/2 = 0 (mod ¢) since g — 1 =0
(mod /) and 2 is coprime to £. In any case, ind(—1) = 0 (mod ¢) so we are done by
(4.13).
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(d) Corollary 4.2.28(1) = Corollary 4.2.28(2)

Lemma 4.2.27 implies that Lemma 4.2.27(2) holds. Substituting these congruences
into Lemma 4.2.10(4) with ¢ = £ — 2 (and any value of j) yields

()= ()0 (57) o

qg—1

1
Combining this with Lemma 4.2.27(2) implies that indn;; = 0 (mod ¢) for all k£ €
[0,£—2] and j € [1, f — 1], so Lemma 4.2.10(5) gives that ind (1 — &5;) =0 (mod ¢)
forallie [1,/—1]and j € [1, f —1]. O

which implies
=0 (mod /).

Theorem 4.2.29. The following are equivalent:
(1) J(, f)+1€miOr
(2) ¢g=1 (mod £2f) and 1 — {éf} € que foralli€ [0, —1) and j € [1, f —1];
(3) ¢g=1 (mod £2f) and 1 — f}f} € F;K foralli € [0, —1] and j € [1, f/2].

Proof. This is a restatement of Corollary 4.2.28. O
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Chapter 5

Torsion Points on Superelliptic
Curves

As usual, we consider superelliptic curves C of the form y" = f(z) where deg f = d and
n,d > 2 are coprime. The Abel-Jacobi map embeds C into its jacobian J by sending P to
[P — oo]. By a torsion point of C, we mean a geometric point P of the curve such that the
divisor class [P — oo] is torsion; i.e., k[P — oo] = 0 for some positive integer k.

In Section 5.1, we summarize our new results and explain how they generalize previous
results on torsion points in the hyperelliptic n = 2 case and their relationship with previous
results on torsion points on Fermat curves.

In Section 5.2, we classify torsion points on the superelliptic “Catalan” curve C,, 4 given
by y* = x¢ + 1. In Section 5.3, we classify torsion points on an appropriate “generic”
superelliptic curve.

The contents of this chapter are the same as that of my paper [6] on torsion points.

5.1 Summary of new results
Fix coprime integers n,d > 2. Let C,, 4 be the smooth projective model of the Catalan curve
yn _ SL’d +1

in A%. Then C,, ¢ has a unique point at infinity, denoted by co. Note that this curve is a
quotient of the Fermat curve X" 4+ Y 4 7Z7d =,

Let J,.q be the jacobian of C, 4. Then C, 4 naturally embeds into 7, 4 via the map
sending a point P € C,, 4 to the divisor class [P — oo} € J,, 4. A point P of C,, 4(C) is called
a torsion point if its image in J, 4(C) is torsion, i.e., if there exists an integer £ > 1 such
that [kP — koo] = 0. We seek to classify the torsion points on C,, 4.

For every m > 2, let (,,, € C be a primitive mth root of unity. Let Z be the subgroup of
Aut(C,, q) generated by (z,y) — ({4, (ny). It is easy to check that any P € C,, 4(C) fixed
by some element of Z is a torsion point.

Definition 5.1.1. Call a torsion point of C,, 4 an exceptional torsion point if it is not fixed
by any element of Z.

Our main result is the following classification.

Theorem 5.2.73. Suppose that n,d are coprime integers with n,d > 2.
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(1) If (n,d) = (2,3), then Ca 3 is an elliptic curve, so it has infinitely many torsion points.
d) =

(2) If (n, (2,5), then the set of exceptional torsion points of Co5 is the Z-orbit of
V/4,V/5). Each has exact order (1 — (5)3; in particular, each is killed by 5.

—~

(3) If (n,d) = (4,3), then the set of exceptional torsion points of Cy3 is the Z-orbit of
(2,v/3). Each has exact order (1 — (4)(1 — (3)?; in particular, each is killed by 12.

(4) If (n,d) € {(3,2),(5,2),(3,4)}, thenCp g ~ Cqp, via (x,y) € Cp g+ (C2nYy, (2d7) € Can,
so the exceptional torsion points of Cy 4 are described by one of Theorem 5.2.73(1),
Theorem 5.2.73(2), Theorem 5.2.73(3).

(5) Otherwise, Cy, q has no exceptional torsion points.

The case (n,d) = (2,5) was already handled in the last two pages of [15]. The case when
n =2 and d > 7 is prime was already proven as Theorem 1.1 of [29].

Similar results are proven in [15, 16] for the Fermat curve F,,, which is given by the
equation X™ + Y™ 4+ Z™ = 0. These papers show that whenever P and () are points of
F,,(C) such that P — @ is torsion and P is a cusp (a point such that one of its coordinates
is zero), then @ is also necessarily a cusp. Our result for y” = 2% 4 1 implies their result
for F,q4.

The ideas in our proof of Theorem 5.2.73 are quite different from those used in [15]. The
classification of torsion points on F), in [15] uses Coleman integration, while we exploit the
Galois action on torsion points. If P is a torsion point of C, 4, then so are all of its Galois
conjugates. If the Galois action is large enough, there will be many relations among these
torsion points, which will force low-degree maps to P!. Now we obtain consequences from
these low-degree maps using two geometric techniques: the Castelnuovo—Severi inequality
and Riemann’s theorem on the sum of the Weierstrass weights on a Riemann surface.
Eventually we reduce to checking finitely many points on finitely many C,, 4, which we
complete with the aid of a computer.

During the analysis, we work out explicitly the torsion field Q(Jp4[p], ttpq) When p and
q are distinct primes (see Theorem 5.2.28). The key ingredient is an understanding of the
p-adic and g-adic valuation of certain Jacobi sums; this analysis is performed in Section 4.2.
There is related work by Jedrzejak: in [37, 38] he studies J(Q)ors for the Jacobian J of the
curve y? = 2P + a, where a € Z.

Theorem 5.3.1 classifies the torsion points on the generic superelliptic curve y” = (x —
ai)---(x—agq) over Q(a,...,aq) in the case of coprime n,d > 2. This generalizes Theorem
7.1 of [57], which handles the n = 2 case. The key idea is to specialize to the curves
y" =2¢+1 and y" = 2% 4 x and use Theorem 5.2.73.

Theorem 5.3.1. Suppose that n,d > 2 are coprime and satisfy n+d > 7. Let %, be the
curve over k := Q(ay,...,aq) defined by the equation

d
y" = H(x — a;).
=1

Suppose that 6, is embedded into its jacobian _Z, using the unique point oo at infinity.
Points fized by ¢, are torsion points of order dividing n.

(1) If d > 3, there are no other torsion points defined over k.
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(2) If d =2 and n # 5, the only other torsion points defined over k are

a +a . ay—a 2
12 27—%"(12 2) 0<i<n-—1

(3) If d =2 and n = 5, the only other torsion points defined over k are

2
a1 + az i ap — a2 .
2 -a{l(252) ) osi=atU

{(:I:(CLQ—Gl)\/g+(al+a2)7 éW) :03254}.

2

5.2 Torsion points on the Catalan curve C, 4

Let (,q € Q be a primitive ndth root of unity. Let

Cn 1= ng

Ca = (g

E = Q((na)
Og = Z[(ndl-

Suppose that &, and &; are primitive nth and dth roots of unity respectively such that
Cnd = &n&y; then €4 = ¢, and & = (4. We will abuse notation and define

(nd = automorphism of C, 4 which sends (z,y) to ({42, &,y)
Cn = Cffd, which is the automorphism of C, 4 which sends (z,y) to (z, (,y)
Cd := (g, which is the automorphism of C,, 4 which sends (z,y) to ({4, v)
Z := the subgroup of Aut(C, q) generated by (4
Zy, = the subgroup of Z generated by (,
Zg4 := the subgroup of Z generated by (.

5.2.1 The homology of C,, 4

Definition 5.2.1. Let R be the ring
R:=Z[T]/ (1 + T+ T2 4@ n g pd o2 ---+T(”‘1)d) :

Define Tnd _ (7 — 1
¢n,a(T) = ET" __1)2(Td - 1; € Z[T).

Lemma 5.2.2. For integers a,b > 1, define the ideal

Iy = (1+T+--~+T“‘1,1+T+---+Tb‘1)
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of Z[T]. Then I, is generated by 1 +T + --- + Tecd(a.b)—1,
Proof. If a > b, then
1+ T+ AT =14+ T+ + T T A+ T+ 4+ T

implies I, p = Iq—pp, so by the Euclidean algorithm, I, = Tgeq(a,p),0- O
Corollary 5.2.3.

(1) R~Z[T]/(ena(T))-

(2) {792+ g € [0,d — 2] and j € [0,n — 2]} is a Z-basis of R.
Proof.

(1) Lemma 5.2.2 implies I,, 4 is the unit ideal, so

(‘Pn,d(T)) = Son,d(T) (In,d)
(T —1)(T - 1) <T” —1 7%~ 1)

(T -1 (T -1\ T—-1"T-1

Tnd_l Tnd_l
:<Td—1’T"1>

= (1+Td+T2d+~-+T(”‘1)d,1+T”+T2"+---+T(d‘1)”),

so applying this to the definition of R yields R ~ Z[T]/(yn a(T)).

(2) For nonnegative integers u, v, define B, := {T9%*"": q € [0,u] and j € [0,v]}. Since
T = 1 in R and the set {da +nb : a € [0,n — 1] and b € [0,d — 1]} contains
every residue class modulo nd, B, _14—1 must generate R as a Z-module. Using
147"+ T2 4.4 T@ D7 —gand 14+ T%+ 724 + ... 4 T(»=Dd — ( ghows that
Byj—2,4-2 generates R as a Z-module. Corollary 5.2.3(1) implies that R is a free
Z-module of rank degy, 4 = (n — 1)(d — 1) = #S,-2,4-2, S0 Sp_24—2 must be a
basis. O

Proposition 5.2.4. H{(C,, 4,Z) is a free R-module of rank 1 for which T acts by Cpq-

Proof. We apply the results of Section 2.5. Our basepoint will be B := (0,1). Choose
a1 € C to be a root of (—z)¢ +1 = 0, and define o; := fi_loq. Let 51 be a loop in

P'\ {—a1,...,—ag,00} starting and ending at 0 which encircles —ay positively and does

not encircle any of {—aq,...,—ag,00}. Define g; := 3_151. As in Definition 2.5.1, for

i €[1,d] and j € [0,n — 1], define ¢; ; € H1(Cpn,a,Z) to be the cycle ¢4[3;8;;}]. Therefore,
Yi; = ¢ 0,

so Proposition 2.5.4 implies that {Cﬂ;({flild}l’o: i€[l,d—1]and j € [0,n — 2|} is a Z-basis
for H1(Cp 4, Z). Lemma 2.5.2 and Lemma 2.5.3 give the relations

(4Gt 4+ 710 =0,
(I+CG+ -+ Hmoe=0,
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so there is an R-module map R — H1(Cy, 4,Z) sending 1 to ;9. The Z-basis of R given in
Corollary 5.2.3(2) gets mapped to the Z-basis {¢¢C5v1,0: a € [0,d — 2] and b € [0,n — 2]} of
H(Cp4,7Z), so this is an isomorphism. O

Corollary 5.2.5. The map Z[T) — End 7, 4 sending T to (nq has kernel (¢n q(T)).

Proof. By Proposition 5.2.4, the composite map Z[T| — End J, 4 — End H\(Jp4,Z) =
End H1(Cy,4, Z) has kernel equal to (¢, 4(T")). Since the map End 7, 4 — End Hi(Jp 4, Z)
is injective, we are done. O

In view of Corollary 5.2.5, we will view R as the subring of End 7, 4 generated by Z.

5.2.2 The structure of T;7,, 4 as a Galois representation

Let ¢ be a prime and A\ be a prime of E lying above ¢. Let r { {nd be another prime

and v be a prime of F lying above r. Define F, to be the residue field at t. Define

Frob, € Gal(E(J,,4[(*°])/E) to be the Frobenius automorphism for t; it is well-defined

since the extension E(J, 4[¢*°])/E is unramified because C, 4 has good reduction at .
Define

Ty Jn.q := the Tate module @jn,d[ﬁi]

ViTn 4 := the rational Tate module (T3 J,,q) ®z, Qe
Ry = R®z Zy.

Definition 5.2.6. Define Endg, (T¢J,,4) to be the ring of endomorphisms of 737, 4 that
commute with (,q.

Lemma 5.2.7. T}7, 4 is free Rg-module of rank 1. Hence,

AutR@ (Tfjmd) = R;> (51)
Endg, (TyJn.q) ~ Re.

Proof. Proposition 5.2.4 gives that H1(Cpq,Z) is a free R-module of rank 1, so Tp 7, 4 ~
Hi(Cp4,Z) ®z Zy is a free Ry-module of rank 1, and this implies (5.1) and (5.2). O

Definition 5.2.8. Using (5.1), define
0¢: Gal (E(J5,4[l]) /E) — Autg, (T4Tn,a) ~ R/

to be the injective group homomorphism which sends each element of Gal (E (7, 4[¢*]) /E)
to its action on 1y J, q. Extend 6, linearly to a ring homomorphism

952 Zg [Gal (E (jn,d[goo]) /E)] — EndRe (Tej”,d) ~ Rg.

Remark 5.2.9. When n = p is prime, recall that 6, was previously defined in Definition 2.5.9
as a map from Z, [Gal (Q(up, Tp,a[p™])/Q(1p))], but we are now defining ), to be its re-
striction to the subring Z, [Gal (E (J,.4[p™°]) /E)]; this is a subring because the field of
definition of J, 4[p>°] D Jp.a[l — (] contains Q(pq), so Q(up, J[p™°]) does contain E.
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Lemma 5.2.10. Suppose that n = p is prime. Then v € Z, [Gal (E(Jpq[p™])/E)| kills
Tp.dl(1 — )] if and only if '
Op(7) € (1= )" Ry.

Proof. Since T),J), q is a free R,-module of rank 1 by Lemma 5.2.7, this lemma is proved in
the same way as Corollary 2.5.10. O

Lemma 5.2.11. For each positive integer m, Gal (E(J,a[m>])/E) is abelian.

Proof. Using the fact that the 6, are injective, we see that

Gal (B(J,.alm™))/E) < [ | Gal(B(Fualt™))/E) — ] Ry,

Lm Llm

so we are done since RL,X is abelian. O

Definition 5.2.12. Suppose that Fg is a finite field and that S is a ring. Suppose that
X1, X2: Fé — 8§ are nontrivial characters. For each integer & > 1, define the Jacobi sum

M= 5 a0 (a0
aEFQk\{O,l}

Definition 5.2.13. Define natural isomorphisms

Enet pn(Fe) = Zp
Kde: pd(Fe) = Zg.

Compose the “exponentiation by (#F. —1)/n” map and k. to define
Yoot B = pn (Fy) = Zy,.

In an analogous fashion, define the composite morphism
Yar: F& = pa(Fe) — Zg.

Definition 5.2.14. For characters p,: Z, — E* and pq: Zq — E*, use (Véjmd)(p"”’d) to
denote the (pn, pq)-isotypic component of (Vi 7, 4) ®q, E», i.e.,

(wyn,d)(lh“pd) = {,U c (wjn’d) ®Q[ EA . ZH(U) =

(zp)v for all z, € Z, }
za(v) '

Pn
pa(zq)v for all zq € Zy
Proposition 5.2.15.

(1) There is a direct sum decomposition

(VeTn.a) ®q, Ex ~ @ (ijd)(Pde) _

pn: Z—EX
pa: Z—E*
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(2) The Qq-dimension of (ijd)(p”’pd) is

L ifpp#1 and pg # 1,
0 otherwise.

dimgq, (Vejn’d)(pn,pd) - {

Proof. Proposition 5.2.15(1) is just representation theory (c.f. page 172 of [41]).
By Proposition 5.2.4 and Corollary 5.2.3(1), we know that the characteristic polynomial
of (g on Hy (C"i’ Z) is W(T)’ so the eigenvalues of (,q on Ty 7, q = H1(Cp. 4, Z) @z Zy are
Lnd(Qe) \ (n(Qe) U 11a(Qe)); Proposition 5.2.15(2) follows. O

Proposition 5.2.16. Suppose that p,: Z, — E* and pq: Zq — E* are nontrivial multi-
plicative characters.

(1) Let Xnx = pn © Vo and Xdax = pd © Yde- Then the eigenvalue of Frob. acting upon
(Vejn,d)(pn’pd) is
7Xd,t(71)<]1 (Xn,t7 Xd,t)'

(2) Let vyt FX — R be the composite of vy, with the inclusion Z, C R*. Define v,
similarly. Then
0y (Frobe) = —75.(=1) 1 (V0 Ya0) € B- (53)

Proof. We apply the results in Section 1 of Katz [41] to the group Z acting on the curve
Cn,dc, which is the reduction of C, 4 at the prime ideal t.

Define p: Z — E* to be the character that restricts to p, on Z, and to pg on Z4. Ason
page 172 of [41], for every integer k > 1, define Fix (Frobf zil) to be the subset of Cp, 4. (F\)
fixed by Frob¥ 2= and

S(p, k) == #12 Z p(2)# Fix <F1r0b,i.C z_1>

zeZ
1
= =7 Z Z p(2). (5.4)
Pecn,d,t(ﬁt) 2€Z

Frob]f 2~ 1p=P
Claim. Let ) = #F,. For every k > 1, we have

S(p, k) = (xae(=1) @ D@D 1y e Xae)-

Proof of claim. Suppose that P € C,, 4.(F,) is fixed by Z,. Then {z € Z: Frob} »~'P =
P} will be a union of cosets for the subgroup Z, of Z. Since p,, # 1, the sum of p(z) for
any coset of Z, is zero, and hence the inner sum of (5.4) is zero. Hence we may ignore P
that are fixed by Z,. Similarly, we may also ignore P that are fixed by Z;. Therefore, we
may restrict to the subset

Crar(Fg)* :={P € Cha:(Fg): P is not fixed by Z,, nor by Z;}
={(z,y) eF xF, 1 y" =a?+1}.

Suppose that P = (z,y) € Cn4.:(Fg)* and that z € Z satisfy Frob? 2~'P = P. Since F,
contains an ndth root of unity, Fl“Obf and z~! commute, so this is equivalent to FrobiC (z,y) =
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z(x,y). Since z scales the z-coordinate by a dth root of unity and scales the y-coordinate
by a nth root of unity, we see that 2%, y™ are both fixed by Frobf. Define o := ¢y = 2% 41,
so that « is fixed by Frob¥. Also, a ¢ {0,1} since z,y # 0. Rewrite (5.4) as

b =25 > > e

aeF\{0,1} (:L’,y,z)GFit>< xFexZ
Frob a=a Frobf =~ (z.y)=(x.y)
a=y"=z%41

Define z, € Z, and z4 € Z; such that z = z,24. By definition of k. and k4., we know that
z(x,y) = (m;i(zd)x,n;}(zn)y» so the condition that Frob¥(z,y) = z(z,y) is equivalent
to the two conditions z@" = mczi(zd)x and y@" = fin+(24)y, which is equivalent to the two
conditions zg = /@dyt(kafl) and z, = /@nﬂ.(ka*l), which by definition of «, is equivalent

to zg = Ka (o — 1)(Qk_1)/d) and z, = K;n,t(a(Qk_l)/"), which uniquely determines z. Since
p(z) = p(znzq) = pn(2n)pa(z4), we may rewrite the sum as

S(p, k) = #1Z Z Z Pn (’Qn,t(a(Qkil)/n)) Pd (Hd,t((a - 1)(Qk71)/d)> .

a€F\{0,1} (z,y)eF: " xF: "
Frob® a=a a=yr=x%41

For each a, there are nd = #Z pairs (z,y) € F. xF.' satisfying y* = 2% + 1, so we
simplify to

o) = D pa (Rus@ @) py (Rael(a = 1)@ D/).

a€F\{0,1}
Frob® a=a

By definition of xy, ., we know that x, () = pn (ne(a)) = pp (/{mt (a(Q_l)/"))). A similar
statement holds for x4, so this sum equals

S(p k)= > X (a(Qk—n/(Q—n) Xdx ((a _ 1)@&1)/(@*1))

a€F\{0,1}
Frob® a=a

= (ae(-1)@ V@D S <a(Q’“—1)/(Q—1))Xd1t ((17(})(@&—1)/(@—1))

a€F\{0,1}
Frob{.C a=o

= (Xd,t(_l))(Qk_l)/(Q_l) Ik (Xn,t» Xd7t)

by definition of the Jacobi sum (Definition 5.2.12). So the proof of the claim is com-
plete.

Theorem 2.1.3(b) of [11] implies that |Jx(xn, xa)| = @*/2, so by the claim, |S(p, k)
Q2. Using Lemma 1.1 of [41] (3) <= (6), the eigenvalue of Frob, on (ngn,d,t)(p”’pd
—S(p,1) = =xar(—1)J1(Xn,e> Xd,), Which gives Proposition 5.2.16(1).

|
) is

We may check Proposition 5.2.15(2) after tensoring up to E) to work with (Vi 7, 4) ®q,
E), and Proposition 5.2.15 implies that it is sufficient to check this on each (V)4
whenever p,, pq # 1. For any z, € Z,, the eigenvalue of z, on (ijd)(p”’pd) is pn(zn), so
the eigenvalue of 7, () acting on (VeTy,q) P2 is pp (Yn,e(@)) = Xne(a) (and similarly for

88



7, (1 — a)), meaning that the right hand side of (5.3) acts on (VpJ,, 4)P»#¢) by the scalar
—Xn,e(—=1)J1(Xn,es Xd,t), 80 we are done by Proposition 5.2.16(1). O

Definition 5.2.17. By Galois theory, Gal(E(J,,4[m>])/Q) acts by conjugation on the
subgroup Gal (E(J, 4[m*>])/E). By Lemma 5.2.11, the subgroup Gal (E(J, 4[m*])/E) is
abelian, so this action factors through an action of Gal(E/Q) on Gal (E(J, 4[m*])/E). For
any h € Gal (E(J,,q[m™])/E) and v € Gal(E/Q), write "h to denote the action of v on h.
Let 0 € Gal(F/Q) be complex conjugation.

Proposition 5.2.18. Frob, -“Frob. acts on Ty J, 4 as multiplication by #F..

Proof. By Proposition 5.2.15, we may as well verify this on each eigenspace (szn,d)(p"’pd).

Apply o to everything in Proposition 5.2.16 to see that Frob,) acts on (Vejn,d)(p"’pd)

multiplication by Xao()(—1)J1 (Xn,e() Xdo() = & (Xde(=1)J1(Xnr Xdr)), implying that
Frob, -?Frob, = Frob, Frob,() acts on (ngn,d)(p”’pd) as multiplication by Ji(Xn,es Xdc) -
o (J1(Xn,e» Xdx)), which equals #F by Theorem 2.1.3(b) of [11]. O

as

Corollary 5.2.19. Let m be a nonnegative integer and let h € Gal(E(Jy,,q4[m>])/E). By
the Weil pairing, E(Jn.qa[m>]) contains E(pme=), so suppose that h acts on piyme as multi-
plication by c. Then h - °h acts on J[m>] as multiplication by c.

Proof. Frobenius elements are dense by the Chebotarev density theorem, so we reduce to
checking on h = Frob,. By definition of Frobenius, h acts on p,,~ as multiplication by #F,,
so we are done by applying Proposition 5.2.18 to every prime ¢ dividing m. O

5.2.3 Bounding the order of torsion points on C,, 4

Corollary 5.2.20. Let m be a positive integer. For every prime { dividing m, let co € 7 ;
if £|nd, assume that cp € 14+ndZy. Then there exists an element T of Gal (E(J,,q[m™])/E)
such that for each £ dividing m, T acts on J[{*°] as multiplication by cy.

Proof. The assumptions on ¢; imply that there exists an element of v € Gal (E(pm=)/E)
such that for each prime ¢ dividing m, v acts on g as multiplication by c,. Lift v arbitrarily
to h € Gal(E(Jy,q[m™>])/E), define 7 := h - "h, and apply Corollary 5.2.19 to finish. O

Definition 5.2.21. Let P € C, 4 be a torsion point.

Proposition 5.2.22. Suppose that C,, 4 has genus g > 1 (i.e., (n,d) & {(2,3),(3,2)}). Let
m = lem(2,nd).

() If (n,d) € {(2,5), (4,5), (5,2), (5,4)} then m(P — 00) ~ 0.
(ii) If (n,d) € {(2,5),(5,2), (4,5), (5,4)} then 3m(P — o0) ~ 0.

Proof. Without loss of generality, assume that d is odd. Choose an integer M such that
M(P — o0) ~ 0. Assume that M is divisible by m. Define

R := {prime r: r { 2nd and r|M},
S := {prime s: s{2 and s | nd},
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so that the set of primes dividing M is the disjoint union {2} U R US. For any prime a
dividing M, let e, be the largest integer such that a®|nd and define D, € 7, 4q[a*] such

that
[P—o00] =) Da.
a|M

By definition of m,

m = gmaxthel (H 365> . (5.5)

s€S
Using Corollary 5.2.20, choose 11,72, 73 € Gal(E(J,, 4[M*])/E) such that:

Jn.al2°]  as multiplication by 1 4 2max{lez}

71 acts on ¢ Jp, q[r>°]  as multiplication by 2 for each r € R
Tnals*]  as multiplication by 1+ s for each s € S
Jn.a2°]  as multiplication by 1 — 2max{lez}

Ty acts on < Jp, q[r>°]  as multiplication by — 2 for each r € R
JTnals*]  as multiplication by 1 — s for each s € S
Jn,a[2°°]  as multiplication by 1

73 acts on ¢ Ty, q[r>°]  as multiplication by —1 for allr € R
Tn.als°]  as multiplication by 1 for all s € S

By construction,
nP+mnP~mnP+ P (56)

Case A: {1 P,oP} # {m3P, P}

By (5.6), this means that there exists a map v;: Cp, g — P! of degree h < 2. Since d is
odd, we may apply Corollary 2.2.2 applied with v; and the y-map to obtain

(n—1)(d—1)/2 < (h—1)(d—1).
Since d > 1, this implies that n —1 < 2(h —1). Since h < 2 and n > 2, this implies that

h =2 and n € {2,3}.

Case Al: n=3and h =2
By Corollary 2.2.2 applied with v; and the x-map, we obtain
B-1)(d-1)/2<(2-1)(3-1),
which forces d < 3, contradicting the assumption that n and d are coprime.

Case A2: n=2and h =2

This curve is hyperelliptic of genus at least 2, so any 2-to-1 map to P! must factor
through the canonical map. Applying this fact to v yields i P 4+ 7o P ~ 200 and
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3P + P ~ 200, so by definition of 73,

2D =0 (5.7)
D, =0 for all s € S. (5.8)

Using Corollary 5.2.20, choose 74,75 € Gal(E(J, q[M*])/E) such that:

JIn,al2%°]  as multiplication by 1

74 acts on ¢ 7, 4[r>°]  as multiplication by 1+ 3 for each r € R N {3}
TIn.alr®]  as multiplication by 3 for each r € R\ {3}
Jn,d[2°]  as multiplication by 1

75 acts on ¢ 7, 4[r>°]  as multiplication by 1 — 3 for each r € R N {3}
Tn.alr™]  as multiplication by — 1 for each r € R\ {3}

By construction,
7‘4P + 7’5P ~ 2P. (59)

Case A2a: P # P
If 75 P = P, then (5.9) would imply that C, 4 has a degree 1 map to P!, which
contradicts the assumption that the genus of C, 4 is at least 2. Therefore,
P ¢ {4P,75P}, and (5.9) gives a 2-to-1 map to P!. As before, such a map
must factor through the canonical map, so 4P + 5P ~ 2P ~ 200. Hence
2[P — oo] = 0, so the conclusion of the proposition holds.

Case A2b: 74P =P
Then by definition of 7y,

3D3 = 0 if 3¢ R, (5.10)
D, =0 for all r € R\ {3}. (5.11)

Suppose that 3 € R. Then we are done because (5.7), (5.8), and (5.11) together
imply that 2[P — oo] = 0.
Suppose that 3 € R. Then (5.7), (5.8), (5.10), and (5.11) together imply that

6[P — o0] =0, (5.12)
so using ¢ to denote the hyperelliptic involution yields
3P ~ 3.P. (5.13)

If P =P, then 2[P — o] = 0 and the conclusion of the proposition holds.
If P # (P, then (5.13) yields a nonconstant 3-to-1 map vy : Cpq — P!, so
applying Corollary 2.2.2 with vy and the z-map yields (2 — 1)(d — 1)/2 <
(3—-1)(2—1), forcing d < 5, so by (5.12), the conclusion of the proposition
holds.

Case B: P=71P
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Then by definition of 71,

gmax{leat p, — 0, (5.14)
D, =0 for all r € R, (5.15)
s“Ds=0 forall s € S, (5.16)

so (5.5), (5.14), (5.15), and (5.16) together imply mDo = 0, mD, = 0 for all » € R, and
mDg =0 for all s € S. We conclude that m[P — oo] = 0.

Case C: P =71 P

Then by definition of 7,

gmaxilea} p, — 0, (5.17)
3D3 =10 for all r € RN {3}, (5.18)

D, =0 for all r € R\ {3}, (5.19)

s*Dg =10 for all s € S. (5.20)

Case C1: 3¢ R
Then (5.5), (5.17), (5.19), and (5.20) together imply mDy = 0, mD, = 0 for all
r € R, and mDs =0 for all s € S. We conclude that m[P — oo] = 0.

Case C2: 3¢ R
Arguing similarly as in Case C1 yields

3m[P — oo] = 0. (5.21)
Using Corollary 5.2.20, choose 16 € Gal(E(Jy,, q¢[M])/E) such that:

Tn.al(2nd)*°]  as multiplication by 1
Tg acts on ’
Tn.d[3%] as multiplication by 2

By definition, 74 fixes Do and D, for all s € S, so by (5.18) and (5.19), 76 must fix
3P, ie.,
3P ~ 31gP. (5.22)

Case C2a: P = 14P
Since 7g acts on D3 as multiplication by 2, this forces D3 = 0. Combining this
with (5.5), (5.17), (5.19), and (5.20) yields m[P — oo| = 0.

Case C2b: P # 74P
Then (5.22) yields a nonconstant 3-to-1 map wvs: Cpq — P!. Then 3 € R
implies 3 t nd, so 3 { min{n, d}, meaning we may apply Corollary 2.2.2 to vs
and to whichever of y: Cp, 4 — Pl z: Cna — P! has smaller degree to obtain

(n—1)(d—1)/2 < (3 — 1)(min{n,d} — 1),

which forces n,d < 5. Since 3 1 nd and d is odd, this implies (n,d) €
{(2,5),(4,5)}, so we are done by (5.21). O
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5.2.4 Computation of some torsion fields for C,,

In this section, we use results of Section 4.2 to compute some torsion fields. Assume that p
and q are distinct odd primes from now on. Then we may identify R with Opg.

Definition 5.2.23. For nonnegative ¢, j, define the torsion field

Lij = E(jnq[(l - Cp)i(l - Cq)j])'

Lemma 5.2.24.

(1)
(2)
3)
(4)
()
(6)
(7)

7

Fach L;; is an abelian extension of E.
Loo=Lo1=L1p=IL11=FE.
Li,j = Li,OLO,j and E = Li’() N LO,j~

Li,l = Li,O = E(jnq[(l Qp)z])-

Lyj=Loj= E(jp,q[(l - Cq)j])-
Lp—1g=Lp-1p0= E(jpvq[PD-

Ll,q—l = LO,q—l - E(jp,q[(ﬂ)'

L271:E<€/1—§g:1§2‘§q—1> and [Loy : E] > 1.
L172:E<,‘1/1—§;:1§i§p—1> and [L1o: E] > 1.

Lp1/E is a p-Kummer extension, i.e., it is generated by pth roots of elements of E.

L, 4/E is a g-Kummer extension, i.e., it is generated by qth roots of elements of E.

Proof.

(1)

(2)

Since Jpq(l — G| € Tpgqlp] and Tpqll — (] € Tpglgl, this is a special case of
Lemma 5.2.11.

By Proposition 2.3.1, Jp4[1 — (] is generated by [(*Céao) —oo] and Jpq[l — (g is
generated by [(0, Cg) —oo],s0 L1 = E.

By definition, L; ; = L;oLo ;. By Corollary 2.5.12, [L;o : Log] is a power of p and
[Lo,; : Lo,o] is a power of ¢, so LigN Lo j; = Lo = E.

Lemma 5.2.24(3) implies that L; 1 = L;oLo1 and Lemma 5.2.24(2) gives that Lo =
E, SO Li,l = Li,(). By deﬁnition, Li,O = E(jp’q[(l — Cp)l])

Similar to the proof of Lemma 5.2.24(4).

Since (1—(p)P~" € pR*, we see that Jy,q[(1— ()P '] = Tpglp), 50 Lp-1,0 = E(Tpqlp)).
and we are done by Lemma 5.2.24(4).

Similar to the proof of Lemma 5.2.24(6).

93



(8) Apply Corollary 2.3.8 by using the z-coordinate map to view Cp, as a degree p su-
perelliptic cover of P1. This shows that Lg; is generated over E by adjoining pth
roots of (g — Cg. Since (5 — (g = (g1 - fl’_a) and (g already has a pth root in F, we
see that Lo is generated over E by adjoining pth roots of 1 — (/.

Consider the ramification of Ls; and E above the prime ¢q. The field Lo contains
(1 - Cq)l/p’ S0
eqg(L21/Q) = pla—1) > q—1=1¢4(E/Q),

so Lo 1 has to strictly contain F.
(9) Similar to the proof of Lemma 5.2.24(8).

(10) Lemma 5.2.24(1) implies that L, ;/FE is abelian. Since E already contains the pth
roots of unity and Corollary 2.5.12 implies that the exponent of Gal(Ly1/E) divides
p, we are done by Kummer theory.

(11) Similar to the proof of Lemma 5.2.24(10). O

Definition 5.2.25. Suppose that v is a prime of E lying over a prime r of Q such that
r & {p,q}. Abuse notation and write (p,(; € F; to denote the images of (;,(, € Op under
the reduction map O — F..

For integers i € [0,p — 2], j € [1,¢ — 1], and s € [0,p — 1], define

us;=1-C¢ € Op
7,0

Nij = Husjj S OE
s=0
p—1

;=[] v, € Ok
s=0

(We adopt the convention 0° = 1 here.) We will also use u; j, 7;.;, 7! ; to denote the images

of the same expressions in F..

Theorem 5.2.26. Let x, and x, denote characters F — E* of exact order p and g,
respectively. Let k € [1,p — 1]. Let J be the Jacobi sum Ji(xp,Xq). The following are
equivalent:

(1) J+1€(1—¢)r0g;

(2) mi; € FLP foralli € [0,k —2] and j € [1,q — 1];

(3) mi; € FeP foralli€ [0,k —2] and j €[1,(qg—1)/2].
Proof. This is a special case (since ¢ is odd) of Theorem 4.2.25. O
Corollary 5.2.27. Let k € [1,p — 1] be an integer. The following are equivalent:

(1) v splits in the field E(Jp4l(1 — ¢p)*])

(2) nij € FIP foralli€ [0,k —2] and j € [1,q —1];

(3) mij € F{P foralli € [0,k —2) and j € [1, (g —1)/2].

94



Proof. Define characters 7, ., 7, .+ FY* = R* =~ OF of exact orders p and ¢ as in Proposi-
tion 5.2.16(2). Then t splits in E(Jp4[(1 —¢p)¥]) if and only if Frob, —1 kills 7, ,[(1 — ()],
which by Lemma 5.2.10 is equivalent to 6,(Frob, —1) € (1 — (,)*R,, which by Proposi-
tion 5.2.16(2) is equivalent to —v; (=1)J (7, 74.) — 1 € (1 — )R = (1 - (,)*OE (recall
from Proposition 5.2.16(2) that 6,(Frob,) lies in R). Since ¢ is odd, we know 7, .(=1) = 1,
so we are done by Theorem 5.2.26. O

Theorem 5.2.28. Let k € [1,p — 1] be an integer. Then

Lii=FE (¢mij:i€0,k—2] and j € [1,q— 1))
=FE (¢mij:i€(0,k—2 andj€[1,(q—1)/2]).

Proof. Define
Ly, =E(ynij:ie0,k—2land je[l,q—1]),
L/k,,1 =F (\'7772‘,3': i€[0,k—2]and j € [1,(q— 1)/2}) .
For any extension M of E and subset S of primes of Q, define

Splg(M/E) := {t is a prime of E: v splits in M and } :

t does not lie above a prime in S
Corollary 5.2.27 implies that Sply, (Lk1/E) = Splyy o1 (Ly1/E) = Splyy (L 1/ E), so
since Ly 1, Ly, and L}, are Galois extensions of F, the Chebotarev density theorem
implies that Ly, = Lfk,l = L,k/,l' O
Lemma 5.2.29. Suppose that i € [0,p — 3] and j € [1,q — 1].

1. The image of n;j in E*/E*P lies in the subgroup generated by 7727]-, e ,n()’j.

2. The image of 772,]’ in EX/E*P lies in the subgroup generated by n;j, - ,10,;-

Proof. Observe that there exist integers b; j, € Z such that for each 4,

; T T T
T =bii| . | +bii-1|. + -+ bip in Z[T
T\t ’ 1—1 ~\0

and b] ; € Z,) such that for each i,

T . . .
(Z) = b, T+ b, T 4+ 0 T in Z,) [T

We are now done by using the definition of 7; ; and 772,]'- O

Corollary 5.2.30. Let k € [1,p — 1] be an integer. Then

LM:E(%:Z'G 0,k —2] and j € [1,q—1])
:E(%:ie 0,k —2] and j € [1,(q—1)/2]).

Proof. This follows immediately from Theorem 5.2.28 and Lemma 5.2.29. O
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Definition 5.2.31. Let w: Gal(E/Q(pq)) ~ Gal(Q(up)/Q) — Z, be the composite of the
natural isomorphism Gal(E/Q(1q)) ~ Gal(Q(up)/Q) with the Teichmiiller character. If A
is an abelian group which has an action of Gal(E/Q(u,)) and ¢ € Z, use £, A to denote
the subgroup of A for which Gal(E/Q(p,)) acts as w'.

Definition 5.2.32. For each i € [0,p — 2|, define

A; := the subgroup of E*/E*? generated by 7, ;... 777;,((1—1)/2
M;:=E({5:5€A).

Lemma 5.2.33. A; C e ,—i(EX/E*P) for each i € [0,p — 2].

Proof. This follows from a straightforward computation of the Gal(E/Q(pq))-action on
each 7] ;. O

Lemma 5.2.34. Let k € [2,p — 1] be an integer.

( ) ) h ) ) E
3 e e ey p_z ] 1 v .

(3) [Likja: Li—11] = [My_o: E].

Proof.
(1) This follows immediately from Corollary 5.2.30 and Definition 5.2.32.

(2) By Kummer theory, we must check that if §; € A; satisfy Hf:_oz 0; = 1, then §; = 1 for
all 7. Lemma 5.2.33 implies that each ¢; lies in a different isotypic component for the
w-action, so they must all be 1. O

(3) This follows immediately from Lemma 5.2.34(1) and Lemma 5.2.34(2).

Corollary 5.2.35. For each integer k € [2,p—1], there exists an integer e(k) € [0, (¢—1)/2]

such that

(L : Lp_11] = p°®).

Proof. This follows immediately from Lemma 5.2.34(3). O

Remark 5.2.36. For our strategy of using large Galois action to classify torsion points, we
need a lower bound for [Lj; : Liy—11]. Corollary 5.2.35 gives an upper bound, but we do
not know when it is possible to attain this value. In light of Lemma 5.2.34(3), we focus our
efforts on studying M; for the rest of the section.

Corollary 5.2.37. [La; : L1 1] > p.

Proof. This follows immediately from Corollary 5.2.35 and Lemma 5.2.24(8). O
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Definition 5.2.38. Recall the notion of a cyclotomic unit as in Section 8.1 of [64]. Define

U to be the unit group of Q(sp)

C to be the group of cyclotomic units of Q(,)
Qup) "™ to be the totally real subfield of Q(u,)

Ut to be the unit group of Q(u,)*

ct to be the group of cyclotomic units of Q(u,)"
A to be the class group of Q(up).

For any group B, let B, be the p-Sylow subgroup of B.
For i € [0,p — 3] and b € (Z/pZ)*, define

R AN T
i) =1 { & & | € Q)
s=0 D

(Ui (b) lies in Q(up)™" since each term C,(,p+1)(1_b)s/2(1 - Cgs)/(l — () is fixed by complex
conjugation.)
Let v € (Z/pZ)* be a generator and define U; := U;(v).

Lemma 5.2.39. Suppose that i € [0,p — 3], b € (Z/pZ)*, and b' 1 (mod p).

(1) Then

p—1 1— Zl;s s*
U; (b) = — |
(i)

(2) The images of U; and U;(b) in Q(up)™™/Q(1p) <P generate the same subgroup.

Proof.

(1) Since i € [0,p — 3],

p—1
Z s =0 (mod p),
s=0
S0
p—1 i
H (C]()p-&-l)(l—b)s/Q)s 1
s=0

and we are done by definition of U;(b).

Cm(p+1)/2

(2) For notational convenience, use the shorthand (" /% to mean D , i.e., it is a pth

root of unity whose square is ¢,". For any ¢ € Z /DZ,

p—1 cs/2 C_CS/2 st

— P ’4

UZ(C) - H ( s/2 —5/2 ) ’
s=0 P CP

97



SO

- p—1 cs/2 C—cs/? (cs)*
vy =11 </ o )

s=0 D )
p_l = N
= (H(CSS/Q _ ngS/Q)(cs)l> (H(CS/Q _ Cps/Z)(cs)l>
s=0 s=0
pl N\ /-l N
) (H( -6 2)t1> <H<<§/2—<,:S/2>(“)Z) (mod Qi) **)
=0 s=0

by setting ¢ = ¢s (mod p) in the first product and observing that this change-of-
variable preserves the product modulo Q(u,)"*?. Combining the products yields

(Ui(e))” = (H(@i/? -G ) (mod Q(up) 7).
t=0

so if we define

p—1 )

U= 162 - ¢

t=0

then _ _
(Ui(e)” =U (mod Q(u,)**P),
()"0 =0 = g (mod Q) ).

Since b%,1 — b, 1", 1 — 1/* are invertible modulo p, we are done. ]

Lemma 5.2.40. Suppose thati € [1,p— 3] and j € [1,q — 1].

(1) For each s € [1,p —1],
1-¢F
(p) Usj = 1— C; )

Normpg,q

(2) We have
Normpg)Q(u,) 1 = Uila).

(3) Suppose that ¢' #1 (mod p). Then U; € M.
Proof.
(1) This is a straightforward computation.
(2) Combine the definition of 7; ;, Lemma 5.2.40(1), and Lemma 5.2.39(1).

(3) M; is Galois over Q(pp) and 7}, € M[, so Normp,qu,) 71 € M, so we are done by
Lemma 5.2.40(2) and Lemma 5.2.39(2). O

Corollary 5.2.41. For any i € [1,p — 3] such that ¢ Z1 (mod p),
[M; : E] > [E(X/Uy) : E] = [Q(up) " (Y/T3) - Qlup) ™.
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Proof. Lemma 5.2.40(3) implies that M; O E(J/T;), so [M; : E] > [E(Y/TU;) : E].

Let F := Q(up)T(Y/T;). Since E/Q(up) is totally ramified at ¢ and F(u,)/Q(uy) is
unramified at ¢, ENF C Q(up). Therefore,
Q)" S ENF C Q(up). (5.23)

Since [F : Q(up)T] € {1,p} and [F : Q(up) 1] is divisible by [ENF : Q(pp) "], we must have
ENF # Q(up), so (5.23) implies

ENF=Q(u)". (5.24)

Note that [E(¢/U;) : E] = [EF : E] = [F : EN F] since E is Galois over EN F, so we are
done by (5.24). O

Theorem 5.2.42. For even i € [2,p — 3|, #c,i(UT/C1), = 1 if and only if Up_1—; &
Q(Np)+><p'

Proof. This follows from Section 8.3 of [64] (Washington uses F and E™ to denote the unit

groups of Q(u,) and Q(u,)™, respectively); see the discussion on pages 155-156: Up_1_; is
a pth power if and only if Washington’s Ei(N) is a pth power, if and only if the w'-isotypic

component of (Ut /C™), is nontrivial. O

Theorem 5.2.43. For even i € [2,p — 3],
H#eui(UT/CT)p = e, Ap.
Proof. See Theorem 15.7 on page 342 of [64]. O

Theorem 5.2.44. For any odd prime p, #¢€ p-3Ap = 1.
Proof. This is Corollary 3.8 on page 230 of [44]. O

Corollary 5.2.45. If ¢> # 1 (mod p), then [Lay : Ly1] > p.

Proof. Taking i = p— 3 and combining Theorems 5.2.42 to 5.2.44 yields Us & Q(up) TP, so
taking ¢ = 2 in Corollary 5.2.41 yields [Ms : E] > p, and we are done by Lemma 5.2.34(3).
O

Corollary 5.2.46. If ¢> # 1 (mod p), then [Ly; : E] > p*.
Proof. This follows from Corollary 5.2.37 and Corollary 5.2.45. 0

Lemma 5.2.47. Suppose that g =3 and p € {5,7,11,13}. Then [L3 1 : Lo1] = [L2; : E] =
p.

Proof. By Corollary 5.2.35, it suffices to check that Lszi/Lo1/E is a tower where each
successive step is nontrivial. The bottom extension Ls;/E is known to be nontrivial
by Lemma 5.2.24(8), so it suffices to check that Ls3i/Lo; is nontrivial. For each p €
{5,7,11,13}, we find a prime r and a prime v of E lying above r such that Frob, —1 kills
Tp.al(1 = ¢p)?] but not J,, 4[(1 — ¢)3]; using Corollary 5.2.27, a computer calculation shows
that we may use the prime t specified by the following table.

|5 7 11 13
#F. |20 137 437 547
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5.2.5 Galois action on the torsion of Jp 4

As before, suppose that p, g are distinct odd primes.

Definition 5.2.48. Let Gq denote the absolute Galois group of Q.

Lemma 5.2.49. Suppose that £ is a prime and that k > 1 is an integer.

(1)

(2)

Suppose that £ & {p,q} and that D € J,,[l*] \ Tpqll*" 1. Then GQZD generates
jp7q[£k]'

Suppose that £ € {p,q} and that D € T, 4[(1 — Co)*] \ Tpgl(1 — ¢)F7Y]. Then GqZD
generates Jp.4[(1 — Co)¥].

Proof.

(1)

Suppose that & = 1. By linear algebra, J,,[{] ®F, Fy breaks up into the direct
sum of its eigenspaces for the (,4-action. The action of Gq on J, 4[¢] permutes the
eigenspaces transitively.

We will show that GQZD generates 7, 4[] ®F, F; as an Fy-vector space. Since D is
nonzero, there is some eigenspace for which its projection is nonzero, so since ¢ { pq,
there exists r € Fy[Z] such that rD is a nonzero eigenvector. Since Gq acts on
the eigenspaces transitively, the Gq-orbit of rD hits every eigenspace; hence, GqZD
generates Jp 4[(] ®F, F¢ as a Fy-vector space. This completes the case k = 1.

Now suppose that k& > 1. Multiplication by ¢*~! provides an isomorphism
He: jp,qwk]/gjpvqwk] ~ Tp,qll]-

The proof of the k = 1 case shows that the image of GqZD under p generates Jp 4[4,
so GQZD generates 7, 4[(*]/0T, 4[¢%]. By Nakayama’s Lemma, the only subgroup of
Tp.q[€¥] which generates Jp 4[¢¥]/0T,.4[¢] is Tp.q[¢*], so we are done.

Without loss of generality, assume that £ = q.

Suppose that k = 1. By Corollary 2.3.2, we may express D = Ef:_é a;[(0, C;,) — o]
for a; € Z/qZ such that ap + --- + ap,—1 = 0. By applying an appropriate power of
(p to D, we may assume that ag Z 0 (mod ¢). Let g € Gq restrict to a generator of
Gal(Q(4y)/Q). Then

p—1 p—1
(g+9°+---+¢"")D = (p—1)aol(0,1) — o0] + (Z ai) > 1(0,¢)) — o]

i=1 j=1
= (p = 1)ao[(0,1) — o0] + (—ao) (=[(0,1) — o0])
= pag[(0,1) — oo]. (5.25)

Since pag # 0 (mod ¢), (5.25) implies that [(0,1) — oo] lies in the subgroup generated

by GqZ,D. Applying elements of Z, shows that each [(O,C;) — oo| also lies the
subgroup generated by GqZ,D, and these generate J, 4[1 — (4]

The proof of the k > 1 case is similar to the one in Lemma 5.2.49(1). O

Corollary 5.2.50. Suppose that £ is a prime and k > 1.
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(1) Suppose that £ & {p,q} and D € Ty 4[t*]\ Tpq[*1]. Then the Galois closure of E(D)
over Q equals E(Jy4[0%]).

(2) Suppose that £ € {p,q} and D € T, 4[(1 — C)¥]\ Tpql(1 — C)¥7Y]. Then the Galois
closure of E(D) over Q equals E(J,4[(1 — ¢0)¥)).

Proof. This follows immediately from Lemma 5.2.49(1) and Lemma 5.2.49(2). O

Corollary 5.2.51. Suppose that p > 5, ¢ = 3, and k € [1,p — 1]. Suppose that D €
jp,q[(l - Cp)k] \jp,q[(l - Cp)k_l]- Then E(D) = L1

Proof. Induct on k. The case k = 1 follows since J[1 — (] is already defined over E.
Now suppose the assertion holds for k — 1 and that D € J,4[(1 — (,)*] \ Tpql(1 —
k=11, By the inductive hypothesis, Ly_11 = E((1 — (,)D), so Lx_11 = E((1 - (,)D) C

&)
(D) C Ly.1. By Corollary 5.2.35, either E(D) = L1 (in which case we are done) or that
(
(

E
E(D) = Lig_11. If E(D) = L_1 1, then E(D) is Galois over Q, so Corollary 5.2.50(2) gives
E(D) = E(Jpql(1 = ¢)*]) = L1, so we are again done. O

Lemma 5.2.52. Let i > 0 be an integer and v € Z, [Gal (E(J[p™])/E)]. Suppose that
v —1 kills J[(1 — ¢p)¥]. Then

(1) for any integer k >0, (v — 1)k kills J,4[(1 — ¢,)™*];
(2) PP AP+ 1 Kills T[p) = Tpel(1 = G)P s
(3) 7P — 1 kills Tpq[(1 = ()P~ 1]
Proof. Since Jp4[p™°] 2 J[1 — (,] and the field of definition of J, 4[1 — ] is Q(uy),
E(Tp,q[p™]) = Ql1p, Tpqa[p™])-

So now this lemma follows from Lemma 2.5.11. O

5.2.6 Classification of torsion points on C,, 4
The case Cp 4 for distinct odd primes p, q
As before, p and ¢ will be distinct odd primes.

Definition 5.2.53. Suppose that m > 1 is an integer coprime to p and ¢ and that a,b > 0
are integers. Say that D € J, ,(C) is of evact order (1 — (,)*(1 — (;)’m if

D€ Tpql(1 = )" (1 — Cq)bm]
D & Tpql(1 = G)* (1 = ¢g)'m)
D & Tpgl(1—Ep)* (1 — Cq)b_lm]v

and for all m/|m such that m’ # m, we have
D & Tpql(1—¢p)* (1= Cq)bml]-
Lemma 5.2.54. Suppose that D € T, 4(C).

(1) Suppose that D has exact order (1 — (). Then the stabilizer of D in Z is Z,.
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(2) Suppose that D has exact order (1 — (;). Then the stabilizer of D in Z is Z,.
(3) Suppose that D has exact order (1 —(p)(1 — ). Then the stabilizer of D in Z is {1}.
Proof.

(1) The stabilizer contains Z,. If it were any larger, then it would be Z. That would
imply that D is fixed by (4, so gD = 0. Since D is fixed by (,, we also have pD = 0.
Together, these imply that D = 0, a contradiction.

(2) Similar to the proof of the previous part.

(3) The stabilizer of D is contained in the stabilizer of (1 — (,)D and (1 — (;)D, so the
previous two parts imply that it is contained in Z, N Z, = {1}. O

Lemma 5.2.55. Suppose that D € J,42] \ {0}.
(1) The extension E(D)/E is ramified at some prime above 2.
(2) The extension E(D, Jpqlpa))/E(Tpqlpq]) is nontrivial.
Proof.

(1) Suppose for contradiction that F(D)/E is unramified at every prime above 2. Since
E/Q is also unramified at every prime above 2, we see that E(D)/Q is unramified at
every prime above 2. Hence E(J,4[2])/Q, which is the Galois closure of E(D)/Q by
Corollary 5.2.50(1), must also be unramified at every prime above 2, so Lemma 1.4
of [30] implies that the mod 2 reduction of 7, , must be ordinary, which contradicts
Lemma 4.2 of [37].

(2) Since Cp 4 has good reduction at 2 and 2 is coprime to pq, the extension E(J, 4[pq])/E
is unramified at every prime above 2, so we are done by Lemma 5.2.55(1). O

Lemma 5.2.56. 2pg[P — oo] = 0.
Proof. This is a special case of Proposition 5.2.22(i). O

Definition 5.2.57. By Lemma 5.2.56, there exist a € [0,p—1], b € [0,¢g—1], and c € {1,2}
such that P has exact order (1 — (,)%(1 — (;)bc. Define D,, D,, D2 to have exact order
(1—¢p)% (1 —¢,)° and c respectively, such that [P — co] = D, + D, + Ds.

Proposition 5.2.58. pg[P — oco] = 0.

Proof. If not, then Dy # 0. By Lemma 5.2.55(2), there must be some nontrivial 7 €
Gal(E/E(Jpqlpq])) which moves Dy, and hence 7P # P. Since 7 fixes D, and Dy, we see
that 2[P — 7P] = 2(Dy — 7D2) = 0, which violates Lemma 2.2.3. O

Lemma 5.2.59. Suppose that a > 2. Then

(1) [E(D,) : Bl > p;

(2) if ¢ =3, then E(Dy,) = Lq1;

(3) if ¢ =3 and a > 4, then [E(D,) : E] > p.
Proof.
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(1) Since E(D,) is a subfield of L,; and Lemma 5.2.24(10) implies that [L,; : E] is
a power of p, [E(D)) : E] is also a power of p. If E(D,) = E, then taking Galois
closure of both sides (over Q) and applying Corollary 5.2.50(2) yields L, 1 = E, which
contradicts Lemma 5.2.24(8).

(2) This follows from Corollary 5.2.51.

(3) This follows from Lemma 5.2.59(2) and Corollary 5.2.46. O
Definition 5.2.60. Let G denote the absolute Galois group of E.
Lemma 5.2.61. Suppose that a,b > 1.

(1) #GpZP > pq|E(Dy) : E.

(2) #GEZP > pq[E(D,) : E.

Proof. Both parts are similar so we prove the first. Suppose that h € Gal(E/FE) and z € Z
satisfy hzP = P. Since the action of Gal(E/E) and Z commute, we must check that h fixes
D, and z = 1.

Then (1 — ¢,)* 11 — ()" 1P has exact order (1 — ¢p)(1 —¢,) and is fixed by hz. It is
also fixed by h since £ = L; ;. Therefore, it is fixed by z. Lemma 5.2.54(3) implies that
z =1, so h fixes P, and hence h also fixes D,,. O

Lemma 5.2.62.

(1) Suppose that a > 2. Then there exists h € Gal (E/E) which moves P such that h — 1
kills Jp,q[(a(1 = Gp)]-

(2) Suppose that b > 2. Then there exists h € Gal (E/E) which moves P such that h — 1
kills Tp,q[P(1 = Co)l-

Proof. Both parts are similar so we show the first. Since a > 2, the extension E(D,)/E
is nontrivial by Lemma 5.2.59(1) and it is disjoint from E(Jp4[q])/E by Lemma 5.2.24(3).
Therefore, there exists h € Gal(E/FE) which moves D, (and hence, moves P) such that
h — 1 kills Jp4lq]. Since E = Li; by Lemma 5.2.24(2), we know that h — 1 also kills

Tpall = Gpl- [
Recall the definitions of WM(Q) and wt(Q) in Definition 2.6.1 and Definition 2.6.5.
Lemma 5.2.63.
(1) Suppose that a > 2 and b > 1. Then for each Q € Sp, we have p — 1,p € WM(Q).
(2) Suppose that a > 1 and b > 2. Then for each Q € Sp, we have ¢ — 1,q € WM(Q).

Proof. Both parts are similar so we show the first. Since WM(Q) = WM(P) for each
Q € Sp, we will show that p — 1,p € WM(P).

By Lemma 5.2.62(1), there exists h € Gal(E/E) which moves P such that h — 1 kills
Tp.qla(1 — (p)]. By Lemma 5.2.52(3), h? — 1 kills 7, 4[pg], so "’ P = P and hence

WP #Pforl<i<p-l1. (5.26)

Since h — 1 kills Jp 4[q] > pP, we have pP ~ p(hP), so by (5.26), p € WM(P).
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Since h — 1 kills J,, 4[1 — ¢,], Lemma 5.2.52(2) gives that 1+h+ -+ kP~ kills 7, 4[p],
which combined with the fact that h — 1 kills 7, 4[q] shows that (1 +h +---+ h?~1) —p
kills 7, 4[pq] > P, so

hP +h*P+---+ WP71P ~ (p—1)P,

and hence by (5.26), p — 1 € WM(P). O

Lemma 5.2.64. Suppose that QQ € Cp4(C).

(1) If p—1,p € WM(Q), then

2 ifq=3
O, (129 s

(2) If¢—1,g € WM(Q), then

2 ifp=3

O (150) s

Proof. Both parts are similar so we prove the first. Suppose that the gaps of Q) are k1 <
ko < --- < kg. Since WM(Q) is a monoid and we assume that p — 1,p € WM(Q),

{p—1,p,20-2,2p—1,2p,3p—3,3p—2,3p— 1,3p,--- } € WM(Q),
SO
fori>1,
fori>p—1,

for i > 2p — 4, (5.27)
for ¢ > 3p — 8§,

ki —1i>

© ot N O

Ifg=3,theng=(p—1)(¢—1)/2=p—1,so (5.27) implies

g
wt(@Q) =) (ki —i) > 040+ +0+2=2

=1

If ¢ > 5, then weakening the bounds in (5.27) yields

fori>1,
for i > p,
fori>2p—1,
for ¢ > 3p — 2,

ki —1i>

S =N O
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SO

2;:1(p—1)+2 (p—1)+ --+2<pf1—1> (p—1)
()
- (7)

since g = (p—1)(¢ — 1)/2. O

Proposition 5.2.65.
(1) Ifa>2 and b > 1, then ¢ =3 and a € {2,3}.
(2) Ifa>1and b>2, then p=3 and b € {2,3}.

Proof. Both parts are similar so we prove the first. Using Theorem 2.6.6, observe that

F-g= >, wi(Q

QECy,q(C)
> Y wi(Q)
QeGEZP
> (#Gu2P) ( i, ((@))
> palE (D) 1, min,, (@) (5.28)
by Lemma 5.2.61(1).
If g =3and a > 4, then g = (p—-1)(¢g—1)/2 = p—1, L mma 5.2.64(1) gives
mingegzp (Wt(Q)) > 2, and Lemma 5.2.59(3) gives [E(D,) : E] > p*, so by (5.28),

9> —g>3p(p*)(2) > 6(p— 1)* = 6¢°,
which is impossible.

Ifq25,theng:(

—1)(¢ — 1)/2, Lemma 5.2.64(1) gives mingeg,zp (Wt(Q)) >
g(q — 3)/2, and Lemma 5.2.59(

) gives [E(D,) : E] > p, so by (5.28),

9°—9>pa(p <g< >> g(p—1)2<5(ql_61)2> 293,

which is impossible. ]

)
1

Lemma 5.2.66. Suppose that Q = (zo,y0) s a torsion point on a superelliptic curve
y" = f(x) where f is monic, d := deg(f) is coprime to n, and d[Q) — co] = 0. Then there
exists v(z) € Clz] with degv < d/n such that div(y — v(z)) = dQ — doo and v(z)" =
f@) = (x — @)
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Proof. Let F be the function field of the curve. Since d@) ~ doo, there exists h € F such
that
div(h) = dQ — doo. (5.29)

Since h only has poles at oo, h is a polynomial in x and y. Since the pole at oo has order
d, it follows (after scaling h by a constant) that h = y — v(z) where deg(v) < d/n. The
xz-map provides an inclusion of function fields C(x) C F, so taking the norm of both sides

of (5.29) from F to C(x) yields
div(f(z) — (v(z))") = ddiv(z — o) = div((z — 20)?),

so f(x) — (v(z))™ and (z — 2¢)? are the same up to a constant multiple; since f is monic
and degv < d/n, they are equal. O

Proposition 5.2.67.

(1) If a,b <1, then (a,b) € {(0,0),(0,1),(1,0)}.

(2) If min{a,b} =0, then (a,b) € {(0,0),(0,1),(1,0)}.
Proof.

(1) Then (1 — {,)(1 — {g)[P — oo] = 0, which can be rearranged to yield P + (,(,P ~
CpP + (4P, so by Lemma 2.2.3, either P = (,P or P = (,P, meaning that either a or
b is 0.

(2) Without loss of generality, suppose that a = 0. Then ¢P ~ goo, so if we let ¢ be the
x-coordinate of P and define

L(z):=2941— (z — )9, (5.30)
then Lemma 5.2.66 shows that there exists v € C[z] such that
L(z) = v(x)P. (5.31)

A calculation yields
2x — ¢ z(z — c)
1=1— L+ <) L by (5.30
( q ) q(q—1) (b (5:30)

=t (vt (P2 o B 2 b)) (o (500,

so vP~2 divides 1, implying v is a constant, so the terms with v’ and v” disappear
and we obtain vP = 1, so (5.31) gives L(z) = 1, and then (5.30) yields ¢ = 0. Hence
[P —o00] € Tpgqll — (gl 500 < 1. O

Theorem 5.2.68. P is not an exceptional torsion point; i.e., (a,b) € {(0,0),(0,1),(1,0)}.

Proof. If min{a,b} = 0, then we are done by Proposition 5.2.67(2).

Case A: min{a,b} > 2

=

Then Proposition 5.2.65(1) implies ¢ = 3 and Proposition 5.2.65(2) implies p = 3,
which is impossible since p and ¢ are distinct odd primes.
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Case B: min{a,b} =1

Without loss of generality, assume that b = 1 and a > 1. Then Proposition 5.2.67(1)
implies that a > 2, so by Proposition 5.2.65(1), ¢ = 3 and a € {2,3}. Then (1 —
¢p)3(1 = ¢3)[P — oo] = 0, which we can rewrite as

(3CsP +3C2P + 3P + P ~ (3P + 302 (3P + 3¢, P + (3P (5.32)

Case B1: {(J(3P, (P, (p¢3P, PY N {(3P, (3P, P, 3P}y # 0
Then P is fixed by some z € Z\ {1}, so it is fixed by either ¢, or (3, which implies
that (a,b) € {(0,0),(0,1),(1,0)}.

Case B2: {Cg<3pa Cgpa CpC3P7 P} N {<3P7 C5C3P7 CpP7 <3P} = @
Then (5.32) gives a degree 8 map v: Cp, — P, so applying Corollary 2.2.2 with
v and the y-map yields

B-1r-1)/2<B-1)B-1),

so p < 15; thus, p € {5,7,11,13}. By Lemma 5.2.47, there exists a nontrivial
v € Gal(Ly,1/Lg-1,1). Lemma 5.2.59(2) gives Lq1 = E(D,), so v moves D, and
hence v moves P. Since v — 1 kills J[(1 — (,)*!], Lemma 5.2.52(1) gives that
(v — 1)2 kills J[(1 — ¢)2@ V], Also, v — 1 kills J[1 — ¢,], so (y — 1)? also kills
J[1 —¢,]. Hence (v — 1) kills J[(1 — ¢,)2@ V(1 — ¢,)], and since 2(a — 1) > a,
it kills P. Therefore,

¥2P + P ~ 2vP,

so Lemma 2.2.3 implies P = v P, contradicting the fact that v moves P. O

The hyperelliptic case

Theorem 5.2.69 ([15]). The set of exceptional torsion points of Cas is the Z-orbit of
(V/4,v/5). Each has exact order (1 — (5)3; in particular, each is killed by 5.

Proof. On pages 206-207 of [15], Coleman computes the torsion points of the curve w® =
u(1 — u), which is isomorphic to Ca 5. See also [54]. O

Theorem 5.2.70. When q > 7 is prime, Ca 4 has no exceptional torsion points.

Proof. This is Theorem 1.1 of [29], which classifies torsion points on the isomorphic curve
=yl -y). O

Some remaining curves
Proposition 5.2.71.
(1) For(n,d) € {(2,9),(8,3),(2,15),(2,25),(4,5)}, Cnq has no exceptional torsion points.

(2) The set of exceptional torsion points of Cy3 is the Z-orbit of (2,4/3). Each has eract
order (1 — C4)(1 — (3)?; in particular, each is killed by 12.
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Proof. A computation with Magma yields

2% — (=2¢% + Dy — z — 3y — (45, — 2)y + 1))
Y3+ (6¢% — 3)y? — 9y — 6¢% + 3

div <§§2 +2¢3 — 2012 —1—-6 (

= (1= C)(1 = (3)*(2,V3),
div((12 — 4v/3y)2? + (18y% — 8V/3y — 6)x + y* — 12v/3y° 4+ 18y% — 4v/3y + 9)
=12(2,V3) — 1200,

so this shows that the point (2, \/§) is a torsion point of C43; hence, its Z-orbit will also
consist of torsion points of the same order.

Suppose for contradiction that P were an exceptional torsion point of C, 4 and that P
does not lie in the Z-orbit of (2,v/3) when (n,d) = (4, 3).

Case A: (n,d) €{(2,9),(4,3),(8,3)}

Let ¢nq: Cpa — Co3 be defined by ¢y, q(x,y) = (xd/3,y”/2). Define Sy C C23(Q) as
follows: for (n,d) € {(2,9),(8,3)}, Sp is the union of the Z-orbit of {oo (0,1),(—1,0)};
for (n,d) = (4,3), So is the union of the Z-orbit of {coc, (0,1),(—1,0),(2,3)}. Our
assumptions on P imply ¢, 4(P) ¢ So. Proposition 5.2.22(i) gives nd[P oo] =0, so
©n,a(P) € Ca3nd] and hence P must lie in the finite set S, 4 := ¢, 4 L (Ca3[nd] \ So).

Since Cp 4 has good reduction at 71, let C, 471 be the reduced curve over Frq, let
Py € Cy a1 (F71) be the reduction of P, and let Sy, 471 C Cp.g,71(F71) be the reduction
of Spd, so Pri € Sy 47 is such that ndPr; — ndoo is a principal divisor. Using
division polynomials, we use Magma to compute .S, 4 71 explicitly and find that S, 471 C
Cn,a,71(F7124). We use the IsPrincipal feature of Magma over Fry24 to find that there
are no Q € S, 471 such that nd@) — ndoo is a principal divisor, so P71, and hence P,
cannot exist.

Case B: (n,d) € (2,15),(2,25), (4,5)}

Let Nypq = nd if (n,d) € {(2,15),(2,25)} and let N, 4 = 3nd if (n,d) € {4,5}.
By Proposition 5.2.22(ii), Npq[P — ool = 0. Let ¢, 4: Chg — Ca5 be defined by
ena(r,y) = (@¥°,y™?) and To5 be the exceptional torsion points of Cq 5 listed in
Theorem 5.2.69. As in Case A, we see that P lies in the finite set S, 4 := @572(7'275).
Since Cp 4 has good reduction at 54001, we can define the reduced curve C, 454001
and the reductions Pss001, Sn,d,54001 of P, Sy 4 respectively. We use Magma to com-
pute Sn,d,54001 explicitly and find that Sn,d,54001 - Cn’d’54001(F54001). We use the
IsPrincipal feature of Magma over Fs4001 to find that there are no Q € Sy, 454001
such that N,, 4Q — Ny, 4oo is a principal divisor, so Pss001, and hence P, cannot ex-
ist. [

Main Theorem

Lemma 5.2.72. Suppose that n',d" are integers such that n'|n and d'|d. If Cp ¢ has no

exceptional torsion points, then neither does C,, 4.
Proof. The map Cpq — Cp ¢ given by (z,y) — (¥ /") sends exceptional torsion
points to exceptional torsion points. ]
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Theorem 5.2.73. Suppose that n,d are coprime integers with n,d > 2.
(1) If (n,d) = (2,3), then Ca3 is an elliptic curve, so it has infinitely many torsion points.
d) =

n, ,9), then the set of exceptional torsion points of Co5 s the Z-orbit o
2) If 2,5), th h f l f Co, he Z-orbit of
(v/4,V/5). Each has exact order (1 — (5)3; in particular, each is killed by 5.

(3) If (n,d) = (4,3), then the set of exceptional torsion points of Ca3 is the Z-orbit of
(2,v3). Each has exact order (1 — (4)(1 — (3)?; in particular, each is killed by 12.

(4) If (n,d) € {(3,2),(5,2),(3,4)}, thenCp g ~ Cap, via (x,y) € Cpq+— (C2nYy, C2d2) € Can,
so the exceptional torsion points of C, 4 are described by one of Theorem 5.2.73(1),
Theorem 5.2.73(2), Theorem 5.2.73(3).

(5) Otherwise, Cy, 4 has no exceptional torsion points.

Proof. Without loss of generality, suppose that d is odd.

Suppose that n is divisible by an odd prime p. Let ¢ be an odd prime dividing d. By
Theorem 5.2.68, C, , has no exceptional torsion points, so Lemma 5.2.72 implies that C, 4
has no exceptional torsion points.

So we may assume that that n = 2! for an integer i > 1. If d has a prime factor ¢ > 7,
then Theorem 5.2.70 implies that C2 4 has no exceptional torsion points, so Lemma 5.2.72
implies that C, 4 has no exceptional torsion points.

So we may assume that there exist integers j, k > 0 such that d = 3/5% and (j, k) # (0,0).

Case A: j+k>2
Then n is divisible by 2 and d is divisible by either 9, 15, or 25, so we are done by
Proposition 5.2.71(1) and Lemma 5.2.72.

Case B: (j,k) = (1,0)

If ¢ > 3, then n is divisible by 8. Since d = 3, we are done by Proposition 5.2.71(1)
and Lemma 5.2.72. The case (n,d) = (4, 3) is handled by Proposition 5.2.71(2). The
case (n,d) = (2,3) is Theorem 5.2.73(1).

Case C: (j,k) = (0,1)

If ¢ > 2, then n is divisible by 4. Since d = 5, we are done by Proposition 5.2.71(1)
and Lemma 5.2.72. The case (n,d) = (2,5) is handled by Theorem 5.2.69. O

5.3 Torsion points on a generic superelliptic curve

As usual, for any superelliptic curve y" = (x — ay) - - - (x — aq), the automorphism (,, refers
to the map given by(x,y) — (z,(,y). The points fixed by ¢, are {(a1,0),..., (aq,0),00},
and they are torsion points whose order divides n.

The aim of this section is to prove the following result.

Theorem 5.3.1. Suppose that n,d > 2 are coprime and satisfy n+d > 7. Let 6, be the
curve over k := Q(ay,...,aq) defined by the equation



Suppose that 6, is embedded into its jacobian 7, wusing the unique point oo at infinity.
Points fized by (, are torsion points of order dividing n.

(1) If d > 3, there are no other torsion points defined over k.

(2) If d =2 and n # 5, the only other torsion points defined over k are

ai + az . a; — a9 2
5 ,—ﬁ”( 5 ) 0<i<n—1

(3) If d =2 and n = 5, the only other torsion points defined over k are
a1 + as ap — ag 2
Q5 - ) ,
G ( 5 ) 0<i<43(

{(i(az—al)\/jﬂaﬁa?)’ éW) :0§i§4}-

This extends Theorem 7.1 of [57] from n = 2 to all n. To prove Theorem 5.3.1, we need
a few more results about torsion points on certain curves.

5.3.1 The curves y" = z% + x

Proposition 5.3.2. Suppose that n,d > 2 are coprime, P is a torsion point of y"* = z%+
whose order divides d, and P # co. Then d =2 or (n,d) = (2, 3).

Proof. Let the z-coordinate of P be c¢. By Lemma 5.2.66, there exists v € C[z] with
degv < d/n such that

v(z)" =2+ 1z — (z — )L (5.33)
Let 2’ := x—¢/2 and define u(z) := v(x+¢/2). Using (5.33) with 2 and ¢—z, a computation
yields

w(@)" + (—1)du(—a')" = (1 - (_1)d) o+ (1 + (—1)d) (5.34)

Case A: dis even

Suppose for contradiction that d > 2. Factoring the left hand side of (5.34) yields

n—1

[T () + ¢ - Gau(—2')) = c.

1=0

In particular, u(z’) + (opu(—2') and u(z') + Cop - Guu(—2") are forced to be constants,
so u(z') and u(—2') are constants, so v(x) is constant, so by (5.33),

2%+ 2 — (z — ¢) is constant. (5.35)

Since d > 2, the 2% !-coefficient of 2¢ + x — (z — ¢)¢ is dc, so (5.35) implies ¢ = 0, so
z? + 2 — (z — ¢)? = x, but this contradicts (5.35).
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Case B: d is odd
Factoring the left hand side of (5.34) yields

n—1

[[ ) = Ghu(—2')) = 22 (5.36)
i=0
Case B1: n >3
Considering the degree of each factor in (5.36) shows that at least two of them
must be constants, which will force u(z’) and u(—z') to be constant, and we can
repeat the same argument as in Case A to get a contradiction.
Case B2: n =2
Then (5.36) becomes

(w(z") + u(—2")) (u(z") — u(-2")) = 22’ (5.37)

Since u(z’)+u(—2a') is an even polynomial and u(z")—u(—2') is an odd polynomial,
(5.37) forces u(z') + u(—2') to be constant and u(z’) — u(—2z') to be a multiple
of 2/. Then degu =1, so degv = 1. Let v(z) = ax + b, so (5.33) gives

(ax +b)? =24+ 2 — (z — c)L. (5.38)

Considering the coefficient of %!, we conclude that either ¢ = 0 or d = 3. If
¢ = 0, then (5.38) implies that = (ax +b)?, which is impossible. So we conclude
that (n,d) = (2,3). O

5.3.2 Two curves for which n+d =7

Proposition 5.3.3.
(1) If P is a torsion point on y3 = x* + 22 + 1 with 12[P — oc] = 0, then P is fized by (3.
(2) If P is a torsion point on y* = x3 + 22 + 1 with 12[P — oc] = 0, then P is fized by (4.

Proof. Let C be the curve 3 = 2* + 22 4+ 1, let E be the elliptic curve 4% = 22 + 2 + 1, let
¢: C — E be the 2-to-1 map (x,y) — (2%,y), let Sy be the points of E fixed by (3, and
suppose for contradiction that P is a torsion point of C with 12[P — oo] = 0 such that P is
not fixed by (3. Then o(P) € E[12], so P lies in the finite set S := ¢ 1(E[12] \ Sp).

Since C has good reduction at 47, let C47 be the reduced curve over Fyz7, let Py; € Cy7(Fa7)
be the reduction of P, and let Sy7 C C47(F47) be the reduction of S, so Py7 € Sy7 is such that
12Py7 — 1200 is a principal divisor. Using division polynomials, we use Magma to compute
Sy7 explicitly and find that Sy7 C Cy7(F474). We use the IsPrincipal feature of Magma
over F 74 to find that there are no ) € Sy7 such that 12Q) — 1200 is a principal divisor, so
P,7, and hence P, cannot exist.

The curve y* = 22 + 2 + 1 is a 2-to-1 cover of the elliptic curve y> = 2% + 2 + 1 and the
same technique happens to work over F,;4 again. ]

5.3.3 Proof of Theorem 5.3.1
Case A: d=2

111



Ca,p is isomorphic over k to y* = (z — a1)(z — ag) via the isomorphism

_ _ 2
(2,9) € Can (“” ay +(atay) /(a2 = a1) x) € %,

2 ’ 4
so Theorem 5.2.73 gives Theorem 5.3.1(2) and Theorem 5.3.1(3).

Case B: d >3

Suppose that P is a torsion point of €, of order m. Let M = lem(m,nd). Since _Z,[M]
is a finite étale cover of Speck, every specialization map will induce an isomorphism
on the M-torsion of the jacobian.

Case B1: (n,d) € {(3,4),(4,3)}
Specializing to C, 4 and using Theorem 5.2.73 gives (1 — (,)[P — oo] = 0 or
d[P — oo] = 0. If d[P — oo] = 0, then specializing to y" = z? + = and using
Proposition 5.3.2 gives P = oo.
Case B2: (n,d) = (3,4)
Specializing to C,, 4 and using Theorem 5.2.73 gives nd[P — oo] = 0. Specializing
to y3 = 2* + 22 + 1 and using Proposition 5.3.3(1) gives (1 — (3)[P — oo] = 0.
Case B3: (n,d) = (4,3)
Specializing to C,, 4 and using Theorem 5.2.73 gives nd[P — oo] = 0. Specializing
to y! = 2% + x + 1 and using Proposition 5.3.3(2) gives (1 — (4)[P — oo] = 0.
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