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Abstract

Since the initial 300 pair release of the Futurecraft 4D in April 2017, adidas has
scaled its 4D program to mass produce additively manufactured shoe midsoles. The
4D midsoles are constructed from lattice structures, and if there is variation in the
manufacturing process, the structure’s material and/or geometric properties may be
altered. This means midsoles may have the same geometry but different material
properties and thus different stiffnesses, and they may also have the same material
properties but different overall stiffness due to geometric changes. The current quality
control test is slow, expensive, and does not scale well.

This thesis explores two potential techniques: using ultrasonic waves to determine
the lattices’ acoustic properties, and weighing them to determine their mass. Pulse-
echo testing data for 𝑛 = 8 samples shows a statistically significant (𝑝 = 0.0398 <
0.05) increase in response time due to sample stiffness. Stiffness scaled linearly with
lattice mass for both physical and simulated lattices, and mass predicted lattice stiff-
ness with a minimum accuracy of 90% across a range of simulated manufacturing
conditions. An analytical framework parameterized around a bivariate normal distri-
bution can determine accuracy of new test methods or from additional mass-stiffness
data. Lastly, cost minimization is presented for a hybrid test protocol which combines
mass testing with secondary testing for rejected samples. At specification limits of
±1𝜎, the hybrid test achieves 99% accuracy at 69.8% of the cost for the current test.
Increasing the specification limit to ±2𝜎 reduces cost further, achieving 99% accuracy
at 16.4% of the current cost.

Thesis Supervisor: Anette "Peko" Hosoi
Title: Neil and Jane Pappalardo Professor of Mechanical Engineering
Associate Dean of Engineering
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Chapter 1

Introduction

The goal of this thesis was to develop a test to predict the stiffness of additively
manufactured lattice structures. This work was motivated by our partner, the adidas
FUTURE team, based in Portland (Oregon, USA) and Herzogenaurach (Germany).
adidas currently uses additive manufacturing to produce running shoes. An accurate,
fast, and low cost inspection technique could be further developed and applied as a
manufacturing quality control test.

adidas is the largest sportwear manufacturer in Europe and the second-largest
globally behind Nike (Beaverton, Oregon, USA) [64]. Valued at 61 billion USD glob-
ally in 2018 [45], the athletic footwear market constitutes a large portion of sneaker
sales, which reached 100 billion USD in 2019 [66]. The sneaker industry grew signif-
icantly in recent years; sales have nearly doubled since 2016 [66]. Comprising both
men’s and women’s sales, the athletic footwear category is projected to see continued
growth at a rate of 7.9% per year for a total of 90 billion USD in global sales by 2023
[45].

Athletic footwear has historically been designed around average users, largely
based off of white male anthropometry. This approach neglects users outside of exist-
ing standards, including those with different gender or ethnic backgrounds. Female
runners now begin to outnumber men in many running events and organizations, in-
creasing the demand for female-specific products. Advances in manufacturing technol-
ogy can facilitate more inclusive designs by creating products tailored or customized
for individual users.

Additive manufacturing (AM), also known as 3D printing, is a potential option for
creating custom running shoes. Due to its high design flexibility and independence
from costly mold tooling, shoes could be quickly adjusted and optimized for specific
runners. AM is by no means a fundamentally new manufacturing process; the theory
emerged in the 1970’s [39], and practical origins trace their routes to the 1980’s [36,
46]. However, footwear is a novel application of AM technology. Adapting any process
for a new area produces significant variability as individual steps are refined and the
process becomes better controlled. Quality control of AM footwear is necessary to
ensure it meets required specifications, and these inspection techniques must be able
to scale with production numbers. This thesis focuses on developing test methods
which can predict the stiffness of a lattice without using a compression test.
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Running shoe construction is described in Section 1.1. Section 1.2 gives an
overview of AM methods and identifies several sources of variability in lattice manu-
facturing. Section 1.3 provides context on existing running shoe testing, which ranges
from initial concept development to monitoring manufacturing processes. Preliminary
work on this topic began through a class project in Spring 2019, which is discussed
in Section 1.4. Finally, an overview of the thesis is outlined in Section 1.5.

1.1 Running Shoe Midsoles

Running shoes aim to prevent injury, give traction with the running surface, and
optimize a runner’s performance. While running shoes may have additional sub-
components or detailing, the major components are the upper, midsole, and outsole,
as shown in Figure 1-1. The upper wraps around the top and sides of the foot and
holds the shoe to the foot [26]. The upper often contains a heel counter, a stiff insert
which secures the foot by guiding the heel and preventing excessive motion. The
midsole is the primary source of cushioning, traditionally made of polymer foam.
The outsole provides traction and protects the midsole [16]. The insole sits below
the foot, separating it from the seams and adhesives which secure the upper and
midsole. While some work has focused on insoles or other forms of shoe inserts
[47, 49], the midsole is often the focus of research and development [48, 54, 56, 68,
33, 67]. Of these components, the midsole is most closely associated with runner
performance, which is often seen as a minimization of lost energy [50] or running
economy [33]. Previous work associates midsole bending stiffness with decreased
energy losses, enhanced aerobic capability, and improved performance [54, 33].

Figure 1-1: Exploded view of a running shoe, displaying its major components.
Adapted from [51].

Running shoe midsoles are traditionally produced in molding processes from closed
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cell foams. These viscoelastic foams, traditionally ethyl vinyl acetate (EVA, Figure 1-
2a) or polyurethane (PU) [67], offer good damping and heat dissipation properties
[41]. In recent years, companies have introduced new polymers and foams: Nike’s
Vaporfly shoe (Figure 1-2b) uses polyether block amide (PEBA) foam, marketed as
PEBAX (Arkema, Colombes, France) and VESTAMID E (Evonik Industries, Essen,
Germany) [55]; and adidas’s Boost (Figure 1-2c) creates a foam from expanded ther-
moplastic polyurethane (eTPU) particles [2]. Both PEBA and eTPU offer improved
energy return properties compared to industry standards such as EVA. Despite this
performance benefit, both PEBA and eTPU are constrained by mold-based manufac-
turing processes which prevent easy modification of midsoles for individual users.

Figure 1-2: Traditional running shoe midsoles are manufactured using closed-cell
foams such EVA, PEBA, and eTPU [58], [52], and [4].

Achieving different foam densities or variable stiffness regions using traditional
manufacturing methods requires gluing several foams together. In 1993, Saucony’s
Hello EVA combined different foams to create the first dual-density midsole, offering
improved cushioning and stability [37]. This set a new industry standard for shoe
performance. Today, shoes like the Saucony Phoenix 7 in Figure 1-2 use higher density
inserts to provide stability and reduce pronation, the inward movement of the foot
during running. Companies also developed other ways to improve midsoles; a few
advances are displayed in Figure 1-3. Despite experiments with adding leaf springs
[32] and air cushions [63], foam midsoles remain the industry standard.

1.1.1 adidas Futurecraft 4D

Several companies are developing AM midsoles as an alternative to foam midsoles
[62]. adidas creates elastomeric lattice structures using a proprietary process from
Carbon 3D (Redwood City, California, USA). The adidas Futurecraft 4D program
launched in April 2017 with the initial 300 pair release of the Futurecraft 4D shoe,
shown in Figure 1-3c [61]. Midsoles are created from a digital geometry, which pro-
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Figure 1-3: Novel running shoe midsole technologies include a) leaf springs [59], b)
air cushions [53], and c) elastomeric lattices [21].

vides increased design flexibility; midsoles can be customized by digitally adjusting
the lattice structure. By translating athlete data into midsole stiffness profiles, each
midsole can be designed for specific energy return, cushioning, and stability proper-
ties. adidas produces these midsoles at scale; the company produced more 100,000
pairs of shoes by the end of 2018 and continues to scale its process [3].

1.2 Additive Manufacturing

In contrast to other manufacturing methods, additive manufacturing creates parts
by sequentially depositing material. Formative manufacturing, represented in Fig-
ure 1-4a, fills a mold cavity with material to create the desired geometries. Forma-
tive methods include processes such as injection molding, casting, and steam-chest
molding of foams. Traditional foam midsoles are made using formative processes.
Fabricating the necessary molds for these processes is costly, and parts are limited to
geometries which can be easily filled and released from molds. Subtractive manufac-
turing removes material through methods such as machining (Figure 1-4b), electrical
discharge machining (EDM), and laser cutting. Compared to formative techniques,
subtractive manufacturing methods have increased design flexibility, but this comes
at increased cost and reduced production speed.

Traditional additive manufacturing creates parts by building individual layers that
bond to each other. The most mainstream techniques include fused deposition mod-
eling (FDM/FFF, such as in Figure 1-4c and 1-5), stereolithography (SLA) as in
Figure 1-6, multijet modeling (MJM), and selective laser sintering (SLS). Although
these methods differ in how they make individual layers, each performs a series of
discrete steps for every layer. Carbon’s Digital Light Synthesis (DLS) and Continuous

18



Liquid Interface Process (CLIP) fundamentally differ from other techniques. Instead
of performing a set of steps for individual layers, it continuously produces material
and parts, leading to increased manufacturing speed.

Figure 1-4: Schematic of the fundamental differences between formative, subtractive,
and additive manufacturing methods. Adapted from [10] .

1.2.1 Layer-Based Processes

In fused deposition modeling (FDM), also referred to as fused filament fabrication
(FFF), the machine heats a thermoplastic filament and extrudes it through the nozzle,
a small opening in an extrusion die [40]. Figure 1-5 depicts this process. Software
controls the position of the extruder relative to the printed part. A Cartesian robot
typically moves the extruder along a two-dimensional path within each layer. After
completing each layer, the table height adjusts to move the extruder to the next layer.
FDM machines generate overhangs by printing a support structure. These support
structures are printed using structures and/or material that is easily removable. Some
machines produce support material with a less stiff filling structure that can be easily
broken off of the finished part, while others use materials that dissolve in specialized
solutions. Layer height is limited by the diameter of the opening in the extrusion die
but typically ranges from 0.050 to 0.120 mm. For the same two-dimensional path,
printing time is relatively similar regardless of layer height; as a result, print time is
driven by the number of layers. FDM’s layer-wise creation of parts results in stepped
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surfaces and anisotropic properties. FDM parts are stiff in tension and compression,
but layers shear past each other relatively easily.

Figure 1-5: Schematic of the fused deposition modeling (FDM) process

Stereolithography (SLA) involves selectively curing a liquid photopolymer to cre-
ate a solid object. This technique has been popularized by Formlabs (Somerville,
Massachusetts, USA), which uses an upside-down SLA process in its machines, as
represented in Figure 1-6. An ultraviolet laser focuses on a selected area within a
shallow layer of the liquid polymer within a much larger resin tank. Galvanometers,
small and precise motors, adjust the laser’s position to move it around the XY plane
and cure the photopolymer within a single layer of the part [25].

Part tolerance and resolution is driven by the laser’s focus and sharpness but
is typically as small as 0.0125 mm. SLA machines create stiff lattice structures to
support parts and overhanging features during production. After curing a single layer,
a series of mechanical steps occur to move the build platform, renew the resin, and
cover the cured solid with a new layer of liquid polymer. Printing and curing time for
each layer is similar regardless of thickness, but these discrete, mechanical steps must
happen for each layer. As a result, SLA is rate-limited by the time required to perform
the intermediate steps. After printing, support structures are mechanically removed
from thee part, typically leaving blemish marks. SLA parts must also undergo washing
to dissolve uncured material and UV curing to ensure a complete cure.

In multijet modeling (MJM), print heads deposit photopolymer on a build tray.
Because UV bulbs cure each layer and cause it to harden into a solid, multijet mod-
eling does not require post-print curing, unlike SLA printing. In addition to the
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Figure 1-6: Schematic of the upside-down stereolithography (SLA) process used by
Formlabs. Adapted from [25].

material used for the desired part, multijet machines also deposit a gel-like resin
which acts as a support material and dissolves in an aqueous solution after printing.
Like SLA, MJM also produces small surface layers. These layers are often as small as
0.016 mm, and the process is rate-limited by the time necessary to individually cure
each layer.

Selective laser sintering (SLS) sinters nonmetallic powders into a solid object.
When metallic powders are used, the process is referred to as selective metal melting
(SLM). In SLS/SLM, a laser beam traces a particular cross section in a thin layer
of powder. This sinters the powder particles into a solid mass. After covering this
solidified layer with a new layer of powder, the process repeats for the next layer.

1.2.2 Digital Light Synthesis

Digital Light Synthesis, Carbon 3D’s proprietary manufacturing technique, uses Con-
tinuous Liquid Interface Process (CLIP) to create monolithic parts with high resolu-
tion, good surface finish, and isotropic properties. This technique is used in Carbon’s
printers (Figure 1-7) to mass-produce parts in a variety of fields from sports equip-
ment (Figures 1-3c and 1-8a-b) to dental devices (Figure 1-8c).

CLIP conducts stereolithography above an oxygen-permeable window, as shown in
Figure 1-9 and detaild in [65, 38]. This window, made of an amorphous fluoropolymer
(Teflon AF 2400) is chemically inert, transparent to UV waves, and oxygen-permeable.
This creates a dead zone of uncured, liquid resin between the window and the part.
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Figure 1-7: Carbon’s M-series printers manufacture Futurecraft 4D midsoles in pro-
duction [23] .

Figure 1-8: Example applications of Carbon’s AM technology in a variety of fields
from athletic equipment to medical/dental devices [13, 14, 12].

The dead zone inhibits photopolymerization, meaning that resin will only cure due
to selective UV light exposure. A continuous sequence of UV images is projected
through the oxygen-permeable window, curing the resin. As the UV images cure the
resin, the build platform lifts, continuously pulling the finished part out of the resin
tank.

Unlike traditional stereolithography, where UV exposure, resin renewal, and part
movement occur in separate steps, these occur continuously in CLIP. Although layer
height and resolution affect printing rate in stereolithography, these factors do not
impact production rate in CLIP. CLIP is instead rate-limited by the resin’s material
properties, particularly its cure rate and viscosity. As a result, CLIP produces parts
at rates up to 100 times faster than other AM techniques.

Carbon focuses on printing metamaterials, specifically lattice structures. Additive
manufacturing does not require producing complex tooling, which means parts, and
specific regions of the parts, can be tailored for specific customer or functional needs.
Carbon’s software combines lattice parameters with material properties and desired
mechanical behavior to generate metamaterials. Lattices can be tuned to achieve spe-
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Figure 1-9: Schematic of the digital light synthesis process used by Carbon. Adapted
from [65].

cific loading behaviors, including non-linear compression responses. Structures may
also have multiple functional zones with different properties. Protective equipment
typically uses expanded polystyrene to absorb impact, but optimizing performance
means costly assembly of various parts. Riddell manipulates lattice geometry to cre-
ate single-part football liners from a highly damped elastomer, shown in Figure 1-8b.

1.3 Shoe Quality Testing

Running shoes undergo rigorous testing at all stages of development, from initial
concept to final product ready for release. Before a new product can be introduced to
markets, many aspects of the product and the production line which creates it must
be tested. In a shoe, individual materials such as the upper’s textiles or the midsole’s
foam might be tested to establish material properties or understand fatigue behavior.
As a shoe moves toward release, testing may become higher level, focusing on whole-
shoe behavior, insurance of quality standards, or variability in the manufacturing
line.

1.3.1 Research and Development

In the earliest stages of a new footwear product concept, experimental work empha-
sizes science such as materials fundamental biomechanics and materials science.
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Motion capture and VO2 max testing help scientists understand how different shoe
concepts affect running. In motion capture testing, a subject wears reflective markers
on key anatomical locations, such as the sides of the ankle. An array of specialized
cameras track marker position in three dimensions and create a digital representation
of the runner’s position in space. In addition to kinematic markers, force plates and
EMG sensors often record ground reaction forces and muscle activity, respectively.

Among other metrics, joint powers and muscle activity may be used to compare
shoes [68]. VO2 max testing uses a face mask to measure the volume and concentra-
tions of inhaled and exhaled air during activity. VO2 max represents the maximal
rate of oxygen consumption, which is typically seen as a good indicator of cardiovas-
cular fitness. In addition to establishing the VO2 max, this type of testing is also
used to determine running economy, defined as the rate of oxygen intake at a specified
running speed. Running economy is linked to shoe performance: if a runner is more
efficient in a given shoe, they might reasonably sustain faster speeds and improved
performance [33].

At this stage, mechanical testing may focus on testing individual materials or
performance of early prototypes. This could include compression or tensile testing in
quasi-static and/or dynamic loading conditions. Fatigue behavior and properties in
variable temperature conditions may also be important. As shoes progress in devel-
opment, testing may also involve computational models of the product’s properties
or the manufacturing processes used to create it [17]. For example, development of
the adidas Springblade, shown in Figure 1-3, included finite element simulations to
determine the proper behavior of individual leaf springs [30, 31].

1.3.2 Quality Standards

Athletic companies test product quality against a variety of test standards, which
any product must pass before it may be released. While some of these are internal
quality requirements, others are developed according to International Standard Orga-
nization’s (ISO) guidelines. Many quality standards focus on behavior in mechanical
lifecycle testing. Among other standards, shoes must satisfy requirements for midsole
compression, four point bending, and Martindale abrasion tests. Running shoes must
also undergo an extended wear test of 400 km, typically lasting 8 weeks.

1.3.3 Inline Manufacturing Testing

Traditional manufacturing methods such as injection or steam-chest molding involve
filling a mold with the midsole material. Due to fixed mold geometries, manufactur-
ing variability mainly originates from differences in material properties, such as its
density. As a result, simple measurements such as mass quickly capture the quality
of standard foam midsoles.

The large number of production settings and steps, coupled with machine vari-
ability, mean that AM midsoles may not match the desired stiffness. In the existing
production line, a midsole is inspected after the final post-processing step. The mid-
sole is secured and undergoes a quasi-static compression test using a proprietary test
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fixture and test sequence.
This quasi-static test compresses midsoles a prescribed amount and uses the force

readout to determine midsole viability. Midsoles meeting desired stiffness require-
ments proceed to later steps in the assembly process. Midsoles which do not meet
these standards are rejected. As adidas and Carbon refine the printing process, the
variability in produced parts is expected to decrease. In order to produce more pairs
of shoes with consistent stiffnesses, adidas would then narrow the band of acceptable
stiffnesses.

Unfortunately, a compression test does not scale well, and replacement test meth-
ods must capture both geometric and material variation within the lattice in order
to be viable.

1.4 Preliminary Work through 2.98/2.980
Initial work on this topic began in Sports Technology: Engineering & Innovation, a
course taught by Prof. Anette “Peko” Hosoi and lecturer Christina Chase at the Mas-
sachusetts Institute of Technology in Spring 2019 under course number 2.98/2.980. In
2.98/2.980, students attend lectures and work in small groups on industry projects.
Lectures focus on technical strategies, trends in the sports technology field, and data
analysis and representation. Industry leaders also give guest lectures highlighting
their work. Partner companies and organizations sponsor projects on a range of top-
ics, from analyzing player tracking data in soccer to quantifying team strategies in
e-sports and studying vision through ski goggle lenses. Partners work with the course
instructors to create project statements, outline student deliverables, and identify
potential resources in the MIT community.

adidas presented the same problem statement to the Spring 2019 class which
formed the basis of this work [34]. Over the course of the semester, the group brain-
stormed possible solutions, obtained compression testing data for sample lattices,
and created bench level tests for four potential test methods: inducing lattice vibra-
tions, image analysis to determine strut thickness, a ball drop test, and ultrasonic
wave propagation. Given the damping properties of the lattice samples, the group
struggled to produce large vibrations and accurately measure the deflection of the
samples.The image analysis algorithm and setup were not robust enough to capture
and analyze the lattice structure, but a more refined setup and complex machine
learning algorithm could potentially better predict lattice stiffness due to variations
in its geometry. Releasing a metal ball over the sample and measuring its rebound
height did not yield repeatable results and showed no correlation with sample stiff-
ness. Ultrasonic wave propagation was the most promising, but an under constrained
test setup resulted in high uncertainty and low repeatability [15].

1.5 Thesis Outline
This thesis describes the work that led to the creation of a preliminary test method for
evaluating the stiffness lattice-based midsoles. It is primarily focused on determining
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stiffness of lattice samples through compression, ultrasonic wave propagation, and
mass testing.

Chapter 2: Mechanical Behavior of Physical Lattices: This chapter intro-
duces the lattices used for this study, analyzes their predicted behavior, and discusses
their observed properties such as mass, volume, and density.

Chapter 3: Acoustic Properties of Lattice Structures: The background
of ultrasonic testing and the method utilizing it are introduced. Both the appara-
tus and experiment designs are discussed, and results are presented correlating test
performance with the known stiffness values established in Chapter 2.

Chapter 4: Simulating and Characterizing Lattice Variability: This chap-
ter outlines the computational framework for simulating lattice stiffness and discusses
the properties of simulated lattices with varying levels of manufacturing noise and
variability.

Chapter 5: Framework for Analyzing Test Accuracy: Test accuracy is de-
termined for different prediction methods when applied to various groups of simulated
lattices. These prediction methods are also applied to the stiffness data collected in
Chapter 2.
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Chapter 2

Mechanical Behavior of Physical
Lattices

2.1 Cellular and Continuum Solids Models

The lattice structures used in this work have cellular microstructures, as do many
naturally occuring materials such as wood, cork, and bone. These materials are
often used in engineering applications for their high strength-to-weight ratios. Two-
dimensional cellular solids include honeycombs, while three-dimensional cellular solids
include the foams of Figure 1-2 and the lattice structures used in this work. Examples
of lattice unit cell geometries include the simple cubic, octet truss, and rhombic
dodecahedron structures shown in Figure 2-1.

Figure 2-1: Three dimensional lattice geometries are based off of repeated unit cell
geometries: a) simple cubic, b) octet truss, and c) rhombic dodecahedron.

Continuum models represent the cellular structure as a homogeneous solid with
equivalent properties. Along with the unit cell’s geometry and the material properties
of the bulk solid, the relative density drives many of the cellular solid’s properties
[5, 27, 28]. The relative density represents the volume fraction of the unit cell, or the
density of the structure divided by the material’s bulk density. Analytically this is
given by
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𝜌unit =
𝜌eff
𝜌solid

=
𝑛𝐴𝑐𝐿

𝑉unit

(2.1)

where 𝑛 = number of edges per unit cell, 𝐴𝑐 = cross-sectional area of a cell’s
edge, 𝐿 = edge length, and 𝑉unit = volume of the unit cell, including air. 𝑛 and
𝑉unit depend on the unit cell geometry, while 𝐿 changes with the size of the unit cell.
𝐴𝑐 depends on the manufacturing method and the desired cross section. Strut cross
sections of AM midsoles are approximately circular with radius 𝑟0, giving 𝐴𝑐 = 𝜋𝑟20.
Equation 2.1 then becomes

𝜌rel =
𝑛𝜋𝐿

𝑉unit

𝑟20 (2.2)

The unit cell’s geometry governs the relationship between the relative density and
the structure’s effective properties. In this study, a rhombic dodecahedron struc-
ture was used in physical testing, while computational modeling used the octet truss
lattice. An overview of the behavior of both structures is discussed in this section.
Although bending of the rhombic dodecahedron lattice’s struts dominate its behav-
ior, the octet truss lattice is governed by axial stretching of the struts. As shown by
Deshpande, Ashby, and Fleck in [19], a cellular structure is stretch-dominated when
its unit cell meets Maxwell’s criterion for static determinacy. In three dimensions,
this criterion is given by 𝑏− 3𝑗 + 6 ≥ 0, where 𝑏 = number of struts and 𝑗 = number
of nodes in the unit cells. Deshpande et al. [19] also outlines conditions for structures
with similarly situated nodes. In these structures the structure appears the same re-
gardless of the orientation in which it is viewed. In three dimensions, these structures
are stretch-dominated if they have node connectivity 𝑍 = 12. With a node connec-
tivity of 12, the octet truss lattice satisfies this criterion and is stretch-dominated.
The rhombic dodecahedron, by comparison, has a node connectivity of 8.

2.1.1 Rhombic Dodecahedron

The open-cell rhombic dodecahedron structure is bending-dominated with an effective
elastic modulus which scales approximately with density squared (𝜌2) in all directions.
As the name suggests, the unit cell is based on the space-filling convex polyhedron,
as shown in Figure 2-2. A unit cell has 12 rhombic faces, giving it 24 edges and
14 vertices. This structure was analyzed by Babaee, Jahromi, et. al. in [7] and
summarized here.

Rhombic dodecahedron unit cells have 𝑉unit = 16𝐿3

3
√
3
. Together with Equation 2.1,

this gives a relative density for the unit cell of

𝜌unit =
9
√

3𝜋𝑟20
2𝐿2

Edges in the rhombic dodecahedron structure are shared by three unit cells. This
means that the relative density of the structure is a third of the unit cell density:
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Figure 2-2: The rhombic dodecahedron unit geometry. Unit cells have 14 vertices
and 24 edges with lengths 𝐿 and radii 𝑟0.

𝜌rel =
𝜌unit

3
=

3
√

3𝜋𝑟20
2𝐿2

(2.3)

The rhombic dodecahedron is has equivalent properties in both the y- and z-
directions, defined by the axes in Figure 2-2. The x-direction corresponds to the the
loading direction in running and is the relevant loading direction for this study. The
effective elastic modulus in this direction, 𝐸𝑥 is derived by calculating the strain en-
ergy during uniaxial compression and applying Castiglione’s theorem, which is shown
in detail in [7]. This is the only direction of interest in this study, and we will refer
to 𝐸𝑥 as 𝐸eff . For a Young’s modulus 𝐸𝑠 of the bulk solid, this calculation gives

𝐸eff =
1

3
√

3
𝐸𝑠𝜌

2
rel =

3
√

3𝜋2

4𝐿2
(𝐸𝑠𝑟

4
0) (2.4)

In the rhombic dodecahedron lattice, 𝐸eff scales with 𝑟40 but only 𝐸𝑠, meaning 𝐸eff

is more sensitive to geometric changes in 𝑟0 than material changes in 𝐸𝑠.

2.1.2 Octet Truss Lattice

The octet truss structure is based on a face-centered cubic unit cell, shown in Figure 2-
3. To create the lattice structure, these octahedral unit cells are tesselated, with
each strut shared between two cells. The unit cell and overall structure can also be
described as a synthesis of tetrahedrons, as highlighted in Figure 2-3. An individual
unit cell is represented by eight tetrahedrons. A full analysis of the octet-truss lattice’s
properties is shown by Deshpande, Fleck, and Ashby in [20].

The relative density of the octet-truss lattice is given by

𝜌rel =
6
√

2𝜋

𝐿2
𝑟20 (2.5)

The octet truss lattice has cubic symmetry.Modeling the structure as a pin-jointed
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Figure 2-3: The octet truss unit cell geometry. The geometry is based off of the face-
centered cubic unit cell but can also be described with tetrahedrons (highlighted).

Geometry Relative Density, 𝜌rel Effective Elastic Modulus, 𝐸eff

Rhombic Dodecahedron 3
√
3𝜋

2𝐿2 𝑟20
1

3
√
3
𝐸𝑠𝜌

2
rel = 3

√
3𝜋2

4𝐿2 (𝐸𝑠𝑟
4
0)

Octet Truss 6
√
2𝜋

𝐿2 𝑟20
1
9
𝐸𝑠𝜌rel = 2

√
2𝜋

3𝐿2 (𝐸𝑠𝑟
2
0)

Table 2.1: Effective properties of the rhombic dodecahedron and octet truss lattices.

truss gives an effective modulus

𝐸eff =
1

9
𝐸𝑠𝜌rel =

2
√

2𝜋

3𝐿2
(𝐸𝑠𝑟

2
0) (2.6)

Finite element models performed by Deshpande, Fleck, and Ashby in [20] showed
a strong agreement between this relationship and observed results for octet-truss
lattices of various densities.

For the octet truss lattice, 𝐸eff scales with 𝑟20 and 𝐸𝑠. As in the rhombic dodechae-
dron lattice, 𝐸eff varies more with geometric changes in 𝑟0 than material differences in
𝐸𝑠. However, the octet truss’s effective modulus scales with 𝑟20 instead of 𝑟40, meaning
it is less sensitive to changes in strut radius than the rhombic dodecahedron geometry.
The relative densities and effective moduli for these two structures are summarized
in Table 2.1. For both unit cell geometries, changes to strut geometry (𝑟0) or mate-
rial properties (𝐸𝑠) impact the effective modulus. This model holds for infinite-sized
lattices. Due to their size and AM variability, it is not expected that the lattices used
in this work perfectly follow these relationships.
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2.2 Specimen Description
The objective of this work is to identify alternative tests that could potentially be
used in a manufacturing environment to predict lattice stiffness. To represent the
variability seen in production, known disturbances were introduced to create lattice
specimens with material and geometric differences. A viable test determines differ-
ences in overall stiffness, not only those resulting from purely geometric or material
changes.

Thirty specimens were printed on an M-series printer from Carbon at Carbon’s
headquarters in Redwood City, California, such as those in Figure 1-7. Specimens
were printed using Carbon’s proprietary EPU40, a light sensitive elastomeric polymer.
EPU40 has a Young’s Modulus 𝐸𝑠 of 3.15 MPa and density of 1.025 g/cm3 [8, 11].
Lattices had rhombic dodecahedron unit cells and measured nominally 80 mm x 80
mm x 20 mm overall with (𝑁𝑋 , 𝑁𝑌 , 𝑁𝑍) = (8, 8, 2) cells in each dimension. All
specimens were printed from the same original file, but settings were modified on the
printer to generate variability.

To capture material variability, fifteen samples were printed in each of two light
intensities, denoted by “Group A” and “Group B.” Group A had a lower light intensity
level. Geometric variability was introduced by altering the blackline value, which
represents a scaling of the strut thickness. A 0∘ blackline corresponds to an unaltered
strut thickness. Negative values represent thicker struts, and positive values represent
thinner struts. At least three samples were produced in each light intensity at each
of four blackline values ranging from -120∘ to 120∘. Each specimen in Group A and
Group B had an identifying tag which listed its print ID, group ID (A or B) and
blackline value.

Figure 2-4: All mechanical tests in this thesis used rhombic dodecahedron lattices
measuring 80 mm x 80 mm x 20 mm.

2.3 Experimental Setups

2.3.1 Stiffness

As described in Section 1.3.3, midsoles undergo quasi-static compression testing dur-
ing production. Internal company test standards were adapted for this study to
accurately determine the stiffness of the lattice puck samples used in this study and
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to accommodate available test equipment. Previous results from the Sports Technol-
ogy course (see Section 1.4 and [15]) used a 25 mm cylindric indenter but produced
inconsistent compression results with large uncertainty. Uncertainty on the order of
10% made it challenging to draw conclusions and correlate stiffness with the results
of other test methods.

To improve repeatability and reduce uncertainty, samples were compressed be-
tween large compression platens. 150 mm diameter compression platens were mounted
to a universal testing machine (model 5969) from Instron (Norwood, Massachusetts,
USA) equipped with a 20 kN load cell, as in Figure 2-5. Lattice puck samples were
placed on the lower platen and centered by eye. Samples were preloaded to 20 N in-
stead of typical value used for full midsoles. The 20 N preload represents about 6-7%
of the force at 10 mm compression flattened samples and remove any initial distortion.
Other test parameters adapted from the existing in-line test and controlled through a
test method written in Instron’s Blue Hill software: the machine applied the preload
at a rate of 75 mm/min, zeroed displacement, compressed the sample 10 mm at rate
of 100 mm/min, and then rapidly returned to the neutral starting position.

Figure 2-5: Diagram of Instron setup for lattice compression testing.

Each specimen was tested seven times with a 60 second recovery time between
trials, which avoided capturing the material’s cyclic viscoelastic response. The ma-
chine continuously recorded time, position, and force data during loading at a 1000
Hz sampling rate. All data was exported to comma-separated values (CSV) files af-
ter testing for further analysis in MATLAB (The Mathworks, Natick, Massachusetts,
USA).

2.3.2 Mass and Volume

Mass and volume data were collected for the samples described in Section 2.2. Sample
mass was measured using an AJ100 analytical balance from Mettler (Mettler-Toledo,
Columbus, OH, United States), shown in Figure 2-6. The balance measures masses
up to 110 g with 0.001 g resolution. Each sample was centered on the scale’s plate
prior to testing, and each sample was measured five times.
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Figure 2-6: The AJ100 analytical balance used for lattice mass testing. Samples were
centered on the plate, and mass was recorded with 0.001 g resolution.

The absolute volume of the lattice samples was determined using a water displace-
ment test. A custom acrylic container with an interior cavity nominally measuring 1"
x 3.5" x 5" (25.4 mm x 88.9 mm x 127 mm) was partially filled with enough water to
completely cover lattices. After measuring the height of the water without a sample,
a sample was submerged in the water. The height of the water was then recorded
with the submerged lattice. All heights were measured to the bottom of the meniscus,
as shown in Figure 2-7, using digital calipers with 0.01 mm resolution. Lattices were
thoroughly dried between each of the three trials.

Figure 2-7: Lattice volume was determined through water displacement. Calipers
were used to consistently measure water height to the bottom of the meniscus.

33



2.4 Results and Analysis

2.4.1 Stiffness

Custom MATLAB scripts imported and parsed the Instron CSV data, computed met-
rics for each trial, and averaged results across trials for each lattice specimen. Force-
displacement graphs for all specimens and trials showed consistent shapes. These
features derive from both the material properties of the bulk solid as well as the
geometric properties of the lattice structure. Figure 2-8a shows force-displacement
data for a representative sample. In the initial linear regime, lattice struts experience
elastic loading. When struts reach their elastic limit, they buckle, creating a stress
plateau. Once lattice struts buckle, they touch, and the structure reaches a densifi-
cation point. The second linear elastic regime represents the compression of the solid
material [27].

Figure 2-8: Force-displacement curves for 10 mm compression testing for all samples
show similar features: an initial linear loading portion, in which struts begin to bend;
a plateau, in which the lattice struts buckle; and a second linear portion. Key metrics
include the slope of the initial and final linear regimes (𝐾𝑖 and 𝐾𝑓 , respectively; shown
in red) and the force at 9 mm compression (𝐹9; shown in blue).

These features occurred for all samples within each of its seven trials, but the first
trial consistently produced higher forces from the last six trials, as shown in Figure 2-
9. In practice, adidas performs a similar test once per midsole. High confidence in
test method and fixturing means differences in results can be reasonably attributed
to the midsoles rather than the test setup. Additionally, the long time required to
perform this test (about one minute) makes it impractical to repeat in a manufactur-

34



ing environment. adidas does not typically test lattices of this size, meaning we lack
the same degree of confidence in this setup. Repeating the test allows us to obtain
lower uncertainty by averaging across test repetitions.

Figure 2-9: a) For all samples, loads were highest in the first trial (black) compared
to the other six trials (grey) during a 10 mm quasi-static compression test. Data
shown for a representative sample. b) Loads during the first trial were ≥ above two
standard deviations from the mean force throughout the loading distance while forces
for the other trials were ≤ 1 standard deviation from the mean. The first trial was
excluded from further analysis. Data shown for same sample as a).

Due to its higher forces, the first trial was excluded from analysis for all samples.
The standard deviation was used as a cutoff for justifying this. The standard deviation
𝜎𝑓 at each location 𝑥 was determined for each sample across its seven trials. Z-scores
were computed for each trial, representing the number of standard deviations of data
from the mean; the difference 𝐹 (𝑥, 𝑡)− 𝐹 was computed at each position 𝑥 for each
trial 𝑡 and normalized by dividing by 𝜎𝑓 to give

𝑍𝑓 (𝑥, 𝑡) =
𝐹 (𝑥, 𝑡)− 𝐹

𝜎𝑓

𝑍𝑓 (𝑥, 𝑡) was computed for all trials. As shown in Figure 2-9b, 𝑍𝑓 (𝑥, 𝑡) was con-
sistently at or above 2 for 𝑥 ≥ 0.5 mm, 𝑡 = 1 for all samples. As a result, the first
trial was excluded from further analysis, and metrics were only computed for trials
𝑡 ∈ [2, 6].

The existing quality control test uses force at 9 mm compression as a representa-
tion of midsole performance. Although this metric is easy to compute and consistent
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between trials, other metrics also characterize lattice behavior and correspond to rel-
evant features of the loading curve shown in Figure 2-8. As a result, a variety of
metrics were computed for each trial. Computed metrics included force at given dis-
placements (1 mm increments ranging from 1 - 10 mm) as well as the average slope
in the initial and final loading periods, shown in Figure 2-8. The initial linear regime
was defined as displacements from 0 - 1.8 mm, and the final portion was defined as
displacements from 8 - 10 mm. A first order polynomial fit (𝑦 = 𝑎𝑥 + 𝑏 was applied
to each portion of the loading curve. The slope 𝑎 of this fit represents the average
stiffness 𝐾 during that regime, in N/mm.

Figure 2-10 displays the average initial and final stiffnesses (𝐾𝑖 and 𝐾𝑓 , respec-
tively) as well as the force at 9 mm compression (𝐹9) for all samples. These outputs
are compared to the blackline value and colored by light intensity group to confirm
the impact of geometric (blackline) and material (light intensity) changes on overall
lattice stiffness. Lattices with a more negative blackline value have thicker struts
and are stiffer. Differences in light intensity or curing can result in a bulk solid with
different material properties, resulting in samples with different stiffnesses.

Figure 2-10: All stiffness metrics (𝐾𝑖, 𝐾𝑓 , and 𝐹9) decreased with increasing blackline
and was lower for light intensity Group B than for Group A. For samples printed with
the same blackline and light intensity, initial stiffness shows greatest variability.

A two-way analysis of variance (ANOVA) was performed between blackline and
material group, and results are included in Figure 2.2. There were significant main
effects for both blackline value and material group (p < 0.05), but interaction effects
were insignificant (p = 0.48 > 0.05) This confirms the hypothesis that both geometric
(blackline) and material changes (light intensity) independently impact overall lattice
stiffness. Geometric process parameters were responsible for a greater proportion of
variance with an omega-squared of 0.716 compared to the omega-squared for material
group of 0.129. This matches the analytical model of Table 2.1, in which geometric
changes contribute more variability to effective stiffness than material changes. It
is reasonable, however, that more severe differences in light intensity could result in
greater variation due to light intensity.
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Figure 2-11: Average stiffness during the initial linear regime shows a strong corre-
lation with the force at 9 mm of compression. Both metrics are representative of
midsole stiffness.

2.4.2 Mass and Volume

Average mass for each sample was determined by averaging the seven mass mea-
surements. Trial-to-trial measurements were variability, with an average fractional
uncertainty of 0.030% between each sample’s measurements1. As a result, the un-
certainty in mass is small compared to the point size when comparing mass to other
parameters, and error bars were omitted when generating figures for the mass, as in
Figure 2-12.

Specimen volume was computed by finding the average change in water height,
1Unless otherwise specified, all uncertainties in this text represent 95% confidence levels.

DF Sum Sq Mean Sq F-value P-value 𝜂2𝑝𝑟𝑜𝑝 𝜔2

Blackline 1 278000 278000 250.9 0 0.906 0.716
Light Intensity 1 50900 50900 46.0 0 0.639 0.129
Blackline
× Intensity 1 563 563 0.51 0.482 0.019 -0.001

Error 26 28800 1110
Total 29 357000

Table 2.2: Two-way ANOVA results confirm impact of both geometric (blackline) and
material (light intensity) changes on overall lattice stiffness.
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Figure 2-12: Increasing blackline reduces strut width, producing lattices with lower
masses and less solid volume.

∆ℎ, across the three measurements. The volume of the displaced water equals the
volume of the lattice and is given by 𝑉𝐿 = ∆𝑉 = 𝑤𝑙∆ℎ, where 𝑤 and 𝑙 represent the
width and length of the inside of the acrylic tank. The volume measurements resulted
in an average fractional uncertainty of 9.2%, which represents the error in using
calipers to accurately record water height to the bottom of the meniscus. Additional
measurements for each lattice and/or more precise measuring equipment could further
reduce volumetric uncertainty.

As with stiffness, both mass and volume decrease with increasing blackline values
and are generally lower for group B compared to group A, as shown in Figure 2-12.
However, the mass and volume show greater variance within each combination of
blackline and light intensity.

Mass and volume show a strong positive correlation, as evidenced in Figure 2-
13. Although local density variation within lattices is not captured through this
method, these results suggest that individual samples have similar overall densities.
The overall density of each sample was computed, and the average densities were not
statistically different between the two material groups (𝜌𝐴 = 0.964 ± 0.021 g/cm3,
𝜌𝐵 = 0.994 ± 0.038 g/cm3). With 99% confidence, the average density across all
samples (𝜌 = 0.979± 0.026 g/cm3) matches the EPU40’s advertised density of 1.025
g/cm3 from Carbon [11].

38



Figure 2-13: Sample mass increases linearly with volume of solid material. Sample
density is represented by the ratio of mass/volume and is similar for all samples.
Average material density is 0.979 ± 0.026 g/cm3 and represented by the blue line
(𝑦 = 0.979𝑥). This agrees with Carbon’s advertised density of 1.025 g/cm3 [11].

2.5 Discussion

Stiffness shows a strong positive correlation with mass, as represented in Figure 2-
14. Lighter lattices are less stiff, and heavier lattices are stiffer. This matches the
analytical model of Table 2.1, which shows that the effective Young’s modulus of a
rhombic dodecahedron lattice scales with relative density squared. Since the material
density is statistically the same for the lattices, as shown in Figure 2-13, both mass and
volume are good indicators of the lattice relative density and thus stiffness. Measuring
mass is more repeatable, making it an excellent predictor of overall stiffness. A
proportional fit was applied to each light intensity group (𝑦 = 𝑎𝑥, with adjustable
slope 𝑎 and 0 intercept). The slope fit parameters were not statistically different
between the two light intensity groups (A: 28.4±1.5 N/mm/g, B: 26.4±1.6 N/mm/g),
and the fit was re-computed across both groups, giving a slope of 27.5±1.1 N/mm/g.
The two light intensities used did not generate statistically different populations, but
it is possible that larger differences in light intensity could result in samples with
different stiffness-mass relationships.

Mass and stiffness can both be modeled as normally distributed random variables.
The univariate quantile-quantile (QQ) plots in Figure 2-15 display the theoretical
quantiles from a normal distribution and the actual quantiles of the sample data,
represented by the black points. These points agree well with the grey line, confirm-
ing the assumption of normality. A bivariate QQ plot comparing the quantiles of the
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Figure 2-14: Stiffness increases linearly with sample mass for both light intensity
groups. Proportional fits (𝑦 = 𝑎𝑥) are not statistically different between the two light
intensity groups. A proportional fit was re-computed across all samples with slope of
27.5± 1.1 N/g, represented by the blue line.

stiffness data with those of the mass data also shows a linear relationship, indicat-
ing that we can reasonably construct a bivariate Gaussian probability distribution
function (PDF) from the physical data.

The linear regression shows that lattice stiffness increases with mass, and the QQ
plots demonstrate that this relationship can be represented by a bivariate normal
distribution. This physical data for 𝑛 = 30 lattices suggests that mass could be used
to predict overall lattice stiffness, although it is difficult to know whether 30 lattices
accurately capture the wide range of variability found in AM. Chapter 5 presents a
framework for analyzing the accuracy of various test methods and discusses in more
detail the use of mass as a stiffness-prediction tool.
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Figure 2-15: Quantile-quantile plots confirm the normality of mass and stiffness data.
The distributions (y-axis) of stiffness (a) and mass (b) data agree well with the theo-
retical quantiles (x-axis) of the normal distribution. This is represented by agreement
between the black points and the grey line. The stiffness quantiles also agree well
with the mass quantiles in c), confirming bivariate normality.
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Chapter 3

Acoustic Properties of Lattice
Structures

3.1 Ultrasonic Testing Theory

Acoustic waves transfer mechanical energy without mass transfer by causing discrete
particles to oscillate. These vibrations create a pressure wave with longitudinal os-
cillations, or oscillations in the direction of the wave’s travel. We hear sound when
this longitudinal wave transmits oscillations to our ears and causes the ear drum to
vibrate. The human ear can detect frequencies between approximately 20 Hz and 20
kHz, and sound waves with frequencies exceeding 20 kHz are classified as ultrasonic.

A sound wave traveling through a material may be theoretically represented by
a system of oscillating masses connected by elastic springs, as shown in Figure 3-1
[42]. The behavior of the mass-spring system is described by Hooke’s Law: within the
elastic limit of the material, restoring forces on particles have magnitude proportional
to their displacements. As a wave travels through the spring system, particles will
move; the speed of the wave as it travels depends on the material properties, such as
the stiffness of the springs, but is independent of the magnitude of the wave applied.
The wave’s amplitude corresponds to the magnitude of the force experienced by a

Figure 3-1: Model of an elastic body represented as system of masses and springs
[42].
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particle but does not impact the speed of sound within the material. The speed of
sound instead depends on the material’s mass, which corresponds to its density, and
its spring constant, which relates to its elastic properties. This relationship is given
as

𝑉 =

√︃
𝐶𝑖𝑗

𝜌
, (3.1)

where 𝑉 = speed of sound, 𝐶𝑖𝑗 = elastic constant, and 𝜌 = density. The value
of the elastic constant depends on the type of wave, and the 𝑖𝑗 subscript indicates
its directionality; for anisotropic materials, the speed of sound will depend on both
the type of wave and its direction of travel. For longitudinal waves in solids, the
elastic constant 𝐶𝑖𝑗 from Equation 3.1 takes the form of the Young’s Modulus in that
direction [42, 6]. Equation 3.1 then becomes Young’s Modulus in direction 1

𝑉1 =

√︃
𝐸1

𝜌
, (3.2)

where 𝐸1 is the Young’s Modulus and 𝑉1 is the speed of sound in direction 1. Al-
though this relationship can be further described using the Poisson’s ratio and Lamé
constants, the form of Equation 3.2 is convenient for further analysis in this work.

3.1.1 Reflection and Transmission

Acoustic impedance describes the resistance a sound wave experiences when traveling
through a material. As a wave travels, it produces a pressure gradient in the material,
generating stress and strain and causing particles to move. Acoustic impedance relates
this motion within a material to the pressure it experiences. Analytically, acoustic
impedance is characterized by the speed of sound 𝑉 and density 𝜌 and is represented
by 𝑍, where

𝑍 = 𝑉 𝜌 (3.3)

Materials with higher density or speed of sound will provide more resistance to
a sound wave. As a result, materials with high acoustic impedance are described as
acoustically hard while those with low impedance are called acoustically soft [6].

When a wave reaches a boundary, the acoustic impedance changes. This causes
part of the wave’s energy to reflect toward the source and part of it to continue
without a change in direction. In an ideal material, sound pressure decreases only as
a result of wave spread. Real materials are not strictly homogeneous, which creates
interfaces where materials of different density and/or sound velocity meet. This means
the materials show attenuation; the magnitude of a wave decreases as it travels in a
material as some of the wave’s energy is reflected at inhomogeneities.

The acoustic impedance on either side of a boundary governs how much of the
incident wave is transmitted and how much is reflected. The coefficients of reflection,
𝑅, and transmission, 𝐷, represent the ratio of sound pressure of the reflected and
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transmitted wave to the ratio of the original wave:

𝑅 =
𝑝𝑟
𝑝𝑒

and 𝐷 =
𝑝𝑑
𝑝𝑒

𝑝𝑟 and 𝑝𝑑 are the sound pressure of the reflected and transmitted waves, respectively,
and 𝑝𝑒 is the sound pressure of the incident wave. We can then derive

𝑅 =
𝑍2 − 𝑍1

𝑍2 + 𝑍1

and 𝐷 =
2𝑍2

𝑍2 + 𝑍1

. (3.4)

where 𝑍1 and 𝑍2 are the acoustic impedances of the initial and second materials,
respectively. Combining with Equation 3.3 with Equation 3.4 gives

𝑅 =
𝜌2𝑉2 − 𝜌1𝑉1

𝜌2𝑉2 + 𝜌1𝑉1

and 𝐷 =
2𝜌2𝑉2

𝜌2𝑉2 + 𝜌1𝑉1

. (3.5)

The energy reflection coefficient is given by

Reflected energy
Incident energy

= 𝑅2 (3.6)

while the energy transmission coefficient is given by

Transmitted energy
Incident energy

=
𝑍1

𝑍2

𝐷2 (3.7)

When 𝑍1 ≪ 𝑍2, 𝑅 → 1. The energy reflection coefficient 𝑅2 also approaches 1.
Meanwhile, 𝑍1

𝑍2
→ 0, and the energy transmission coefficient approaches 0. Almost

all of the wave is reflected, and only a small amount of the incident wave’s energy is
transmitted to the second material.

3.1.2 Pulse-Echo Testing

Pulse-echo testing is a specific form of ultrasonic testing which uses reflected sound
waves to characterize samples. In practice, pulse-echo testing is often used to identify
cracks or other defects in stiff materials. A transmitter produces an ultrasonic pulse,
which spreads into the specimen and is reflected to the receiver. In a traditional
analog setup, a pulse generator sends an electric pulse to the transmitter, and the
receiver transforms the reflected signal into an electric signal before sending it to a
cathode ray (CR) tube. Modern setups are digital and utilize analog-to-digital (AD)
converters instead of the CR tube.

Several display options are frequently used for this type of ultrasonic testing. One
technique, called the A-scan, represents the reflected ultrasonic pulse as a single peak
on a graph comparing sound amplitude (y-axis) with time (x-axis). Although part
of the reflected wave enters the receiver, part of it changes direction, reflecting and
returning toward the test specimen. The continuing cycle of reflection off of the
backwall and the sensor produces subsequent echo peaks on the display read out.
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Figure 3-2: As the sensor moves away from an object, the time it takes for the wave
to travel through air increases. This is represented by a line with slope equal to the
inverse of the speed of sound, 𝑉 −1

air . In a), the wave reflects off of the object. When
there is no separation between the sensor and sample, the hypothetical time for the
wave to return is zero, and the line has zero intercept. In b), sound is transmitted
to the sample. The positive intercept represents the time it takes for the sound to
travel through the sample, and the magnitude of the y-intercept depends on sample
stiffness.

Due to both transmission of wave energy to the receiver and attenuation within the
test material, these peaks will decrease in amplitude and ultimately approach zero.

Ultrasonic range finding sensors use the pulse-echo method to determine distance
between the sensor and an acoustically hard object. This type of sensor includes a
transmitter, which sends a burst of ultrasonic waves, and a receiver, which records
when the burst returns. The sensor transmits a pulse width modulation (PWM)
signal. The length of the PWM signal represents the delay in time between sending
receiving the wave burst. This time delay response represents the time for the signal
to travel to and from an acoustically hard material. As a result, the recorded time
equals the time for the sound wave to travel to and from the object:

𝑡 =
2𝑑

𝑉
, (3.8)

where 𝑑 is the distance between the sensor and target object and 𝑉 is the average
speed of sound. When the wave only travels through air before reflecting, 𝑉 = 𝑉air.
This relationship is summarized as a proportional fit with slope = 2𝑉 −1

air and zero
intercept, as in Figure 3-2a.

When the sound wave travels through air as well as the lattice material, 𝑉 repre-
sents the average speed of sound through both the lattice and the air. Equation 3.8
becomes

𝑡 = 2(𝑡air + 𝑡sample), (3.9)

where
𝑡air =

𝑑

𝑉air

and 𝑡sample =
𝐻

𝑉sample

(3.10)
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Figure 3-3: Labeled diagram of the two-axis apparatus used to control the position
of the ultrasonic sensor during data collection.

This results in a a linear relationship between response time and the distance
between the sensor and the sample, as represented in Figure 3-2b. As in Figure 3-2a,
the slope has magnitude 2𝑉 −1

air ; however, the non-zero intercept represents the time
it takes the sound to travel through the material and is given by 2𝐻𝑉 −1

sample. From
Equation 3.2, the speed of sound in a solid can be related to its Young’s Modulus and
density. Combing Equations 3.2, 3.9, and 3.10 gives

𝑡(𝑑,𝐸) =
2𝑑

𝑉air

+
2𝐻
√
𝜌

√
𝐸

(3.11)

Equation 3.11 can also be related to the sample’s mass, geometry, and spring
constant via

𝜌 =
𝑚

𝐴𝐻
and 𝐸 =

𝑘𝐻

𝐴
(3.12)

Together, Equations 3.11 and 3.12 become

𝑡(𝑑,𝑚, 𝑘) =
2𝑑

𝑉air

+ 2

√︂
𝑚

𝑘
(3.13)

3.2 Apparatus

A pulse-echo testing device was designed to test the stiffness of different lattices. The
apparatus, shown in Figure 3-3, consisted of a fixed mounting plate to secure the
sample and a two axis linear stage to move the ultrasonic sensor.
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Lattice samples fit into a fixed plate so that sound waves travel through the
lattice’s Z-dimension, as defined in Section 2.2. This corresponds to the direction
of loading that would occur in a running shoe midsole and matches the direction of
loading in the existing compression test. The samples, nominally 80 mm x 80 mm x
20 mm fit snuggly in an acrylic panel with a cutout measuring 77 mm x 77 mm x 10
mm. The undersized cutout compressed the samples slightly but did not preload the
samples enough to visually distort the sample or cause warping.

Two VS-2A servo motors (Vigor Precision Limited, Hong Kong) controlled the
position of the ultrasonic sensor in the X- and Y-directions. As defined in Figure 3-3,
the X-axis represents lateral position across the face of the sample, and the Y-axis
represents movement toward and away from the lattice. Slider-crank mechanisms
converted the rotary motion of the servo to straight-line motion of the X-axis stage,
highlighted in dark blue, and of the sensor mount, highlighted in red. Links were
sized to allow 25 mm of X-direction travel and 100 mm of Y-travel.

The two servo motors and the ultrasonic sensor were controlled by an Arduino
Nano 3.0 from Gravitech (Minden, NV, USA). The HC-SR04 ultrasound sensor
(Cytron Technologies, Johor, Malaysia) sends a burst of ultrasonic waves and records
the time it takes for the burst to return to the sensor [1, 22]. To do this, the Arduino
sends a 10 𝜇s TTL (transistor-transistor logic) signal to the sensor. This initiates a
burst of eight 40 kHz waves. At time 𝑡 = 0, the sensor finishes releasing the waves.
The wavefront first travels through air to reach the sample, represented in Figure 3-4.
At time 𝑡 = 𝑡air = 𝑑𝑉 −1

air , the waves reach the face of the sample. Under the transmis-
sion model, the waves enter the lattice sample and continue to propagate until they
reach the acoustically hard acrylic backing material. At time

𝑡 = 𝑡air + 𝑡sample =
𝑑

𝑉air

+
𝐻
√
𝜌

√
𝐸

,

the waves reflect off of the backing material. The waves then return to the sensor,
traveling first through the sample and then through the air, ultimately returning to
the sample at time

𝑡 = 𝑡delay = 2(𝑡air + 𝑡sample) =
2𝑑

𝑉air

+ 2

√︂
𝑚

𝑘
,

according to Equation 3.13. Upon receiving this wave burst, the ultrasonic sensor
sends a pulse width signal to the Arduino with width 𝑡delay.

The HC-SR04 has a 3 mm specified distance resolution, corresponding to a time
resolution of 17.5 𝜇s. The sensor works best over distances of 20 mm to 5 m. At
distances under 20 mm, interference between the initial wave burst and the returning
waves becomes significant, and results become unreliable. Waves propagate from the
sensor at an enclosed angle of 30∘. At a measuring distance of 𝑑, this means waves
spread 𝑑 tan 𝜃

2
in any direction, where 𝜃 represents the enclosed angle. The HC-SR04

sensor was centered vertically (Z-direction as indicated in Figure 3-4). The maximum
distance between the sample and the sensor was set at 150 mm. At this distance,
waves from the sensor spread about 40 mm in each direction. This corresponds to
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Figure 3-4: Schematic representing the progress of the sound wave during the pulse-
echo testing used in this study.

half the length of the sample and avoids undesired reflection of sound waves off of the
apparatus.

3.3 Method

The ultrasonic testing apparatus of Section 3.2 was used to measure delay times for
eight samples at each of five X positions and each of ten Y positions, for a total of 50
positions. One sample was tested from each of the four blackline levels and the two
light intensity groups described in Section 2.2. The sensor moved through the full
range of X positions before moving to the next Y position and returning to the initial
X location. At each of the fifty locations, the ultrasonic sensor performed 200 testing
cycles at a frequency of approximately 80 Hz. A serial connection relayed 𝑡delay for
each measurement to a computer, where it was exported to CSV at the end of each
trial. Five trials were collected for each sample.

3.4 Results

MATLAB scripts imported and parsed the CSV data for each trial. Data were aver-
aged across the 200 measurements at each (X,Y) position for each trial. The fractional
uncertainty from averaging across these 200 measurements averaged 1.59 ± 0.06%.
This reflects the consistency between individual measurements within a single trial,
and this uncertainty from this averaging was neglected in future computations.

The averaged delay time at each location is shown in Figure 3-5 for a representative
sample. The small grey points represent each location’s average value. There was no
statistically significant trend between delay time and X position, and results for each
Y position were averaged across the five X positions. These averages are represented
by the larger grey points in Figure 3-5 for one sample or the points in Figure 3-6 for
all samples.

The delay time increases as the sensor moves away from the sample. This matches
the analytical models for both transmission and reflection of the sound waves: with
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Figure 3-5: a) Time values at each distance are shown along with the linear (blue,
representing transmission) and proportional (red, representing pure reflection) fits. b)
Residuals at each distance for both fits. The systematic variation of the proportional
fit’s residuals suggesting that this model does not describe data well. Residuals for
the linear fit are randomly distributed, suggesting that the transmission model better
describes data.

increasing distance, it takes longer for waves to travel to and from the lattice sample.
This is true regardless of whether sound waves are transmitted to the lattice or simply
reflect off of its face. To confirm that sound waves are transmitted to the sample, linear
and proportional fits were computed for each sample across the full ranging distance
of 50 mm to 150 mm. For each sample, all measurements at a given Y position
were used to compute the two fits. Residuals were also determined for the two fits
across the entire ranging distance. Residuals from the proportional fit revealed a poor
agreement with the data, as shown in Figure 3-5. The residuals from the proportional
fit show systematic variation, decreasing linearly with the testing distance. The linear
model better describes the data. The residuals from the linear fit are more randomly
distributed, suggesting that the linear model better describes the data. The linear
fit matches the transmission model of Equation 3.13, where the slope of the line
corresponds to the speed of sound in air, and the intercept relates to the time it takes
for sound to travel through the lattice sample. The proportional fit, however, only
makes sense if no sound is transmitted to the lattice.

The analytical model predicts parallel linear fits for each sample, where the slope
of the linear fit corresponds to the inverse of the speed of sound in air. This is constant
regardless of the lattice’s stiffness. Under this model, the fit slope should show no
statistically significant trend with lattice stiffness. The values of the slope do not
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Figure 3-6: Overview of time response for all samples as a function of distance between
the sample and the sensor. Time delay increased with separation distance, and stiffer
samples generally had longer time responses. Samples with statistically different fit
parameters are shown in red and blue.
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Figure 3-7: Both linear fit parameters from the ultrasonic distance, a) intercept and
b) slope, show little correlation with sample stiffness. The analytical model predicts a
slope which is independent of stiffness. The model predicts an intercept which decays
with 1√

𝑘
, but this relationship is not observed.

match the model, which predicts a slope of 5.8 𝜇s/mm. The magnitude of this value
could reflect some inaccuracy in the ultrasonic sensor.

The fit’s intercept corresponds to lattice’s effective stiffness. We expect to see
intercepts which scale with

√
𝑘−1, or

√
𝑚𝑘−1 when normalized for lattice mass. This

means that the fit intercept should decrease with increasing lattice stiffness, which is
not the trend found, represented in Figure 3-7. Scaling the x-axis of Figure 3-7 to
normalize mass does not reveal additional trends.

Although the fit intercept is approximately 200 𝜇s for six of the eight samples, two
samples have much higher intercepts of approximately 400 𝜇s. Removing these two
samples still does not yield a clear visible (or statistical) trend between intercept and
stiffness. This could be an artifact of the ultrasonic sensor’s resolution. Another pos-
sibility is that the samples tested have stiffnesses which are too similar to distinguish
with this form of ultrasonic testing.

We expect linear fits to produce parallel lines with different y-intercepts. The
y-intercept of this fit across the entire distance yields the most physically meaningful
result, corresponding to the modeled behavior of Equation 3.13. However, this is not
the only way to analyze different results between samples. The vertical distance be-
tween samples’s time responses in Figure 3-6 at a given sensor position also represents
this information. The speed of sound and testing distance does not change, meaning
differences in measured time response can be attributed to different speeds of sound
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Figure 3-8: At each position, the difference was computed between each sample’s
time response and that of the least stiff sample. When averaged across the entire
testing distance, these time differences show a positive correlation with sample stiff-
ness. Although two samples (in red and blue) had statistically different linear fit
parameters, all samples follow this trend. The trend is statistically significant with
𝑝 = 0.0398 < 0.05.

in the samples. At each testing distance, the difference in time delay between each
sample and the least stiff sample was computed. Averaged across the entire ranging
distance, this represents the average vertical distance between the data points of dif-
ferent samples. From the physical model, we expect the least stiff sample to have the
highest time values, and stiffer samples will have progressively smaller time values.
Though we see the opposite of this trend in Figure 3-8, the results are statistically
significant.

A linear regression (𝑦 = 𝑎𝑥 + 𝑏) of the data in 3-8 produces statistically signif-
icant fit parameters, 𝑎 = 0.75 ± 0.70 𝜇s/N/mm and 𝑏 = 162 ± 37 𝜇s. Despite a
high fractional uncertainty, this initial data shows a statistically significant trend be-
tween lattice stiffness and this offset value, with 𝑝 = 0.0398 < 0.05. Additional data
could potentially lower the high fit uncertainty or reveal other trends that cannot be
statistically determined from the low (𝑛 = 8) sample count.

3.5 Discussion

Acoustic testing offers the potential for a rapid and inexpensive test. Data acquisi-
tion with the current apparatus takes approximately four minutes per sample. This is
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largely driven by collecting 200 measurements taken at each of five x-positions; how-
ever, the 200 measurements were usually very similar to each other, and there was no
statistically significant relationship between time response and x-position. Reducing
both the number of x-positions and the number of measurements at each position
would decrease testing time. Although the current test time is much longer than
the current compression test, which takes about one minute per midsole, the compo-
nents cost significantly less than a servohydraulic, universal testing machine, which
can cost upwards of $15,000. In total, the raw materials used to fabricate the device
cost approximately $20, and electronic components cost approximately $40, with the
Arduino Nano (approx. $30) largely driving the cost. At scale, custom printed circuit
boards could fabricated at a much lower cost.

Preliminary data collection of eight lattices with variable geometric and mate-
rial properties shows that ultrasonic sound waves are successfully transmitted to the
lattice samples. For all eight samples, the linear model, corresponding to transmis-
sion, matches data better than the proportional model, which represents reflection
of the sound wave off of the front of the lattice. In reality, the sound is likely not
purely reflected or transmitted. The ultrasonic sensor used only outputs one value,
corresponding to the time it takes for an emitted wave burst to return to the sensor.
Future work could explore other ultrasonic sensors, which might output more infor-
mation about the waves received by the sensor over time. This would provide more
information about transmission, reflection, and echo patterns of the lattice samples.

Sample stiffness has a statistically significant impact on the time delay, but the
relationship does not correspond to the analytical model of expected behavior. This
could be due to complex acoustic behavior of the soft lattice structures. As sound
travels through the lattice, it passes through air and refracts through beams. This
behavior may not be adequately captured by representing the lattice structure as a
homogeneous, cellular solid. The disagreement with the analytical model could also
result from sensor irregularities such as limited sensor resolution or nonlinear behavior
with increasing distance from the sample. Although the linear fits were statistically
significant with the HC-SR04 sensor used, a higher quality sensor would likely have
less noise and more linear behavior, resulting in a higher statistical confidence in
results.

Although sound waves are transmitted to the lattice structure and do not only
reflect off of the front surface, most of their energy reflects off of individual struts.
Acoustic impedance for air and EPU40 can be calculated from Equations3.3 and 3.1:
𝑍𝑎𝑖𝑟 = 413 Pa s/m and 𝑍𝐸𝑃𝑈 = 56,800 Pa s/m). Equation 3.4 gives a coefficient of
reflection of 0.986, meaning almost all of the incident wave reflects off of an individual
strut, and very little is transmitted to the strut itself. Previous work has modeled the
effective refraction of cylinder arrays [29, 43, 35] by simulating the reflection of waves
off of individual cylinders, known as a multiple scattering simulation. Additional
work studies the impacts of void inclusions on the acoustic propereties of materials
[24, 57, 60, 44]. Future work could focus on developing this scattering simulations for
lattices with different geometric and material properties to determine whether and
how this form of ultrasonic testing could capture effective lattice stiffness.

Ultrasonic testing of lattice samples could provide rapid, inexpensive information
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about lattice stiffness, but further work is needed. Additional data1 should be col-
lected for the remaining 22 lattice samples in order to better understand these trends
and whether both geometric and material variability are captured by this form of
ultrasonic testing.

1The original timeline for this thesis included plans to collect this data. Due to the spread of
COVID-19 in Spring 2020, collecting additional data was not possible.
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Chapter 4

Simulating and Characterizing
Lattice Variability

4.1 Numerical Simulation
Beem, Fay, and Lilin’s computational lattice solver from [9] was modified for use in
this study. The simulation represents a lattice as a network of struts with connections
at joints, as shown in Figure 4-1. The simulation tool solves for the force balances and
constitutive equations in both static and dynamic loading cases. In static loading,
the internal load (f𝑚) in strut 𝑀 between nodes 𝑖 and 𝑗, as represented in Figure 4-1
is

Figure 4-1: Octet truss unit cell with labeled with nomenclature from the numerical
simulation: nodes 𝑖 and 𝑗 and strut 𝑀 .

f𝑚 =
r𝑗 − r𝑖
|r𝑗 − r𝑖|

𝑘𝑚(𝐿0𝑀 − |r𝑗 − r𝑖|) (4.1)

where r𝑖 and r𝑗 are positions of nodes 𝑖 and 𝑗, 𝑘𝑀 is the stiffness of strut 𝑀 , and
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𝐿0𝑀 is the initial length of the strut. As shown in equation 4.1, the internal forces
depend on the lengths of the struts, represented by

𝐿 =
√︁

(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑖 − 𝑧𝑗)2

This nonlinear relationship between node positions (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and (𝑥𝑗, 𝑦𝑗, 𝑧𝑗) and
strut forces requires a Newton solver for both static and dynamic cases. The Newton
solver used in this study utilizes an implicit Generalized-Conjugate Residual (GCR)
to solve each linear system without storing the Jacobian. Beem, Fay, and Lillin
also developed Newton solvers which performed LU decomposition using the Jaco-
bian method either by computation of finite differences or analytical stamping of the
derivative of 4.1. For larger lattices, this implicit GCR method is up to 10 times
faster and uses up to 25 times less memory than these methods. The general outline
of the Newton solver with GCR is:

𝑙← 1, x𝑘 ← initial guess;
repeat Newton Loop

Evaluate F(x𝑘)𝑗 ← 0,p𝑗 ← −F(x𝑘);
repeat Implicit GCR loop: solve

J𝐹 [x𝑘]∆x𝑘+1 = −F[x𝑘] for ∆x𝑘+1;
Compute
J𝐹 (x𝑘)p𝑗 = 1

𝜖
(F(x𝑘 + 𝜖p𝑘)− F(x𝑘));

Orthonormalize in the image space;
Update solution and residual r𝑗

until ‖r𝑗‖/‖r0‖ small ;
𝑥𝑘+1 ← 𝑥𝑘 + ∆𝑥𝑘+1; 𝑘 ← 𝑘 + 1

until ‖F(x𝑘+1)‖, ‖x𝑘+1‖ small ;

Figure 4-2: Algorithm for Newton solver with implicit GCR [18].

In order to determine the relationship between lattice mass and stiffness, Beem,
Fay, and Lillin’s numerical solver [9] was modified to create localized mass concentra-
tions and introduce noise.

To represent more extreme cases of manufacturing variability, lattices were created
with the same overall mass but varying mass concentrations. An 𝑚× 𝑛× 𝑝 boolean
tensor 𝑇 represented an 𝑁𝑋 × 𝑁𝑌 × 𝑁𝑍 lattice as an array of unit cells. Each 𝑇𝑖𝑗𝑘

represented whether or not to scale all struts in a given unit cell (𝑥, 𝑦, 𝑧) = (𝑖, 𝑗, 𝑘),
with 𝑥 ∈ {1, 2, . . . , 𝑁𝑋}, 𝑦 ∈ {1, 2, . . . , 𝑁𝑌 }, 𝑧 ∈ {1, 2, . . . , 𝑛𝑍}. Struts in unit cell 𝑖𝑗𝑘
are scaled when 𝑇𝑖𝑗𝑘 = 1. Tensor 𝑇 with

𝑇𝑖𝑗𝑘 = 1 for 𝑖 ∈ {1, 2, ..., 𝑁𝑋}, 𝑗 ∈ {1, 2, ..., 𝑁𝑌 }, 𝑘 = 1, 0 elsewhere

scales only the lowest vertical layer of the lattice. A 𝑇 with

𝑇𝑖𝑗𝑘 = 1 for 𝑖 ∈ {1, 3}, 𝑗 ∈ {1, 2, . . . , 𝑁𝑌 }, 𝑘 = {1, 2, . . . , 𝑁𝑍}, 0 elsewhere
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scales two slices of unit cells: those at 𝑥 = 1 and those at 𝑥 = 3.
The radii of all struts in unit cell 𝑖𝑗𝑘 were set to 𝑟 = 𝑟0(1 + 𝛿𝐶𝑇𝑖𝑗𝑘). Struts shared

between two unit cells were scaled if either of the adjacent cells was scaled. After
scaling all struts in this manner, the entire lattice volume was normalized such that∑︀

𝑟2

𝑟20
= 1. This ensured the generated lattices had the same overall mass but different

mass concentrations.
Two types of noise were added to lattices in order to represent more typical

variability seen in a manufacturing environment. First, individual strut radii were
scaled by either Gaussian noise with (𝜇, 𝜎) = (0, 𝛿𝑆) or uniform noise across interval
(𝑎, 𝑏) = (−𝛿𝑆, 𝛿𝑆). This noise represents local differences between struts due to ran-
dom variation within production of a single lattice. To represent variability between
production of different parts, all of a lattice’s strut radii were scaled either by Gaus-
sian noise with (𝜇, 𝜎) = (0, 𝛿𝐿) or uniform noise across interval (𝑎, 𝑏) = (−𝛿𝐿, 𝛿𝐿). 𝛿𝑆,
𝛿𝐿, and the type of noise (either Gaussian or uniform) could be easily modified to
represent different types of variability.

The process for generating a lattice with mass concentrations and noise is repre-
sented in Figure 4-3

Figure 4-3: Schematic of numerical solver’s process to generate lattice parameters.

The effective Young’s modulus of the lattice structure is most easily determined
through pure axial loading. A lattice’s theoretical effective modulus (derived in Sec-
tion 2.1 and summarized in Table 2.1) derives corresponds to its behavior in the initial
loading regime, such as in Figure 2-8. In this region, behavior is controlled by the
bending and stretching of the lattice struts [28]. Due to the small size of the lattices
used here, we do not expect agreement with the infinite-sized model; behavior under
large displacement is more relevant for the potential application. Boundary condi-
tions were set on each face: the two X and Y planes were free in all directions, and
the lower Z face was fixed at zero displacement in all directions. The upper Z face
was fixed at zero displacement in the X and Y directions and experienced a fixed load
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in the -Z direction.

4.2 Analytical Spring Model

A simplified spring model was used to understand the impact of concentrated mass
on overall lattice stiffness. Although random noise does occur during manufacturing
to produce struts of different sizes, manufacturing could also produce lattices with
regions where struts are uniformly sized differently. The most realistic scenario is
mass concentrated in the lower portions of a lattice. After printing, samples are
placed on drying racks for washing and curing. Uncured liquid resin on a sample
would collect on the lower lattice struts, where it would cure during later processes.
This scenario can be modeled as vertically stacked layers of material with different
stiffnesses, as represented in Figure 4-4 by four springs in series.

Figure 4-4: Representation of a lattice as a composite with various stiffness layers,
equivalent to springs in series, where each layer represents a layer of unit cells. In-
creasing the strut radii in layer 𝑧 = 1 increases stiffness 𝐾1 of that layer.

Each layer 𝑖 has stiffness 𝐾𝑖, giving an effective stiffness 𝐾𝑒 of

𝐾−1
𝑒 =

∑︁
(𝐾−1

𝑖 ) = 𝐾−1
1 + 𝐾−1

2 + 𝐾−1
3 + 𝐾−1

4 (4.2)

Each layer is a cellular solid representing the homogenized octet truss lattice and
has stiffness

𝐾𝑖 =
𝐸𝑖𝐴𝑖

𝐿𝑖

(4.3)

where 𝐴𝑖 is the cross section of the solid’s contact face, 𝐿𝑖 is the height of the
layer, and 𝐸𝑖 is the effective stiffness of the cellular solid layer. Each layer of the
composite cellular solid has the same area 𝐴𝑖 = 𝐿𝑥𝐿𝑦 and height 𝐿𝑖 = 𝐿𝑧. Combined
with Equation 2.6, which gives the effective modulus of an octet truss lattice with
bulk modulus 𝐸𝑠, strut radii 𝑟𝑖, and strut length 𝑙, this gives a layer stiffness of

𝐾𝑖 =

(︃
6
√

2𝜋𝐸𝑠

9𝑙2

)︃(︂
𝐿𝑥𝐿𝑦

𝐿𝑧

)︂
𝑟2𝑖 (4.4)
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Equation 4.4 can also be related to the stiffness of the uniform lattice with radius
𝑟0 and stiffness 𝐾0:

𝐾𝑖 = 𝐾0

(︂
𝑟𝑖
𝑟0

)︂2

(4.5)

To normalize lattice mass, the sum of the strut cross sections in a modified lattice
is set equal to that in the nominal, unchanged lattice. For the four-layered example,
this means

4𝑟20 = 𝑟21 + 𝑟22 + 𝑟23 + 𝑟24 (4.6)

A lattice with a single layer scaled by factor 𝛽 has 𝑟1 = 𝛽𝑟′0 and 𝑟2 = 𝑟3 = 𝑟4 = 𝑟′0.
Lattice mass is normalized after adding scaling struts and thus adding additional
mass. In order to maintain the same overall mass, this means the "unchanged" struts
will be thinner than the struts in the uniform lattice after normalization. Applying
Equation 4.6 for this scenario yields

𝑟′0 = 𝑟0

√︂
4

3 + 𝛽2
, (4.7)

𝑟1 = 𝑟0𝛽

√︂
4

3 + 𝛽2
, (4.8)

and

𝑟2 = 𝑟0

√︂
4

3 + 𝛽2
(4.9)

As 𝛽 represents a positive scaling factor by which to increase mass,
√︁

4
3+𝛽2 will

always be less than 1, meaning 𝑟2 < 𝑟0, as described above. When 𝛽 = 1, representing
no scaling, 𝑟1 = 𝑟2 = 𝑟0. We substitute the 𝑟1 and 𝑟2 values from Equations 4.8 and 4.9
into Equation 4.5 to give

𝐾1 = 𝐾0𝛽
2

(︂
4

3 + 𝛽2

)︂
(4.10)

and

𝐾2 = 𝐾0

(︂
4

3 + 𝛽2

)︂
(4.11)

𝐾2 = 𝐾3 = 𝐾4 means Equation 4.2 becomes 𝐾−1
𝑒 = 𝐾−1

1 + 3𝐾−1
2 , where

𝐾𝑒 = 𝐾0

(︂
4

3 + 𝛽2

)︂(︂
𝛽2

1 + 3𝛽2

)︂
(4.12)

If a lattice instead has two layers which are scaled by factor 𝛽, 𝑟1 = 𝑟2 = 𝛽𝑟′0 and
𝑟3 = 𝑟4 = 𝑟′0. Applying Equation 4.6 to this configuration results in
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𝑟′0 = 𝑟0

√︂
2

1 + 𝛽2
, (4.13)

𝑟1 = 𝑟0𝛽

√︂
2

1 + 𝛽2
, (4.14)

and

𝑟2 = 𝑟0

√︂
2

1 + 𝛽2
(4.15)

As before, we substitute the 𝑟 values from Equation 4.14 and 4.15 to give

𝐾1 = 𝐾2 = 𝐾0

(︂
2𝛽2

1 + 𝛽2

)︂
(4.16)

and

𝐾3 = 𝐾4 = 𝐾0

(︂
2𝛽2

1 + 𝛽2

)︂
(4.17)

𝐾1 = 𝐾2 and 𝐾3 = 𝐾4 means Equation 4.2 becomes 𝐾−1
𝑒 = 2𝐾−1

1 + 2𝐾−1
2 , where

𝐾𝑒 = 𝐾0

(︂
𝛽2

(1 + 𝛽2)2

)︂
(4.18)

Evaluating Equations 4.12 and 4.18 for 𝛽 = 1.1, or 10% scaling, gives 𝐾𝑒 =
0.248𝐾0 for both the single and double scaled layer scenarios. The uniform lattice
has 𝐾𝑒 = 0.25𝐾0. At 𝛽 = 1.2, or 20% scaling, 𝐾𝑒 = 0.244𝐾0 for the single layer and
𝐾𝑒 = 0.242𝐾0 when two layers are scaled. Modifying strut radii in localized regions
should create lattices with the same overall mass but different stiffness. Additionally,
greater levels of systematic variation (either higher 𝛽 levels or more regions which are
scaled) cause larger decreases in the structure’s effective stiffness.

4.3 Specimen Description
Lattices were generated with the same overall size (𝑁𝑋 , 𝑁𝑌 , 𝑁𝑍) = (5, 5, 4), unit
cell size (10 mm, as in Figure 2-4), bulk modulus (3.15 MPa), and bulk density
(1.025 g/cm3). Lattices were generated for each geometric mass concentration and
combination of noise and scaling factors. Six concentrations, shown in Figure 4-5 were
created to represent potential variability during manufacturing. Mass concentration
tensors 𝑇 were constructed for each of the six conditions, where a value of 𝑇𝑖𝑗𝑘 = 1
means unit cell (𝑥, 𝑦, 𝑧) = (𝑖, 𝑗, 𝑘) receives additional mass and is shaded dark grey
in Figure 4-5. The "bottom" concentrations place additional mass at the bottom of
the layers, the "center" concentrates additional mass in the middle of the lattice, and
"side" explores the impact of stiffer columns in the direction of loading.

Lattices were created at each of ten noise levels (𝛿𝑠 = 𝛿𝐿 = 1.25-10%, in incre-
ments of 1.25%, set to Gaussian noise) and ten scaling factors (𝛿𝑐 = 0-22.5%, in
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increments of 2.5%). Lattices with the scaling factor of 0% did not have localized
mass concentrations but were affected by strut noise. 100 lattices were generated at
each parameter combination, for a total of 60,000 lattices.

The numerical solver computed the lattice displacement at a fixed load of 120 N in
the -Z direction. The displacement of the uppermost lattice nodes, along with lattice
parameters such as mass, concentration location, scaling factor, and noise level were
saved for additional analysis in MATLAB.

Figure 4-5: Lattices were generated in each of six mass concentration geometries for
a lattice with (𝑁𝑋 , 𝑁𝑌 , 𝑁𝑍) = (5, 5, 4). In this schematic, dark grey cells represent
more dense regions while light grey cells are less dense with thinner strut radii.

4.4 Results and Analysis

The impact of concentrated mass is most noticeable at combinations of low noise
levels with high scaling factors. Figure 4-6 shows all generated lattices from the lowest
noise level and highest scaling factor. Each color represents a different concentration
geometry from Figure 4-5, with 𝑛 = 100 lattices in each geometry. Under these
conditions, variation is dominated by moving mass to different regions of the lattice.
The samples for each geometry roughly cluster around parallel lines with different
slopes. Including a small amount of noise variability demonstrates that increasing
mass causes similar stiffness increases for all concentration locations.

The nominal mass and stiffness of the uniform, unchanged lattice (no noise or
mass concentrations) are also included in Figure 4-6, represented by the dashed lines.
All geometries have similar average masses, but all average stiffnesses are lower than
the nominal lattice stiffness. This makes sense as the standard lattice geometry is
well optimized for strength-to-weight ratio; we expect unevenly distributed mass to
produce less stiff structures. At 20% scaling, the analytical model from Section 4.2
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Figure 4-6: Generated lattices at 1.25% noise and 20% scaling, colored by location of
the mass concentration. The horizontal and vertical lines represent the stiffness and
mass of an unmodified lattice, respectively. Creating a mass concentration and adding
a small amount of strut noise decreases stiffness in all geometries. All geometries show
linear trends between mass and stiffness with similar slopes but different intercepts.

predicts that the single and double layer conditions ("Bottom - single" and "Bottom
- double") will have 97.6% and 96.8%, respectively, of the effective stiffness of the
unmodified lattice.The average stiffness of simulated lattices at 20% scaling is 6.37
N/mm (single layer) and 6.29 N/mm (double layer), compared to 6.55 N/mm for the
uniform case. These represent 97.4% and 96.1% of the uniform stiffness, representing
strong alignment with the simplified, analytical model.

"Bottom - single" and "Bottom - double" are the most probable conditions based
on the physics of the printing and curing process; however, including the data for the
other conditions as well as data for populations without additional scaling creates a
"worst case" population of samples.

Stiffness variation due to strut noise is most easily visualized at 0% scaling, when
all variation comes from this type of noise. As noise levels increase, the range of
observed masses and stiffnesses increase, as shown in Figure 4-7. The average mass
is unaffected by noise, as evidenced by points centered around the nominal mass of
an unchanged lattice, represented by the dotted line. Increasing noise causes the
average stiffness to decrease, with the population average moving farther from the
predicted stiffness 𝐾pred of the unchanged lattice. Higher levels of strut noise also
create populations with greater stiffness variability: at a given mass, a wider range of
stiffnesses are observed at higher noise levels. Although the blue points in Figure 4-7
were generated under different conditions from all of the points in Figure 4-6, both
populations contain lattices with a range of stiffnesses for a given mass.

As with data for physical lattices, simulated behavior of the noisy, non-uniform
lattices is normally distributed. Lattice populations were defined from all lattices
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Figure 4-7: Generated lattices at all noise levels and 0% scaling, colored by noise level.
The horizontal and vertical lines represent the stiffness and mass of an unmodified
lattice, respectively. As noise increases, the range of mass and stiffness increase. At
higher noise levels, stiffness shows greater variability.

created at a given combination of noise and scaling level, and bivariate Gaussian
distributions were fit to each population. With 𝑛 = 100 lattices generated at each of
the six geometries in Figure 4-5, each population of lattices had 600 total lattices.

To generate the distributions, populations were centered around (0, 0) and nor-
malized by the population’s average mass and stiffness. This produces inputs to the
bivariate PDF of (𝑚′, 𝑘′), where 𝑚′ and 𝑘′ represent the fractional difference from the
average mass and stiffness, respectively. This is given by

𝑚′ =
𝑚− 𝜇𝑚

𝜇𝑚

and 𝑘′ =
𝑘 − 𝜇𝑘

𝜇𝑘

(4.19)

A 𝑘′ value of 0.15 represents a stiffness of 15% above the population mean. This
corresponds to mass-manufacture of AM lattice midsoles, where specification limits
are defined based on athlete needs (percentages above and below mean stiffness), not
based on the capabilities of the manufacturing lines.

The bivariate probability distributions of Figures 4-9 can be characterized in a
number of ways. One technique is to generate confidence regions. For the bivariate
PDF, the interval for probability 𝑝 consists of vectors x where

(x− 𝜇)𝑇Σ−1(x− 𝜇) ≤ 𝜒2
2(𝑝) (4.20)

Here, 𝜇 represents the two-dimensional mean vector and Σ represents the 2 × 2
covariance matrix. The chi-squared distribution with two degrees of freedom defines
the interior of an ellipse. We can visualize 95% confidence regions across the design
space, as in Figure 4-9.

65



Figure 4-8: Generated lattices for the "Bottom - single" condition at a) fixed noise
(1.25%) and b) fixed scaling (0%). The relationships shown in Figures 4-6 and 4-7
apply to individual concentration geometries as well as entire lattice populations. As
scaling increases, average stiffness decreases; higher noise levels produce greater range
of mass and stiffness.

We can also quantify the ellipse’s shape (eccentricity) and position (rotation, or the
slope of its major axis), as in Figure 4-10. The eccentricity 𝑒 of an ellipse is defined as√︁

1− 𝑏2

𝑎2
, where 𝑎 and 𝑏 represent the lengths of the semi-major and semi-minor axes,

respectively. A circle has 𝑎 = 𝑏, and thus zero eccentricity. As an ellipse flattens, its
eccentricity increases and approaches 1. A population with a high eccentricity shows
less variability in stiffness for a given mass, and the distribution looks much more
like a line than a circle. The slope of the major axis is represented in Figure 4-10b
as the angle of rotation from the y-axis. This describes how horizontal or vertical
the distribution is. Both the eccentricity and rotation angle are relatively constant
at noise levels above 5%. Changes in eccentricity and rotation are most noticeable
at high scaling and low noise levels. At low noise, there is little variation in mass
between lattices, but the high scaling results in significant stiffness differences. This
creates a rounder ellipse.

This design space can also be represented by the length of the major and minor
axes of the ellipses, as in Figure 4-11. Major and minor axis lengths are relatively
decoupled from scaling, as represented by the vertical bands in Figure 4-11a and b.
In much of the design space (noise > 5%, scaling < 10%), these mainly change with
noise. Comparing the ratio of the minor to major axis lengths, as in Figure 4-11c,
shows changes only at combinations of low noise and high scaling levels. For the rest
of the design space, the ratio of the axes is similar. This aligns with the ellipses in
Figure 4-9b: the ellipses for noise > 5% and scaling < 10% have similar shapes but
appear uniformly stretched in both directions as noise and scaling changes.
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Figure 4-9: Probability distributions characterizing a population of lattices can be
represented as ellipses aligned with the first singular vector of the distribution. The
shaded region represents a 95% confidence interval. a) Scaling distributions to unit
variance in both the mass and stiffness directions shows change in ellipse shape across
the design space. b) Plotting distributions with their actual variances demonstrates
the ellipses shows change in ellipse size across the design space.
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Figure 4-10: Distribution eccentricity (a) and rotation angle (b) are high once noise
exceeds above approximately 5%, regardless of scaling. Both eccentricity and rotation
angle decrease with increasing scaling, and this effect is most pronounced at low noise
levels.

Figure 4-11: Standard deviations of stiffness (a) and mass (b) of characterized lattice
populations shown with the ratio of the standard deviations (c). Standard deviations
are governed by noise; other than combinations of low noise and high scaling, the
ratio of the standard deviations is similar across the design space.
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Chapter 5

Framework for Analyzing Test
Accuracy

5.1 Statistical Quality Control

As we saw with the mass and stiffness data of Figure 2-15, data from manufactur-
ing processes is often normally distributed about some average value. A machining
process producing shafts, for example, will output shafts with diameters following
a bell-shaped distribution, as in Figure 5-1a. This distribution centers about the
average diameter of �̄�, given by

�̄� =
𝑥1 + 𝑥2 + 𝑥3 + . . . + 𝑥𝑛

𝑛
, (5.1)

The dispersion, or width of the curve is described using the standard deviation
𝜎𝑥, where

𝜎 =

√︀
(𝑥1 − �̄�)2 + (𝑥2 − �̄�)2 + . . . + (𝑥𝑛 + �̄�)2))

𝑛− 1
(5.2)

Figure 5-1: a) Histogram of the diameters of measured shafts from a machining
process. b) Bell-shaped, normal distribution curve indicating regions within each
range of the standard deviation. c) Gaussian frequency distribution showing sample
upper and lower specification limits [40].
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Together, Equations 5.1 and 5.2 define a probability density function (PDF), 𝑓(𝑥),
where 𝑓(𝑥) represents the probability that random variable 𝑓 ’s value would equal 𝑥.
For the Gaussian distribution, this relationship is written as

𝑓(𝑥) =
1√

2𝜋𝜎𝑥

exp (−(𝑥− �̄�)2

2𝜎𝑥

), (5.3)

Integrating across a range of 𝑥 values creates a cumulative distribution function
(CDF), written as 𝐹𝑥(𝑥), where 𝐹𝑥(𝑥) represents the probability that the random
variable takes on a value less than or equal to 𝑥. In a manufacturing environment,
we might want to compute the probability that a measured dimension falls within an
acceptable range. For the normal distribution, 68.26% of the population fall within
±1𝜎, 95.46% within ±2𝜎, and 99.73% within ±3𝜎.

Specification limits govern which parts from a process are accepted. These are
often defined based on customer needs or interaction with other components in a
device. For a shaft, a specification limit may be governed by the amount of acceptable
tolerance in a bearing fit. For a running shoe midsole, specification limits might be
set to create pairs of shoes which feel the same to a runner. Specification limits are
commonly described in terms of standard deviations from the mean. The relationship
between the specification limit and 𝜎 dictates the rate of defective parts.

Many companies utilize six sigma principles, which emphasize process capabilities
and producing defect-free parts. At a six sigma quality standard, the specification
limit falls at ±3𝜎 of the average, producing 0.27% defective parts, or 2700 defects
per million parts produced. As 𝜎 increases relative to the specification limit, the
defect rate increases. By comparison, a four-sigma level accepts parts within ±2𝜎,
giving a 4.54% defect rate. At smaller standard deviations, this means more parts
automatically meet the specification. As a result, the likelihood of correctly guessing
a part’s viability by chance increases.

5.2 Comparison of Real and Simulated Data

A bivariate normal distribution was fit to the physical mass and 9 mm stiffness data
described in Section 2.4. This distribution is described by matrices 𝜇 and Σ:

𝜇 =
[︀
𝜇𝑀 𝜇𝐾

]︀
=
[︀
21.8 66.0

]︀
(5.4)

Σ =

[︂
𝜎2
𝑀 𝑝𝜎𝑀𝜎𝐾

𝑝𝜎𝑀𝜎𝐾 𝜎2
𝐾

]︂
=

[︂
3.7 21.9
21.9 147.0

]︂
(5.5)

The units of the entries in 𝜇 and Σ correspond to the units for mass (g) and
stiffness (N/mm) in the original data set. These stiffness values represent to the
average stiffness during the first 9 mm of compression (force at 9 mm compression
(in N) divided by the compression amount (9 mm).

𝜎𝑀 , 𝜎𝐾 , and 𝑝 can be found from covariance matrix Σ and compared to the means
in 𝜇. This gives 𝜎𝑀

𝜇𝑀
= 0.089 and 𝜎𝐾

𝜇𝐾
= 0.184, with covariance 𝑝 = 0.935. Although
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𝜎𝐾

𝜇𝐾
𝜎𝐾 for 𝜇𝐾 = 450 N 𝜎 Cutoff at 𝐾𝐿𝑖𝑚 =

5% 10% 20%
0.033 15 1.5 3 6
0.067 30 0.75 1.5 3
0.1 45 0.5 1 2

Table 5.1: Specification limits are set as a percentage above/below the mean but can
also be expressed in terms of the standard deviation.

the standard deviations are comparable to those generated at various noise levels
from the numerical solver, the covariance is lower than most distributions generated
by the solver. The generated distributions had covariance values as low as 0.7, but
most were between 0.95 and 1.

This difference likely results from the two different cell geometries used in physical
testing vs. simulation. The stiffness of rhombic dodecahedron unit cells, which were
used in the physical testing, scales with the square of its relative density, 𝜌2rel. The
stiffness of the octet truss lattice, used in the computational model, scales with the
relative density.

𝜇 and Σ can also be found for the bivariate normal PDF centered about (0, 0)
and scaled to reflect percentiles above/below the mean, as in Section 4.4.

For the physical rhombic dodecahedron lattices, ±1𝜎𝐾 represents stiffnesses±18.4%.
In a well-controlled manufacturing process, standard deviations would be small rel-
ative to the average stiffness. Although specification limits are set as percentiles
relative to the mean, comparing these limits to the standard deviation helps with
comparing distributions. Midsole-level physical compression testing yields an average
stiffness 𝜇𝐾 of approximately 450N. The relationship between standard deviation is
outlined for selected hypothetical values of 𝜎𝐾 and 𝐾Lim in Table 5.1. The accuracy
of a test method will depends on the specification limit as a function of the standard
deviation. For two distributions with the same covariance, accuracy will be the same
at the same number of standard deviations above/below the mean: accuracy will be
the same at 𝐾Lim = 10% for a distribution with 𝜎𝐾 = 15 as it will be at 𝐾Lim = 20%
when 𝜎𝐾 = 30.

5.3 Test Accuracy as a Function of Specification Limit
The goal of this section is to understand how well mass predicts stiffness for simu-
lated lattices produced with various amounts and types of manufacturing noise. By
studying how modifying each type of noise impacts accuracy, we can understand how
a test’s accuracy would change if certain aspects of the manufacturing became better
controlled. Although the test accuracy is visualized as a function of the noise and
stiffness used to create the lattice population, the analytical framework applied to
each population is easily applied to other sets of mass data and/or data collected
from other testing techniques, provided it is normally distributed.

First, a simple go/no go test is developed using a linear regression model. For
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each population of lattices, the regression model’s fit parameters were used to establish
upper and lower mass cut off limits based on potential stiffness specifications. Next,
the bivariate Gaussian distributions characterized in Section 4.4 are used to see if these
mass cut offs can be modified to produce higher accuracy than regression model.

For each population of 𝑛 samples, 3× 𝑛 matrices Wa and Wp contain the actual
and predicted results, respectively. W’s rows represent whether the specimen is under
the lower limit, within the acceptable range, or above the upper limit. Each column
𝑖 = 1 : 𝑛 represents the result for lattice 𝑖.

R =
1

𝑛
WaW

T
p (5.6)

contains the results for the test. Multiplying Wa’s columns with Wp
𝑇 ’s rows

gives 𝑅 as a sum of 𝑛 rank-one matrices, where each rank-one matrix represents the
type of result (false/true, positive/negative) for a single lattice. As a result, rows of
R represent the actual results while columns represent the predicted results. Values
along R’s diagonal represent correct results: the predicted region matches the actual
region.

While unlikely, a test could reject a lattice for the incorrect reasons. A lattice
with low mass but abnormally high stiffness (above the upper stiffness specification)
could be rejected, as could a very heavy lattice with low stiffness (below the lower
stiffness specification). These results are represented by 𝑅13 and 𝑅31 and shown by
the upper left and lower right regions (in red) in Figure 5-2. Although the test rejects
these lattices for incorrect reasons, they should be counted as accurate results. A
modified results matrix R′ accommodates this, where

R′ =

⎡⎣𝑅11 + 𝑅31 𝑅12 0
𝑅21 𝑅22 𝑅23

0 𝑅32 𝑅13 + 𝑅33

⎤⎦ (5.7)

In this study, accuracy is computed as the percentage of correct results. This can
be defined as the trace of R′, or the sum of the components along its diagonal. The
rates of false negatives (𝑅′

21 + 𝑅′
23) and positives (𝑅′

12 + 𝑅′
32) are also determined.

Depending on the application, the types of incorrect results may have different rela-
tive costs. In medical testing for infectious diseases a high false negative rate could
allow contagious individuals to go undiagnosed, unknowingly transmitting the virus
to others; however, an increased false positive rate might mean patients who test pos-
itive might need additional testing to validate initial result. With more information
on the relative costs of each type of false results, false positives and negatives could
be weighted differently to better represent the value a test provides, as in Section 5.4.

5.3.1 Least Squares Regression Model

A least squares regression model was used to find the slope and intercept for each
distribution, as in Section 2.4 and Figure 2-14. The results of the regression model
are visualized as a fit line on the stiffness-mass plot, as in Figure 5-3a for a represen-
tative simulated distribution and Figure 5-4a for physical lattices. The shaded region
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Figure 5-2: Schematic of the types of results produced with given specification limits
(red lines) and mass cutoffs (blue lines). Different types of results (true/false and
positive/negative) are visualized by shading regions of the graph.

represents 95% confidence based on uncertainty in the fit parameters.
The upper and lower mass cutoff limits are found by solving 𝑦 = 𝑎𝑥 + 𝑏 using

the fit parameters (𝑎, 𝑏) from the least squares solution and the specification limit,
𝐾Lim. As the specification limit decreases, the red lines on Figure 5-3a move inward,
and the mass cutoffs (blue lines) adjust accordingly. Least squares finds the "best"
mass cutoff by minimizing the vertical distance between data points and the fit line in
Figure 5-3a and 5-4a. The regression sets 𝑀Lim set based on the regression, and the
best fit line approximately aligns with the major axis of the probability distribution,
such as those shown in Figure 4-10. This means that results matrix R is very close to
symmetric, and the false negative rate will be very similar to the false positive rate,
regardless of the specification limit.

Figure 5-3b displays the accuracy of this test as a function of the specification limit
for one distribution, represented by the black line. The false positive and negative
rates are included in grey. The red line represents a specification limit of ±5%, which
corresponds to the red lines drawn in Figure 5-3a. At low and high specification limits,
accuracy is very close to 1, but it decreases at intermediate levels. The magnitude and
location of this minimum vary with the distribution. For distributions with higher fit
uncertainty (represented here as width of the grey shaded band in Figure 5-3a), the
worst accuracy is much lower than for distributions with smaller uncertainty intervals.

Accuracy, false negative, and false positive rates were also found using the repre-
sentative probability distribution instead of the raw data. The bivariate probability
distribution function from Section 4.4 is used to create a cumulative distribution func-
tion for each group of lattices. Evaluating the cumulative distribution function gives
the percentage of samples in each of the nine rectangular regions of Figure 5-2. This
creates the 3 by 3 matrix R, which we modify according to Equation 5.7 to give R′

73



Figure 5-3: Least squares results for simulated octet truss lattices at 5% noise and 10%
scaling. a) Lattice data shown by dark grey points, with least squares fit represented
by the black line and grey shaded region. Example stiffness specifications (red dotted
lines) are set at ±10% of the average stiffness. Mass cutoff limits (blue dotted lines)
occur where these lines intersect the best fit line. b) Overall accuracy (black), false
positive (light grey) and false negative (dark grey) rates for the lattices generated by
the simulation depend on specification limit 𝐾Lim but are approximately equal for all
limits. c) Smoother results can be obtained by using the bivariate normal distribution
for this set of lattices.

Figure 5-4: Least squares results for physical rhombic dodecahedron lattices. a)
Lattice data shown by dark grey points, with least squares fit represented by the black
line and grey shaded region. Example stiffness specifications (red dotted lines) are set
at ±10% of the average stiffness. Mass cutoff limits (blue dotted lines) occur where
these lines intersect the best fit line. b) Overall accuracy (black), false positive (light
grey) and false negative (dark grey) rates for the lattices generated by the simulation
depend on specification limit 𝐾Lim but are approximately equal for all limits. c)
Smoother results can be obtained by using the bivariate normal distribution for this
set of lattices.
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Figure 5-5: Minimum accuracy for the least squares solutions for simulated lattices
are shown in grey. Darker lines represent lattices with less scaling. The minimum
accuracy for the physical rhombic dodecahedron lattices is represented by the blue
dotted line. At low scaling, accuracy is high and changes little with noise. For all
scaling levels, accuracy shows little variation once noise > 7%.

and find the overall accuracy at a given mass and stiffness combination. These results
are shown in Figures 5-3c and 5-4c. Raw data is discrete and not perfectly normal,
which means results are much smoother for both simulated and physical data. For
both types of lattices, the raw data shows good alignment with the computation from
the normal distribution.

Additional results for a variety of simulated distributions are available in Appendix
A.

5.3.2 Modifying Cutoffs Using Bivariate Distributions

Section 5.3.1 uses least squares to find the "best" mass cutoff for a given specification
limit. As a function of the mass and stiffness limits, the total accuracy takes the
shape of a saddle, as shown in Figure 5-7a.

When the mass limit is too low, false negative results dominate; too few samples
are accepted, and good samples are incorrectly rejected. At higher mass limits, false
positive results dominate; too many samples are accepted. At high stiffness limits,
accuracy is generally high, which makes sense; at high specification limits, most
samples should meet the specification, and expected accuracy will increase. Least
squares provides a solution along the crest of the accuracy surface, represented by the
darker regions of Figure 5-7a.

Taking slices along specific specification limits more clearly reveals the impact of
changing the acceptable mass limit, 𝑀Lim. The product needs define the specification
limit, and we hope to find the mass cutoff which yields the highest accuracy. A slice
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Figure 5-6: Accuracy of least squares solution increases as more samples meet the
specification limits, represented by increasing the stiffness specification (x-axis). At
constant noise (a), increasing scaling (lighter lines) decreases accuracy. At constant
scaling (b), increasing noise (lighter lines) increases accuracy.

Figure 5-7: a) Heatmap displaying the overall accuracy of mass as a prediction of
stiffness. b) A slice through a) at 𝐾Lim = 0.10 reveals the mass cutoff limit to
maximizes accuracy and shows a breakdown of the false positive (red) and negative
(blue) rates. At the maximum accuracy, false positive and negative rates are exactly
equal. c) The magnitude of this peak accuracy depends on the specification limit but
is overall quite high.

76



Figure 5-8: Best accuracy from adjusting cutoff limits, shown as a function of stiffness
specification. At fixed noise (a), accuracy decreases with increasing scaling (lighter
lines). At fixed scaling (b), the best accuracy increases with increasing noise (lighter
lines) for low 𝐾Lim but decreases with increasing noise for larger 𝐾Lim.

along Figure 5-7b at 𝐾Lim = 0.05 is shown in Figure 5-7c. At low values of 𝑀Lim,
incorrect results are dominated by false negatives. The testing limits are too narrow,
meaning lattices which meet the specification are falsely rejected. As 𝑀Lim increases,
false negatives decrease, and false positives increase. Overall accuracy is highest
where the false positive rate exactly equals the false negative rate. This magnitude
and location of this optimum accuracy depend on both the stiffness specification limit
and the underlying distribution of lattices. Appendix A contains graphs similar to
those in Figure 5-7 for additional distributions.

Fixing the noise level and creating plots similar to Figure 5-7c shows the impact
of scaling, represented in Figure 5-8a. At a low strut noise level (1.25%), increasing
scaling causes the best accuracy to decrease. A similar shape (global minimum fol-
lowed by a plateau) is observed for all distributions. Accuracy is generally high for
𝐾Lim > 12.5% and varies little as scaling and stiffness specification limit increase.

5.4 Minimizing Cost of a Hybrid Testing Approach
The best accuracy found at each stiffness level by sampling the probability distribu-
tion function is the same as that from the least squares regression model. The best
accuracy from the bivariate distribution occurs when the false negative and positive
rate were exactly equal. Least squares provides a solution where false negative and
positive rates match (approximately equal regardless of specification limit). As a re-
sult, both techniques have high accuracy at low specification limits which decreases
as the specification limit increases.

Although these techniques maximize accuracy by producing equal false positive
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Figure 5-9: The breakdown of types of results from using mass to predict stiffness
depends on the mass and stiffness limits. At higher specification (stiffness) limits,
more samples are expected to meet the standard.

and negative rates, this may not be the ideal solution. The types of results in R′ from
Equation 5.7 depend on the mass and stiffness specifications, as shown in Figure 5-
9. Adjusting R′ to apply penalties to different types of results shifts the breakdown
of false negative or positive results. In a well-controlled manufacturing environment,
most parts should meet the specification. We believe that most of the parts which are
accepted should be accepted, and a low false positive rate gives high confidence that
default parts are accepted. Favoring false negative results might require a secondary
test for rejected parts in order to avoid incorrectly rejecting good midsoles.

With information about relative costs for the two tests, different types of optimiza-
tion problems can be formulated to minimize cost. Without knowing the relative cost
of false positive results, we can minimize testing cost 𝐶, subject to some minimum
accuracy level 𝐴:

𝐶 = 𝑐1(𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 ) + 𝑐2(𝑇𝑁 + 𝐹𝑁) (5.8)

𝐴 = 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 (5.9)

where 𝑐1 and 𝑐2 represent the cost of the initial and secondary tests, respectively,
and 𝑇𝑁 , 𝑇𝑃 , 𝐹𝑁 , 𝐹𝑃 are the fraction of true negative, true positive, false negative,
and false positive results, respectively. In this model, all samples undergo initial test
with cost 𝑐1. Rejected samples (all negative results) then proceed to a second test
with cost 𝑐2, which has 100% accuracy. Overall accuracy of this hybrid test protocol
includes true positive results, which are initially accepted, as well as both types of
negative results. Cost 𝐶 is driven by the rate of negative results, 𝑇𝑁 + 𝐹𝑁 . Testing
cost is represented by the shading on Figure 5-10 for [𝑐1, 𝑐2] = [1, 10]. Contour lines
represent varying accuracy levels 𝐴; as desired accuracy increases, fewer samples are
accepted from the initial test.

The minimum cost to achieve each accuracy level in 𝐹𝑖𝑔𝑢𝑟𝑒 5 − 10 is shown in
Figure 5-11 as a function of 𝑘Lim. For a specification limit of ±1𝜎𝑘, represented by
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Figure 5-10: Total cost of a hybrid test depends on the mass limit, which dictates the
rate of negative results. Cost is independent of the specification limit, represented by
shading in this graph. Black contour lines represent accuracy levels of 90, 95, 97.5,
and 99%. As cost decreases with 𝑀Lim, the minimium cost to achieve a required
accuracy occurs exactly along the contour lines. Higher accuracy results in higher
cost.

the vertical line, the hybrid test achieves 99% accuracy at 70% of the cost to perform
the secondary test on all samples. This relationship holds even as the distribution’s
standard deviation changes relative to the mean. For this physical data, ±1𝜎𝑘 corre-
sponds to a 𝑘Lim of 18%. As the process becomes better controlled, ±1𝜎𝑘 will match
a lower 𝑘Lim value, but the cost to achieve that result will not change.

Operating at a two-sigma level (accepting parts ± 1 standard deviation of the
mean) is rare in manufacturing, where processes often run at four-sigma or higher.
At four-sigma, the cost to achieve 99% accuracy is only 20% that of the secondary
test, showing significant cost savings while maintaining high accuracy.

79



Figure 5-11: Cost of the hybrid test depends on both the specification limit and the
desired accuracy level. At small specification limits, it is more expensive to use the
hybrid test than to test all samples with a compression test. Achieving high overall
accuracy means reducing the false positive rate, meaning most samples are rejected.
Cost decreases with decreasing accuracy and increasing specification limit. At ±1𝜎,
the hybrid test achieves 99% accuracy at 69.8% of the cost for the current test. At
±2𝜎, achieving 99% accuracy requires only 16.4% of the current cost.
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Chapter 6

Conclusions and Next Steps

This study presents data on the mechanical and acoustic properties of additively
manufactured lattices and outlines a framework for evaluating the accuracy of test
methods. It also describes a two-test hybrid protocol which achieves high accuracy
at a significant cost reduction compared to existing testing.

Standard compression testing established the stiffness of flexible AM lattices, and
mass, volume, and acoustic tests were pursued as alternate ways to estimate lattice
stiffness. Stiffness data revealed that differences in lattice geometry are responsible for
a proportion of variance omega-squared over five times that resulting from material
differences (0.716 vs 0.129). Geometric changes appear as variations in strut thick-
ness, and material changes might manifest as local or global differences to the bulk
solid’s properties (density, elastic modulus). Overall material density was constant
for lattices printed under both light intensity levels and matched the manufacturer’s
advertised density. With a constant material density, geometric changes can be de-
termined either through mass or volume.

Both mass and volume measurements showed strong correlations with lattice stiff-
ness and good repeatability. Due to the lower uncertainty between individual mass
measurements (0.030%) compared to volume measurements (9.2%), analysis focused
on using mass as a predictive tool. Ultrasonic pulse-echo testing was also explored
as a potential test method and also shows statistically significant correlations (p =
0.0398 < 0.05). Additional data is still needed to increase confidence in this test
method, but the test is a promising and unique alternative to compression testing.

A numerical solver was also used to simulate compression testing of lattices with
manufacturing variability. Mass and stiffness of both the physical and simulated
lattices followed a bivariate normal distribution. The accuracy of mass as a predictive
tool was established for simulated lattices with different amounts and types noise as
well as the physical lattices. Based on the range of stiffnesses to accept, the range
of acceptable masses can be set using a simple least-squares regression model. This
technique has a minimum accuracy of 78.8% for the physical lattices; at±1𝜎, accuracy
is 86.3$.

When the least-squares model sets the acceptable masses, the false positive and
false negative rates are equal, which may not be favorable as a manufacturing quality
test. Reducing the range of accepted masses increases the false negative rate but
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sharply decreases the false positive rate. As predicting lattice stiffness by measuring
mass is quick, repeatable, and low-cost, it could be advantageous to measure mass
of all samples, ensure a low false positive rate but produce more false negatives, and
then conduct secondary (compression) testing of rejected lattices.

The hybrid testing model determines the minimum cost to measure all samples
using the first (inexpensive, mass) test and perform a second, more expensive test
(quasi-static compression) on all rejected samples. Achieving 99% accuracy with this
protocol lowers cost by 30.1% at a two-sigma specification limit (±1𝜎) and by 83.6%
at a four-sigma level (±2𝜎). With additional understanding of the relative costs (both
time and money) required to perform tests, as well as the cost of each type of result,
specification limits can be further optimized to minimize cost and maximizing yield.
Including a penalty factor to represent the value for users of midsoles with stiffnesses
close to the mean could allow for optimization of both specification (stiffness) and
testing (mass) limits to minimize cost, which becomes a function of time, money, and
value to athletes.

The hybrid test results are promising, and the accuracy framework is parameter-
ized from a normal distribution, providing easy application to new sets of physical or
simulated data. With a larger sample size of ultrasonic data, this framework could
be applied to better understand that method’s viability. In addition to collecting
ultrasound data for more samples, potential work could explore multiple scattering
simulations or other techniques for measuring the acoustic properties of materials
with periodic voids or variations in acoustic impedance. Introducing variations to
elastic modulus or density of struts in the simulation could be an interesting way to
understand the impact of localized material changes on overall effective stiffness.

As an applied test for a manufacturing environment, the same mass-stiffness re-
lationship must be found in midsole-level testing, and the results must be normally
distributed in both dimensions. Collecting this data will be a critical step for apply-
ing this research in future work. At the end of the day, midsole-level results are what
provide true value, but physical and simulated data from this work make a compelling
case for using mass as a stiffness prediction tool, even if additional testing is needed
for some lattices to optimize cost and manufacturing yield.
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Appendix A

Further Results

A.1 Lattice Simulation Results

Figure A-1: Results for simulated lattice samples with 1.25% noise and 0% scaling.
a) Mass and stiffness of simulated lattices. b) 95% confidence ellipse for normal
distribution fit to data. c) Best fit line and uncertainty determined through least
squares model. d) Accuracy obtained by modifying mass and stiffness cutoff limits.
e) Peak accuracy as a function of stiffness specification limit. Peak accuracy from
modifying mass cutoff matches accuracy of the least squares model.

Figure A-2: Results for simulated lattice samples with 6.25% noise and 0% scaling.
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Figure A-3: Results for simulated lattice samples with 12.5% noise and 0% scaling.

Figure A-4: Results for simulated lattice samples with 1.25% noise and 10% scaling.

Figure A-5: Results for simulated lattice samples with 6.25% noise and 10% scaling.

Figure A-6: Results for simulated lattice samples with 12.5% noise and 10% scaling.
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Figure A-7: Results for simulated lattice samples with 1.25% noise and 20% scaling.

Figure A-8: Results for simulated lattice samples with 6.25% noise and 20% scaling.

Figure A-9: Results for simulated lattice samples with 12.5% noise and 20% scaling.
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