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ABSTRACT

A heuristic computer program for the evaluation of real
definite integrals of elementary functions is described,
This program, called WANDERER (WANg's DEfinite IntegRal
EvaluatoR), evaluates many proper and Improper Iintegrals.
The improper integrals may have a finite or infinite range
of integration. Evaluation by contour Integration and
residue theory is among the methods used. A program called
DELIMITER (DEfinitive LIMIT EvaluatoR) is used for the limit
computations needed in evaluating some definite integrals.
DELIMITER Is a heuristic program written for computing
limits of real or complex analytic functions. For real
functions of a real variable, one-sided as well as two=sided
limits can be computed. WANDERER and DELIMITER have been
implemented in the MACSYMA system, a symbolic and algebraic
manipulation system being developed at Project MAC, MIT., A
typical problem in applied mathematics, namely asymptotic
analysis of a definite Integral, Is solved using MACSYMA to
demonstrate the usefulness of such a system and the facil-
lities provided by WANDERER.,
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CHAPTER |
INTRODUCT I ON

In recent years rapid advancement has taken place in
the art of using modern electronic computers to facilitate
symbollc mathematical computations, Computer based software
systems for this purpose are generally known as symbolic
manipulation systems. Such a system Is designed to aid Its
users in handling mathematical expressions and functions.

As the field of symbolic and algebralc manipulation grows
stronger and more sophisticated so do the various algebraic
manipulation systems. MACSYMA [16] Is a recent redesign of
earlier systems incorporating many new ideas and results
developed in the field. The development of MACSYMA began at
Project MAC, MIT, in early 1969, The effort has been guided
by Professors Martin and Moses of MIT and Involves a group
of researchers and students fincluding the author. Drawing
on the past work of Martin [15], Moses [20] and Engelman
[9], MACSYMA soon evolved into a system which extended the
capabilities of automated algebraic manipulation systems in
many new areas. Among these are the ability to compute

limits of functions and the ablility to evaluate definite



Integrals.,

The 1imit concept Is basic to mathematical analysis.
Being able to compute 1imits automatically greatly increases
the potential of a symbol manipulation system In doing
analytical mathematics. In fact the evaluation of definite
integrals is heavily dependent on the l1imit process, as Is
the expansion of functlions In power series and many other
mathematical problems. Although the computation of limits
has been studied previously to some extent [11l, 13], we
describe a limit program called DELIMITER (DEfinitive LIMIT
EvaluatoR) which Is more powerful than previous programs.

It Is discussed in detail in chapter 2.

The problem of computing indefinite Integrals
symbolically by computers has been Iinvestigated rather
thoroughly. First among the computer programs developed for
this purpose was SAINT (Symbollic Automatic INTegrator) by
Slagle in 1961, A more powerful program named SIN
(Symbolic INtegrator) [28] was developed in 1967 by Moses.
Theoretical work in this area include Rlichardson's
undecidabllity result for a certaln classes of Integrals
[22] and Risch's decision procedure for determining the
existence of the indefinite Integral of a member In the

class of elementary functions [23, 24, 25, 26]. There is a
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comprehensive review by Moses on the progress during the
past ten years in this particular area of symbol manipula=-

tiem [211.

However, hardly any work has been done In the direction
of definite Integration. Reported here is a first definite
Integration program called WANDERER (WANg's DEfinlite
IntegRal EvaluatoR)., Experiments with DELIMITER and
WANDERER are the principal subjects of this thesis.

WANDERER has been Implemented in MACSYMA and makes use of
many faclilities provided In it. Some of these facilities
are: input and two-dimensional output, simplification,
solution of polynomial and systems of linear equations,
canonical rational function simplification and the SIN [20]

integration program.

Evaluation of definite integrals can sometimes be as
easy as computing the indefinite Integral of the given
Integrand then substituting In the 1imits of Integration,
WANDERER computes Integrals of this kind by using those
parts of SIN that have belng implemented in MACSYMA,
However, many interesting definite integrals are not
obtainable in this manner. In some cases they may be
Improper Integrals or their Indefinite Integrals do not

exist. |In other cases It Is easlier to evaluate the definlte
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integral directly than to obtain the indefinite integral

first.

A few 1imit and integration problems are listed below
to give an indication as to the scope of WANDERER and
DELIMITER., The results obtained by the programs can be

found in chapters 2, 4 and 5.

0 o0
X + AX+B T
e S S W S W WS B LY dx ---------------
L 2 2 152
"y w0 %9 @ 4 oAy
SINCX) dX o
----------------- S BF LS
208X 2 e X LOG(X) dX
=2 e (X =+ 1) o
Ly & dx
2 2 1/2
° X -3 S AT
&8 oo
7) 172 2
COS (X) = SIN(X) dX LOG (%) dX/ %
o 4
2 L 172 L 1/X
LIMIT X (4 X + 5) - 2X LIMIT (A X + 1)
X-»+00 X==()
2 1/ 2 2
X (X =* 1) X
LIMIT e - e

X= +00
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Integrals with an Infinite range are discussed In
chapter 4, those with a finlte range In chapter 5.
Important routines and algorithms are collected In chapter

6.

An application of the MACSYMA system to an asymptotic
analysis problem Is [llustrated in chapter 7. The purpose
Is to show how such a symbol manipulation system can be used
to solve non=trivial problems that may occur frequently In
applied mathematics. This application demonstrates the
usefulness of the many facilities provided by MACSYMA and
WANDERER.,

A timing experiment has been conducted to check the
performance of WANDERER and DELIMITER., The results are
included In appendix C. Because of the limited character
set of most computer consoles, some special symbols are
needed to denote the frequently used mathematical functions,
constants and operators, For example, * and ** are used to
denote multiplication and exponentliation respectively,

Appendix D contains a list of notations we shall use.

From Richardson's undecidability results [22], we have

shown that the convergence of a class of Integrals of
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elementary functions Is recursively undeclidable, The proof

is in appendix E.

The remainder of this chapter serves as an Introduction
to algebraic manipulation systems, |f the reader Is
familiar with such systems he may proceed directly to the

next chapter.

An algebraic manipulation system Is a collection of
computer programs designed to facilitate the solution of
mathematical problems. Such a system has the abllity to
handle both symbols and numbers. This capability to mani=
pulate symbols mathematically is what differentiates these
systems from the various computer subroutines which

specialize In numerical analysis,

In using symbol manipulation systems such as these, one
usually interacts with it In a time=sharing environment via
a typewriter-1ike console. Normally, data and commands are
typed In by the user; Results from the computer are sent
back to the console for display. This arrangement attempts
to provide a user the ease and flexibility of the pencil and
paper he is so accustomed to, while permitting the computer
to assist him in his algebra and formal deduction from one

step to the next, |If the manipulations involved are non-
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trivial, so much the better. Some of the manipulations such
a system can provide are: GCD calculatlions, factoring, ra-

tional function arithmetic, matrix manipulation, solution of
algebraic equations, solution of systems of linear equa-

tions, indefinite integration of elementary functions.

Let us take a closer look at MACSYMA as a
representative model of other systems. MACSYMA recelves
inputs in the form of linear character strings typed by the
user, FORTRAN=1ike notation Is used for the Input. For

example,

The user types: Le(X*ew2+X+1)/YQ@

The @ sign signifies the end of a command string. As a
result of this command, a two dimenslional display Is

returned.

MACSYMA types: = ==m=mmcccccec-a-=-=

Inside MACSYMA, expressions are represented by list
structures in a prefix notation (common to many systems).
For example the expression above would be represented
internally by something 1ike

(CTIMES 4 (PLUS 1 X CEXPT X 20) LEXPT Y =19)
inside MACSYMA,
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Other forms of Internal representatlions are possible.
The choice of internal representation Is an Important aspect
of the design of a system. Of course more than one form of
internal representation can be employed in a single
algebraic manipulation system. In fact MACSYMA has a
special internal representation for rational functions which
is used to gain efficiency during certain polynomial and ra-

tional function manipulations.

One simple application of MACSYMA is factoring the

polynomial

3 2

P(X) =X+ 04 X =11 X - 30
A user who wants to factor P(X) using MACSYMA types:
FACTOR(X**3+LwX*%2-11%X=33)(

This input command causes the factorization of P(X) over the
integers. The output is

(X + 2) (X = 3) (X + 5)

While this problem may seem easy, factorization of
polynomials of higher degree can be very difficult to do by
hand., Indeed, algebraic manipulation systems can be most
helpful when one wants to manipulate complicated functions
and expressions. MACSYMA can carry out accurately with

great speed: summation over indices, expansion of products
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and powers, calculation of large determinants, Inversion of
large matrices.
Applications In pure mathematics include computations

in: number theory, group theory, Lle algebras and set

theory.

Research in the fleld of symbol and algebralc manipula-
tion has led to many new results. The fast GCD algorithm
[4] and the finite field arithmetic polynomlal factoring
algorithm [2] are two examples, Continued work In this area
will, hopefully, result In computer systems which are

increasingly valuable to engineers and mathematiclans.
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CHAPTER 1|1
DELIMITER

0., Introduction

The 1imit concept Is fundamental to mathematical analy-
sis. Basic concepts such as the rules of differentiation
are derived from limiting processes. More complex problems
such as Iimproper Integration, convergence of serlies, serlies
expansion of functlions and contour Integrals, to name a few,
also require the computation of limits In their solution

process,

Therefore, one can expect that automatic computation of
Timits would greatly Increase the capablility of a symbolic
mathematics system in doing analytical mathematics., The
programs described below provide such a capability In the

MACSYMA system [16].

Automating the computation of 1imits has been studied
previously to some extent, Fenichel [11] discussed certain
decidability problems of limits and provided, in the FAMOUS

system, some basic routines for computing two-sided 1imits.
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In his thesis, lturriaga [13] worked on both one and two-
sided 1imits. |In addition to L'Hospital rule, he applied
asymptotic analysis to quotients of polynomials essentially
by replacing those polynomials by thelr leading terms. This
can be done when the variable in the limit approaches infi-
nity so that the leading term is asymptotically equivalent
to the original polynomlial. Moreover, he discussed limits

of sequences.

DELIMITER Is more powerful than eilther Fenichel's or
lturriaga's 1imit program. L'Hospital's rule Is a basic
method used for Indeterminate forms. In addition, this pro-
gram employs a fast routine for limits of rational func-
tions. It has an efficlent algorithm for a class of expres-
sions called RP-expressions which involve radicals of poly-
nomials. |t also applies the method of reducing complicated
expressions by replacing subexpressions with asymptotically
equivalent expressions. The method of comparing orders of
infinity of expressions and several other heuristic methods
are used. In some cases, power serles expansions are employ-

ed to obtain the limits,

This chapter is based on a paper by the author [29]
presented at The Second Symposium on Symbolic and Algebralc

Manipulation, Los Angeles, March, 1971.
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1. Definitions and Symbols

DELIMITER is designed for finding the limit of a
single=valued function f(X) of a real or complex variable X
as X approaches some limit point., One-sided limits can be
computed If X and f(X) are real-valued. The classes of
functions allowed by this program include rational, radical,
logarithmic and exponential functions, and also the trigono-
metric functlions SIN, COS and TAN, and the hyperbolic
functions SINH, COSH and TANH, The general form of a user

command is

LIMIT(expression,variable,value,dlirection)@

with the fourth argument optional. PLUS as a fourth argu-
ment Indicates the one-sided 1imit from above, MINUS from
below., The absence of the fourth argument indicates no
restriction on the direction of approach. One-sided 1imits
are not allowed for complex-valued functions or limit

points.

If f(X) Is not continuous at X=a, the two-sided limit,
LIMIT(f(X),X,a), does not exist, In such a case the symbol

UND is returned by the program as an answer,
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The following are some symbols used by this program.

ZERO+ 0+ LERO= Q=

UND undef ined

IND Indefinite but bounded

INFINITY the point at infinity in the complex plane

INF and MINF will contlinue to Indicate respectively
positive and negative infinity. Here are some examples of

how these symbols are used internally.

LIMETCCOS(X) X 2P 1)

1]

-1+ ZERO+

LIMITCSINCX) X, INF) IND

]

LIMITC1/SINCX),X,INF) = UND

LIMITCL/(X=%21),%X,%1) = INFINITY
The direction from which a 1imit point is approached is
important. By use of ZERO+ and ZERO-, simplification rules
such as
1/(=1 + ZERO+ + 1) —» |[NF

and
1/(=1 + ZERO= + 1) =——» MINF

are possible in DELIMITER,
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2. Basic Rules and Outline of Algorithm

Some of the rules used In this program are the so-call-
ed "trivial" ones for limits of continuous functions,
namely, the 1imit of a sum Is the sum of the limits, etc.
There Is a limit routine for each of the functions SIN, COS,

TAN, SINH, COSH, TANH and LOG (base %E). For other func-

tions the rule

LIMIT(F(g(X)),X,L) = LIMITCF(Y),Y,LIMIT(g(X),X,L))

Is used.
For one-sided limits where the variahle approaches a
point other than 0, a change of varliable Is made to bring

the point to the origin. For example, the limit

LIMITOROX) % ,a,PLUS)
Is converted to

LIMITC(f(a+Y),Y,ZERO+)

‘There is, of course, a complete set of rules governing
simplification of the new symbols. They are all of the fol-

lowing nature
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IND/INF = 0 -1/INF = ZERO=-

= ZERO* = ZLIERO= - INF = MINF
1/INFINITY = 0 =1/INFINITY = 0
MINF**2 = [NF (ZERO+)+ZERO=- = 0

LOG(C+ZERO+) = LOG(C) + ZERO+
We will now briefly outline the algorithm, and then go
into the detalils of some of the component routines, Let us

cons ider
LIMIT (E(X),X,L)

where L Is any number or symbol Including INFINITY, INF,
ZERO+ and ZERO=-, |If L = MINF, it Is set to INF by a change
of variable Y=-X. Upon receiving the arguments, namely
E(X), X and L, DELIMITER checks whether L=INFINITY or E(X)
involves %l. |If elther or both iIs true then a global
indicator CPLX Is set to the value TRUE which indicates that
the given 1imit is to be evaluated over the field of complex
numbers., Otherwise CPLX Is set to the value FALSE which
signifies a 1Imit problem over the reals. If CPLX=TRUE, all
use of INF and MINF are replaced by INFINITY and the notion
of approaching a limit point from one side is no longer

valid.
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The following diagram is a simplified overview of

DELIMITER.
DELIMITER
SIMPLE LIM|T===———3>RETURN ANSWER
1
RATIONAL FUNCT!ON=——=3>RETURN ANSWER
3
RP=FORMS >RETURN ANSWER
BASIC LIMIT L'HOSPITAL'S SERIES ORDER
RULES RULE EXPANS ION OF INFINITY
EEEs ol

As indicated in fig. 1, DELIMITER has four stages.
Results of simple 1imit problems are immediately returned by
the first stage. Simple limits Include two cases: 1) E is
Iindependent of X. 2) E(X) = X. |In the second stage, a fast
algorithm is used to obtain limits of rational functions.
The third stage employs an algorithm for limits of RP-forms.
If the first three stages do not produce an answer, the
given limit problem enters the fourth stage which contains a

variety of methods including the four principal ones shown
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In the flgure., |In this stage the program will flrst try to
extract the numerator N(X) and the denominator D(X) of E(X)
so that E(X) = N(X)/D(X). |If both N(X) and D(X) are RP=-
forms the 1imit Is computed by an algorithm speclally for
these forms (see section 5 for definition and algorithm).

Otherwise the rule

1iTm ECX) = Tim N(X) /1im D(X)

Is applied., |If both 1im N(X) and 1im D(X) are 0 or infinite
we have an indeterminate form. In this case L'Hosplital's
rule will be appllied to E(X) with one exception: when L 1Is
INF and 1im N(X) and 1im D(X) are both Infinite and both
N(X) and D(X) contain exponential functions of X which tend
to INF as X approaches L. In this case the method of com-
paring orders of infinity, to be described shortly, Is ap-
plied, |If DELIMITER can not find an answer indlication of

failure will be returned.

Sometimes the program needs to know the value range of
a symbolic parameter In order to compute the limit. |In such

cases, the program will query the user at his console.

It Is important to note that these programs do not
store any table of limits Thus every limit obtained is a

result of computation.
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Other methods available include : change of variable,
discontinuity tests and analysis of the behavior of a func=
tion near a finite point. A flowchart in appendix A pre-

sents the flow of control in a more complete manner,
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3. The Limit of a Ratlonal Function

Let P(X) and Q(X) be polynomials in X and possibly

other variables and

E(X) =P(X)/Q(X),

n =degree(P)~-degree(Q),

c =leading coefflicient(P)/leading coefficlent(Q),

Consider LIMIT(E(X),X,L) where E(X) or X may be complex
valued. The following algorithm Is used to compute the

lTimit,

(1) If L is finite then,

If P(X) = Q(X) = 0 then set P and 0 according to
P(X)= P(X) /(X-L), Q(X)= Q(Xx) /(x-L),

by long division, then go to step (1);

if Q(L) Is not 0 then the answer Is E(L);

otherwise, the answer is INFINITY if CPLX=TRUE

and, If CPLX Is FALSE, the result is INF or MINF

depending on the direction from which 0(X) ap-

proaches 0 as X approaches L, and of course the

sign of P(L).

(23 1If L 1s Ptaflintte;
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If n=0, the answer Is ¢;

if n < 0, then If CLPX = TRUE, answer Is 0, but If
CPLX is FALSE then the answer Is ZERO+ provided
the sign of c*L**n [Is + and ZERO=- In case the sign
of c*l¥&n (s =}

otherwise, (n > 0) the answer Is INFINITY If
CPLX=TRUE, and the answer Is INF or MINF,

depending on the sign of c*L**n, if CPLX=FALSE,
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Lk, The Limit of a Quotient of RP=-forms

An RP-form is defined as an expression obtainable by
combining polynomials and positive rational number powers of
polynomials using the operators +, -, *, Here are some
examples of RP=-forms,

3 1/5
f(X) =SQRT(4 X + 5 X) + (X + 1) + X + C

2/3

g(X) A X SORTCX&L) + X

Note that the definition of RP=-forms does not allow
nested radicals of X, For instance the followling is not an
RP=-form.

2/3
(X + SQRT(X))

Now consider the 1imit problem,

LIMITCECX) %, 1L, ECX) =N(X)/D(X)

where N(X) and D(X)#0 are RP=-forms and at least one of them

is Irrational. Note that N(X) or D(X) can be a constant.

Let us define the operators EXPO and COEF by
EXPO(N(X))

=highest exponent of X in N(X),
COEF(E, NCX))

=the coefflcient of E In N(X).
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For example,

EXPO(g(X)) =7/6,
COEF(X=*w(3/2),f(X)) =2

EXPO Is obtained by a simple special purpose routine; COEF
is computed by using the RATCOEF routine iIn the rational

function package of MACSYMA [16].

Now the l1imit Is computed by the followlng algorithm.

(1) If L =MINF, X Is replaced by =X, L by INF,

(2) If L =INF, the following asymptotic analysis Is

made.

1) compute a =EXPO(N(X)), b=EXPO(D(X)).

i1) Let N1(X) and D1(X) be N(X) and D(X) with
polynomials under radicals replaced by their

leading terms, respectively. Compute

a'=EXPO(N1), b'=EXPO(D1).

1it) |If either a#a' or b#b', then It 1s usually

sufficient to replace each radical In E(X) by



(3)

()
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the flrst few terms In the serles expansion of
the radical about X=INF, obtalining a rational

function R(X). The answer Is

LIMITCR(X) ,X, INF).
Otherwise, compute
c=COEF(X%*a,N1)/COEF(X**b,N2), |If b>a, return
the answer c*ZERO+ {f a>b, return the answer

c*INF, otherwise, return the answer c.

If L = INFINITY then

Carry out steps (2-1) and (2-11)., |If ata', b#b'
or a=b, the answer Is UND, Otherwise, if a > b
the answer is INFINITY, while If a < b the

answer is 0.

If L is finite, compute N(L) and D(L), then

If N(L)=D(L)=0, apply L'Hospital's rule. Since
L'Hospital's rule can not succeed In case each
term in N(X) and D(X) has a branch polnt at X=L,
thqt is, N(X) and D(X) have a common factor (X-
L)**(a/b) with a and b positive Integers. In

this case the factor Is removed from N(X) and
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D(X) before using L'Hospital's Rule.

If N(L)=0 and D(L)#0,
the answer is 0 If CPLX=TRUE, otherwise the be-
havior of D(L)*N(X) at L is examined to decide

whether 0, ZERO+ or ZERO=- is the answer.

If D(L)=0 and N(L)#0,

the answer is INFINITY if CPLX =TRUE, otherwise
the behavior of N(L)*D(X) at L is examined to
decide whether INF or MINF Is the answer,

Otherwise, the answer 1Is E(L),

For large X the series expanslion

2 1
SQRT(X + 1) = SQRT(=-- + 1) X
2
X
5 1
""X(l"‘ --------- +§s.)
2 n
2 X 8 X
d 1
= X # mmm o= mme—— .
2 X 3
8 X
is convergent. It Is clear that this expansion method can

be appllied to an arbitrary polynomial to a positive frac-
tional power. This fact establishes the validity of step

C2m A Y
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5. Indeterminate Forms and L'Hospital's Rule

L'Hospital's rule is applied to an Indeterminate form
E(X) of the form 0/0 or INFINITY/INFINITY. 't first

calculates N'(X) and D'(X), then,

If D'(X)=0, L"Hospital's rule falls, otherwise, simplify

N'(X)/D'(X) and evaluate
LEMET ENYCR)ZDTERD %L .

The expression N'(X)/D'(X) can be more complex than
E(X) and successive application of this rule may lead
nowhere, Therefore the number of times this rule is called
successively Is counted and the relative complexity of
N'(X)/D'(X) to E(X) is tested to decide whether to continue
this approach. Our criterion of complexity Is based on the
number of distinct nonrational components of an expression,
If this number grows for three consecutive times, the ap-

plication of L'Hospital's rule is halted.

The indeterminate form O*INFINITY is transformed to
either 0/(1/INFINITY) or INFINITY/(1/0), depending on which
Is simpler, before applying L'Hospital's rule. Other in-
determinate forms such as 1**INFINITY, INF**0 and O**0 are

handled by the logarithmic reduction :
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FOX)**G(X) = ZE**(G(X)*LOG(F(X))),

Theoretically the Indeterminate form (INF = INF) can

always be reduced to 0/0 by rewriting It as

(i) (1/INF = 1/INF)/C1/INF*INF),

but this method often makes the expression much more
complicated, It is useful, though, for expressions

involving trigonometric functions as can be seen in

i 1
LIMET(s & smmwsm= ¥ 0 PLUS ) =00 <
X SINCX)

DELIMITER transforms the glven expression in this example to

SIN(X)=X

X SINCX),
then applies L'Hospital's Rule to obtain the answer 0.
Therefore, the method (1) is used for expressions Involving
trigonometric functions. Other types of expressions can bhe

dealt with more readily by comparing degrees of infinity of

the subexpressions or by series expansion.
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6. On the Sign of Infinity

If a function f(X) Is discontinuous at X=a, another
function g(f(X)) Is not necessarily dlscontinuous at a.
For example

1/X A
LIMITCCA X + 1) ,X,0)= 2%E

Therefore, discontinuity may be encountered In the course
of computing a 1imit of a continuous function. Consider

1/E(X) with E(a)=0 and the 1imit problem

LIMITCL/ECK ) %,8),

If CPLX = TRUE, the answer Is INFINITY. Otherwise, a rou-
tine named BEHAVIOR is used to analyze the behavior of E(X)
near X=a. |If E(X) approaches 0 from above or below as X ap-
proaches a, then the answer Is INF or MINF, respectively.

Otherwise, the answer 1s INFINITY,

The BEHAVIOR routine uses differentiation to analyze
the behavior of a function near a point by investigating its
slope or concavity at the point. This routine Is also used
by other programs. One of these Is the program which com-
putes limits of the trigonometric function tangent. |In case

the argument of TAN approaches %P1/2, say, It Is Important
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to know the direction of approach.

7. Heuristics for Comparing Orders of Infinity

Let f(X) and g(X) be two real=-valued funhctions which
become positively Infinite as X approaches INF, We define

the symbol >> by

Definition : gixXy >3 £(X) If

LIMITCF(X)/g(X),X, INF) =0,

Using this symbol we can make the following brief
table.

coe ZEXR®ZEX*XDOZEXXDOX**nd>>log(X)>>1o0g(log(X)) ...

Many 1imit problems with the varlable approaching INF
can be solved very efficiently by using this concept. Some
of these problems can be difficult to solve by other me-
thods., For example, L'Hospital rule falls to compute the

limit

LIMITC(ZE+L1)*aX%w2/%Ex%xX X, INF),

while the answer is obviously INF, We lIncorporate this con-
cept by a routine, STRENGTH, It can classify the order of

infinity of the argument according to the followlng rules,
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STRENGTH(c)=(c)
STRENGTH(LOG(R(X)))= LOG
STRENGTH(A**B(X))= EXP

STRENGTH(P(X)**(m/n))= m»d/n

where c is independent of X, m and n are positive Integers,
d the degree of the polynomial P(X). Note the STRENGTH of a
constant Is denoted by that constant Inside parenthesis and
the STRENGTH of a polynomial is a constant. B(X) and R(X)
can be any functions in X, except those which can cause the
relevant argument of STRENGTH to be simplified into one of
the other three cases. We can assume A to be %E for if A is
any other expression it Is always possible to change the
base to %E. STRENGTH of a sum Is the maximum of the

strengths of the terms in the sum.

There Is a basic comparison routine which knows the re-

lations between the strengths of functions,
EXP>>a>>L0G>>(b) and e>>d If c>d
where a, b, ¢, and d are constants.
Let N(X) and D(X) be two products satisfying

LIMIT(N(X),X, INF)=INF
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and

LIMIT(D(X), X, INF)=INF

and no factor In N(X) or D(X) Is a sum or a trigonometric
function. To compare the relative order of infinity of
N(X) and D(X), the following method is used. The answer 1
indicates N(X)>>D(X), =1 Indicates D(X)>>N(X), 0 no

decislion,
Algorithm COMPARE(N(X),D(X)):
1) Remove from N(X) and D(X) any common factors.

2) Apply the STRENGTH routine to each factor of N(X)

and obtain the maximum strength SN,

3) Do the same to D(X) and obtain Its maximum strength

SD.

L) If SN>>SD the answer Is 1, If SD<<XSN the answer ls =
1

Otherwise,

1) Let
N1(X)=product of all factors with strength SN In
N(X) .

D1(X)=product of all factors with strength SD In
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D(X).

il) If SN=SD=some constant, set

SN=STRENGTH(N1) and SD=STRENGTH(D1),

If SN>>SD, the answer is 1, [f SN<KSD the answer Iis
-1, If both N1(X) and D1(X) are polynomials In X,
the answer Is the leading coefficlent of the
polynomial N1(X) - D1(X). Otherwise If the variable
INDICATOR has the value 1, this means each of N(X)
and D(X) Is an exponent of an exponent of an expo-
nential expression and they come as a result of
recursive calls to COMPARE. For example N(X) may
come from %ZE#**%Ewx»*N(X)., In this case, the algorithm
goes as follows. First INDICATOR Is set to 0 then
E=LIMIT(N(X)=D(X),X,INF) Is computed and the answer

is 1 If E>0, =1 iIf E<CO, 0 otherwise,

I f SN=SD=EXP,

The exponents A(X) and B(X) of N1(X) and D1(X)

are computed, That Is N1(X) =%E**A(X) and D1(X)

=%E+**B(X), I|f both A(X) and B(X) are polynomials In
X, the answer Is the leading coefficient of the
polynomial A(X) = B(X) If this polynomial is not a

constant, 0 If it Is, If A or B Is a sum, A s set
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to LIMIT(A(X)=B(X),X,INF) and the answer is 1 If
A=INF, -1 If A=MINF, 0 otherwise. In case nelther A
nor B is a sum, If both A and B are of strength EXP,
set the variable INDICATOR to 1. The answer s ob-
tained by evaluating COMPARE(A1(X),B1(X)), where

A(X) = %Ex*wAl(x) and B(x) = %E#»#*B1(X).
If SN=SD=L0G,

If N1(X) is LOG(f(X)) and D1(X) Is LOG(g(X)) then
set SN to STRENGTH(f(X)), SD to STRENGTH(g(X)). Now
the answer Is 0 if both SN and SD are constants, 1

If SN>>SD, -1 if SN<KSD., The answer is 0 otherwise,

We shall next discuss the Indeterminate form (INF=INF)

and see how COMPARE can be used In such situations, Let
F(X)= iﬁ fi (X)

where -
LIMIT(fi(X),X,INF) =|NF or MINF

for i=1,2;««sne

LIMITC(F(X),X,INF) becomes Indeterminate when there exists |

and j such that

LIMIT(fi(X),X,INF) = INF

and
LIMIT(ﬁ (X),X,INF) = MINF
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The method of orders of Infinity can sometimes be ap-

plied to this problem, The algorithm used is as follows.

The program forms two lists L1 and L2 of the f;'s which
go to INF and MINF respectively. Then from each of L1 and
L2 a member of maximum order of inflnity can be obtained.
Let these be r(X) in L1 and s(X) in L2. Now if r(X) >>s(X)
the answer Is INF, If s(X)>>r(X) the answer is MINF, Other-
wise, the problem can be very difficult. However the pro-

gram tries to evaluate
INF*LIMITCF(X)/s(X),X,INF),
which sometimes produces an answer.

Now we will follow the major steps of the solution of a
problem in a more detalled manner. Let

2
X*SQRT(X + 1)
ACX)

1]
e
m

B(X)

n
e
m

Consider the problem LIMIT(A(X)=B(X),X,INF), First the

Iindeterminate form (INF=-INF) Is encountered through the fol-

lowing steps. .

LIMITCACX)=-B(X),X,INF)
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LIMITCACX) , X, INF)=LIMIT(B(X),X, INF)

LIMITCACX) , X, INF) =%E#*INF =INF

LIMIT(B(X),X,INF) =%E+*|INF =INF

INF=INF
Then COMPARE ls applied to A(X) and B(X), only to
arrive at no conclusion about the relative order of Infinity

of A(X) and B(X).

COMPARE (A(X),B(X))

STRENGTH(A(X) )=EXP

STRENGTH(B(X))=EXP

2 2
COMPARE(X*SQRT(X + 1),X )

2
STRENGTH(X*SQRT(X + 1)) = 2

2
STRENGTH(X ) = 2

Now the problem is converted to the following form and the

answer Is INF,

INF*CLIMITCACX)/B(X),X, INF)=1)

2 2
LIMITCX*SQRT(X + 1) - X ,X,INF) = 1/2
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INF*(%E**(1/2)=1)

INF

8. Examples

A number of limit problems solved by DELIMITER are
included in this section, They are presented in the form of
actual inputs and outputs of the MACSYMA system. Lines
labelled (Ci) are Input or command lines and (DI) output

lines or answers.

(C1) LIMIT(X*#+LOG(1/X), X, INF)@
(D1) 0
(C2) (COS(X)=1)/( %E=#X»%2 -1)Q

COS(X) - 1
(02)  emmeemeeee
2
X
%€ - 1
(C3) LIMIT (D2,X,0)@
g 1
(D3) - -
2
(CL) (1+A=X)=*x(1/X)@
1/X
(D4) (A X + 1)
(C5) LIMIT(DL,X,0)@
A
(D5) HE

(CB) Xww2w(baXkwh+5)*w(1/2)=2%X**l(d
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(CE) Xww2w(LwXxwb+5)xx(1/2)=2%XwxL(

2 L L
(D6) X SQRT(4 X + 5) - 2 X
(C7) LIMIT(D6,X,INF)@
5
(D7) g
L
(C8) 1/X-1/SIN(X)@
1 1
(D8) = = memee-
X SINC(X)

(C9) LIMIT(D8,X,0,PLUS)@
(D9) 0
(C10) ZE**(X#*(X%#2+1)%%(1/2))=%E**X*»20

2 2
X SQRT(X + 1) X
(D10) %E = %E
(C11) LIMIT(D1,X,INF)Q@
(D11) INF

(C12) (ZE**X+X*LOG(X))/(ZEw*w(X*#3+1)*%(1/2)+LOG(X**L+X+1))0

(D12) e

L SQRT(X + 1)
LOG(X + X + 1) + %E

(C13) LIMITC(DL,X, INF)@
(D13) 0
(CL4) 1/(X#*3=G#X2%2+11%X=6)0



(D14) =  mmeecsmecacaeesceaea-

(C15) LIMIT(D14,X,2,MINUS)@
(D15) INF
(C16) (X*SQRT(X+5)+1)/(SORT(UxX*w3+1)+X)@

X SQRT(X + 5) + 1
(D16) =  eeememececccmaaaa-a

SQRT(L X + 1) + X

(C17) LIMIT(D16,X,INF)@
1

(D17) -
2

(C18) TAN(X)/LOG(COS(X))@
TAN(CX)

(D18) e e
LOG(COS(X))

(C19) LIMIT(D18,X,%P1/2,MINUS)@

(D19) MINE
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(C20) (Z=%1%%P1/2)*Z*(Z=2%%P1%%1)/(SINH(Z)-%1)@
%P1 %I
Z (Z =2 %P1 %1) (Z = ====u- )
(D20) = eeememeeececeeeemeeeeeeeoeee-

(C21) LIMCDIFF(D20,Z),Z,%1*%P1/2)@

(D21) = 2 %P1
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CHAPTER 111

WANDERER=AN INTRODUCTION AND OUTLINE

1. Introductlon

The present chapter and the three subsequent ones are
devoted to a complete description of WANDERER, a heuristic

program for evaluating definite Integrals over a real range.

WANDERER cannot solve all definite Integration
problems, but it can certainly obtain solutions to a large
number of integrals. Many examples presented are actual
problems taken out of graduate text books [1, 5]. The basic
approach, in WANDERER, for evaluating an integral Is by com-
plex contour Iintegration and residue techniques, This Is a
very general method particularly useful In evaluation of
infinite integrals. Some other methods available to
WANDERER are: substitution, Integration by parts, diffe-
rentiation with respect to a parameter, pattern recognition
and table look=-up, finlte-to-infinite conversion, Introduc-
tion of a parameter and partition and transformation of the

range of integration,
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The user's command in MACSYMA for definite integration

is the key word DEFINT., DEFINT takes four arguments as In
DEFINT(exp, var, a, b)

where exp is the Iintegrand, var the variable of Integration,
a and b the lower and upper limits of integration, There is
no restriction as to what types of Integrands are allowed as
input, as long as they remain elementary functlions.

However, WANDERER requires the integrand to be finite In the

Integration range except possibly at the end polints a and b.

A few special symbols are used in WANDERER for some
branches of the logarithm function., They are listed iIn

appendix D.

2. Outline of Approach

Before going into the details of methods and algorithms
for evaluation-of the many types of definite integrals which
will be discussed In the next three chapters, a quick look
at the whole picture with emphasis on the flow of control Is

in order.

WANDERER is a heurlstic program which computes definite

integrals by trying to apply one or more of the methods or



algorithms built into It, The clues as to which of the
methods to apply are obtalned by examining the range of

integration and the form of the integrand.

Fig. 1 on the next page serves as a simple outline of

the flow of control in WANDERER,

438



WANDERER
S=success
F=failure
simple Integrals—return answer
lF
normalization
of Integrand and
integration range
methods for methods for
infinite integrals, finite Integrals,
applied according to Including proper and
range of integration improper integrals

more general methods

return answer transformation, ———return answer
change of variable

€

divergence test

Eles 1

As indicated in fig. 1. WANDERER can be said to have
five stages. In the first stage simple Integrals are com=
puted which Include cases such as a constant Integrand, an

integral with equal upper and lower limits of Integration

L9
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and, iIf the variable of integration is X, Integral with
integrands which are polynomials In X or %E#**X, The
normal ization stage will make sure, by transformation If
necessary, that (1) the lower limit Is less than the upper
1imit, and (2) constant factors, If any, in the Integrand
are removed to be multiplied into the final answer of the

integral.

The third stage comprises most of the methods that will
be described in chapters 4 and 5 and is the work-horse of
the whole program. Many methods In this stage are grouped
according to the integration range Iin which they are
appropriate, Finite Integrals of rational functions are
transformed into infinite Integrals which will be evaluated,
For other finite integrals, an effort is first made to
determine whether they are improper integrals., The abhsolute
divergence of a finite Improper integral Is tested before
any attempt at evaluation. |If the third stage fails to
obtain any results, the given problem enters the fourth
stage which contains more general methods appropriate to
various types of Integrands. A transformation or change of
variable Is often done in thls stage. When WANDERER runs
out of methods, the convergence of the given integral will

be challenged, In case It Is divergent, WANDERER will so
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indicate in the output. Otherwise, iIndication of failure
will be returned. It may be argued that tests for
convergence should be conducted before evaluation, but this
is not necessary because WANDERER is so designed that
whenever it produces an answer, the given integral is
convergent., That is to say each individual method has its

own convergence and divergence conditions built In.

The limit program described In the previous chapter is
used whenever a 1imit computation is needed in WANDERER, It
may often be required In changing the variable of integra-
tion, computing residues and testing for convergence or

divergence.

3. Outline of the Computation of Residues

One of the most powerful methods in evaluation of
definite integrals Is the use of contour iIntegration through
residue calculations. The importance of contour integration
and the residue theory in the sequel warrants a brief

summary of relevant facts from complex analysis [5].

(i) The Cauchy Integral Theorem: Let D be a simply

connected domain and let f(Z) be analytic in D, Let C be a

closed contour in D. Then
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j’f(Z) dZ = 0
a

A simply connected domaln is Intuitively an open set of
points with no holes or cuts in its Interior. For example
the disk |Z|] < 0 Is simply connected while the annulus 1 ¢
IZ] < 2 is not., The Cauchy Integral theorem Is one of the
most important tools In complex analysis., It is by use of
this theorem that path of integration can be deformed. More
precisely, if Cl and C2 are two different curves In D lead-

ing from the same starting point v to the same end point w,

as shown in fig. 2,

Elg. 2
and f(Z) is anhalytic in D, then

If(Z) dz = f‘F(Z) dzZ.
dl ¢z

Therefore, the contour Cl can be deformed into C2. The

above is an immediate consequence of Cauchy's integral

theorem which gives



[f(Z) dZ-IF(Z) dZ = 0
¢l ce

(iIi) Definition of Reslidue: Let f(Z) be analytic In the
punctured neighborhood of a point p. Let Cp be a small
positively oriented circle with center at p. Then the

residue of f at p Is deflned as

1
B ¥LZ) dZ
271
Ce

The value of this Integral Is the coefflcient of the
term
-1
(Z - p)
in the Laurent expansion of f about the point p, so this

coefficient can also be regarded as the residue of f at p.

(ii1) The Reslidue Theorem: Let C be a simple closed
positively orfented contour, Let D be a simply connected
domalin contathing € and lts Interlor. +Let Al, A2, « « «, AN
be points inside C, Except for Isolated singularities at
Al, A2, . . ., An, let f(Z) be an analytic function In D.

Then
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n
2Tl Z (Residue of f at Aj)
J=1

f t(Z) dZ
c

The algorithm for residue computation used in WANDERER
will be described briefly here., Detaliled discussion of this

algorithm can be found In sect. 6-1,

Let f(Z) be a function of a complex variable Z,
analytic everywhere In a domain D except for a number of
poles in D. Suppose F(Z) can be written in the form

f(zZ) = U(Z)/Vv(Z)
such that U(Z) Is analytic in D. This means that poles of
f(Z) are zeroes of V(Z)., Suppose p Is a pole of order m of

f(Z), the residue of f(Z) at p Is computed by the following

algorithm,
RESIDUE ALGORITHM:

If m= 1, compute as answer
_ utpd/Vv'(p)
otherwise, If V Is a polynomial,
(i) Set V to the quotient of V(Z)/(Z - p)*=*m
which Is computed by long division,

(ii) Return the result computed from

m=1
3 (d u(z)
(m - 1)! |dZ v(Z)

Z=p
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otherwise, (m > 1, V not a polynomlal) compute and
return as answer the limit

m=1
1 d m
Lim| =——— | (Z = p) £(Z)
Z=pl (m = 1)! \dZ

DELIMITER is used in obtaining such a 1imit. Methods
for infinite Integrals are discussed In the next chapter,
Those for finite integrals are Included in chapter 5.
Important algorithms and algorithms common to many methods

are detailed in chapter 6.
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CHAPTER 1V
SYMBOLIC COMPUTATION

OF INFINITE INTEGRALS

0. Introdtction

The aim of this chapter Is to give a detailed account
of the methods employed by WANDERER for Iimproper Integrals
with an infinite range. Contour integration and residue
computation play a very Important role In many of the
methods. The algorithm for integrals with rational
integrands, which will be discussed first, is the most com-
Plete. Sections are formed according to the function types
of the integrand and ordered roughly In increasing com-
plexity. Qulite a few examples are included, some of them

with references to books or integral tables Indicated.
l. Infinite Integral of a Ratlonal Function

In this section methods for evaluating infinite inte=
grals of a rational function will be presented. The range
of integration is from either 0 or minus infinity to

Infinity. Other possible iInfinite ranges such as (a |INF),
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(MINF a), where a is finite, can be converted to (0 INF) by
a change of varliable in the integral,

First let us conslider

@
L ijr R(X) dX, R(X) = P(X)/Q(X)

-0

where P(X) and Q(X) are polynomials in X over the fleld of
complex numbers.

WANDERER requires deg(Q(X))-deg(P(X)) = 2 to Insure the
convergence of the given Integral. |If R(Z) has no real

poles, then The integral L can be computed by evaluating the

J =f R(Z) dzZ
C

around a famlllar semi=circular contour in the upper complex

contour integral

Z-plane (fig. 1). One can easily prove that L = J as T

tends to infihity.
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Therefore
(1) L = 2 2py 2h{ Z:Res(R) over poles of R Inside C)

The residue subroutine outlined in the previous chapter Is
used to compute the reslidues needed in this formula. |If
R(Z) has poles on the real axis then L Is divergent.
However, if the real poles of R are all simple then the
Cauchy Principal Value of the Integral L exists, and can be
obtalned by indenting the contour C at these singular polints
on the real axls. For such Integrands WANDERER will compute

this principal value, which Is given by

{2y CP)L

2 2RI %1¢ Z:Res(R) over poles of R Inside C)
+ %P1 %1( Res(R) over simple real poles of R),

as an answer to the integral L., (P)L stands for the
principal value of L, Whenever the answer Is a principal

value, the message PRINCIPAL will be sent to the user first.

Here is an example solved by WANDERER
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(C1) (X**2+A%X+B)/(X**L+10*X*%2+9)Q

(D1) = esececccemea-a

(D2) = eeeecaaeea-a-

The expression D1 has four simple poles: X = %I, =-%I,
5 %1 and -3 %1. Usling formula (1), only residues at X=%I

and X=3 %| need be computed. The residues are

at X=3%I (B=1+A %1)/(16 %1)
at X=3 %l -(B=9+3 A 21)/(L48 2%1)

These values are computed by the residue algorithm given In

the previous chapter.

The full algorlthm depends on finding the poles of R,

How this is done will be discussed in detail after consider=

[0}
K =d/-R(X) dX
]

If R(Z) has no real pole which Is positive or zero,

ing the next integral.

this integral can be evaluated by Integrating the following

contour integral [30]
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J ZJ(‘f(Z) dZ, f(Z) = PLOG(=-Z) R(Z)
a

where PLOG denotes the principal branch of the LOG function,
i.e., the imaginary part of LOG(-Z) lies between %P! and =

%P1. The contour C consists of circular arcs of radii a, b,
and two straight lines jolning their end=-points as shown In

fla. 2.
2y

¢r

Ce

ﬂ},Z

One can verify that contributions from the two circular

arcs of C vanishes In the 1imit. Thus,

N - 2 %P1 %I
J =f PLOG(=X) R(X) dX + f PLOG(=X %E ) R(X) dX
o [#0]

]

[+ ] : -] L=~
.f-PLOG(X) R(X) dX jjﬂPLOG(X) R(X) dX - 2 %PI %t[ R(X) dX
o o

-]

- 2 Pl %1 K
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Hence the value of the integral K is given by

£3) K = -(E: Res(f) over poles of R inside C)

Therefore, the value of K is =1 times the sum of
residues of LOG(=Z)R(Z) In the complex Z=plane cut along the

positive real axis.

It may be of some interest here to mention that a
theorem in |30| gives a value for the Integral K which

differs from the correct formula (3) by a sign.

Now suppose R(Z) has poles which are real and positive,
then the integral K is divergent. But its Cauchy principal
value exists if every such pole is of order 1. This value
is given by =1 times the sum of residues of LOG(=Z)R(Z) in

the entire Z=plane punctured at Z=0, as given in
() (P)K = =( ). Res(f) over poles of R),
K diverges if R(Z) has a pole at Z=0. The following

examples were ;omputed by WANDERER, For ease of reference,

expression (D1) Is repeated here
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(p1) eesecsccccaaa-

(C3) DEFINT(D1,X,0,INF)@
2 %P1 B + 6 LOG(3) A + 6 %Pl
(D3) =  eeeesscsaseccecccccmseccea—e——
The answer in (D3) is obtained by locating the four

simple poles of (D1) and applying formula (3).

(CL)1/(X*x2+X+1)0@
1

(D)  eeemeeceemee--

2

(X + X + 1)
(CS5)DEFINT(D6,X,0,INF)@
2 %P1
3 SORT(3)

Now let us turn to the problem of finding the poles of
R(Z). The SOLVE [16] program in MACSYMA knows how to solve
a number of types of equations. This routine Is used in
obtaining the locatlons and multiplicities of the zeros of
Q(x), the denominator of R(X). The SOLVE program does this
by factoring Q(X) over the integers and applying formulas to

each Irreduclible factor of degree less than 5. For factors
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of higher degree only those of the form aX**n+b will be
solved. This facllity can be augmented by Including more
special cases for polynomials of higher degree. |f the
integrand Is not rational, the problem of finding poles can
be much more difficult, although SOLVE can find some of
these also, In any event, the method of residues can be

successful only If all relevant poles can be located.

Let p be a root of Q(X)

]

0 of multiplicity m which Is
obtained employing SOLVE. It Is not necessarily true that p
is a pole of R(Z) of order m. This Is because the rational
function package [10] in MACSYMA does GCD cancellations only
over the integers while R(Z) is a rational function over the
complex numbers, Therefore p may not be a pole of R(Z) or p
may be a pole of R(Z) of order less than m. Fortunately
WANDERER can pretend that p Is really a pole of order m and
proceed with the algorithm for computing residues which will
produce a 0, If p Is not a pole, and the correct residue, In
case p is a pole of order less than m. More discusslion on

the computation of residues can be found In Sect. 6-1.

Thus, as the reader can easily verify, (D2) of example
(C2), in page 59, Is valld even If A=0 and B=1 (or A=0 and
B=9). As another example, correct answers were obtained in

the following integrals even If %!, the square root of -1,
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is treated as a simple pole of the integrand,

(D6)  eemsescascccaccmea—-

(C7) DEFINT(D6,X,MINF, INF)

oy L memes

(C8) DEFINT(D6,X,0,INF)

(Dg8) eemmemeescsaaaaa-

A special case check Is provided as an auxiliary to the

above algorithm.

P-1
R dx
N M
© (A X + B)
P/N - P/N * M =1 9P|
= (B/A) | ] emeeemcecmcccceea--
M =1 M

B N SINCZPI P/N)

for M, N, P positive integers, M > P/N, P not divisible by N
and AB > 0,
For the case M=1, AB<0, the following Cauchy principal

value is used.
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A 1 = P/N &PI PP
Sy {ami) BOT( i )
B A N N

This special case Is not necessary for the algorithm
but it is very helpful as far as program efficiency Is

concerned, especially for large M or N,

Sometimes substantial computing time can be saved by
application of differentiation techniques in integration

problems., Consider the infinite Integral

P dx
(5) ST B e
2 10
-0

(X % X % K)
If the algorithm for rational functions were used straight=-
forwardly, differentiation would have to be carried out 18
times to obtain the sum of residues In case both poles lie

above the real axis. But since

it Is only necessary to differentiate a quadratic expression

once to obtain the sum of residues to evaluate the Integral
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X + X + K
After this is obtained, 9 more differentiations with respect

to a parameter K are needed. |t means a saving of at least

8 differentiations.

In fact, whenever the denominator Q(X) of the integrand
is of the form
V(X)**n
with v(X) a polynomial and n 2 2, this method of diffe=
rentiation may be applicable If the degree of N(X) Is large

compared to that of the numerator P(X).

We have included this technique In WANDERER. Let

n deg(P(X)),

s deg(v(X)),

QX)) = v(X)*w*m,

Here is a brief description of the algorithm.

If 2 =2 m*s=n, this algorithm Is not applicable,

otherwise (mws=-n > 2)

(1) Set r to the least Integer = (n+2)/s

{41y 1€ m > P

(a) Compute the original Integral with m
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replaced by r and v(X) replaced by v(X) + ZP
where ZP Is a new parameter Introduced Into the
problem. Let the answer thus obtained be
ANS(ZP).

(b) Return the followling as the answer

m=r

m-r (r-1)! ( d

) ANS (ZP)
(m=1)!

dzP LZP=0

(in) otherwise (m=r), the algorithm is not necessary

and thus will not be applied,

The parameter ZP used In this algorithm makes the
symbolic differentiation In step (Ii-b) possible at all
times. The flnal answer Is obtained by setting ZP to zero,
Such a parameter will be used again later and will be

referred to as the zero parameter,

For example,

(p9) eeeecccace——-

(C10)DEFINT(D9,X,0,INF)@

9 SQRT(3) 2

In this example, we have n=0, m=3 and s=2., Thus r

L}
[



and the value of

is computed first.
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2. Infinite Integrals Involving Algebraic lrrational Func-

tions
2.1 Evaluation by Resldues

Let R(X) be a rational function. Conslder

o2 ]
D =J( X*xK*R(X) dX, =1¢< K ¢ 1
Q

LIMIT(X*x(K+1) R(X), X, 0, PLUS) = 0,
LIMIT(X**(K+1) R(X), X, INF) = 0,
and R(X) has no poles of order greater than one on the
positive real axis, then D can be evaluated by applying

residue theory to the contour Iintegral

J[~f(2) dz, f(Z) = (=Z)**K R(Z)
c

around the contour C shown in fig. 2. The 1imit conditions
glven above are convergence test; for D. They are computed
by DELIMITER., In computing these Integrals, the Integration
program wlll first obtain two sums of residues S1 and S2 of

the function f(Z) by executing the following two steps.

If R(Z) has poles off the positive real axis, set S1

to z:Res(f(Z)) at these poles, otherwise set S1 to
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0
If R(Z) has simple positive poles, set §2 to

z:Res(F(Z)) at these poles, otherwise set S2 to 0,
Now the answer to the integral D is given by

SPI Sl
---------------- - %P1 COT(%PI (K + 1)) S2
SINCZPI (K + 1))
For example, MACSYMA produced the following result,

(C1) 1/(C(1+X)w»X*%(1/2))0

1
(Dl) S e S N WD N G NN ED S S WS NS S
SDRTCX)Y (X *+ 1)
(C2) DEFINT(%,X,0,INF)Q@ [3]
(D2) %p |

2.2 Integrals Related to the Beta Function

From the definition of beta function
i
BETA(K,S) ijr Xew(K=1) (1-X)**(S~1) dX,
0

where K > 0 and S > 0, One can deduce the following rela-

tion
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where CD > 0 and S > K > 0.

By a further change of variable In this formula, the

following very useful relation Is obtained.

e BETAC(A,B)
(a) -------- dY = ccccmmman- b r>o0
ro S A B

where A = K/r > 0, and B = S=A > 0.

This rather general formula covers many interesting
infinite integrals involving algebraic irrational functions.
This is built into the programs by using special purpose
pattern recognition routines (see chapter 6) to examine
whether the integrand Is of the particular form (a). A
simplification routine for Beta function was also needed to

put the results in a simpler and better looking form.

07 S, A R SRR et T

(C4) DEFINT(D3,X,0,INF)@ [12]

IS THE EXPRESSION
O I
POSITIVE, NEGATIVE, OR ZERO
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POSITIVEG@

IS THE EXPRESSION

PBSTTIVE, NEGATIVE, OR ZERO
POSITIVE@

K
(DL) 3 BETA(K + 1, = K)

2.3 Evaluation by Trigonometric Substitution
If R(X,Y) is a rational functions in the two variables
X and Y, then an integral of the form

@
U =‘/FR(X, SQRT(X*%2-Axw2)) dX
o

can be transformed to an iInfinite Integral of a rational
function which has been discussed in Sect. 4=1. The trans-

formation below Is easy to verify.

Let
* 2 2
SORT(X = A )
Y = smccmmmeeaa ;
X + A
U becomes
2
L on vy %1y 248 v Y dy
I‘I’AIR( ---------- T R ) ------------ .
2 2 2 2
o
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Now let Z = Y/(1 = Y) In the above integral, It can be shown

that U is equivalent to

2

S A (2.2 *9% % 1) ¢ A ZAT 5T Z (Z » 1)dE

(i) &4 A Blre et S hee Sl U j  Eesemsesscen
o 32 %1 207 %1 2

(2 2.+ 15

Although the above is all that Is needed for the given

integral U, it is sometimes more efficient to transform U

into a finite integral of a rational function of the trigo-

nometric functions. That Is, by setting COS(t) = A/X in U,

ohe may deduce that

L LY SINCt)
(il) U=A R(===m===- JA TAN(E)) (======= )it

Cos (t)

Both of these methods (1) and (ii) have been included

in the programs. Our heuristic rule for applying these

transformations is as follows.

Apply (ii) If it transforms the given integrand Into

the form
COS(t)*wm SIN(t)**n,

otherwise apply (1).

For example,
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(D5) =  emessceee- I —
X SORTLX =~ A )

(C6)DEFINT(D5,X,0,INF)@
1
(D6) i

2
A

2.4 Differentiation with Respect to a Parameter

We have included two formulas In WANDERER for iInfinite
integrals involving algebraic frrational functlons. They

are

%z dx 1
s e R e = UCA,B,C),
2 3/2  SQRT(C) (B/2+SQRT(AC))
® (AX + B X +C)
with A 20, C > 0, and B > =SQRT(AC), and

Lo X dX 1
----------------- = mmmmmsseesscecseceeeea= = V(A,B,C)
2 3/2  SQRT(A) (B/2+SQRT(AC))
°© (AX + B X +C)

where A > 0, C =20 and B > = SQRT(AC),

They are Included because any Integral of the form
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@ X dX
(iit) .‘/’~ -------------------
2 N+3/2
O (AX + B X +C)

can be computed from these known results., Our tool in doing
this is differentiation with respect to an appropriate

parameter, Let Z1, Z2 and Z3 be three zero parameters and

N SQRT(%P1)/2

GAMMA(= + N)
2

The algorithm is as follows.

Upon deciding that the integrand Is as given In (1i1),
WANDERER has obtained the values of M, N, A, B and C, The
answer to the given Integral Is then computed using the
simple procedure: |

If M=10 and N = 0, return U,
If M=1and N =0, return V,
If 2N+2 s M, the gliven Integral Is divergent,

If N2 M, return

A s snesews UCA,B+Z2,C+Z3)

?
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If M = N+1, return

N

d
H [---- V(A,B+z2,0),
dz2

If 2(N+1) > M > N+1, then

(1) if M is even set r = M/2, return the answer

H{====mmmmnan- UCA+Z1,B,C+Z3)

2

(1i) If M Is odd, set r = (M=1)/2 and return

N
d
H{=-==reeneanex V(A+Z1,B,C+Z3)

N=r r

dZ3 dz1

A simple example Is
b
X

(D7) eeecacscaea- -
15

2 2

(X + X * 1)

(C8) DEFINT(D?7,X,0,INF)@

GBI 0 s T e e
6567561
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3. Infinite Integrals Involving Trigonometric Functions,

3.1 Integrals from Minus Infinity to Infinity

Let R(X) be a ratlional function which has no real poles

and

LIMITCR(X) , X, INF) = 0.

The Integral

0
(%21 m X)
L = *E REXY dX, m> 0
-0 )
is convergent. |Its value can be obtalned by evaluating the

contour Integral

(21 m Z)
J = at R(Z) dz
a

around the contour C given In fig. 1.

Let Cr be a circular arc with center at Z = 0, radlius r
and argument t, tl < t < t2, Jordan's Lemma [7] shows that

if f(Z) approaches 0 uniformly on Cr as r approaches INF,

(%1 m Z)
LIMIT %E £(Z) d2=0,; for t1 20, t2 S 2P|
T —>+t00 @

r

and that
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(=%l m 2)
LIMIT ZE ROZ ) din(:, for tlive 2P, t2 = 22Pl.
¢

¥ — +00
v
Therefore L = J as r tends to infinilty and the method
of residues can be applied, Moreover, for m < 0 one may

use the same method by using a contour similar to C In the

lower half complex Z=plane.

For real m, n and p, let T(X) be SIN(mX), COS(nX),
ZE**(%1 p X) or a function Involving sums and/or products of
these functions. In complex exponential form T(X) Is a sum
of constant multiples of functions of the form %E**(%1 k X),
k real.

Therefore

-
[T(X) R(X) dX
~00

can be integrated using complex contour integral. In doing
such a problem, terms In the integrand are sorted into two
parts. One part requires a contour in the upper=half Z=

plane, the other a contour in the lower=-half,

Before discussion of additional methods, let us see a

few examples computed using methods discussed so far.
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cascx)
)7 . G R S e I s S e
2
X % 1]
(C2) DEFINT(D1,X,MINF,INF)@ [12]
%P1
(D2) s
%E
(C3) X*SIN(X)/(X**2+1)@
X SINCX)
(b3 eeeeeea-
2
X +1
(C4) DEFINT(D3,X,MINF,INF)Q@ [L2]
%P1
(DL) O
%E
(C5)X*COS(X)/(X*%x2+1)0Q
X BOSCX)
(psy  meemeeea
2
X +1
(C6) DEFINT(D5,X,MINF,INF)Q@
(D6) 0
(C7) X#COS(X)/(X*%x2+X+1)Q@
X COS(X)
(o7 emeeemaaaa
2
X + X +1

(C8) DEFINT(D7,X,MINF,INF)Q@
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(D8)
1 (SQRT(3) = %1)/2
GRLEL 29 ( (=S aa = - 21 QE
SQRT(3)
1 (- SQRT(3)=- %1)/2
+ (%) = =mmmme- ) %E )
SQRT(3)

(C9) 1/(%E**(%1=X)»(X**2+1))Q

1
(D9) = eccecsscccccccae-
-] 4 2
$E (X * 1)
(C10) DEFINT (D9,X,MINF,INF)@
%P1
(D10) e
%E
(C1l1l) SIN(X)+DYq@
SIN(X)
(D11) = eeemecccacccacae
2 2
%E (x * 1)
(C12) DEFINT(D11,X,MINF,INF)P
ZP1
(D12) e
%E
(C13) D11*(%E**(=%1%*X))
SINCX)
(T I v e e e e e e
2 21 X 2
%E (X + 1)

(C14) DEFINT(D13,X,MINF,INF)@
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(D14) e

3.2 Integrals from 0 to Infinlty

Let us now discuss some integrals Involving trigonome=
tric functions over the range (0 INF), Flrst consider the

integrals

] n
1 ij' COoS(k X ) dX

o

@ n
and 12 —-f SINCk X ) dX

o

where k a nonzero real constant and n > 1.

Here again, the residue theory can be applied to
evaluate the Integrals. This time the shape of the contour
is slightly different. The contour Is a sector of a circle
consisting of a portion of a.clrcular arc with center at the
origin and two stralght lines joining the end points to the

origin., (fig. 3) The sector angle depends on n and Is

ZP1/(2n) .

Without loss of generality, let us assume that k > 0.
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TEin

4;;.3

By Cauchy's Integral theorem,

n
(21 k 2 )
fE dz = 0.
C

Since contribution from the circular arc vanishes as r

o

approaches INF, it can be shown that

n

(et k2 )
E dZ
o

@ n
%1 FPLIC2 n) -k r
= %E E dr
o

The integral in the right hand side of this equation can be

g

N

e

expressed In terms of GAMMA function (see Sect. 5), Let us

assume that



Therefore, takling real and imaginary parts of the above

relation, we have

11 = COS(%ZP1/2n) G
and 12 = SIN(%ZPI1/2n) G.
For example
il 3
(D15) CO0S (9 X% )
(Cl6) DEFINT(D15,X,0,INF)Q
3 3 2P
3 GAMMA(-) COS(==-=-=- )
7 1l
(D16) =  eeessssssscccccccee—-
317
7%9
(C17) SIN(CO*X*»(7/3))Q
L
(D17) SIN(9 X )
(C18) DEFINT(D17,X,0,INF)@
3 3 3P|
3 GAMMA(=) SIN(====- )
7 1L
(D18) = emecsmsssscscecceae—a-
ST
7%9

Incidentally, if n=1, Il and 12 do not converge,

83
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A more general integral than 11 and 12 Is

mm n
Jo= | X EXPERI k X ) dx
o

where n > 0, R1(m) > =1, k real and nonzero and n-R1(m) > 1.
We shall consider the case k < 0. The case k > 0 Is
entirely analogous., Let us take a sector-shaped contour in

the fourth quadrant as shown In fig. &L.

By Cauchy integral theorem,

n

m €zl k Z 3
Z %E dZ = 0
¢ :

which implies that

a0
m n
J = EXP(=%PI 2I(m+1)/(2n){[_ R EXP(k R ) dR
o



= EXP(=%Pl %1 (m+1)/(2n)) GAMMA(======- )

where s = (m+1)/n.

Let us look at an example.

(2 21 + 3)
X
CHLIO) 0 e e e
3
(R XL 2D
2E
(C20) DEFINT(D19,X,0,INF)@
2 21 2l
GAMMA( ======== )
3
] T i o o o et oot o N
(2 %1 «ny /J 3%
3 (2l S 20

A similar result for k > 0 is given by

J = EXP(%ZP1 %1 (m+1)/(2n)) GAMMA(=====me=-u- ),
(m+1)/n

k n
The following integrals can be obtained readlly from

the above relation.

@ a
n m n m
J{EOS(k 9 HY . and ‘/FSIN(k X ) X dx
o
(7]

For instance,
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(C21) SIN(P*X)/(Xw%x(1/2))0@

SINCP X)
(p21)  emecea--
SQRT(X)
(C22) DEFINT(D21,X,0,INF)@ (3]
SQRT(%PI)
(D22)  eeeeccaeaceeea-

Many of the foregoing results depend on the verifica=-
tlon of the fact that contributions from certaln parts of a
contour vanish after taking a 1imit. We have omitted these

proofs. A typical such proof is to show

jﬁf(l) dZ = J( F(Z) dZ = 0.
CR Ce

The above derivation has relied on this fact. The proof Is

in appendix B.

Another Interesting integral Iis

@ K - =-N
U =-[. SIN (X) X dX

o
where N and K are positive integers, K N > 2 and (K + N)

even, The integral U can be evaluated by use of the

recurrence relation
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@ e -s pitE = 10 7% E2 -(s-2)
SIN (X) X g s === ccs SIN (X) X dX
5 (s=1)(s-2) Jo

r @ r “(5-2)
t memecwmcneen- SIN (X) X dx:
(s=1)(s=2) o

where r > (s=1) > 1. As one can see, repeated application
of this relation will reduce U to a sum of Integrals of the
same form as U but with N = 1 or 2. For N=1, AUDITOR uses

the following formula

(o) %2
p -1 p-L
[sm (X) X dX -=[ SIN  (X) dX, p > 0 odd.
(o] o

The integral on the right hand side can be evaluated easily,
Integrals of this type are considered in Sect. 5-2.2. For

N=2, we have

q =2 3Pl [q-3/2
SIN (X) X dy = ===
o ’ 2 q-l

where g is an integer = 2., For example

SINCR X)
(5T R e



(C2) DEFINT(%,X,0,INF)@
(D2)

(C3) SIN(Q*X)w%2/(X**2)@

(D3)

(Ch4) DEFINT(%,X,0,INF)@
(DL)

%P

2
2
SIN (Q X)
2
X
zP1 Q

- e -

88
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L, Infinite Integral Involving Logarithm Functions
4,1 Evaluation by Recursion and Contour Integration

Let R(X) be a rational function which Is even In X.

The integral

@
N
V(N) -J( LOG (X) R(X) dX, R(X) P(X)/Q(X),
o

with deg(Q(X))-deg(P(X)) = 2, can be evaluated by applying
residue theory in a recursive manner, Recall that LOG Is an
abbreviation of PLOG when the argument Is real and positive.

Consider the contour integral

N
JON) =[ F€Z) dZ, F(Z) = PLOG (Z) R(Z)
¢

where C is the Indented contour in fig. 5. As ¥ approaches

1Y

CR

Ce
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INF and € approaches 0, contributions from CR and Cg¢vanish.
Therefore

& N %P1 21

J(N) R(t) LOG (3E t) dt + V(N)

@ NN T N=K
- R(t) 2{: 9Pl %1 LOG  (t) dt +2 V(N)
K
K=1

JC
@ N

= jr RCt) (LOG(t) + %P1 %1) dt + V(N)
(<]

_/:

N
where ( ) Is a binomlal coefficient., Thus,
K

JON) 1 N K K
VIN) & «mee = - ( FPT 21 VN = K)
2 2 K

K=1

for N 20,

where J Is obtalned by resldues. Therefore the result

obtained here lIs

VIN) = %P1 %1( ) Res(F) over poles of R Inside C)

Based on this recurrence relation, V(N) can be com-
puted. Such an algorithm has been included In the programs.

The following Is an outline of this algorithm,
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1) Declare each of AV and AJ to be an 1 X N array
2) Set | to 0 then go to step &

3) Set AJ(i) to J(I)/2

4) If I = N, return the answer V(N)

5) Set AV(1) to V(1)

6) Set | to i+l then go to step 3
Computation of V(i):

If I = 0, return the value of the Integral

@
fR(X) dX,
o

(storing away Information about poles and
corresponding residues of R(Z) for computation of J),

otherwise, compute from the formula

1

V(iE) = AJ(E) = = j{:
2

1

K=

i K K

) $P1 %1 AV(I - K),

K
Computation of J(i)/2 :
Using existing Information of poles and residues of

R(Z) compute by residue theory from the formula

%P1 %1( Y Res(F) over poles of R inside C),

For example,
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2
LOG (X)
(01)  mmmem—-
2
X * 1
(C2) DEFINT(D1,X,0,INF)@ (1]
3
9P|
(D2) -—--
8

4,2 Method of Differentiating and Introducing Parameters

A very useful method for Integrands Iinvolving LOG(X) Is

differentiation., Consider an integral of the form

@
K
A(K) i/ﬂ R(X) X LOG(X) dX, K¢ 0and =1 € K < 1,
o

where R(X) Is rational In X and k iIs a parameter which

occurs nowhere else in the integrand. |f the Integral

B(K)

o K
_f'ncx) X dx
o

is convergent and can be evaluated, then A(K) Is given by
d
A(K) = == B(K),
dk
This method of differentiation is valid because B(K) Is

convergent and A(K) Is uniformly convergent for every closed

interval contained In the set of points (K | K#0 and -i<K<1),
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For example

K
X LOG(X)
(o3  meeseaaa-
X + 3
(C4) DEFINT(D3,X,0,INF)@ [12]
K K D
(D4) LOG(3) 3 BETA(K+1l,=- K) + 3 (--BETA(r, = K)
Dr r=(1+K)
D
- ==BETA(K + 1,r) )
Dr r==K

In the foregoing discussion, K has been assumed
symbolic. Yet, In solving actual problems K may very well
be a number. This difficulty can be overcome by Introducing
a zero parameter ZP, We first replace X**k by X**(k+ZP) In
f(X). This permits us to proceed as above and then diffe-
rentiate with respect to ZP., After differentiation the

result is then evaluated at ZP = 0.

The property of the logarithm function
-LOG(X) = LOG(1/X)

can sometimes be used In evaluating Integrals of the form
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00
u =‘/FF(X) LOG(X) dX.
o

In fact, If a change of variable Y = 1/X Is made In U

and if the new integral happens to be

o
‘/Pf(Y)LOG(Y) dY,
@

then the value of the given integral U Is 0., For example
1/5 “ 175

(ARCTAN(X ) + ARCTAN(X )) LOG(X)
(D5) emmmmemmmmmmm e ccmmeeeemeceee oo

(C6) DEFINT(DS5,X,0,INF)@
(D6) 0

L,3 Integration by Parts

Another nice property of the logarithm functions Is
that their derivatives are often simpler than the function
themselves. Because of thils, integration by parts is
frequently a suitable method for Integrals Involving them.

If the Indefinite integral

uex) =ff(X) dX

can be obtained and the integral
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b
J =jﬂ LOG(g(X)) f(X) dX
a

is convergent, then

J = LOG(g(X)) U(X)

b b(U(X)g'(X) dx)
a Ja g(X) '

The SIN integration program [20] in MACSYMA is used to
compute the indefinite integral U(X)., WANDERER uses this

method to evaluate integrals of the form

@ L a
X LOGEL + X ) dX, a+l > L > 1.
o

Here Is an integral evaluated by the method of Integra=-

tion by parts.

(D7) = eeeeeeacca—--

(D8)  mmmmmeee—-
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5. Infinite Integrals Involving Exponential Functions
5.1 Method of Substitution

Integrals with Integrands which are rational functions
of %Ex*x(K=#X), K real and non=zero, are relatively easy to
compute, Without loss of generality, let us assume K > 0

and consider

@
(1) J[-R(%E**(K*X)) dXx.
~00

|f one makes a change of variable

(2) Y = ZEx*(K*X),

Tod)
(1/K{/ﬂ RCY)/Y dY.
0

This Integral converges If (1) does, That Is to say

then (1) becomes

R(Y) has Y as a factor If (1) converges. For the integral

@
(3) J( ROZE**(K*X)) dX
o

one can make a similar change of variable
(4) S + 1 = ZE»»(K*X)

which gives



07

a
(5) fR(S+1)/(S+1) ds.
o

Integrals of the form of (3) and (5) can be evaluated
by contour integral and residue theory as Indicated In sect.

1. The methods (2) and (4) can In general be applied to any

b
J[—f(g(x)) dX
a

and the resulting integral may be much simpler. For

integral of the form

instance
J!
(D1) =  eeeccmcmceccaceccce=
XI5 5
2E (m=m== + 7)
X/3
%E
(C2) DEFINT(D1,X,0,INF)@
i
3 LOG(==)
12
(D2) o e
5
X/h
%E
(b3) = ceeeaa it
X/2
9 ZE + U

(C4) DEFINT(D3,X,MINF,INF)@
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%P1
(D4 ) ---

5.2 Use of Contour Integration

A somewhat more interesting Integral is

a0
1 i/ﬁ R(ZE**X) P(X) dX
-00

where P(X) Is a polynomial and R(X) a rational function with
complex coefficients such that

LIMITCR(ZE»»X),X,INF) = 0
and

LIMITCR(%E#==»X) ,X,MINF) 0.

Let us first determine a bolynomiaI Q(Z) with complex

coefficients such that
(6) QC(X) = Q(Xx + 2 %Pl %1) = P(X).
Q(Z) exists and can be computed by the method of

undetermined coefficlents. Now conslider a contour Integral

J i/— R(ZE**Z) Q(Z) dz
e

taken around a rectangular contour as shown in fig. 6.
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A
2R C
| )
- = > X
h;.e

As the absolute value of X approaches Infinity,
contributions from the vertical segments of the rectangular

contour vanish. Hence,

to 0o
J =:/P R(%ZE»*X) Q(X) dX i/r RCIEx+X) QOX+2 ZPU %1) dX,

o (0]

It follows from (6) that I=J, MNow the problem of evaluating
the integral | has been reduced to finding the residues of
R(%E**Z)Q(Z) for 0 = Im(Z) < 2 %P1. To do this, the poles
of R(Z) are obtained first, |If w is such a pole then
GLOG(w)
where GLOG stands for the branch of LOG with Imaginary part
between 0 and 2#*%PIl, Is a pole of the same order for
R(ZEx*Z)*Q(Z) Inside the closed contour. All such poles can

be obtained in this manner, One example Is
(D5)Y L erasesesseeae

(C6) DEFINT(D5,X,MINF,INF)Q@
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(D6) %P1

Note that the Integrand (D5) has a pole of order two at

Z = 9p} 21/2,
5.3 The GAMMA Function and Related Integrals

A very Important function closely related to the
evaluation of infinite integrals involving exponentials Is

the GAMMA function generally defined as
fo )
GAMMA(Z) ijr %Ew*(=-t) t*=x(Z-1) dt, R1(Z) > 0.
o

Also of use is its logarithmic derivative, the PS|

functlion

d
PS1(Z) =(-- GAMMA(Z))/GAMMA(Z),
dZ

A simplification routine for GAMMA functlion has been

written to make use of the many properties of this function.

From the definition of the GAMMA function, one can

derive the following very useful relation
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where a = (D + 1)/B, RI1(A) > 0, RI(D) > =1 and R1(B)
nonzero.,

WANDERER has programs designed to recognize this form
and return the result, Of course these programs have to
examine the signs of the relevant quantlfies carefully

before generating an answer.

For example:

2
=X
(D7) %E
(C8) DEFINT(D7,X,0, INF)@
SQRT(%P1)
(8)  mmememea
2

5.4 Integral Related to the Laplace Transform

Let f(t) be a functlion of a real variable t, then lits

Laplace transform L(f(t)) Is defined as

@
(-t s)
LCF(t)) = F(s) i]ﬁ %E flt) dt,
o

Many of such Integrals can be evaluated by the pro-

grams. Here are some examples produced by WANDERER,
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EAF  © o eeeaeeesakm
SQRT(T) %E

(C10) DEFINT(DS,T,0,INF)@

IS THE EXPRESSION

S
POSITIVE, NEGATIVE, OR ZERO

POSITIVEQ
SQRT(%PI)
(D10) N
SQRT(S)
(C11) SIN(S*X)/(ZE**X)@
SINCS X)
(p11)  =memeea
X
%E
(C12)DEFINT(D11,X,0,INF)Q
(012)  =emee-
2
5 & 4

When f(t) Involves trigonometrical or hyperbolic func-
tlons, they are expanded Into exponentials before L(f(t)) is
computed., When LOG(t) Is a factor of f(t) the method of
differentiation with respect to a parameter can be applied
If f(t) also has X*xk as a factor, R1(k) > 0. |In this case
a new function g(t,ZP) Is constructed by replacing LOG(t)

with t**ZP where ZP is a zero parameter that has been
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speclially Introduced. The Laplace transform of g(t,ZP) will

be computed first. Suppose G In

0o 2]
(=t s)
G(s,ZP) = L(g(t,ZP)) =d/-g(t,ZP) %E dt
o

has been obtained. Now, as mentioned before in sect. 4, all
that needs to be done to obtain L(f(t)) Is to compute
dG/dZP. That 1Is

LCF(t)) = dG/dZP at ZP 0.

This is true for

f(t) = dG/dZP at ZP=0,
and the fact that there exists some sufficiently small
closed interval contalining 0 In which the following Integral

is uniformly convergent:
2 (=t =) 46
ZE o dtc
8 d ZP

e
E X LOG(X)

For example,

(D13)

5

(Cl4) DEFINT(D13,T,0,INF)Q@

1 e L/3
(D14) = GAMMA(=) (LOG(S)~ PSI(-) ) /(6 S )
3 3



104

CHAPTER V
INTEGRALS OVER A FINITE RANGE

0. Introduction

Many finite Integrals are proper integrals whose
Indefinite Integrals exist in closed form and can be com=-
puted rather easily. For such an integral, the evaluation
method is very straight-forward. WANDERER simply obtains
the corresponding indefinite integrals and then substitutes
the limits of integration. The antiderivatives are computed
by use of SIN, This method will be referred to as the anti-

derivative method.

A finite Integral

b
ff()() dX
a

Is improper If f(X) becomes Infinite at some point c,

b=2c =a. In order to avold having to spend computation
time looking for an unknown number of singularities of f
between a and b, WANDERER will assume that integrands of

finite Integrals, with the exception of rational Iintegrands,
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can become Infinite only at the end points of the range of
integration, This Is not a severe restriction and does not
decrease the number of Integrals It can handle. This is
true in the sense that any given range can be subdivided to
conform to the above convention. Thls convention makes It
easy to determine whether a given finite Integral Is
Improper. WANDERER simply checks the value of the Iintegrand
at the limits of Integration. |f the given Integral Is
improper, Its divergence is tested before any attempt at
evaluation., WANDERER uses a limit test for absolute
divergence which Is discussed In Scet. 6-6. |If the given
integral diverges, WANDERER will so indicate In the output,
If the antiderivatlive can be computed, then the answer s
sometimes obtalned by employing a limiting process when

substituting the upper and lower limits of Integration,

In this chapter, attention will be focused on the
definite Integrals whose corresponding indefinite Integrals
are difficult to compute or do not exist.

1. Finite Integrals of Rational Functions.

For integrals such as

U=f R(X) dX
a
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where R(X) is rational in X, a and b are finite, WANDERER
computes U by transforming it Into an Infinite integral by a

change of variable.

Let us write

(X = a) (a + Y)
(1) Y = mceamwew v X 8 mwemeem—- ’
(b - X) (1 +Y)
(b - a) dY
dX = ==memceew-
2
¢l = Y3

then it is evident that

This integral can be integrated readily by methods of con=-

tour integration and other means discussed In sect. 4-1.

As an example let R(X) be the expression (D1)

€03y o e

The Indefinite integral of R(X) from 0 to 1 computed by
the substitution method above is given by

(C2) DEFINTC(D1,%,0,1)Q
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LOG(2 = SQRT(3))
(D2  emsscccseccscasa-
2 SORT(3)
One knows that the indefinite Iintegral of (D1l) exlists.
In fact the following has been obtalined using the command

INTEGRATE in MACSYMA
(C3) INTEGRATE(D1,X)@

(D3) (LOG(2 X = 2 SQRT(3)) = LOG(2 X + 2 SQRT(3)))
f2 SARTEE))
The reader may easily obtain a result equivalent to

(D2) by Substituting in (D3) the limits of Integration.

2. Rational Functions of Trigonometric Functions
2.1 A Typical Application of Contour Integration

If R(X,Y) Is a rational function In two varliables X and

Y, an integral in the form

[2)¢
U =-[.R(COS(X),SIN(X)) dX

(=}

is easily transformed to an integral around a closed con=
tour. By setting

2 2
PARRE | & = 1
COSEXY m smawws ’ STHLX) = seaexs ’
A 2o Rin Z
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dZ
and dX = ===-,
2l Z

the glven integral U becomes

where Cl is the positively orientated unit circle with
center at Z = 0, This contour integral can then be

evaluated by finding the sum of residues Inside the circle.

Actually this transformation can be applied In general

to any Integral in the form
2T
j’R(%E**(%I X)) dX
a

where R is ratlonal, by the change of variable

The transformation process Is simple. The key point in
this algorithm Is the determination of whether the Integrand

is in fact a rational function of %Ex*x*x(%l X).

In calculating the sum of the residues, only poles
inside the contour contribute, Simple poles on the unit
circle, i.e. those with absolute value 1, cause the

principal value to be computed., The integral is divergent
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if poles of order greater than 1 happen to be on the circle.
Examples:
(Ch) COS(X)»*2=SIN(X)@

2
(D4) COs (X) = SIN(X)

(C5) DEFINT(DL,X,0,2*%P1)Q@
(D5) %P1

(C6)  ZE**(2%%1%X)/(ZE**(Z1+X)+3)@
(06)  mmmme—eee-

(C7) DEFINT(D6,X,0,2+%P1)Q@
(D7) 2 =Pl

2.2 Utilization of the Periodicity of the Trigonometric

Functions

In this section integrals of functions involving trigono-
metric functions over a variety of ranges will be

considered,
Let T be a function of X defined by

M N
TCX) = €COS (X) SIN (X)
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where R1(M) > -1 and RI(N) > =1, The following formula can
be deduced from the definition of Beta function., (Sect. L-

2.2)

/2 GAMMA(--;‘”) GAMMA(--;"-)
(1) T(X) dX = ===cecccccncccccccncena=-
S 2 GAMMA((MN + M + 2)/2)
A simple example Is
145 172
(D8) CoS({X) SIN (X)
(C9) DEFINT(D8,X,0,%P1/2)0@
2 3
6 GAMMA(=) GAMMA(=)
3 L
(D9)  mmmmmememmemeeeeees ;
5 GAMMA(==)
12
The usefulness of (1) is Increased by the fact that it
is possible to express definite Integrals of T(X) over a
variety of ranges in terms of that of T(X) over (0 %PI1/2).
For Instance, the following relations are true for any func-

tlon .

7T
J( fOSINC(X),COS(X)) dX =

o

/2
./-(f(SIN(X),COS(X)) + Ff(SIN(X),-COS(X))) dX,;
o
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32

’/ﬂf(SIN(X),COS(X)) dX =
o

7 7 /2
J[-f(SIN(X),COS(X)) dx+d/F f(=SIN(X),=-COS(X)) dX,
o ]

More generally, let f(X) be a periodic function of X
with perlod 2%Pl. That is
FIX + . 2%P1) = £(X),

An integral of f(X) over some range (a b),

b
a

can always be written as a sum of integrals In the form

27t

c d
(2) nf FOX) dX +f £0X) dX -j £OX) dX
o

a -]

for some integer n and 2%Pl > ¢, d 2 0. This Is true for

there exist integers p and q such that

a=2p %P1 + d,

and b= 2 q 2Pl + ©¢.
Then S Is equivalent to the sum (2) with n = (q - p).

Programs have been written to perform this reduction
and they are applied when the integrand has a period 2%Pl

and the difference (a - b) has %Pl as a factor. some
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examples computed by WANDERER are
Ll 2
(D10) COS(X) SIN (X)

(C11) DEFINT(DIO,X,~%P142,5P1/2)@

2
18 SQRT(%P!) GAMMA(=-)
3
(DALY e e e
1
7 GAMMA(=)
6
(C12) COS(X)**3*SIN(X)*»2@
3 2
(D12) COSs (X) SIN (X)
(C13) DEFINT(D12,X,3*%P1/2,3%%P1)@
2
(D13) wis
15

3. Finite Integrals of Algebraic lrrational Functions
3.1 Rationallzing the Integrand

If R(X,Y) Is a ratlional function In X and Y, the inte-

gral

c 2 2
(1) K =[ R(SQRT(A = X ),X) dX,
b

where A =c > b 2 -A, can be rationalized.
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Let us write

A - SQRT(A - X )
(2) ¥ & Sesrechadsunmanae = v(X),

which gives

(3) X = mmmm-

Substituting (3) for X, (1) becomes

2 2
f"“’A(l-v) T LTy ) Y

B 2 2 979
i 1+ Y 1+ Y (1 +Y )

which is an integral of a rational function. Integrals of

this type have been discussed in Sect. 1.

Similarly for the iIntegral

c
2 2
J = REX,SARTLX = & ) dX
b

where ¢ > b 2 A > 0, the change of variable

2 2
SQRT(X = A )

can be made to convert J to
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uee) 2

At % 1)y 2 A ¢ t dt
L A R(wewmmmmmmm ,mmm——— ) mmmmmmm—m———
e 2 2 2 2

which Is also an Integral of a rational function. Here are

two such Integrals evaluated by WANDERER,

1
(D1) = eeccseseaseses
2

X SQRT(X = 9)

(C2) DEFINT(D1,X,3,4)@ [12]
-9 3 + 21 SQRT(7)
(D2) m== PLOG(======mmmm———- )
1 L

(C3) 1/((X+1)w(L=X**2)x%(1/2))@

(D3) = emmeeeesameeeasaas==-

(X # 1) BORT(L = X )

(C4) DEFINT(D3,X,0,2)@

LOG(2 + SQRT(3))
Chlr e R e

SQRT(3)

Another method is to try to transform the given iInte~-
gral to an infinite integral by the change of variable given

in (1) of Sect, 1. For Instance the integral

B
“/“R(X,SQRT((X = A)(B - X))}) dX
A
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can be converted to

The method of rationalization can also be applied to

b
J/FR(X, (CX + D)*=(1/0Q)) dX

a

where Q is an integer, C and D are constants and the range

of integration needs not be finite,

For integrals of this type the substitution

1/Q
Y = (CX+D)

Q
A=)
KR e ’
C

2 T |
g Y dY
dX = ==meecccaa- ’

C

will convert the given integral into that of a rational

function in Y.
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The principal task In this conversion method is to
recognize that the given Integrand is of the particular form
and to obtalin the Integer O, In essence, the algorithm for

doing this is

(1) Obtain a 1list L of all distinct lfrrational
parts In the given Iintegrand.

(i1) |If elements in L are fractional powers of an
identical linear polynomial In X, the pattern s
matched and Q Is set to the lcm of the denominators
of all the exponents of the linear polynomial,

otherwise the pattern is not matched,

3.2 Integrals Related to the BETA Function

The BETA functlion is defined by the integral

4 e L = 1
BETACK,L) = [ X (1-x) dx

0
for R1(K) > 0 and R1(R) > 0. From this definlfion one may

readily deduce the relatlon

L L =1 1 K
(3) X (1= %) dX = = BETA(-,L),
e c c

WANDERER applies this formula by recognizing the form

of the given integrand. In chapter 6 some techniques and



programs for pattern recognition are discussed,

grals In the form

B
Kool c cL -1
(X = A) (B =X ) dX,
A

a simply substitution,

Y = (X = A)/B,

wlill transform 1t tnto (3).

X7

For inte-
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4, Finite Integrals Involving Logarithm Functions

When the integrand Is a function of LOG(X), a given
integral may, in many cases, be evaluated by transforming It

into one which involves exponential functions, Consider

b
U =[ FCLOG(X)) dX, b > a =8,
a
the substitution
-Y
L1 X = %E for 1 > a,
or
Y
(ii) X = %E for a 21,
converts U to
s -Y
jrf(-Y) 2E dy, r= =L0G(b), s= -LOG(a),
r
or
s Y
j’f(Y) &  aY, r=L0G(a), s= LOG(b),
™

respectively., In case a = 0 and b = 1 (or INF), the use of
(1) or (i1) will result in an infinite Integral which can
often be evaluated readily using methods provided in

WANDERER., For instance by use of (i) the integral

i q
ILOG(X ) dX
[v]
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becomes

(@ o)
q e
[(-Y) 9F  dY,
(o]

which Is an infinite Integral already studied (Sect. 4-5.,3),.

The method (1) or (1i) can also be applied to Integrals of

b
r
fx £(LOG(X)) dX,
a
1 @
Sl R S - RY -1
LOG (=) X dX Yo E 2
o X °

For Integrands involving LOG(f(X)),

the form

as In

it may sometimes be

possible to simplify the given Integral by the substitution

¥ u fOX0, X = gtY)
where the function g Is the inverse function of f. A very
simple application of this method is conversion of

0
‘/r X2LOG(SQRT(X)+a) dX
a

2

2 2
2[ (Y=-a) LOGCY) dY.
o]

Techniques of differentiation with respect to a

to the integral

parameter, as detafled In Sect. 4=4,2, can be employed for

finite integrals with a factor
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X LOG(X),

in the integrand.,

(D1)
(C2)

(D2)

(Cc3)

(D3)

(Cy)

(D&)

{€5)

(D5)

(C6)

(D6)

Examples :

K
LOG (X)

DEFINT(D1,X,0,1)0@
K
(=1) GAMMACK + 1)
LOG(X)*»(1/2)/(X**2)@
SQRT(LOG(X))

o W A W WG RS G em e e ww

DEFINT(D3,X,1,INF)@
SQRTLZP1)

SQRT(=1) SQRT(LOG(X))

DEFINT(D5,X,0,1)@

SQRT(%P1)

SQRT(=)
3

BELK) #°0,

120

(12]

[12]
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(C7) LOG(X)*((1-X*»(1/2))/X)**(1/2)0
SQRT(1 - SQRT(X)) LOG(X)

(D7) = eesssmeecscccesccaccsasen-
SQRT(X)

(C8) DEFINT(D7,X,0,1)@Q
D 2

(D8) h (=-=-BETACPr,-))

Dr 2 r=1
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CHAPTER VI
DESCRIPTION OF ALGORITHMS

1. Computation of Residues

1.1 Residue at a Pole

For convenience of reference the algorithm for computa-

tion of residues Is repeated here.

Let f(Z) be a function of a complex variable Z,
analytic everywhere in a domain D except for a number of
poles in D. Suppose F(Z) can be written in the form

F(Z)

u€z)/v(z)

such that U(Z) is analytic Iin D. This means that poles of
f(Z) are zeros of V(Z). Suppose p is a pole of order m of
f(Z), the residue of f(Z) at p is computed by the following

algorithm.

RESIDUE ALGORITHM:

If m = 1, compute as the answer
UCp)/Vv'(p)

otherwise, If V is a polynomial,
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(I) Set V to the quotlient of V(Z)/(Z = p)**m
which Is computed by long division.

(11) Return the result computed from

I S
(m - 1)!

d

dZ

Z=p

otherwise, (m > 1, V not a polynomial) compute and
return as answer the limit
m-1

ik d m
Lim — ——— (-—-) (= p)  ELL)
Zp (m - 1)! ldz

1.2 Evaluation of Contour lIntegrals by Residue Theory

In order to evaluate an Integral of f(Z) around a
closed contour C by residue theory, it Is necessary to
locate all poles of f Inside C, After this Is done, the
remaining problem Is to compute the sum of residues of f at
these points efficiently. The difflcult part Is finding

poles. WANDERER employs the SOLVE routine In MACSYMA to
solve V(Z)=0,

For V(Z) a polynomial in Z, SOLVE finds Its zeros by
factoring over the Integers and applylng formulas to each
factor of degree less than 5. For factors of higher degree

only those of the form a*Z»*n+b will be solved., The problem
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of factoring large arbitrary polynomials Is non-trivial, to
say the least. The development of a more powerful factoring
algorithm which will factor polynomials over a larger ring
than the integers would certainly be helpful to SOLVE and
WANDERER, The location of zeros Is usually more difficult If
V(Z) Is not a polynomial in Z but some more complicated
function, |In such a case, WANDERER usually uses methods
other than the residue theory. An exceptlion is when V(Z) Is
a polynomial In %E**Z which has been discussed In Sect., L-

5.2.

Thus within the limitations of SOLVE, V(Z) will be
solved and its zeros sorted into a list of paltrs. Each palir
containing a zero and its multiplicity, such as

L o= & CZ21,m1) , €i2,m2) , (Z3.m5) ; w:s)e

L is then sorted into two lists L1 and L2, discarding

poles outside the closed contour C, such that

H

L1 a list of all simple poles

L2

a list of other poles paired with their

multliplicltles.,

At this point, we can apply the RESIDUE ALGORI!THM to
obtaln the desired sum. To avoid repeated calculation of

v'(Z), the program checks whether L1 Is empty. If L1 is not
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an empty list, V'(Z) will be computed and stored for

possibly repeated reference later in the computation.

Note that it has been assumed from the beginning of
this section that a pole of f(Z) would be a zero of V(Z),
This assumption Is quite reasonable for almost all of the
applications in evaluation of definite integrals of
elementary functions. However a zero of V(Z) need not be a

pole of f(Z). For instance Z = %| is a zero of

but not a pole of

(Z + %1)

For each zero p of V(Z) we may check the value of U(p)
to see If p Is really a pole of f(z)., Although It Is not
clear what can be done if U(p) = 0, since p may still be a
pole of lower order. A better method is to ignore the fact
that if V(p) = 0, U(p) may also be 0 and pretend that p Is
an actual pole of f(Z). This Is valid because a residue at
any removable singular point will turn out to be 0.

Furthermore, the residue obtained at a pole of order m is
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not changed if any integer n > m is used as the order of p

in calculating the residue,

It is conceivable that V(Z) may have an Infinite number
of zeros. Not being able to sum Infinite series, WANDERER
can not evaluate integrals which require such a computation,
Sometimes only a finite number of poles are inside the
closed contour. One such case WANDERER handles Is when V(Z)

isapolynomial in %E+#*Z as described in Sect. 4L=5.,2.
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2. Obtainlng Real and Imaginary Parts

In the course of evaluating a definite integral by com-
plex contour integration, the need to take the real or the
imaginary part of an expression often arise. For Instance,
to see whether a pole, p, lies above or below the real axis
the sign of Im(p), the imaginary part of p, Is examined. To
determine if p lies inside the unit circle at Z=0, it Is
needed to compute ABS(p) which involves taking the real and

imaginary parts of p.

The algorithm for obtaining R1(p) is presented as a

representative of similar procedures used,
Algorithm REALPART(p) :

1) If p is %l return 0, if p Is a number or any

other atomic symbol, return p.

2) If p is a sum, (p = y pj) then return
fREALPART(pj) &

33 It tJ!s a product (p = pl#*p2) then return
REALPART(pl)*REALPART(p2)
= IMPART(pl)*IMPART(p2)

4) If p = %E**pl return

%E**REALPART(pl)*COS( IMPART(pl1))
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5) |If p = ple#*p2, convert p to %ZE*x*(p2*«L0G(pl)) then
go to step b,
) If p = LOGCpL), return LOGCABS(pl))

7) Otherwise, return the form R1(p).

3. A Heurlistic Pattern Recognition Program

It is often the case that some pattern recognition is
needed, at one stage or another during the evaluation of an
integral. Although many Integrals can be evaluated without
any pattern recognition, this capability remalins Important
to WANDERER, One specific pattern shall be discussed as a
representative of such methods In WANDERER. Consider the
pattern

N M
P(X) = (B X + A)

where B, N, A and M are free of X (l.e. do not involve X)
and all except A must be non=zero. This pattern should
match, for example, every one of the expressions
1/2 =173
X, 2 X ¥ Ly (X + 21) ’
p q 2
o ARG B £ SN and - O 1

The last expression Is the expansion of



129
2
& I
Expresslions In expanded form present some trouble for
the recognition algorithm, This difflculty Is overcome by
the use of differentiation and rational simplification.
That is if an expression E(X) Is equivalent to an expression

matching the pattern P(X), we can compute

E'(X) / E(X) = U(X) / V(X),
cancelling all common factors In the numerator U(X) and
denominator V(X). Then V(X) should match p(X) with M = 1,
As a result of thls match, some values are assigned to the
variables A and B, By use of these values the correct value
of M and N can be recovered from U(X), The values for A and
B thus obtained may differ from the true values by a
constant factor, This happens whenever these true values
have common factors. The real values of A and B can be
determined by comparing A**M to E(0)., This procedure was

suggested by Moses,

The full algorlithm used for matching P(X) will be
described. Let it be called PM, PM uses another routine PN
which recognizes the pattern

N
PCX)Y = (B X + A)

As one can see In the following algorithm, the values



130

of B, N, A and M will be set as the matching process
proceeds, |f the pattern Is matched, the values of these
four variables are found.
Algorithm PM(E(X),X) :
1) If E = X, pattern matched. (B=1,N=1,A=0,M=1)
2) If E is free of X or involves any of the func-
tions: SIN,COS, TAN, LOG, EXP, etc., P(X) Is not
matched.
3) If E Is In the form r**s and s Is free of X then
match M to s, otherwise match M to 1. Then, If
PN(r,X) succeeds in matching, the pattern is
matched.
4) 1) rationally simplify E'(X) / E(X) and set r
to the result obtained.
11) set s to the denominator of r, set r to
the numerator of r.
iT1) 1f PN(s,X) succeeds In matching, simplify
the expression r / (N B X**(N-1)), set r to the
result thus obtained and go to step 5.
Iv) P(X) Is not matched.
5) If r is not free of X, P(X) Is not matched.
6 1) Match M to r
i) compute and set r to E(0) / A*=*M

i) 1f & 1, P(X) Is niatched, 1f r#l, first
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set

1/m 1/m
A=ATr and B = B r,

then P(X) Is matched.

Algorithm PNCE(X),X)

1) If E Is free of X, the pattern not matched,
2) Match A to E(0) and set E to E - A,

3) If E Is of the form r*X**s, the pattern Is
matched (B to r, N to s). Otherwlise there Is no

match.
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L, A Procedure for Change of Variables

Substitution of a new variable Y for a subexpression,
say g(X), of the integrand In a given integral Is a

frequently used method in integration. Let the given Inte=-

b
J =f £(X) dX,
a

then the transformed Integral would be in the form

d
J i/” FCY) dY
c

where F(Y) might be considerably simpler than f(X). F(Y), ¢

gral be

and d are computed by a procedure which is called whenever a
change of variable Is needed. |t makes use of two other

modules of MACSYMA, namely SOLVE and DELIMITER,

1) Use SOLVE to solve for X In Y = g(X), obtaining
X = h(Y), the inverse function of g.

I11) 1If h can not be obtalned, return indication of
fallure,

1i1) Compute, using the DELIMITER, ¢ and d as In
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LIMITC(g(X), X, a, PLUS),

0
]

(25
]

LIMIT(g(X), X, b, MINUS),

iv) Obtain f(Y) by assigning It a value computed
from

fCh(Y)) h'(Y),

5. Solving Systems of Linear Algebraic Equations

In sect. 4=5.2 the need to compute a polynomial Q(X)

from a given one P(X) satisfying a given relation

(1) QEXY=QCX + 2 2Pl 21) = P(X)

has been mentioned.

The method of undetermined coefficlents Is used to
determine Q(X). Let Q(X) be a polynomial in X with degree
one higher than P(X) and unknown coefficients €0, Cl, ... ,
Cn. That Is

n+l n
Q(X) = X LA eI R, S R R I L S
Equation (1) will give n linear relations among these
coefficients. Therefore the value of these C's can be

obtained by solving the system of linear equations they must
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satisfy.

For the purpose of solving systems of linear algebralc
equatlions, A method known as the "Two-step fraction=free
Gaussian elimination" [14] has been Implemented. This
method Is an Improvement over a corresponding one=step
method and features a procedure that keeps the size of the
intermediate expressions in the course of the reduction down
by dividing them by a common factor which the procedure can
predict. The advantage of this method over a more

efficient and elaborate scheme [18] Is its simplicity.
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6. Convergence of Integrals

There are many methods to determine the convergence or
divergence of a given improper integral, Some are limit
tests, others comparison tests etc, Some test for absolute
convergence, others conditional or uniform convergence. It
is a possible area for future work, There is no real need
to have such elaborate schemes In WANDERER, for after all it

is the value of the given integral that Is desired.

b
J =[ FIX) d¥.
a

If f(X) Is a rational function of X, WANDERER combines

Consider

convergence tests with evaluation algorithms as explained In
chapters 4 and 5., |If f Is not rational, then It Is not
allowed to become infinite except at a and b, This Is a
convention on inputs used by WANDERER, Thus, J Is a proper
integral If a, b, f(a) and f(b) are finite., If J Is

Improper, WANDERER has a test for absolute divergence.

Test for absolute divergence:

(1) If a and b are finlte and b > a, then J Is

absolutely divergent If
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LIMIT((b=-X)f(X),X,b,MINUS) # O,

or
LIMIT((X=-a)f(X),X,a,PLUS) ¢ 0,

(2) If a is Infinite, then J is absolutely divergent |f

LIMIT(X»f(X),X,a) # 0.

(3) If b Is infinite, then J Is absolutely divergent if
LIMIT(X*f(X),X,b) # 0.
If a function G(X) exlists such that G'(X) = f(X), then

the method of antiderivative can be used., That is to com-

pute J by evaluating

LIMIT(G(X),X,b,MINUS) - LIMIT(G(X),X,a,PLUS),

If this value is finite, It is the value of the given

Improper integral. |If it does not exist, then J diverges.
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CHAPTER VII
AN APPLICATION OF MACSYMA

AND WANDERER

0. Introduction

The usefulness of a general purpose algebraic manipula-
tion system such as MACSYMA in facilitating the solution of
mathematical problems has been demonstrated. Using his
"Symbolic Mathematical Laboratory" [15], Martin demonstrated
solutions to three demanding problems in applied
mathematics, These examples emphasize the fact that routine
algebraic computation can be done by computer programs not
only without error but much faster than by hand, The value
of such a system is especially appreciated when the expres-
slions Iinvolved are large and complicated. By employing
such a computer facility the human problem solver may be
freed from the tedious and uninspiring manipulations to
think more about the profound aspects of his problem. But
this Is not all such a system can do. Moses's SIN [20], a
program for indefinite Iintegration, provides a good example

of successful mechanization of a mathematical process which
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is far from routine or straight=forward. The introduction
of SIN broadened the scope of algebraic manipulation systems

slgnificantly.

The purpose of this chapter is to show how MACSYMA and
WANDERER can be used to help solve complicated problems that
are of practical Importance. One such problem Is the asymp-
totic evaluation of certaln contour Integrals arising in
mathematical physics. Usually one starts with one or a set
of differential equations describing a physical problem,
Solving these equations by one method or another, most often
by Integral transforms, one will arrive at a solution in the
form of a definite integral which Is often difficult, If not
impossible, to evaluate exactly. Frequently, one is not so
interested in the exact solution but the behavior of the
system when one parameter becomes very large or small. This

is where asymptotic analysis Is needed,

MACSYMA Is used to obtain the asymptotlc solution of an
infinite Integral, Many facilitles provided In such an
algebralic manipulation system can bhe illustrated through
this application. It is also possible to show how the
definite integration capability provided by WANDERER Is

needed for the successful computation of the results,
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1. An Asymptotic Analysis Problem and an Outline of the

Method of Steepest Descent

Consider the infinite integral

P ¢ H(E)
J(C) = o F dt, C>0

a

L

£
where H(t) = - ;- - 21 t

While integrating J exactly may be Impossible, its

asymptotic behavior as C becomes very large can be
investigated. To obtain the asymptotic expansion of J, the
method of steepest descent [5,7] will be emploved,
Basically, the method of steepest descent consists In
deforming the contour of integration in such a way that the
major contribution to the Integral arises from a small por-
tion of the new path of Integration. The contribution will

become more and more dominant as the parameter of Interest

grows, This parameter here is C.

The first step In this method iIs to find the new path
of integration. On a given contour, larger contributlons

comes from portions where the Integrand is larger In
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absolute value and less oscillatory. Hence the requirements
for a desirable path are: (a) the absolute value of the
integrand becomes maximum at a point, tl say, on the path,
(b) The argument of the integrand Is constant on the path
near tl. The first requirement is obvious. The second is
essential, for if the phase angle changes even slightly near
tl, this change will be magnified by the very large factor C
resulting in rapid oscillations of the Integrand and
therefore negating any possible contribution from the point
tl., Let UCtl,t2)= RI(H(tl+%l t2)) and V(tl,t2) = Im(H(t1l+%]

t2)). Let p be a point where

Then p is certainly a candidate for tl required in (a) and
(b)., Such a point is called a saddle point, The choice of
the name saddle point will be made clearer later. The
Cauchy=Rieman conditions imply that criterion for such a
point is H'(t)=0. There may be more than one such point in
the complex t=plane. There are an Infinite number of diffe-
rent curves which pass through a saddle point and satisfy
(a) and (b). Among them the path along which the Integrand
decrease in size most rapidly Is the best, For the Integral

J, this means a curve on which U decreases most rapidly.
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Let H'(b) = 0. It can be shown by use of properties of
analytic functions that U varies most rapidly on curves
Im(H(t))=const. (usually called level curves)., |If H''(b)#0,
two level curves will pass through the point b, intersecting

at right angle, as shown in fig. 1.

FiE, 1

On one of these two curves, say curve A, RI1(H(t)) Is minimum
at b and increases as t moves along A away from b. On the
other hand, RI1(H(t)) is maximum at t=b on the curve D and
decreases as t moves away from b on D, Curve A is called
the steepest ascent path and D the steepest descent path.
The point b Is usually referred to as a saddle point, |If
H''(b)#0, b Is a saddle point of order 1, If H''(b)=0 and
H''"'(b)#0 of order 2, etc. If the original‘contour can be
deformed onto one or a combination of such steepest descent
paths, then the asymptotic expansion of the given integral

can be obtained by a rather routine procedure which
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involves: change of variable of Integration, Inversion of
truncated power series at the saddle points and term by term

integration.

Let us outline the steps of the solutlion procedure as
follows. ‘
1) Locate and determine the order of saddle points
of H{T).
2) Compute U(tl,t2) and V(tl,t2) such that

HCEl » 21 £2) = Ultl,t2) = & V(tl.,t2).,

3) Obtain V(tl,t2) const. curves which pass
through the relevant saddle points.

L) Examine the V(tl,t2) = const. curves to
determine whether deformatlion of contour can be made
to curves through the saddle polints.

5) Change the varliable of Integration.

6) Express t as a truncated series In the new
variable about each relevant saddle point.

7) Determine the coefficients In the above series,
8) Apply Watson's lemma to obtain the first few

terms of the asymptotic expansion by Integrating

term by term.
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2. Solutlon Steps

Presented here are the solution steps of the asymptotic
expanslion of J(C) in the exact sequence as they have been
carried out using MACSYMA, The lines labelled (Cl) are
input commands. A command line ends with either a @ sign or
a $ sign., The @ sign causes results obtained by executing
the command 1ine to be displayed In a subsequent line
labelled (D1). A (Ci) line together with a correspond (DI])
line will be referred to as step I, The $ as an end of
command 1ine character suppresses display of results for
that line., Explanatory texts will be inserted between
lines. To avoid becoming a user's manual for MACSYMA,
explanation for the commands used in the solution will be
made quite brief, For a more detalled look at MACSYMA the

reader Is referred to [16].

(C1l) P:8%

P Is a parameter which is set depending on the number
of terms desired in the asymptotic expansion. By setting P
to 8, we shall obtaln the first 4 terms. The reason will

become evident later.

(C2) H(T):==Tw*L4/L=%]*TQ
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Iy

T
(D2) H(T):= = == = 2| T
"
defining the functlon H(T)
(C3) DIFF(H(T),T)=0a
5
(D3) - T =29 =0
creating an equatlion H'(T)=0
(Ch) SOLVE(%,T)@
SOLUTION
SQRT(3) = %I
(Eh) T = =cermccccmcn—-
2
(E5) T = &1
- SORT(3) - 2|
(EG) T & ccemccncccccan—-
2
(D6) (E4,E5,EB)

The % sign used in (Ch) stands for the last (D3), in
general a % sign represents the last expression labelled
(DI). SOLVE in (Cu4) is an invocation of the MACSYMA SOLVE
program (see [10] for its capabilities and limitations).
The roots of H'(T)=0 give three first order saddle points,
Passing through each of these points there will be one
steepest ascent and one steepest descent level curve

(Im (H(t))= const. curves), The saddle polints in (E4) and
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(E6) are the points B and A respectively shown in fig. 2.
The value of H at these three saddle points will now be

compu ted.

(C7) HB:RATSIMP(H(PART(EL,2)))0

(p7) eemeeecsemee—eea--

What has been done in step 7 is the computation and
simplification of H(B). The command RATSIMP causes rational
simplification which Is essentially putting expressions to
be simplified into the form of one numerator and one
denominator and perform all possible GCD cancellations. The
command PART allows a user to obtaln subexpressions of an
expression. PART(EL,2) returns the second part of the
equation E4 which is Its right=hand side., Note that

commands can be nested,

(C8) HC:RATSIMP(H(PART(ES5,2)))@

(D8) =
b

(C9) HA:RATSIMP(H(PART(EG6,2)))@

5 %1 SQRY(3) = 3
(p9)y  ecesesesc—ae————

The point T=%| turns out to be irrelevant because the
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new path which will be determined does not pass through it.
The next goal is to obtain curves passing through the saddle
points (SQRT(3)/2, =-1/2) and (=SQRT(3)/2, =-1/2) along which
the imaginary part of H(T) Is constant and the real part of
H(T) varies most rapidly, i.e. the steepest paths through

the saddle points.

(C10) EXP:EXPAND(H(T1+%1%T2))@

i 2 2
T2 3 > Tl T2
(DAE)T & we= R Al A1 ] S =semas=ss
ly 2
4
3 il
21 Tl T2 & @ =« === g Ti
M
(1YY V(Tl,T2):="COEFF(D10,2!)Q
3 3
(D11) vETL,T2)s= TL T2 = 1 T2 = 11

By steps 10 and 11, the Iimaginary part of H(T1+ %1 T2)
is found and given a function name V(T1,T2). The command
COEFF(exp,var,n) computes the coefficient of var**n In exp.
In this case, the coefflcient of %I in (D10) Is exactly the

imaginary part of (D10),

(C12) UCT1,72):="COEFF(EXP,%!,0)0



147

(D12) UCTL,T2)i= = === 4 =====---- + T2 = ===

U(T1,T2) is defined to be the real part of

T * %1 T2dS

(C13)Vv(T1,T2)=V(SQRT(3)/2, -1/2)@

3 3 3 SORT(3)
(D13) TL T2 =T1 T2 = Tl = = =-=-=-=--

Obtained in (D13) Is the equation of a curve,V =
constant, which passes through the saddle point B,

(SQRT(3)/2, =1/2). This curve will be referred to as CR.

(C14)Vv(T1,T2)=V(-SQRT(3)/2, -1/2)0

3 3 3 SQRT(3)
(D14) T1 T2 =Tl T2 = Tl = ===ee=w--

(D14) is the equation of a curve, V=constant, passing
through the saddle point A, (=SQRT(3)/2, -1/2). Let this
curve be CL. The curves CL and CR have to be examined
carefully by the human problem solver to determing the new
path of integration. The manner in which they extend to
infinity is often important in deforming the contour.

Asymptotes to these curves can be found easily. For an
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algebralc curve, f(X,Y)=0, the way to find asymptotes Is to
substitute m*X+c for Y In f(X,Y)=0 then determine values of
m and ¢ such that the equation has two infinite roots (i.e.,
equating to zero the coefficient of the highest and second
highest powers of X). Asymptotes parallel to X=0 are missed
by this method. f(X,Y)=0 has such an asymptote If It Is
possible to choose h in such a way that the equation
f(h,Y)=0 has two Infinite roots, Asymptotes will be found
for CL and CR in the next two steps.

(C15) SUBSTITUTE((T2=A*T1+B),PART(D14,1))@

3 3
(D15) = TLs LA TI + Boneulil (A TL. .+ 8). =" TL

(C16) RATSIMP(%)@
3 I 2 3 2 2 >
(D16ICA = A) Tl #» (3 A = 1)B 1l 3 ABTlL + (B = 1) 71
The asymptotes are clearly T1=0, T2=0, T1l=T2 and Tl= =
T2, With the aid of MACSYMA to generate polnts we plotted
the curves as shown In fig. 2. with steepest descent paths

labelled Ca and Cb., This figure Is not a computer generated

plot,
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It can be seen in fig. 2 that by use of Cauchy's
integral theorem, the original contour can be deformed to
the contour Ca+Cb, For the purpose of change of path of
integration a new variable R Is Introduced which will be the

parameter of our steepest descent paths.

(C17) -Rx#»2=H(T)-H(TO0)@

L
) il 1

(D17) - R =% TO0O = == =21 T + =
Iy I

TO stands for either of the two saddle points A or B,
Indeed if T0=A, R Is real If and only If T Is a point on Ca,
for Im(H(T)-H(A))=0 and 0 = (H(T)=-H(A)) only for points on
Ca. The same can be said about T0=B, T has to be expressed
in terms of R In order to perform the change of variable.
Solving for T as a function of R exactly in (D17) is not
necessary. lhat Is needed Is the first few terms of a power
series expansion of T In terms of R about the point T=TO

(the saddle point).

(C18)T=TO+DOSUM(J,1,P,B[J]*R**J)Q@

8 7 6 5 b
(D18)T =TO + B R +B R +B R +B R +B R
8 7 6 5 L
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T Is set to a truncated power series in R, The unknown
coefficients B! will be solved for by use of (D17).
(C19) E:SUBSTITUTE(D18, R»*2+PART(D17,2))@
8 1 6 5 L
(D19) - (T0O + B R + B R +B R *+B R +B R
8 7 6 5 Iy

3 2 L 8 7
+ B R +8 R +B RiJu+« % CT0O*R R =+ 8 R

o2l 10+ R

= 1

The expression (D19) has been given a name E, Before E
is expanded in order to collect terms, a few simplification
rules are defined so as to discard powers of R higher than 8
In the expansion process. This greatly reduces the

intermediate expression bulge which would otherwise occur,

(C20) DECLARE (N,NPRED)$

(C21) NPRED(X):=I1F X > P THEN TRUE ELSE FALSES$
(C22) TELLSIMP (R#*N,0)$

?s THE REPLACEMENT

A simplification rule has been set up so that any R#¥=*n

is replaced by 0 If N > p which Is 8.
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(C23) TELLSIMP(TO®#*3,=21)$§

An additlional simplification rule Is defined so that

TO**3 shall be replaced by =%| automatically.

(C24) RATVARS(R)S
R shall be the main variable In subsequent rational

simplificatlons.

(C25) E:PART(RAT(E), 1)@
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(D25)
8 2 2
R(( =~ 12B B =- J2°B B =12 B B =68 jJ 30
| SO 2 b 5 5 L
2 2
+ { = 128 B =B BB L e QUSRS = TR )
1 6 1R O 3 Z L
Z 5 2 2 2
=12 BB ) 0 = R B = L2 B B B =6 B B
2 b 1 5 1 2 4 1 3
2 b

7 2
+ R ((-12B B ~-12B B =128 B ) TO0
16 25 Sl
2 2 2
+ (- 12 B B - 24LB B B =~ 12 B B - 12 B g ) 10
1 5 2 [ 13 2 3
3 2 3
- L4 B B - 12 B B B -4LB B )
1 L 1 20 3 i
6 2 2
+ R (( - 12 B B - 2B B = B ) T0
185 2k 5
2 3
+ (- 12 B BY =" 2UEBENBEE B R T
1 L LD 3 2
3 2 2
- L4 B B =5 B B )
1 5 1 2
5 2

*+ R (({ =J2B B =428 B ) T0
RS 23
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2 2 3
(= X258 B =312 8 B ) Ib =B B )
1 S 1 2 1 2
L 2 2 2 L
# R (=120 B BER=NERE e = 120 H B~ )
1 2 2 1 2 1
3 2 3 2 2 2
* R (=12 B B TO =4 B T0) = B (L~ 6 B T899
L 2 1 |

E is set to the huge expression above which Is the
numerator of a truncated expanslion of E; the denominator is

a constant,

(C26)FOR J:1 STEP 1 UNTIL 4 > (P=1)

DO BLOCK (EQ[J]:COEFF(E,R,J+1)=0,DISPLAY(EQ[J]))$

This do loop Is used to generated the coefficients of
the various powers of R In E and store them In the form of
equations in an array RL. Each EQ[J] will be displayed

after It is set.

2 2

b= 68 T0 =0
1
2 3

- 12 B B T = 4 B TO = 0
d 12 1
2 2 2 L
C=12 B B «6 8 ) J0 = 12 B B0 =i = 0
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Z
(=12 B B =02 B B )40
1 L 2 3
2 2 3
+ (=37 B B o= dd 8 8 )94 =4 B B =20
1 3 i (. 1 v
2 2
(=128 B = 128" B =88 3 T0
I 5 2. 4 3
2 3
L e ] B -26B B B =K B 3 10
1 L 1.2 3 2
3 2 2
= D B = Gl B = 0
1 3 i 2
2
= 428 B u=il2 B B =Rlz8 B 310
1 B 2 B 3 L
2 2 2
LR B =28 B B B =mids B = 1d& B B )
1 5 1 2 & Lot 2 3
3 2 3
TU =" 4B B = 12 B BB = 48 B = 0
1 L 1 2.3 i 2
2 2
(=42 8B B =128 B <312 8 @ =58 ) 71D
L 7 2 B 2 5 L
2 2
* ( =12 B B =28 8B B B =+ =-248B B =128 )
1 6 L 2 L 3 2
2 3 2

B =12B B ) 0= 4 B g = 12 B B B
L 2 3 1 5 1 2 &
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Being conscious of the lack of storage space left for
subsequent manipulations, we get rid of the computation
history to create some space.

(C27) KILL(HISTORY)@
(C1l) SOLVE(EQ[1],B[1])@

SQRT(6)
(E1) B = =-=m---
1 3 T0
SORT(6)
(E2) B = = ===-=---
1 3 T0
(D2) (E1,E2)

The choice of the value for Bl here affects only the
sense with which the steepest decent paths are traversed.
Thus if we choose (E1), R would vary from INF to MINF on Ca
and from MINF to INF on Cb.

(C5) B[1]:PART(E1,2)$

A do loop Is used in (C4k) to solve for the remaining
B's (B2 through B7).
(Ch) FOR J:2 STEP 1 UNTIL J > (P=1)
DO BLOCK (SOL:EV(SOLVE(EQ[J],B[J]),EVAL),
B[J] :PART(SOL,2),DISPLAY(SOL))$

The EV command, with EVAL as the third argument, causes



the answer returned by SOLVE to be evaluated once more,

Since every Bj Is solved In terms of earlier B's which

already have some value, one more level

eliminate the dependencies on previous B's.

972 SQRT(6)

225 Z1 TO '» 342 T0 *» 1031 %I

2
26244 TO
2

5 %21 TO SQRT(6) %! TO 47 SQRT(6) TO
B = = mmm-a- —————— + mmmmemme———ea + mmmmmmm—e————

7 1458 SQRT(6) 729 6561
107 TO 6839 %I 170 SQRTCEIN S
B g P

2187 SQRT(6) 52488 SQRT(6) 19683

1927 %I

26244 SQRT(6)
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of evaluation will
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The unknown coefflicients Bi have bheen determined. The
next goal is to compute

& 20 el
EXP(=C R ) == dR
_ dR

oo

dT
for T0=A and T0=B, 0dd terms of R In -- do not contribute.
dR
Therefore only 4L terms need be integrated. These terms are
even in R, thus the range of integration can be changed to

(0 INF)., A function FN(X) will be defined for carrying out

this term=by=-term integration at a variable point T0=X,

(C5) FN(X):=BLOCK(ANS:C, FOR J:1 STEP 2 UNTIL J > (P=-1)
DO ANS:ANS+J*RATSIMP(EV(B|J|,TO0=X))*
DEFINT(ZE**(=C*Rw%2)%R%x(J-1),R,0,INF),RETURN(ANS))S
(C6) FN(-SQRT(3)/2-%1/2)@
IS THE EXPRESSI|ON
PBS?TIVE, NEGATIVE, OR ZERO
NEGATIVE@
For the purpose of Iintegration, WANDERER askes the user

about the sign of C., The contribution from saddle point A

Is given in the next result,

SQRT(6) SQRT(%PI1)
(5 SOQRTLS) * 3 &1y SQRT(C)
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3 BQRTLZPL) (5 SORT(I) = 23 %1)

4 SQRTCE) €27 %I SAQRT(3) + 27) C
b SQRTCSPLY (25 SQRT(3) + 247 Q1)

5184 SQRT(6) ©
- (35 SQRT(%PI) (SQRT(6) (672 SORT(3) + 1816 %I)
3582 SQRT(3) 13077 %I 7/2
- mmemmeemeeee a emememee )) /(839808 C )
SQRT(6) SQRT(6)

(C7) FN(SQRT(3)/2-%1/2)@
IS THE EXPRESSION
PSS?TIVE, NEGATIVE, OR ZERO
NEGAT I VEQ

SQRT(6) SQRT(%ZPI)
(3 SQRTC3) = 3 %1) SQRTLC)
3 SQRTL2P1) (& SQRT(3) ~ 23 %I)

4 SQRT(B) £27 %1 SARTL5) = 272 €
5 SQRT(2P1) (25 SQRT(3) = 247 %1)

5184 SQRT(6) C

+ (35 SQRT(%ZP1) (SQRT(6) (672 SQRT(3) - 1816 %1)

3582 SART(3) 13077 %! 7/2
R e e ) e e ))/(839808 C )
SQRT(6) SQRT(6)
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The above is the contribution from saddle point B, Now
the final result Is obtained by computing the following
(=5 /3 31-5)/¢8 {35 5 %t=3)78
2 (%E D7 = 2 %E D6)
where D6 and D7 are as given above. This expression is, by
inspection, equlvalent to

(=3 J3 %1-3)/8 (3 J3 %21-3)/8 ___
2 (2E D7 + %E D7)

where D7 is the complex conjugate of D7. Therefore,

(C8) L*RL(ZE**HA*D7)(@
3 SQRT(3) ®I = 3

(D8) 4 RL(%E Gl s SR BRI R LR
(3 SQRTLS) - 3 21) SQRTLC)

3 SQRT(ZPI) (3 SQRT(3) = 23 %1)

3/2
4 SQRT(B) (27 %1 SQRT(3) = 27) C

5 SQRT(EP1) (25 SORT(3) - 247 %1)
542
5184 SQRT(6) C
+ (35 SORT(ZPI) (SQRT(6) (672 SQRT(3) ~ 1816 %I)
3582 SQRT(3) 13077 %1 7/2

S | A o ))/(839808 C  ))
SQRT(6) SQRT(6)



161

This is the first four terms of the desired asymptotic
expansion., RL is not a command of MACSYMA. It is used here

to denote the real part of an expression.
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CHAPTER VI 1|
CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The evaluation of definite Integrals Is a classical
problem in mathematics. Great lIngenuity Is frequently
required, with many integrals demanding special devices.

The lack of a sufficiently general theory makes evaluation
of definite integrals very difficult, It Is doubtful that a
theory, comparable In generality to the Risch integration
algorithm [26] for Indefinite Integrals, can be developed In
the near future. We have shown that the convergence of a
class of Iintegrals of elementary functions Is recursively
undecidable. The proof Is in appendix E. The WANDERER pro-
gram presented here Is a prototype heuristic computer pro-
gram for the symbolic evaluation of definite Integrals., It
contains both general methods such as contour integration,
residue theory and differentiation with respect to a
parameter, In addition to quite a few special methods for
specific types of Integrals. Clues as to which method to
use for a given problem are obtained from the integration
range and the form of the Integrand. Although many types of

definite Integrals can be evaluated by WANDERER, it, as
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almost any other heuristic computer program, has its limita=
tions. Foremost among these is the fact that it is a pro-
gram for the evaluation of real definite integrals of

elementary functions.

It is hoped that the work reported here may provide a
starting point for new approaches to the evaluation of
definite Integrals from the viewpoint of symbol manipula=-
tion. The advantage of this approach Is twofold: (1) A com-
puter can use integration methods that are too lengthy or
complicated to be carried out by hand; (2) Such a computer
program contains a collection of powerful methods that can
interact with one another and can produce answers to Inte-
grals not present in any finite table., For this reason, a
good definite integration program together with other
facilities provided in an algebraic manipulation system can

be very useful to applied mathematicians.

DELIMITER is a rather sophisticated program for comput=
ing limits of elementary functions. Such a program has been
shown to be a very useful tool in an algebraic manipulation
system. The method of comparing orders of Infinity used in
DELIMITER is an important concept which Is useful in places

other than the computation of limits.



164

A basic assumption of DELIMITER Is that the operator
LIMIT is distributive over the operators +, =, %, and #**,
i.e., rules such as the limit of a sum Is the sum of the
limits hold., These rules are valid only If the subproblems
thus generated produce answers which do not lead to an
indeterminate form. Of course there Is L'Hospital's rule
which can be applied to some Indeterminate forms, but
generally only those Involving only the operator * or *=,
Although many aspects of the indeterminate form (INF=INF)
have been considered in chapter 2, the algorithm for Iits
determination Is not complete. A powerful serlies expansion
program would be helpful In some cases, Yet, such a pro-
gram can not solve all problems, Consider for Instance, the
limit problem

2 2
LIMITUSIN X * BOS X, X%X,INE).

To obtain such limits, an algebraic manipulation system
must be able to detect all constant identities, This Is not
possible for the set of all expressions [22]. It may be
possible for a proper subset of all expressions. For
example, many trigonometrical ldentities disappear if all
trigonometric functions are radically transformed Into sums

of complex exponentials., This Is a basic problem of great
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practical and theoretical interest [6]. Such simplification

capabilities would be of use to many other programs as well,

DELIMITER can be augmented by increasing the types of
functions it can handle which may Include functions defined
by integrals, Another possible area of research Is the

automatic determination of superior and inferlor limits.

The fact that WANDERER can evaluate many non-trivial
definite iIntegrals does not mean that it can compete with an
expert human integrator yet. For one thing, a mathematician
can usually construct a function of a complex variable and a
suitable contour for evaluating different Integrals,
WANDERER cannot form a contour based on analysis of a given
real Integral. It simply selects from the cases known to
it. WANDERER would be much more powerful If It could
determine, for a given integral, whether the method of con-
tour integration and residue theory were applicable, and, if
it were, evaluate the integral by forming a suitable Inte=-

gral around a closed contour,.

The evaluation of contour integrals by residue theory
usually requlires the solution of algebralc or transcendental
equations, WANDERER uses the SOLVE program of MACSYMA for

this purpose. SOLVE has its limitations and Its Improvement
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is also a possible area for further work.

Suppose one wants to evaluate a closed contour Integral
by residue theory. An Iinteresting general question is: what
knowledge about the integrand or the functions used in form=-
ing It is necessary. We think the following are essential:
(1) evaluation;

(2) differentiability and derlvatives;
(3) singularities;

(4) asymptotic behaviour.

A natural extension of the work here Is Integration
over arbitrary user=-specified contours. This should not be
difficult to do, except for the lack of notation.
Specifically, we must speclify an arbitrary contour to a com-
puter and devise a general data structure for use In
representing contours, For Iinstance, consider the

specification of the following Indented contour,
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One obvious way is to specify a contour piecewlise.
Each piece of curve has a parametric form and a starting and
ending value for the parameter. There may be other

approaches.

Further work in this area of symbol manipulation might
include:
(1) Design of computer algorithms for testing convergence
and divergence of integrals,
(2) Summation of infinite series by residue computations,
(3) Investigation of algorithms for definite integration of
special functions.
(4) Evaluation of multiple definite Integrals.
(5) Application of definite integration programs In solution

of differential equatlons.
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APPENDIX A

A FLOWCHART OF DELIMITER

A flowchart Is presented in the next page which details
the flow of control of DELIMITER, Listlings of the programs,
written in the LISP programming language, may be obtalned

from the author.

The routine LIM, appearing in the flowchart, is a
program which applies the 'trivial' limit rules, makes use
of subroutines to compute 1imits of sums, products, powers,
and the functions SIN, COS, TAN, LOG, SINH, COSH, TANH., It
calls LIMIT recursively and makes use of L'Hospital's rule

and other routines when needed.
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APPENDIX B

A PROOF

Infinite integrals of
n
21 kK Z m
f(Z) = %E Z
where n > 0, k # 0 real, R1(m) > =1, and n - R1(m)

have been discused in chapter 4=3.2. Some results

there depends on the proof of (1) and (2) below.
The objective here Is to supply the proof of

1) limftJ( f(1) dZ = 0,
Ce

€—=p+
and

R —>+00

2) ]imitJr f(Z) dZ = 0.
CR

170

> 1,

derived

where CR and C are the circular contours given below.
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Let
ie
Z=re and m=a + ib,
then
iJ(f(Z) dz =
¢
n
m+1 i n I1Me _
i ¥ EXP(i kre +1 (m+1)e ) de
o
a+1 71'/271. n
(i) s r EXP( = k SIN(n e) r = b &) de = M
o

For 0 s e < %P1/(2 n) we have

n
EXP( = k SINCh @) r ) S 1,

ni2Nn
a+l -be
Msr e de
o

Since a + 1 > 0, this completes the proof of (1).

Thus

Now from equation (1) we have

a+l
I %/2 n b e
M = EXP( - k SIN(e) r = =—) de
(=]

n n

N
= ¥
]
~
m
<
o
'
)
~
()]
i 1
i
o
®
a
®
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—
[
m
<
U
~~
1
-
i 1
:

2 knr * 2Pl b

The fact that n-a=1 > 0 completes the proof of (2).
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APPENDIX C

PERFORMANCE OF WANDERER

AND DELIMITER

As a measure of the performance of WANDERER and the
limit programs, selected problems have been timed. The time
sharing system used Is the ITS of the Artificial
Intelligence Laboratory at MIT which uses a PDP-10 computer
with a memory cycle time of about 2,75 microseconds. Time
used for parsing the input string and display of the
computed result has been excluded in order to obtain an
approximation to the time actually spent inside WANDERER or
DELIMITER. Garbage collection in the LISP [17] system in
which MACSYMA is written may take place during a
computation, Although garbage collection is a slow
procedure, it Is only falr to regard It as part of the
computation process being carried out. Therefore, the time
it required has been included in the timing experiments,

The results are put In the form of two tables. An * lIs used
in the tables to indicate computation requiring LISP garbage

collection,
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TABLE |
PERFORMANCE OF DELIMITER

Limit Problem computed Result Time In
equivalent to Sec.
X
LIMIT X 1 0.82
X=—=0+
X
LIMIT (1+1/X) %E 1,42
A=+ +00
X
X LOG(X) + %E
LIMIT ==emee e e e e e m e e e c e m e m e 0 3.00
K=>+ 00 3
Iy SQRT(X + 1)

LOG(X + X + 1) + %E

% 2
X SQRT(X + 1) X
LIMIT %E = NOE INF 13,18
K=+ +00
1
LIMIT eemeeemcececencan—— INF 1.15
K== 3 2
XA =6 X # 11 X = §
1 - SINCX)
LIMIT weesavccna 0 L.52

X7/ 2 COS(X)



X SORTEX = 8) % .1
LIMIT ==cmmmcmmmmmeceem

K=++o00 3

SQRT(L X + 1) + X

TAN(X)

X==2 LOGCX = 1)

175

1
------- 1.93
SQRT(L)
MINF 3.63
1/2 3.83



TABLE 11

PERFORMANCE OF WANDERER

Integral computed

Result

equivalent to

0 (principal)

LOG(2)

3 K LOGES) = (B + 3)5F]

20 SIN(%ZP1/20)

Time

176

in

Sec.

0

2,

7

L4

155

o

02

L2

67

08



@
3 D =5 SQRT(X)
X ZE dX
o

2

o
COosS (X)
....... dx

o

e dX
/:SQRT(X) (2 X + 1)

x 3/2
(4 SQRT(X) + 3)

D

(2616 2E ) /4 78125

aPlf28

%P1/SQRT(2)

DIVERGENT

177

0285

L5209



INF

e

R
rm

% %

SQRT

PLOG(X)

LOG(X)

GLOG(X)

FAT

BETA

GAMMA

APPENDIX D
NOTATIONS
plus infinity, MINF

V-1 ¥ %P |
base of natural logarithm
multiplication operator
exponentiation operator
square root operator
%P1 2 Im(PLOG(X))> =%PI,
when X > 0 for PLOG(X)

2 ZP1 > Im(GLOG(X)) 0

the zero parameter (defined

the beta function

the gamma function

178

minus Infinity,

(/4

the principal branch

in chapter 4)
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APPENDIX E

AN UNDECIDABILITY RESULT

Let S1 = §{P(X1,X2,...,Xn)} be a set of polynomials with
integral coefficients In X1, ... , Xn and S2 a set of

functions F of the form

FOXL, won 4 XN
20002 n 2 2
= (n+1) (P (X1, ... , Xn) + ) (SIN®XJIK] (X1, ... , Xn))=1,
J:1

where Kj Is the dominating function |6]| for

d 2
p— P.
dX ]

Richardson has shown |22,6| that

Lemma 1. For F in S2 the predicate "there exists an n-tuple
B of real numbers such that F(B) < 0" Is recursively

undecidable,

Lemma 2, If F(B) < 0 for some n=tuple B real numbers then
there exists an n-tuple A of nonnegative integers such that

P(A)=0 and therefore F(A) = =1,
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Lemma 3. Let

3
h(X) = X SIN(X) and g(X) = X SIN(X )
Then for any real numbers Al, ... , An and any 0 < € < 1
there exists b » 0 such that

h(b)=ALil<e, |hlelb))=A2]<€; .. » Ihlgles.8¢bl. s ))=AN]CE,

By use of these Lemmas we can show

Corollary. For any G in a set of functions of the form
GEX) & FChEXY  BCgIX)), s ; hegle (gl a))) & 142,
the predicate '"there exists a real number t such that G(t) =

0" is recursively undecidable.

Proof: Suppose the predlicate is recursively decidable, then
we have

1) If there exists a t such that G(t)=0 then there exist
real numbers Al, ... , An such that F(Al, ... , An) < 0;

2) If there exist real numbers Al, ... , An such that

F(Al, ... , An) < 0 then (by lemma 2) there exist
nonnegative integers Bl, ... , Bn such that

F(Bl1, ... , Bn)==1, Thus, there exists a real number ¢ such
that G(c) < 0. Since G(X) can be large and positive and

G(X) Is continuous, this Implies that there exist a t such
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that G(t)=0,

This contradicts lemma 1.

From the definition of the Function F, one can see G |s
always =1/2 and G Is large and positive except at the

vicinity of a finlte number of points where G is negative,

Theorem: The convergence of a set of Integrals of the form

@ dX
[ 2 2
-0 (X +1)G (X)

Is recursively undecidable.

Proof: This integral Is convergent If and only If G(X) has

no real zero.
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