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EVALUATION OF DEFINITE INTEGRALS

BY SYMBOLIC MANIPULATION

by

(Paul) Shyh-Horng Wang

Submitted to the Department of Mathematics on August

16, 1971 in partial fulfillment of the requirements for the

degree of Doctor of Philosophy

ABSTRACT

A heuristic computer program for the evaluation of real
definite integrals of elementary functions is described.
This program, called WANDERER (WANg's DEfinite integRal
EvaluatoR), evaluates many proper and improper integrals.
The improper integrals may have a finite or infinite range
of integration. Evaluation by contour integration and
residue theory is among the methods used. A program called
DELIMITER (DEfinitive LIMIT EvaluatoR) is used for the limit
computations needed in evaluating some definite integrals.
DELIMITER is a heuristic program written for computing
limits of real or complex analytic functions. For real
functions of a real variable, one-sided as well as two-sided
limits can be computed. WANDERER and DELIMITER have been
implemented in the MACSYMA system, a symbolic and algebraic
manipulation system being developed at Project MAC, MIT. A
typical problem in applied mathematics, namely asymptotic
analysis of a definite integral, is solved using MACSYMA to
demonstrate the usefulness of such a system and the faci-
lities provided by WANDERER.
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CHAPTER I

INTRODUCTION

In recent years rapid advancement has taken place In

the art of using modern electronic computers to facilitate

symbolic mat

systems for

manipulation

users in han

As the field

stronger and

manipulation

earlier syst

developed in

Project MAC,

by Professor

hematical computations. Computer based software

this purpose are generally known as symbolic

systems. Such a system is designed to aid its

dling mathematical expressions and functions.

of symbolic and algebraic manipulation grows

more sophisticated so do the various algebraic

systems. MACSYMA [16] is a recent redesign of

ems incorporating many new ideas and results

the field. The development of MACSYMA began at

MIT, in early 1969. The effort has been guided

s Martin and Moses of MIT and involves a group

of researchers and students including the author. Drawing

on the past work of Martin [15], Moses [20] and Engelman

[9], MACSYMA soon evolved into a system which extended the

capabilities of automated algebraic manipulation systems in

many new areas. Among these are the ability to compute

limits of functions and the ability to evaluate definite
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integrals.

The limit concept is basic to mathematical analysis.

Being able to compute limits automatically greatly increases

the potential of a symbol manipulation system in doing

analytical mathematics. In fact the evaluation of definite

integrals is heavily dependent on the limit process, as is

the expansion of functions in power series and many other

mathematical problems. Although the computation of limits

has been studied previously to some extent [11, 13], we

describe a limit program called DELIMITER (DEfinitive LIMIT

EvaluatoR) which is more powerful than previous programs.

It is discussed in detail in chapter 2.

The problem of computing indefinite integrals

symbolically by computers has been investigated rather

thoroughly. First among the computer programs developed for

this purpose was SANT (Symbolic Automatic INTegrator) by

Slagle in 1961. A more powerful program named SIN

(Symbolic INtegrator) [28] was developed in 1967 by Moses.

Theoretical work in this area include Richardson's

undecidability result for a certain classes of integrals

[221 and Risch's decision procedure for determining the

existence of the indefinite integral of a member in the

class of elementary functions [23, 24, 25, 26]. There is a
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comprehensive review by Moses on the progress during the

past ten years in this particular area of symbol manipula-

tion [21].

However, hardly any work has been done in the direction

of definite integration. Reported here is a first definite

integration program called WANDERER (WANg's DEfinite

integRal EvaluatoR). Experiments with DELIMITER and

WANDERER are the principal subjects of this thesis.

WANDERER has been implemented in MACSYMA and makes use of

many facilities provided in it. Some of these facilities

are: input and two-dimensional output, simplification,

solution of polynomial and systems of linear equations,

canonical rational function simplification and the SIN [20]

integration program.

Evaluation of definite integrals can sometimes be as

easy as computing the indefinite integral of the given

integrand then substituting in the limits of integration.

WANDERER computes integrals of this kind by using those

parts of SIN that have being implemented in MACSYMA.

However, many interesting definite integrals are not

obtainable in this manner, In some cases they may be

improper integrals or their indefinite integrals do not

exist. In other cases it is easier to evaluate the definite



directly than to obtain the indefinite integral

A few limit and integration problems are listed below

to give an indication as to the scope of WANDERER and

DELIMITER. The results obtained by the programs can be

found in chapters 2, 4 and 5.

2
X + A X + B

X + 10 X
2 0

dX

+ 9

SIN(X) dX

2 i X 2
e

dX

2
x -3
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X dX

2 15/2
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-S T 1/3
e X LOG(X) dX

0(X + 1)

4 dX

2 1/2
x x . 9)
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COS (X) - SIN(X)

2 4 1/2
LIMIT X (4 X + 5)

LIMIT

dX

- 2X

wI.

4
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X-40
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X

1/X

2 1/2 2
X (X + 1) X
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4
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integrals with an infinite range are discussed in

chapter 4, those with a finite range in chapter 5.

Important routines and algorithms are collected in chapter

6.

An application

analysis problem is

is to show how such

to solve non-trivial

applied mathematics.

usefulness of the ma

WANDERER.

of the MACSYMA system to an asymptotic

illustrated in chapter 7. The purpose

a symbol manipulation system can be used

problems that may occur frequently in

This application demonstrates the

ny facilities provided by MACSYMA and

A timing experiment has been conducted to check the

performance of WANDERER and DELIMITER. The results are

included in appendix C. Because of the limited character

set of most computer consoles, some special symbols are

needed to denote the frequently used mathematical functions,

constants and operators. For example, * and ** are used to

denote multiplication and exponentiation respectively.

Appendix D contains a list of notations we shall use.

From Richardson's undecidability results [22], we have

shown that the convergence of a class of integrals of
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elementary functions is recursively undecidable. The proof

is in appendix E.

The remainder of this chapter serves as an introduction

to algebraic manipulation systems, if the reader is

familiar with such systems he may proceed directly to the

next chapter.

An algebraic manipulation sys

computer programs designed to faci

mathematical problems. Such a sys

handle both symbols and numbers.

pulate symbols mathematically is w

systems from the various computer

specialize in numerical analysis.

In

usually

a typewr

typed in

back to

to provi

paper he

to assis

step to

tem is a collection

litate the solution

tem has the ability

This capability to

hat differentiates

subroutines which

using symbol manipulation systems such as these, one

interacts with it in a time-sharing environment via

iter-like console. Normally, data and commands are

by the user. Results from the computer are sent

the console for display. This arrangement attempts

de a user the ease and flexibility of the pencil and

is so accustomed to, while permitting the computer

t him in his algebra and formal deduction from one

the next. if the manipulations involved are non-

of

of

to

mani-

these
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trivial, so much the better. Some of the manipulations such

a system can provide are: GCD calculations, factoring, ra-

tional function arithmetic, matrix manipulation, solution of

algebraic equations, solution of systems of linear equa-

tions, indefinite integration of elementary functions.

Let us take a closer look at MACSYMA as a

representative model of other systems. MACSYMA receives

inputs in the form of linear character strings typed by the

user. FORTRAN-like notation is used for the input. For

example,

The user types: 4*(X**2+X+1)/Y@

The @ sign signifies the end of a command string. As a

result of this command, a two dimensional display is

returned.

2
4 (X + X + 1)

MACSYMA types:
Y

Inside MACSYMA, expressions are represented by list

structures in a prefix notation (common to many systems).

For example the expression above would be represented

internally by something like

(TIMES 4 (PLUS 1 X (EXPT X 2)) (EXPT Y -1))

inside MACSYMA.
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Other forms of internal representations are possible.

The choice of internal representation is an important aspect

of the design of a system. Of course more than one form of

internal representation can be employed in a single

algebraic manipulation system. In fact MACSYMA has a

special internal representation for rational functions which

is used to gain efficiency during certain polynomial and ra-

tional function manipulations.

One simple application of MACSYMA is factoring the

polynomial

3 2
P(X) = X + 4 X -11 X - 30

A user who wants to factor P(X) using MACSYMA types:

FACTOR(X**3+4*X**2-11*X-33)@

This input command causes the factorization of P(X) over the

integers. The output is

(X + 2) (X - 3) (X + 5)

While this problem may seem easy, factorization of

polynomials of higher degree can be very difficult to do by

hand. Indeed, algebraic manipulation systems can be most

helpful when one wants to manipulate complicated functions

and expressions. MACSYMA can carry out accurately with

great speed: summation over indices, expansion of products
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and powers, calculation of large determinants, inversion of

large matrices.

Applications in pure mathematics include computations

in: number theory, group theory, Lie algebras and set

theory.

Research in the field of symbol and algebraic manipula-

tion has led to many new results. The fast GCD algorithm

[4] and the finite field arithmetic polynomial factoring

algorithm [2] are two examples. Continued work in this area

will, hopefully, result in computer systems which are

increasingly valuable to engineers and mathematicians.
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CHAPTER 11

DELIMITER

0. Introduction

The limit concept is fundamental to mathematical analy-

sis. Basic concepts such as the rules of differentiation

are derived from limiting processes. More complex problems

such as improper integration, convergence of series, series

expansion of functions and contour integrals, to name a few,

also require the computation of limits in their solution

process.

Therefore, one can expect that automatic computation of

limits would greatly increase the capability of a symbolic

mathematics system in doing analytical mathematics. The

programs described below provide such a capability in the

MACSYMA system [16].

Automating the computation of limits has been studied

previously to some extent. Fenichel [11] discussed certain

decidability problems of limits and provided, in the FAMOUS

system, some basic routines for computing two-sided limits.



In his thesis, Iturriaga [13]

sided limits. In addition to

asymptotic analysis to quotien

by replacing those polynomials

can be done when the variable

nity so that the leading term

to the original polynomial. M

of sequences.

worked on both one and two-

L'Hospital rule, he applied

ts of polynomials essentially

by their leading terms. This

in the limit approaches infi-

is asymptotically equivalent

oreover, he discussed limits

DELIMITER is more powerful than either Fenichel's or

Iturriaga's limit program. L'Hospital's rule is a basic

method used for indeterminate forms. In addition, this pro-

gram employs a fast routine for limits of rational func-

tions. It has an efficient algorithm for a class of expres-

sions called RP-expressions which involve radicals of poly-

nomials. It also applies the method of reducing complicated

expressions by replacing subexpressions with asymptotically

equivalent expressions. The method of comparing orders of

infinity of expressions and several other heuristic methods

are used. In some cases, power series expansions are employ-

ed to obtain the limits.

This chapter is based on a paper by the author [29]

presented at The Second Symposium on Symbolic and Algebraic

Manipulation, Los Angeles, March, 1971.
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1. Definitions and Symbols

DELIMITER is designed for finding the limit of a

single-valued function f(X) of a real or complex vari

as X approaches some limit point. One-sided limits c

computed if X and f(X) are real-valued. The classes

functions allowed by this program include rational, r

logarithmic and exponential functions, and also the t

metric functions SIN, COS and TAN, and the hyperbolic

functions SINH, COSH and TANH. The general form of a

command is

LIMIT(expression,variablevaluedirection)@

with the fourth argument optional. PLUS as a fourth

ment indicates the one-sided limit from above, MINUS

below. The absence of the fourth argument indicates

restriction on the direction of approach. One-sided

are not allowed for complex-valued functions or limit

points.

able X

an be

of

adical,

rigono-

user

argu-

from

no

1imits

If f(X) is not continuous at X=a, the two-sided limit,

LIMIT(f(X),X,a), does not exist. In such a case the symbol

UND is returned by the program as an answer.
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The following are some symbols used by this program.

ZERO+ 0+ ZERO- 0-

UND undefined

IND Indefinite but bounded

INFINITY the point at Infinity In the complex plane

INF and MINF will continue to Indicate respectively

positive and negative Infinity. Here are some examples of

how these symbols are used internally.

LIMIT(COS(X),X,%PI) = -1+ ZERO+

LIMIT(SIN(X),X,INF) = ND

LIMIT(1/SIN(X),XINF) = UND

LIMIT(1/(X-%I),X,%I) = INFINITY

The direction from which a limit point Is approached is

important. By use of ZERO+ and ZERO-, simplification rules

such as

1/(-1 + ZERO+ + 1) -- INF
and

1/(-1 + ZERO- + 1) -- MINF

are possible in DELIMITER.



21

2. Basic Rules and Outline of Algorithm

Some of the rules used in this program are the so-call-

ed "trivial" ones for limits of continuous functions,

namely, the limit of a sum is the sum of the limits, etc.

There is a limit routine for each of the functions SIN, COS,

TAN, SINH, COSH, TANH and LOG (base %E). For other func-

tions the rule

LIMIT(f(g(X)),X,L) = LIMIT(f(Y),Y,LIMIT(g(X),X,L))

is used.

For one-sided limits where the variable approaches a

point other than 0, a change of variable is made to bring

the point to the origin. For example, the limit

LIMIT(f(X),X,a,PLUS)

is converted to

LIMIT(f(a+Y),Y,ZERO+)

There is, of course, a complete set of rules governing

simplification of the new symbols. They are all of the fol-

lowing nature



IND/INF = 0

- ZERO+ = ZERO-

1/INFINITY = 0

MINF**2 = INF

LOG(C+ZERO+) =

We will now briefly

into the details of some

consider

-1/INF= ZERO-

- INF = MINF

-1/INFINITY=

(ZERO+)+ZERO-

LOG(C) + ZERO+

outline the algorit

of the component ro

LIMIT (E(X),X,L)

where L is any number or symbol including INFINITY, INF,

ZERO+ and ZERO-. If L = MINF, it is set to INF by a change

of variable Y=-X. Upon receiving the arguments, namely

E(X), X and L, DELIMITER checks whether L=INFINITY or E(X)

involves %I. If either or both is true then a global

indicator CPLX is set to the value TRUE which indicates that

the given limit is to be evaluated over the field of complex

numbers. Otherwise CPLX is set to the value FALSE which

signifies a limit problem over the reals. If CPLX=TRUE, all

use of INF and MINF are replaced by INFINITY and the notion

of approaching a limit point from one side is no longer

valid.

22

0

0

hm,

utI

and

nes.

then

Let

go

us
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The following diagram is a simplified overview of

DELIMITER.

DELIMITER

I
SIMPLE LIMIT - -- RETURN ANSWER

RATIONAL FUNCTION---+RETURN ANSWER

RP-FORMS *RETURN ANSWER

BASIC LIMIT L'HOSPITAL'S SERIES ORDER
RULES RULE EXPANSION OF INFINITY

Fig. 1

As indicated in fig. 1, DELIMITER has four stages.

Results of simple limit problems are immediately returned by

the first stage. Simple limits include two cases: 1) E is

independent of X. 2) E(X) = X. In the second stage, a fast

algorithm is used to obtain limits of rational functions.

The third stage employs an algorithm for limits of RP-forms.

If the first three stages do not produce an answer, the

given limit problem enters the fourth stage which contains a

variety of methods including the four principal ones shown
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in the figure. In this stage the program will first try to

extract the numerator NX) and the denominator DX) of E(X)

so that E(X) = N(X)/D(X). If both N(X) and DX) are RP-

forms the limit is computed by an algorithm specially for

these forms (see section 5 for definition and algorithm).

Otherwise the rule

lim E(X) = lim N(X) /lim DX)

is applied. If both lim NX) and lim DX) are 0 or infinite

we have an indeterminate form. In this case L'Hospital's

rule will be applied to E(X) with one exception: when L is

INF and lim N(X) and lim DX) are both infinite and both

N(X) and DX) contain exponential functions of X which tend

to INF as X approaches L. In this case the method of com-

paring orders of infinity, to be described shortly, is ap-

plied. If DELIMITER can not find an answer indication of

failure will be returned.

Sometimes the program needs to know the value range of

a symbolic parameter in order to compute the limit. In such

cases, the program will query the user at his console.

It is important to note that these programs do not

store any table of limits Thus every limit obtained is a

result of computation.
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Other methods available include : change of variable,

discontinuity tests and analysis of the behavior of a func-

tion near a finite point. A flowchart in appendix A pre-

sents the flow of control in a more complete manner.
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3. The Limit of a Rational Function

Let P(X) and Q(X) be polynomials in X and possibly

other variables and

E(X) =P(X)/Q(X),

n =degree(P)-degree(Q),

c =leading coefficient(P)/leading coefficient(Q),

Consider LIMIT(E(X),X,L) where E(X) or X may be complex

valued. The following algorithm is used to compute the

limit.

(1) if L is finite then,

If P(X) = Q(X) = 0 then set P and Q according to

P(X)= P(X) /(X-L), Q(X)= Q(X) /(X-L),

by long division, then go to step (1);

if Q(L) is not 0 then the answer is E(L);

otherwise, the answer is INFINITY if CPLX=TRUE

and, if CPLX is FALSE, the result is INF or MINF

depending on the direction from which Q(X) ap-

proaches 0 as X approaches L, and of course the

sign of P(L).

(2) If L is infinite,
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if n=O, the answer is c;

if n < 0, then if CLPX = TRUE, answer is 0, but if

CPLX is FALSE then the answer is ZERO+ provided

the sign of c*L**n is + and ZERO- in case the sign

of c*L**n is -;

otherwise, (n > 0) the answer is INFINITY if

CPLX=TRUE, and the answer is INF or MINF,

depending on the sign of c*L**n, if CPLX=FALSE.
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4. The Limit of a Quotient of RP-forms

An RP-form is defined as an expression obtainable by

combining polynomials and positive rational number powers of

polynomials using the operators+ -, *. Here are some

examples of RP-forms,

3 1/3
fCX) =SQRT(4 X + 5 X) + (X + 1) + X + C

2/3
g(X)= A X SQRT(X+1) + X

Note that the definition of RP-forms does not allow

nested radicals of X. For instance the following is not an

RP-form.

2/3
(X + SQRT(X))

Now consider the limit problem,

LIMIT(E(X),X,L), E(X) =N(X)/D(X)

where N(X) and DX)O are RP-forms and at least one of them

is irrational. Note that NX) or DX) can be a constant.

Let us define the operators EXPO and COEF by

EXPO(N(X))

=highest exponent of X in NX),

COEF(E,N(X))

=the coefficient of E in NX).
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For example,

EXPO(g(X)) =7/6,

COEF(X**(3/2),f(X)) =2

EXPO is obtained by a simple special purpose routine; COEF

is computed by using the RATCOEF routine in the rational

function package of MACSYMA [16].

Now the limit is computed by the following algorithm.

(1) If L =MINF, X is replaced by -X, L by INF.

(2) If L =INF, the following asymptotic analysis is

made.

I) compute a =EXPO(N(X)), b=EXPO(D(X)).

ii) Let N1(X) and D1(X) be N(X) and DX) with

polynomials under radicals replaced by their

leading terms, respectively. Compute

a'=EXPO(N1), b'=EXPO(D1).

iii) If either afa' or bb', then

sufficient to replace each radical

it is usually

in E(X) by
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the first few terms in the series expansion of

the radical about X=INF, obtaining a rational

function R(X). The answer is

LIMIT(R(X),X,INF).

Otherwise, compute

c=COEF(X**a,N1)/COEF(X**b,N2). If b>a, return

the answer c*ZERO+ if a>b, return the answer

c*INF, otherwise, return the answer c.

(3) If L = INFINITY then

Carry out steps (2-i) and (2-1i). If afa', b/b'

or a=b, the answer is UND. Otherwise, if a > b

theanswer is INFINITY, while if a < b the

answer is 0.

(4) If L is finite, compute N(L) and DL), then

If N(L)=D(L)=0, apply L'Hospital's rule. Since

L'Hospital's rule can not succeed in case each

term in N(X) and D(X) has a branch point at X=L,

that is, N(X) and D(X) have a common factor (X-

L)**(a/b) with a and b positive integers. In

this case the factor is removed from N(X) and
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D(X) before using L'Hospital's Rule.

If N(L)=O and D(L)0,

the answer is 0 if CPLX=TRUE, otherwise the be-

havior of D(L)*N(X) at L is examined to decide

whether 0, ZERO+ or ZERO- is the answer.

If D(L)=0 and N(L)/0,

the answer is INFINITY if CPLX =TRUE, otherwise

the behavior of N(L)*D(X) at L is examined to

decide whether INF or MINF is the answer.

Otherwise, the answer is E(L).

For large X the series expansion

2 1
SQRT(X + 1) = SQRT(-- + 1) X

2
X

1 1
X (1 + --------- +..

2 4
2 X 8 X

1 1
-X +----------+ . . .

2 X 3
8 X

is convergent. It is clear that this expansion method can

be applied to an arbitrary polynomial to a positive frac-

tional power. This fact establishes the validity of step

(2-iii).
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5. Indeterminate Forms and L'Hospital's Rule

L'Hospital's rule is applied to an indeterminate form

E(X) of the form 0/0 or INFINITY/INFINITY. It first

calculates N'(X) and D'(X), then,

If D'(X)=0, L'Hospital's rule fails, otherwise, simplify

N'(X)/D'(X) and evaluate

LIMIT (N'(X)/D'(X),X,L).

The expression N'(X)/D'(X) can be more complex than

E(X) and successive application of this rule may lead

nowhere. Therefore the number of times this rule Is called

successively is counted and the relative complexity of

N'(X)/D'(X) to E(X) is tested to decide whether to continue

this approach. Our criterion of complexity is based on the

number of distinct nonrational components of an expression.

If this number grows for three consecutive times, the ap-

plication of L'Hospital's rule is halted.

The indeterminate form 0*INFINITY is transformed to

either 0/(l/INFINITY) or INFINITY/(1/0), depending on which

Is simpler, before applying L'Hospital's rule. Other in-

determinate forms such as 1**INFINITY, INF**0 and 0**0 are

handled by the logarithmic reduction :



F(X)**G(X) = %E**(G(X)*LOG(F(X))).

Theoretically the indeterminate form (INF - INF) can

always be reduced to 0/0 by rewriting it as

(i) (1/1NF - 1/INF)/(1/INF*INF),

but this method often makes the expression much more

complicated. It is useful, though, for expressions

involving trigonometric functions as can be seen in

1 1
LIMIT(-- ------ ,X,0,PLUS) = 0.

X SIN(X)

DELIMITER transforms the given expression in this example to

SIN(X)-X

X SIN(X),

then applies L'Hospital's Rule to obtain the answer 0.

Therefore, the method (I) is used for expressions involving

trigonometric functions. Other types of expressions can be

dealt with more readily by comparing degrees of infinity of

the subexpressions or by series expansion.



6. On the Sign of Infinity

If a function f(X) is discontinuous at X=a, another

function g(f(X)) is not necessarily discontinuous at a.

For example

LIMIT((A X + 1)
1/X

,X,O)= %E

Therefore, discontinuity may be encountered in the course

of computing a limit of a continuous function. Consider

1/E(X) with E(a)=0 and the limit problem

LIMIT(1/E(X),X,a),

If CPLX = TRUE, the answer is INFINITY. Otherwise, a rou-

tine named BEHAVIOR is used to analyze the behavior of EX)

near X=a. If EX) approaches 0 from above or below as X ap-

proaches a, then the answer is INF or MINF, respectively.

Otherwise, the answer is INFINITY.

The BEHAVIOR

the behavior of a

slope or concavity

by other programs.

putes limits of th

the argument of TA

routine uses differentiat

function near a point by

at the point. This rout

One of these is the prog

e trigonometric function

N approaches %P./2, say,

ion to

invest

ine is

ram wh

tangen

it is

analyze

igating its

also used

ich com-

t. In case

Important

A
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to know the direction of approach.

7. Heuristics for Comparing Orders of Infinity

Let f(X) and g(X) be two real-valued functions which

become positively infinite as X approaches INF. We define

the symbol >> by

Definition : g(X) >> f(X) if

LIMIT(f(X)/g(X),X,INF) =0.

Using this symbol we can make the following brief

table.

... %E**%E**X>>%E*X>>X**n>>1og(X)>>log(log(X)) ...

Many limit problems with the variable approaching INF

can be solved very efficiently by using this concept. Some

of these problems can be difficult to solve by other me-

thods. For example, L'Hospital rule fails to compute the

limit

LIMIT((%E+1)**X**2/%E**X,XINF),

while the answer is obviously INF. We incorporate this con-

cept by a routine, STRENGTH. It can classify the order of

infinity of the argument according to the following rules,



36

STRENGTH(c)=(c)

STRENGTH(LOG(R(X)))= LOG

STRENGTH(A**B(X))= EXP

STRENGTH(P(X)**(m/n))= m*d/n

where c is Independent of X, m and n are positive Integers,

d the degree of the polynomial P(X). Note the STRENGTH of a

constant is denoted by that constant inside parenthesis and

the STRENGTH of a polynomial is a constant. B(X) and R(X)

can be any functions in X, except those which can cause the

relevant argument of STRENGTH to be simplified Into one of

the other three cases. We can assume A to be 0E for If A is

any other expression it Is always possible to change the

base to %E. STRENGTH of a sum Is the maximum of the

strengths of the terms in the sum.

There Is a basic comparison routine which knows the re-

lations between the strengths of functions,

EXP>>a>>LOG>>(b) and c>>d If c>d

where a, b, c, and d are constants.

Let N(X) and D(X) be two products satisfying

LIMIT(N(X),X,INF)=INF
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and

LIMIT(D(X),X,INF)=INF

and no factor in N(X)

function.

or D(X) is a sum or a

To compare the relative order o

N(X) and DX), the following method is used.

trigonometric

f Infinity of

The answer 1

Indicates N(X)>>D(X),

decision.

-1 indicates D(X)>>N(X),

Algorithm COMPARE(N(X),D(X)):

1) Remove from N(X) and D(X) any common factors.

2) Apply the STRENGTH routine to each factor of N(X)

and obtain the maximum strength SN.

3) Do the same to D(X) and obtain its maximum strength

SD.

4) If SN>>SD the answer is 1, if SD<<SN the answer

1.

Otherwise,

I) Let

N1(X)=product of all factors with strength SN In

N(X).

factors with strength SD In

0 no

Is

D1(X)=product of all
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D(X).

ii) If SN=SD=some constant, set

SN=STRENGTH(N1) and SD=STRENGTH(D1).

If SN>>SD, the

-1. If both N

the answer is

polynomial N1(

INDICATOR has

and D(X) is an

nential expres

recursive call

come from %E**

goes as follow

E=LIMIT(N(X)-D

is 1 if E>O, -

answer is 1, if SN<<SD the answer is

1(X) and D1(X) are polynomials in X,

the leading coefficient of the

X) - D1(X). Otherwise if the variabl

the value 1, this means each of N(X)

exponent of an exponent of an expo-

sion and they come as a result of

s to COMPARE. For example N(X) may

%E**N(X). In this case, the algorith

s. First INDICATOR is set to 0 then

(X),XINF) is computed and the answer

1 if E<0, 0 otherwise.

If SN=SD=EXP,

The exponents A(X) and B(X) of N1(X) and D1(X)

are computed. That is N1(X) =%E**A(X) and D1(X)

=%E**B(X). If both AX) and B(X) are polynomials In

X, the answer is the leading coefficient of the

polynomial ACX) - B(X) if this polynomial is not a

constant, 0 if it is. If A or B is a sum, A is set

e

m
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to LIMIT(A(X)-B(X),X,INF) and the answer is 1 if

A=INF, -1 if A=MINF, 0 otherwise. In case neither A

nor B is a sum, if both A and B are of strength EXP,

set the variable INDICATOR to 1. The answer is ob-

tained by evaluating COMPARE(A1(X),B1(X)), where

A(X) = %E**A1(x) and B(x) = %E**B1(X).

If SN=SD=LOG,

If N1(X) is LOG(f(X)) and D1(X) is LOG(g(X)) then

set SN to STRENGTH(f(X)), SD to STRENGTH(g(X)). Now

the answer is 0 if both SN and SD are constants, 1

if SN>>SD, -1 if SN<<SD. The answer is 0 otherwise.

We shall next discuss the indeterminate form (INF-INF)

and see how COMPARE can be used in such situations. Let

F(X)= f! (X)
i~a

where
LIMIT(f (X),X,INF) =INF or MINF

for i=l,2,...n.'

LIMIT(F(X),X,INF) becomes indeterminate when there exists I

and j such that

and LIMIT(fi(X),X,INF) = INF

LIMIT(f (X),X,INF) = MINF
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The method of orders of infinity can sometimes be ap-

plied to this problem. The algorithm used is as follows.

The program forms two lists

go to INF and MINF respectively.

L2 a member of maximum order of

Let these be r(X) in Li and s(X)

the answer is INF, if s(X)>>r(X)

wise, the problem can be very di

gram tries to evaluate

Li and L2 of the f;'s which

Then from each of Li and

infinity can be obtained.

in L2. Now if r(X) >>s(X)

the answer is MINF. Other-

fficult. However the pro-

INF*LIMIT(F(X)/s(X),X,INF),

which sometimes produces an answer.

Now we will follow the major steps of the solution of a

problem in a more detailed manner. Let

2
X*SQRT(X + 1)

A(X) =%E
2

X
B(X) = %E

Consider the problem LMIT(A(X)-B(X),X,1NF). First the

indeterminate form (INF-INF) is encountered through the fol-

lowing steps.

LIMIT(A(X)-B(X),XINF)
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LIMIT(A(X),X,INF)-LIMIT(B(X),X,INF)

LIMIT(A(X),X,INF)

LIMIT(B(X),X,INF)

=%E**INF

=%E**INF

INF-INF

Then COMPARE is applied to AX) and B(X), only to

arrive at no conclusion about the relative order of infinity

of A(X) and B(X).

COMPARE(A(X),B(X))

STRENGTH(A(X))=EXP

STRENGTH(B(X))=EXP

2 2
COMPARE(X*SQRT(X + 1),X )

2
STRENGTH(X*SQRT(X + 1)) = 2

2
STRENGTH(X

Now the problem is converted to the following form and the

answer is INF.

INF*(LIMIT(A(X)/B(X),XINF)-1)

2 2
LIMIT(X*SQRT(X + 1) - X ,X,INF) = 1/2

=INF

=INF
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INF*(%E**(1/2)-i)

INF

8. Examples

A number of limit problems solved by DELIMITER are

included in this section. They are presented in the form of

actual inputs and outputs of the MACSYMA system. Lines

labelled (Ci) are input or command lines and (Di) output

lines or answers.

LIMIT(X**LOG(1/X), X, INF)@

0

(COS(X)-1)/( %E**X**2

LIMIT (D2,X,0)@

(1+A*X)**(1/X)@

COS(X) - 1

2
X

tE- 1

2

1/X
(A X + 1)

LIMIT(D4,X,0)@
A

%E

X**2*(4*X**4+5)**(1/2)-2*X**4@

(C1)

(D1)

(C2)

(02)

C3

D3

C4

D4

C5

D5

C6
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(C6) X**2*(4*X**4+5)**(1/2)-2*X**4@

2 4
X SQRT(4 X + 5) - 2 X(06)

(C7) LIMIT(D6,X,INF)@

(D7)
5

(C8) 1/X-1/SIN(X)@
1

(08)

(C9) LIMIT(D8,X,0,PLUS)@

(09)

1

X SIN(X)

0

(C10) 5,E**(X*(X**2+1)**(1/2))-%E**X**2@

2
X SQRT(X + 1)

%E(010)

2
x

- E

(Cl) LIMIT(D1,X,INF)@

(Dl) INF

(C12) (%E**X+X*LOG(X))/(%E**(X**3+1)**(1/2)+LOG(X**4+X+1))@

x
?E + X LOG(X)

(012)
3

4 SQRT(X + 1)
LOG(X + X + 1) + %E

(C13) LIMIT(D4o,X,INF)@

(D13) 0

(C14) 1/(X**3-6*X**2+11*X-6)@
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(D14)

3 2
X - 6 X + 11 X - 6

(C15) LIMIT(D1l4,X,2,MINUS)@

(D15) INF

(C16) (X*SQRT(X+5)+1)/(SQRT(4*X**3+1)+X)@

(D16)
X SQRT(X +

3
SQRT(4 X

5) + 1

+ 1) + x

(C17) LIMIT(D16,X,INF)@

(D17)
1

2

(C18) TAN(X)/LOG(COS(X))@

TAN(X)
(D18) .- - -

LOG(COS(X))

(C19) LlMIT(D18,X,%Pl/2,MINUS)@

(D19)

44

MINF
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(C20) (Z-%I*%PI/2)*Z*(Z-2*%Pl*%I)/(SINH(Z)-%I)@

%PI t I

(D20)

Z (Z - 2 %PI %I) (Z - ------ )
2

SINH(Z) - %I

(C21) LIM(DIFF(D2OZ),Z,?%t*%PI/2)@

(D21) - 2 %PI



CHAPTER III

WANDERER-AN INTRODUCTION AND OUTLINE

1. Introduction

The present chapter and the three subsequent ones are

devoted to a complete description of WANDERER, a heuristic

program for evaluating definite integrals over a real range.

WANDERER cannot solve

problems, but it can certai

number of integrals. Many

problems taken out of gradu

approach, in WANDERER, for

plex contour integration an

very general method particu

infinite integrals. Some o

WANDERER are: substitution,

rentiation with respect to

and table look-up, finite-t

all definite integration

nly obtain solutions to a large

examples presented are actual

ate text books [1, 5]. The basic

evaluating an integral is by com-

d residue techniques. This is a

larly useful in evaluation of

ther methods available to

integration by parts, diffe-

a parameter, pattern recognition

o-infinite conversion, introduc-

tion of a parameter and partition and transformation of the

range of integration.
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The user's command in MACSYMA for definite integration

is the key word DEFINT. DEFINT takes four arguments as in

DEFINT(exp, var, a, b)

where exp is the integrand, var the variable of integration,

a and b the lower and upper limits of integration. There is

no restriction as to what types of integrands are allowed as

input, as long as they remain elementary functions.

However, WANDERER requires the integrand to be finite in the

integration range except possibly at the end points a and b.

A few special symbols are used in WANDERER for some

branches of the logarithm function. They are listed in

appendix D.

2. Outline of Approach

Before going into the details of methods and algorithms

for evaluation-of the many types of definite integrals which

will be discussed in the next three chapters, a quick look

at the whole picture with emphasis on the flow of control is

in order.

WANDERER is a heuristic program which computes definite

integrals by trying to apply one or more of the methods or
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algorithms built into it. The clues as to which of the

methods to apply are obtained by examining the range of

integration and the form of the Integrand.

Fig. 1 on the next page serves as a simple outline of

the flow of control in WANDERER.



S=success

F=failure

WANDERER

simple integrals--wreturn answer
F $

normal ization
of Integrand and
integration range

methods for
Infinite Integrals,

applied according to
range of integration

is'more gen

return answer transf
change

methods for
finite integrals,

including proper and
improper integrals

ow S

eral methods if
ormation, - return answer
of variable $

divergence test

Fig. 1

As indicated in fig. 1. WANDERER can be said to have

five stages. In the first stage simple integrals are com-

puted which include cases such as a constant integrand, an

integral with equal upper and lower limits of integration

L~.-j



and, if the variable of

integrands which are pol

normalization stage will

necessary, that (1) the

limit, and (2) constant

are removed to be multip

integral.

integration is X, integral with

ynomials in X or %E**X. The

make sure, by transformation if

lower limit is less than the upper

factors, if any, in the integrand

lied into the final answer of the

The third stage comprises most of the methods that will

be described in chapters 4 and 5 and is the work-horse of

the whole program. Many methods in this stage are grouped

according to the integration range in which they are

appropriate.

transformed

For other fi

determine wh

divergence o

any attempt

obtain any r

stage which

various type

variable is

Finite integ

into infinite

nite integrals

ether they are

f a finite imp

at evaluation.

esults, the gi

contains more

s of integrand

often done in

rals of rational functions are

integrals which will be evaluated.

, an effort is first made to

improper integrals. The absolute

roper integral is tested before

If the third stage fails to

ven problem enters the fourth

general methods appropriate to

s. A transformation or change of

this stage. When WANDERER runs

out of methods,

be challenged.

the convergence of the given integral will

In case it is divergent, WANDERER will so

50
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indicate in the output. Otherwise, indication of failure

will be returned. It may be argued that tests for

convergence should be conducted before evaluation, but this

is not necessary because WANDERER is so designed that

whenever it produces an answer, the given integral is

convergent. That Is to say each individual method has its

own convergence and divergence conditions built in.

The limit program described in the previous chapter Is

used whenever a limit computation is needed in WANDERER. It

may often be required in changing the variable of integra-

tion, computing residues and testing for convergence or

divergence.

3. Outline of the Computation of Residues

One of the most powerful methods in evaluation of

definite integrals is the use of contour integration through

residue calculations. The importance of contour Integration

and the residue theory in the sequel warrants a brief

summary of relevant facts from complex analysis [5].

(I) The Cauchy Integral Theorem: Let D be a simply

connected domain and let f(Z) be analytic in D. Let C be a

closed contour in D. Then
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f(Z) dZ = 0

A simply connected domain is intuitively an open set of

points with no holes or cuts in its interior. For example

the disk IZI < 0 is simply connected while the annulus 1 <

IZI < 2 is not. The Cauchy integral theorem is one of the

most important tools In complex analysis. It Is by use of

this theorem that path of integration can be deformed. More

precisely, if C1 and C2 are two different curves in D lead-

ing from the same starting point v to the same end point w,

as shown in fig. 2,

F i. 2

and f(Z) Is ahalytic In D, then

f(Z) dZ = ff(Z) dZ.

Therefore, the contour C1 can be deformed into C2. The

above is an immediate consequence of Cauchy's integral

theorem which gives
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ff(Z) dZ - f(Z) dZ a 0

(ii) Definition of Residue: Let f(Z) be analytic in the

punctured neighborhood of a point p. Let Cp be a small

positively oriented circle with center at p. Then the

residue of f at p is defined as

1
b--- f(Z) dZ

The value of this integral is the coefficient of the

term

(Z - p)
-1

in the Laurent expansion of f about

coefficient can also be regarded as

(iii) The Residue Theorem: Let C b

positively oriented contour. Let D

domain containing C and its interio

be points inside C. Except for iso

Al, A2, . . . An, let f(Z) be an a

Then

the point p, so this

the residue of f at p.

e a simple closed

be a simply connected

r. Let Al, A2, . . , An

lated singularities at

nalytic function in D.
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n
f(Z) dZ = 27Ut (Residue of f at Aj)

fc j=1

The algorithm for residue computation used in WANDERER

will be described briefly here. Detailed discussion of this

algorithm can be found in sect. 6-1.

Let f(Z) be a function of a complex variable Z,

analytic everywhere in a domain D except for a number of

poles in D. Suppose F(Z) can be written in the form

f(Z) = U(Z)/V(Z)

such that U(Z) is analytic in D. This means that poles of

f(Z) are zeroes of V(Z). Suppose p is a pole of order m of

f(Z), the residue of fZ) at p is computed by the following

algorithm.

RESIDUE ALGORITHM:

If m= 1, compute as answer

U(p)/V' (p)

otherwise, if V is a polynomial,

(i) Set V to the quotient of V(Z)/(Z - p)**m

which is computed by long division.

(ii) Return the result computed from

m-1

(m -1)! )
U(Z)
V(Z) Z=p



otherwise, (m > 1, V not a poly

return as answer the limit

m-1
1 d

L im--
Z--p (m - 1) ! dZ

nomial) compute and

m
(Z - p) f (Z)

DELIMITER is used in obtaining such a limit. Methods

for infinite integrals are discussed in the next chapter.

Those for finite integrals are included in chapter 5.

Important algorithms and algorithms common to many methods

are detailed in chapter 6.
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CHAPTER IV

SYMBOLIC COMPUTATION

OF INFINITE INTEGRALS

0. Introduction

The aim of this chapter is to give a detailed account

of the methods employed by WANDERER for improper integrals

with an infinite range. Contour Integration and residue

computation play a very Important role in many of the

methods. The algorithm for integrals with rational

integrands, which will be discussed first, is the most com-

plete. Sections are formed according to the function types

of the integrand and ordered roughly in increasing com-

plexity. Quite a few examples are included, some of them

with references to books or integral tables Indicated.

1. Infinite Integral of a Rational Function

In this section methods for evaluating infinite inte-

grals of a rational function will be presented. The range

of integration Is from either 0 or minus infinity to

infinity. Other possible Infinite ranges such as (a INF),
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(MINF a), where a is finite, can be converted to (0 INF) by

a change of variable in the integral.

First let us consider

L R(X) dX, R(X) = P(X)/Q(X)

where P(X) and Q(X) are polynomials in X over the field of

complex numbers.

WANDERER requires deg(Q(X))-deg(P(X)) : 2 to insure the

convergence of the given integral. If RZ) has no real

poles, then The integral L can be computed by evaluating the

contour integral

J = R(Z) dZ

around a familiar semi-circular contour in the

Z-plane (fig. 1). One can easily prove that L

tends to infihity.

t

upper complex

= J as I

x

d

(_ 

r
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Therefore

(1) L = 2 %PI %tI( Res(R) over poles of R inside C)

The residue subroutine outlined in the

used to compute the residues needed in

R(Z) has poles on the real axis then L

However, if the real poles of R are all

Cauchy Principal Value of the integral

obtained by indenting the contour C at

on the real axis. For such integrands

this principal value, which is given by

previous chapter Is

this formula. If

is divergent.

simple then the

L exists, and can b

these singular poin

WANDERER will compu

(2) (P)L = 2 %PI %I(Z[Res(R) over poles of R inside C)

+ %PI %I( Res(R) over simple real poles of R),

as an answer to the integral L. (P)L stands for the

principal value of L. Whenever the answer is a principal

value, the message PRINCIPAL will be sent to the user first.

Here is an example solved by WANDERER

e

ts

te
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(Cl) (X**2+A*X+B)/(X**4+10*X**2+9)@
2

X + A X + B
(D1)

4 2
X + 10 X + 9

(C2) DEFINT(D1,X,MINFINF)@

%PI B + 3 %PI
(D2)

12

The expression D1 has four simple poles: X = %t, -%1,

3 %I and -3 %I. Using formula (1), only residues at X=%I

and X=3 tI need be computed. The residues are

at X=%I (B-1+A %1)/(16 %1)

at X=3 %I -(B-9+3 A %I)/(48 %t)

These values are computed by the residue algorithm given in

the previous chapter.

The full algorithm depends on finding the poles of R.

How this is done will be discussed in detail after consider-

ing the next integral.

K = fRX) dX

If R(Z) has no real pole which is positive or zero,

this integral can be evaluated by integrating the following

contour integral [30]



J = f(Z) dZ, f(Z) = PLOG(-Z) R(Z)

where

%PI.

and t

fig.

PLOG denotes the principal branch of the LOG function,

the imaginary part of LOG(-Z) lies between %P1 and -

The contour C consists of circular arcs of radii a, b,

wo straight lines joining their end-points as shown In

2.

1~

4

9

x

One can verify that contributions from the two circular

arcs of C vanishes in the limit. Thus,

FO2 %PI ?1t
J = PLOGC-X) R(X) dX + )PLOG(-X %E R(X) dX

=f PLOG(X) R(X) dX - PLOG(X) R(X) dX - 2 %PI %f R(X) dX

= - 2 %PI %I K

G60

.00
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(3)

Hence the value of the integral K is given by

K = -(Z Res(f) over poles of R inside C)

Therefore, the value of K is -1 times the sum of

residues of LOG(-Z)R(Z) in the complex Z-plane cut along the

positive real axis.

It may be of some interest here to mention that a

theorem in 1301 gives a value for the integral K which

differs from the correct formula (3) by a sign.

Now suppose R(Z) has poles which are real and positive,

then the integral K is divergent. But its Cauchy principal

value exists if every such pole is of order 1. This value

is given by -1 times the sum of residues of LOG(-Z)R(Z) in

the entire Z-plane punctured at Z=O, as given in

(L) (P)K = -(F Res(f) over poles of R).

K diverges if R(Z) has a pole at Z=O. The following

examples were computed by WANDERER. For ease of reference,

expression (D1) is repeated here
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2
X + A X + B

(D1)
4 2

X + 10 X + 9

(C3) DEFINT(Dl,X,0,INF)@

2 %PI B + 6 LOG(3) A + 6 %PI
(D3)

48

The answer in CD3) is obtained by locating the four

simple poles of (D1) and applying formula (3).

(C4)1/(X**2+X+1)@

(D4)
2

(X + X + 1)

(C5)DEFINT(D6,X,0,INF)@

2 %PI

3 SQRT(3)

Now let us turn to the problem of finding the poles of

R(Z). The SOLVE 116] program in MACSYMA knows how to solve

a number of types of equations. This routine is used in

obtaining the locations and multiplicities of the zeros of

Qx), the denominator of RX). The SOLVE program does this

by factoring Q(X) over the integers and applying formulas to

each irreducible factor of degree less than 5. For factors
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of higher degree only those of the form

solved. This facility can be augmented

special cases for polynomials of higher

integrand is not rational, the problem

be much more difficult, although SOLVE

these also. In any event, the method o

successful only if all relevant poles c

aX**n+b will be

by including more

degree. If the

of finding poles can

can find some of

f residues can be

an be located.

Let p be a root of Q(X) = 0 of multiplicity m which is

obtained employing SOLVE. It is not necessarily true that p

is a pole of R(Z) of order m. This is because the rational

function package [10] in MACSYMA does GCD cancellations only

over the integers while RZ) is a rational function over the

complex numbers. Therefore p may not be a pole of R(Z) or p

may be a pole of R(Z) of order less than m. Fortunately

WANDERER can pretend that p is really a pole of order m and

proceed with the algorithm for computing residues which will

produce a 0, if p is not a pole, and the correct residue, in

case p is a pole of order less than m. More discussion on

the computation of residues can be found in Sect. 6-1.

Thus, as the reader can easily verify, (D2) of example

(02), in page 57, is valid even if A=0 and B=1 (or A=0 and

B=9). As another example, correct answers were obtained in

the following integrals even if %1, the square root of -1,
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is treated as a simple pole of the integrand.

X - 9,
(D6)

2
(X - 2 %I)(X + 1)

(C7) DEFINT(D6,X,MINF,INF)

2 %P I
(D7)

3

(C8) DEFINT(D6,X,OINF)

%I LOG(2) + %PI
(D8)

3

A special

above algorithm.

case check is provided as an auxiliary to the

COI P-1
X dX

N M
(A X + B)

P/N -
=(B/A)

for M, N, P positive

P/N'+ M -

M- 1

integers,

%PI

1) M
B N SIN(%PI P/N)

M > P/N, P not divisible by N

and AB > 0.

For the case M=1, AB<O, the following Cauchy principal

value is used.



This

but it is

concerned,

A 1 - P/N %PI %PI P
-(--)(---) COT(-----)
B A N N

special case is not necessary for the

very helpful as far as program efficie

especially for large M or N.

algorithm

ncy is

Sometimes substantial computing time can be

application of differentiation techniques in inte

problems. Consider the infinite integral

r dX
(5) J =-

J 2 10
-0 (X + X + K)

If the algorithm for rational functions were used

forwardly, differentiation would have to be carri

times to obtain the sum of residues in case both

above the real axis. But since

saved by

gration

straight-

ed out 18

poles lie

1 d dX

91 dK 2
f- X + X + K

it is only necessary to differentiate a quadratic expression

once to obtain the sum of residues to evaluate the integral

65
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fO dX

2
* X + X + K

After this is obtained, 9 more differentiations with respect

to a parameter K are needed. It means a saving of at least

8 differentiations.

In fact, whenever the denominator Q(X) of the integrand

is of the form

v(X)**n

with v(X) a polynomial and n a 2, this method of diffe-

rentiation may be applicable if the degree of (X) is large

compared to that of the numerator P(X).

We have included this technique in WANDERER. Let

n

s

Q(

= deg(P(X)),

= deg(v(X)),

X) = v(X)**m.

Here is a brief description of the algorithm.

If 2 am*s-n, this algorithm is not applicable,

otherwise (m*s-n > 2)

(i) Set r to the least integer 2:(n+2)/s

(ii) If m > r

(a) dompute the original integral with m
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replaced by r and v(X) replaced by v(X) + ZP

where ZP is a new parameter introduced into the

problem. Let the answer thus obtained be

ANS(ZP).

(b) Return the following as the answer

m-r (r-i)!
(-1)

Cm-i)!

m-r
d

--- ANSCZP)
dZP ZP=o

(iii) otherwise (m=r), the algorithm is not necessary

and thus will not be applied.

The parameter ZP used in this algorithm makes the

symbolic differentiation in step (-b) possible at all

times. The final answer is obtained by setting ZP to zero.

Such a parameter will be used again later and will be

referred to as the zero parameter.

For example,

(D9)

(C1O)DEFINT(D9,X,oINF)@

2 3
(X + X + 1)

4 %PI 1

9 SQRT(3) 2

In this example, we have n=O, m=3 and s=2. Thus r=1



and the value of

dX

J§ c+ X + 1)

is computed first.
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2. Infinite Integrals Involving Algebraic Irrational Func-

tions

2.1 Evaluation by Residues

Let R(X) be a rational

D = fX**K*R(X)

If

function. Consider

d X, -1< K < 1

LIMIT(X**(K+1) R(X), X, 0, PLUS) = 0,

LIMIT(X**(K+1) R(X), X, INF) = 0,

and RX) has no poles of order greater than one on the

positive real axis, then D can be evaluated by applying

residue theory to the contour integral

Jf(Z) dZ, f(Z)

around the contour C shown in fig.

given above are convergence tests

by DELIMITER. In computing these

program will first obtain two sums

the function f(Z) by executing the

= (-Z)**K R(Z)

2. The limit conditions

for D. They are computed

integrals, the integration

of residues S1 and S2 of

following two steps.

If R(Z) has poles off the positive real axis,

to (Res(f(Z)) at these poles, otherwise set

set Sl

S1 to
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0.

If R(Z) has simple positive poles, set S2 to

TRes(f(Z) ) at these poles, otherwise set S2 to 0.

Now the answer to the integral

%PI S1
------------ %PI

SIN(%PI (K + 1))

D is given by

COT(%PI (K + 1)) S2

For example, MACSYMA produced the following result.

(C1) 1/((1+X)*X**(1/2))@

(D1)

(C2) DEFINT(%,X,0,INF)@

(D2)

1

SQRT(X) (X + 1)

[3]

%PI

2.2 Integrals Related to the Beta Function

From the definition of beta function

BETA(KS)
=

:-oX**(K-i)
(1-X)**(S-1) dX,

where K > 0 and S > 0, One can deduce the following

tion

rela-



Lw

where CD > 0 a

By a furt

following very

K-i
X

dX=
S

(CX+D)

nd S > K > 0.

her change of

useful relat

K - S
D BETA(K,S - K)

K
C

variable in this formula, the

ion is obtained.

(a)

where A

Thi

infinite

This is

pattern

whether

simplifi

put the

(D3)

K - 1
0 X BETA(A,B)

-- - - - dX = - - - - -,r > 0
r S A B

(CX +D) C D r

= K/r > 0, and B = S-A > 0.

s rather general formula covers many interesting

integrals involving algebraic irrational functions.

built into the programs by using special purpose

recognition routines (see chapter 6) to examine

the integrand is of the particular form (a). A

cation routine for Beta function was also needed to

results in a simpler and~better looking form.

K
X

X + 3

(C4) DEFINT(D3,X,0, INF)@

IS THE EXPRESSION
K + 1
POSITIVE, NEGATIVE, OR ZERO

[121



POSITIVE@

IS THE EXPRESSION
- K
POSITIVE, NEGATIVE, OR ZERO

POSITIVE@

K
(D4) 3 BETA(K + 1, - K)

2.3 Evaluation by Trigonometric Substitution

If R(X,Y) is a rational functions in the two variables

X and Y, then an integral of the form

X
U =o R(X, SQRT(X**2-A**2)) dX

can be transformed

function which has

formation below is

Let

to an infinite

been discussed

easy to verify.

integral

in Sect.

of a rational

4-1. The trans-

- 2 2
SQRT(X - A )

X + A

U becomes

2
A (Y + 1) 2 A Y

4 A R(----------,------)
2 2

° 1-VY 1 -VY

Y dY

2 2
(1 - Y )

72



Now let Z = Y/(1 - Y) in the above integral, it can be shown

that U is equivalent to

2
CD A (2 Z + 2 Z + 1) 2 A Z (Z+ 1) Z (Z + 1)A

(1) 4 A R( ------------------ ,-#------------ ----------
f 2 Z + 1 2 Z + 1 ( + 2

(2 Z + 1)

Although the above is all that is needed for the given

integral U, it is sometimes more efficient to transform U

into a finite integral of a rational function of the trigo-

nometric functions. That is, by setting COS(t) = AIX in U,

one may deduce that

A
(ii) U = A R(----,A TAN(t))

COS(t)

Both of these methods (i) and (ii)

in the programs. Our heuristic rule fo

transformations is as follows.

Apply (ii) if it transforms the

the form

SIN(t)
(-------) dt

2
COS (t)

have been included

r applying these

given integrand into

COS(t)**m SIN(t)**n,

otherwise apply (i).

For example,



1

2 2 2
X SQRT(X - A )

(C6)DEFINT(D5,X,0,INF)@

1

2
A

2.4 Differentiation with Respect to a Parameter

included two formulas

integrals involving algebraic

in WANDERER for infinite

irrational functions.

dX
----------

6 2 3/2
(AX + B X +C)

1

SQRT(C) (B/2+SQRT(AC))
= U)(AB,C),

with A :0, C > 0, and B > -SQRT(AC),

X dX
--------------=

2 3/2
° (AX + B X +C)

1

SQRT(A) (B/2+SQRT(AC))
= V(A,B,C)

where A > 0, C 20 and B - SQRT(AC).

included because any integral

(D5)

74

(D6)

We have

are

They

and

They are of the form
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(III)

M

r OD X dX

2 N+3/2
0 (AX + B X +C)

can be computed from these known results. Our tool In doing

this is differentiation with respect to an appropriate

parameter. Let Z1, Z2 and Z3 be three zero parameters and

N SQRT(%PI)/2
H = (-1)

3
GAMMA(- + N)

2

The algorithm is as follows.

Upon deciding that the Integrand is as given In (I1),

WANDERER has obtained the values of M, N, A, B and C. The

answer to the given Integral is then computed using the

simple procedure:

If M n 0 and N a 0, return U,

If M = 1 and N = 0, return V,

If 2N+2 5 M, the given Integral is divergent.

If N - M, return

N

dZ2 U(AB+Z2,C+Z3)
N-M M

dZ3 dZ2
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If M = N+1, return

N
d

H --- V(AB+Z2,C),
dZ2

If 2(N+1) > M > N+1, then

(I) if M is even set r = M/2, return the answer

N
d

H ------------ U(A+Z1,B,C+Z3)
N-r r

dZ3 dZ1

(ii) if M is odd, set r = (M-1)/2 and return

N
d

H ------------ V(A+Z1,B,C+Z3)
N-r r

dZ3 dZ1

A simple example is

(D7)

6
X

15

2 2
(X + X + 1)

(C8) DEFINT(D7,X,oINF)@

1024
(D8)

6567561



3. Infinite Integrals In

3.1 Integrals from Minus

volving Trigonometric Functions.

Infinity to InfInity

Let R(X) be a rational function which has no real poles

and

LIMIT(R(X),X,INF) = 0.

The integral

(O m X)
L 4 %E R(X) dX,

is convergent. Its value can be obtained by evaluating the

contour integral

(%i m Z)
R(Z) dZ

around the contour C given in fig. 1.

Let Cr be a circular arc with center at Z = 0, radius

and argument t, tl < t < t2.

if f(Z) approaches 0 uniformly

Jordan's

on Cr as

Lemma [7] shows that

r approaches INF,

LIMIT J ,

and that

(I m Z)
f(Z) dZ=0, for tl = 0, t2 5 %PI

77

m > 0

r

J =



(-%i m Z)
LIMIT %E f(Z) dZ=O, for tl %PI, t2 2%PI.r-co

Therefore L = J as r tends to infinity and the method

of residues can be applied. Moreover, for m < 0 one may

use the same method by using a contour similar to C in the

lower half complex Z-plane.

For real m, n and p, let T(X) be SIN(mX), COS(nX),

%E**(%l p X) or a function involving sums and/or products of

these functions. In complex exponential form T(X) is a sum

of constant multiples of functions of the form %E**(%l k X),

k real.

Therefore

T(X) R(X) dX

can be integrated using compl'ex contour integral. In doing

such a problem, terms in the integrand are sorted into two

parts. One part requires a contour in the upper-half Z-

plane, the other a contour in the lower-half.

Before discussion of additional methods, let us see a

few examples computed using methods discussed so far.

78



(Dl)

(C2) DEFINT(D1,X,MINF4lNF)@

COS(X)

2
X + 1

%PI
-

% E

(C3) X*SIN(X)/(X**2+1)@

X SIN(X)

2
X + 1

(C4) DEFINT(D3,X,MINFINF)@

%PI

(C5)X*COS(X)/(X**2+1)@

X COS(X)

2
X + 1

(C6) DEFINT(D5,X,MINFINF)@

(D6)

(C7) X*COS(X)/(X**2+X+1)@

0

X COS(x)

2
X + X + 1

(C8) DEFINT(D7,XMINFINF)@

79

(D2)

[12)

(D3)

(04)

[12)

(05)

(D7)
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(D8)

1 (SQRT(3) - %1)/2
(%PI/2) ((- ------- -%1) %E

SQRT(3)

1
+ (%I -------- )

SQRT(3)

(- SQRT(3)- %I)/2

(C9) 1/(%E**(%I*X)*(X**2+1))@

(09)
1I X 2

%E (X + 1)

(ClO) DEFINT (D9,X,MINF1 INF)@

%PI
M---
%E

(D10)

(Cl) SIN(X)*D9@

SIN(X)
(011) M - -- ------

) %I X 2
%E (X + 1)

(C12) DEFINT(Dll,X,MINFINF)P

(D12) ---

(C13) D11*(%E**(-%I*X))

(013)
SIN(X)

2 % IX 2
%E (X + 1)

(C14) DEFINT(D13,X,MINFINF)@

)
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?%Pi
(D14)

2
%E

3.2 Integrals from 0 to infinity

Let us now discuss some integrals

tric functions over the range (0 INF).

integrals

involving trigonome-

First consider the

11= COS(k X< )

Im n

and 12 SIN(kX )

where k a nonzero real constant

dX

dX

and n > 1.

Here again, the residue theory

evaluate the integrals. This time

is slightly different. The contour

consisting of a portion of a-circul

origin and two straight lines joini

origin. (fig. 3) The sector angle

%PI/(2n).

can be appl

the shape of

is a sector

ar arc with

ng the end p

depends on n

ied

the

of

cent

oint

and

to

contour

a circle

er at the

s to the

is

Without loss of generality, let us assume that k > 0.



By Cauchy's

82

fl/~XL

4 i. 3

integral theorem,

nJ ( I kZ )
E dZ = 0.

Since contribution from the circular arc vanishes as r

approachesINF, it can be shown that

0n
(%1 kZ )

I E dZ

OD n
%I %Pl/(2 n) -k r

= fE dr

The integral in the right hand side of this equation can be

expressed in terms of GAMMA function (see Sect. 5). Let us

assume that

-k
n
r

f10 ao dr = G
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Therefore, taking real and imaginary parts of the above

relation, we have

11 = COS(%PI/2n)

12 = SIN(%PI/2n)

G

G.

For example

7/3
COS(9X )

(C16) DEFINT(D15,X,OINF)@

3 3 %PI
3 GAMMA(-) COS(-----)

7 14

3/7
7*9

(C17) SIN(9*X**(7/3))@

7/3
SIN(9X )

(C18) DEFINT(D17,X,OINF)@

3 3 1P1
3 GAMMA(-) SIN(-----)

7 14

3/7
7*9

if n c 1, 11 and 12 do not converge.

(D15)

(D16)

(D17)

(D18)

Incidentally,
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A more general integral than 1i and 12 is

D = Xn
j=fo X EXP(?%I k X ) dX

where n > 0, Rl(m) > -1, k real and nonzero and n-R1(m) > 1.

We shall consider the case k < 0. The case k > 0 is

entirely analogous. Let us take a sector-shaped contour in

the fourth quadrant as shown in fig. 4.

B

By Cauchy integral theorem,

n
m (Q1 k Z)

Z f E dZ = 0

whic.h impl les that

m n
J = EXP(-%PI %1(m+1)/(2n)) R EXP(k R ) dR



= EXP(-%PI
s

tI(m+1)/(2n)) GAMMA(-------)
s

n(-k)

where s = (m+1)/n.

Let us look at an example.

X
(2 ti + 3)

3
(QI X / 2)

(C20) DEFINT(D19,X,0,INF)@

2 %I + 4
GAMMA(--------)

3

(2 %I +4) / 3
3 (4%1 / 2)

A similar result for k > 0 Is given by

(m+1)/n
J a EXP(%PI %I(m+1)/(2n)) GAMMA(-----------),

(m+1)/n
k n

The following integrals can be obtained readily from

the above relation.

n m/COS(k X ) X dX and
n m

SIN(k X ) X dX

For instance,

85

(D19)

(D20)
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(C21) SIN(P*X)/(X**(1/2))@

SIN(P X)
(D21)

SQRT(X)

(C22) DEFINT(D21,X,OINF)@ [3]

SQRT(%PI)
(D22)

SQRT(2) SQRT(P)

Many of the foregoing results depend on the verifica-

tion of the fact that contributions from certain parts of a

contour vanish after taking a limit. We have omitted these

proofs. A typical such proof is to show

f(Z) dZ = f(Z) dZ = 0.

The above derivation has relied on this fact. The proof is

in appendix B.

Another interesting integral is

rw K --
U = SIN (X) X dX

where N and K are positive integers, K N > 2 and (K + N)

even. The integral U can be evaluated by use of the

recurrence relation
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Io r -s r (r - 1) O r-2
SIN (X) X dX = ---- SIN

(s-1)(s-2) 0
(X) X

-(s-2)
dX

2
r C r -(s-2)

+ --------- SIN (X) X dX,
(s-1)(s-2) o

where r > (s-1) > 1. As one can see, repeated application

of this relation will reduce U to a sum of integrals of the

same form as U but with N = 1 or 2. For N=1, AUDITOR uses

the following formula

dX =J IN (X) dX, p > 0 odd.

The integral

Integrals of

on the right hand side can be evaluated easily.

this type are considered in Sect. 5-2.2.

N=2, we have

q
SIN CX)

0

where q is an integer ' 2.

F PI q-3/2
dX = ---

'2 q-1

For example

SIN(R X)
(01)

X

pLSIN -1
(X) X

For

-2
X



(C2) DEFINT(%,X,OINF)@

(02)

(C3) SIN(Q*X)**2/(X**2)@

(D3)

%PI

2

2
SIN (Q X)

2
x

(C4) DEFINT(%,X,OINF)@

(04)
%PI Q

2



n

4. Infinite Integral Involving Logarithm Functions

4.1 Evaluation by Recursion and Contour Integration

Let R(X) be a rational function which is even in X.

The integral

r N
V(N) • LOG (X) R(X) dX,

with deg(Q(X))-deg(P(X)) 2, can

residue theory in a recursive manne

abbreviation of PLOG when the argum

Consider the contour integral

R(X) = P(X)/Q(X),

be evaluated by

r. Recall that

ent is real and

N
J(N) = F(Z) dZ, F(Z) = PLOG (Z)

where C is the indented contour in fig. 5.

'V

appl

LOG

pos

ying

is an

tive.

R(Z)

As r approaches

yd

6 

T
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INF and e approaches 0, contributions from CR and Cevanish.

Therefore

J(N)

where

for N a 0,

=7

Mi:

&

N %PI %
R(t) LOG (%E t) dt + V(N)

N
R(t) (LOG(t) + %PI %I) dt + V(N)

R(t)

K~i

Is a binomial

N

K
%PI

coefficient.

K K N-K
%tI LOG (t) dt +2 V(N)

Thus,

J(N) 19
V(N) =------- -

2 2

is obtained by residues.

obtained here

K

K K
%PI %I V(N - K)

Therefore the result

is

V(N) = %PI %I( Res(F) over poles of R inside C)

K K
%PI tI V(N - K).

Based on this

1.N
2 K

recurrence relation, V(N) can be com-

puted. Such an algorithm has been included in the programs.

The following is an outline of this algorithm.

where J



DecI

Set

Set

If i

Set

Set

are each of AV and AJ to b

I to 0 then go to step 4

AJi) to J(i)/2

= N, return the answer V

AV(i) to V(i)

I to i+1 then go to step 3

e an 1 X N array

(N)

Computation of Vi):

If I = 0, return the value of the Integral

<D

R(X) dX,

0

(storing away information about poles and

corresponding residues of R(Z) for computation of J),

otherwise, compute from the formula

I1 i K K
V(I) = AJ(i) - - %PI KI AV(I - K).

2 Y-jK

Computation of JI)/2 :

Using existing Information of poles and residues of

R(Z) compute by residue theory from the formula

%?PI VI( Res(F) over poles of R inside C).

For example,
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1)

2)

3)

4)

5)

6)



(D1)

2
LOG (X)
-- m----
2

X + 1

(C2) DEFINT(D1,X,OINF)@

3
%PI

(D2) ----
8

4.2 Method of Differentiating and Introducing Parameters

A very useful method for integrands involving LOG(X) is

differentiation. Consider an integral of the form

K
AK) R(X) X LOG(X) dX, K 0 0 and -1 < K < 1,

where R(X) is rational in X and k is a parameter which

occurs nowhere else in the Integrand. If the integral

f cK
B(K) =JR(X) X dX

is convergent and can be evaluated, then A(K) is given by

d
A(K) = -- B(K).

dk

This method of differentiation is valid because B(K) is

convergent and A(K) is uniformly convergent for every closed

interval contained in the set of points (K I KOO and -< Kcl).

[l]
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For example

K
X LOG(X)

(D3)
X + 3

(C4) DEFINT(D3,X,OINF)@ [12]

K K D
(DL4) LOG(3) 3 BETA(K+1,- K) + 3 (--BETA(r, - K)

Dr ru(1+K)
D

- --BETA(K + 1,r) )
Dr r=-K

in the foregoing discussion, K has been assumed

symbolic. Yet, in solving actual problems K may very well

be a number. This difficulty can be overcome by introducing

a zero parameter ZP. We first replace X**k by X**(k+ZP) in

f(X). This permits us to proceed as above and then diffe-

rentiate with respect to ZP. After differentiation the

result is then evaluated at ZP = 0.

The property of the logarithm function

-LOG(X) = LOG(1/X)

can sometimes be used in evaluating integrals of the form
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00

U = f(X) LOG(X) dX.

In fact, if a change of variable Y = 1/X is made in U

and if the new integral happens to be

0ff(Y)LQG(Y) dY.,

then the value of the given integral U is 0. For example

1/3 - 1/3
(ARCTAN(X ) + ARCTAN(X )) LOG(X)

(D5)
2

X + 1

(C6) DEF INT D, X,O , INF) @

(D6)

4.3 Integration by Parts

0

Another nice property of the logarithm functions is

that their derivatives are often simpler than the function

themselves. Because of this, integration by parts is

frequently a suitable method for integrals involving them.

If the indefinite integral

U(X) = fX) dX

can be obtained and the integral



b

J = LOG(g(X)) f(X) dX

is convergent,then

b U(X)g'(X) dX
J = LOG(g(X)) U(X) ------------

a a g(X)

The SIN integration program [201 in MACSYMA is used to

compute the indefinite

method to evaluate

integral U(X). WANDERER uses this

integrals of the form

IfL a
X LOG(1 + X ) dX,

0

Here is an integral evaluated by the method of integra-

tion by parts.

7/2
LOG(X + 1)

(D7)
2

x

(C8) DEFINT(D7,X,OINF)@

%PI
(D8)

S N - -
7

95

a+1 > L > 1.
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5. Infinite Integrals Involving Exponential Functions

5.1 Method of Substitution

Integrals with integrands which are rational functions

of %E**(K*X), K real and non-zero, are relatively easy to

compute. Without loss of generality, let us assume K > 0

and consider

(1)

(2)

then

fR(%E**(K*X)) dX.

If one makes a change of variable

Y = %E**(K*X),

(1) becomes

fO

(1/K)f R(Y)/Y dY,

This integral converges if (1) does. That is to say

R(Y) has Y as a factor if (1) converges. For the integral

(3) fR(%E**(K*X)) dX

one can make a similar change of variable

(4) S + 1 = %E**(K*X)

which gives
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IR(S+1)/(S+1) dS.

Integrals of the form of (3) and (5) can be evaluated

by contour integral and residue theory as Indicated in sect.

1. The methods (2) and (4) can in general be applied to any

integral of the form

b
f(g(X)) dX

and the resulting integral may be much simpler. For

instance

(Dl)

(C2) DEFINT(D1,X

(D2)

(D3)

(C4) DEFINT(D3,X

1

X/3 5
E ---- + 7)

X/3
9;E

,0,INF)@
7

3 LOG(--)
12

S

X/4
9o'E

X/2
9 %E + 4

,MINFINF)@

(5)
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(D4)
%PI
---

3

5.2 Use of Contour Integration

A somewhat more interesting integral is

40

1 R(%E**X) P(X) dX

where P(X) is a polynomial and R(X) a rational function with

complex coefficients such that

LIMIT(R(%E**X),X,INF) = 0
and

LIMIT(R(%E**X),X,MINF) = 0.

Let us first determine

coefficients such that

(6) Q(X) - Q(X +

Q(Z) exists and can be

undetermined coefficients.

a polynomial Q(Z) with complex

2 %PI %I) = PCX).

computed by the method of

Now consider a contour integral

J = R(%E**Z) Q(Z) dZ

fd

taken around a rectangular contour as shown in fig. 6.
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9

~7L

I VP0l

As the absolute value of X

contributions from the vertical

contour vanish. Hence,

approaches infinity,

segments of the rectangular

0o 00

J R(%E**X) Q(X) dX - R(%E**X) Q(X+2 %PI tI) dX.

It follows from (6) that I=J. Now the problem of evaluating

the integral I has been reduced to finding the residues of

R(%E**Z)Q(Z) for 0 I Im(Z) < 2 %PI . To do this, the poles

of RZ) are obtained fIrst. If W is such a pole then

GLOG(w)

where GLOG stands for the branch of LOG with Imaginary part

between 0 and 2*%PI, is a pole of the same order for

R(%E**Z)*Q(Z) inside the closed contour. All such poles can

be obtained in this manner. One example Is

X
(D5)

S INH(X) -

(C6) DEFINT(D5,X,MINFINF)@

A
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%PI(D6)

Note that the integrand (DS) has a pole of order two at

Z = %PI %I/2.

5.3 The GAMMA Function and Related Integrals

A very important function closely related to the

evaluation of infinite integrals involving exponentials is

the GAMMA function generally defined as

oo

GAMMA(Z) =J%E**(-t) t**(Z-1) dt, R1(Z) > 0.

Also of use is its logarithmic derivative, the PSI

function

d
PSI(Z) =(-- GAMMA(Z))/GAMMA(Z).

dZ

A simplification routine for GAMMA function has been

written to make use of the many properties of this function.

From the definition of the GAMMA function, one can

derive the following very useful relation

c O
D
K E

B C
C - A X GAMMA(a) %E

dX=---------
a

A B
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where a = (D + 1)/B, Rl(A) > 0, R1(D) > -1 and Rl(B)

nonzero.

WANDERER has programs designed to recognize this form

and return the result. Of course these programs have to

examine the signs of the relevant quantities carefully

before generating an answer.

For example:

(D7)

(C8) DEFINT(D7,X,0,INF)@

(D8)

2
-X

SQRT(%PI)

2

5.4 Integral Related to the Laplace Transform

Let f(t) be a function of a real variable t, then its

Laplace transform L(f(t)) Is defined as

(-t s)
L(f(t)) a F(s) =J%E f(t) dt.

Many of such integrals can be evaluated by the pro-

grams. Here are some examples produced by WANDERER.
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(D9)

(C10) DEFINT(D9,T,0,

IS THE EXPRESSION
S

POSITIVE, NEGATIVE,

POSITIVE@

(D10)

(D1l)

1

S T
SQRT(T) %E

INF)@

OR ZERO

SQRT(%PI)

SQRT(S)

SIN(S X)

X

(C12)DEFINT(D11,X,0,INF)@

(D12)
S

2
S + 1

When f(t) involves trigonometrical or hyperbolic func-

tions, they are expanded into exponentials before L(f(t)) is

computed. When LOG(t) is a factor of f(t) the method of

differentiation with respect to a parameter can be applied

if f(t) also has X**k as a factor, RIk) > 0. In this case

a new function g(t,ZP) is constructed by replacing LOG(t)

with t**ZP where ZP is a zero parameter that has been

(C11) SIN(S*X)/(%E**X)@
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specially introduced. The Laplace transform of g(t,ZP) will

be computed f i rs t. Suppose G in

-t s)
G(s,ZP) = L(g(t,ZP)) = g(tZP) %E dt

has been obtained. Now, as mentioned before In sect. 4, all

that needs to be done to obtain L(f(t)) Is to compute

dG/dZP. That is

L(f(t)) = dG/dZP at ZP = 0.

This Is true for

f(t) = dG/dZP at ZP=O,

and the fact that there exists some sufficiently small

closed interval containing 0 in which the following Integral

is uniformly convergent:

(-t s)

fE

dG
- - dt.
d ZP

For example,

-S T 1/3
%E X LOG(X)

(C14) DEFINT(D13,T,0,INF)@

1 4 4/3
- GAMMA(-) (LOG(S)- PSI(-) ) /(6S )

3 3

(D13)

(D14)
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CHAPTER V

INTEGRALS OVER A FINITE RANGE

0. Introduction

Many finite integrals

indefinite integrals exist

puted rather easily. For

method is very straight-fo

the corresponding indefini

the limits of Integration.

by use of SIN. This metho

derivative method.

are proper integrals whose

in closed form and can be com-

such an Integral, the evaluation

rward. WANDERER simply obtains

te integrals and then substitutes

The antiderivatives are computed

d will be referred to as the anti-

A finite integral

db

af (X) dx

is improper iff(X) becomes infinite at some point c,

b c ua . In order to avoid having to spend computation

time looking for an unknown number of singularities of f

between a and b, WANDERER will assume that integrands of

finite integrals, with the exception of rational integrands,
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can become infinite only at the end points of the range of

integration. This is not a severe restriction and does not

decrease the number of integrals it can handle. This is

true in the sense that any given range can be subdivided to

conform to the above convention. This convention makes it

easy to determine whether a given finite integral is

improper. WANDERER simply checks the value of the integrand

at the limits of integration. If the given integral is

improper, its divergence is tested before any attempt at

evaluation. WANDERER uses a limit test for absolute

divergence which is discussed in Scet. 6-6. If the given

integral diverges, WANDERER will so indicate in the output.

If the antiderivative can be computed, then the answer is

sometimes obtained by employing a limiting process when

substituting the upper and lower limits of integration.

In this chapter, attention will be focused on the

definite integrals whose corresponding indefinite integrals

are difficult to compute or do not exist.

1. Finite Integrals of Rational Functions.

For integrals such as

b
U = R(X dX
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where R(X) is rational in X, a and b are finite, WANDERER

computes U by transforming it into an infinite integral by a

change of variable.

Let us write

(X -a) (a + Y)
(1) Y= ------- , X=-------,

(b- X) (1 + Y)

(b- a) dY
dX

2
(1 + Y)

then it is evident that

CO
b Y + a dY

U =(b a) R(------- --------
0 + (Y + 1)

This integral can be integrated readily by methods of con-

tour integration and other means discussed in sect. 4-1.

As an example let R(X) be the expression (D1)

1

2
X -3

The indefinite integral of RX) from 0 to 1 computed by

the substitution method above is given by

(C2) DEFINT(D1,X,0,1)@



LOG(2 - SQRT(3))

2 SQRT(3)

One knows that the indefinite integral of (D1) exists.

In fact the following has been obtained using the command

INTEGRATE in MACSYMA

(C3)INTEGRATE(D1,X)@

(D3) (LOG(2 X - 2 SQRT(3)) - LOG(2 X + 2 SQRT(3)))

/(2 SQRT(3))

The reader may easily obtain a result equivalent to

(D2) by Substituting

2. Rational

in (D3) the limits of integration.

Functions of Trigonometric Functions

2.1 A Typical Application of Contour

If R(X,Y) is a rational function

Y, an integral

Integration

in two variables X and

in the form

U = fR(COS(X),SIN(X)) dX

is easily transformed

tour. By setting

to an integral around a closed con-

2
Z + 1

COS(X)=
2 Z

2
z -1

SIN(X) =------
2 5I Z

(D2)

107



1 0

dZ
and dX = ---- ,

9I Z

the given integral U becomes

2 2
Z + 1 Z - 1 dZ

-- F( ------ ,-------) --
%I Ci 2 Z 2 %1 Z Z

where C1 is the positively orientated unit circle with

center at Z = 0. This contour Integral can then be

evaluated by finding the sum of residues inside the circle.

Actually this transformation can be applied in general

to any integral in the form

R(%E**(%l X)) dX

where R is rational, by the change of variable

Z = %E**(%I X)

The transformation process is simple. The key point in

this algorithm Is the determination of whether the integrand

is in fact a rational function of %E**(% X).

In calculating the sum of the residues, only poles

inside the contour contribute. Simple poles on the unit

circle, i.e. those with absolute value 1, cause the

principal value to be computed. The integral is divergent
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if poles of order greater than 1 happen to be on the circle.

Examples:

(C4) COS(X)**2-SIN(X)@
2

(D4) COS (X) - SIN(X)

(C5) DEFINT(D4,X,0,2*%PI)@

(05) %PI

(C6) %E**(2*%I*X)/(%E**(%I*X)+3)@

2 %I X

(D6)
2I X

+ 3

(C7) DEFINT(D6,X,0,2*%PI)@

(D7) 2 %PI

2.2 Utilization of the Periodicity of the Trigonometric

Functions

In this section integrals of functions

metric functions over a variety of

involving trigono-

ranges will be

considered.

Let T be a function of X defined by

M N
T(X) = COS (X) SIN (X)



110

where R(M) > -1 and R(N) > -1. The following formula can

be deduced from the definition of Beta function. (Sect. 4-

2.2)

M + 1 N + 1

7E/2 GAMMA(-----) GAMMA(-----)
2 2

T(X) dX 2 ----- - - - - - -

foo 2 GAMMA((N + M + 2)/2)
(1)

A simple example is

1/3 1/2
COS(X) SIN (X)(D8)

(C9) DEFINT(D8,X,0,%PI/2)@

2 3
6 GAMMA(-) GAMMA(-)

3 4
(D9)

5
5 GAMMA(--)

12

The usefulness of (1) is Increased by the fact that it

is possible to express definite integrals of T(X) over a

variety of ranges in terms of that of T(X) over (0 %PI/2).

For instance, the following relations are true for any func-

tion f.

7V

f(SIN(X),COS(X)) dX=

"A /?

T (f(SIN(X),COS(X)) + f(SIN(X),-COS(X))) dX;



3V/

f(SIN(X),COS(X)) dX=

f(SIN(X),COS(X)) dX+ f(-SIN(X),-COS(X))

More generally, let f(X) be a periodic function of X

with period 2%P1. That is

f(X + 2%PI) = f(X).

An integral of f(X) over some range (a b),

S = ff(X) dX,

can always be written as a sum of integrals in the form

z tC &
(2) n f(X) dX + f(X) dX -ff(X) dX

for some integer n and 2%PI > c, d 0. This is true for

there exist integers p and q such that

a = 2 p %PI + d,

and b = 2 q %PI + c.

Then S is equivalent to the sum (2) with n = (q - p).

Programs have been written to perform this reduction

and they are applied when the integrand has a period 2%PI

and the difference (a - b) has %PI as a factor. some
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dX*



examples

(010)

computed by WANDERER

1/3
COS(X)

are

2
SIN (X)

2
18 SQRT(%PI) GAMMA(-)

3
(Dll)

1
7 GAMMA(-)

6

(C12) COS(X)**3*SIN(X)**2@

(D12)
3 2

COS (X) SIN (X)

(C13) DEFINT(D12,X,3*%PI/2,3*%PI)@
2

(D13) --
15

3. Finite Integrals of Algebraic

3.1 Rationalizing the Integrand

If R(X,Y) is a rational

Irrational

function

Functions

in X and Y, the inte-

C

K = f
2 2

R(SQRT(A - X ),X) dX,

where A = c > b .,:' -A, can be rational ized.

112

gral

(1)

(C11) DEFINT(D10,X,-%PI/2,%Pl/2)@



Let us write

(2)

2 2
A - SQRT(A - X )

Y --------------- vX),
x

which gives

(3)
2 A Y

2
1 + Y

Substituting (3) for X, (1) becomes

Wc A(1 - Y ) 2 A Y
K = 2 A

tr<b> 2
1 + Y

2
(1-Y ) dY

------------
2

I r Y

2 2
(1 + Y )

which is an integral of a rational function.

this type have been discussed in Sect. 1.

Similarly for the integral

Integrals of

2 2
J R(XSQRT(X - A )) dX

where c > b = A > 0, the change of variable

2 2
SQRT(X - A )

t = ------------ = u(X)
X + A

can be made to convert J to

113



Wc)

4 A J

2
A (t + 1) 2A t

2
1- t

which is also an integral

2
1 -. t

of a rational

2 2
(1 - t )

function. Here are

two such integrals evaluated by WANDERER.

1
(D1)

2
X SQRT(X - 9)

(C2) DEFINT(D1,X,3,o4)@

3

- 3 + tI SQRT(7)
PLOG(--------------)

4

(C3) 1/((X+1)*(4-X**2)**(1/2))@

1
(D3)

2
(X + 1) SQRT(4 - X )

(C4) DEFINT(D3,X,o,2)@

LOG(2 + SQRT(3))
( D 4)

SQRT(3)

Another method

gral to an infinite

is to try to transform the given inte-

integral by the change of variable given

in (1) of Sect. 1. For instance the integral

fR(XSQRT((X - A)(B - X))) dX

114

t dt

(D2)

(12]

(--0 -- ----- ,------"a ) ------------
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can be converted to

(B - A) F
(B + A) Y (B - A) Y dY

Y + 1 Y + 1
(Y + 1)

The method of rationalization can also be applied to

b

fR(X, (CX + D)**(1/Q)) dX

where Q is an integer, C and D are constants and the range

of integration needs not be finite.

For integrals of this type the substitution

Y = (C X + D)

X

1/Q
I

Q
Y -D

=--------
C

1

dX
Q Y dY

-- ------------

C

will convert the given Integral into that of a rational

function in Y.

2
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The principal task in this conversion method is to

recognize that the given integrand is of the particular form

and to obtain the integer Q. In essence, the algorithm for

doing this is

(I) Obtain a list L of all distinct irrational

parts in the given integrand.

(i) If elements in L are fractional powers of an

identical linear polynomial in X, the pattern is

matched and Q Is set to the 1cm of the denominators

of all the exponents of the linear polynomial,

otherwise the pattern is not matched.

3.2 Integrals Related to the BETA Function

The BETA function is defined by the integral

I K - 1
BETA(K,L) = X

for R1(K) > 0 and R1(R) > 0. From

readily deduce the relation

(1 - X )
L - 1

dX

this definition one may

K - 1 C L - 1 1 K
(3) X (1 - X ) dX = - BETA(-,L).

C C

WANDERER applies this formula by recognizing the form

of the given integrand. In chapter 6 some techniques and



programs for pattern recognition are discussed. For inte-

grals in the form

K - 1 C C L-
(X-A) (B - X ) dX,

a simply substitution,

Y = (X - A)/B,

will transform it into (3).

117
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4. Finite Integrals Involving Logarithm Functions

When the integrand is a function of LOG(X), a given

integral may, in many cases, be evaluated by transforming it

into one which involves exponential functions. Consider

b
U = f(LOG(X))

a

dX,. b > a a 0,

the substitution

(i)

or

(ii)

converts U to

f(-Y) %E

or

-Y
X =%E

Y
X = E

.Y
dY,

for 1 > a,

for a 1,

r= -LOG(b), s= -LOG(a),

s y
(Y) %E dY, r=LOG(a), s= LOG(b),

respectively. In case a = 0 and b = 1 (or INF), the use of

(I) or (ii) will result in an infinite integral which can

often be evaluated readily using methods provided in

WANDERER. For instance by use of (i) the integral

qILOG(X ) dX
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becomes

which is an infinite

The method (I) or (ii

the form

as in

00 q y

f(-Y) %E dY,

integral already studied (Sect. 4-5.3).

) can also be applied to integrals of

r
X f(LOG(X)) dX,

fa

S 1
LOG(-) X

For integrands

possible to simplif

where the function

simple application

R S - R Y-1
dX = Y %E d

involving LOGf(X)), it may

y the given integral by the

Y = f(X), X a g(Y)

g is the inverse function of

of this method is conversion

some

subst

f.

of

times be

itution

A very

0
X LOG(SQRT(X)+a) dX

a!
to the integral

00 2
2 f (Y-a) LOG(Y) dY.

Techniques of differentiation with respect to a

parameter, as detailed in Sect. 4-4.2, can be employed for

finite integrals with a factor

b

Y.



K
X LOGX), Rl(K) t 0,

in the integrand.

Examples

K
LOG (X)(D1)

(C2) DEFINT(D1,X,0,1)@

K
(-1) GAMMA(K + 1)(D2)

(03) LOG(X)**(1/2)/(X**2)@

SQRT(LOG(X))
(D3)

2
X

(C4) DEFINT(D3,X,1,INF)@

SQRT(%PI)
(D4)

2

(C5) X**(1/3)*(-LOG(X))**(-1/2)@

1/3
X

(D5)
SQRT(-1) SQRT(LOG(X))

(C6) DEFINT(D5,X,O,1)@

SQRT(%PI)
(D6)

4
SQRT(-)

3

120

[12]

[12]

:
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(C7) LOG(X)*((1-X**(1/2))/X)**(1/2)@

SQRT(1 - SQRT(X)) LOG(X)
(07)

SQRT(X)

(C8) DEFINT(D7,X,0,1)@

D 3
D8) 4 (--BETA(r,-))

Dr 2 r=1
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CHAPTER VI

DESCRIPTION OF ALGORITHMS

1. Computation of Residues

1.1 Residue at a Pole

For convenience of reference the algorithm for computa-

tion of residues Is repeated here.

Let

analytic

poles in

such that

f(Z) be a funct

everywhere in a

D. Suppose F(Z

f (

U(Z) Is analyt

f(Z) are zeros of

f(Z), the residue

algorithm.

V(Z).

of f(Z

ion of a complex variable

domain D except for a nu

) can be written in the f

Z) = U(Z)/V(Z)

Ic in D. This means that

Suppose p is a pole of o

) at p is computed by the

Z,.

mber of

orm

poles of

rder m of

following

RESIDUE ALGORITHM:

If m = 1, compute as the answer

U(p)/V'(p)

otherwise, If V is a polynomial,
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(i) Set V to the quotient of V(Z)/(Z - p)**m

which is computed by long division.

(ii) Return the result computed from

1 U(Z)
(m - 1)! d V(Z) Z=p

otherwise, (m > 1, V not a polynomial) compute and

return as answer the limit

1

Cm - 1)1i

m-1
d m
- (Z - p) f(Z)

d Z

1.2 Evaluation of Contour Integrals by Residue Theory

In order to evaluate an integral of f(Z) around a

closed contour C by residue theory, it is necessary to

locate all poles of f inside C. After this is done, the

remaining problem is to compute the sum of residues of f at

these points efficiently. The difficult part is finding

poles. WANDERER employs the SOLVE routine in MACSYMA to

solve V(Z)=O.

For V(Z) a polynomial in Z, SOLVE finds its zeros by

factoring over the integers and applying formulas to each

factor of degree less than 5. For factors of higher degree

only those of the form a*Z**n+b will be solved. The problem

Lim
Z*?P
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of factoring large arbitrary polynomials is non-trivial, to

say the least. The development of a more powerful factoring

algorithm which will factor polynomials over a larger ring

than the integers would certainly be helpful to SOLVE and

WANDERER.The location of zeros is usually more difficult if

V(Z) is not a polynomial in Z but some more complicated

function. In such a case, WANDERER usually uses methods

other than the residue theory. An exception is when V(Z) is

a polynomial in %E**Z which has been discussed in Sect. 4-

5.2.

Thus within the limitations of SOLVE, V(Z) will be

solved and its zeros sorted into a list of pairs. Each pair

containing a zero and its multiplicity, such as

L C (Z1,ml) , (Z2,m2) , (Z3,m3) ,

L is then sorted into two lists L1 and L2, discarding

poles outside the closed contour C, such that

Li = a list of all simple poles

L2 = a list of other poles paired with their

multiplicities.

At this point, we can apply the RESIDUE ALGORITHM to

obtain the desired sum. To avoid repeated calculation of

V'(Z), the program checks whether Li is empty. If Li is not



an empty list, V'(Z) will be computed and stored for

possibly repeated reference later in the computation.

Note that it has been assumed from the beginning

this section that a pole of f(Z) would be a zero of V(

This assumption is quite reasonable for almost all of

applications in evaluation of definite integrals of

elementary functions. However a zero of V(Z) need not

pole of f(Z). For instance Z = %i is a zero of

Z - 1

but not a pole of

(Z + ?i)

4
(Z - 1)

For each zero p of V(Z) we may check the value of U(p)

to see if p is really a pole of f(z). Although it is not

clear what can be done if U(p) = 0, since p may still be a

pole of lower order. A better method is to ignore the fact

that if V(p) = 0, U(p) may also be 0 and pretend that p is

an actual pole of f(Z). This is valid because a residue at

any removable singular point will turn out to be 0.

Furthermore, the residue obtained at a pole of order m is

125

of

Z).

the

be a
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not changed if any integer n > m is used as the order of p

in calculating the residue.

It is conceivable that V(Z) may have an infinite number

of zeros. Not being able to sum infinite series, WANDERER

can not evaluate integrals which require such a computation.

Sometimes only a finite number of poles are inside the

closed contour. One such case WANDERER handles is when V(Z)

isa-polynomial in %E**Z as described in Sect. 4-5.2.
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2. Obtaining Real and Imaginary Parts

In the course of evaluating a definite integral by com-

plex contour integration, the need to take the real or the

imaginary part of an expression often arise. For instance,

to see whether a pole, p, lies above or below the real axis

the sign of Im(p), the imaginary part of p, is examined. To

determine if p lies inside the unit circle at Z=O, it is

needed to compute ABS(p) which involves taking the real and

imaginary parts of p.

The algorithm for obtaining Rl(p) is presented as a

representative of similar procedures used.

Algorithm REALPART(p) :

1) If p is %I return 0, if p is a num

other atomic symbol, return p.

2) If p is asum, (p=l pj) then ret
jzI

REALPART(pj)
~J=I

3) If p is a product (p = pl*p2) then

REALPART(pl)*REALPART(p2)

- IMPART(pl)*IMPART(p2)

4) If p = %E**pl return

%E**REALPART(pl)*COS(IMPART(pl))

ber or any

urn

return
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5) If p = pl**p2,convert p to %E**(p2*LOG(p1)) then

go to step 4.

6) If p = LOG(pl), return LOG(ABS(pl))

7) Otherwise, return the form Rl(p).

3. A Heuristic Pattern Recognition Program

It is often the case that some pattern recognition is

needed, at one stage or another during the evaluation of an

integral. Although many integrals can be evaluated without

any pattern recognition, this capability remains important

to WANDERER. One specific pattern shall be discussed as a

representative of such methods in WANDERER. Consider the

pattern

N M
P(X) = (B X + A)

where B, N, A and M are free of X (I

and all except A must be non-zero.

match, for example, every one of the

X, 2 X + 1,

p q
(X - 1)

The last expression is

1/2

.e. do not involve X)

This pattern should

expressions

-1/3
(X + %I)

2
and X +2 X + 1,

the expansion of
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2
(X + 1)

Expressions in expanded form present some trouble for

the recognition algorithm. This difficulty is overcome by

the use of differentiation and rational simplification.

That is if an expression E(X) is equivalent to an expression

matching the pattern P(X), we can compute

E' X) / E(X) = U(X) /V(X),

cancelling all common factors in the numerator U(X) and

denominator VX). Then V(X) should match p(X) with M = 1.

As a result of this match, some values are assigned to the

variables A and B. By use of these values the correct value

of M and N can be recovered from UX). The values for A and

B thus obtained may differ from the true values by a

constant factor. This happens whenever these true values

have common factors. The real values of A and B can be

determined by comparing A**M to E(O). This procedure was

suggested by Moses.

The full algorithm used for matching P(X) will he

described. Let it be called PM. PM uses another routine PN

which recognizes the pattern

N
P(X) = (B X + A)

As one can see in the following algorithm, the values
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of B, N, A and M will be set as the matching process

proceeds. If the pattern is matched, the values of these

four variables are found.

Algorithm PM(E(X),X) :

1) If E a X, pattern matched. (B=1,N=1,A=0,M=1)

2) If E is free of X or involves any of the func-

tions: SIN, COS, TAN, LOG, EXP, etc., P(X) is not

matched.

3) If E is in the form r**s and s is free of X th

match M to s, otherwise match M to 1. Then, if

PN(r,X)• succeeds in matching, the pattern is

matched.

4) I) rationally simplify E'(X) / E(X) and set r

to the result obtained.

ii) set s to the denominator of r, set r to

the numerator of r.

iii) if PN(s,X) succeeds in matching, simpli

the expression r / (N B X**(N-1)), set r to t

result thus obtained and go to step 5.

iv) P(X) is not matched.

5) If r is not free of X, P(X) is not matched.

6) 1) Match M to r

ii) compute and set r to E(O) / A**M

iii) If r = 1. P(X) is matched. If r#1, firs

en

fy

he

t
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set

1/m 1/m
A = A r and B = B r,

then P(X) is matched.

Algorithm PN(E(X),X)

1) If E is free of X, the pattern not matched.

2) Match A to E(O) and set E to E - A.

3) If E is of the form r*X**s, the pattern is

matched (B to r, N to s). Otherwise there is no

match.
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4. A Procedure for Change of Variables

Substitution of a new variable Y for a subexpression,

say g(X), of the integrand in a given integral is a

frequently used method in Integration. Let the given inte-

gral be

b

J = f(X) dX,

then the transformed integral would be in the form

j= F(Y) dY

1fc

where F(Y) might be considerably simpler than f(X). F(Y), c

and d are computed by a procedure which is called whenever a

change of variable is needed. It makes use of two other

modules of MACSYMA, namely SOLVE and DELIMITER.

i) Use SOLVE to solve for X in Y = g(X),

X = h(Y), the inverse function of g.

ii) If h can not be obtained, return Ind

failure.

iii) Compute, using the DELIMITER, c and

obtaining

ication of

d as in
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a,

b, *

LIMIT(g(X),

LIMIT(g(X),

PLUS),

MINUS).

iv) Obtain f(Y) by assigning it a value computed

from

f(h(Y)) h'(Y).

5. Solving Systems of Linear Algebraic Equations

In sect. 4-5.2 the need to compute a polynomial Q(X)

from a given one P(X) satisfying a given relation

(1) Q(X)-Q(X + 2 %PI %I) = P(X)

has been mentioned.

The method of undetermined coefficients is used to

determine QX). Let Q(X) be a polynomial in X with degree

one higher than P(X) and unknown coefficients CO,C1, ...

Cn. That is

n+1 n
Q(X) = X + Cn X + . . . + C1 X + CO.

Equation (1) will give n linear relations among these

coefficients. Therefore the value of these C's can be

obtained by solving the system of linear equations they must

X,

X,
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satisfy.

For the purpose of solving systems of linear algebraic

equations, A method known as the "Two-step fraction-free

Gaussian elimination" [14] has been implemented. This

method is an improvement over a corresponding one-step

method and features a procedure that keeps the size of the

intermediate expressions in the course of the reduction down

by dividing them by a common factor which the procedure can

predict. The advantage of this method over a more

efficient and elaborate scheme [18] is its simplicity.
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6. Convergence of Integrals

There are many methods to determine th

divergence of a given improper integral. S

tests, others comparison tests etc. Some t

convergence, others conditional or uniform

is a possible area for future work. There

to have such elaborate schemes in WANDERER,

is the value of the given integral that is

Consider

e convergence or

ome are limit

est for absolute

convergence. It

is no real need

for after all it

desired.

b

J = f(X) dX.

a
If f(X) is a rational function of X, WANDERER combines

convergence tests with evaluation algorithms as explained in

chapters 4 and 5. If f is not rational, then it is not

allowed to become infinite except at a and b. This is a

convention on inputs used by WANDERER. Thus, J is a proper

integral if a, b, f(a) and f(b) are finite. If J is

improper, WANDERER has a test for absolute divergence.

Test for absolute divergence:

(1) If a and b are finite and b > a, then J is

absolutely divergent If
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LIMIT((b-X)f(X),X,b,MINUS) $0,
or

LIMIT((X-a)f(X),X,a,PLUS) $0.

(2) If a is infinite, then J is absolutely divergent if

LIMIT(X*f(X),X,a) / 0.

(3) If b is infinite, then J is absolutely divergent if

LIMIT(X*f(X),X,b) / 0.

If a function G(X) exists such that G'X) = f(X), then

the method of antiderivative can be used. That is to com-

pute J by evaluating

LIMIT(G(X),X,b,MINUS) - LIMIT(G(X),X,aPLUS).

If this value is finite, It is the value of the given

improper integral. If it does not exist, then J diverges.
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CHAPTER VII

AN APPLICATION OF MACSYMA

AND WANDERER

0. Introduction

The usefulness of a general purpose algebraic manipula-

tion system such as MACSYMA in facilitating the solution of

mathematical problems has been demonstrated. Using his

"Symbolic Mathematical Laboratory" [15], Martin demonstrated

solutions to three demanding problems in applied

mathematics. These examples emphasize the fact that routine

algebraic computation can be done by computer programs not

only without error but much faster than by hand. The value

of such a system is especially appreciated when the expres-

sions involved are large and complicated. By employing

such a computer facility the human problem solver may be

freed from the tedious and uninspiring manipulations to

think more about the profound aspects of his problem. But

this is not all such a system can do. Moses's SIN [20], a

program for indefinite integration, provides a good example

of successful mechanization of a mathematical process which
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is far from routine or straight-forward. The introduction

of SIN broadened the scope of algebraic manipulation systems

significantly.

The purpose of this chapter is to show how MACSYMA and

WANDERER can be used to help solve complicated problems that

are of practical importance. One such problem is the asymp-

totic evaluation of certain contour integrals arising in

mathematical physics. Usually one starts with one or a set

of differential equations describing a physical problem.

Solving these equations by one method or another, most often

by integral transforms, one will arrive at a solution in the

form of a definite integral which is often difficult, if not

impossible, to evaluate exactly. Frequently, one is not so

interested in the exact solution but the behavior of the

system when one parameter becomes very large or small. This

is where asymptotic analysis is needed.

MACSYMA is used to obtain the asymptotic solution of an

infinite integral. Many facilities provided in such an

algebraic manipulation system can be illustrated through

this application. It is also possible to show how the

definite integration capability provided by WANDERER is

needed for the successful computation of the results.
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1. An Asymptotic Analysis Problem and an Outline of the

Method of Steepest Descent

Consider the infinite integral

C H(t)
J(C) = E dt, C > 0

4
t

where H(t) =- -- - I t
t

While integrating J exactly may be impossible, its

asymptotic behavior as C becomes very large can be

investigated. To obtain the asymptotic expansion of J, the

method of steepest descent [5,7] will be employed.

Basically, the method of steepest descent consists in

deforming the contour of integration in such a way that the

major contribution to the integral arises from a small por-

tion of the new path of integration. The contribution will

become more and more dominant as the parameter of interest

grows. This parameter here is C.

The first step in this method is to find the new path

of integration. On a given contour, larger contributions

comes from portions where the integrand is larger in
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absolute value and less oscillatory. Hence the requirements

for a desirable path are: (a) the absolute value of the

integrand becomes maximum at a point, tl say, on the path.

(b) The argument of the integrand is constant on the path

near t1. The first requirement is obvious. The second Is

essential, for if the phase angle'changes even slightly near

t1, this change will be magnified by the very large factor C

resulting in rapid oscillations of the Integrand and

therefore negating any possible contribution from the point

ti. Let U(t1,t2)= R1(H(tl+%l t2)) and V(tlt2) = im(H(tl+%I

t2)). Let p be a point where

dU

d tl

dU
---- 
d t2

dV

d tl

dV
---- = 0.
d t2

Then p is certainly a candidate for tl requ

(b). Such a point is called a saddle point

the name saddle point will be made clearer

Cauchy-Rieman conditions imply that criteri

point is H'(t)=0. There may be more than o

the complex t-plane. There are an infinite

rent curves which pass through a saddle poi

(a) and (b). Among them the path along whi

decrease In size most rapidly is the best.

J, this means a curve on which U decreases

ired in (a) and

. The choice of

later. The

on for such a

ne such point in

number of diffe-

nt and satisfy

ch the integrand

For the integral

most rapidly.
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Let H'(b) = 0. It can be shown by use of properties of

analytic functions that U varies most rapidly on curves

Im(H(t))=const. (usually called level curves). If H''(b)/0,

two level curves will pass through the point b, intersecting

at right angle, as shown in fig. 1.

fig, I

On one of these two curves, say curve A, R1(H(t)) is minimum

at b and increases as t moves along A away from b. On the

other hand, R1(H(t)) is maximum at tab on the curve D and

decreases as t moves away from b on D. Curve A is called

the steepest ascent path and D the steepest descent path.

The point b is usually referred to as a saddle point. If

H''(b)0, b is a saddle point of order 1, if H''(b)=0 and

H'''(b)0 of order 2, etc. If the original contour can be

deformed onto one or a combination of such steepest descent

paths, then the asymptotic expansion of the given integral

can be obtained by a rather routine procedure which
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involves: change of variable of integration, inversion of

truncated power series at the saddle points and term by term

integration.

Let us outline the steps of the solution procedure as

follows.

1) Locate and determine the order of saddle points

of H(T).

2) Compute U(tlt2) and V(tl,t2) such that

H(tl + %I t2) = U(tlt2) + %I V(tlt2).

3) Obtain V(tl,t2) = const. curves which pass

through the relevant saddle points.

4) Examine the V(tl,t2) = const. curves to

determine whether deformation of contour can be made

to curves through the saddle points.

5) Change the variable of integration.

6) Express t as a truncated series in the new

variable about each relevant saddle point.

7) Determine the coefficients in the above series.

8) Apply Watson's lemma to obtain the first few

terms of the asymptotic expansion by integrating

term by term.



2. Solution Steps

Presented here are the solution step

expansion of J(C) in the exact sequence a

carried out using MACSYMA. The lines lab

input comma

a $ sign.

the command

labelled (D

line will b

command lir

that line.

lines. To

explanatior

nds. A command 1

The Q sign causes

line to be displ

I). A (Ci) line

e referred to as

e character suppr

Explanatory text

avoid becoming a

for the commands

ne en

resul

ayed I

togeth

step I

esses

s will

user's

used

ds with

ts obta

n a sub

er with

. The $

display

be ins

manual

in the

s of the asymptotic

s they have been

elled (Ci) are

either a @ sign or

Ined by executing

sequent line

a correspond (Di)

as an end of

of results for

erted between

for MACSYMA,

solution will be

made quite brief. For a more detailed look at MACSYMA the

reader is referred to [16].

(C1) P:8$

P is a parameter which is set depending on the number

of terms desired in the asymptotic expansion. By setting P

to 8, we shall obtain the first 4 terms. The reason will

become evident later.

(C2) H(T):=-T**4/4-%I*T@
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4
T

(D2) H(T):= - -- - %I T
4

defining the function H(T)

(C3) DIFF(H(T),T)=O@
3

(03) - T - = 0

creating an equation H'(T)=0

(C4) SOLVE(%,T)@
SOLUTION

SQRT(3) - %I
(E4) T=----------

2

(E5) T = %I

- SQRT(3) - %I
(E6) T= -----------

2

(06) (E4.,E5,E6)

The % sign used in (C4) stands for the last (03), in

general a % sign represents the last expression labelled

(Di). SOLVE in (C4) is an invocation of the MACSYMA SOLVE

program (see [10] for its capabilities and limitations).

The roots of H'(T)=0 give three first order saddle points.

Passing through each of these points there will be one

steepest ascent and one steepest descent level curve

(im (Ht))= const. curves). The saddle points in (E4) and
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(E6) are the points B and A respectively shown in fig. 2.

The value of H at these three saddle points will now be

computed.

(C7) HB:RATSIMP(H(PART(E4,2)))@

- 3 %1 SQRT(3) - 3
(D7)

8

What has been done

simplification of H(B).

simplification which is

be simplified into the

denominator and perform

command PART allows a u

expression. PART(E4,2)

equation E4 which is it

commands can be nested.

in step 7 is the computation and

The command RATSIMP causes rational

essentially putting expressions to

form of one numerator and one

all possible GCD cancellations. The

ser to obtain subexpressions of an

returns the second part of the

s right-hand side. Note that

(C8) HC:RATSIMP(H(PART(E5,2)))@

(D8)
3

4

(C9) HA:RATSIMP(H(PART(E6,2)))@

3 %i SQRT(3) - 3

8

The point T=%1 turns out to be irrelevant because the

(D9)
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new path which will be determined does not pass through it.

The next goal is to obtain curves passing through the saddle

points (SQRT(3)/2, -1/2) and (-SQRT(3)/2, -1/2) along which

the imaginary part of H(T) is constant and the real part of

H(T) varies most rapidly, i.e. the steepest paths through

the saddle points.

(C10) EXP:EXPAND(H(Tl+%I*T2))@

4 2 2
T2 3 3 T1 T2

(D1O) - --- + %I T1 T2 + ---------
4 2

4
3 T1

-%I T1 T2 + T2 - --- -%I T1
4

(C11) V(T1,T2):="COEFF(D10,ti)@

3 3
(D11) V(T1,T2):= T1 T2 - T1 T2 - T1

By steps 10 and 11, the

is found and given a function

COEFF(expvarn) computes the

In this case, the coefficient

imaginary part of (D10).

imaginary part

name V(T,T2).

coefficient of

of %I in (D1O)

of H(Ti+ %I T2)

The command

var**n in exp.

is exactly the

(C12) U(T1,T2):="COEFF(EXP,%I,0)@
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4 2 2 4
T2 3 T1 T2 T1

(D12) U(T1,T2):= - --- +- --------- -+ T2 ---
4 2 4

U(T1,T2) is defined to be the real part of

H(T1 + %I T2).

(Cl3)V(TIT2)=V(SQRT(3)/2, -1/2)@

3 3
(D13) T1 T2 - T1 T2 - T1

3 SQRT(3)

8

Obtained in (D13) is the equation of a curve, V=

constant,which passes through the saddle point B,

(SQRT(3)/2, -1/2). This curve will be referred to as CR.

(C14)V(T1,T2)=V(-SQRT(3)/2, -1/2)@

3 3 3 SQRT(3)
(D14) T1 T2 - T1 T2 - T1 =---------

8

(D14) is the equation of a curve,V=constant,passing

through the saddle point A, (-SQRT(3)/2, -1/2). Let this

curve be CL. The curves CL and CR have to be examined

carefully by the human problem solver to determing the new

path of integration. The manner in which they extend to

infinity is often important in deforming the contour.

Asymptotes to these curves can be found easily. For an
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algebraic curve, f(X,Y)=O, the way to find asymptotes Is to

substitute m*X+c for Y in f(X,Y)=0 then determine values of

m and c such that the equation has two infinite roots (i.e.,

equating to zero the coefficient of the highest and second

highest powers of X). Asymptotes parallel to X=O are missed

by this method. f(X,Y)=0 has such an asymptote if it is

possible to choose h in such a way that the equation

f(h,Y)=O has two infinite roots. Asymptotes will be found

for CL and CR in the next two steps.

(C15) SUBSTITUTE((T2=A*Tl+B),PART(D14l,1))@

3 3
-T1 (A T1 + B) + T1 (A TI + B) - T1(015)

(C16) RATSIMPC%)@

3 4 2 3 2 2 3
(D16)(A - A) T1 + (3 A - 1)B T1 + 3 A B T1 + (B - 1) T1

The asymptotes are clearly Ti=O, T2=0, T=T2 and Ti= -

T2. With the aid of MACSYMA to generate points we plotted

the curves as shown in fig. 2. with steepest descent paths

labelled Ca and Cb. This figure is not a computer generated

plot.
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It can be seen in fig. 2 that by use of Cauchy's

integral theorem, the original contour can be deformed to

the contour Ca+Cb. For the purpose of change of path of

integration a new variable R is introduced which will be the

parameter of our steepest descent paths.

(C17) -R**2=H(T)-H(TO)@
4

2 T 1
(D17) - R %I TO - -- - %I T + -

4 4

TO stands for either of the two saddle points A or B.

Indeed if TO=A, R is real if and only if T is a point on Ca,

for Im(H(T)-H(A))=O and 0 = (H(T)-H(A)) only for points on

Ca. The same can be said about TO=B. T has to be expressed

in terms of R in order to perform the change of variable.

Solving for T as a function of R exactly in (D17) is not

necessary. What is needed is the first few terms of a power

series expansion of T in terms of R about the point T=TO

(the saddle point).

(C18)T=TO+DOSUM(J,1,P,B[J]*R**J)@

8 7 6 5 4
(D18)T = TO + B R + B R + B R + B R + B R

8 7 6 5 4

3 2
+ B R + B R + B R

3 2
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T is set to a

coefficients Bi wi

(C19) E:SUBSTITUTE

(D19) - (TO + B
8

+ B
3

+ B
6

3
R

6
R

+ B
2

+ B
5

truncated power

11 be solved for

(D18, R**2+PART(

8 7
R + B R + B

7 6

2
R +

5

B
1

B
4

4
R) /4 -

4
R + B

3

series

by use

D17,2))@

6
R + B

5

in R. The unknown

of (D17).

5
R + B R

4j

8

4

%I (TO + B R + B R
8 7

3 2
R + B R + B R)

2 1

7

2
+ %I TO + R

1

The expression (D19) has been given a name E. Before E

is expanded in order to collect terms, a few simplification

rules are defined so as to discard powers of R higher than 8

in the expansion process. This greatly reduces the

intermediate expression bulge which would otherwise occur.

(C20) DECLARE (NNPRED)$

(C21) NPRED(X):=IF X > P THEN TRUE ELSE FALSE$

(C22) TELLSIMP (R**NO)$
0
IS THE REPLACEMENT

A simplification rule has been set up so that any R**n

is replaced by 0 if N > p which is 8.
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(C23) TELLSIMP(TO**3,-%I)$

An additional simplification rule is defined so that

TO**3 shall be replaced by -%I automatically.

(C24) RATVARS(R)$

R shall be the main variable in subsequent rational

simplifications.

(C25) E:PART(RAT(E),1)@
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(D25)
8 2 2

R (C - 12 B B - 12 B B - 12 B B - 6 B ) TO
1 7 2 6 3 5 4

2 2
+(-12 B B - 24 B B B + ( 24 B B - 12 B )B

1 6 1 2 5 1 3 2

2
- 12 B B ) TO - 4 B

2 3

3
B 12 B

1 5

2
B B - 6 B

1 2 4

2
- 12 B B

1 2
B -B )

3 2

7 2
+ R C( -12 B B - 12 B B - 12 B B ) TO

1 6 2 5 3 4

2
+ ( - 12 B

2
B - 24 B B B - 12 B B

1 5 12 4 1 3

2
- 12 B B ) TO

2 3

3
- 4 B B - 12 B

1 4

6
+ R (( - 12 B B

1 5

2
+ ( - 12 B

2 3
B B -4 B B )

1 2 3 1 2

2 2
- 12 B B - 6 B ) TO

2 4 3

3
B 24 B B B - 4 B ) TO

1 4 1 2 3 2

3 2 2
-4 B B -6 B B )

1 3 1 2

5 2
+ R ((-12 B B - 12 B B ) TO

1 4 2 3

2 2
B

1 3



2
+ ( - 12 B

1

2
B - 12 B B ) TO - 4 B
3 1 2

4 2 2
+ R ((-12 B B - 6 B ) TO - 12 B

1 3 2

3
B )

1 2

2 4
B TO - B )

1 2 1

3 2
+ R ( - 12 B B TO - 4 B

1 2

3

1

2 2 2
TO) + R (4 - 6 B TO )

1

E is set to the huge expression above which is the

numerator of a truncated expansion of E; the denominator is

a constant.

(C26)FOR J:1 STEP 1 UNTIL J > (P-1)

DO BLOCK (EQ[J]:COEFF(ER,J+1)=ODISPLAY(EQ[J]))$

This do loop is used to generated the coefficients of

the various powers of R in E and store them in the form of

equations in an array RL. Each EQ[J] will be displayed

after it is set.

4 - 6 B1

2

2 2
TO = 0

- 12 B B TO - 4 B
1 2

3

1
TO = 0

2 2
( - 12 B B - 6 B ) TO - 12 B

1 3 2

2 4
B TO - B

1 2
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= 0
I
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2
( - 12 B B - 12 B B ) TO

1 4 2 3

2
+ ( -12 8

2
B - 12 B B ) TO - 4 B

1 3 1 2

3
B =0

1 2

2 2
( - 12 B B - 12 B B - 6 B ) TO

1 5 2 4 3

+ ( - 12 B
2 3

B - 24 B B B - 4 B ) TO
1 4 1 2 3 2

3 2 2
-4 B B -6 B B =0

1 3 1 2

2
( - 12 B B - 12 B B - 12 B B ) TO

1 6 2 5 3 4

+ ( - 12 B
2 2

B - 24 B B B - 12 B B
1 5 1 2 4 1 3

3
TO - 4 B

2
B - 12 B

1 4

2
-12 B B)

2 3

3
B B -4 B B

1 2 3 1 2
= 0

2 2
( - 12 B B - 12 B B - 12 B B - 6 B ) TO

1 7 2 6 3 5 4

+ C - 12 B
2 2

B - 24 B B B + - 24 B B - 12 B )
1 6 1 2 5 1 3 2

2
B - 12 B B ) TO - 4 B

4 2 3

3 2
B - 12 B B B

1 5 1 2 4



2
-6 B

1

2
B
3

2
- 12 B B

1 2
B
3

-B
2

= 0

Being conscious of the lack of storage space left for

subsequent manipulations, we get rid of the computation

history to create some space.

(C27) KILL(HISTORY)@

(Cl) SOLVE(EQ[1],B[1])@

The choice of the value f

e with which the steepest

if we choose (El), R woul

from MINF to INF on Cb.

B[1]:PART(El,2)$

SQRT(6)
B =-------

1 3 TO

SQRT(6)
B

1 3 TO

(E1,E2)

or B1 here affects only the

decent paths are traversed.

d vary from INF to MINF on Ca

A do loop is used in (C4) to solve for the remaining

(B2 through B7).

FOR J:2 STEP 1 UNTIL J > (P-1)

DO BLOCK (SOL:EV(SOLVE(EQ[J],B[J]),EVAL),

B[J]:PART(SOL,2),DISPLAY(SOL))$

The EV command, with EVAL as the third argument, causes

(El)

(E2)

(D2)

sens

Thus

and

(C3)

B's

(C4)
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the answer returned by SOLVE to be evaluated once more.

Since every Bj is solved in terms of earlier B's which

already have some value, one more level of evaluation will

eliminate the dependencies on previous B's.

B
2

2 I

9

10 %I - 3 TO
B ----------------

3 2
27 SQRT(6) TO

9 %I TO + 23
B =-------------

4 243 TO

2
- 3 % TO + 28 TO - 108 %I

B
5 972 SQRT(6)

2
225 %t TO - 342 TO + 1031 %I

B =- -----------------------------
6 2

26244 TO

2
5 %I TO

B =
7 1458 SQRT(6)

107 TO

2187 SQRT(6)

SQRT(6) %I TO

729

6839 %I

52488 SQRT(6)

2
47 SQRT(6) TO

6561

170 SQRT(6) %I

19683

1927 %1

26244 SQRT(6)



The unknown coefficients Bi have been determined. The

next goal is to compute

2 dT
EXP(-C R) -- dR

dR

dT
for TO=A and TO=B. Odd terms of R in -- do not contribute.

dR

Therefore only 4 terms need be integrated. These terms are

even in R, thus the range of integration can be changed to

(0 INF). A function FN(X) will be defined for carrying out

this term-by-term integration at a variable point TO=X.

(C5) FN(X):=BLOCK(ANS:0, FOR J:

DO ANS:ANS+J*RATSIMP(EV(BI

DEFINT(%E**(-C*R**2)*R**(J-1),

(C6) FN(-SQRT(3)/2-%t/2)@

IS THE EXPRESSION
- C

POSITIVE, NEGATIVE, OR ZERO

NEGATIVE@

For the purpose of integra

about the sign of C. The contr

is given in the next result.

1 STEP 2 UNTIL J > (P-1)

JI,TO=X))*

R,0,INF),RETURN(ANS))$

tion, WANDERER askes the user

ibution from saddle point A

SQRT(6) SQRT(%PI)
(D6) - --------------------------

(3 SQRT(3) + 3 %I) SQRT(C)



159

3 SQRT(%PI) (3 SQRT(3) + 23 %I)

3/2
4 SQRT(6) (27 %I SQRT(3) + 27) C

5 SQRT(%PI) (25 SQRT(3) + 247 %I)

5/2
5184 SQRT(6) C

- (35 SQRT(%PI) (SQRT(6) (672 SQRT(3) + 1816 %1)

3582 SQRT(3) 13077 %I 7/2
--- --------------------))/(839808 C )

SQRT(6) SQRT(6)

(C7) FN(SQRT(3)/2-%I/2)@

IS THE EXPRESSION
- c
POSITIVE, NEGATIVE, OR ZERO

NEGATIVE@

SQRT(6) SQRT(%PI)
(D7) ---------------------

(3 SQRT(3) - 3 %I) SQRT(C)

3 SQRT(%PI) (3 SQRT(3) - 23 %I)

3/2
4 SQRT(6) (27 %I SQRT(3) - 27) C

5 SQRT(%PI) (25 SQRT(3) - 247 %I)

5/2
5184 SQRT(6) C

+ (35 SQRT(%PI) (SQRT(6) (672 SQRT(3) - 1816 %I)

3582 SQRT(3) 13077 %I 7/2
+ --------------------- ))/(839808 C )

SQRT(6) SQRT(6)
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The above is the contribution from saddle point B.

the final result is obtained by computing the following

Now

(3 /3 %I-3)/8
D7 - 2 %E D6)

(-32/- %1-3)/8
2 (QE

where D6 and D7 are as given above. This expression is, by

inspection, equivalent to

(-3 /3 %-3)/8
2 (QE

(3 D7i t1-3)/8_
D7 + %E D7)

where D7 is the complex conjugate of D7.

(C8) 4*RL(%E**HA*D7)@

3 SQRT(3) %I - 3

8
(08) 4~ RL(E

Therefore,

SQRT(6) SQRT(%PI)
--------------------------
(3 SQRT(3) - 3 %i) SQRT(C)

3 SQRT(%PI) (3 SQRT(3) - 23 %i)

3/2
4 SQRT(6) (27 %I SQRT(3) - 27) C

5 SQRT(%PI) (25 SQRT(3) - 247 %I)

5/2
5184 SQRT(6) C

+ (35 SQRT(%PI) (SQRT(6) (672 SQRT(3) - 1816 %I)

3582 SQRT(3) 13077 %I 7/2
+ ------------- -------- ))/(839808C ))

SQRT(6) SQRT(6)
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This is the first four terms of the desired asymptotic

expansion. RL is not a command of MACSYMA. It is used here

to denote the real part of an expression.
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CHAPTER VIlII

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The evaluation of definite integrals is a classical

problem in mathematics. Great ingenuity is frequently

required, with many integrals demanding special devices.

The lack of a sufficiently general theory makes evaluation

of definite integrals very difficult. It is doubtful that a

theory, comparable in generality to the Risch integration

algorithm [26] for indefinite integrals, can be developed in

the near future. We have shown that the convergence of a

class of integrals of elementary functions is recursively

undecidable. The proof is in appendix E. The WANDERER pro-

gram presented here is a prototype heuristic computer pro-

gram for the symbolic evaluation of definite integrals. It

contains both general methods such as contour integration,

residue theory and differentiation with respect to a

parameter, in addition to quite a few special methods for

specific types of integrals. Clues as to which method to

use for a given problem are obtained from the integration

range and the form of the integrand. Although many types of

definite integrals can be evaluated by WANDERER, it, as
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almost any other heuristic computer program, has its limita-

tions. Foremost among these is the fact that it is a pro-

gram for the evaluation of real definite Integrals of

elementary functions.

It is hoped that the work reported here may provide a

starting point for new approaches to the evaluation of

definite integrals from the viewpoint of symbol manipula-

tion. The advantage of this approach is twofold: (1) A com-

puter can use integration methods that are too lengthy or

complicated to be carried out by hand; (2) Such a computer

program contains a collection of powerful methods that can

interact with one another and can produce answers to inte-

grals not present in any finite table. For this reason, a

good definite integration program together with other

facilities provided In an algebraic manipulation system can

be very useful to applied mathematicians.

DELIMITER is a rather sophisticated program for comput-

ing limits of elementary functions. Such a program has been

shown to be a very useful tool in an algebraic manipulation

system. The method of comparing orders of infinity used in

DELIMITER is an Important concept which is useful in places

other than the computation of limits.
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A basic assumption of

LIMIT is distributive over

DELIMITER is that the operator

the operators +, -, *, and **,

i.e., rules such as the limit of a sum I

limits hold. These rules are valid only

thus generated produce answers which do

indeterminate form. Of course there is

which can be applied to some indetermina

generally only those involving only the

Although many aspects of the indetermina

have been considered in chapter 2, the a

determination is not complete. A powerf

program would be helpful in some cases.

s the sum of the

if the subproblems

not lead to an

L'Hospital's rule

te forms, but

operator * or**.

te form (INF-INF)

lgorithm for its

ul series expansion

Yet, such a pro-

gram can not solve all problems. Consider for instance, the

limit problem

2 2
LIMIT(SIN X + COS X,X,INF).

To obtain such limits, an algebraic manipulation system

must be able to detect all constant identities. This is not

possible for the set of all expressions [22]. It may be

possible for a proper subset of all expressions. For

example, many trigonometrical identities disappear if all

trigonometric functions are radically transformed into sums

of complex exponentials. This is a basic problem of great
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practical and theoretical interest [61. Such simplification

capabilities would be of use to many other programs as well.

DELIMITER can be augmented by increasing the types of

functions it can handle which may include functions defined

by integrals. Another possible area of research is the

automatic determination of superior and inferior limits.

The fact that WANDERER can evaluate many non-trivial

definite integrals does not mean that it can compete with an

expert human integrator yet. For one thing, a mathematician

can usually construct a function of a complex variable and a

suitable contour for evaluating different integrals.

WANDERER cannot form a contour based on analysis of a given

real integral. It simply selects from the cases known to

it. WANDERER would be much more powerful if it could

determine, for a given integral, whether the method of con-

tour integration and residue theory were applicable, and, if

it were, evaluate the integral by forming a suitable inte-

gral around a closed contour.

The evaluation of contour integrals by residue theory

usually requires the solution of algebraic or transcendental

equations. WANDERER uses the SOLVE program of MACSYMA for

this purpose. SOLVE has its limitations and its improvement
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is also a possible area for further work.

Suppose one wants to evaluate a closed contour integral

by residue theory. An interesting general question is: what

knowledge about the integrand or the functions used In form-

ing it Is necessary. We think the following are essential:

(1) evaluation;

(2) differentiability and derivatives;

(3) singularities;

(4) asymptotic behaviour.

A natural extension of the work here is integration

over arbitrary user-specified contours. This should not

difficult to do, except for the lack of notation.

Specifically, we must specify an arbitrary contour to a

puter and devise a general data structure for use in

representing contours. For instance, consider the

specification of the following indented contour.

be

com-

F -~ A.
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One obvious way is to specify a contour piecewise.

Each piece of curve has a parametric form and a starting and

ending value for the parameter. There may be other

approaches.

Further work in this area of symbol manipulation might

include:

(1) Design of computer algorithms for testing convergence

and divergence of integrals,

(2) Summation of infinite series by residue computations,

(3) Investigation of algorithms for definite integration of

special functions.

(4) Evaluation of multiple definite integrals.

(5) Application of definite integration programs in solution

of differential equations.
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APPENDIX A

A FLOWCHART OF DELIMITER

A flowchart Is presented in the next page which details

the flow of control of DELIMITER. Listings of the programs,

written in the LISP programming language, may be obtained

from the author.

The routine LIM, appearing in the flowchart, is a

program which applies the 'trivial' limit rules, makes use

of subroutines to compute limits of sums, products, powers,

and the functions SIN, COS, TAN, LOG, SINH, COSH, TANH. It

calls LIMIT recursively and makes use of L'Hospital's rule

and other routines when needed.
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LIMIT(E(X),X,L)

START

|E, X, L|

- EI INDEPENDENT
OF X?

|IT
IRTRNE

E RATIONAL
IN X ?

T

F

L'HOSPITAL'S
FAILED?

L'HOSPITAL'S

F
N AND D CONTAIN
FUNCTIONS IN THE
FORM e**R(X)

WHICH TEND TO INF?

IRETURN LIM(NL/DL)
T c

RATIONAL TNLANDDL NFINITY
FUNCTION
ROUT INE F=U I NL=INF OR MINF-

AND?
N-NUMERATOR DL=INF OR MINF

OF E
D-DENOMINATOR

DL=0? A

D=l? RETURN F
F LIM(N) NL=O AND DL=0

N AND D AREF
RP-F MS?

NL+-LIMIT(N,X,L)
lnon enou nnl-r ilIT DL-LIMIT(D,XL)l

=RU LE g[RETURN ANSWER|

COMPARE ORDERS

RULE] OF INF IIY OF

T

F D-+0+ ?|
T

D-.0-
-r

N I>

NL>0
T

T

IRETURN INF

Rt

-RETURN INFINITY|

I

I
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APPENDIX B

A PROOF

Infinite integrals of

n
tI k Z m

f(Z) = %E

where n > 0, k 0 0 real, Rl(m)

have been discused in chapter

there depends on the proof of

z

> -1, and n - R1(m) > 1,

4-3.2. Some results derived

(1) and (2) below.

The objective here is to supply the proof of

1) limit f(Z) dZ= 0,
2)lmtfo+ dZ=.0

2) limit M () dZ =0.

where CR and C are the circular contours given below.

fl12U

c~R

and

J



to
Z = r e and m = a + 1b,

f(Z) dZ =

d

m+1 1n ine
r f EXP(i kr e + i(M+ 1) ) de

a+1 n
rfo EXP( - k SIN(n e) r - b e) de = M

For 0 --e- %PI/(2 n) we have

n
EXP( - k SIN(n 9) r )1.

Thus

a+1 -be
M = r e

Since a + 1 > 0, this completes the proof of (1).

Now from equation (i) we have

a+12 
n be

M = EXP( - k SIN(e) r -) do
n fo n

a+1
r

n

n
2 k e r b e

EXP( - - -) de
%PI n

Let

then

171

(i)

I I
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a+1
,,PI r n %PI b

5 (1 - EXP( - k r -
n 2 n

2 k n r + %PI b

The fact that n-a-1 > 0 completes the proof of (2).
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APPENDIX C

PERFORMANCE OF WANDERER

AND DELIMITER

As a measure of the performance of WANDERER and the

cted problems have

is the ITS of the

Intelligence Laboratory at MIT which u

with a memory cycle time of about 2.75

used for parsing the input string and

computed result has been excluded in o

approximation to the time actually spe

DELIMITER. Garbage collection in the

which MACSYMA is written may take plac

computation. Although garbage collect

procedure, it is only fair to regard I

computation process being carried out.

it required has been included in the t

The results are put in the form of two

in the tables to indicate computation

collection.

been timed. The time

Artificial

ses a PDP-10 computer

microseconds. Time

display of the

rder to obtain an

nt inside WANDERER or

LISP [17] system in

e during a

ion is a slow

t as part of the

Therefore, the time

iming experiments.

tables. An* Is used

requiring LISP garbage

limit programs, sele

sharing system used
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TABLE I

PERFORMANCE

Limit Problem computed

x
LIMIT X

LIMIT (1+1/X)
X-+00

LIMIT
X-•+

OF DELIMITER

Result Time in
equivalent to Sec.

1

x

x
X LOG(X) + %E

3
4 SQRT(X + 1)

LOG(X + X + 1) + %E

2 2
X SQRT(X + 1) x

LIMIT %E -%E
X-++oo

0.82

1.42

0 3.00

INF 13.18

LIMIT --
X-+-2- 3

L IMIT
X-+7I/2

X - 6 X + 11 X - 6

1 - SIN(X)

COS(X)

1

2
INF 1.15

0 1.52



X SQRT(X + 5) + 1
------------------

3
SQRT(4 X + 1) + X

TAN(X)

LOG(COS(X))

(SQRT(2 X) - 2)

LOG(X - 1)

175

1

1IMIT
X-++o 

LIMIT
x -.-

LIMIT
X-2

SQRT(4)
1.93

MINF 3.63

1/2 3.83
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TABLE II

PERFORMANCE OF WANDERER

Integral computed

dX

--------- dX

T w dX
2

0°X + 3 X + 2

00 2
X + A X + B
----------- -dX

-i 4 2
0 X + 10 X + 9

m2
X + A X + B

XdX
fo4 2

X + 10 X + 9

2

COS (X) - SIN(X) dX

f odX

6X +0 1

Result
equivalent to

0 (principal)

LOG(2)

%PI B + 3 %PI

12

3 A LOG(3) + (B + 3)PI

24

%PI

2PI

20 SIN(%PI/20)

Time in
Sec.

0.55

2.02

*
7.42

*
11.32

1.67

1.08



3 D -5 SQRT(X)

fo X %E

op2Cos +

X + 49

w0

D
(2016 %E ) / 78125dX

/aPI/28dX

dX

SQRT(X) (2 X + 1)

r, 1/3
X dX

-----------------
Jo 3/2

(4 SQRT(X) + 3)

%PI/SQRT(2)

DIVERGENT

177

0.95

1.39

0.81

6.62
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APPENDIX D

NOTATIONS

plus infinity,

V--, , t

MINF minus infinity,

base of natural logarithm

multiplication operator

exponentiation operator

square root operator

%PI .-- Im(PLOG(X))> -%PI, the principal

when X > 0 for PLOG(X)

2 %PI > Im(GLOG(X)) 0

the zero parameter (defined in chapter 4)

the beta function

the gamma function

INF

1) 1

*

**

SQRT

PLOG(X)

LOG(X)

GLOG(X)

branch

ZP

BETA

GAMMA

P I
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APPENDIX E

AN UNDECIDABILITY RESULT

Let S1 = fP(X1,X2,...,Xn)} be a set of polynomials with

integral coefficients inX, ... , Xn and S2 a set of

functions F of the form

F(X1, ... , Xn)

2 2 n 2 2
= (n+1) (P (X1, ... , Xn) + Z(SIN IXj)Kj (XI, ... , Xn))-1,

jV1

where Kj is the dominating function 161 for

d 2
-- P.

dXj

Richardson has shown 122,61 that

Lemma 1.

B of real

undecidabl

For F in S2 the predicate "there exists an n-tuple

numbers such that F(B) < 0" is recursively

e.

Lemma 2. If F(B) < 0 for some n-tuple B real numbers then

there exists an n-tuple A of nonnegative integers such that

P(A)=0 and therefore F(A) = -1.
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Lemma 3. Let

3
h(X) = X SIN(X) and g(X) = X SIN(X )

Then for any real numbers Al, ... , An and any 0 < E < 1

there exists b > 0 such that

Ih(b)-All<€, 1h(g(b))-A2|<€, .. 1h(g(...g(b)...))-An|<€.

By use of these Lemmas we can show

Corollary. For any G in a set of functions of the form

G(X) = F(h(X),h(g(X)), ... , h(g(...(g(X))...))) + 1/2,

the predicate "there exists a real number t such that G(t) =

0" is recursively undecidable.

Proof: Suppose the predicate is recursively decidable, then

we have

1) If there exists a t such that G(t)=0 then there exist

real numbers Al, ... , An such that F(A1, ... , An) < 0;

2) If there exist real numbers Al, ... , An such that

F(A1, ... , An) < 0 then (by lemma 2) there exist

nonnegative integers B1, ... , Bn such that

F(Bl, ... , Bn)=-1. Thus, there exists a real number c such

that G(c) < 0. Since G(X) can be large and positive and

G(X) is continuous, this implies that there exist a t such
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that G( t)=0.

This contradicts lemma 1.

From the definition of the Function F, one can see G Is

always -1/2 and G Is large and positive except at the

vicinity of a finite number of points where G is negative.

Theorem: The convergence of a set of integrals of the form

dX

22
C(X +1)G (X)

is recursively undecidable.

Proof: This integral is convergent if and only if G(X) has

no real zero.
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