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ABSTRACT

On the Hydrodynamics of Superfluid Helium

by

Alfred Clark, Jr.
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1963 in partial fulfillment of the requirements for the degree

of Doctor of Philosophy.

The present work is concerned with continuum theories of
the hydrodynamics of superfluid helium. A comparative study
has been made of some of the existing macroscopic theories of
the flow of superfluid helium. The work includes (i) a de-
tailed critical study of the derivations of the hydrodynaric
equations in the various theories, (ii) alternative deriva-
tions of the equations in some cases and (iii) a discussion of
some possible generalizations of some of the existing theories.
The theories under consideration include the equations origi-
nally proposed by Landau for the hydrodynamics of the two-
fluid model, the hydrodynamic equations proposed by Lin for
his one-fluid model, the theory of dissipative processes for
the two-fluid model proposed by Lin, and the theory of Bekare-
vich and Khalatnikov.

Thesis Supervisor: C. C. Lin

Title: Professor of Iathematics



ACKNOWLEDGEYIENTS

I am greatly indebted to Prof. C. C. Lin for continued

guidance and encouragement during the execution of this work.

I wish also to acknowledge the valuable assistance of Miss

Mary Beth Andre and my wife in the preparation of the final

manuscript. I am grateful for the financial support given

me during the course of this work by the Massachusetts Insti-

tute of Technology and by the National Science Foundation.



CHAPTER I - INTRODUCTION

CHAPTER II - PERFECT FLUID THEORIES
A. Two-Fluid Model

1. Equations from conservation laws
2. Formal two-fluid theory
3. Variational principle

B. One-Fluid Vodel
1. Introduction
2. Variational principle
3. Conservation laws
4. Relation with the two-fluid theory

C. Discussion

CHAPTER III - DISSIPATIVE PROCESSES, I
A. Introduction
B. The Case curl v =

1. Introduction
2. Equations for dissipative processes
3. Boundary conditions

C. Lin's Theory of Dissipative Processes
1. Introduction
2. Equations for dissipative processes
3. Boundary conditions
4. Discussion

Appendix to Chapter III

CHAPTER IV - DISSIPATIVE PROCESSES, II
A. Introduction
B. Theory of Bekarevich and Khalatnikov

1. Bekarevich's and Khalatnikov's derivation
2. Alternative development of the equations
3. Physical basis of the theory

C. An Alternative Approach to the Quantized Vortex
Line Theory

CHAPTER
A.
B.
C.
D.

V - SUMYIARY
Introduction
Ceneral Equations
Equations for Particular Theories
Further Work

CONCLUSION

15
35
44

53
56
69
75

84

91
93

102

112
114
132
140
148

1 r6

160
176
192

197

204
205
214
225

227

1 -- j, Jj -,-, \_ _ , - - , , _L , .

6



A. Simple Channel Flows 230
B. Flow Between Rotating Cylinders 238
C. Andronikashvili Experiment 243D. Comparison with Experiment 248

CITED REFERENCES 255

BIOGRAPHICAL NOTE 258

FIGURES AND TABLE
Figure 1 29
Figure 2 136
Figure 3 231
Figure 4 239
Table 1 249



I TITCDUC N

In the problem of superfluid helium, one may distinguish

two main aspects - the development of a molecular theory and

the development of a hydrodynamic theory. Ultimately, one

would hope to develop the macroscopic hydrodynamic theory

from the molecular theory. However, as Lin [25] has empha-

sized recently, the development of the hydrodynamic theory

need not await the resolution of the extremely difficult prob-

lems of the molecular theory - one can take advantage of the

possibility of developing the macroscopic theory in a more or

less phenomenological manner. Of course, the microscopic

theory often serves as a guide in the development of macro-

scopic theories, but the connection at present between the two

types df theories is still la alya qualitative one.

In the present work, we consider the problem of devel-

oping a macroscopic theory of the hydrodynamics of helium II.

In spite of great effort, this problem remains an open ques-

tion, and a variety of hydrodynamic equations have been pro-

posed. Since this is still a controversial subject, we con-

sider here - on an equal basis - some of the hydrodynamic

equations which have been proposed. Yore specifically, the

present work contains (i) a review and criticism of some of

the current hydrodynamic theories, with the intent of making

more explicit the principles underlying the derivations, (ii)

a discussion of some possible generalizations of these theories



and (iii) a presentation of alternative derivations of the

hydrodynamic equations for some of the theories, with the in-

tent of furnishing some new view points. In the remainder of

this section, we give a brief review of the hydrodynamic the-

ories to be discussed in more detail later, and a brief discus-

sion of the general features of the problem of determining a

set of hydrodynamic equations to describe the flow of helium

II.

In obtaining a set of hydrodynamic equations for helium

II, one is faced with two fundamental interrelated problems:

(i) the selection of a set of (local) macroscopic quantities

(e.g., density, velocity, etc.) which will adequately describe

the flow of helium II and (ii) the derivation of a set of equa-

tions describing the change with time of these quantities.

For an ordinary fluid, the problem (M) above presents no dif-

ficulties - the macroscopic configuration may be adequately

described by mass density, the macroscopic velocity and an ad-

ditional thermodynamic variable such as the specific entropy.

For liquid helium II, however, there is abundant evidence that

additional macroscopic quantities are needed to describe the

the various flow phenomena; thus the selection of a set of

macroscopic quantities to describe the flow of helium I is a

matter of Some difficulty and importance. Most of the current

continuum theories of the flow of helium II take as their

starting point some form of the two-fluid model, originated

and developed by Landau, London, and Tisza. The qualitative

features of this model have been deduced by Landau [20from



his theory of phonons and rotons, and also by London l?1 from
the theory of Bose-Einstein condensation. These alternative

points of view have in common that a definite molecular pic-

ture is used as a guide in the determination of an appropriate

set of macroscopic variables. The recent work of Lin [26,25,

241 has shown, however, that the two-fluid model is by no

means the only starting point for the development of a con-

tinuum theory of helium II, and, also, that even the selection

of an appropriate set of macroscopic variables may be accom-

plished in a phenomenological way without recourse to a-defi-

nite molecular picture.

Even after the choice of macroscopic quantities has been

made, there remains the problem of determining a correct ther-

modynamic description of the helium II. Again, there is abun-

dant evidence that the helium II system requires more thermo-

dynamic variables for its description than does~ an ordinary

fluid. Here, also, a definite molecular picture can be used

as a guide in setting down the fundamental thermodynamic equa-

tion.

Finally, there is the problem of determining the hydro-

dynamic equations. Although the approach to this problem de-

pends to some extent on the choice of macroscopic variables,

there are certain general principles which have been used,

with some success, to obtain a set of hydrodynamic equations.

Among these, we may mention (i) variational principles (for

perfect fluid theories) and (ii) imposition of macroscopic

conservation laws, Of course, analogy with ordinary hydrody-

nainics is an important underlying guiding principle in all



approaches to the continuum theory of helium II.

Although there are many problems in the development of a

hydrodynamic theory of helium II, there are two issues in par-

ticular which are central; the first of these is the question

of the rotation of the superfluid component. This is not a

question which can be resolved within a given hydrodynamic

theory; rather, one must take a definite point of view on this

question in order to develop a hydrodynamic theory. In fact,

the current theories may be roughly- divid'dtinto rthree' typed' with

respect to the question of superfluid rotation: (i) theories

in which curI vsMo always (Landau [20], Lifshitz and Khalatni-

kov [223 ), (11) theories in which curlV plays a special role

(e.g., the quantized vortex line theory of Feynman [73 and

Hall and Vinen L12, 13, 14, 38] , or the continuum theory of

Bekarevich and Khalatnikov [31in which Icurlvs1 is a thermo-

dynamic variable) and (iii) theories in which no special as-

sumptions are made about the nature of curl V, (Lin C26,25,241).

A theoretical explanation of the problem of superfluid rota-

tion must eventually come from a microscopic theory; one can,

however, compare the results of experiments with the predic-

tions of the various hydrodynamic theories and thus gain in-

direct evidence relevant to the problem. The second central

issue is the question of mutual friction (volume momentum ex-

change) between the two components. Again, one must take a

definite point of view on this question in order to develop a

hydrodynamic theory.

It is convenient to consider the perfect fluid theories



tr, !efora:e cons idering he m2ore general theories includIng

dissipative processes. The principal reason for this is that

most of the theories of dissipative processes have as their

starting point some form of the perfect fluid equations, so

that the development of a perfect fluid theory is a necessary

preliminary.

For reversible flows of helium II, the equations proposed

by Landau [20, 221 have been well-verified experimentally. As

Lifshitz and Khalatnikov[22] have shown, it is possible to de-

duce Landau's equations by (i) assuming the two-fluid. model,

(ii) imposing the macroscopic conservation laws and. (iii) as-

suring that the superfluid component must move irrotationally

(i.e., curI vis -=O ). An analysis of their work in detail is

given in II-A-1; in particular, it is shown there that the as-

sumption curl v, a 0 is a crucial one, in that it is no longer

possible t deduce a unique set of equations once it is

dropped.

If one takes the point of view that curv vs may vanish

for a certain class of solutions, but that it does not neces-

sarily vanish, then the imposition of the conservation laws

is not sufficient to determine uniquely the perfect fluid

equations for the two-fluid model. However, one may make use

of an idea advanced by Landau [20] - namely, that there be no

volume momentum exchange between the two components (other

than that due to normal fluid-superfluid transitions). In or-

der to make use of this idea, however, one must interpret the

two-fluid model in a rather literal fashion and assume that it



is possible to -ive a separate thermodynamic and hydrodynamic

description for each component; the only coupling between the

components is through the equilibrium condition for the nor-

mal fluid--superfluid transitions. A derivation of the per-

fect fluid equations along these lines is given in section

II-A-2. It is shown there that a perfectly definite set of

hydrodynamic equations may be obtained in this manner, and

that the equations are identical in form with the Landau equd-

tions without, however, the restrictive condition c.url vsa .

Whenever we are considering a perfect fluid theory, we

may expect that some sort of variational principle will be

valid. As Lin has shown (see Serrin [331 , p. 148, for a dis-

cussion of this), there are difficulties with a variational

principle even for ordinary hydrodynamics which however may be

overcome by taking into account the Lagrangian nature of the

system. In the case of the two-fluid model (which does not

admit a Lagrangian description), it is not so clear that the

difficulties can be resolved. Zilsel [40A has obtained a set

of hydrodynamic equations for the two-fluid model by means of

a variational principle. His variational principle leads to

the Landau equations (with the restrictive condition curl v=_0);

however, his equations also entail a restriction on the quan-

tity curI v, A detailed discussion of Zilsel's work is

given in II-A-3.

A variational principle has also been used by Lin [25,2I

to obtain the perfect fluid equations for his one fluid model.

The equations obtained by Lin from his variational principle



are similar to the Landau equations. In Lin's theory, how-

ever, the condition curI v 0 is characteristic of a parti-

cular class of solutions, an'd for this class his equations are

identical with Landau's. However, Lin's equations also admit

more general solutions for which curl v, # 0 . The varia14

tional principle and the equations obtained by Lin are dis-

cussed in sections II-B-1 and II-B-2. Since there are at

present still some difficulties associated with this varia-

tional principle, the possibility of obtaining the perfect

fluid equations for the one-fluid model from the conservation

laws has been examined. It is shown in section IT-B-3 that

this method does not lead to a unique set of equations (this,

of course, is to be compared with a similar result for the

two-fluid model when the restriction curl vsso is not im-

posed).

In Chapters III and IV of the present work, a discussion

is given of the hydrodynamic equations including dissipative

processes, as proposed by various authors. As in the case of

the perfect fluid theories, the form of the final equations

depends greatly on the role assigned to the quantity curl v .

Even so, the method for deriving the hydrodynamic equations is

essentially the same--the basic principles are the macroscopic

conservation laws and the principle of increase of entropy.

Of course, these principles must be supplemented by other spe-

cial considerations in each case.

Lifshitz and Khalatnikov [22j have presented an extension

of Landau's theory to include dissipative processes. In the

I



development of their theory, the restriction curl vs, O is

imposed. Their equations, along with a possible generaliza-

tion, are discussed in section III-B.

Since it is known that, under some conditions, the super-

fluid component seems to rotate in some manner, theories in

which cvrlvs,=o always are not expected to be of universal

validity. Indeed, the experimental discovery that the super-

fluid can rotate, in conjunction with Landau's idea that curiv1
must vanish, has been one of the factors in the development of

the quantized vortex line theory. Lin 125,24,23] however, has

advanced the idea that under certain conditions the superfluid

component can rotate in bulk like an ordinary fluid, since at

present there seems to be no compelling evidence to the con-

trary. In the theory of dissipative processes developed by

Lin, there is a momentum transfer associated with the super-

fluid rate of strain as well as the normal fluid rate of

strain, and the stress--rate of strain relations are charac-

terized by four shear viscosity coefficients; the nonlinear

boundary condition proposed by Lin allows a slip of the super-

fluid component at a-solid wall, while the normal componont.is

assumed t'iadhere to the wall. A derivation and discussion of

Lin's.equations is given in section III-C.

The current prevailing theories of the rotation of super-

fluid helium are based on the Onsager-Feynman theory of quan-

tized vortex lines. Hall and. Vinen U12,13,14,38 have deve-

loped a set of hydrodynamic equations on the basis of the two-

fluid model and the Onsager-Feynman theory. Bekarevich and



Khalatnikov [31 have presented a theory based on continuum

principles which, in contrast to the theory of Hall and Vinen,

does not depend on the specific features of the quantized vor-

tex line theory. Bekarevich and Khalatnikov based their deti-

vation on the two-fluid model and the single additional as-

sumption that the thermodynamic internal energy of the helium

II depends on the magnitude of the superfluid vorticity, as

well as the usual thermodynamic variables. They were able to

obtain the same final hydrodynamic equations as those obtained

by Hall and Vinen. A detailed discussion and criticism of

their derivation is given in section IV-B-1. An alternative

development of their equations is offered in section TV-B-2.

On one hand the theory of Bekarevich and Khalatnikov has the

advantage of not resting on a specific molecular picture; on

the other hand, its possible relevance to the quantized vor-

tex line theory is not clear. This point is discussed in de-

tail in section IV-B-3. Finally, in section IV-C a possible

alternative approach to constructing a hydrodynamic theory

including quantized vortex lines is discussed; the equations

given by Hall 13J to describe "vortex waves" are obtained

there.

In Chapter V, a summary of the various results obtained

is given in the form of a unified mathematical scheme which

includes the various theories as special cases. Some pr.-

posals for further work are also given there.



II PfR i T, FUL i2 I L

A. Two-Fluid Model

1. Equations from conservation laws

Although Tisza presented a set of approximate (linear)

hydrodynamic equations for the two-fluid model of helium II

in 1938 [55], the first full set of hydrodynamic equations was

presented by Landau in 1941 1201. Landau's metho~dis briefly

desribed in [201, and given in more detail by Lifshitz and

Khalatnikov [22]. We give in the following a detailed presen-

tation of the derivation of gP21-,along with some elaboration

'of the argument at various points.

According to the two-fluid model, we may (formally) re-

gard helium II as a"mixture" of two fluids - the normal fluid

and the superfluid. Each fluid has its own macroscopic velo-

city and its own mass density. Thus the total mass densityj

is given by = , where ? and % are the normal and

superfluid densities,.and the momentum per unit volume is

given by e v , where vi , vs are the normal and

superfluid velocities, and the entropy per unit volume is

given byeS , where s is the entropy per unit mass. Landau

[20] has given a microscopic theory of helium II which leads

to the two-fluid model in a natural way. In this theory one

thinks of the normal fluid as a "gas" of thermal excitations

(phonons and rotons), while the superfluid component is the



"inert background" in which the phonons and rotons move. It

is clear from this picture that the macroscopic theory must

allow for the possibility of conversion of normal fluid into

superfluid (and vice versa).

Then the laws of conservation of mass, momentum and en-

tropy will have the forms

(e)+c~N i s)) (,)

where is the mass flux vector, Is the entropy flux vector

and -,, the momentum flux tensor. We must also require the

conservation of energy, which is expressed by

_) +C (4)

where E is the total energy per unit volume and Q is the

energy flux vector. To complete the set of equations, one

additional (vector) equation: is needed, and we may take this

to be the equation for the superfluid velocity Vs . This may

be written as



iquations (1) - (5) wouid be a comliplete set of Bydro-

dynamic equations if the dependence of the quantities Ze '
(Q ,5T and . on the quantities s, g , 5 , and V

were known, and if the dependence of the total energy E on

s , , 'n, yg and S were known. These equations repre-

sent 9 scalar equations for the 9 scalar quantities e, ,a
S , V , v and it would seem that any choice of ,e 3,

Triand (consistent with thfe Galilean transformation

laws) would lead to a set of hydrodynamic equations. This is

not the case, however, because of the following essential fea-

ture of the two-fluid model: the 9 quantities en, s

v , VL are not independent, but satisfy a sort of equili-

brium relation. This conclusion is a consequence of the posi-

bility of normal fluid - superfluid transitions mentioned

above. Thus we must require that the 9 scalar equations (1) -

(5) for the 8 independent quantities be consistent, and this

leads to a restriction on the "fluxes" , -b , , , and

. Preliminary to exploiting this fact, however, we must

examine the dependence of the energy E on the quantities e,

, s , vt, 'iLand also the nature of the equilibrium re-

lation.

The energy E should be expressible as a function of 8

independent quantities. It is convenient to choose the quan-

tities g , , a and yas the independent ones. It is to

be expected that en (for example) will be a definite function

of these 8 independent quantities. (Although it would seem

that any choice of 8 quantities could be used, the discussion



of part II-A-2 will make clear the significance of this par-

ticular choice). By means of the Galilean transformation for

energy, we may express the energy E in terms of the energy

E. as measured in the superfluid rest frame; thus

E~e s,jv.) Ele> d.3 s + S + i

where j. is the momentum per unit volume as measured in the

superfluid rest frame, and E.(esJ.)= E=(e,5O). The momen-

tum j is related toj by the calilean transformation formula

jW= f VS + j. (7)

Ea may depend on only through the scalar quantity j, so

that

E0 ~ P~e,5,j-~~).(8)

The function -Q cannot be determined by continuum principles,

but should (in principle) follow from a detailed microscopic

theory. According to Landau's view of a gas of excitations

(the normal fluid) moving in an inert background (the super-

fluid), the observer moving with the inert background (i.e.,

in the superfluid rest frame) should see something quite simi-

lar to the motion of an ordinary gas with a drift velocity W=

V.- .. This qualitative picture is a basis for the assump-

tion that the intensities corresponding to the quantities ,

, jare the same as those for an ordinary fluid. For an



ordinary fluid of energy E per unit volume, density e , en-

tropy Co per unit volume and momentum j per unit volume, the

differential of E is given by JE= v-dj +Td(.s) +4 , where

V is the velocity of motion, T the temperature and C , the

thermodynamic potential is related to the pressure p by (

E-v-j -Tt's+p . Thus we assume that the differential of E.

has the form

dEo0 2 'S,j 4CO + Td )4 I. J (9)
where

0 E - wj- - Tes + .. (ao>

From (8), we have that ) __s_ ,;since

we see that the normal fluid density is given by

and we may solve (11) to obtain as a function of , s
and Iv2  . Thus the specification of the function

determines both the dependence of the total energy on the in-

dependent macroscopic quantities, and the dependence of the

normal fluid density on W2.
z

For purposes of comparison with other formulations of the

two-fluid thermodynamics, it is convenient to introduce the

internal energy per unit mass e , defined by



Then oie Liy sIo fro ( (9) and (1J)

and E. - &w C '3)
Cand

8e= idt+ TdIS + Iwl-x -

where

is the normal fluid concentration. Thus the natural indepen-

dent variables for e are i , S and x (instead of i , S

), and the relation analogous to (11) is

2

Some comment about equation (10) (which may be regarded

as a definition of the pressure p ) is perhaps in order.

First, one may show from (6) - (10) that the derivative of the

total energy in a volume V with respect to V (at fixed total

momentum, entropy and mass, and fixed superfluid velocity) is

' P ; second, we shall see that the quantity p does indeed

play the role of a normal stress in the hydrodynamic equations.

Although the arguments leading to equation (9) (and, in

particular, to the relation V W. are perhaps not com-

pelling, it will be shown later (sections II-A-2 and II-A-3)

that different approaches to the determination of the thermo-

dynamic description of helium II lead to the same results.

The remaining problem in the derivation of the hyrdrody-

namic equations is the determination of the quantities ,

y, and .



Liy lanaogy with u Ord xy 1hyd~odynmic3, s expect that

the mass flux 3, may be identified with the momentum density
; thus we assume

ze (0i

This, of course, is consistent with a very literal interpreta-

tion of the two-fluid model. However, there does remain the

possibility that$ .7 ; in fact, Lee and Yang [211 have de-

rived, for a dilute system of hard sphere bosons, a set of

transport equations which exhibit this possibility. Since

much of the "physical feeling" for the macroscopic quantities

of the two-fluid model is rooted in the concepts of ordinary

hydrodynamics, the introduction of a mass flux fe-:i would

require a critical re-evaluation of the physical significance

of the quantities , , and V . In the following we

will always assume (17) to hold.

It is usually assumed in the two-fluid model that the to-

tal entropy resides in the normal fluid; in view of the micro-

scopic picture of the normal fluid as a gas of thermal excita-

tions, this is a natural assumption to make. In the perfect

fluid theory for the two-fluid model, the only mechanism for

entropy transport is convection; thus we take the entropy flux

to be

We now consider the determination of the fluxes -ri. and



V e note Lirst that the conservation ol" anrular momentum

(assuming that the angular momentum density is rxc ) requires

that 1Tr be symmetric. Since the conservation equations must

be invariant in form under Galilean transformations, and since

the transformation properties of E and under such a trans-

formation are known (cf. (6) and (7)), the transformation pro-

perties of the fluxes TrI and Q may be easily deduced. We may

use these transformation formulae to express W.- and in

terms of , the momentum flux as seen in the superfluid rest

frame, and , the energy flux as seen in the superfluid rest

frame. Thus

= 

K ' + j* V,, + EFV5+ ~jo +Q! -V) 4Q)c* o
where W vs denotes the vector with components W;r V . The

advantage of this is that 1T; and Q, beinp Galilean invari-

ants, can depend on v. and vs only throu'h the difference w=

vn -vs Thus the problem is to determinero, Q and the

function 4 in equation (5).

The range of possibilities for the function - depends

greatly on whether or not the superfluid can rotate. Accord-

ing to Landau's original view [20], the superfluid flow must

be irrotational, which means that - must have the form

A = Vth. (i

According to the later work of Feynman (7] and Hall and Vineu



[12,13,14,38J, the superfluid remains point-wise irrotational

but imitates bulk rotation by means of quantized vortex lines.

In the theories of Hall and Vinen, the rotation is held to be

closely connected with the dissipative phenomenon of mutual

friction. According to Lin's theory E26, 25,24) , irrota--

tional motion of the superfluid is a possible solution of the

perfect fluid equations, but the equations also allow more

general solutions for which CUrI Vs-7. A detailed discus-

sion of the question of superfluid rotation has been given by

Lin 25]. Since this is still an unsettled question, we con-

sider both possibilities here.

We examine first the case when the superfluid flow must

be irrotational; then equation (21) must hold, and the prob-

lem is reduced to the determination of the quantities < ,

Tri and Q'. As mentioned earlier, the 9 (scalar) equations

represented by (1) - (5) are not independent, and we must re-

quire that they be consistent. To impr-se this requirement, we
f'irst~~C oiYp and by ean

first calculate cE in terms of IH I , V n by means

of (6) and (7) ; then we may express these la-t time deriva-

tives in terms of the fluxes by means of (1) - (3) and (5).

Finally we substitute the expression for into (4), and the

resulting equation must be an identity, since it contains no

time derivatives. It is convenient to express the final re-

sult in terms of TT;!b, Q' and , where

13 13 +3. 3OlLWI

Q. 4j~+ Tes .*jW +Q%.



The result is

I ot Vc' . (25)

One obvious "solution" of (,25) is Q ,Tr and =O;

however, one can also find non-zero solutions, so some fur-

ther information is needed in order to obtain a unique final

answer. In principle, the quantities Tr, Q and #may de-

pend on g , p and w , as well as spatial derivatives of

all of the independent macroscopic variables. In a perfect

fluid theory, however, one might expect that the fluxes will

not depend on the gradients of the macroscopic variables, al-

though there seems to be no compelling reason to believe this.

In any case, the "simplest" set of hydrodynamiic equaticns will

correspond to this case, so we simply assume that Taij, Q, and

dP (and consequently Q. and 4') depend only on the rela-

tive velocity w (by Galilean invariance, these quantities,

cannot depend on 0 and V5 separately) and on the thermody-

namic quantities, and not on the spatial derivatives of these

quantities. Then, from the first and third terms in (25),

only gradients of wL - and not of vS alone - can arise; since

T1k is to be independent of these gradients, it must be that

7r*'= 0 . Then (25) takes the form

dv '0



or

(2)

Since W is the only vector on which Q' may depend, Q'= Ay4

where A is a Galilean invariant scalar function. A straight-

forward analysis then shows that O , and 4=constant

(which we may take as zero). Thus under the assumptions made,

we obtain a unique set of hydrodynamic equations. The final

expressions for the fluxes may be written as

(Z'I)Th~j = e t ij+fSViVS p

S= - v4<.

For purposes of comparison with other Gerivations, we

write out the final equations here; for convenience, the in-

ternal enerry e

equations are

mass ;

(cf. (13)) is used in place of E . The

ib

(28)

(ZS)

(30)

(3w)

+ vs")j

r-omentum: -)V ts m%

-n + eS V



S + )(3

and the superfluid equation:

or

-Vp +- xpV wz

and the restrictive equation CUrl

These equations imply the energy equation, wh ich may be writ-

ten as

2,% 2

.L v2V 4(gee+p)v+Ts(vn-..v) 4Cxw2 ( -Yv)I=o,

where we have introcuiced the Las velocity v = y +( I-X)vgz .

The energy equation may be put into another form which clearly

shows the physical

[40 ; London 29)] ) :

n (.

significance of the various terms

e 2eSv

(vy

(3~)
- c~iv(pv).+ ex(e) Y

tflux (+1..' V vs+V

+
vf3 v S (33)

e)++i +

(35)

(Zilsel

+ _ S 2VS+ ee

(32S~nentropy: = O

... 7V. +

I
V Vn?n

--)}I=

The first three terms i-n the energy

+ f e) + (AiY&I fn VZ Vn



two terms give a correction to the term eey , this correc-

tion being needed because the entropy and normal fluid concen-

tration follow the motion of the normal fluid rather than the

bulk motion. Finally, we may obtain an equation for the nor-

mal fluid by combinin~g the mass, momentum and superfluid equa-

tions. The result is

c) +.n4 n-v -j Vp - I--x sVT -1--XV 2.'-w .,(137)e.e

where

an(. is the volume rate of convers ion. ( f1 of course cannot

be independently specified, but is determined by the spatial

distribution of the independent quantities; in fact one can

obtain an explicit (though not very enlightening) expression

for P ).

We consider now the boundary conditions to be satisfied

at a solid-helium II interface. For convenience, we assume

that the solid is at rest (which we may accomplish by an ap-

propriate Galilean transformation). First of all, we must re-

quire that there be no mass flux across the interface; thus

or

.X (y. . I --#x)(v_ %nt the waQII.



If there is no energy transport across the wall, then we must

also have Q-nwO at the wall. (Equation (39)) of course

holds whether or not there is an energy transport.) This, in

conjunction with (39), leads to V" -n1 =V.g no. Finally, it

is expected that the temperature will be continuous in this

case. Thus

V, - ! = 0,

(case o-F no enercy transport)

o)wa- k
and

The discussion of the boundary conditions for the case of non-

zero enerjy transport is complicated by a peculiar theoretical

difficulty which is best illustrated by an example. Suppose

there is a uniform heat flux of magnitude H from the solid

to the helium II (see Firj. 1). Then by conservation of energy,

we have

which, by using (39), we may write as

(41%)

where for simplicity, we have assumed that the tangential com-

ponent of y vanishes. Since H-n>o and since the quantity in

brackets is always positive, we have Y.r -o wie Toiw con-sid"er

0 n ) !)) + T-f lu"a n
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the entropy flux in the solid; this is simply -T

entropy flux in the fluid is Given by S(Vn-. By the -

second law of thermodynamics, the entropy flux in the fluid

must be at least as large as that in the solid; hence

or, since vo -n,>O, we may write this as

~i 1 -~T ' 2 _Y... (v - )
- -x) 5 -

net energy 4'lox
direced mto (4Z)
4\uid

It would appear that the temperature of the wall must be

greater than that of the fluid. The reason for (41) is clear:

some of the thermal energy in the solid is converted into

what is mechanical energy in the helium; if the temperatures

were equal, we would have a decrease of entropy. (It should

be pointed out that the actual magnitude of the effect is ex-

tremely small; if, for example, . I.*K and v -n =jOcrn/Sec ,

then jtn L , s'-.35*I s , and (42) gives~T,, -~T'-: evi j .3
If the not energy transport. is from the fluid into the solid,

then the second law requires only that

net ener
;tvx direc.A
in-TO Sol id (43)

and, in particular, we may have . The result (42)

means that we cannot specify T . in the case of a heat,

flux into the fluid, and in fact, it is not clear on the basis

. The

Tv,11~~~~~- T.,. - nan7
waR I~U1d 2 _X V. --- .& =

0 -X) 5



of the perfect flu-' theory what the bounoary conditions on To.

should be. However, it is possible to resolve this queFtion

by means of the more general theories which include dissipa-

tive processes, and this analysis will be given in detail in

part III. For now we only note that in almost all cases of

practical interest, the kinetic energy terms in the energy

flux are negligible, and we may use a set of effective boun-

dary conditions of the form

rj) (44)

where the thermal resistance A depends on the fluid tempera-

tureT41,

In the perfect fluid theory, there are, of course, no con-

ditions imposed on the tangential components of VO and V1 .

This completes the presentation of Landau's derivation

of the hydrodynamic euqations for the two-fluid model. Al-

though the method can be extended to the case of irreversible

processes, a discussion of this will be deferred to part ITI.

It is perhaps well to explicitly list the assumptions and

principles which were necessary in order to obtain a definite

set of hydrodynamic equations: (i) the two-fluid model (with

densities , and velocities v , _ , together with the

(usual) assumption that the superfluid component carries no



'.~~.Jiu.L- L.- ,

Galilean relativity principle, (iii) an assumption about the

form of tLe thermodynamic energy function E. , (iv) the as-

sumption that curl Vioalways, and (v) the assumption that the

fluxes do not depend on the gradients of the fundamental

macroscopic variables. If the assumption CurIvs = O is dropped,

then it is no longer possible to obtain a definite set of hy-

drodynamic equations. We give a brief discussion of the re-

sults in this case below.

If it is no lonGer required that curl VY must be zero,

then equation (21) no lonper is necessarily true. It is still

convenient to introduce the quan-tities and (equations

(22) and (2-)), and it, is convenient to introduce

The calculations are exactly as before, and the restrictive

equation corresponding to (25) is

Since (.j + , this may be written as

In the case of Curl = , we have f-v4, where 1 depends

only on thermodynamic quantities (and the relative velocity

V, ); 1 , however, depends on the sjpatial derivatives of



t ci0s Qui*ntlties so WC, ]utst e&pect tLat, in tne case curIVS*0

the "force" ' in general will depend on the gradients of the

macroscopic variables.

The equation (41) allows a wide variety of "solutions".

In particular, we see that it is satisfied forTIJS ,'

and =xC where . is an arbitrary (Calilean invariant)

vector. (If we choo s e c = XcurI -4 so that f'=Xw 9 curlvg , the

resulting equations are identical with those obtained by Lin

[25,24,26]; these equations will be discussed in section

II-B). The appearance of only the normal fluid rate of strain

tensor in (41) is somewhat misleading, since it is merely a

consecuence of the choice of notation. In fact, if we decom-

pose the (as yet unknown) functions T 0 and as follows:

mg = Trr

(49)

then equation (47) may be written in the more symmetric form

divtQ Tn" - TS1.~ j + "1T%3C)VL - W F aO. (49)

Dy way of example, we give the following specification of Q,

TT" , TVr and F , which satisfies (49):



(where Pn , S are arbitrary scalar functirns of the themo-

dynamic variables and of Wz ).

The above examples show clearly that one needs some addi-

tional information in the case curlV :O in order to obtain

a definite set of hydrodynamic equations. Actually, it is

not so surprising that there should be some difficulty in de-

ducing a unique set of hydrodynamic equations from conserva-

tion laws, because we cannot really expect to obtain any *

information about, the momentum tran: sfer between the two compo-

nents from the fact that the total momentum is conserved.

Although it was a part, of Landau' s original theory 20]

that there should be no momenturm exchanje between the two

components (other than that due to rn -etransitions),

did not need to appeal to this principle in his develonTent

of the hydrodynamic equations, since the conservation laws

plus the requirement Curl y=0 uniquely determined these equa-

tions. In the next section we will show that if the require-

ment curl Vs % 0 is dropped, one may still obtain a unique

set of hydrodynamic equations by making use of this prhnci-

ple of no momentum exchange. Furthermore, the resultling

equations are identical in form with Landau' equations (with-

out the restricttion eur1VS=O).



2. Equations from formal analogy with ordinary hydrody-
namics

In this section we will give an alternative derivation of

the perfect fluid equations; the final equations obtained are

the Landau equations without the restriction Curly,= o . In

this way the Landau equations--which have been well-verified

experimentally--are freed from the assumption that the the

superfluid cannot rotate. The derivation is based primarily

on analogy with ordinary hydrodynamics, and also the principle

that there should be no momentum exchange between the two com-

ponents; appeal is also made to certain qualitative ideas from

the microscopic theory. It will be seen that the point of

view taken here affords a particularly simple characterization

of Landau's hydrodynamic equations.

The starting point for the derivation is the two-fluid

model; we assume that the helium may be regarded as a "mix-

ture" of two fluids; the normal fluid has density i , velo-

city v. , and entropy ens per unit volume, while the super-

fluid has density ie , velocity vs and no entropy (the9pos-.-

sibility of superfluid entropy is easily included in the

following theory;however, there are no experiments as yet to

indicate such a generalization). We assume that each of the

fluids has a thermodynamic internal energy function, so that

if E , e.are the total energies per unit volume of the nor-

mal fluid and superfluid respectively, we have

2nn+ee



e= esvL + Cs -)

where e. is the internal energy of the normal fluid, per unit

mass of normal fluid, and similarly for Cs . We expect that

en will be a function of fl , S, , and that the normal fluid

pressure p and the normal fluid temperature Tn are given by

+ Tncs, .. (52)

Since the superfluid component has no entropy, e. will be a

function of e only, and the superfluid pressure p. is given

by

de. )()Ps d es

The existence of the functions e. , e, and the equations (52),

(53) are simply assumed on the basis of analogy with the ther-

modynamics of ordinary substances.

Suppose now we consider the total energy F in a fixed

volume V ; e will be given by

E= (EnEs) v (S4)

The total momentum j , mass M and entropy $ in V are Eiven

by

J= \/(j +3)

cind $ = V e s .

M=v (e,+ ej

(51)(Id .

fsVS)I

e,
en Aft

V r



If tie two Icidz crc ii &r1ll b>iuc, !.er col-di cZxeIt t'at th

distribution of the total momentum and the total mass over the

two coponents would be given by an energy minimum principle,

namely

This equation leads to the results

v2= 4s (57)

Qfld = 4 ,(58)

where we have introduced the thermodynamic potentials i and

4s , defined by

Equation (57) would seem to say that the two fluids must move

together when in equilibrium. In fact, Lee and Yang 21] have

emphasized the point of view that the states for which V. -f-I

are in reality quasi-equilibrium states with a macroscopic

lifetime. The problem, then, is to modify the equilibrium

condition (56) so as to allow for such states; to do this, we

borrow some qualitative ideas from the microscopic theory

( [29 and [21 ). The key point is that the superfluid velo-

city Vs is not an average over a thermal distribution, and a

chanEe in V requires a coherent change in the state of a

large number of particles; thus we may take v,,to be an in-

variant of a microscopic collision. The collisions of course

al-so conserve momentum, mass and energy, so that the natu-ral
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tion of the momentum, mass, energy and superfluid velocitys ,

or, equivalently, to regard the energy as a function of the

entropy, mass, momentum and superfluid velocity. From this

point of view, then, it is natural to take j , , , as

the eight independent macroscopic quantities describing the

motion. We may then expect that the modified equilibrium

principle takes the form

S = ,(60)
SAV,vs

and this leads to the single equilibrium condition

If we again introduce the total internal energy per unit total

mas,e , by

n 7.Svi ee(62)

or~ ee e e. ess

and the entropy 5 per unit total mass by

then, from (52), (53) and (61), we have

4 = 1,+E P1de +iw'dx, (4



and, if we introduce the total pressure 'by

P= PP +P + , (65)

(64) becomes

de = Td s - P d +Iw'dx. (66)
-tzl Z.

Thus we have arrived at the same thermodynamic description as

that given in the last section; however, the above derivation

emphasizes the nature of the equilibrium relation and the dis-

tinctive nature of the superfluid velocity Vs * For later

convenience, we note here that the differentials of the par-

tial pressuresph ,p are given by

d p ~ _ i (-x) sdAT o (-)(

'Pn e
(67)

d - 8P -sdT x d W

It should be pointed out that the development of the

thermodynamics to this point could also have been used in the

last section, since, in general, the thermodynamic description

of the system is somethinE which must be decided on before ob-

taining a set of hydrodynamic equations.

It is perhaps of interest to pause here to consider the

relation between the thermodynamic argument Fiven here and the

argument given by Landau (presented in the preceding section).

According to Landau, the observer moving with the superfluid



sees something quite similar to the motion of an ordinary

fluid with a total energyE0 (cf. equation (6)) per unit volume,

momentum ew~ per unit volume and an entropye 5 per unit

volume. Thus if we consider a volume V movinF with the

superfluid, the total energy is (equations (51) and (54) eval-

uated in the rest frame of the superfluid)

ea = VEa =ykj*-~%

the total momentum is, V, the total entropy is sV=

-r , n / , and the total mass is + On the basis

of Landau's argument and the energy minimum principle of ther-

modynamics, we might expect the equilibrium to be determined

by

d EC=alGS

and, in fact, (68) yields the condition (61) (4-s =J ).

We now consider the derivation of the hydrodynanic equa-

tions for reversible processes. The main principles to be

used here are (i) analogy with ordinary hydrodynamics, and

(ii) the assumption that there is no coupling between the

fluids except the transitions.

First of all, there will be two continutity equations

which, however, must, take into account the e transitions

which conserve only the total mass. Thus if we let F' be the

volume rate of conversion of superfluid into normal fluid, we

may write the continuity equations as



6 I( )(b)

and

(Again, r is not independently specified, but is determined

by the flow conditions.)

To obtain the momentum equations, we assume that each

fluid simply satisfies an Euler equation (with the normal

.fluid pressure p, actinE only on the normal fluid and the

superfluid pressure p. acting on the superfluid) with the mo-

mentum exchange due to the transitions included.

Since the transitions conserve total momentum, we may write

the two momentum equations as

(70)

where 3 represents the effect of transitions. _ may be ex-

pressed in terms of the transition rate P as follows: in a

unit volume, there is superfluid momentum of amount sv ;

the transitions do not chance v. , and the change in es in

time S due to transitions is-rd* ; thus the rate of change

of due to transitions is -f , and, since the transi-

tions conserve the total momentum, the rate of change of the



normal fluid moment'u'll is

3.v.

By using (69) and (71), we may write (70) as

+ Vn f -V?" - V W)
_f elm

and

vts
y.Vv! = -Vp,

~S

or, by (67),

.vn

Vt

-- Vf - ((.-) SVT .- (W-x).Lvv2

-- !._ - sTT +x WL

and these are the same as the equations originally obtained by

Landau, without, however, the restriction curl V, = 0 .

Finally, we have the equation expressin' the conservation

of entropy, which we take as

( -t. ci v ( SVr) 0. (T6)

It is easy to show that the above equations lead to the same

equations for and E as were obtained by means of the con-

servation laws. In terms of the partial pressures P, , ?s the

energy equation may be written as

(71)

(72)

(73)

(7-4)

(75)



+ ?ee + 8Wtf\4te 4-~j -Lt~ k~Vn

+ I..+ ?eLS +I.~ ' (17

and the energy equations for each compo-cn t caL

Jt + Itne1 +d Cj* V. i- en +I~ 1%J V"

where the terms on the right-hand sides give the energy ex-

change rate due to transitions (as may be verified by a calcu-

lation similar to the one used to obtain an express ion for ).

Thus we see that from the present point of view, each

fluid satisfies the perfect fluid equations of ordinary hydro-

dynamics when suitable provisions are made for the q* ie

transitions. In this sense, then, Landau's equations--without

the restriction curl v3 = o -- are the "simplest" possible equa-

tions for the hydrodynamics of the two-fluid model.

This derivation shows that if one combines the laws of

ordinary thermodynamics and hydrodynamics with a quite literal

interpretation of the two-fluid model, the Landau equations

are obtained in an unambiEuous manner. Although the final

equations are consistent with the condition cur\ vS 0= , they

do not require it and they admit more general solutions for

which curl vs * C .



3. Variational principle

In attempting to derive the hydrodynamic equations de-

scribing reversible processes in helium II, one might expect

some sort of variational principle to hold. The first attempt

to obtain the equations for helium II by means of a varia-

tional principle was made by Tisza in 1947 E36], but Tisza's

final equations were valid only in a linear approximation. In

190, Zilsel 40K) derived Landau's equations by means of a

variational principle; this derivation (also given in London's

book [29) ) will be discussed in detail below. First, how-

ever, there are some general difficulties with the variational

principle to be discussed.

These difficulties stem from the fact that the varia-

tional principles of mechanics apply to a Lagrangian descrip-

tion of the motion, whereas a Lagrangian description of the

motion of helium II within the framework of the two-fluid

model is manifestly impossible. One would still hope to get

some sort of "Eulerian" variational principle for the two-

fluid model, but there are difficulties with such a varia-

tional principle even in the case of ordinary hydrodynamics.

Of course, one may use a Lagrangian description for discussing

the motion of an ordinary fluid and obtain the hydrodynamic

equations in a straightforward manner from a variational prin-

ciple (Herivel, [163 ). However, we wish to obtain a varia-

tional principle directly in terms of the Eulerian descrip-

tion of the motion, since this is the only sort of variational



fluid model. As a preliminary to the discussion of the vari-

ational principle for the two-fluid model, we consider the

case of an ordinary fluid.

As a first approach, we consider the Lagrangian function

L d 3 r (79)

where V is the velocity, g the density and e(,)is the

specific internal energy, i being the specific entropy. The

conditions that mass and entropy be conserved are to be incor-

porated by means of Lagrangian multipliers, so that the modi-

fied. Lagrangian is given by

L'= dr C '-fe -Y + 8i I CR s+EIV( - .0

where c , are the Lagrangian multipliers. The variational

principle is then simply dtL , with S , and V

varied independently. The three variational equations are

%J + + a SV 0.)9

Dt ~DE

o Jndds: Dj3=T, (SS)
Tt

where , 'T are given by

ie= + TdS, (84)

and V- Elimination+6f -o and leads to the usual



Lmom entumi equation, . V. y - V p
t

from (81), we see that curl v=V xV vanishes whenever s is

uniform in space. Thus this Eulerian variational principle

(apparently due to Eckart L5] originally) yields the hydrody-

namic equations, but also restricts the class of possible so-

lutions. However, Lin [33] has shown how one may modify the

Eulerian variational principle in such a way as to make it

equivalent to the general hydrodynamic equations. According

to Lin one must take into account the fact that the velocity

field v is actually the (substantial) time derivative of a

displacement field; in order to take this into account in the

variational principle, one introduces the Lagrangian coordi-

nates_(2,t) of the fluid particles and the constraints

_ 0. (5)
Dt

The constraints may be introduced by a Lagrange multiplier,

, and the Lagrangian function is then taken as

The variational equations are obtained by independently vary-

ing V , X , and cS ; these equations can be written as

C: v +Vo +sv--Y VX-=o, (87)

+I-C +,- - _ = 0 (6b)

T)~ (89)



and

TDt

Elimination of the multipliers e( , ( and T leads to the

usual hydrodynamic equation, 1DY - , but this time curI V

does not necessarily vanish, even when S is uniform in space.

Serrin [33 has completed the equivalende proof by showinF that

every solution of the hydrodynamic equations is also an extremal

for the variational principle.

Although the above modification works for ordinary hydro-

dynamics (and in fact was used by Lin [24] to obtain the equa-

tions for helium II ',ithin' thO framework of his one-fluid

model), it does not help in the search for a variational prin-

ciple for the two-fluid model, since, in introducing the con-

straint (85), we have had to appeal directly to the Lagrangian

nature of the system. Of course one can formally introduce

constraints of the form (85) for each of the velocity fields,

but the physical significance of such a device for the two-

fluid model is not clear. Whitlock [31 has considered some

extensions of Zilsel's work along these lines, and this work

will be briefly discussed below.

We now consider Zilsel's derivation of the hydrodynamic

equations for the two-fluid model. The starting point is the

usual two-fluid model with velocities Vn , Vs , density f ,

specific entropy s and normal fluid concentration x= rn/.

The laws of conservation of mass and entropy,



+ ctiv\ X Vn + (1)Vsj: 0,

(s) -+ CdiMf S vl - 0, (2

are to be treated as constraints in the variational principle.

The Lagrangian density is taken as xV +1 (-x)v e-

where e is the specific internal energy and is assumed to be

a function of ' , s and x . Then the variational principle

takes the form

- [ (es) di (I-*)V ~ K lv =' 04, (9X) V

where c< and are Lagrange multipliers. In the variation

(93), the nine quantities x , , x , V, vs are varied

independently although, as mentioned earlier, the number of

independent quantities in the two-fluid model is eight; it

turns out that the variational principle gives the thermody-

namic equilibrium relation, as well as the dynamical equations.

The variational equations are

_L' xv *+(0-4 vs -e E +co +[. v, +0 -X va(W

+ + + v ) =0,

4-V (95)



Vn, .Vo+ O,

VS + VOC= ,

T ( be)

The elimination of the multipliers 0' and P leads to

equations

+ 't. .V v,

-j- Vn -V v e

+sVT +

- a-_X
X

IV t

s z- rx W_
2 ex

(where =a en

Qn d

Equations (100) -(103) along with (91) and (92) are exactly

the Landau equations discusped in the previous sections. How-

ever, thLe variational equations also imply the restrictive

equations

curl

Ond

(97)

where

(98)

P
to gI

the

(100)

(101)

+ )

)(h/elIs
= L J.vOxW

(102)

(103)

(39)"*
SIO

(I"s)
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It is perhaps worth noting that if a superfluid entropy ss had

been included in the formulation, then the restrictive equa-'

tions would have taken the form

curl vs qSS( 'V (10)

and

curt Vn f - V 7 (07)

and the-e equations are very similar to the restrictive ecqua-

tions obtained from the unmodified variational principle for

an ordinary fluid. Although there is no reason to believe

that the superfluid entropy is not zero, the equations (106)

and (107) lend support to the idea that thie restrictive equa-

tions (104) and (105) stem from a defect in the variational

principle and do not have physical content. (The fact that

the variational principle yields equation (104) is often used

as an argument in support of the physical statement that the

superfluid cannot rotate; the restrictive equation (105),

which also follows from the variational principle, is, however,

usually ignored.)

In an attempt to remove the restrictions on the velocity

fields, Whitlock 59 has discussed the effect of includinr

constraints of the type (85) in Zilsel' s variational approach.

He found that if one introduces constraints of the type (85)

for both the superfluid and normal fluid velocities, it is

difficult to eliminate the Lagrange multipliers without going



one introduces a constraint only on the normal fluid velocity,

(i) the resulting equations of motion are the same as those

obtained above ((100) - (103)), (ii) there is no restricitve

equation of the type (105) on the normal fluid velocity, and

(iii) there is still the restriction thatcurlv,=o ; thus

in this way the Landau equations (and the constraint cor\ v =0)

are equivalent to a modified variational principle. However,

the physical significance of introducing the "Lagrangian co-

ordinates" of the normal fluid is not clear, both because of

the possibility of r-?transitions (as \hitlock points out),

but, even more so, because of tihe impossibility of i6entifyinj

a given fluid element with the normal fluid or superfluid com-

ponent.

Although Lin was able to resolve the difficulties with

the Eulerian variational principle in ordinary hydrodynamics,

it is significant that his resolution involved a direct appeal

to the Lagrangian nature of the fluid. The two-fluid model,

however, defies a Lagrangian description, and a comilete reso-

lution of the difficulties with the two-fluid variational

principle is yet to be given. The difficulties in the two-

fluid model associated with the lack of a Lagrangian descrip-

tion are fundamental ones, and, to quote London ( 121,

p. 127), "they appear so intrinsic that we might question

whether the two-fluid concept is actually compatible with the

principles of classical particle-mechanics." One way around

these difficulties is to abandon the two-fluid model. In the



next section we give a detaiied discussion o t e hydrody-

namics of helium II on the basis of Lin's one-fluid model[24.



B. One-Fluid Lodel

1. Introduction

Although the two-fluid model has served as the starting

point for most dilacussions of the hydrodynamics of helium II,

Lin( [26,25,24] ) has shown that A Q=o-i0t-entt hydrodynamic theory

for helium II may be developed in a natural way by a suitable

generalization of the concepts of ordinary hydrodynamics.

This section will be devoted to a detailed discussion of" Lini' s

one-fluid theory for reversible processes.

Lin's theory is a direct generalization of the ordinary

hydrodynamics of a single fluid. The starting point for the

generalization is the experimental observation that helium II

at rest can transmit heat in a reversible manner. This fact

is accounted for in Lin's theory by introducing, as a new

thermodynamic variable, the entropy flux 1 relative to the

fluid; then one may define a velocity of internal convection

c by the relation

where is the density and s the specific entropy. The

other macroscopic variable needed for .the description of the

helium II motion is the macroscopic velocity X . The central

proble.m, then, is to determine the hydrodynamic equations

governIng the behavior of the quantities s , S , y and c

Two equations may be immediately written down describing the

laws of conservation of mass and conservation of entropy;



.+ div ()=o , (1o9)
bt

qnd

1(e) +divies(y+ C) =0. (110)

Two further (vector)equations are needed --one each for .L and

I . The derivation of these equations will be given in sec-

tion II-B-2 (variational principle) and section II-B-3 (conser-

vation laws). As in the case of the two-fluid model, some

discussion of the thermodynamics of the system is a necessary

preliminary to the derivation of the hydrodynamic equations.

It is assumed that there exists an internal energy func-

tion e , such that the total energy per unit-voumelis given

by

The function e will depend on the thermodynamic variable C.

as well as the quantities g and s ; thus in general,

e =e ( s,), ,,=- C7,. I)

Equation (112) does not Eive a complete specification of the

thermodynamics of the system, however, because one Must know

the proper extensive variable associated with the quantity c.

in order to identify the pressure and temperature with the

derivatives of e with respect to and s . This is a



difficult point and one which cannot be resolved without some

further information on the physical role of the quantity c ;

however, the derivation of the hydrodynamic equations in sec-

tion II-B-2 gives rise to a situation in which there is a

"natural simplest" choice. Further discussion of this point

is then deferred to the next section.



2. Variational principle

For reversible processes, one expects that the equations

may be obtained from a variational principle, and, as a natu-

ral generalization of ordinary hydrodynamics, it is assumed

that the equations for both v and c may be obtained from a

variational principle. In writing down a Lagrangian density

for the system, one must know how to split the energy (111)

into a potential part and a kinetic part. For an ordinary

fluid, the correct variational principle is obtained by in-

cluding the .thermodynamic internal energy with the potential

energy of the system; in the present case, however, one must

allow for the possibility that some of the thermodynamic en-

ergy e (112) is actually kinetic in nature. Thus we write

the energy e as

e = e, +eK

where e is the potential part, e the kinetic patbt. Then it

is to be expected that the Lagrangian density will be given by

= v eL] (

where

ep -eV( (115)

At this point, e and eKare not. known; however, we shall see

that the correct splitting (113) may be deduced from the equa-

tions of -titn..



The variation is to be carried ouit with the equations

(109) and (110) incorporated as constraints; in accordance

with the discussion of II-A-3, we introduce the Lagrangian

coordinates X , and the constraint

DX.= 0. N
Dt

The variational principle is then

Jt d{.LvQ CL) - Ir + di (-V) S) dv(fs(+)q]

D t

where , , , , are to be varied independently,

and o( , , are Lagrangian multipliers. The variational

equations are

-eL -VP ++. v :+5' +s + SC- =0, ('18)

-DDt

3
V: V_ + VO + sV = AiVX.,0)

ancl



where we have introduced the derivatives of eL, namely,

(123)deL= TL dS + PL. e+d

The final hydrodynamic equations are obtained by eliminating

the Lagrange multipliers, and they may be written as

Te+ div (ey )=O,

)(es)+ div eS(X+C)1=o,

Dv

(124)

(125)

T +,~

(12.7)

4.-(fzCL) + ((T.V +C)

Thus the reversible heat transfer gives rise to a momentum

transfer, as is evident from (126). We may also write (126)

in a form which expresses the law of conservation of momentum,

namely,

4 ..i. Yivj T (i, T
C)t~

or

C128)



where the momentum flux tensor IT is given by

Tfij =evjv3 +PSq& -Cz t.c)

There are several points to discuss in completing the

derivation. We first consider the problem of determining the

energy parts e, and eK . The basic principle to be used is

the fact that, in the perfect fluid theory, the hydrodynamic

equations (124) - (127) must imply the conservation of total

energy. The energy density is E=-' Lv+e , and the energy

equation must have the form

+ ditvQO (130)

where Q is the (as yet undetermined) energy flux vector. Al-

though 0 is unknown, we may gain some information about the

form of 0 from the Galilean transformation formulae. If Q.

denotes Q as measured in the rest frame of the fluid, then

Q and Qare related by

Q Ev +( -v) +Q, (131)

where 2T is the momentum flux tensor as measured in the fluid

rest frame - i.e., (from (124))

thus
= E. +Pj -g c(c.--) +Qo.



Slinc wo &ro doing wIt. ypefoct. fluid tlwory, it Co pac-

sible to assume' that Q. does not depend on any of the spatial

derivatives of the quantities ' , , v and c ;sinceQ.

is a Galilean invariant, it cannot depend on v , so that we

have

Q. = (133)

where, in general, = . In the calculations, to fol-

low, it is convenient to replace the unknown scalar ? by an-

other unknown scalar function V , given by

*X IS-T -erC I +V (A'31)

Then the energy flux is given by

9=d v2ge+Fgv-g g-v +gTe - gezCzC +X'C . 35)

The calculations proceed as follows: from the hydrodynamic

equations (124) - (127), we may calculate directly in

terms of e , v , c and their spatial derivatives; if

the result of this calculation and the expression (135) for

are substituted into the energy equation (130), the result

is

De+ div 'C =0, C'5)

where.

e. =e-eL+2.z5. (-i



In the calculation of , it is convenient to regarde
'

as a function of e , s and K -- ; then

and we may use the hydrodynamic equations (124) - (127) and

equation (130) to obtain

+ CO '-=O. 1%

Since no time derivatives appear in (138), it must be an iden-

tity; in particular the coefficient of hv; must vanish, so

that

(139)j c)e'. + z' zc z = o.

Equation (139) must hold for all values of C , and it is easy

to show that

e'= o

so that e' e'(s) . Then (139) becomes

- de' div (C sc) + v=0.

In (140), we may regard as a function of , and-j

Then (140) becomes

(340)

c~g *)e/ ,



YS 7+ ~ sIC

+f ~ ~ '~ CLr 3S

and from here it is easy to show that

nd

C1 S
(142)

Thus the most general form for e' allowed is x'+ ,

where , ,2 are constants (not cepending on tny of the ther-

modynamic or flow variables). Then from (137), we obtain

eL e +Z s-e

a e + - -Y2-

It is clear that the terms %,S+V. contribute nothing to

the variational equations, because the integral of W over

the volume V is proportional to the total entropy aud the in-

tegral of t l is proportional to the total mass, both of which

are conserved. Thus we may take X,=Y= o without affecting

the variational principle; then we have the final results

eL= e +.s,

e K = _Z 3,
oarnJ

eF = e. + V.$

(14-5)



Vle may alsc note thjat a; Cjrnt xrsin o h nryfu

vector has been obtained from this calculation, namely

+ z (144)

As mentioned in the preceding section, the theory is not

really complete until we have identified the extensive vari-

able associated with c , as we may not obtain the pressure

and temperature in terms of the derivatives of the energy

function until this third extensive variable is known. At

present, there seem to be no simple arguments within the frame-

work of the one-fluid theory which would furnish a definite

answer to this question. Thus in the absence of more definite

information, we simply assume (on the basis of "maximum sim-

plicity t of the hydrodynahiic equations) that the qu1.7antities

p and TL may be identified with the thermodynamic pressure

and temperature; that is,

then the differentials of ti e thermodynamic quantities e.

eL and ef become

de= .P. de + TdS + r-dS )

dle-_ de+Td'S- c-dre,(i)

dJep =.L de' +Tds -d .(4



In s~ct~io I-E--4, wI a: &isCUSSIOn aC tec relaii n of th

present theory with the two-fluid theory is given, it will be

shown that the quantity re has a definite interpretation as an

extensive variable(per unit mass) within the framework of the

two-fluid theory.

With this identification of ze, as the third extensive

variable, it is possible to yIve a physical interpretation to

the terms in the energy flux, * , y using (130), (144) and

(147) we may write the energy equation (130) in the form

+ e(*) zc- (Y.+C-V)= Civ

(149)

(where o = -p I + CC

The term on the right gives the rate of workings of the

stresses; in the divergence on the left, we have the convec-

tion of kinetic energy, .L , and convect ion of internal

energy, ev ; the last two terms are corrections to the con-

vection of internal energy, these terms occuring as a conse-

quence of the fact that 5 and zc are convected with velocity

_ , rather than v

At a stationary solid wall, the mass, entropy and energy

fluxes must vanish (assuming there is no energy input to the

fluid through the wall), so that

V - r\% 0C.. .. 
((0)

c -g= o.



(As mentioned before, it is necessary to consider irreversible

processes in the discussion of the boundary conditions when

there is a net energy flux between the wall and the fluid).

Lin 24] has presented some simple examples which show

that the present theory predicts thermal waves (second sound)

as well as ordinary sound waves.

There is one rather serious difficulty with the present

derivation which should be discussed, and that is the fact

that the variational equation (121) predicts that

curl c. V(S) xV , (151)

or, alternatively,

curl z 0,

so that curl c vanishes whenever S/. is uniform in space. At

this stage, one could accept- (151) as having physical signifi-

cance; however, there are several reasons for regarding (ll)

as an unphysical restrictive equation. First, equation (151)

is very reminiscent. of the restrictive equations obtained from

the unmodified variational principle for an ordinary fluid and

from Zilsel's variational principle for the two-fluid model,

and, in these cases, at least some of the restrictive equations

are due to defects in the variational principles. Second, we

may note that a restrictive equation of the form (151) always

arises whenever the Lagrangian density depends on a vector c

only through a term of the type es(e,S,,.) and a constraint

term of the type div (ss . Finally we may note that, in



terms of the two-fluid model (cf. II-B-4), equation (151) pre-

dicts that curl ( vi) = 0 whenever S and A= Ke/ are uni-

form in space, and it is known that this equation is too re-

strictive to be in accord with some of the experimental

results.

One might hope to remove the restriction (151) by modify-

ing the variational principle in some way. However, the La-

grangian nature of the system has already been taken into

account by means of the constraints (116) expressing the "con-

servation of particle identity", so it is not obvious as to

what sort of modifications one should try. Formally, one can

introduce "Lagrangian coordinates" for the velocity c , and

constraints similar to (116); the physical significance of

such a device is not clear, however, and the resulting equa-

tions for v and C (after elimination of tChe Lagrange multi-

pliers) are of higher order than one would expect.

There is one important difference between the present

case and the case of an ordinary fluid which may be a clue to

the source of the difficulty. This is the fact that, for an

ordinary fluid, the (local) conservation of entropy is equi-

valent to the statement that the entropy of each fluid par-

ticle stays constant, whereas in the one-fluid iodel for he:-

lium II, the entropy of each fluid particle does not stay con-

stant (in general), even though the entropy is conserved.

Thus in the present case, there is energy transfer of an es-

sentially thermal nature (even though the transfer process is

thermodynamically reversible), so that it is not entirely



clear that one can expect a variational principle of the form

&Jdt (T-V) =0 to hold.

Since the variational principle is being used here to

deduce the equations (and not to give an alternative deriva-

tion of the equations which are already known), it would seem

to be important to resolve this difficulty; however, this has

not been done as yet. In the absence of a more satisfactory

derivation of the equations, we simply take the equations of

motion to be those given by the above variational principle,

without, however, retaining the restrictive equation (151).

This procedure is somewhat arbitrary, since the various forms

of the equations for . (cf. equation (127)) are no longer

equivalent when the restrictive equation (151) is dropped.

Of all the possible forms for the equation for c , one can

perhaps justify a preference for the second of equations (127),

since this is an equation for the time rate of change of the

extensive quantity (per unit volume)zc . Thus we tenta-

tively take the complete set of hydrodynamic equations in the

following form:

+ div(ev)= 0.,

.~ S) + (iS (+Z3 5)

and



The thermodynamic relation (147) is the same as before, and

the energy equation (which follows from (152)) is still

given by (149).

Because of the difficulties in the derivation leading to

(152), it would be very desirable to obtain the equations by

another method. In the next section, we examine the possi-

bility of deriving the equations frorr the conservation laws

and the Galilean transformation formulae. It will be shown

there that, although the equations (152) are consistent with

the conservation laws and the Galilean transformation formu-

lae, one cannot deduce a unique set of equations from that

method.



.* Conservation laws

Landau's work (discussed in II-A-1) has shown that the

imposition of the conservation laws plus the requirements of

Galilean invariance are sufficient to determine a unique set

of hydrodynamic equations (for reversible processes) for the

two-fluid model, provided that it is assumed that always

curl vs = * It was also showrn in I-A-1 that it is no

longer possible to deduce a unique set of hyroCynamric 2qun-

tions when the requirement curlvS=, is dropped. Thus it is

no surprise that when themethod is applied to Lin' s one-fluid

model, it does not lead to a unique set of hydrodynamic equa-

tions. The method does, however, limit the possible form of

the hydrodynamic equations, and in particular, the equations

(152) are consistent with the restriction imposed by the con-

servation laws and the requirements of Galilean invarience.

Since the method does not lead to a definite set of hy-

drodynamic equations, it is of limited interest, and the cal-

culations will be described only very briefly here.

It is assumed that the macroscopic state is characterized

by the values of , , and c ; the mass flux is taken

to be , the entropy flux to be S(Y4). Then the laws of

conservation of mass ancd entropy are the same as before,

.) r ( (53)

and
C,s)+ digs(Y +C)1=6 (154)



The conservation of momentum is expressed by an equation o

the form

_e. (VI .(. (T1' = 0 ,

where the momentum flux tensor VTii is as yet undetermined.

total energy per unit volume is taken to be

E v +e.,

where e = e(tsrc. is the specific internal energy, and

de = de +TdS -c -dre

defines the pressure p and the temperature T . (The ther-

modynamic description (157), obtained in the preceding section,

is assumed to be valid here.) Then the conservation of energy

is expressed by an equation of the form

c).E . dIV Q =0, (158)
at

where the energy flux vector C. is as yet undetermined.- Fi-

nally, there will be an equation for the convection velocity

c. , and it is convenient to write this equation in the form

SzC9 )4. (yj + Cj) e Z C i =i y(169)

where Fi is as yet undetermined. Altrough the quantities 1TIJ ,

Q and F are not known, we nay use tre Calilean

(155)

The

(156)



transoriiation foiinulae to express Q anc jTj in termis of their

values, Qo and TTh, in the rest frame of the fluid, and we may

also deduce that F must be a Galilean invariant. Thus

r~ ' V / + Tif's

For convenience in the calculations to follow, we introduce

new unknown quantities TIJ , and F by the equations

T- P s!! - f rcticl + 1i

9.=es-rc 1. - C C. +a*',

and
FiT s - (j+ + F

a)' E~x1.

The quantities IT Q and F' are all Galilean invariants, and

the problem of determining the hydrodynamic equations is re-

duced to the problem of determining Tf, 0 and E.

The procedure is the same as before; we have 8 indepen-

dent quantities ( S , s , , C ) and 9 (scalar) equations

for these quantities. We may obtain an equation which the

I I I
quantities Try, Q and F must satisfy in the following man-

ner: we first calculate in terms of the macroscopic vari-

ables ( and their spatial derivatives) directly from the

hydrodynamic equations; then this expression for c)E and the

above expression for Q are substituted into the energy equa-

tion (158). The final result of the calculation is the



O= rri av*L .dv Q'- c -F'. (wo)

Since this equation contains no time derivatives, it must be

an identity, and it thus restricts the possible choices of

Tr , Q' and . (We may note that the equations (J12) of the

preceding section correspond to the choice TT;jEo, Q 0 and

F'O ). It is easy to show from (160) that the most Peneral

expression for F' (for arbitrary sffjand Q ) is given by

F~ C. +g

where OC is an arbitrary (Galilean invariant) vector. The

fluxes T; and Q are Galilean invariant; thus if one makes the

plausible assumption that these fluxes do-not depend on the

gradients of the macroscopic quantities, then one can show

that the most general expressions for Tir; and # are

Tr's )=1c~c~ c C2d

and

where 1 , are scalar functions of \ , 5 and C

Even with this simplification, there are still 3 arbitrary

scalar functions ( 23 , 13 ) and an arbitrary (Galilean

invariant)vector ( . Thus this method by no means yields a

definite set of hydrodynamic equations,



One can simplify te aove results a little by iiving a

physical argument to determine the energy flux vector. On the

basis of the discussion in the preceding section, we expect

that the convective terms in the energy flux are of the form

and that the terms accounting for the rate of working of the

fluid stresses are of the form

so that the total energy flux is then

Ev + *sTc. - zc .

This corresponds to Q1= , so that (161) now reads

F'= -. c T

There does not seem to !e any simple argument which would

allow an unambiguous determination of the stress tensor (and

consequently of TT; ), but even if we accept the form of the

stress tensor as given by the variational principle (corre-

sponding to TT=;j.O), we still have in F an arbitrary vector

(s 9 C ) perpendicular to C . If we agree to accept the mo-

mentum flux tensor and the energy flux vector as obtained

from the variational principle (i.e., we take Q= ,=)

then the most general set of equations consistent with the



the conservation laws and the requirements of Galilean invari-

ance is

(es) + 1V S (Y+C =0,

(1163)

an d
.- .e z C-0 + c, f V +C ZCL ) Sc 6 sQ.T
a t <17XA i
.i..(zc) {(v}+ C .F-

where FL' is an arbitrary Calilean invariant vector perpendi-

cular to C . These are the same as the equations (152), ex-

cept for the term IF in the equation for c .

In summary: the method yields a restrictive equation

which the momentum flux tensor, the energy flux vector and the

"force" F must satisfy, but does not yield a unique set of

hydrodynamic equations. The equations (152) obtained from the

variational principle are consistent with this restrictive

equation.



4. Relation with the two-fluid thieoiy

As Lin ( [25, 2 g]) has shown, the hydrodynamic equations

of his one-fluid theory are essentially equivalent to Landau's

equations for the two-fluid model. In fact, the equations for

the two-fluid model may be obtained from the equations of the

one-fluid model by means of a simple mathematical transforma-

tion.

In the one-fluid model, the state of the fluid is com-

pletely described by the quantities , , v and C (and

the internal energy function); the basic variables of the two-

fluid model may be taken as g , s , , V s and n (where

x is not independent, but may be regarded as a function of

the other two-fluid variables). Thus if we specify Vn and VS

in terms of the one-fluid variables, the equations (152) (or

(163)) of the one-fluid model will yield a set of equations

for , , ,Vs which are then to be compared with Lan-

dau' s equations. In both models, we have definite expressions

for the densities and fluxes of mass, entropy, momentum and

energy; it turns out that the corresponding quantities in the

two models are all equal, if we have

V 4* C,()

VS ~+Z



Of course, if we regara the onae-filutid model a bA.sic, t,'-

(164) may be regarded as simply a mathematical definition of

the quantities vn , ', and x * Then we may further define

(164), we may (after some calculati

(163) in the following form:

.i. + di4 vn +eis=o,

s) + d=.,

and
v) -.i.

CTx3 (

By using the relatione

.ons) write the equations

en ni n sV )
vp + sVT + x Vw 2' + X w X(CUrIVs)

-w -ere

.(IJxET

w = vn -VS )

-Vvn=-.

x (curl vs) -

+ IVS - 4

..- x)
e x

sVT +i xC

15

- I
e

4)

or
Vp -- x I-x v N

C) XS

v

en

+ xW X (cur '{

17 W2 4

%S+ s -VY

T

s



(where r~' -- n +civ(envNn) ).

If we accept the equations as given by the variational prin-

ciple (equations (152)), thenF'.=O , and the equations are the

.same as Landau's, except for the terms in w xcurl vs . The

equation for Vs may be put into the form (still assumin, ,7,)

a v Tlvc1url5

and this clearly shows that the equations permit the class of

solutions with curl v%=O ; for this class of solutions, the

equations are identical with Landau's equations. However, the

equations also allow more general solutions for which cUrkv-4*O.

As we saw in the preceding section, any choice of F' such

that c.-F'o gave a set of hydrodynamic equftons ((163)) which

were consistent with the conservation laws and the require;.

ments of Galilean invariance. It is of particular intereSt to

note that the choice

F' gzc A cu ri + zC,

= - W x cur V,

gives the equations

+ . Vv= -. Vp VT VW

- fn I



Av.2 ~ ~ ~ V +vs -v -- p+sVT + X V i

which are the Landau equations (again, the equations (167)

permit solutions with curl vs -O , but also allow more general

solutions).

Although we have obtained the two-fluid equations from

the one-fluid equations and the relations (164), we have yet

to compare the thermodynamic descriptions. According to the

one-fluid theory, the total energy per unit volume is given

by E ievL+ e , where de = d +TdS-c -da. In the two-
aV

fluid model, the total energy is Ep vn + .WS

which defines the specific internal energy of the two-fluid

model. By equating the two expressions for the energy and

making use of (164), we find that

e e -1x (h-x)W = e +,

e= e,(I 3)

Thus

d= d(e +. zc.)

= de +Tds -. cd

= -x 7 7 d c,(lb

so that the thermodynamic description obtained by transforma-

tion from the one-fluid model is the same as that given



origi~naKlly for the &io- lu"I mo&l (Duation (l) or eQ>i1on

(64)). We may also note now that the extensive variable iEr

in the one-fluid model may be written as

and thus in the two-fluid model may be interpreted as the

(negative of) the momentum per unit volume of the fluid in the

superfluid rest frame.

From the above, it is seen that the equations of the one-

fluid model are in substantial agreement with Landau's equa-

tions for the two-fluid model. The equations (165) (withf =O)

are those given by Lin [4]. These equations differ from Lan-

dau's equations by the extra terms in wxcuri Vs , but it would

be difficult to decide from experiments whether the perfect

fluid equations should contain such, terms since it is usually

true that ditsipative processes are important in flows for

which curt vsit . Also, because of the difficulty with the

variational principle, it is perhaps slightly preferabl. to

retain the more general equations (165) with F'.*O (which

include the Landau equations (167) as a special case). Per-

haps it is well to emphasize again that Landau's method for

deriving the two-fluid equations yields a unique result only

when the restrictive equation curlvs 0 is imposed. As we

saw in section II-A-1, Landau's method fails to yield a

ubique set of equations if the restrictive equation curivs=0

is dropped. Thus if we do not insist that curl v, must vanish,

then the difficulties in obtaining a definite set of



same extent as in Lin's one-fluid theory.



. i u Io

In this section, we give a brief discussion and compari-

son of the two-fluid model and the one-fluid model, and the

various methods used to obtain the hydrodynamic equations for

reversibla flows of helium II. We consider first the two-

fluid model.

The derivation of the Landau equations for the two-fluid

model from the conservation laws (as discussed in II-A-1) has

the advantage that it is based on general principles of unj-

versal validity (i.e., conservation laws and Galilean invari-

ance). FHowever, the possibility of unambiguously obtaining

the Landau equations in this manner depends in an essential

way on the additional special requirement thatturi v must

vanish. If this requirement is not imposed, then the conser-

vation laws and the Galilean relativity principle are not

sufficient to determine the hydrodynamic equations uniquely,

and some additional principle is needed. In his 1941 paper

[201, Landau gave such an additional principle--namely, that

there be no momentum exchange between the two components

(other than that due to en4d stransitions). In a sense, this

principle is really the foundation of the two-fluid. model be-

cause it is the one principle which distinguishes the helium

two-fluid system from a mixture of two ordinary substances in

which a chemical reaction (or dissociation) is taking place.

In order to formulate this principle precisely and use it in

the derivation of the hydrodynamic equations, however, it is



Ole2r tht <>n(2S2Jry i~prorjoqK1ui3 it:: 12 W c lted0

namic and hydrodynamic description for each of the components

of the two-fluid system. The derivation of the hydrodynamic

equations given in II-A-2 is based on these ideas, and it was

shown there that one may deduce the Landau equations without

the restriction cOrI U, =0 in an unambiguous manner. Finally,

in section II-A-3, a discussion of Zilsel's variational prin-

ciple for the two-fluid model was given. Although this method

yields the Landau equations, it entails certain restrictions

on the quantities curt Vn and cwrisi . It is probable that

these restrictive conditions do not have physical significance,

an4 ttat they arise from defects in the variational principle

connected with the fact that one cannot introduce a Lajrangian

description of the two-fluid system.

For Lin's one-fluid model, two derivations of the hydro-

dynamic equations were discussed. The first of these, the

variational principle discussed in II-B-2, leads to a definite

set of hydrodynamic equations, but also implies a restriction

on the quantity curI o . It is possible that tbis difficulty

stems from the fact that the Hamilton's principle of mechanids

was used to obtain the equations of motion, whereas we know

that even for reversible flows of helium II energy transfer

proc-esses of an essentially thermal nature may take place.

Lin* has suggested that a more thorough study of the thermo-

statics of the one-fluid model may reveal a way in which the

variational principle should be modified to take these thermal

4 private communication



processes into account. The other derivation of t4e eqU.Lons

for the one-fluid model (based on the conservation laws and

the Galilean relativity principle, section II-B-3) did not

yield a unique set of equations (this, of course, is to be

compared with an exactly similar result for the two-fluid

model when the restriction curl Vs = 0 is not imposed). The

class of equations consistent with the conservation laws in-

cludes the Landau equations and also the equations originally

proposed by Lin 25,24.

As discussed earlier (II-B-4), the equations of the one-

fluid model are equivalent in all essential respects with the

Landau equations for the two-fluid model. Although the macro-

scopic equations are essentially the same for the two models,

the underlying physical ideas are very different. The origirs

of the two-fluid model are the various microscopic theories

of liquid helium II, while the one-fluid model represents a

generalization of ordinary hydrodynamics suggested by macro-

scopic observations. Since the relationship between the

various microscopic theories and the actual molecular struc-

ture of helium II is not clear at present, it is reassuring

that one may obtain hydrodynamic equations equivalent to those

of the two-fluid model from the 6ne-fluid model which has its

foundations directly in macroscopic observations.
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A. Introduction

In the preceding chapter, several independent derivations

of the hydrodynamic equations for reversible processes were

discussed. Although the physical bases for the derivations

were quite different, and although the condition curl V.s =

was an independent requirement in one of the theories and

merely characteristic of a particular class of solutions in

the other theories, the form of the hydrodynamic equations ob-

tained was essentially the same in all cases. In particular,

for reversible motions starting from rest, the two-fluid equa-

tions as derived in II-A-2 and the one-fluid equations as

given by Lin both predict curi vs=0 and consequently reduce

to Landau's equations.

When we consider dissipative processes, however, the

question of superfluid rotation can no longer be avoided. In

fact, the present hydrodynamic theories (including dissipative

processes) may be roughly divided into three types; (i)the"

ories in which curl v =o always 221, (ii) theories in which

curl vs plays a special role (e.g., the quantized vortex line

theories of Feynman lland Hall and Vinen [12,13,14,38] , or the

continuum theory of Bekarevich and Khalatnikov 3I in whichlcurvs

is a thermodynamic variables) and (iii) theories in which no

special assumptions are made about the nature of curi v (Lin

[26,25,241). The remainder of this chapter will be devoted to



a detailed Ciscussion of som.e theories of type: (i) and (iii)

above*. (The two-fluid model will be taken as the starting

point in all of the following discussions; although the theory

of dissipative processes has not yet been developed directly

in terms of the one-fluid model, the results for the two-fluid

model may be easily expressed in terms of the one-fluid model

by means of the transformation formulae given in the preceding

chapter.) Before entering into a detailed discussion of the

various theories, there are a number of general considerations

relevant to all of the theories to be discussed first'

Since present knowledge of the microscopic structure of

superfluid helium is rather uncertain, it is desirable to base

the derivation of the hydrodynamic equations on general con-

tinuum principles, rather than a specific molecular picture.

From this point of view,then, the terms in the equations re-

presenting dissipative processes are to be obtained in a phe!-

nomenological manner. It is important, however, that the

processes considered be consistent with the essential features

of the two-fluid model. Thus, for example, if we include

mutual friction terms in the hydrodynamic equations, we must

be prepared to give a plausible, qualitative description of a

microscopic process which (i) leads to a macroscopic momentum

exchange between the two components and (ii) does not destroy

the two-fluid nature of the system by rapidly producing a

state in which v.= v. Since the normal fluid behaves in some

respects like a gas of thermal excitations, it is clear that

* Chapter IV is devoted to a discussion of some t7eories of
type (ii)



processes swchas thermal conduction and normal fluid molecu-

lar momentum transfer require no special discussion. However,

the introduction of a superfluid viscosity or a mutual fric-

tion force really requires some discussion of the compatibil-

ity of these concepts with the two-fluid model. Some attempt

will be made to discuss these points as they arise in the

derivations of sections III-B and III-C.

The general method to be used in deriving the equations

is the same in all cases, so it is perhaps appropriate to out-

line the method here. (It is essentially the standard method

of the theory of non-equilibrium thermodynamics as given, for

example, in r4). The starting point for all of the deriva-,

tions is the two-fluid model. It is assumed in each case that

the correct equations of tIhe perfect fluid tbeory are known.

The independent perfect fluid equations may be taken as the

equations expressing conservation of mass, momentum and energy,

and an equation for the superfluid velocity 'Jl . When dissi-

pative processes are considered, the mass, momentum and. energy

equations will have the same form, (i..e., the form of a con-

servation equation)but, in general, the fluxes will contain

additiondl -trmn (which are to be determined). The equation

for 5 will also contain additional terms, but since this

equation is not a conservation law, the form of the terms to

be added must be decided upon (that is, we could add to the

equation for Vs a contribution from a dissipative stress

tensor, , or a mutual friction terml FL , or both).

This is a point which must be settled for each of the theories

individually, so that fu.irther discussion of this is deferred



to sections III-B and III-C. Then the independent equations

describing dissipative processes will be the conservation

equations (mass, momentum and energy) and the equation for VS

All of these equations will contain terms describing the

effects of dissipative processes (which we may call the dissi-

pative fluxes) which are to be determined. These dissipative

fluxes are determined by the requirement that the rate of cre-

ation of entropy be positive. To carry this out, one calcu!-

lates the rate of entropy creation (from the hydrodynamic

equations); the resulting expression is a bilinear form in the

dissipative fluxes and the gradients of intensive quantities

( T Vf si~
(a~ ~ ', etc.). Then it is assumed that the dissipa-

tive fluxes are linear functions of the gradients of the in-

tensive quantities. (This is the usual procedure in develop-

ing a theory of irreversible processes for a given continuum

system; in any case, it is a plausible first approximation,

althouh, until more is known about the microscopic structure

of helium II, one cannot exclude the possibility that some of

the important dissipative processes are inherently nonlinear).

The phenomenological coefficients connecting the dissipative

fluxes with the gradients of the intensities will in general

depend on the (Galilean invariant) independent macroscopic

quantities (e.g., we may take the phenomenological coeffici-

ents to be functions of , s and = -) The expression

for the rate of entropy creation then becomes a quadratic form

in the gradients of the intensities; the requirement that this

form be positive definite places restrictions on the pheno-

menological coefficients. In principle, each of the



independent intensities. In th6 case of an isotropic fluid,

the phenomenological coefficients can only depend on scalars

such as i , 6 ; it is possible to show in this case that a

given flux depends only on intensity gradients of the same

tensorial rank (see, for example, [4] ). In the present case,

however, the phenomenological coefficients may depend on the

vector w , as well as the scalar thermodynamic variables,

and in the most general dissipative equations, there can be

coupling between processes of different tensorial rank. In

the discussions given in sections III-B and III-C, we will

generally assume that the phenomenological doefficients do

not depend on vW , since ti is entails a significant simplifi-

cation of the resulting equations; some discussion of the more

general case will be given, however, in order tb illustrate

the types of terms which can conceivably appear in the most

general phenomenological equations.

We may note here that some experiments (e.g., experiments

on the form of the free surface of helium II in a rotating cy-

linder (Osbourne 31 3) or the rotating bucket experiments of

Peppy and Lane 321) indicate that the superfluid is definitely

rotating in some manner; thus the condition Ceurl'4,=O Is-hot of

universal validity, and, consequently, theories in which cvrI Vs

must, always vanish are of somewhat limited interest. The

question as to how the superfluid component rotates (that is,

whether it can totate in bulk like an ordinary fluid, or

whether it merely imitates bulk ib6tatIon by sustaining



quantized vortex lines) is one for which the experimental

evidence is as yet inconclusive. Lin 253has given a detailed

discussion of the relevance of the various experiments to the

question of the existence of quantized vortex lines or quan-

tized circulation.

It is perhaps also appropriate to include in this general

discussion of dissipative processes a few remarks about the

concept of mutual friction. The general discussion given above

is adequate for dealing with those dissipative processes which

arise as a result of a non-uniform spatial distribution of the

various intensive quantities. In some theories of liquid

helium II, however, mutual friction forces depending on the

relative velocity w=Vn- Vsare introduced8]. This sort of mu-

tual friction is clearly a different sort of dissipative pro-

cess than those considered above, and really represents a

partial breakdown of the two-fluid model. Usually there is a

critical velocity associated with such forces, below which

the friction force is absent. (It is by no means clear that

it is necessary to introduce such friction forces in order to

explain the various experimental results. Lin 21 has shown

that many of the results from channel flow experiments may be

satisfactorily explained on the basis of his theory of dissi-

pative processes (to be discussed in detail in section III-C).

Further, Staas and Taconis E34 have srown that some results

from channel flow experiments may be explained quantitatively

by invoking known results from the theory of turbulent flow

of an ordinary fluid.) Since this sort of mutual friction



force does not depend on the gradients of the intensive quan-

tities, it is not necessary to decide whether or not such

forces are present when carrying out the sort of derivation

outlined above. Hall and Vinen [12, 13, 14, 383 have Fiven a

theory which includes mutual. friction termsai!ising fromd he

scattering of the normal fluid excitations by quantized vortex

lines "in the superfluid component". Bekarevich and Khalatni-

kov [3] have obtained from a continuum theory the same results

as Hall and Vinen; in their theory (to be discussed in detail

in Chapter IV), the mutual friction is a dissipative process

depending partly on the gradients of intensive quantities, but

the general theory outlined above must be -supplemented by a

nurmber of special considerations in order to obtcin the hydro-

dynamic equations of their theory.



.s curl vS =0

1. Introduction

In the present section, we give a derivation of the hy-

drodynamic equations describing the flow of helium II includ-

ing dissipative processes, following the work of Landau, and

Lifshitz and Khalatnikov 22L. As mentioned in the introduc-

tion, this theory is of limited interest, since it is now

known that the superfluid can rotate in some manner. Never-

theless, the theory to be presented here (being the simplest

theory dealing with dissipative processes in helium II) is a

good starting point to illustrate the application of the gen-

eral method described in the introduction. Furthermore, the

equations obtained in [22]are not the most general equations

possible, so it is perhaps of some interest to indicate the

nature of the most general equations consistent with the gen-

eral principles underlying the derivation.

One of the fundamental assumptions of the present theory

is that corl VS must vanish always. The equations describing

reversible flows are the Landau equations as discussed in

II-A-2. For convenience, these equations, together with the

expressions for the various densities and fluxes, are written

out below.

WscLSSd~ +divj =0 +

MomnenTUM: ( Tr*Q=, Tr= v.zvn tvsS+
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We now derive the equations including dissipative pro-

cesses according to the general method outlined in the intro-

duction. The equations for mass, momentum and energy must

still have the form of conservation laws. Thus these three

equations will have the form

+ 0 (172)

Tr + div-&j 0,

and
E - ')=O, -)4)

where the increments Tr;j and Q due to te dissipative pro-

cesses are assumed to be linear functions of a set of indepen-

dent gradients (such a set would be for example,

and.. ). The coefficients connecting the fluxes T; and.

Q' with the gradients will in reneral depend on V , 'Ja and

the therimodynamic variables (subject to the restrictions im-

posed by the Galilean relativity principle). The equation for

the superfluid is not a conservation law; however, since we

are inposing the restriction curl VSO , the superfluid equa-

tion must have the form

alVS J . VVS 4 V~c + V Ot5
wF

ta -L



where CN is also taken to e a linea function of the indepen-

dent gradients.

In the case of the perfect fluid theory, the equations

(171) imply the entropy equation S)+dV(sVn")=0 . In the

present case, the equations (172) - (175) will also yield an

equation for the entropy which, however, has the form

1 S) .+ 8't V(y + V s, +1 3 Sf
atT

where js represents the effect of the dissipativo processes on

the entropy flux (and is assumed to be a linear function of

independent gradients), and R/T , the rate of entropy pro-

duction, is to be positive definite. Equation (176) is not an

independent equation, but is a consequence of the equations

(172) - (175); in fact, it is a matter of straightforward cal-

culation to show from (172) - (175) that

= -divQ' - esvw-Vc 4- VnL cj' .

Then, after a simple transformation and use of (176), we have

R= -divtQ'Vn 07 1+ e, 4TYS' I ~ )- 'Vn L 4 sw-1V

Equation (177) has the form"R=-dv +R , where F (= Q'-T,

.. %i.-' / ) is a linear vector function of the independent

Eradients, and Ris a homogeneous quadratic function of the

independent Eradients. If F were not identically zero, then

the local rate of entropy production R would contain terms



iineLar in the second deriv&atives of the intensities, as well

as terms quadratic in the first derivatives; in this case, we

could not possibly make R positive definite by any choice

of phenomenological coefficients. Therefore F.O , and we

have*

Q9 , OT' -esw4' I-i- Tgs, (T

R ayTr1  + cAive - 3s -VT. (7%

Thus the quantities TTI , > and -- all linear functions of

the independent gradients--are to be determined so as to make

R positive definite. The requirements of Calilean relati-

vity are satisfied provided Tr; ,p and l are all Galilean

invariants. Thus the coefficients connecting these quantities

with the independent gradients must then be Galilean invaril

ant; this means that (in general) these phenomenological co-

efficients will depend on w(=vn-V)and any two independent

thermodynamic variables (such as and 5 or F and I , ).

From the expression (179) for the entropy production, we

see that the gradients conjugate to the fluxes -T;', <) and S

are, respectively, -Z ,L d1qvQand -VT. Although in princi-

ple we may express the fluxes T1, > and Y in terms of any

set of independent gradients, the conjugate gradients
* A careful discussion of this point requires a much more

detailed argument; a more complete discussion is given
in the Appendix to Chapter III.



furnished by the expression for the entropy production are

the natural choice. Since -T~j is to be symmetric, the gradi-

ent conjugate to -r-,j may be taken as

Thus the phenomenological relations (to be determined) will

relate the fluxes to the gradients

dliv Sv and 'U T.(i)

The procedure for finding the general expressions for the

fluxes is straightforward but laborious. By way of example we

consider the problem of finding the most general expression

for the entropy flux s. Since Y is a linear function of

the quantities (181), we have

whiere (-

SKe - ijell
3

It is clear that the coefficients o(i, P, etc. are tensors

(with rank equal to the number of subscripts). These tensors

will depend on the vector w and on the independent Galilean

invariant scalars (e.g., on ? T and1wy ). We may (with-

out loss of generality) assume that r ilk= v, , and I t 0

Then the most general expressions for the tensor coefficients

are



Q. = -wL

Y =as wLtWj
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I
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The calculations for the other fluxes are similar; the most

general expressions for the remaining fluxes are Eiven by
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Thus the imiost general dissipative fluxes may be expressed in

terms of 20 scalar phenomenological coefficients. The condi-

tion that the entropy production be positive definite imposes

certain restrictions on these scalar coefficients, although it

would clearly be a formidable task to obtain explicit condi-

tions.

The complexity of the general expressions (184) - (157)

for the fluxes stems from the fact that the phenomenological

coefficients in general may depend on the direction of the

vectorvv * We wish now to consider a much simpler special

case--we assume that the phenomenological coefficients con-

necting the fluxes T; , CO' and 7,'with their conjugate

gradients (181) depend on vV only through w . Then the equa-

tions (184) -(187) are replaced by the much sinpler equations

-,,eK, (vT di, and (1)
pr

1TKK ~ ~ ~ i~ = 5 civ'n 3Lv (180)

Qnd

lTrj -r.L'Ky. cS i 2 ne.O 9

where there are now only 6 scalar phenomenological coeffici-

ents, K , , , $ 7%22 h51 %. and )A,,. The rat e o f ent ropy

production R/T is then given by
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For 'R to be positive definite, it is necessary and sufficient

that we have

pen 0 03o X7s .2:.0 .,K ; 1 0

and (*A 7 A) 7 (

With the fluxes given by (188) - (191), the equations ob-

tained here agree with those given by Lifshitz and Khalatnikov

[221, although these equat ions are clearly a special case and

not (as claimed in D221) the most general equations. Thus to

obtain the equations as given in 221, we must make the addi-

tional assumption that the phenomenological coefficients are

independent of the direction of the vector .

No attempt has been made to give a physical interpreta-

tion to the many terms in the most general expressions for the

fluxes (equations (184) - (187)); in fact the main reason for

obtaining the general equations was simply to illustrate the

great variety of dissipative terms consistent with the present

form of the two-fluid model and with the general theory of

linear irreversible processes. For the remainder of this sec-

tion, we will only conisider the special equations for the

fluxes given by Lifshitz and Khalatnikov [22J(equation (188) -

(191)).



processes represented by the 6 scalar phenomenological coeffi-

cients K , JA, , ,. , X and 'A4 ,. It is clear from the

expressions for the fluxes that K and y,,are the thermal con-

ductivity and the normal fluid viscosity respectively. The

other 4 coefficients ( , 4, , ) are analogous to

coefficients of bulk viscosity and may be regarded as a pheno-

menological representation of certain relaxation processes

(representing, for example, the effect of the finite relaxation

time of the processes which tend to maintain the normal fluid

concentration at its equilibrium value).

The superfluid equation, the expressions for the entropy

production and the dissipative part of the energy flux may be

rewritten in a manner which allows an interpretation of the

dissipative terms in terms of stress tensors and mutual fric-

tion. To this end we introduce

Then the superfluid equation may be written as

~VSL +~. \1 s% + a )j+1 FZ (7.00)

- L es 'rA5 e



The dissipative part of the ener-y flux is (from (173))

and the rate of~ entropy production R/T is given-by

R= Vn -4- -'iti + F +
Y. T

('201)

(2OZ)

Thus the quantities ';, t , and F as defined by (199) play

the role of a dissipative normal fluid stress, a dissipative

superfluid stress-. and a mutual friction, respectively. This

is perhaps best regarded as a formal interpretation, however,

since, in the present case, the form of the superfluid equa-

tion is dictated by the physical requirement curl vs =L)



Finally, we must consider the boundary conditions to be

satisfied at a helium II - solid interface. We consider first

the case when the solid is at rest; the results for the more

general case of a solid in motion will be obtained by .means

of a Galilean transformation. From the picture of the normal

fluid as a gas of thermal excitations, we may conclude that

it is plausible to require the tangential component of Vn to

vanish at the wall; thus

x n = 0, (.03)

where n is the unit normal to the wall. One condition on the

componentsvL,.n and y.n is imnrediately obtained from the require-

ment that the mass flux* n vanish; thus

X Vn - n +- C i-x) vs 0n . (2m4)

The other condition oi the quantities vq.!! , v.n is usuallr

obtained by equating rsTvn.n to the heat current in the wall.

However, the discussion in II-A-1 shows that this boundary

condition leads to some difficulties in principle, so that a

more careful discussion of the flow in the immediate vicinity

of a heated wall is required. The boundary condition _sTV,- n=

=(heat current in the wall) formally corresponds to a flux of

normal fluid through the wall; inactuallty, we know that the

heat supplied to the fluld thro-igh the wall acts to convert'

superfluid into normal fluid, and in fact we might expect that



there will be a thin boundary layer near the heated wall with-

in which superfltid- normal fluid conversion is an important

process. It seems plausible to suppose that the normal fluid

excitations created very near the wall will be very nearly at

rest, and that the usual acceleration mechanistiia (tempera-

ture and pressure gradients) . will bring the excitations away

from the wall. With these crude arguments as a guide, we

might then conjecture that the correct boundary conditions on

v n and v -n are simply that

(2.05)

wall
and

js-nl = o.

A further boundary condition is obtained from the fact that

the energy flux must be continuous across the wall; thus if H

is the heat flux vector in the solid, we have

Q -n= H -n

or (206)

-KVTn~=

We assume for now that the temperature is continuous across

the interface (a brief discussion of the modification of the

boundary conditions to take into account the so-called Kapitza

effect will be given below; since the Kapitza effect is not

peculiar to superfluid helium, it was felt desirable to dis-

cuss the consequences of the above boundary conditions before

including a further complication). Thus the complete boundary



condiions n th case or a sOlId It resJ r

Vn =0 ,(1,01)

n -vs =0 (208)

K VT-.n 4-T%(209)

owait

Th.I~m(2.10)

Since these are not the usual boundary conditions for the

two-fluid model, some discussion of the consequences of these

boundary conditions is called for. First.,of all, we see from

the boundary condition (209) that there will be appreciable

temperature gradients in the helium in the immediate vlcinity

of the wall. Since even a small temperature gradient tends to

excite a large internal convection heat current in helium II,we

may expect the large temperature gradients to be confined to

a thin layer near the wall. In this layer, the process of

normal fluid-superfluid conversion will be important, as well

as the dissipative viscous and thermal co.nduct.ion processes.

We now verify this qualitative picture by a more detailed ana-

lysis of a specific problem. Namely, we consider the s.teady

flow induced in a half-space filled with helium II by a uni-

form heat flux H through the boundary wall (cf., Fig. 1,p.29).

At a great distance from the wall, we know the flow will be a

uniform counterflow; near the wall, we expect a thin boundary

layer in which the gradients of the various quantities are



iar'e. Vithin the steac"y Oounuaay layeri, a baailce is

achieved among the pressure and temperature gradients, the

viscous dissipative terms (including the bulk viscosity terms

involving } A , , 3 and Xi) and the nonlinear acceleration

terms (v-.Vvs , etc.). For sufficiently small heat input H

we may expect the nonlinear terms to be negligible; we will

verify this from the solution obtained on that assumption (and

also make more exact the criterion that H be sufficiently

small). We may also anticipate that (for H sufficiently

small) the total change in temperature, pressure, normal fluid

concentration, etc. through the boundary layer will be small;

thus we may treat the thermodynamic quantities and the pheno-

menological coefficients as constants wherever these quanti-

ties appear in the coefficients of differentiated terms, When

these approximations are made, the differential equations des-

scribing the flow reduce to ordinary linear differential equa-

tions with constant coefficients. The solution is easily ob-

tained, and we have

V,%
-res

T= Too +- H_e ,
K

= + (?S+eX 4) He~

vhere



and >, Teodenote the (constant) values of p , T for (->'o.

The total temperature drop through the boundary layer is

AT = T"G61 - Tft= ~ (RIX.)

Although little is known about the values of the bulk viscosi-

ties, for purposes of order of magnitude estimates we simply

assume that the quantities A 7 , , 3 ansd eX4 are all of

the same order of magnitude as the normal fluid viscosity ,. .

Then

K. n(n23)

AT H

The relative magnitude of the nonlinear convective terms which

were neglected may be shown to be

(,LJ-3S4)Y1( I, T) (pJ s Y2'

Thu, the conditions for the analysis to bh valid are

~~ T 3  /2I2

and

Hi<< (pgn Ts 5 -2

V%/
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0 << (-r K (217)

(m ( nn T )' '2 ( 1.)

By way of example, f or T= I.j* K , .n-I I'o pit ,
(. 4

5.55-10 er9--$/ d0 i ergs/sec-cm- dV3 1 '

and we have

3 - 10T ern (215)

the conditions (217) and (218) are, respectively,

V << 4.10 cm/sec (20)

V <.. < .5 -0 cm /sec. M0

Thus for heat fluxes small enough to induce moderate veloci-

ties, the above analysis is adequate. (However, tL-;e smallness

of tbe estimate (219) for S casts doubt on the validity of a

quantitative continuum analysis of the boundary layer.)

Several comments on the conditions (207) - (210) and the

above analysis are perhaps in order here. First of all, the

temperature change across the boundary layer will generally

be extremely small in situations of practical interest (for

example: if the heat flux is such as to induce a normal fluid

velocity v 10 cm/sec., then for T 2 1. eK , aT/-r ); in such



situations, we may often ignore the heat conduction and bulk

viscosity terms in the equations, and replace the boundary

conditions (207) - (210) by the "effective boundary condition"

anld

where the thermal resistance of the boundary layer is given by

A=K (2.25)

The boundary conditions (222) are equivalent to the results

of the approximate boundary layer analysis given above. For

somewhat larger heat currents, one would. have to take into

account the nonlinear convective terms in the equations, and

the equations (222) would probably no longer give a satisfac-

tory approximation to the actual flow.

Finally, we should mention that analyses quite similar

to the above have been given by corter and Kronig. 19

although their stated purpose was to explain the Kapitza boun-

dary effect (the name given to a boundary effect --first ob-

served by Kapitza in 1941 '18 --in which a temperature dis-

continuity occurs at the solid-liquid interface when heat

flows from the solid into the liquid). Since this -effect has



also been observed in liquid He 3 [6], it seems unlikely that

a theoretical explanation entirely in terms of the two-fluid

hydrodynamics is possible (or even desirable). In fact, ac-

cording to some of the theoretical explanations (e.g., Little

[27]), such an effect should occur whenever a heat current

passes through the interface separating two dissimilar materi-

als. Both the theoretical and experimental results indicate

that the quantitative features of the effect are described by

a relation of the form

aT S (Ta -- Ta.s, ) = AK -t), (224)

where the thermal resistance AKdepends on the temperature.

The theoretical results indicate that the temperature jump

actually takes place at the boundary and is not distributed -

over a thin region of fluid.

It is of some interest that the condition (224) is of the

same form as the effective boundary condition (222) derived

from the boundary layer analysis; however, experimental re-

sults indicate that for temperatures not too low, the measured

resistance A is much larger than the value given by (223)

(subject to the reservation that we have had to guess the

order of magnitude of the bulk viscosities %1 , ?2 , Ws and

X4) . For this reason, and the theoretical reasons given

above, it is reasonable to conclude that the Kapitza boundary

resistance and the boundary layer resistance are independent

phenomena. Then we would expect the actual boundary condi-

tions (including the Kapitza effect) to be
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-KVT.nf =-, (2

and

T --T j ----1 AK(t-iD) (U28)

where n is the unit normal pointing into the fluid. For

moderate heat currents, the approximate boundary layer analy-

sis will still apply, and the effective boundary conditions

will be

Ynn = O (229)

T vn -= _H -n.-, (230)

x Yn -n +(i-x) vs-Vno, (231)

T.0,1- Tan,.., I = ( At+P)(H. -9), . 252)

with A still given by (223).

In the case of a wall moving with velocity u , the above

boundary conditions are still valid provided we replaceIn and

vs by vn-u and Ys -

Much of the above discussion of the boundary conditions

is not dependent on the fact that we have assumed CUrl VS= ,

and some of the results will be taken over directly in the



CiScuSsion of the boundI.ary conditions in the other theories

to be discussed.
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1. Introduction

In this section, we give a discussion of the theory of

dissipative processes in helium II proposed by Lin[26,25,2.3]

The starting point for this theory is the two-fluid model;

however, no restrictions are imposed on the quantitr curl v

The equations are to 'be obtained by means of the general me-

thod outlined in the introduction (III-A). In order to apply

this method, one must know the correct perfect fluid equa-

tions. In the present case, however, we are requiring that

curl vs vanish; thus (as discussed in detail in Chapter II)

there is still some doubt as to the exact form of the perfect

fluid equations. Most of the uncertainty is centered around

momentum exchange terms which are perpendicular to the rela-

tive velocity. It is easy to show that such terms contribute

nothing to the expression for the rate of entropy production.

Thus as far as the present discussion of irreversible proces-

ses is concerned, the more general perfect fluid equations

(such as equations(165)) will lead to exactly the same theory

of irreversible processes as the Landau equations. With this

justification, then, we take the perfect fluid equations to be

the Landau equations (as given by (171)) without the restric-

tion cur vs =0 . (The derivation of II-A-2 also lends weight

to this choice.)

Although it is the purpose of this section to grive a

derivation and discussion of the dissipative equations pro-

posed by Lin, the method of derivation leads to somewhat more



equations is also included. In this way, we obtain some idea

of the scope of the most general equations consistent with the

general principles underlying the derivation; the discussion

also indicates some of the ways in which Lin's theory may be

generalized, should experimental results call for a generali-

zation.



2. Equations for dissipative processes

We now derive the equations including dissipative pro-

cesses. The equations for mass, momentum and energy must

still have the form of conservation laws. Thus

+ Ki Tr diT =Oo (233)

and
o...E + dit' + ()=O, (235)

0 0
where 1T;jand Q are given by (171); Tr;jand Q' are the dissi-

pative contributions to the momentum flux tensor and the

energy flux vector. The entropy equation will have the form

es) .+ div I sv + Y' =(3

where .s is the dissipative contribution to the entropy flux,

and R/T , the volume rate of entropy production, is to be po-

sitive definite. In accordance with the general theory, the

quantities , -rTj and Q' are assumed to be functions, of a

set of independent gradients. For reasons to be discussed

below, we deviate from the general theory outlined, in that

we do not yet require that these quantities be linear func-.

tions of the gradients; for now we only require that the
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dissipative terms J, iT;3 and Q vanish whenever all of the

independent gradients vanish.

Finally, we need an equation for the superfluid compo-

nent. In the preceding section the form of the superfluid

equations was fixed by the requirement curl vs=0. In the pre-

sent case, however it is by no means clear what form to assume

for the superfluid equation (that is, whether to add a dissi-

pative stress tensor, a mutual friction or both). Physically

this means that we must have some idea of-what sort of dissi-

pative processes may occur, and how they affect the superfluid

momentum, since the phenomenological theory cannot tell what

sort of dissipative terms are present. In general, the super-

fluid momentum could be affected by a dissipative volume force

(mutual friction) and a dissipative stress tensor. Thus we

assume for the superfluid component an equation of the form

Zv + s + - i +'(2)

(',
where the dissipative tensorti and the dissipative volume

force F/ are functions of the independent gradients (and, of

course, the thermodynamic variables and the relative velocity

). (We are not considering at present the possibility

that there is a mutual friction force dependent only on the

thermodynamic variables and the relative veloctiy ; as men-

tioned earlier, such a mutual friction force is a special sort

of dissipative process whose contribution to the expression

for the entropy production is entirely independent of the

contribution from the gradient-dependent terms. In any case,



mination of the gradient-dependent dissipative terms is not

affected in any way by the inclusion of this special kind of

mutual friction.)

The equations (233) - (237) are not independent, as the

hydrodynamic equations imply entropy equation. By a straight-

forward calculation, one may show that the entropy production

R/T and the dissipative fluxes satisfy the equation

C) 2)
+x ji S r~

cn)'
where we have introduced T;j, defined by

r. .' (2 9)

Althoug,-h conservation of anF: -ular momentum requires that ibe

symmetric, in general 't and Tr~imay have anti-symmetric part s

which add to zero. It is then convenient to write t;i andti

as

Qnd
CS)' (S)'

Ti- - S- -Al-(241)

(fl11 S CS)'
where 5i, Sj are symmetric and is anti-symmetric. Then

(238) may be written as
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where (.4Z)

(n) C S)
u.v - I |AVni ... C)n4 , cO;= s - (245)

From the assumption that the dissipative terms depend only on

the first derivatives of the intensities, and from the require-

ment that R be positive definite, one may show that

R Sq e-.; + S1j e;j +-A!L(Wjt - c.O; )-3-VT+f 0-w, (244)

and ( ,>s.)'
Qj=T 3. -Tji.vL Ty,. YsL (245)

(The argument for this is discussed in detail in the Appendix

to Chapter III.)

So far, we have not assumed that the dependence of the

dissipative fluxes on the gradients is linear. (We have, how-

ever, assumed that the fluxes do not depend on the second or

higher derivatives of the intensities, and this assumption is

crucial in going from (242) to (244) and (245).) We now
Cfl)' CS)'

assume that the fluxes 5;j, Stj, AM and sdepend linearly on

the independent gradients. The gradient-dependent volume

force F , however, requires special consideration. If .F
were linear in the gradients, then there would be a



contribution t-f to the quantity R which would be linear in

the gradients, whereas the remaining terms in R are homo-

geneous quadratic in the gradients; since R is to be positive

definite, it must be that w?=F O (still assuming F'is linear

in the gradients). In this case then, #.' would not be a dis-

sipative term at all, but would be exactly the sort of perpen-

dicular momentum exchange term which some of the perfect fluid

theories allow and which we have agreed to neglect. Thus it

must be that the first approximation to the gradient-dependent

volume force . is quadratic in the gradients of the intensi-

ties. We may note that the equations of Landau, Lifshitz and

Khalatnikov (as discussed in III-B) for the case curi vs=0

correspond to the special choices

d div

^A (ci; v Vn +tswdiv ts)&3

A 0

and F 0 1~

so that their theory is included as a special case in the

present general theory, as one would expect.

The special arguments necessary for the volume force

are not particulary convincing; in fact, they more or less

serve to show that the volume mutual friction force is a con-

cept which does not fit comfortably into the framework of the



present Eeneral theory (with one possible exception: from

(244), we see that the quantity conjugate to F* in the entropy

production is not a gradient at all, but is the relative velo-

city w ; thus mutual friction forces dependent only on the

scalar thermodynamic variables and the relative velocity W

can easily be accomodated in the present theory; as mentioned

earlier, the determination of the gradient-dependent terms is

not affected in any way by the inclusion of such a mutual

friction). As mentioned earlier, a volume mutual friction

force really represents a partial breakdown of the two-fluid

model, so that it is not surprisinr' that we meet some diffi-

culties when we attempt to treat it on an equal footing with

the more usual dissipative processes.

We may also note that, within the context of Lin's theory,

there is no obvious mechanism which could give rise to a vol-

ume mutual friction force. For this reason and the reasons

discussed above, we willassume from here on that the volume

mutual friction force F' is identically zero., Then the ex-

pression for the rate of the entropy production is given by

Thus the gradients conjugate to the fluxes S; , S;, Aq, and

are rsspectively,

adh pn i sn d - T , (241)

and the phenomenologr-ical relations connecting, the fluxes with



the gradients (24T) are to be determined so that R is posi-

tive definite.

As in the preceding section, the most general relations

Qonnecting the fluxes with the gradients are very complicated,

since the coefficients in general may depend on the direction

of the vector w . Although it is possible to obtain the sen-

eral phenomenological relations for the present case, they

will not be considered in detail so we do not write them out

here. (We may note, however, that the most general relations

are characterized by 44 scalar coefficients, subject to the

restrictions imposed by the conditionRZO .) We now assume

that the coefficients connecting the fluxes with the conjucate

gradients (247) do not depend on the direction of the vector

W . The phenomenological relations are then greatly sim-

plified, and we may write them in the form

(ni) I_ (ni 0_ 1(5C) C n) )
S;i = 2 p.fte; + + ~ffeK ,v. +Ohn se~ vS.j

5ij ~Z)ASTi )AZMSC;s + I sne Kit ~ i

(249)
A =-Y K --VT,

~ T

where

#NJ (") Cr') C n), (_ ()

Thus the phenomenological relations are characterized by 10

scalar coefficients. The rate of entropy production R/T is

then given by
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The necessary and sufficient corditions for R to be positive

definite are

}\n > -) )SS - A SSe }A55 X ()n% + JAsn)2

Ann > 0, ASS>: *2 a 4 Ann Xss (Nns +Asv%2

Qr~d K~O.(251)Y.-.> tnd .. 0.

We now consider the physical interpretation of the pro-

cesses represented by the phenomenological equations (249).

From the picture of the normal fluid as a gas of thermal ex-

citations, we may expect that there will be some transport of

energy and momentum by molecular collision processes; thus we

mnay identify K as the coefficient of thermal conductivity and

lApnnas the normal fluid shear viscosity. The quantities $,U,

sn, , LAAare likewise interpreted as shear viscosities, . ss

being the superfluid viscosity and $n,, /45 being shear ex-

change coefficients. It would be desirable to give some ir-

terpretations in terms of the microscopic theory for the pro-

cesses represented by f.,,,and ,; however, a clear pic-

ture of the sort of microscopic processes occuring in flowing

helium II is still lacking, so that sueh an interpretation

-must await furtheri development of the microscopic theory.



(Of course, one may make conjectures on the basis of the

qualitative microscopic theories: now avAilable. For example,

from the picture of the superfluid component as a kind of sin-

gle coherent quantum state, we might suspect that any non-

uniformity in the superfluid velocity field would be resisted

by some sort of quantum-mechanical exchange forces; it is con-

ceivable that suh forces could *be represented phenomenolo-

gically in terms of a "viscosity" coefficient PS). it is

perhaps appropriate to mention here that comparisons of Lin's

theory with experiments indicate that ssis of the same order

of magnitude as )A, and that

The quantities ? , , 25, ? ss are analogous to the

coefficient of bulk viscosity for an ordinary fluid; they may

be regarded as phenomenological representations of certain re-

laxation processes (representing, for example, the effect of

the finite relaxation time of the processes which tend to

maintain the normal fluid concentration at its equilibrium

value). At present, little more can be said about the tature'

6f the processes represented by these coefficients (or about

thr o'der ofmagnitde.of the coefficients).

Untilnnow, nothing has been said about the possib>c-

physical significance of tie anti-symmetric part of the stress

tensors, A. The physical interpretation of this torm is

most easily seen from the equations for the angular momenta of

the two components. From the momentum equation and the super-

fluid equation, one may easily derive the following equations

for the angular momenta:
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where V is a volume fixed in space bounded by the closed sur-

face S (with unit normal n~) and where r= leo + div~

is the rate of superIfluid-normal fluid conversion, and P ,p

are the normal fluid and superfluid pressures (defined in

II-A-2). Thus the angular momentum balance for each component

includes four types of terms: (i) a convective term (the first

term on the right-hand side of each equation), (ii) a torque

term (the second te'm onhe -Vight"hafd side), (iii) a (re-

versible) volume rate of exchange due to the $,,. Ir transitions

(third term) and (iv) an irreversible volume rate of exchange

of angular momentum (the last term on the right-hand side of

each equation). Thus the physical process associated with the

anti-symmetric parts of the stress tensors is a sort of ttanu-

lar momentum mutual friction" which tends to resist a (local)

relative rotation of the two components. In the development

of the present theory, we have assumed that the only momentum

exchange between the two components is that due to

transitions (i.e., we have assumed that there is no mutual



iriction); ti's assumption, hloweverI, doaes not exclude tIe pos-

sibility of coupling by angular momentum exchange, and, as we

have seen, such coupling terms arise in a natural way in the

development of the general phenomenological theory. From the

angular momentum equation (252), we see that there is an ef-

fective body couple,-27eurI, acting on tle normal fluid com-

ponent and an effective body couple,+tf eurl w , acting on the

superfluid component. The local relative angular velocity is

c Curiw , and the contribution of this process to the rate of

energy dissipation is (from equation (250)), as we might

expect,

2.
.J.. curl w Z ,Ycurl w = Y(cury).

Although this is a useful interpretation, it is not strictly

correct, since the terms in question are really surface ef-

fects, as they come from. a part of the stress tensors. We may

also see this from the fact that there is a contribution to

the energy flux (cf. equation (253)) from these terms, whereas

a true "mutual body couple" would not contribute anything to

the energy flux (just as a mutual friction effecting momentum

exchange does not contribute to the energy flux).

T n (25)

The question of whether or not such extra terms should be in-

cluded in the hydrodynamic equations for helium 2II can only

be answered by comparison of the theory with experiment.



Since it is known from various experiments that the rotation

of helium II seems to bring into play some sort of rotation-

dependent dissipative processes, the possibility of including

the additional terms discussed ab6ve should be considere<

seriously. For the remainder of this section however, we will

simply assume that the anti-symmetric terms in the stress ten-

sors are zero; this corresponds to the physical statement that

there is no volume angular momentum exchange between the two

components (other than that due to transitions). A

decisive discussion of this point must await a careful study

of the equations including the anti-symmetric terms in the

stress tensors.

The complete system of hydrodynamic equations may be

easily written down by substituting the expressions found for

the dissipative fluxes into the conserva"tion equations (233) -

(235) and the superfluid equation (237). For convenience of

reference, all of the relevant formulae are written out below.

The equations are essentially those as given by Lin [251.

Continut'y equation . cliv (ev, + vs) o,

mom entum equotion. .jL 4d iv (-r* + I =0,

where 3 Vf + V,
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Tr j e, e)
(7% n S (Awt* A'~ SOeWV 5
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Since in the present theory the hydrodynamic equations

have been deduced from (more or less) general principles,

is perhaps well to explicitly list the various principlesand

assumptions used in the deduction and then to give a brief

analysis of the dependence of the final equations on each of

W2 )

Q 1

Entropy ecucior -.
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the principles. These principies ania assumptionis arc:

(i) The Landau equations (without the !iitriationeur1VS=O)

for reversible flows.

(ii) No momentum exchange between the two components other

than that due to .f transitions (i.e., no mutual

.friction).

(iii)No angular momentum exchange between the two compo-

nents other than that due to e es transitions.

(iv) The dissipative terms in the equations are linear

functions of the gradients of the independent macro-

scopic variables.

(v) The phenomenological coefficients connecting the

dissipative fluxes with the conjugate set of gradi-

ents are independent of the direction of the vector

w

These are the five assumptions which we will discuss indivi-

dually. In the deduction of the equations, we have also used

the conservation laws for mass, energy and momentum, the Gali-

lean relativity principle, and the law of increase of entropy,

none of which need any discussion. We have also assumed that

the equilibrium thermodynamic description of the two-fluid

system remains valid for dissipative flows; as in the case of

ordinary hydrodynamics, we expect this to be a valid apprcxi-

mation as long as the macroscopic length and time scales re-

main much greater than the corresponding microscopic scales.

(i) We have assumed that the Landau equations are the

correct equations for describing reversible flows. As we have



seen earlier, however, some of. the derivations fthe hydredy-

namic equations do not lead in an unambiguous manner to the

Landau equations, the ambiguity being centered mainly around

momentum exchange terms which are perpendicular to the rela-

tive velocity V . Since such terms contribute nothing to the

dissipation function R , it is clear that the determination

of the dissipative fluxes is completely unaffected by the

presence of such terms. The equations originally proposed by

Lin (25] differ from the equations (254) - (258) by just such

a term.

(ii) We have assumed that there is no momentum exchange

between the components (other than that due to e% I tran+-

sitions). If this assumption is drcpped, then we must take

into account the possibility that there exists a volume mutual

friction. The quantity conjugate to the mutual friction in

the expression for the dissipation function is the relative

velocity w , Thus we may easily include in the theory a mu-

tual friction force dependent on w and the scalar thermody-

namic variables; furthermore, since the contribution of such

a mutual friction to the dissipation function R is indepen-

dently positive definite (because the remaining terms in R

depend on the gradients of the macroscopic variables), it fol-

lows that the determination of the gradient-dependent terms

is unaffected by the presence of such a mutual friction. Thus

we may include an arbitrary mutual friction (independent of

the gradients) by simply adding E/e, to the right-hand side

of (255), - /e to the right-hand side of (256), and w -E to



the expression (258) for R ( F must satisfy w-f-o).

(iii) The assumption that there be no exchange of angu-

lar momentum between the two components was made in order to

exclude the possibility of the stress tensors having anti-

symmetric parts. When this assumption is dropped, the general

equations then contain terms which lead to a (dissipative)

volume exchange of angular momentum between the two components.

(iv) We have also made the general assumption that the

dissipative fluxes are linear functions of the independent

gradients. In the derivation of the expression (244) for the

dissipation function R , it was only assumed that the dissi-

pative fluxes did not depend on second or higher spatial deri-

vatives of the macroscopic quantities; it was not necessary to

assume at this stage that the dependence of the fluxes on the

first derivatives was linear. We may then distinguish two

cases: (1) if the first non-vanishing approximation to a

given dissipative flux is linear in the gradients, then, in

general, we must expect the second approximation* to depend on

higher order derivatives as well as quadratic terms, so that

the validity of equation (244) for the entropy production will

be limited to the case when we consider only the linear first

approximation to the fluxes; (2) it may happen, however, that

the first approximation to a given dissipative term is a non-

linear function of the conjugate gradient, in which case equa-

tion (244) for the entropy production will still be valid.

We do not expect this second alternative to be relevant in
We are using "first approximation" and."se-qond approxima-
tion" here to refer to thle results of an imagined approxi-
mate calculatIon of the fluxes from a detailed ,microscopic
theory.
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However, mutual friction forces of the form F Awy (being

cubic in the conjugate quantity w ) have sometimes been in-

cluded in the hydrodynamic equations for helium II L81 ; also

it is conceivable that the anti-symmetric parts of the stress

tensors discussed earlier could be nonlinear functions of the

relative vorticity curl w . In any case, we may consistently

include such nonlinear terns in the present theory.

(v) Finally, we have assumed that the phenomenological

coefficients connecting the dissipative fluxes with the con-

jugate set of gradients are independent of the direction of

the vector w . Roughly speaking, then, we are assuming that

a drift velocity of the normal fluid excitation gas (with re-

spect to the superfluid background) has no effect on the mole-

cular transport processes. (Strictly speaking, we have still

allowed the possibility that the phenomenological coefficients

depend on w through w ; in practice, we expect this depen-

dence to be very slight.) If this assumption is dropped, then

the most general equations (characterized by 44 scalar pheno-

menological coefficients) may still be obtained in a straight-

forward manner, but they are very complicated.

This completes the derivation of the hydrodynamic equa-

tions for dissipative processes as proposed by Lin E51. In

the next section, we give a discussion of the boundary condi-

tions that are to be satisfied at a solid-liquid helium inter-

face.



3. Boundary conditions

We consider first the case of a solid wall at rest; the

more general case of a wall in motion will be obtained by

means of a Galilean transformation.

In general, there will be an energy flux between the

fluid and the wall; we let H. be the heat flux vector in the

wall. For the quantities n - Vn and -s , and for the tempera-

ture T , the discussion of III-D-3 applies unchanged, and we

have the boundary conditions

n-vn =o

_wo.j1 - The&1ium -- Av.(o-n),
Q"nd

ot the
WOLI)

(259)

where A. is the Kapitza thermal resistance and 11 is the unit

normal pointing into the fluid.

In addition to the boundary conditions (219), one also

needs conditions on the tangential components of v., . For

these quantities, Lin [25,2 has proposed the following boun-

dary conditions:

n X Vn = o,
(260)and

Tij n- - p VS7 n o ,1f I> tzeTi.

where P- is an additional phenomenological- coefficient which
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A final boundary condition is obtained from the physical

requirement that the energy flux be continuous across the in"-"

terface; thus

(9.- +'- H)-n n=0.

By use of (257), (259) and (260), we may write this as

V +n -KVT +n.H=0.

In the case of a solid wall moving with a velocity Uv,

the complete set of boundary conditions are

Vn - _w.l =0,

-- (V-S -L)VV.1)=O,

(26 1)

{n;s -, I v~s -Uwou I1(Ys -qva-i)3 -o,

\4H +KvT)- + (Vs - Uwa =0

Two,1 - Theam A _-

It is of interest to examine the entropy flux. In the solid,

the entropy flux is siplyl . , and the entropy flux in

the fluid is = -KVT/.. Then from (261) it. nay be siown

that

n-f 7 .- KT ~ l w'' @"'tj.--. 6. T%%.un+ T wat

and
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where e. is a unit vector in the direction of (,vs -Ui1)

The expression (262) shows that there is intensive dissipation

associated with the Kapitza boundary effect and with the

superfluid slip at the boundary. The last of the expressions

(262) shows that in the limit AK-Wo (no Kapitza resistance)

and V'-->O (no superfluid slip), the entropy flux is continve-

ous. It is interesting to note that even in the absence of a

heat flux through the boundary (t =0 ), there is a finite tem-

perature gradient. in the helium, given by (cf. (261)) KVT-
4

The he&t current associated with this gradient

is of course exactly equal to t~he rate at which mechanical

energy is being dissipated at the interface as a consequence

of the slip condition. (We may note that the heat current in-

duced by the "slip-dissipation" is extremely small in cases

of practical interest; we haveIKVT.n: vs . , and,

since it is believed that, sO-O yns SC , we have, even

for 1 Vs - Uvwa,1 1 10 CM/sec, T-Ii'VIO- erg and a heat cur-
c~Isec.DIO/eecmx

rent of this size is converted by the thermal boundary layer into

an internal convection current in which the fluid velocities
-4

are only of the order of ~. 10 Qm/se.)

The physical picture associated with the boundary condi-

tion on the tangential component of vs is perhaps most easily



discussed in terms of a special case; namely, we consider the

boundary condition to be satisfied at a solid wall moving

parallel to itself when v~n, vs have only components in the

direction of the wall motion (Fig. 2). Then the boundary con-

dition takes the form

lsn n + SS c) Ys %is- e at the. Wvakl.

In any given particular flow, there will be a characteristic

velocity U (such as the wall velocity), a characteristic

length L (such as the viscous penetration depth in an oscil-

latory flow).and a characteristic viscosity pL . In dimension-

less form, the above boundary condition is (where primes de-

note dimensionless quantities)

ALU

Thus in the "low-speed" limit (LU ), the boundary condii-

tion is approximately Vn +A,,5 AYs =. 0 ; in the "high-speed"

limit (L4U >> /A ), the condition is approximately v5 sUwh. In

general, the boundary condition allows a slip of the super-

fluid relative to the wall, the amount of slip bein,' related

to the superfluid shear stress at the wall. Some further dis-

cussion of this boundary condition will be given in the next

section, III-C-4.

Finally, we wish to discuss the thermal boundary layer,

and the relation between the boundary conditions (251) and the

more usual boundary conditions on the quantities n.Vn and n -Vs-
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The discussion is given only very briefly here, since it ex-

actly parallels the more detailed discussion of III-B-3.

We consider the flow induced by a steady (uniform) heat

current through a solid wall (see Fig. 1, p.zs). Far away

from the wall, there will beauniform counterflow of the two

components. In a very thin layer near the wall, the effects

of viscosity, ordinary thermal conduction and superfluid-nor--

mal fluid transitions are all important. If the heat current

is not too large, the total change in the temperature through

the boundary layer will be small; thus we may treat the ther-

modynarmic quantities and the phenomenological coefficients as

constants wherever these quantities appear in the coefficients

of the differentiated terms. Also, we may expect'-the'honlin-

ear terms in the equations to.be negligible provided H is

sufficiently small. With these approximations, the equations.

are easily solved, and we obtain the results

T= .0 + HS e~1

(246A)

-(Io (A~n s+Ass)I
T oes o

where p, 7-r denote the ( constant) values o-f p ,T forg-0+00



The thickness of the boundary layer S is, given 'by

or + Ins' + (245 M)

+ [ Xf (I- x)f Ai)I nn 7 gs -Ns- ;kn

The conditions on the phenomenological coefficients (cf. (258))

insure that 81 0 always. The total change in temperature

through the boundary layer is given by"

T(o) -Tco =_
K

so that the thermal resistance A of the boundary layer is

given by

A= _WO

Although almost nothing is known about the mamnitude of the

"bulk viscosities" An., An, Asnand Ass, for purposes of or-

der of magnitude estimates, we assume that they are of the

same order of magnitude as Pn,. As already mentioned, there

is evidence thatp)ns+ }A$sst and nn ~V pAs . With these es-

tinates then, the sample numbers given in III-B-3 are rele-
-7

vant here. (Namely, that for T= .50,4O3-10 CM. ; also that

the total changes in temperature are negligible for H such

that y.. <<4 - 10C m/sec. , and that the nonlinear terms are



negligible for v.... < ).*10

This completes the discussion of the boundary conditions.

In the next section, we give (following the work of Lin r25])

a brief discussion of the present equations and boundary

conditions.



4. Discussion

The basic hydrodynamic equations for Lin's theory of dis-

sipative processes are given by equations (254) - (258),

(Again we note that both the perfect fluid and dissipative

equations originally proposed by Lin contained additional

terms proportional to w.x curlV , representing a non-dissipa-

tive momentum exchange between the two components). The foun-

dations and some possible generalizations of these equations

have been discussed in detail in III-C-2. The boundary con-

ditions to be satisfied at the interface between A solid wall

and the liquid helium II are given by (261). Before consider-

ing some particular solutions of the equations, there are two

related features of Lin's theory which we wish to discuss--

the superfluid viscosity and the nonlinear boundary condition

on the tangential component of the superfluid velocity.

It has been argued that the phenomenon of superfluidity

precludes the possibility of superfluid viscosity and super-

fluid rotation. Lin [25 has given a detailed discussion of

this matter, so we only note the following points here: (i)

there is no compelling evidence from the microscopic theory

to force us to the conclusion that curlvs =O or that there

is no superfluid viscosity, (ii) the possibility of superfluid

viscosity is entirely consistent with a phenomenological

theory of helium II, as the derivation of the preceding sec-

tion shows, and (iii) the experimental evidence relevant to

this question (e.g., the Andonikashvili experiment, and the



frictionless flows through very narrow channels) may be ex-

p]Ained in terms of a lack of shear interaction between the

superfluid component and the solid wall--that is, in terms of

the nonlinear boundary condition proposed by Lin. We may

also note that on the basis of Lin's theory, one may explain

the experimental results for flows in "wide" channels (where

the mean velocity is a nonlinear function of the pressure

gradient, Lin [23]) , and the results of various damping ex-

periments at finite amplitude (Griblen [ill ).

Lin [2r,23 has given a detailed discussion of the non-

linear boundary condition (261) on the tangential component

of the superfluid velocity. Briefly, the idea is as follows:

Many experiments with oscillating systems in helium II exhibit

the phenomenon of what we might call ampltude-dependent super-

fluid entrainment. Also, experimental channel flows are char-

acterized by a nonlinear relation between the mean rates of

flow and the driving forces (pressure and temperature gradi-

ents). These both suggest that the shear interaction of the

superfluid with a solid wall is "amplitude dependent". A

general boundary condition with this property is

(6) (40)

'jn~tL

where nL is the unit normal to the wall,t;.(4m,I)is a tangent

vector to the wall andc:V.3-Uwais the relative velocity of

the superfluid component and the wall. The boundary condition

for an ordinary viscous fluid is recovered in the limit ;-Poo,

corresponding to a str6ng interaction of the fluid with the



wall; thus if we take the first two terms in an expansion of

the case of the ordinary fluid corresponds to the limitoc-1+%.

For the superfluid component of helium II, however, there is

ample experimental evidence that the interaction with the wall

is weak (as well as being amplitude-dependent). Thus we may

expect that in the present case, a+*O ; then the first ap-

proximation to the boundary condition is

which is the boundary condition (261). The results of preli-
AL20 ne Sc 3

minary analysis indicate that P ci * Further ana-

lysis of existing experimental data is needed to obtain a more

accurate estimate and to determine the dependence of on the

temperature.

In many flow situations, the velocities are small (com-

pared with the first and second sound velocities), and the

temperature variations throuhout the flow are small. In such

situations, the quantities , s and S , as well as the

phenomenological coefficients, may be taken as constant

throughout the flow (we are also at present excluding flows

with high frequency time dependence, such as first and second

sound waves). The temperature and pressure then become hydro-

dynamic variables (in the same sense that the pressure is a



nary fluid). Also, the rate of entropy production and the

energy transport by thermal conduction are usually negligible

in such flows. With these approxomations, the hydrodynamic

equations may 'be written in the form

V t -Vv = -1 Vp - T-) sTV - v-X) VW+ sVJv,

2
+ ) i V $ 217

CYpt Y. Vvs -IV 2sTx - As nVV O

and

div V" =0, div %is- (2,9)

The equation for the total momentum (obtained from (267) and

(268)) may be written as

+ ~SSIV VS. 20

The boundary conditions (261) may also be simplified

within the present approximation, provided the heat input

through the boundary walls is not too large. In this case,

the effective boundary conditions may be obtained from the

thermal boundary layer analysis (as is discussed in detail in

III-E-3). (The conditions on the tangential components of vg,

VS are unchanged.) These effective boundary conditions are



n x ( V, - U Dw11 ) = 0

e sT ( -uw&O) n -- A -n

CS)

and (7.71)

x ( vn -Uwait)' _ +(i-X( vs -U u)* n =

w*11 h T

where -j =Ss)e; 3  +

where n is the unit normal pointinC' into tie fluid, Avis the

Kapitza resistance and A , representing the effect of the

thermal boundary layer, is given by (266).

As Lin has shown [251, tLe comparison of the present

theory with experimental re-ults for simple channel flows

(i.e., uni-directional flows induced in an infinitbly long

channel by constant temperature and pressure gradients) yields

some information about the 4 viscosity coefficients ,Mn, /ASt

and . It is a well-verified experimental fact that the

heat current in a channel flow is accurately proportional to

the pressure gradient (even when the relation between the heat

current and the temperature gradient is a markedly nonlinear

one); one can show that the present theory predictsthis result,

provided

(z71;'A n S + _.." S S 0 -



One may see this from equation (270) and the fact that the

heat current is proportLonal to, the mean normal fluid velocity.

(The analysis is given in detail in the Appendix.) We may

also note that if (272) holds, the present theory predicts a

linear relationship between the torque and angular velocity in

a rotating cylinder viscometer, in agreement with the experi-

ment results. (Strictly speaking, the experimental results

can only lead to some condition such asgAns <.tM< ; in what

follows, we will assume (272) to hold.) The physical content

of (272) is that there is no contribution from the superfluid

component to the total momentum transfer by shear forces.

From the view that the motion of th superfluid "back-

ground" should be relatively unaffected by the motion of the

normal fluid "excitations", one might argue that the condition

should be satisfied. At present, however, the experimental

evidence for (273) in inconclusive. An alternative conjecture

is that the Onsager reciprocity relations are relevant here,

so that

Strictly speaking, however, Onsager's theorem is applicable

only when the fluxes are time derivatives of thermodynamic

state variables. The extension of Onsager's theorem to con-

tinuous systems.in which the fluxes are not time derivatives

of the thermodynamic state variables requires special -



[43, Chapter IV), and it is not at all clear that one can ex-

pect the Onsager relations to be valid in the present case.

It is of course possible that /A satisfies neither bfthe-o61adi-

tions (273) or (274). At present, this is still an open ques-

tion, although preliminary evidence from experiments seems-

to favor the choice ), I= n .

It is possible to give a satisfactory explanation of a

variety of experimental results on the basis of Lin's theory.

Thus for channel flows the theory (i) predicts that the heat

current is proportional to the pressure gradient (provided pA,+

+yps=o ) (ii) predicts the observed nonlinear relation be-

tween the pressure gradient and mean flow velocity for iso-

thermal flows in "wide" channels [231, (iii) predicts the Lon-

don equations (Vp =sVT ) for the fountain pressure in the

limit of very narrow channels. 7Tone of these predictions de-

pendson which of the conditions (273), (274) (if either)

satisfies, A detailed analysis of channel and pipe flows is

given in the Appendix. Other experiments which receive a

satisfactory explanation on the basis of Lin's theory are (i)

the Andronikashvili disc-pile experiments (for which the pre-

sent theory predicts that only the normal fluid will take

part in the motion, provided the frequency of oscillation is

sufficiently low) and (ii) experiments on the damping of an

oscillating disc (for which the theory predicts the observed

amplitude-dependence of the damping, and the two critical

velocities - Gribben EllI). A brief analysis of the



At present, it is difficult to give any accurate numeri-

cal estimate of the viscosity coefficients and the boundary

constant in Lin's theory. There are severalreasons for this.

First of all, because of the extremely small viscosity of

helium II (Opoise), there is a definite possibility of tur-

bulence in many flow experiments. (Indeed, Staas et al. 1341

have shown that the experimentally observed deviations from

the linear relation between heat current and pressure gradient

in pipe flows at higher velocities may be accounted for quan-

titatively by means of an empirical formula analogous to the

Blasius resistance law for the turbulent flow of an ordinary

fluid.) Also, one cannot discount the possibility of a criti-

cal velocity marking the threshold of a volume mutual friction

force. A further difficulty is that in many cases, the agree-

ment of theory with experiment does not seem to be critically

dependent on the numerical values of the dissipative para--

meters--thus, for example, Gribben 111 found that the agree-

ment between theory and experiment for the damping of an

oscillating disc was tolerably good for a wide range of values

of the ratio )As /A. Also, prbliminary analyses of channel

flow data have shown this same feature. A more detailed dis-

cussion of this problem--along with some preliminary estimates

for the various coefficients--is given in the Appendix.



APPENDIX TO CFAPTER III

We consider here the problem of obtaining unambiguously

expressions for the dissipative energy flux and the dissipa-'

tion function separately from the single equation relating

them. From the complete set of macroscopic variables, we sin-

Jle out t e total energy per unit. volume E , and the entropy

per unit volume $ . Then the differential of the energy will

have the form

d E= Td + +$XadY (A-i)

where{Y.4are the remaining independent extensive quantities

(per unit volume). (The , may include, for example, the Car-

tesian components of a vector quantity;) We assume that the

equations for reversible processes are known, and that they

may be written as

44E 4 d iv Qo 0

(A-2)

and +div
C)t-

and

C )St+0

(In many cases, the equations for the - [will be in the form



of conservation laws; however, we do not need to make this re-

strictive assumption in order to carry out the derivation !

here.) Since the equations A-2 are to form a consistent set

of equations for reversible processes, it -ollow frd&Aul 0and

A-2 that

div Qo - Tdiv 3S-ZO0.a =. (A-3)

We now assume that the effects of dissipative processes may

be taken into account by including dissipative fluxes in the

equations;thus we take the hydrodynamic equations in the fol-

lowing form:

aE + iv Q0 t.Q') 0,

et + T kv , 0

(In particular,then,,w'e are excluding tha.case of "volume' dissi-

pative effects such a mutual friction; the above formalism,

however, includes the theory of section III-B (the case curivid,

and also Lin's theory of dissipative processes without mutual

friction.) It is assumed that the fluxes ' , and 3 are

functions of an independent set of gradients (they need not

be linear functions; however, they must not depend on spatial

derivatives of higher order, and they must vanish whenever



function R is to be positive definite. From (A-1) and (A-4),

we may obtain the following equation relating R and the dis-

sipative fluxes:

R= -dv{'--T3s'- -5V -Z > Xc (5

In the calculations of Chapter III, we have satisfied equa-

tions of the form (A-5) by taking

gT3.S' +

Qnd

R= -VT -3 -VXC- (A-7)

then the fluxes were determined by finding the most

general expressions which make R positive definite. Let us

denote the general expressions obtained for Q' ,3 and 9A'in
AA A/

this way by G , '3 . Ve now wish to examine the equa-

tion (A-5) in order to determine if tLhere are more general

solutions for Q" ,- and 9. than those of the class Q ,
3.c . We introduce Q by

I I I

Q Q' -T B-3 .~X -3,a-

R.= -div Q , sNT- , -*N7 a(-

By hypothesis, depends ontLXandjVX4(where, for conveni-

ence we now include T and VT in t>'e sets ,(VZI). Then

div Q is given by



- L L ")144axY..,
in

an

The terms in .Xwould give rise to terms in R which are

linear in the second derivatives of X. ; since R is to be

positive definite, these terms must vanish, so t1at we have

the conditions

-'-pt
abll (N-10)

on the vector Q . It is possible to s'ow (see below for a

proof) that ti.e most general solution of the system of partial

differential equations (A-l) is given by

(A~-11i)

(at) (ag) Wawhere " , , are independent of the gradients (but in

general will depend on theX ). We may write (A-li) as

*"#(

CA )CA (.Kp)

then we have

div Z.. VC.g -ur\ .S ,

so that

=S) (A-12)

L

(64) 
x

where .ap)



i ? is C) b i pCsit'LVC Ieizi , -L ILLs L) e tS Lt

ks) A
S--Curl -. I + 3s

(A- is)
AA

3 =- Cur .SL +3

and Z I
0(

/ A A(SQ Tr3s + ZT.3.L T'cur-l~ 'C~(urlS A

at

0 YO

Thus the class of most general solutions 3G , , Q differ
A 1% A

from the class 3S , 3 and Q only by the presence of a curl

in each flux. However, only tie divergence of a given flux

has physical significance, so that the curl terms have no

significance, and we may thus assume that equations (A-6) and

(A-7) hold. We note again that the proof of this result does

not require that the fluxes be linear functions of the Fradiv

ents--it requires only that the fluxes vanish whenever all of

the gradients vanish and that the fluxes do not depend on the

higher spatial derivatives of the gradients.

We now give a proof that (A-ll) is the general solution

of (A-10). For convenience, we change the notation somewhat,

We are given that Q is a vector valued function of n vectors

n. (where we are using rkinstead of VX ), and.



Li

ZQL + CQ =0

we are also given that Q vanishes when all the rs are zero.

We then wish to show that the most general solution is of the

form

Y =c*.')x r + (( ' )CWrC4

(a) C4p)
whereuj ,W j are independent of the r's The proof is by

induction on n , the number of vectors on which GQ depends.

Foryn= , the mathematical problem is the same at that of

finding the most general displacement which is such that the

strain tensor vanishes identically; thle well-known solution is

4 =cu2 x r 4+Qo ,

h A) 1) x a e d .swhere w I Q0 are independent of 'r *Since Q must van~ish

for r =, we have

n(I)

For n= ,

x -
(I)

we have from

0,.:::i

QO)=W~s x CO*( g

(A-iS)

aL+



where Qo and c"may now depend on . From2) a Q)i _

one may then show that

Ca) ) () (2)
where O, , U) are all independent of ,

pose the theorem true for r=k , and. consider Q , a

C(94) g0+11of r -" . r . Regarding 0 for the moment as a

Now sup-

function

function

of . and r , weget

.. - ( , -') -, {C. 0 ( ,

+9 " -o)

Or

CK -9 1 (14+0i.~ (t

From tr-e equation

I QL aQ =0
z I)

C *40evaluated for S. +K4I and for r = 0,we get

a L CV. +
J S

i V.)

___ I
= 0 1

C %) tic)
Thus the induction hypothesis applies to Q so that Q has

CIL)the proper form. From (A-16) evaluated for s- K and for r 0,

we may conclude that the induction hypothesis also applies to

the term

(4) ( r - - 14 ) x r 1



(which is a function of only K vectors), so that this term is

of tle proper form. Finally, from (A-16) evaluated for s* K ,

s*K+ , we may show that A is independent of all the vectors

r . Pence Q also has the form (A-15) and this completes

the proof.



CHAPTER IV DISSIPAT IVE PROCESSES - II

A. Introduction

In this chapter, we will consider some theories of liquid

helium II in which the quantitycurlvs plays a special role.

We will be concerned primarily with the continuum theory pro-

posed by Bekarevich and Khalatnikov [3) in which the the quan-

tityeurlis1 is a thermodynamic variable. The derivation of

the hydrodynamic equations proposed by Hall and Vinen E12,13,

14,381 for the motion of helium II with quantized vortex lines

will not be discussed in detail here. However in section IV-C

we will discuss briefly an alternative continuum approach to

the hydrodynamics of helium II with quantized vortex lines.

It is perhaps helpful to recall here the essential features of

these theories before beginning a detailed discussion.

In his 1941 paper [203, Landau advanced the idea that the

flow of the superfluid component mast be potential flow--that

is, that cur I v 0 . The experiments of Andronikashvili [JJ

with an oscillating disc pile seemed to provide a striking

experimental verification of this hypothesis. Later experi-

ments, however, indicated that the superfluid component could

rotate in some manner (e.g., the free surface experiments of

Osbourne [31]). Onsager [30] and later, independently, Feyn-

man [7] suggested that, although the superfluid component can-

not rotate in bulk, it can support line singularities



analogous to vortex lines in ordinary hydrodynamics. Feynman

gave some qualitative quantum-mechanical arguments to suprort

the view that the strength of the vortices is cluantized

according to the formula

v cis zTr n~
vc d = -Tid

Hall and Vinen[12,13,14,381 then developed a hydrodynamic

theory for helium II on the basis of the Onsager-Feynman

theory of quantized vortex lines. They were able to obtain

a definite set of hydrodynamic equations(a comprehensive re-

view of their work--theoretical and experimental--is griven in

[14,381). However, the derivation of Hall and Vinen is depen-

dent in an essential manner on some special additional assump-

tions about the nature of the vortex motion in helium II (for

example, they assume that the force on a vortex line and the

velocity of translation of the line relative to the mean

superfluid velocity are related via the classical Magnus ef-

fect formula). In an attempt to obtain a hydrodynamic theory

of vortex inotion in helium II which is independent of speci-

fic assumptions about ti e nature of the vortex motion, Bekare-

vich and Khalatnikov [3] have developed a hydrodynamic theory

based only on general continuum principles (conservation laws,

increase of entropy, etc.) and the single additional assump-

tion that the thermodynamic internal energy of the helium II

depends onfeur\Vs1 , as well as the usual thermodynamic vari-

ables. It is noteworthy that their hydrodynamic equations

agree with those presented earlier by Hall E11.



Since the form of the hydrodynamic equations for helium

II is still a controversial matter, it is desirable that any

new phenomenological theory, such as the one proposed by Be-

karevich and Khalatnikov, include (i) a careful mathematical

development of the hydrodynamic equations based on the general

assumptions of the theory and (ii) a discussion of the physi-

cal 'basis of the phenomenological theory. In the presentation

of Bekarevich and Khalatnikov [33, however, (i) the mathema-

tical development of the theory seems obscure in places, and.

(ii) almost no discussion is given of the physical batis of

their theory. (More specifically, there are a number of ques-

tions connected with their phenomenolgical theory which de-

serve discussion; for example: (i) on the basis of the

Onsager-Feynman theory of quantized vortex lines, should we

expect to be able to develop a continuum theory for describing

the motion of helium II, and, if so, is the inclusion of the

superfluid vorticity in the thermodynamic variables a plausi-

ble starting point for the development of such a theory? (ii)

are there other plausible pictures of the microscopic struc-

ture of helium II which would also lead to a continuum theory

of the form proposed by Bekarevich and Khalatnikov [3)?)

In section IV-B-1, we give a detailed presentation, to-

gether with some criticisms, of the derivation of the hydro-

dynar-ic equations as presented by Bekarevich and Khalatnikov

r3). In section IV-B-2 , we give an alternative mathematical

development of their theory which seems in some respects to

be more satisfactory. In IV-B-3, we give some discussion of



a brief outline of an alternative approach to the problem of'

building a hydrodynamic theory of helium II on the basis of

the Onsager-Feynman vortex line theory.



1. Bekarevich's and Khalatnikov's derivation of the

hydrodynamic equations

According to Bekarevich and Khalatnikov, the fundamental

distinction between motions for which curivs=0 and those for

which curt i 1&0 is that, in the latter case, the thermodynamic

internal energy of the helium II depends on Curl * They

have used this idea, together Withthe usual conservation laws

and invariance principles, to obtain a set of hydrodynamic

equations fbr helium II. In this section we present a review

of their derivation along with detailed discussions of some

points in their work which seem obscure.

The method of derivation used by Bekarevich and Khalatni-

kov is essentially the same as the general method discussed in

Chapter III, Briefly, it is as follows: one writes down the

equations expressing the conservation of mass, energy and mo-

mentum (where the energy and momentum fluxes are to be deter-

mined), and also an equation for the superfluid velocity v ;

these equations must yield an equation for the entropy which

satisfies the law of increase of entropy, and this requirement

leads to a single equation relating the energy flux, momentum

flux and the dissipation function to known quantities; from

this single equation, one determines the energy flux, momentum

flux and dissipation function separately. It is clear that,

in order to carry out this procedure (especially the last

step), one must have some knowledge of what quantities the

unknown fluxes may depend.on. In Chapter III, this procedure



was carried out systemtically uy staVtin Oiu WiUL the jpi-

fect fluid equations, and then assuming that the increments

to the various fluxes were linear functions of the independent

gradients. In the present case, although the procedure cannot

be carried out in quite such a straightforward manner, we

would still expect to first develop a perfect fluid theory and

then a theory of dissipative processes (this will be carried

out in IV-B-2). Bekarevich and Khalatnikov, however, have

(apparently) identified rotational flow (curt vs 0 ) with dis-

sipative flow. In their theory, they start from the Landau

equations for reversible processes, rather than developing a

theory of reversible flows for the case in which the internal

energy depends on Icur I ; the Landau equations, however,

refer to a different physical system (one in which the inter-

nal energy does not depend on the vorticity) so that their

procedure does not seem entirely satisfactory.

We now proceed to the details of their derivation. (We

have changed the notation somewhat to conform with that used

in the present work,) Accordinr to the Calilean transforma-

tion formula, the total energy per unit volume E may be ex-

pressed in terms of the total energy per unit volume as mea-

sured in the superfluid rest frame, E. , as

2 (A73)

where e is the total density, Ys the superfluid velocity and

is the momentum per unit volume in the superfluid rest

frame. The total momentum per unit volume is related to



by

. . -~s214)

In the usual version of the two-fluid model, the differential

of the energy E. is given by dE.= 4d +Td(ts')+w -d,

(cf. equation (9)) where i-= E. j-Te + p (cf.

equation (10)). In the present case, there will be an addi-

tional term expressing the dependence of the energr on the

superfluid vorticity W =- Corl vs . Thus

d E' id +T d(es)+ -d +_-do. (275)

Bekarevich and Khalatnikow make the plausible assumption that

the differential coefficient N depends only on the direction

of the vector o (conceivably, it could depend on the direc-

tion of the the vector w as well). Then, for

(Z-10

we'have.

dE 0 = de +Td(es)+W- dj, +'dco. (?)

(According to the Onsager-Feynman theory of quantized vortex

lines, the coefficient A is given approximately by R:g5 -n ,
m a.

where /a, is the ratio of t"e distance between vortices to the

effective core radius of the vortex. Thus X is expected to

be virtually independent of the vorticity CO .) The relation

between the pressure p and the potential 4 is given by Le-

karevich and Khalatnikov (without discusp'ion) as



p= -E 0+ T1 + +> - ( 8)
This is the same as equation (10) relating p and 4] for the

ordinary two-fluid model. If the vorticity w. is taken as an

extensive quantity per unit volume (as the formula (275) would

imply), one would expect that p and are related by p= - Eat

T s + c>( +3. 4 'CoA, rather than by (278) In fact, Bekarevich

and Khalatnikov find it convenient at a later point in their

derivation to introduce a "renormalized ,pressure, lp- p+' \W

(with p given by (278)). In section IV-B-2, we will give a

more detailed discussion of the thermodynamics of the present

system; for now, we accept (277) and (278), and continue with

the derivation of Bekarevich and Khalatnikov.

The equations expressing the conservation of mass, energy

and momentum are

C-f+ d-=O, (279)

_ +1 (QO4-qYO, (Zso)

ond

where Q0 and iT 0 are the energy flux vector and momentum flux

tensor of the Landau theory for reversible processes, namely

Q.= ( 4 + v)+ -T + v~n(n-. 2%

4 According to the Onsager-Feynman theory, the total length
of vortex line in a volume V/ is given byjvdt "WK , where
k= h /m , is the circulation around each line; thus W
is proportional to the total length of vortex line per
unit volume.



and
-e + VS +

accordinG to Bekarevich and Khalatnikov, the increments 9 and

Jt represent the effects of the dissipative processes (where-

by they apparently mean the effects of the dissipative pro-

cesses and the effect on the structure of the equations of in-

cludin the vorticity in the thermodynamlic variables). There

will also be an equation for t .e superfl1i. velocity Vs ; this

equation may be written as

where the quantity -Q is to be determined. Finally, there

will be an equation for t e entropy es of the form

.l(Ts) 4div esvn .R
T

where the dissipation function R is to be positive definite.

(One should really include a contribution to the entropy flux

from dissipative processes; as in the theories discussed in

Chapter III, such a term is associated with the process of

thermal conduction which, as Bekarevich and Khalatnikov point

out, is easily included in their theory. They also point out

that their theory is easily modified to include dissipative

gradient, terms in the superfluid equation such as those



The entropy equation (286) is not independent, but is a con-

sequence of the hydrodynamic equations. By eliminating the

time derivatives in the usual manner, we may obtain the fol-

lowing equation relating the quantities , ., and R

aliv{- +J-C- n + WX [f Rncwj + ( - A S * CJ. )Vl

At this point, the authors conclude (without giving any justi-

fication) that

9 = X-V +W X (H + ox W))

In order to obtain the results (228) and (289) from (287), one

would have to give careful arguments concerning the dependence

of the (as yet unknown) quantities 1 , j and q on the macro-

scopic variables and their gradients. It is easy enough to

find special choices- of - , L and q which satisfy (287)

without satisfying (288) and (289). Rather than trying to

find principles which would allow one to obtain (288) an'

(289) from (287), we prefer to leave this point for the more

systematic derivation of the equations given in the next sec-

tion; thus we accept (288) and (289), and continue with the

derivation of Bekarevich and Khalatnikov.

The dissipation function R is to be pcsitive definite,



Bekarevich and Khalatnikov, however, assume that each of the

two terms in R are separately positive definite; again, they

give no justification and counter-examples may be easily

found. If we make this assumption, then we must have

From ( 2 90), Bekarevich and Khalatnikov conclue (without jus-

tification) that tre most general form for -? is

-_W x9 +01 W X (curl VV--sg + V x[LAX (turiM f2

-- Ve-(curl 'A -- ' S) . (292)

with , . Here, we may make a more definite criticism

of their reasoning. First of all, it is clear that we can say

almost nothing about the most general form for - unlecss we

know what vectors -9 may depend on. However, it would seem

reasonable to suppose that -9 may depend on w , o and corl :k..V

(as well as any Galilean invariant scalars). Then it is a

straightforward matter to show that the most general-S satis-

fying (290) and depending on y , L. and curl W is riven by

(where p= curl ~ s' )

P= -- xw -cp +p x I xLclv' +C CW)W 113 W+'1C L K (W +X )

+ C 5 W x ()



where C0 ro , CL-1.(---s) are arbitrary, and wiere the C's in

general will depend on all of the scalar invariants of the

vectors o , w and euri , . The expression (293) for

-F is clearly much more r-eneral than the expression (292).

If we assume further that the sum ; +t o x does not depend

on the vector w , then the most teneral 4 such that +wxv

depends only on p and W and sch that (290) is satisfied is

given by

+ x = -A. +I -. XP + C S x (LA? xK X(291)

where C,, Z , C. and CG are functions of the scalar invariants

of p and > (and of the tl--ermodynamic variables). If now we

choose c. , c5 and Cr as

__ Qnd C5

where a , , ' are scalar functions and ao be a , then

(294) reduces to

-p AY +01 WXP +-hx Y xV IP -Y-V( P) (29E)

which is the expression (292) Fiven by Bekarevich and Khalat-

nikov. Thus (292) is a special case of (294); we may note

that (292) is truly a special case since not every vector of

the type (294) may be written in the form (292) with (3o ,

T2!0 . A more serious criticism is that we have had to as-

sume that the combination -V +wxvyv does not depend on _v ;



this would seem to be very unnatural, since 4 ratoer than

- + WX C W is the quantity of physical significance. Al-

though Bekarevich and Khalatnikov may have had reasons for

choosing the special form (292), it is clear from the above

discussion that some justification for this choice is called

for.

Now consider the tensor terms; if we introduce ^Cvby

where

W &V.

then the condition (291) is

Thus T,.must have the form

T1Lk = )AiiC)P )

in principle, the viscosity tensor-,I 3 r could denend on w

(as pointed out, by Bekarevich and Khalatnikov) and on the re-

lative velocity w as well. As a first approximation, how-

ever, we may take)Aiklm to be isotropic so that the stress

tensor ' lk is given by

~Ck.Z )An e63 -_ i. e~ ey. (29(m)

This completes the derivation of the hydrodynamic equations

TE V. = 31 V. - V' *1 x 7



as given by Bekarevich and Khalatnikov.

for the normal fluid component, the superfluid- component and

the momentum are (where = +

+vn.Vvn = V ?a
It
- curl NY(

+v

w+ -dly T
X -- en

- cur) Ay~)3.+-

curl .~

+ VS V Pa+ ST+XN ~i.V~IZ.fr cOz Wj AcurlA-V

- curl -AYx (w - curl A-Z)
rs

I fnInL 1 n3 + e V s \%)ci

There are

to note here.

several additIonal

First of all, we s

points which we would like

ee from the expression (288)

for the increment to the energy flux that the additional

stresses due to the vortex motion (namely the terms tJd = LCTif

) are a part, of the normal

(ZS)

es

(v - r

Ik

and

C~

(259)

where

AC (3OO)

The final equati-,onS

W Y (V

- P'C j 0-

+des -V-

- -[; I =0 7

p. = j>+ 7\W0.

--A C- LU) fluid stressin - I

-V



tensor. This is somewhat surprising, since it is the vorticity

of the superfluid component. which plays a special role here

(we shall see in the next section that this part of the stress

tensor actually should be associated with the superfluid com-

ponent). Another hint that something is amiss is the fact

that Bekarevich and Khalatnikov have Civen aphysIcal inter-

pretation of the term JE-vn + Yx (- +ws'X') in the energy flux

in terms of tbe transport of energy by the vortex motion.

However, the term A-v-n already has an interp:etation as the

rate of working of the stress tensor L; thus what is needed

is a physical interpretation of the term 7w x + W

alone. This poit will be discussed in more detail in the

next section.

In situations of practical interest, there are a number

of approximations which can be made. First of all, for flows

at moderate speeds we may take the fluid to be incompressible;

the quantities n, , , S are then all approximately con-

stant, and p , T become hydrodynamic variables. Also, on-

the basis of the microscopic theory (the Onsager-Feynman

theory) the coefficient?% should be approximately constant.

According to Bekarevich and Khalatnikov, the term in the

mutual friction having the coefficient d represents the ef-

fect of deviations of the direction of individual vortex

filaments from the direction of the mean curl of the velocity

v, ; t-ey state that the effect is very small so that Y is

negligrible in comparison with f , . A further simplifi-

cation is that we may nejlect the energy dissipation for flows



the equations take the form

P +- .Vn = V - SVT +I B x(W - cur, I
~3{ , (W- C rY

2 _Cr Q.A eJr Yv~
+tV n+L s -V ____(p (301)

{ w wcurl A-Y)f f 5cK ( iV - CvlY-AY

Qrlds

div vn =0, d iv vs =O , (30-S)

w here = P 4--ik LA)

The equation for the total momentum is

_ n Vnt -+ S\/5161+ Z , nV SV\j \>.S A4-

C ~
~O. (504)

The equations (301) and (303) are in agreement with th e equa-

tions obtained by Eall 141 (there is apparently a computa-

tional error in equation (51) of reference14]; the results

there. are in agreement with the equations given by Bekarevich

and Khalatnikov provided this is taken into account). The

equation for the superfluid vorticity is also of interest;



when the coefficient i is taken to be zero-, this equation

may be written as

= curif +V, x> =) curlfvx (305)

where ~ ~ ~ ~ ~ 1 V . cv-? 2 'fiW -'curl A9

+ a ' -r ' V00o

Equation (305) has the form of a transport equation with the

velocity of transport v.. beinQ c-iven 'y (306).

Finally, Bekarevich and Khalatnikov have t'iven a discus-

sion of the boundary conditions which we review briefly here.

The condition on vn at a solid surface is taken to be tir

usual one; thus at a wall moving with velocity Ug , we have

Vn UW&I (1607)

(The present discussion is limited to the case in whch there

is no heat current through the wall, so that vn and vs satisfy

(Vn - Uw )n , ( -vs -U n := and so that th e

thermal conduction term in the energy flux is unimportant).

Since the equation for v. contains second space derivatives

of v, , a further boundary condition is needed. Bekarevich

and Khalatnikov have shown how to obtain the general form of

this boundary condition from the requirement that the rate of

energy dissipatien be positive definite. Let n be the unit



(per unit area) exerted on the solid by the fluid

The rate of working of the stresses is then (taking U - n =O)

U UWC161 1ts Ua.U nl

The rate at which energy flows (per unit area) from the

to the solid is

Thus the rate of energy dissipation is given by

D= -n - -wal

D= 'A (n..I/) ) (S + CA) X .

From the condition 'D>O , the authors conclude that

where (presumably)

We may attempt to

/

S's are material

supply the reasoning as

constants

follows:

and S.. o

the quan-'

must be such as to insure that D is

positive definite; if we assume that (.f + W 'I) l depend

fluid

or since,

O r

(.508)

(309)

I

is

P = ( it; i - - P SO ni .

C.0 X VV I =
WOM

X a)) CO X

tity (- t y)

depends



OLIy 01 1ce t n. , ten the er nr -

T + C_. x w may be written as

4-+ C.0 X W~ esg (n xg ) + es'f Lo x ( -V x ng + v, "rn (sto)
wI ~~& I

where , ' and S'may depend on the invariant v .n as well

as on the scalar thermodynamic variables. (There is no reason

why the quantity E + w xw should be independent of the -

vector W , as Bekarevich and Khalatnikov have apparently as-

sumed; if we allow such a dependence, the expression (310) is

replaced by a much more general one.) The condition DZO re-

quires that *o We may obtain the result of Bekarevich

and Khalatnikov by assumin that S =0 and that S , are

independent of .n . The boundary conditions (309) may be

written in terms of the vortex velocity V. (in the case=O );
thus

or, introducing

(vt. -Uu trv&iia 5 U

we have

According to Bekarevich and Khalatnikov, the limiting- case

g , s' e corresponds to an absolutely rough surface.

(Thus in their theory, the parameters ( , $' will presumably



depend on the condition of the wall surface.)

This completes the review of the derivation given by

Bekarevich and Khalatnikov. In the next sebtion, we will

give an alternative derivation of the hydrodynamic equations

which provides tentative answers to some of the questions

raised here.



2. An alternative development of the equations

In this section we give an alternative derivation of the

hydrodynamic equations for helium II. The starting point is

the same as in the theory of Bekarevich and Khalatnikov--

namely, the two-fluid model with the additional feature that

the thermodynamid internal energy depends on the superfluid

vorticity. As pointed out in the preceding section, Bekare-

vich and Khalatnikov have identified rotational flow with

dissipative flow. We prefer to distinguish clearly between

rotational flow and dissipative flow; thus we begin the deri-

vation by first obtaining the equations for reversible proc-

esses in the case when the internal energy depends on tcurl vs.

As a helpful preliminary, we consider f:tryt the case of

an ordinary fluid in which the internal energy depends on the

vorticity. The state of the system is described by the mass

per unit volume ( , the entropy per unit mass, S , the fluid

velocity M and the vorticityw = curly. The total ener7y per

unit volume E is given by

2.

where the internal energy e is a function of 1 , s and .

The pressure p and temperature T are then given by

de = de+ TcS +A-d('). (dI3)

Thus, as a thermodynamic variable, u2 is taken to be an



extensive quantity per unit volume. Since the energy e is a

scalar, we must have

where is a scalar function of , 5 and LO . The hydro-

dynamic equations must include the conservation laws for mass,

momentum and energy; thus

-1-..dv' 0 (3I5)

+dv+dv(Vv)=di ,(3)

at

where Q is the energy flux vector and. a- is the stress ten-

sor. Since we are considerin- only reversible processes, the

entropy must be conserved, so we have

(s)+ div ( e sv) -=0 .(SIB)

In the determination of c- and , it is convenient to intro-

duce the quantities Q anod 'C by

and

Cy0I (320)



The1 in1vQAr(IUnc W. to eqra.in unA -aLeL LLnZa o n,

requires that Qo and t be Galilean invariant4 The equations

(315) - (318) are not all independent, and the requirement

that they be consistent may be written in the form (after some

calculations)

divQO +X -curl( divT) -T Irad y +A -(VTXVS)9O. (51)

We now consider the special case in which the entropy is uni-

form in space (this includes the problem of eventual interest,

since the superfluid component of helium II has no entropy).

Then (321) becomes

divQo + c - ardv . (32)

The simplest "solution" of (322) is to take , Q o, and

we will do this here (it is conceivable that other choices of

Q0 and 't will satisfy (322) ; however, tbe physical interpre-

tation given below lends weipght to the choice made here).

Then the complete set of hydrodynamic equations is

-C + dbv Cv 0,

(v)+ dV v)=dv(A - ,

or

-Dt P24



C_') + 4V - V V Y. l -- curl -A

wvhe re.

<f=e ._...-A LA_ ,(?5

S= cosaty(3Z%

and
+(5xeur\)Ax _ AO (d2')

The equation for the vorticity is

rCUr r to +..L eur1 I, (32)
C)-e

Or

where

v = v +_Lcurl 'A_.(59

Thus we see that there is an additional term in the stress

tensor, A , and that the vorticity satisfies a transport

equation with a transport velocity y.j Fiven by (329). 'In the

energy flux, there is a convection term, Ev , a term giving

the rate of working of the stresses,-<.v , and an additional

term, ( Q curi ) x ' We may Cive a physical interDre-

tation of tiis term as follows: friom the vorticity equation,

we have

.d d_ d- S n Y' (v V LJX>O).4



where v is a volume fixed in space, bounded by S ; thus the

rate at which vorticity crosses S per unit area is-nl(VLxW'),

so the transport of energy from this source is

- n -r x (v x w_)- n y. x ( W)x .

The flux of energy relative to the moving fluid is then given

by

n- x (VL- ) XO= n curI)_ xIV_

in agreement with n , This completes the

discussion of the case of an ordinary fluid, and we now con-

sider the application of these results to the two-fluid model.

To derive the perfect fluid equations, we will use a

modification of the method discussed in II-A-2, since this

metrod yields a unique set of equations even in the case when

Curl V, - 0 . Since the method is discusped in detail

there, we give only a brief discussion here. As a starting

point for the derivation, we assume that each of the tno com-

ponents has a complete thermodynamic description and that the

only coupling between ther is due to s transitions.

Thus the total energies per unit volume of the superfluid and

normal fluid components are given by

Ond (330

Sv2 + e.



The spejJciiic internal -rL e s a Lun.Cton OS n>In Se ,

and

den = Pd+TndSn,,
en

which defines the normal fluid pressure F. and temperature To.

The energy es is a function of W =curl ys and (we are assum-

ing, the entropy of the superfluid component to be zero, as

usual), and

ds Ps. de +. (dZ)

which defines superfluid pressure ps ; since e. is a scalar

function of e> , , we must have

( 333)

\Nh e r e

-V - A)W - (-5-54)

and 'A is a scalar function of es and I1
2

Th"--e only coupling betwecen the two comrpone-nts is (byN as-

sumption) that due to transitions, and we assume fur-

ther that the system is in equilibrium with respect to this

process. The equilibrium condition is obtained from an energy

minimum principle.

total energy is

If we consider a fixed volume V , the

E = V (F-n+ e-s).,)



is t v ( Se , and the total mass is M= V(?n+?). As

discussed in Chapter II, the equilibrium is also to be taken

at constant Vs ; for the same reasons, we also take the

equilibrium at constant w . Thus the equilibrijum condition is

given by

d EY, S ,=0

and this yields the condition

2.

where
e + -- TnSn

If we introduce the entropy per uhit total mass 5

and internal energy e per unit mass(ee= enen+te%

then

If we introduce the total pressutre p by

(33K)P + ?

and the temperature T=Tn , then (338) becomes

8 e = Td S +.2 d +.1 w ax + d1E.\ (340)

(155)

(-35')

deTndC + Pn+s d+ +

),

(358)+'1-je)



For later convenience, we note here that the differentials of

the partial pressures p, and Fs are given by

JP, - + (o-x) dLW +(-x) ST -(o-xW . d (S40
en

and3

dP,. ip . d -. w. d-T x d. (sr+.)

We now consider the hydrodynamic equations for reversi-

ble processes. First of all, there will be two continuity

equations which, however, must take into account the es

transitions which conserve only the total mass. Thus

(543)
and

s .IV iv ( sv)=- '

where the volume rate of conversion P is not to be indepen-

dently specified, but is determined by the flow conditions

and the equilibrium condition (336). Since we are considering

only reversible processes, the entropy is conserved. and we

have

Ip",s") -+ d's v (e. , v,,) = o. (344)

To obtain the momentum equations, we simply assume that

each component satisfies an appropriate perfect fluid equation,



tions taken into account. Thus for the normal fluid component,

we assume an Euler equation, so that

nv+n)+div(egvnvn) = 1pi+flv 6 , (45)

where the term in rVs represents the volume rate of increase

of normal fluid momentum due to transitions. For the super-

fluid component, we make use of the results obtained earlier

in this section to write the momentum equation as

+=s - _O x curl A- v5 ,

or

2( s - () div( + -VP5  )-I 'Vv, . (346)

or

ZivS +Vs-Vs =-Vi - j x curI 7\.

(the three forms are all equivalent). The equations (343) -

(346) form a complete -set of hydrodynamic equations for re-

versible processes. From these equations, we may derive the

two energy equations

Z f _ + div + e e +PQ)voj r(4, - +v -)

(~4 7)

and

rs'- V S



The terms on the right-hand sides give the rate of energy ex-

change due to fn 0. transitions (as may be easily verified

by a direct calculation of this energy exchange). For pur-

poses of comparison with the results of Bekarevich and Khalat-

nikov, we may write the equations in the following form:

1 +vw -Vvn = -VP V-() +T (1x)VLWZ+. VA - W (549)
-- -~ Qe 0X

-)i + VS + -- , .... sVT + . -LX cor), (350)

+ d~f~v iv lsVs Vs Ap -?cw 0.(31

These equations are in agreement with the equations of Bekare-

vich and Khalatnikov in the smecial case when the coefficients

and 6 of their theory (cf. equations (298) - (300))

are all zero. In the present case, however, t'e term Yc, rlA

in the superfluid equation is not a dissipative term but comes

from the stress tensor of the perfect fluid theory. Further-

more, the extra term in the stress tensor A is here associ-

ated with the superfluid component and not with the normal

fluid component as in their theory.



We now consicier the extension of the present t.eory to

include dissipative processes. As mentioned earlier, the

systematic procedure used in Chapter III for deriving the

equations for dissipative processes cannot be applied in a

straightforward manner to the present theory(mainly because

we are here interested in a volume dissipative process--

mutual'. friction--which does not fit easily into the framework

of the general theory of Chapter III). For this reason, we

do not attempt to consider the most general dissipative 6qua-

tions; rather, we restrict attention to t.e type of dissipa-

tive terms considered by Bekarevich and Khalatnikov. Yore

specifically, we consider two dissipative processes--(i) a

mutual friction force effecting momentum exchange between the

components and (ii) a dissipative stress tensor acting on the

normal fluid component. (In the present theory, as in the

theory, as in the theory of Fekarevich and Khalatnikov, we may

easily include thermal conduction and the dissipative gradient

terms in the superfluid equation (cf. II-B-2); however, for

purposes of comparison with their equations wewill omit such

terms here.) The independent equations will be the conser-

vation equations for mass, momentum and energy, and the equa-

tion for the superfluid velocity. These equations may be

written as

.v (+ 8 v+ )=O, (352)

+ d+ + SV (554v )



IU a I

vvh er e

go p 'A~ y

X curl x ( 55)

and

at

where T is the dissipative stress tensor, e, is the mutual

friction force per unit volume and is the contribution to

the enerEy flux from the dissipativo processe?. We may obtain

the form of Q' by plausible ar,;uie-ts. First of all, there

will be a term -- -Vn giving the rate of working of tho

stress tensor .'C . We may expect that the term in the

superfluid equation will affect the transport of vorticity

and will thus lead to an additional term in the energy flux.

The vorticity equation is

=curl (y + cvrl )xw + - 56

tLhus thie ratc of transport of vorticity across a surface with

normal n is

n X (vs + curi)'A) x W+( )
The - 1y (s57)

Then the rate of energy transport by this process in th'Ie rest

f-rame of the superfluid is



so that we would expect a tert Nx;

flux Q'

in tThe dissipathie enerry

* Thus we assume

7 --tVvi (- .559)

For the entropy, we expect an equation of the form

(540L)6 (es) +dv(>sv -) = .R
4;-: T

with R positive definite. Equation (360) is not independent,

and, from the hydrodynamic equations (352) - (355), we may

show that

- 3.rady + -W- - c.url (3)

We now assume (aE did Eeharevich and Khalatnihov) that

the dissipative processes represented by T and .S are inde-

pendent in the sense that their contributions to the dissipa-

tion function are independently positive definite. Then T

must have the form

if we assume that the viscosity tensor is isotropic, then

this reduces to

(358)-. 'n x curl ^X Y.W +f curl-\ .6 X
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The mutual friction must be determined so that

where.

p = UrI?' - gW.

We may also express p in terms of the vorticity transport

(362)

velocity of the perfect fluid theory, v *L where (cf. equa-

tion (329))

(3'3)
then

Io)

thus the dissipative mutual friction force is closely con-

nected with the transport of superfluid vorticity relative to

the normal fluid. As in the discussion of the preceding sec-

tion, little more can be said about - until we have deter-

mined what quantities -P may depend on. We may note, however,

that the choice

Where

u) (164)

satisfies (362) and leads to exactly the equations for Vn , vs

QYndC (> 0) -d > 0,



thatWQ Ob&.ined by tikariKi &ina f &lanilov (equCt-is

(298) - (300)). The justification of the choice (364),

though, is no easier here than in the derivation of Bekarevich

and Khalatnik7ov. We may easily write down the most general

ie depending only on Wg and vv, p Ahd satisfying-(362) ;'the

reult (cf. equation (29k)) involve6.6 scalar coefficients

(one of which must be positive) and includes (364) as a spe-

cial case. Even if we assume that _ depends only on p and

, the resulting expression for - is still more general

than (364). In the case that r- o (which, according' to

Bekarevich and Khalatnikov, is the case of practical interest),

we can arrive at the form (364) by using the microscopic (on-

sager4Feynman) theory as a qualitative :uide. In this theory

(as developed by Hall and Vinen), the mechanism responsible

for mutual friction is the scattering of the normal fluid ex-

citations by the quantized vortex lines. From this picture,

it is reasonable to suppose that the mutual friction force is

perpendicular to the superfluid vorticity _o ; it is also rea-

sonable to s uppose that the relevant relative velocity is
(a)

- V , rather than vn - v. Thus we assume that. - de-

pends only on w_> and p = e (v O - v0 ) (and the scalar thermody-

namic variables), and t':at -0 u= 0. Then it is easy to show

that the most general 1 (also satisfying (362) ) is given by

P'= 'x P + xhe xP}

wvhere.



agree exactly with those of Bekarevich and Khalatnikov in the

case Y=O

This completes the alternative derivation of the equa-

tions of Bekarevich and Khalatnikov. Althourh the final equa-

tions for vn and vs are the same in both derivations, it is

hoped that the present derivation brings out more clearly the

physical significance of the various terms and also the nature

of the arguments needed to obtain the final equations.



3. Physical basis of th.e theory

As mentioned earlier, the theory of Bekarevich and Khalat-

nikov is based on the two-fluid model, the usual conservation

laws and invariance principles and the single additional as-

sumption that the thermodynamic internal energy depends on the

superfluid vorticity, as well as the usual thermodynamic varie

ables of the two-fluid theory. It is this last assumption

which is the new feature of their theory.and which deserves

careful discussion. In the preceding two sections, we have

considered the mathematical development of their theory. In

the present section, we make some attempt to discuss the

physical basis of the theory; in particular we wish to (i)

examine the theory from the point of view of the Onsager-Feyn-

man theory of quantized vortex lines and (ii) discuss the pos-

sibility that the tbeory of Bekarevich and Khalatnikov might

be relevant to some microscopic picture other'than the Onsager-

Feynman theory. We consider (i) first.

According to the Onsager-Feynman theory the rotation of

helium II gives rise to line singularities--quantized vortex

lines--in the the superfluid component. It is supposed that

these vortex lines consist of a small core around which the

circulation of the macroscopic velocity field vs is quantized

according to the formula

Vs - d s = 2TTn;. (316S)

J rn



Tie eifective core diameter is believed to be oL the order of

10 c . (there is, however, some evidence that it may be

much larger[37]). Thus, according to the prevailing theories,

the vortex line is an "excitation" which is in some respects

microscopic (the very small core) and in some respects macro-

scopic (because of the associated macroscopic velocity field).

In the development of a hydrodynamic theory from these ideas,

it is clearly desirable to try and determine to what extent

the vortex lines are to 'be treated as microscopic excitations

and to what extent they are be treated as hydrodynamic struc-

tures. We may note first of all that in a typical flow prob-

lem (e.g., the steady flow in a cylinder rotating with an

angular velocity of 1 rad/sec.), the average distance between

vortex lines is of the order of IOcmo Thus even though the

vorticds'are fairly close together, their average separation

is still much greater than any (presently known) microscopic

length scales. The energy per unit length of a vortex line is

usually taken to be

where R is of the order of the distance between vortices and

0. is the effective core radius. This energy (which is ob-

tained by simply integrating the kinetic energy density of a

hydrodynamic vortex field), is the energy which Bekarevich and

Khalatnikov have included in the thermodyrainic. internal

energy. However, this extra energy is associated primarily



with the organized, macroscopic motion induced by the vortex;

thus we may ask why it is not already included in the ordinary

kinetic energy of motion. To be sure, if we consider a spa-

tial average,(v>, of the superfluid velocity field over a

region of space containing many vortex lines, then, for

<-L= < NL >5 S

~S

however, in this case, the extra energy is analogous to the

extra energy of turbulent fluctuations in the turbulent motion

of an ordinary fluid--it is in no way associated with the

thermodynamic internal energy, since it appears as a conse-

quence of averaging a macroscopic velocity field and not, as a

consequence of averaging over a thermal distribution. The

essence of the argument here is that t'e vortex motion will

appear regular and macroscopic in character when viewed on a

sufficiently small (~10 ey)--but still macroscopic--length

scale. One would expect some sort of equilibrium tlhermody-

namics to hold for volume elements whose linear extent is even

smaller than io em; thus it, is not clear that the continuum

model of Bekarevich and Khalatnikov is relevant to the Onsager-

Feynman theory of quantized vortex lines. The turbulence ana-

logy, however, does suggest an alternative approach to con-

structing a hydrodynamic theory on the bati of the two-fluid

model and the Onsager-Feynman theory. This will be considered

in detail in the next section (IV-C).



vie may also consider the possibility that the theory of

Bekarevich and Khalatnikov is an adequate continuum represen-

tation of some microscopic theory other than the Onsager-

Feynman theory. To discuss this we may first ask for a de-

scription in general terms of the physical picture associated

with the inclusion of a vorticity dependent term in the inter-

nal energy function. The presence of an extra term dependent

on the vorticity in the energy means that there is some inter-

nal structure in the fluid which tends to resist rotation (it

is not really necessary to assume that this structuring is

produced by the rotation; as Lin* has pointed out, tlce excess

energy may be that which is required to alien ,structures al-

ready present in the fluid). The fact that this extra energy

is included in the thermodynami internal energy would seem to

correspond to a situation in which the internal structures are

microscopic in size (e.g., as LinE251 has suggested, the

structures may be small vortex rings of sub-macroscopic dia-

meter). Thus we have a plausible, general sort of microsco-

pic picture to which the theory of Bekarevich and Khalatnikov

would seem to be applicable. Kowever, there is a furthei

point regarding the development of such a theory which we dis-

cuss by means of an example--namely,we consider the develop-

ment of the hydrodynamic equations for an ordinary fluid in

which there is an internal angular momentum in addition to the

usual x y angular momentum density (the extra ang-ular momen-

tuna is associated with the rotation of the constituent rnole-

cules of the fluid about their centers of mass; this theory
# private communication



has been developed systematically by Grad [101, and a concise

presentation is given in [4, p.7304]). The essential features

of this theory relevant to the discussion here are (i) there

is an extra term in the energy dependent on a local internal

angular velocity 4 , . being the local mean angular velocity

of the molecules, (ii) the rate of encrvy dissipation from the

processes which tend to produce rotational equilibrium is pro-

portionl to the square of the difference - turl v, and (iii)

if tie relaxation time for the;'e processes is much less than

the relevant macroscopic time scales, then e urV. Thus

in the case of helium II, we might expect that t."ere would be

some internal parameter such as .CL above to describe the mean

state of the internal structures; then the extra enerry would

depend ong and the dissipation would depend on.. -- curl Vs

For steady flows (or flows with slow time variations) we would

have . O CUrl %; thus the quantity wa cr- vs would. enter into

the thermodynamics through a sort of equilibrium condition and

not as a fundamental thermodynamic variable. The detailed

development of a theory along t- e lines described here may

well differ considerably from the development given by Bekare-

vich and Khalatnikov for their theory.

In summary: there are definite arguments which indicate

that the theory of Bekarevich and Khalatnikov may not be rele-

vant to the two-fluid model with quantized vortex lines; al-

though their theory may have some relevance to other micro-

scopic pictures, it is possible that the detailed development

of such theories should proceed along somewhat different lines.



C. An Alternative Approach to the Hygrodynamic Theory

with Quantized Vortex Lines

In the theory of Bekarevich and Khalatnikov, the hydro-

dynamic equations obtained are a generalization of Landau's

equations (as discussed in III-B); also, their equations are

(ostensibly) equations for local macroscopic variables ( v

vn etc.). Hall and Vinenr12,13,14,38 have taken an alterna-

tive approach--namely, they attempt to obtain equations for

averages over regions containing many vortex lines of the

local variables. Thus in their theory, the basic equations

for the local quantities are essentially the same as the Lan-

dau equations; however, tie particular solutions of interest--

flows involving a large number of vortex lines--are too com-

plicated to calculate in detail, so that the development of

equations for average quantities is essential, In carrying

out this development of the equations for average quantities,

Hall and Vinen find it necessary to make a number of addi-

tional specific assumptions about the nature of the vortex

flows. In view of our present uncertain knowledge regarding

the detailed structure and properties of quantized vortex

lines, it seems desirable to base the derivation of the hy-

drodynamic equations on as few assumptions about the specific

features of vortex flows as possible. In the present section,

then, we offer an alternative derivation of the equation pro-

posed by Hall l3,14 to describe "vortex wave-". We consider

only the case in-which mutual frictioQ4 is abseht (or unimpor.is

ant, s the cate for lower temperatures), iainly bleca-ue it

As not clear how I-o include midtual friction in the PIi'eserit



theory. (In this connection, however, we may note that the

theory of mutual friction given by Hall and Vinen is not free

of conceptual difficulties. For example (i) it is not clear

why the Magnus effect should be relevant, since one would ex-

pect the vortices to move with the local superfluid velocity,

(ii) they do not distinguish clearly between mean and local

-variables in their derivation, and (iii) in their treatment

of roton-vortex line scattering, they (apparently) regard the

force as acting on the vortex core, rather than being distri-

buted throughout the fluid; however, the cross-section is cal-

culated from an interaction term of the form p.Vs , where '

is the roton momentum, and v5 is the macroscopic vortex velo-

city field.)

For now, we wish only to consider those flows for which

the detailed structure of the vortex core is unimportant.

Thus flows in which the processes of vortex line creation and

destruction and mutual friction are important are outside the

scope of the present discussion. We are then considering only

the hydrodynamic aspects of the vortex lines, and we may thus

expect that the continuum hydrodynamic equations will be ade-

quate for describing the flow. We are still assuming that the

superfluid component is pointwise irrotational, so that the

appropriate hydrodynamic equations are the Landau equations as

discussed in II-A (we will not be concerned with dissipative

processes in the present discussion, so we use the simpler

perfect fluid equations of Chapter II). The equation for vs
may be written as (cf. equation (33))
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In the case of moderate velocities and small variations of

temperature in the flow, we also have

div vs =. =.7)

Equations (366) and (367) are formally the same as the equa-

tions for ordinary incompressible perfect fluid$. Thus pos-

sible solutions are flows in which the vorticity is concen-

trated In lint singularities, and we are interested in

solutions of this type where the number of vortex lines is

large. (In accordance with the quantized vortex line theory,

we are assuming here that the response of the superfluid to

rotation is an array of vortex lines.) Here, as in the case

of the turbulent flow of an ordinary fluid, we may expect that

the detailed velocity distribution is irregular and fluctua-

ting, even when the external conditions are steady. Since it

is obviously not practicable to attempt a detailed calculation

of such a velocity field, we wish to consider some sort of

average velocity. Thus we assume that the motion can be se-

pDarated into a mezn flow<(vs> and a fluctuating: part Vs , and

we assume that the averaging operation commutes with space

and time differentiation (in some special flows,(v> may be

regarded as a space or time average; in more general flows,



we may consider<vs) to be a statistical average). Then, upon

averaging, we obtain from (366) and (367) the equations

Qnld

div <vs O.

We may note irst of all that curl <v..>#O in general; in fact,

if N(e) denotes the number of vortex lines passing through a

circuit C , we have

So tvat O W
vc d =N .h C)

and

curl 0 or i <N(C),> (370)

A

Ue now consider the correlation term (vs' Vs aopearinc in

equations (368) for the mean flow. This term is analogous to

the Reynolds' stress in the equations for the turbulent flow

of an ordinary fluid. However, the detailed structure of the

vortex flows under consideration here would seem to bear

1tldl resemblance to the structure of turbulent flow. What

is needed, in fact, is a statistical theory of vortex line

flows; such a theory has not been developed, however, and, at

present, we can only make a few conjectures about the nature

of these flows. From the point of view of applications, it



would be very desirable to express the correlation <v_ Vs> in

terms of mean flow quantities. If the vortex line array is

very chaotic and if there is little correlation between the

directions of neighboring filaments*, then, on the basis of

the ordinary theory of turbulence, we might be skeptical about

the possibility of relating the correlations to the mean flow

in a universal manner. However, for more regular vortex

flows, we might hope to relate <ysV'5 > to the mean flow in

some simple manner. (An example of what we mean by a regular

vortex flow" is perhaps helpful here. Hall and Vinen have

conjectured that, for a helium filled circular cylinder in

steady rotation, the vortex lines are parallel to the axis of

rotation, the array is (nearly) uniform in spacing, and the

lines are at rest when viewed in a reference frame rotatin&

with the cylinder. In the present discussion, we would only

conjecture that, on the average, the array has these proper-

ties; it seems likely that at any given ii-stant there would

be small, irregular deviations.) If we suppose that we are

dealing with a regular vortex flow, in the sense described

above, the neighboring vortex filaments will be approximately

parallel, and will have the direction of the mean vorticity,

tri <to . Roughly speaking then, the averaging implied in < >
will in this case be over the possible positions--and not the

possible directions--of the vortex filaments. Since the velo-

city fields induced by the vortices are transverse to the

filament direction, we make the plausible assumption that

the correlation tensor 'R;q < is transverse toO)=au1<v5'-
O Vinen [383 has considered such flows; he uses the termino-

logy "superfluid turbulence" to describe such a flow.



(371)

If R;i is to satisfy (371), it must depend on o . The amplest

case is when R;j depends only on L; (and possibly scalar quan-

titics such as , etc.); t'ren Ri must have the form

-, - A { el c i w c oa j (572)

and we assume this form here. We may relate the scalar \ to

C , the energy pern unit lengt. of a vortex line, as follows:

consider a vortex tube (i.e., a vortex tube defined by the

mean vorticity- eurI <vs>) of length 8.) , cross-section SA ; the

energy in this tube associated with the fluctuations is

since the mean total length of vortex line in the tube is

(where K=. is the circulation around a single vortex), this

energy may also be written as

K

so that we obtain

C
K

(573)

If we introduce -t/= O Sw , then the equation for <(s> may be

written as

O.A.

w'i.3 ~= o.



81 >7 + <VS V<A - +v -V W (5174)

and this is the equation given by Hall 131 to describe vortex

waves.

At present, the above theory must be regarded as simply

a conjecture; however, it is at least free of specific assump--

tions concerning the nature of the vortex flows (such as Hall

and Vinen' s assumption that the Magnus effect is relevant).

As mentioned earlier, what is needed is a systematic develop-

ment of a statistical theory of flows containing a large num-

ber of vortex lines, and the justification of the conjectures

here must await the development of such a theory.



A. Introduction

In the preceding chapters we have considered several

theories of the hydrodynamics of liquid helium. At present,

the experimental evidence is not sufficient to choose among

(or reject all of) these theories. A conservative but defi-_

nite statement concerning the comparison of theory with exr

periment is that (i) the Landau equations for reversible flows

have been well verified experimentally for flows in which dis-

sipative effects are unimportant and (ii) the Landau equations

are inadequate to describe all of the experimental results.

The central problem in the hydrodynamics of helium IT is to

determine how the Landau equations are to be modified in order

to describe dissipative flows, and the theories discussed in

the preceding chapters represent some of the current approaches

to this problem. In this chapter, we present a summary of

these theories in the form of a unified mathematical scheme

which includes the theories discussed earlier as special cases.

In part B, the general thermodynamic and hydrodynamic

equations applicable to all cases are given. In part C, the

various special cases are discussed with the aid of the ge-

neral framework of part B.



1. Thermodynamics

In the discussion -f the general equations, it is con-

venient to use the separate thermodynamic description for each

component. Since this description has been discussed in detail

in sections II-A-2 and IV-B-2., we only summarize the relevant

formulae here. It is supposed that the total energy per unit

volume E may be split into two parts--the superfluid part Es

and the normal fluid part En Thus

E= E + Es

2.
where, Eft .7L +17n

an~d

Et,= L~~+e 5

The specific internal energy e, is supposed to be a function

of (, and 5e ( Sn being the entropy per unit mass of normal

fluid), and the specific internal energy e. is supposed to be

a function of 1% and w.:-IcurVdI. The partial pressures P. ,

p5 and the temperature T are defined by

and+
dee= Pn d e +TSa T57ht

The condition f or equilibrium with respect to e,,-1e.transitions
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where 4 =en + 'n - TSn
,e^ (377)

es es

The thermodynamic quantities for the composite system are then

given by

e X en~ *-t0 X)e 5 ,
(378)

5=)Sr A, P=+F

and the differential of e is riven by

de= P 4TdS +' d(.--')+I vvzd x.ez (373)

The differentials of the partial pressures may be expressed in

terms of the thermodynamic variables of the composite system

as follows:

and

Apo CAR+ --e) sd T +(t-x) d1w -X) w d W )

e_ s - .P .sdT-xd-.w

In the case that the internal energy does not depend on cd ,

(380)
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It should be pointed out that the splitting of the energy

by (375) and the thermodynamic formulae (376) are really addi-

tional assumptions concerning the nature of the two-fluid

model. (Although these assumptions are consistent with the

view of helium II as a "mixture" of two interpenetrating fluids

which can, in the first approximation, move freely through one

another, it is not clear at present that we have the right to

ascribe an independent existence to each fluid to the extent

of giving a separate thermodynamic description for each).



2. hydrodynamic equations

The basic equations for reversible flows of helium II (in

the case that the energy does not depend on the superfluid vor-

ticity (= )) are the Landau equations. In more general

theories, these equations are supplemented by some combination

of the following: (i) additional stress tensors T"' , tS act-

ing on the normal and supercomponents respectively, (ii) a

mutual friction force per unit volume, F , (iii) dependence

of the thermodynamic internal energy on the superfluid vorti-

city Cj =1curI j\, (iv) an additional term in the entropy flux

3si&zand (v) an additional term in the energy flux, . The

general hydrodynamic equations-may then be written in the fol-

lowinF form:

Mass:
normal Iluid: _n + d =' ( r' - vo(ente rdte

-4 zonversion o.nc
s de-\-errn'medt by the

5uper luid -. ;.t\ow co.d'it;onS CIInd
is + I IV (ts) the eqwjlibrium Con -

T+~ 'M~on (S-17)- o)((59I')

totcW\ :

lomentum:

nor mal $\oid- n

++ iv(gv nv ) . _ di vE.i -- E +

Supeflud d tw)
3 {fas)+d 6 (t, s v-% .4.- + +V vs Sol Q W)+i T+

t:ota.1 _. Y+f .iv. 4I (ij~e v .. +'q vs) 9 aiv Irc -+ OA ?9 +

where for rea,'ons whicl will beccme apparent, we twve chosenl
# Corresponding to ordinary thermal conductioh



6 . .LAe u' -:L -J-> W a C4. Censor L Lii suIpO-

nent in the form.LL,2 w + TC.S . The equation for the super-

fluid vorticity may be written as

vo rt d Ity -. eCur\ ( x )+ cur if , (95)

where
1'~ ~ LA)

LA)
(39')

(3B7)

The scalar c satisfies the equation

scalor vorti~dTy:

?+dI ,. + 'o '' - +' curt- W.

The energy equation is

(me)

enerv3y:
.. En+Es + div ( 94) -dvQ',

where E, , Es are the total eneryies per unit volume of the

normal and supercomponents (cf. (37 ))), and where Q* , the

ener-y flux vector of the Landau equations, is riven by

(390)

The hydrodynaiic equations must imply an equation for the en-

tropy of the form

ernropy: A(ts) + dwY( S vn) = -diY{'3s -+ .,

=% = 4 curlA'
V. -)

Qo -. (Sy,+ o) yn + (Es+e Ps,)v .

(3-90



where R , the (local) volume rate of energy disrsipation, is

to be positive definite. From the equations (381)-(391) one

may show that

-~ (3) )

From (392), it is plausible to take

+ T 3,--3~ (394)

In justification o- the splitting of (-92) into (393) and (394),

we may note that (i) the equations (393) and (394) give the

correct exprescions for R and . for all of the various

theories discussed in the previous chapters and (ii) it is

possible to give a physical interpretation of the various terms

in the expression (394) for Q . Of course, the fact that R

must be positive definite--in conjunction with (392)--severely

limits the poscible forms of R and Q' . In particular, in

the case ?'=O and F=0, the splitting of (592) into (393) and

(394) may be proved under certain mild conditions on t ,

and 3,(cf. Appendix to Chapter III). In the general case,



however, we must rely on physical interpretation to assUre us

that 0' as given by (394) is the correct expression for the

additional energy fl Y, -id, hence, that (393) is the correct

expression for the dissipation function.

The reason for writing the total additional superfluid

stress tensor as A WH t? is clear from (393): only the

part t is a dissipative stress.

The hydrodynamic equations given above provide a general

framework for a discussion of the various theories, and this

will be taken up in the next secti6n. Although'the question

of boundary conditions will be discussed in conjunction with

each particular case in the next section, there is one general

point regarding boundary conditions which we wish to make here.

Suppose we consider a helium II--solid boundary; let

denote the total energy flux in the helium, evaluated in the

rest frame of the solid. Then let

. _ +3T (-695)rest ;rme.(

that is, Q, is everything in the energy flux except the entropy

flux term. In the solid, there will 'be a heat current H

and an associated entropy flux /-T . The conservation of

energy requires that

where, for definiteness, we take 2 to be the unit normal

pointing into the fluid. If Q,-n =0 , then the entropy flux

is continuous; if Qn0 , however, then the entropy flux is



not continous, and the interface acts (formally) as an entropy

source--that is, there is extensive dissipation at the bound-

ary. The net production of entropy at the interface must be

positive; the entropy flowine away from the interface into the

fluid is ' -n , and the entropy flowing away from the inter-

face into the solid is -9'"- , thus we must require

.- . - ..- ~o

Q., - <..o..

Thus whatever the boundary conditions iuposed, they must be

such that (397) is satisfied. In the case -f an ordinary

fluid (with the usual no-slip boundary conditions), the quan-

tity Qaf-n =0 ; in several of the hydrodynamic theories of helium

however, the quantity Qi- does not vanish, and the restric-.

tion (397) must be satisfied (and, jn fact, in some of the

theories, one may use the condition (397) to determine an ap-

propriate boundary condition). Further discussion of this

point will be given in the next section in connection with

each particular case. (In the above analysis, we have tacitly

assumed that the temperature is continuous at the interface.

If we include the possibility of a temperature jump (Kapitza

effect), then (397) must be replaced by

according to the Kapitza effect relation, Tdc - Tme O A -n)



where AK>O is the thermal resistance of the boundary, and the

condition becomes

2
Av .- - -n O.

If we assume that the Kapitza effect and the dissipative

effects included in C1 contribute independently to the dissi-

pation, then we again require Q-n-50 ; in particular, this

will be true if the boundary conditions are such that Q_-n

is independent'. of the magnitude of the heat current, -- n



1. Reversible flows in the case A=O.

In the case that the internal energy doesn't depend on

the superfluid vorticity, the Landau equations are recovered

for , F and g. all zero. In the present general

scheme, the Landau equations appear as only a possible set of

perfect fluid equations. However, one may deduce the Landau

equations from the conservation laws and the requirement that

curl v, 50 (cf. II-A-1; we may also note that one may deduce

the Landau equations from the conservation laws and the less

stringent requirement that the superfluid vorticity mUst nove

with the superfluid velocity--that is, that curl YS= cur{ curI vs)

An alternative approach is given in section II-A-2, where it

is shown that one may obtain the Landau equations (without

tie 1es'Iiction curl v=o ) frow the assumption that the two

compconents are two independent perfect fluids coupled only by

the g transitions, with the transitions taking place at

constant v . However, these two deductions of the Landau

equations depend on assumptions whose validity (even in the

perfect fluid theory) is not evident. In particular, we see

from equation (593) for the dissipation function, that a

mutuA.l friction force F which is perpendicular to w= vn --vS

does not lead to any dissipation (y= vs in the case A )

and raay thus be included in the perfect fluid. equations. In-

deed, the equations proposed by Lin (cf. II---4) differ from

the Landau equations.by just a term (namely, F:e(c-x)w Y curlVs



In general, then the Landau equations may be supplemented by

a (non-dissipative) mutual friction force perpendicular to .

The boundary conditions to 'be satisfied at a wall novingr with

velocity L are simply that n. - ( V -U) = 0 and n-(v 5 -U)=0

where Q is the normal to the wall.
r It is natural to ask if the addition of a mutual friction

force perpendicular to . is the most general modification
of the Landau equations C'lowed within the framewbrk of
the perfect fluid theory. The answer is yes, provided it
is assumed that (i) the stress tensors T" ,-ps are inde-
pendent of the gradients o the macroscopic giantities,
and (ii) the terms t": rd v +-.f: gwa4'a and - in
the dissipation fun'tion are separately zero. The assump-
tion (i) is a reasonable assumption in a perfect fluid
theory, and the assumption (ii) (corresponding to the phy-
sical statement that the volume momentum transfer processes
represented by F are independent of the processes repre-
sented by 'T_' [t'" ) excludes the possibility of stress
tensors ~ , ~ depending on y and a related mutual
friction~F specified in such a way that 'R :O (cf. eq.
(50), II-A-l, for an example).



The equations for dissipative processes are obtained br

determining the quantities , " , F and ~9s so that the

dissipation function (cf. (393)) is positive definite. Under

the reasonable as1umption that the contributions of F and the

group C to the dissipation function are independently
, S1

positive definite, one may study separately the transport

terms t M, 3 s and the mutual friction .

We consider the quantities and f irst. In

the simplest case, these quantities are taken to be linear

functions of the rate of strain tensors e; , eq a'd the te -

perature gradient VT , and it is assur.ed tiat the helium II is

isotropic with respect to the transport processes; then the

resultinr- equations are those of Lin's theory (III-C-2)--that

is, 3, - K (thermal conduction) and the stress-rate of

strain relutions are characterized by four shear exchan[de co-

efficients (and also four "bulk viscosity" coefficients in the

general case). There are several ways in which the theory may

be generalized. First, we may note that the conservation of

ancular momentum requires only that the sum '_.+ c) be sym-

mnetric; thus t c could have anti-symmetric parts adding

to zero, and the effect of including such terms has been con-

sidered in Chapter III (III-C-2). The effective body force

associated with the anti-symmetric stress is proportional to

c.url (u4s-'~), and there is a (dissipative) volume exchange of

angular momentum between the two components induced by the

'_ , _L_ -I.. _ . -, , Ls - , __ , " j _" 't ' ., - I , -1 \ = 0



esress. Ancther way i which the theory may be Ceneralized

is to take into account the possibility that, because of the

relative motion of the two fluids, the transport processes may

not be isotropic (or, to put it another way, the viscosity

tensors and the thermal conductivity tensor may depend on- the

direction of the relative velocity ); the resulting general

equations are very complicated and. have not been studied in

detail.

The mutual friction F must 'be such that W-f o , and

we can say little more abont f until we know what vectors F

may depend on. In the simplest case, F depends on y aline,

and we have F = C. , (where C,>O iray depend on w as well

as the scalar thermodynamic variables) and this includes the

mutual friction originally proposed by Gorter and 1Mellink [8J
in 1949. Another case of interest is when F depends on w

and w curl vs; then the most {eneral form is F Cc w + C v X W+

+ C. v x f ( '), (where Co>O and C. , , C 2 may de-

pend on the scalars W , W and (W-t) o and this includes

both the Corter-Mellink mutual friction and the mutual fric-

tion proposed by Hall and Vinen [121 (in the case of "straight

vortex lines") as special cases.

The boundary conditions to be satisfied are of some in-

terest. When there is a heat current between a boundinr wall

and the helium II, the condition esTv.n= H -. , where n.

is the normal to the wall, is usually imposed (with Vs-9 being

determined from the requirement that the total mass flux van-

ish). However, it can be shown that in principle this



ConiciUIC-i leaGls LO a v iolOat-ionf 1>e ILw o& icease of en-

tropy (cf. (397) and preceding discussion), and that the

boundary conditions (even in the case of a heat current

through the wall), should be n -.v.,=0 and n.- vO . (In practice,

the boundary condition C svn - 4 - n is an excellent ap-

proximation; the internal convection mode of heat transfer in

helium II in conjunction with the boundary conditionsf%.-'iY=o,

n -vso leads to a very thin boundary layer through which v -n

rapidly changes from zero to H-D A/s-(cf. III-B-3; also II-A-1

and IiI-c-4).) Since the equations for v , vs now contain

second spatial derivatives, one also needs conditions on the

tangential components of v , VS The condition on y, i2 usu-

ally taken to be(v - o ( U is tie wall velocity).

For the quantity~v,-u) , Lin has proposed the condition
- I - < 3D5"

(n - T (s) -- v -l 912 VS -0 ) wni 'J %8l

where is independent of (Vs -. )but may depe-d on the ther-mo-

dynamic variables (cf. III-C-3 and IIT-C-4 for a discus,'ion of

this boundary condition). (From the e eral requireue-t (397),

one may deduce the condition 3 (V-(-9)-O>; thus in the event

of superfluid slip, the -eneral form of tIe condition (398)--

i.e., a relation between n- a--is

already determined by the law of increase of entropy. The

rate of energy dissipation at the interface .ssociated with

the superfluid slip is IV.,U per unit area.)
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When the internal.energy depends on the superfluid vorti-

city, the simplest hydrodynamic equations are obtained from

the general equations by taking t4 , TM, F and 3 all zero.

We will limit the discussion of this section to that case.

From equation (383) for the superfluid momentum, we see

that there is an additional stress w acting on the

supercomponent. From equation (385), it is evident that the

superfluid vorticity no longer moves with the superfluid, but

moves with a velocity V = vs +1 curl V. (In the present case,

=.F+I cy 't .) Equation (388) for the scalar vorti-

city ys=curl V also illustrates this; the term wYY:rad VYL

on the right-hand side of (388) represents the production of

vorticity by stretching of the vortex lines. The extra terms

in the energy flux (eg. (394)) are

Te may interpret the first term in (399) as the rate of work-

ing of the extra stresses, provided we assume that the stresses

do work on the vorticity velocity V. rather than v., ; the

second term is a correction to the convection term geess ,

expressing the fact that the vorticity moves with velocity vt.

rather than Vs . Alternatively, we may write (399) as

QL- .. VS + '(400)



(VL s~t~~vere ~(401)

thus we may also regard the vorticity as convected with the

velocity vs +(v..s) r , rather than vL. , and the extra

stresses as working on rather than V .

The boundary conditions at a wall movin with velocity U

may be taken as (Vs - O)-n - and (9{n J)=0. Since the equa-

tion for Y now contains second space derivatives, further

boundary conditions are needed. Although it is not obvious

what further boundary conditions to impose, the general cri-

terion (397) yields in the present case (of no dissipation)

-1 _U_ .transverse ='0 (40Q)

where

Y")trmnsverse

Since two further boundary conditions are needed, the simplest

choice (satisfying (402).) is

o:oserc . (1403)

If one regards the vortex lines as movinr with velocity VL,

the condition (403) is equivalent to the statement that the

point of attachment of a given line to the boundary remains

fixed relative to the boundary.



4. DissipativU Jlows for X #

In the general equations, there will be dissipative terms

T , ~3, and F . (It has not been found possible to include

a dissipative stress tensor C in the sipercomponent in the

case A ; the reasons for this will bc discussed below.

For now we assume that t_ 0 .) Again, we make the plausible

assumption that the contributions to the dissipation function

from the volume mutual friction fE and the transport terms 9s,

are independently positive definite.

The quantities t a--,~ are to be detormined from the

condition (cf. (93))

T :~aVn 3s -VT 0.

In the simplest cas e, - .. VT ( K being the thermal
(n) T

conductivity) and & is expressed in terms of the normal

fluid rate of strain tensor through a shear viscosity and. a

bulk viscosity. As in the discussion of section 2, we may

consider the more general case in which the viscosity tensor

and the thermal conductivity tensor depend on the direction of

the vector w . (Because of the distinctive role of the quan-

tity w = curt vs , one could also consider the possibility that

the viscosity and conductivity tensor depend on the direction

of c_ as well.)

The mutual friction F must be determined so that F-(vn-VL.)?03

again, we can say little more about . until we know what vec-

tors F may depend on. Certainly will depend on -V. ; it



also seems reasonable to suppose Lau IF depenas on W = curt Ys

and vv = Vn - vI as well. The most general F depending on

these three vectors and satisfying 2:.(v - 0A.O is given by

F= Co (VV +(Vvi -v..x{(- C v +CVxYw + cV Xx(.S.-K)

+ C4 COx (OxW) + Cs WA (WE'..-1)B (04

Co must be positive, while the other 5 scalar coefficients

are arbitrary. (In general, the C's will depend on the scalar

invariants of Vn , w. and W , as well as the theriodynamic

variables.) The expression (404) includes--as special cases--

the mutual friction given by Lekarevich and Khalatnikov PA
(cf. IV-B-l) and the mutual friction given by Fall li. The

mutual friction leads to an extra term in-the energy flux (cf.

(394)), namely

From the equation (388) for the vorticity Wol curl v) , we see

that the mutual friction affects the transport of vorticity

and thus leads to an additional term in the energy flux. In

fact, it is convenient to define a modified vorticity velocity

VL by

Then the energy flux (-94) may be written as

Cn) #P ('406)OWVL *I +T-



boundary, we have, as before, n.(v.-U) and Vn-U=O . Since

the equation for Vs contains second spatial derivatives, two

further conditions are needed. The general criterion (397)

yields the condition

One -possible boundary condition is

- -- tC&mSverse2

more generally, we may allow a slip provided (407) is satis-

fied. The form of the boundary condition in case of a slip

depends on what vectors (4.- t ~ransveay depend on. Thus if we

assume that (5-L1) (at the wall) may depend on -Y and n,

the most. general boundary condition satisfying (407) is

where ISo , and S, , S% may depend on (1-!3) as well as scalar

thermodynamic variables. One may obtain more general slip

boundary conditions by allowing the quantity ( -.drontve4evalu-

ated at the wall) to depend on w , as well as -y and n.

Finally, we discuss briefly the case when 0 .In

this case, it is possible to develop a set of hydrodynamic

equations similar to Lin's equations for dissipative processes;

however, from (393) we see that the relevant rate of strain

tensors are those formed from vJ and 4%- , rather than v, and



from the general criterion (397), we must have (taking vn-V=0,

-n .'_.e. -U) t ?'A(nv- U) +V -'Aw x c-0- (410)
%msverse -- (10

in the present case, however, the quantity _: +Lt,' con-

tains fourth derivatives of Vs (since v already .contains

second deriatives of V E) . Eecause of the condition (410),

the boundary conditions must necessarily involve the term

AO ( ) , and thus must involve the fourth derivative of .s

Thus although the equations may be consistently developed in

this case, the difficulty with the boundary conditions seems

to preclude the possibility of simultaneously h0vg~C O0

? :A .



J. Furthler Work

Although there are a number of points connected with the

present work which deserve further investigation, there are

three in particular which we wish to mention briefly here.

The first of these is the difficulty with the variational

principle in Lin's one-fluid model (cf. II-3-2; the varia-

tional principle entails a restriction on the quantity cur\ c

or, in tcrms of the two-fluid model, on cur1(vn-)). It would

be highly desirable to resolve this difficulty so that a

unique set of equations could be obtained from the one-fluid

model. As discussed in Chapter II (II-B-2; II-C), it is pos-

sible that the difficulty stems from the fact that the Hamil-

ton's principle of mechanics was used to obtain the equations

of motion, whereas we know that even for reversible flows of

helium II energy transfers of an essentially thermal nature

may take place.

The second point is concerned with the problem of rota-

tion of helium II. As discussed in Chapter IV (Tv-B-3), it is

possible that it is an oversimplification to allow the inter-

nal energy of helium II to depend directly on the vorticity

W = curl Y ; one might expect that there will be an internal

parameter describing the microscopic rotational -ta r: of

helium II and that for steady (or slowly varying) flowq this

internal paramenter is approximately equal to L?= curl vs . Such

a theory has been developed for an ordinary fluid (cf. e.g. [4,

p.304]), and it would be of great interest to see whether it

is capable of explaining some the peculiar experimental results



The third point is also concerned with the rotation of

helium II, and is simply that it might be of some interest to

develop a statistical theory to describe flows containing a

large number of vortex filaments (cf. IV-C for some discussion

of this).



UCN U L UII

One of the central issues at present in the theory of

liquid helium II is the question of superfluid rotation. This

is a question which cannot be resolved by continuum princi-

ples; rather, one must take a definite view point on this

matter in order to develop a hydrodynamic theory. Indeed, the

principal point on which the theories discussed in the pre-

ceding chapters differ is in their treatment of the super-

fluid rotation. Ultimately, the choice among the various

theories must be made on the basis of comparison with experi-

ment. However, it is not entirely a straightforward matter

to obtain a definite set of hydrodynamic equations on the

basis of qualitative assumptions about the nature of the

superfluid rotation; 'because of this, it is sometimes diffi-

cult to gauge the relevance to the problem of superfluid ro-

tation of particular experimental evidence. A principal aim

of the present work has been to attempt to clarify the steps

leading from the fundamental assumptions to the hydrodynamic

equations in the various theories, both by critically examin-

ing the various derivationa of the hydrodynamic equations and,

in some cases, by offering alternative derivations.
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We give here an analysis of some simple, specific flow

probljms on the basis of Lint s theory, of dissipative processes

(as discussed in section III-C). These examples serve to il-

lustrate some of the features of Lin's theory; also, the com-/

parison of theoretical results with experiment leads to some

information about the viscosity coefficients and the c'oeffici-

ent in the nonlinear .boundary condition. We use the apz -

proximate form of the hydrodynamic equations appropriate for

moderate velocities and small temperature variations through-

out the flow. These equations are

+Vn-V Vn V I - -X) SVT -r 0 -X) V W Z+ an Vn jpV

W In 7 VVn +LA(s-

div V" =0 , d0ivv=. (-=)

In this approximation, f , X , S ,/an" ns q,/USnsare

all taken as constant throu'hLout the flow, and the pressure p

and temperature T are then "hydrodynarmiic" variables. In the

problems discussed here, it will not be necessary to consider

the case of a heat flux through a boundary wall; thus the

'boundary conditions (271) may be written as



V~n = UWCLl ,

n v ( VS - UW&%) = o,
~~( (A-4)

{T,g e - _ - 'Vwexl (v, UwaI)A= O,

where
(S)' (fl) (.s)

TCij = A 2 e. eij +1 Z. JAe~

and n is the unit normal pointing. into the fluid. In section

A we consider simple channel flows, in section B we consider

the steady flow between rotating cylinders and in section C

we consider the Andronikashvili experiment. In section D,

some preliminary results on the numerical values of the dis-

sipative coefficients are discussed.



We consider in sone detail here the flow induced in an

infinitely long channel by constant temperature and pressure

gradients along the channel. The height of the channel is 2h

(cf. Fig. 3), and it is assumed that tbe depth is great enough

so that the flow may be taken as two-dimensional. Thus we as-

sume that the pressure and temperature are C'iven by p=-Pz+?

T= -Tg +T0  , where , T are the constant gradients, and

we look for solutions of t',e form n= vrez ands = Y e

From the equzations (A-1), (A-2), it follows that yn(j),VS(4)

are quadratic functions of y. The boundary conditions to be

satisfied in this case are

cnd

The velocity profiles which satisfy these boundary conditions

and the equations are given by

v.g=Cn h* (A -5)

and
q= c(h-tj2 ) IDs, (A-s

where.

C S "S S X -(I-X))A.~1 s(-)C)F tin+]AL (Ak7)
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[CI-x$~S - ~l- (I X)T (A- 8)

where

A14 = nJ -/,An% Psn. (Pi

(We should note that, strictly speaking,, the termperature must

also coitain a y--dependent term; from the equations, one may

show that TaTo -Ta +TE(j) , where

HIowever,- even for velocities of the order of 10m , the total
sec. _S

variation of T across the channel is only of -the order 10 K.

In most cases of practical interest, this term will be unim-

portant, and we shall ignore it from here on). The mean velo-

cities are Civen by

7n = 2h C , (A-i')
3

and

Vs = Z h C. + Ts, (A -12)

the heat current is

W= esT7, hesTC0 , (A13)

and the mass flux is



=- 5 XC +Gx CS) + 2ht 0 -x) Ds . (A-14)

It is clear from (A-1) and (A-5) that the nonlinear boundary

condition allows a slip of the superfluid at the boundary; the

magnitude of the slip velocity is determined by the "thermomae-

chaiiictl-head" - esT.

It is well-verifed experimentally that the heat current

in channel flows is proportional to the pressure gradient. It

is clear from (A-7) and (A-13) that the present theory pre-

dicts this provided

s+ IL =0O(- $

and in the remainder of the Appendix, we will assume (A-15)

to hold. In this case, Cn is given by

eC-PAtS$ -k CIG)
2'

while CS and Ibs are still given -by (A-8) and (A-9). Thus the

pressure gradient alone is the driving force for the normal

fluid, whereas both " and T are driving forces for tie

superfluid. For the combination vs + )Lsn Vn , however, we have

Vs + FAsn v.~= 4- (-l

so that the"thermomechanical head" - alone is the driving

force for vs,+ ... n .
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is no net mass flux ( internal convection); then the (nonlinear)

relation between the pressure gradient p and the temperature

gradient T is given (implicitly) by

3 C + (-x) 6 CS +0-x) DS=O.
3 ~

(A- I)

For h-00 , one may show from (A-18) that

(A -19)
( , 0e

(or, mi-ore explicitly,

T.. 2.
- 0Y( T) A -0 - -x ySn h)

ST1 PL ( 1-xj An i-Sp n )
so that the London equIation is recovered in the limit

For larger values of h , the expressioA for the heat

of h-+o

current

as a function of the temperature gradient may be written as

where

W= T sT

JA n= -kn:

X( p +(IA) Ann+A
:-xSS, ASSI

A

where T , a dimensionless measure of the temperature gradi-

ent, is given 'by

A

T ST/4

(A-20)

( A- 21)



where

and where

-L

_x_ Sn x('Co
Ass - . + Y.)M( Pon

5

A5

is the (unique)

+ s = -.

root of

(A-2-3)

As a function of T , tle quantity increases imonotoni-

cally from zero to *

(From the restrictions

one may show that %<I

as T increases irom zero to infinit7r.

(258) on the viscosity coefficients,

, so that.W/j is always positive.) If

we introduce

wo -hesT ,
5then1+Psn)

then

W = Wo IT

W a WaT {+

W-=W,(1-4A) Tjj+o(~r s8,

Another case of interest is the isothermal flow in a

channel under a pressure gradient. In this case, the relation

between the mean flow velocity and. the pressure gracient is

Or

v#% WJ { (

and

(A-24)

(A-2!i)

A,

(A-26)

A+O ( A-27)

- 75 (ynn + tysv% 3/

Ia 4

+A

WA 6/s



+ %-X) = P x + PS (Mv)vb+pa . ..,x)

/~~ W

+ (-X) I{(%hP P .

The calculations for the flow

cular pipe of radius a are entirely

in an infinitely

similar, -and we

long cir-

only quote

some of the results here. The profiles and mean velocities

are (we are assuminC- .nS4t,,: o still)

(A -3)

(A-31)

V,r Cn (a" -ri)

C )An SP

C [o -[)(IASI X)~ S~ ) 0n nvIsvIn)j (A -32)

'b,5 = ___I __) ____ 1 .

J.. C ., .. o. +DS.

For internal convection, the relatlon between the heat

( A-35)

(A-34)

currert

and the temperature gradient is

W=.o~'L esT ) CA-3s)

( A-28)

rsi=.a. es'T
8(yAvk%+Pen)

A t5



. Asn
ASS

where
A
T

t sn + /.

,) Ass.~f

an& where 45 is the root

S + S

For isothermal flow under pressure gradient, the mean velo-

city is given by

+ 0t -0i)=

+ ______

(A-3(,)

4.n x A
Ass I-X Ass

-- 1 (A~-i1)

of

A
= T . CA-3b)

+ (-) Ann +,Psn

},US )

(A--39)

x

X-x



.. low retween RotatinI;

We now consider the -steady flow between two concentric

cylinders, the inner cylinder bein, of radius a and having

angular velocityft., , and the outer cy1linder being: of radius

b arld having angular velocityfl.b (cF.

solutions of the form v,:vs(ee , 

from the equations that

V =A.r Ar -Bvn

r.

v5v) = A Sr

1Y' )-1-uSt

SB
V.

7i~. L)* We look for

; it follows

(A-AO)

( A- 4A)

satisfy

Vn (C.) = a.L-n.,

so tiiat Av , Bn arze riven by

An. -U-,+ , 7ae

-'7-z

(A-12)

(A-43)

(A -41)

AhVre.
(A-45)-K =.. b -) -rel = -R-b-

The boundary conditions forv Cr) are

--* a -a. . ,)IIs" r d) (A-44)

V,,(b) = b. .3,

-ft-Q--.

-a- (g r ) zo
pIVC,(O.)
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Qrnd ad()~ d~

r rr (A jAl

so that A.6 , Bs satisfy

Bn+/As
s3 =

O_ I SlS 'S

The solutions for As , Ss may be written as

AS= A *9- 2(y_+_
( ... ....... ... ( 1 + ) ...................................

(-1))

Sn+Mss){(t3~-

where is the (unique) root of

cI

A I

=1 _a

where

AL I s 4 )Ass 54 % -1) ,

- (3 (Y+M I.)

The parameter vcries from 0 to 1 as .. varies from

For.f.O vanishes, and in this case tie normal fluid anc

the s periluid move- together in a rigid body rotation.

general, there is a slip of the superfluid at the boundary;

({ A a. --- .... (A-i8)

(A-43)

(A-50)

(A-b1)

(A -52)

(A -53)

0 to 00 *

In

ASYI* S _a. r

4SS -

... j I

(A-A'1)



thus

C~L. V. -v (Q) 0. Ws+ s a ,2..ar0.1((-b)
I 'S g .+T 3 . 1 (A-54)

(A -55)b..G.o -V-5(b) #-{ sn 4 ,Ss Iy..0-e1(-0) I

5othot, CLISO,

(afa.- X vs(C.) = - b> I -'4(b)I. (A-60

Thus the velocity of the superfluid relative to the wall is

always of opposito sin for the- two boundaries, and the mag-

nitude of the slip is --reater ('by a factor ofr', ) at the

inner wall.

A particular case of interest is the flow in a rotating

cylinder viscometer; in this case we have.U 0, and we with

to calculate the torque (per unit len;th) on the inner cylin-

der as a function of The calculation is easily. made

from the above results, and the torque is Fiven by

T= 4Tr X a.-. ()Lnn P1s - n4s-n)f +

From the channel flow experiments,

(sAss+Asn)( _ss +( A-51)

we have concluded that

(A-58)

it then follows that

T= - -a (_n_+_S_.

and

(N-55)



Thus the torque is a linear function of )- (in agreement withw

the oxperimoitai a esults - E ), and the viscosity measure by

such an experiment is t'e coimbinaticn an*y.

If we also impose the Onsager relation

pAfl S:.SrS n

(A-60)
so that

).A. - - JA s 5)

then it can be stown that in all cases of steady flo bktweon

rotating cylinders, the superfluid component moves with the

normal fluid. By ray of cortrast, we may note that in the

caseyl=o , the superfluid and normal fluid in general do not

move together.

For convenience of reference, we note here that the

angular momentum (per unit length) of a flow be.tween rotating

cylinders is given by

L / r C .6 -) _ _% ~ s

(A-461)
.(1- .- .re,.



Only the simplest aspects of the problem will 'be treated

here--no consideration is given to edge effects or nonlinear

convective terms, the oscillating surfaces are taken as infi-

nite in extent, and the nonlinear boundary condition is

treated only in the lw-speed approximation (for which it is

a linear boundary condition).

In the problem to be considered, Lin' s hydrodynamic equa-

tions may be reduced to the system

nn / 
y Zii

(A-62)

where Vn , VS are velocity components parallel to the oscil-

lating surfaces and z is the space coordinate perpendicular

to th e surfaces. Solutions of (A-62) that are periodic in

time may be found in the form e e . It is convenient to

introduce the kinematic viscosities

i ia s )!nin __ n

it is also convenient to introduce

(A-44)'A IV = -11 n -VS S - Vn S -VS n )



v1(~+nA vb62V4

(We assume here that - is real; in particular, this is true

which includes the cases AA.= ) s ,

Then tLe solutions of (A-62) are the form

( v) =S Le j (ae P+1 +be

F..z - F.
+ (ce +de )+\

P~Z ( 2 -rns
_YS- %lfl

-vn - 3
"Vss -"Vnn +-V)/

vvh ere.

4- $
( ci+ 0

(A - 0 )

and
PVI" +'-SS -- V

Thus in the present case there are two viscous penetration

depths given by

S+-0 I
1~e(P*)

The nonlinear boundary condition to be satisfied at a wall

is

MAsn +,sV = (+ (v 5 -

(A - (,)

(A-4.0

I-Vnn +-VSS +-Y

IP = ( +(.) 4

W (a (Ynn + SS t V)

UW..0) , ) (A -49)



For sufficiently small wall velocities, this condition is, ap-

proximately,

IVn4/ASCV (low -speeci) (A-10)

whereas for sufficiently high wall velocities, the condition

is

VS = UVVLI (%ICh -speeC) . (A~I)

We now consider the Andronikashvili experiment, taking

the, idealized situation of the flow between two oscillating

parallel infinite discs. The discs are located atZ= t , and

the boundary velocity is taken to be

V
c~1 sc.

e Ar L. c.s.t,

where r is the polar radius measured from the axis of rotation.

We look for solutions of the form

(A7)

Then Vn , vS must satisfy the equations(A-62). We consider

here only the low-speed limit, of t"e boundary conditions, so

that

(UAt
Vn ( h)t) A w ~coswt =~eAe

Y- Y



Asn 2V 6 + Ps ( V.
rz ; _

The solutions for Vn , Vs may be written in the form

(4Tn Y)3 A -VS (+ -61 s+Yss (s-Vnn+V),
.f / 7. -n S Cos OS VI P. iss- yn-Y 2 Ysn Vns +5s5 ("s - vvi-r)

(A-lA)P- tfnv P.h
?+tan h f>4 K

C 0 -L Z-Vns ).. - P 2 Y Tn s
C*h ?_- YS " Y +Y r-Oh S.V rs - Yn ~I -

The shears are given by

t L 4 .
_2A W - ss P+Zan 7 1> Vn F~

75 y .tanl %P h [2-Y,Vns + -Vss(-Vss -Vnn + V-i ,tan h Fh (.Vnn+a ysn

and
Vs =-

A particular case of interest is when the penetration

depths are large compared with the disc spacing h; then, ap-

proximately,

bYn ~ A w'le i-vws (;Or I p , << I)

and the order of magnitude condition for the validity of the

low-speed approximation to thne boundary condition may be writ-

ten as

where Ti is- the radius of the oscillating disc.

(A-~1)

(A-15)

( A-76)

( A -~-7'3 )



The angular momentum of the fluid contained between the

two discs of radius R, separation 2h is F-iven by

in the limit IRtPh<li , we have

L R A Lwe. (A -79)

If the ,space between the diaos were filled with a solid of den-

sity f , it is easy to show that the angular momentum would

also be given' by (A-79). Thus in the limit of large pene-

tration depths and low-speeds, only the normal fluid is carried

by the discs-- in agreement with experiment--and this conclu-

sion is independent of any restrictive assumptions on the vis-

cosity coefficients (such as sy= 0 , or po:/4i ).
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Ultimately, one would hope to obtain values for the quan-

tities Jlu, tns, 4n , and as functions of temperature

from the analysis of various experiments. In the present sec-

tion, we give some preliminary results along these lines. Al-

though the experimental evidence for the relation ns)psOs=0 is

convincing, it would be very desirable to obtain some experi-

mental evidence relevant to deciding whether A~npsn or uAs, o.

(Of course, it is possible that neither ofpy.smAsn or *,,=o

holds; since there are, however, arguments in favor of both

of these relations, we will not in the present section con-

sider the more general case.) The preliminary results given

here tend to favor the case pA,,,.

We consider first experiments designed to measure the

viscosity of helium II--the damping of an oscillating disc and

the rotating cylinder viscometer. According to Lin's theory,

the rotatinr cylinder viscometer measures the combination

p+j.~ (cf. section B of this Appendix). For an ordinary

fluid, the damping of an oscillating disc serves as a measure

of the product g . In the usual interpretation of the ex-

perimental results for helium II, it is assumed that the rele-

vant density is ?, and the relevant viscosity is ,h . The

oscillating disc experiment may be analyzed on the basis of

Lin's theory, and the quantity Pn expressed in terms of the

parameters of Lin's theory. Table 1 showis which quantities

in Lin's theory play the role of the effective viscosity.

Thus it -is clear that if)AsIO, t-e effective viscosities



Rotating cylinder viscometer y n (i-r)=pnn -,

Osci I Iatinq 8 i sc

(low-speed oxpp roximaton to rx(i-r

boundary condition) {" + rx -. 2

hsn p s

Note -.
, r = Th

Yn

Tablel.Ef4ective Normal F1 uid Vi scostty From Lin sTheory

ForExperiment-5 For~a, 0

x =en



should be the same; however, the measured results are not the

same (see, e.g., Atkins [2], p. 105), the discrepancy being

particulary great at low temperatures, where the viscosit .

from the disc experiments is significartly larger. In the

casefg5 : Aas , Lin's theory predicts that the effective vis-

cosities will be different; in fact, for low temperatures (x+o),

the effective viscosity in the disc experiment tends to ,

whereas the effective viscosity in the rotating cylinder vis-

cometer isann-,s. For high temperatures (x+t ), both ef-

fective viscosities tend tounwn-,As, and the experimental re-

sults show that tie discrepancy between the measured viscosi-

ties is indeed smallest near the A - noint. The experimental

results then seem to indicate the choice pns=LAsn. Kowever,

there are several reasons for regarding this as only a tenta-

tive conclusion:(i) in 'order to calculate the effective vis-

cosity from the disc experiments, one must know the normal

fluid density , and it is difficult to accurately determine

the quantity at the lower temperat-ires for which the discre-

pancy between the two effective viscosities is !reatest, (Ii)

an accurate measurement of the damping of the disc is more

difficult at lower temperatures, and (iii) the theory (in the

case pos:gAs ) predicts that the disc effective viscosity

should always be greater than the rotating cylinder viscosity,

whereas the experimentally determined values of the disc vis-

cosity seem to be somewhat smaller than the rotatinr cylinder

viscosity for temperatures above i.k* In the caseAsn=)An-,

the experimental results ([21, p. 105) indicate that (i) at

lower temperatures (T0l-40 K )jan2o-Io poise and



.s -' 5 -10 ( 'poise- (i) at bi er temperatures (near the

'A - point) -Ass ^- 20 -1o0poise. and (iii) at intermediate tem.-

peratures (-r-I*K ) MVV-$,5 o'2- poise.

Another possible experimental test to choose between

and j ~ns-- se is suggested by the equation (A-61) for the angu-

lar momentum of the fl-ow between rotating cylinders. In par-

ticular, for the choice.f-s= -(-- , the angular momenta for

the two cases are

ovid L~Tra 0 (AWB)

Thus it should be nossible to obtain some evidence relevsant to

this question provided thre angular momentum can be measured

with an accuracy sufficient to iscern (A-80) frou (A-1).

Although Reppy and Lane [321 hsve made measurements of tie

angular momentum of helium II contained in a single rotating

cylinder, it would presumably 'be much more difficult in the

case of fluid contained between two rotating cylinders. The

situation is further complicated by the fact that if.-b is

too large, the parameter 6 (cf. (A-52), (A-553)) will be close

to unity; on the other hand,.fl must be large enough so that

the measurement can choose between (A-80) and (A-81).

As discussed in part C of this Appendix, the Andronikash-

vili experiment does not choose between a --... d and s f ,

since the theory predicts that (for sufficiently large



cillation) only the normal component moves with the discs.

However, it is possible to obtain some order of magnitude es-

timates of the boundary constant from some oscillating

disc-pile experiments of Hollis-Hallet 17 . !-e found that

above a certain critical amplitude, the period of oscillation

wts ,observed to increase, indicating that the discE were

carrying, a fraction of the total liquid rreater than

This is agreement with Lin's theory, in whidhi--because of the

nonlinear boundary condition-- increasing entrainment, of the

superfluid component occurs with increasing amplitude of os-

cillation. Prom Eollis-Hallett' s data. some (very crude) es-

timuateE of' were made. In the tcmperaturc r2n1 e i.7K to 2.1, 01,

values of in the range O - - 5- 10 (cgs) were found; al

though the estimates were far too crude to determine the tem-

perature dependence of f3 , there was some indication of a

maximum- in the vicinity of 1.,J( For temperatwres above

1.6*K, all of the values were in the range 21 - 10 (cgs).

The'se estimates are at best only order of magnitude.

Further evidence for the choices MmAy n obtaine

from the results of some pipe flow experiments by 3taas, Taco-

nis and van Alphen 34. They have studied both laminar and

turbulent flows in a pipe in the particuiar case when

the temperature and pressure gradients are related. by =ST.
The onset of turbulence was determined experimentally by not-

ing when the heat current ceased to bepr>bprtion to the

pressure gradient. They found that over a wide range of



temperatures (anod for pipes oL tl.ree Uilierent diameters) th-e

onset of turbulence corresponded to a value of 1200 for the

Reynolds' number based on the pipe diameter, the mean normal

fluid velocity, the normal fluid viscosity p, and the total

fluid density. The analysis of this experiment, on the basis

of Lin's theory yields the following results: (i) forpsnzo ,

only the normal component moves, so that the density of the

moving fluid is g ; (ii) for) g,,.=,,, the normal and super

components move together, so that the density of the moving

fluid is * Since the experimentally determined critical

Reynolds' number based on the total density e is constant

over a wide range of temperatures, this would seem to be fur-

ther evidence for the choice j As .

In principle, the experimental results for various chan-

nel and pipe flows afford the best opportunity for obtaining

accurate numerical values for the viscosity coefficients and

the boundary constant (3 . In practice, however, one must be

sure that the flows analyzed are laminar. The work of Staas

et al. described above has given a criterion for turbulence

in the case that pgS T . However, in their experiments, the

normal and supercomponents move together (in the casegASzysn),

so that the critical Reynolds', number--which was based on the

mean fluid velocity--could equally well have been based on the

mean mass velocity or the mean superfluid velocity. In more

general pipe flows, there may be two critical ReynoldcC num~-

bers; even so, the criterion furnished by Staas et al. should

be a valuable guide in the interpretation of these more



OaL'l .Uio s. O 1u ,Q& Lct Linia IOws Lne cannOt

discount entirely the possibility of a volume mutual friction

force and an associated critical velocity. In spite of these

difficulties, the pipe and channel floiWs still seem to be the

most likely source of accurate values of the viscosities and

the boundary constant .



i11 Andronikashvili, E. L., J. Phys. Moscow, 10, 201 (1946).

r21 Atkins, K. R., Liquid Helium, Cambridge (1959).

(3] Bekarevich, I. L. and I. M. Khalatnikov, Sov. Phys. JETP
113, 643 (1961).

de Groot, S. R. and P. Mazur, Non-EqUill im lTh&eody-
namics, North Holland Publishing Co., Amsterdam (1962).

~5 Eckart, C., Phys. Rev., 5, 920 (1938).

f61 Fairbank, H. A. and D. M. Lee, Symposium on Liquid and
Solid He 3 , p. 26,32, Ohio State University (1957).

[71 Feynman, R. P., Prooress in Low Temperature Physics,
vol. I(C. J. Gorter, editor), Chapter I. North Holland
Publishing Co., Amsterdam (1955).

[8] Gorter, C. J. aiid J. H. Mellink, Physica 15, 285 (1949).

r9] Gorter, C. J., Proc. International Conference on Low
Temperature Physics, p. 971 Oxford (1951).

t101 Grad, H., Comm. Pure Apll. Math, 5, 455 (1952).

Il &ribben, R. J., J. Math and Physics, 40, 177, 189 (1961).

23 Hall, H. E.,and'W. F. Vinen, Proc. <Roy. $oc. A, 238, 204,
215 (1956).

L3J Hall, H. E., Proc.. Roy. Soc. A, 245, 546 (1958).

[A Hall, H. E., Adv. Phys. 9, 89 (1960).

C5l Heikki la, W. J. and A. C. Hollis-Hallett, Can. J. Phys.
3, 420 (1955).

[161 Herivel, J. W., Proc. Camb. Phil. Soc. 51, 344 (1955).

17 Hollis-Hallett, A. C., Proc. Roy. Soc. A, P10, 404 (1952).

c18 Kapitza, P., J. Phys. Moscow, 4, 181 (1941).

19A Kronig, R., Proc. International Conference on Low Tem-
perature Physics, p. 99, Oxford (1951).

23 Landau, L. D., J. Phys., Moscow, , 71 (1941).

r21 Lee, T. D. and C. N. Yang, Phys. Rev. 113, -1406 (1959).



[22) LifsLitz, a. U. anc.M hltiov, uoyro Cim ent ,
Suppl. 3, 735 (1956).

[23 Lin, C. C., Phys. Rev. Letters 2, 245 (1959).

[241 Lin, C. C., "On the Hydrodynamics of Liquid Helium II,
Part I: Perfect Fluid Theory", Preprint, Institute for
Advanced Study, Princeton, N. J. (1960).

251 Lin, C. C., Hydrodynamics of Helium II, notes for Enrico
Fermi International School of Physics, Varenna, Italy,
July 3-15, 1961.

[261 Lin, C. C., Nuovo Cimento (to 'be published)

[271 Little, W. A., Can. J. Phys., 37, 334 (1959).

283 London, F., Nature, 141, 643 (1938).

[29 London, F., Superfluids, vol. II, John Wiley and Sons,
New York (1954).

301 Onsagrer, L., Nuovo Cimento 6, Suppl. 2, 249 (1949).

l1 Osbourne, D. V., Proc. Phys. Soc. A, 63, 909 (1950).

321 Reppy,.J..D. atd C. T. Lane; Ptoc. 7th International
Conference on Low Temperature Physics, p.,443 Toronto
(1960).

33 Serrin, J. Mathematical Principles of Classical Fluid
Mechanics, Handbuch der Physik, vol. VIII, Springer,
Berlin (1959).

[3] Staas, F. A., K. W. Taconis and W. Y. Van Alphen, Physica
27, 893 (1961).

35I Tisza, L., Nature, 141, 913 (1938); Compt. Rend., 207,
1035, 1186 (1938).

[367 Tisza, L., Phys. Rev., 72, 838 (1947).

37 Vinen, W. F., Proc. Roy. Soc. A, 210, 404, (1952).

Vinen, W. F., _ProZless in Low Temperature Phy sics, vol.
III (C. J. Gorter, editor), Chapter I. North Holland
Publishing Co., Amsterdam (1960).

[39 Whitlock, R. T., tiOn the Significance of Lin's Velocity
Constraint in Two-Fluid Hydrodynamics", Dept. Army Pro-
ject No. 5B99-01-004, U. S. AROD Project No. 2430, Con-
tract No. DA-33-019-ORD-3003, Interim Technical Report
No. 2. (1961).



*/qrrr) n- '<T . RPTTT C VT *.Ar', L



BIOGRAPKICAL NOTE

The author was born May 5, 1936 at ElizabethtonTennessee.

The author attended Purdue University (Sept.,195L4 -- June,

1958) and was awarded the B.S, degree in Engineering Sciences

in June, 1958. The author has been in attendance at M.I.T.

from Sept., 1958 until the present, with the exception of one

summer (1962) with the International Business Machines Cor-

poration at Yorktown Heights, New York. While at M.I.T., the

author was a research assistant (Sept. 15,1958 -- Sept. 15,

1961; Sept 15, 1962 -- present) and also held an NSF Coopera-

tive Graduate Fellowship (Sept. 15, 1961 -- June 15, 1962).




